Directory of Open Access Journals (Sweden)
A. Franchi
2009-01-01
Full Text Available The multiturn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by nonlinear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.
Franchi, A; Giovannozzi, M; CERN. Geneva. BE Department
2009-01-01
The multi-turn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by non-linear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.
Froment, P; Delbar, T; Ryckewaert, G; Tilquin, I; Vervier, J
2002-01-01
The Transmutation by Adiabatic Resonance Crossing (TARC) technique has been proposed by Rubbia (Resonance enhanced neutron captures for element activation and waste transmutation, CERN-LHC/97-0040EET, 1997; TARC collaboration, Neutron-driven nuclear transmutation by adiabatic resonance crossing, CERN-SL-99-036EET, 1999; Abanades et al., Nucl. Instr. and Meth. A 487 (2002) 577) for element activation and waste transmutation. We investigate the possibility to use this technique for the industrial production of **9**9Mo and **1**2**5Xe by resonance neutron capture in **9**8Mo and **1**2**4Xe, respectively. Their daughters, i.e. **9**9**mTc and **1**2**5I, are widely used in medical applications. The high neutron flux needed is produced by bombarding a thick Be target with 65 or 75 MeV proton beam (few microamperes). This target is placed at the centre of a large cubic lead assembly (1.6 m side, purity: 99.999%). The neutrons are progressively slowed down by elastic scattering on lead, and their energies "scan" t...
Khorshidi, Abdollah; Pazirandeh, Ali; Tenreiro, Claudio; Kadi, Yacine
2014-01-01
In this study, the transmutation adiabatic resonance crossing (TARC) concept was estimated in Mo-99 radioisotope production via radiative capture reaction in two designs. The TARC method was composed of moderating neutrons in lead or a composition of lead and water. Additionally, the target was surrounded by a moderator assembly and a graphite reflector district. Produced neutrons were investigated by (p,xn) interactions with 30 MeV and 300 mu A proton beam on tungsten, beryllium, and tantalum targets. The Mo-99 production yield was related to the moderator property, cross section, and sample positioning inside the distinct region of neutron storage as must be proper to achieve gains. Gathered thermal flux of neutrons can contribute to molybdenum isotope production. Moreover, the sample positioning to gain higher production yield was dependent on a greater flux in the length of thermal neutrons and region materials inside the moderator or reflector. When the sample radial distance from Be was 38 cm inside the...
Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lèpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division
2000-01-01
The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (from 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3x3.3x3 m3 lead volume and neutron capture rates on long-lived fission fragements 99Tc and 129I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation.
Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; López, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, Alfredo; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, Juan Antonio; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin
1999-01-01
Energy and space distributions of spallation neutrons (from 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3 x 3.3 x 3 m3 lead volume and neutron capture rates on long-lived fission fragments 99 Tc and 129 I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation.
Arnould, H; Del Moral, R; Lacoste, V; Vlachoudis, V; Aleixandre, J; Bueno, J; Cerro, E; González, O; Tamarit, J; Andriamonje, Samuel A; Brozzi, Delecurgo; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Dumps, Ludwig; Gelès, C; Goulas, I; Fernández, R; Kadi, Y; Klapisch, Robert; Oropesa, J; Placci, Alfredo; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, Juan Antonio; Saldaña, F; Embid, M; Gálvez, J; López, C; Pérez-Enciso, E; Poza, M; Sirvent, C; Vieira, S L; Abánades, A; García, J; Martínez-Val, J M; Perlado, M; González, E; Hussonnois, M; Le Naour, C; Trubert, D; Belle, E; Giorni, A; Heuer, R D; Loiseaux, J M; Méplan, O; Nifenecker, H; Schussler, F; Viano, J B; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Karaiskos, P; Sakelliou, L; Kokkas, P; Pavlopoulos, P; Eleftheriadis, C; Kitis, G; Papadopoulos, I M; Savvidis, E; Tzima, A; Zioutas, Konstantin; Díez, S; Pérez-Navarro, A
1999-01-01
Energy and space distributions of spallation neutrons (from 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3*3.3*3 m/sup 3/ lead volume and neutron capture rates on long-lived fission fragments /sup 99/Tc and /sup 129/I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation. (17 refs).
Theory of Adiabatic Fountain Resonance
Williams, Gary A.
2017-06-01
The theory of "Adiabatic Fountain Resonance" with superfluid ^4{He} is clarified. In this geometry a film region between two silicon wafers bonded at their outer edge opens up to a central region with a free surface. We find that the resonance in this system is not a Helmholtz resonance as claimed by Gasparini et al., but in fact is a fourth sound resonance. We postulate that it occurs at relatively low frequency because the thin silicon wafers flex appreciably from the pressure oscillations of the sound wave.
Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lèpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division
2000-01-01
The results of the TARC experiment are summarized herewith, whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons, produced by spallation at relatively high energy (En * 1 MeV), slow down quasi adiabatically, with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 GeV/c and 3.5 GeV/c protons) slowing down in a 3.3 m x 3.3 m x 3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational t...
Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; López, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifnecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, Alfredo; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, Juan Antonio; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin
2001-01-01
The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (produced by 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3*3.3*3 m/sup 3/ lead volume and neutron capture rates on long-lived fission fragments /sup 99/Tc and /sup 129/I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation. (9 refs).
Crossing a Nonlinear Resonance
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Crossing a Nonlinear Resonance: Adiabatic Invariants and the Melnikov-Arnold Integral. Sudhir R Jain. General Article Volume 19 Issue 9 September 2014 pp 797-813 ...
Adiabaticity and Reversibility Studies for Beam Splitting using Stable Resonances
Franchi, A; Giovannozzi, M
2008-01-01
At the CERN Proton Synchrotron, a series of beam experiments proved beam splitting by crossing the one-fourth resonance. Depending on the speed at which the horizontal resonance is crossed, the splitting process is more or less adiabatic, and a different fraction of the initial beam is trapped in the islands. Experiments prove that when the trapping process is reversed and the islands merged together, the final distribution features thick tails. The beam population in such tails is correlated to the speed of the resonance crossing and to the fraction of the beam trapped in the stable islands. Experiments and possible theoretical explanations are discussed.
Pulsed Adiabatic Photoassociation via Scattering Resonances
Han, Alex C.; Shapiro, Evgeny A.; Shapiro, Moshe
2011-01-01
We develop the theory for the Adiabatic Raman Photoassociation (ARPA) of ultracold atoms to form ultracold molecules in the presence of scattering resonances. Based on a computational method in which we replace the continuum with a discrete set of "effective modes", we show that the existence of resonances greatly aids in the formation of deeply bound molecular states. We illustrate our general theory by computationally studying the formation of $^{85}$Rb$_2$ molecules from pairs of colliding...
Adiabatic Interactions of Manakov Solitons -- Effects of Cross-modulation
Gerdjikov, V. S.; Todorov, M. D.; Kyuldjiev, A. V.
2016-01-01
We investigate the asymptotic behavior of the Manakov soliton trains perturbed by cross-modulation in the adiabatic approximation. The multisoliton interactions in the adiabatic approximation are modeled by a generalized Complex Toda chain (GCTC). The cross-modulation requires special treating for the evolution of the polarization vectors of the solitons. The numerical predictions of the Manakov system are compared with the perturbed GCTC. For certain set of initial parameters GCTC describes ...
Energy Technology Data Exchange (ETDEWEB)
Abanades, A., E-mail: abanades@etsii.upm.es [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Alvarez-Velarde, F.; Gonzalez-Romero, E.M. [Centro de Investigaciones Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense, 40, Ed. 17, 28040 Madrid (Spain); Ismailov, K. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Lafuente, A. [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Nishihara, K. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Saito, M. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Stanculescu, A. [International Atomic Energy Agency (IAEA), Vienna (Austria); Sugawara, T. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan)
2013-01-15
Highlights: Black-Right-Pointing-Pointer TARC experiment benchmark capture rates results. Black-Right-Pointing-Pointer Utilization of updated databases, included ADSLib. Black-Right-Pointing-Pointer Self-shielding effect in reactor design for transmutation. Black-Right-Pointing-Pointer Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of {sup 99}Tc, {sup 127}I and {sup 129}I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.
Controlling vibrational cooling with zero-width resonances: An adiabatic Floquet approach
Leclerc, Arnaud; Viennot, David; Jolicard, Georges; Lefebvre, Roland; Atabek, Osman
2016-10-01
In molecular photodissociation, some specific combinations of laser parameters (wavelength and intensity) lead to unexpected zero-width resonances (ZWRs) with, in principle, infinite lifetimes. Their potential to induce basic quenching mechanisms has recently been devised in the laser control of vibrational cooling through filtration strategies [O. Atabek et al., Phys. Rev. A 87, 031403(R) (2013), 10.1103/PhysRevA.87.031403]. A full quantum adiabatic control theory based on the adiabatic Floquet Hamiltonian is developed to show how a laser pulse could be envelope-shaped and frequency-chirped so as to protect a given initial vibrational state against dissociation, taking advantage of its continuous transport on the corresponding ZWR all along the pulse duration. As compared with previous control scenarios that actually suffered from nonadiabatic contamination, drastically different and much more efficient filtration goals are achieved. A semiclassical analysis helps us to find and interpret a complete map of ZWRs in the laser parameter plane. In addition, the choice of a given ZWR path, among the complete series identified by the semiclassical approach, turns out to be crucial for the cooling scheme, targeting a single vibrational state population left at the end of the pulse, while all others have almost completely decayed. The illustrative example, which has the potential to be transposed to other diatomics, is Na2 prepared by photoassociation in vibrationally hot but translationally and rotationally cold states.
Directory of Open Access Journals (Sweden)
Jeong Ryeol Choi
2015-01-01
Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.
Berman, G P; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I
2003-01-01
We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of th...
Adiabatic Non-resonant Acceleration in Magnetic Turbulence and Hard Spectra of Gamma-Ray Bursts
Xu, Siyao; Zhang, Bing
2017-09-01
We introduce a non-resonant acceleration mechanism arising from the second adiabatic invariant in magnetic turbulence and apply it to study the prompt emission spectra of gamma-ray bursts (GRBs). The mechanism contains both the first- and second-order Fermi acceleration, originating from the interacting turbulent reconnection and dynamo processes. It leads to a hard electron energy distribution up to a cutoff energy at the balance between the acceleration and synchrotron cooling. The sufficient acceleration rate ensures a rapid hardening of any initial energy distribution to a power-law distribution with the index p˜ 1, which naturally produces a low-energy photon index α ˜ -1 via the synchrotron radiation. For typical GRB parameters, the synchrotron emission can extend to a characteristic photon energy on the order of ˜100 keV.
Wei, Xin; Chen, Mei-Feng
2015-07-01
We propose an efficient scheme to prepare W state of superconducting (SC) qubits in spatially separated coplanar waveguide (CPW) resonators via adiabatic passage. The CPW resonators, each trapping a SC qubit, are coupled only by a superconducting coupler (SCC) qubit. Based on a circuit quantum electrodynamics system, our scheme can be controlled and implemented easily in experiment. As a model of a plurality of separated cavities coupled to a SCC qubit, our protocol can be useful in scalable distributed quantum networks. By introducing adiabatic passage into our model, there is no need to control the Rabi frequency of classical field and the interaction time precisely during the whole operation. Also, the dissipation from the resonators and the energy relaxation can be omitted approximately.
ASCAP. Resonance Region Cross Section Analysis
Energy Technology Data Exchange (ETDEWEB)
Smith, J.R.; Young, R.C. [EG and G Idaho Inc., Idaho Falls, ID (United States)
1972-09-01
ACSAP may be used to compute neutron cross section data from neutron resonance input. Total, fission, capture, or scattering cross section data may be computed. Experimental data may be compared by means of a wide selection of representations. ACSAP can also determine cross section resonance parameters from input experimental data.
Emittance growths in resonance crossing at FFAGs
Energy Technology Data Exchange (ETDEWEB)
Ng, K.Y.; /Fermilab; Pang, X.; Wang, F.; Wang, X.; Lee, S.Y.; /Indiana U.
2007-10-01
Scaling laws of the emittance growth for a beam crossing the 6th-order systematic space-charge resonances and the random-octupole driven 4th-order resonance are obtained by numerical multi-particle simulations. These laws can be important in setting the minimum acceleration rate and maximum tolerable resonance strength for the design of non-scaling fixed-field alternating gradient accelerators.
Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L
2010-12-01
We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. © 2010 American Institute of Physics.
Pan, Huilin; Mondal, Sohidul; Yang, Chung-Hsin; Liu, Kopin
2017-07-01
In order to achieve a more efficient preparation of a specific ro-vibrationally excited reactant state for reactive scattering experiments, we implemented the rapid adiabatic passage (RAP) scheme to our pulsed crossed-beam machine, using a single-mode, continuous-wave mid-infrared laser. The challenge for this source-rotatable apparatus lies in the non-orthogonal geometry between the molecular beam and the laser propagation directions. As such, the velocity spread of the supersonic beam results in a significantly broader Doppler distribution that needs to be activated for RAP to occur than the conventional orthogonal configuration. In this report, we detail our approach to shifting, locking, and stabilizing the absolute mid-infrared frequency. We exploited the imaging detection technique to characterize the RAP process and to quantify the excitation efficiency. We showed that with appropriate focusing of the IR laser, a nearly complete population transfer can still be achieved in favorable cases. Compared to our previous setup—a pulsed optical parametric oscillator/amplifier in combination with a multipass ring reflector for saturated absorption, the present RAP scheme with a single-pass, continuous-wave laser yields noticeably higher population-transfer efficiency.
Paul, Ganesh C.; Saha, Arijit
2017-01-01
We theoretically investigate the phenomena of adiabatic quantum charge pumping through a normal-insulator-superconductor-insulator-normal (NISIN) setup of silicene within the scattering matrix formalism. Assuming a thin barrier limit, we consider the strength of the two barriers (χ1 and χ2) as the two pumping parameters in the adiabatic regime. Within this geometry, we obtain crossed Andreev reflection (CAR) with probability unity in the χ1-χ2 plane without concomitant transmission or elastic co-tunneling. Tunability of the band gap at the Dirac point by applying an external electric field perpendicular to the silicene sheet and variation of the chemical potential at the normal silicene region, open up the possibility of achieving either a perfect CAR or transmission process through our setup. This resonant behavior is periodic with the barrier strengths. We analyze the behavior of the pumped charge through the NISIN structure as a function of the pumping strength and angles of the incident electrons. We show that large (Q ˜2 e ) pumped charge can be obtained through our geometry when the pumping contour encloses either the CAR or transmission resonance in the pumping parameter space. We discuss possible experimental feasibility of our theoretical predictions.
Resonance capture cross section of 207Pb
Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.
2006-01-01
The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.
On the treatment of resonance cross sections in thermal reactor ...
African Journals Online (AJOL)
This paper discusses the mathematical models and methods used for calculating resonance cross sections in the resonance region of the neutron energy spectrum. Particular attention has been paid to the treatment outlined in the WIMSD/4 version of the WIMS lattice transport code. The significance of the resonance ...
Calculation of vibrational excitation cross-sections in resonant ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 5. Calculation of vibrational excitation cross-sections in resonant electron-molecule scattering using the time-dependent wave packet (TDWP) approach with application to the 2 CO- shape resonance. Raman Kumar Singh Manabendra Sarma Ankit Jain ...
Soleimanifard, Sahar; Schär, Michael; Hays, Allison G.; Prince, Jerry L.; Weiss, Robert G.; Stuber, Matthias
2012-01-01
In coronary magnetic resonance angiography, a magnetization-preparation scheme for T2-weighting (T2Prep) is widely used to enhance contrast between the coronary blood-pool and the myocardium. This pre-pulse is commonly applied without spatial selection to minimize flow sensitivity, but the non-selective implementation results in a reduced magnetization of the in-flowing blood and a related penalty in signal-to-noise-ratio (SNR). It is hypothesized that a spatially-selective T2Prep would leave the magnetization of blood outside the T2Prep volume unaffected, and thereby lower the SNR penalty. To test this hypothesis, a spatially-selective T2Prep was implemented where the user could freely adjust angulation and position of the T2Prep slab to avoid covering the ventricular blood-pool and saturating the in-flowing spins. A time gap of 150ms was further added between the T2Prep and other pre-pulses to allow for in-flow of a larger volume of unsaturated spins. Consistent with numerical simulation, the spatially-selective T2Prep increased in vivo human coronary artery SNR (42.3±2.9 vs. 31.4±2.2, n=22, p<0.0001) and contrast-to-noise-ratio (18.6±1.5 vs. 13.9±1.2, p=0.009) as compared to those of the non-selective T2Prep. Additionally, a segmental analysis demonstrated that the spatially-selective T2Prep was most beneficial in proximal and mid segments where the in-flowing blood volume was largest compared to the distal segments. PMID:22915337
Analysis and approximations for crossing two nearby spin resonances
Energy Technology Data Exchange (ETDEWEB)
Ranjbar, V. H. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.
2014-01-07
Solutions to the T-BMT spin equation have to date been confined to the single resonance crossing. However, in reality most cases of interest concern the overlapping of several resonances. To date there has been several serious studies of this problem; however, a good analytical solution or even approximation has eluded the community. We show that the T-BMT equation can be transformed into a Hill’s like equation. In this representation it can be shown that, while the single resonance crossing represents the solution to the Parabolic Cylinder equation, the overlapping case becomes a parametric type of resonance. We present possible approximations for both the non-accelerating case and accelerating case.
Plasmon resonance and electric field amplification of crossed gold nanorods
Cortie, M. B.; Stokes, N.; McDonagh, A.
2009-11-01
Here we explore the unusual plasmon resonances of crossed gold nanorod structures of varying geometries. Using numerical simulations, we show that the resonances of simple rods are hybridized and blue-shifted in the composite structures and that these structures are surrounded by spatially extended and high intensity electric fields. This attribute suggests several potential uses for these shapes, for example as a nano-antenna for the generation of two-photon fluorescence.
Adiabatic perturbation theory and geometry of periodically-driven systems
Weinberg, Phillip; Bukov, Marin; D'Alessio, Luca; Polkovnikov, Anatoli; Vajna, Szabolcs; Kolodrubetz, Michael
2017-05-01
We give a systematic review of the adiabatic theorem and the leading non-adiabatic corrections in periodically-driven (Floquet) systems. These corrections have a two-fold origin: (i) conventional ones originating from the gradually changing Floquet Hamiltonian and (ii) corrections originating from changing the micro-motion operator. These corrections conspire to give a Hall-type linear response for non-stroboscopic (time-averaged) observables allowing one to measure the Berry curvature and the Chern number related to the Floquet Hamiltonian, thus extending these concepts to periodically-driven many-body systems. The non-zero Floquet Chern number allows one to realize a Thouless energy pump, where one can adiabatically add energy to the system in discrete units of the driving frequency. We discuss the validity of Floquet Adiabatic Perturbation Theory (FAPT) using five different models covering linear and non-linear few and many-particle systems. We argue that in interacting systems, even in the stable high-frequency regimes, FAPT breaks down at ultra slow ramp rates due to avoided crossings of photon resonances, not captured by the inverse-frequency expansion, leading to a counter-intuitive stronger heating at slower ramp rates. Nevertheless, large windows in the ramp rate are shown to exist for which the physics of interacting driven systems is well captured by FAPT.
Adiabatic theory for anisotropic cold molecule collisions
Energy Technology Data Exchange (ETDEWEB)
Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
Multi-band metamaterial absorber using cave-cross resonator
Cheng, Y. Z.; Nie, Y.; Gong, R. Z.; Yang, H. L.
2011-12-01
Multi-band metamaterial absorber (MA) was proposed at the microwave frequency ranges, which were composed of cave-cross resonator (CCR) with different geometric dimensions, dielectric substrate and continuous metal film. Microwave experiments demonstrated the maximum absorptivity of single CCR structure to be about 99% around 9 GHz. Numerical simulations confirm that the MA could achieve very high absorptivity at wide angles of incidence for both transverse electric (TE) wave and transverse magnetic (TM) wave. Importantly, numerical simulations demonstrate that the MA could achieve perfect multi-band absorption by assembling the multi-CCR structure with different geometric parameters in a coplanar.
Adiabaticity in open quantum systems
Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo
2016-03-01
We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.
Directory of Open Access Journals (Sweden)
Meer Bacha
2015-12-01
Full Text Available The effective cross sections (XSs in the direct whole core calculation code nTRACER are evaluated by the equivalence theory-based resonance-integral-table method using the WIMS-based library as an alternative to the subgroup method. The background XSs, as well as the Dancoff correction factors, were evaluated by the enhanced neutron-current method. A method, with pointwise microscopic XSs on a union-lethargy grid, was used for the generation of resonance-interference factors (RIFs for mixed resonant absorbers. This method was modified by the intermediate-resonance approximation by replacing the potential XSs for the non-absorbing moderator nuclides with the background XSs and neglecting the resonance-elastic scattering. The resonance-escape probability was implemented to incorporate the energy self-shielding effect in the spectrum. The XSs were improved using the proposed method as compared to the narrow resonance infinite mass-based method. The RIFs were improved by 1% in 235U, 7% in 239Pu, and >2% in 240Pu. To account for thermal feedback, a new feature was incorporated with the interpolation of pre-generated RIFs at the multigroup level and the results compared with the conventional resonance-interference model. This method provided adequate results in terms of XSs and k-eff. The results were verified first by the comparison of RIFs with the exact RIFs, and then comparing the XSs with the McCARD calculations for the homogeneous configurations, with burned fuel containing a mixture of resonant nuclides at different burnups and temperatures. The RIFs and XSs for the mixture showed good agreement, which verified the accuracy of the RIF evaluation using the proposed method. The method was then verified by comparing the XSs for the virtual environment for reactor application-benchmark pin-cell problem, as well as the heterogeneous pin cell containing burned fuel with McCARD. The method works well for homogeneous, as well as heterogeneous
Oscillating potential well in the complex plane and the adiabatic theorem
Longhi, Stefano
2017-10-01
A quantum particle in a slowly changing potential well V (x ,t ) =V ( x -x0(ɛ t ) ) , periodically shaken in time at a slow frequency ɛ , provides an important quantum mechanical system where the adiabatic theorem fails to predict the asymptotic dynamics over time scales longer than ˜1 /ɛ . Specifically, we consider a double-well potential V (x ) sustaining two bound states spaced in frequency by ω0 and periodically shaken in a complex plane. Two different spatial displacements x0(t ) are assumed: the real spatial displacement x0(ɛ t ) =A sin(ɛ t ) , corresponding to ordinary Hermitian shaking, and the complex one x0(ɛ t ) =A -A exp(-i ɛ t ) , corresponding to non-Hermitian shaking. When the particle is initially prepared in the ground state of the potential well, breakdown of adiabatic evolution is found for both Hermitian and non-Hermitian shaking whenever the oscillation frequency ɛ is close to an odd resonance of ω0. However, a different physical mechanism underlying nonadiabatic transitions is found in the two cases. For the Hermitian shaking, an avoided crossing of quasienergies is observed at odd resonances and nonadiabatic transitions between the two bound states, resulting in Rabi flopping, can be explained as a multiphoton resonance process. For the complex oscillating potential well, breakdown of adiabaticity arises from the appearance of Floquet exceptional points at exact quasienergy crossing.
Dispersive Readout of Adiabatic Phases
Kohler, Sigmund
2017-11-01
We propose a protocol for the measurement of adiabatic phases of periodically driven quantum systems coupled to an open cavity that enables dispersive readout. It turns out that the cavity transmission exhibits peaks at frequencies determined by a resonance condition that involves the dynamical and the geometric phase. Since these phases scale differently with the driving frequency, one can determine them by fitting the peak positions to the theoretically expected behavior. For the derivation of the resonance condition and for a numerical study, we develop a Floquet theory for the dispersive readout of ac driven quantum systems. The feasibility is demonstrated for two test cases that generalize Landau-Zener-Stückelberg-Majorana interference to two-parameter driving.
Adiabatic Cooling of Antiprotons
Gabrielse, G; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J
2011-01-01
Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3 x 10(6) (p) over bar are cooled to 3.5 K-10(3) times more cold (p) over bar and a 3 times lower (p) over bar temperature than previously reported. A second cooling method cools (p) over bar plasmas via the synchrotron radiation of embedded (p) over bar (with many fewer (p) over bar than (p) over bar) in preparation for adiabatic cooling. No (p) over bar are lost during either process-a significant advantage for rare particles.
Formalism for neutron cross section covariances in the resonance region using kernel approximation
Energy Technology Data Exchange (ETDEWEB)
Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.
2010-04-09
We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).
Semi adiabatic theory of seasonal Markov processes
Energy Technology Data Exchange (ETDEWEB)
Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.
Semiconductor adiabatic qubits
Energy Technology Data Exchange (ETDEWEB)
Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib
2016-12-27
A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.
Quantum Adiabatic Brachistochrone
Rezakhani, A. T.; Kuo, W.-J.; Hamma, A.; Lidar, D. A.; Zanardi, P.
2009-08-01
We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.
Richards, Paul L.
2005-01-01
Mechanical heat switches are used in conjunction with sorption refrigerators, adiabatic demagnetization refrigerators and for other cryogenic tasks including the pre-cooling cryogenic systems. They use a mechanical actuator which closes Au plated Cu jaws on an Au plated Cu bar. The thermal conductance in the closed position is essentially independent of the area of the jaws and proportional to the force applied. It varies linearly with T. It is approximately 10mW/K for 200 N at 1.5K. In some applications, the heat switch can be driven from outside the cryostat by a rotating rod and a screw. Such heat switches are available commercially from several sources. In other applications, including systems for space, it is desirable to drive the switch using a cold linear motor, or solenoid. Superconducting windings are used at temperatures s 4.2K to minimize power dissipation, but are not appropriate for pre-cooling a system at higher temperatures. This project was intended to improve the design of solenoid activated mechanical heat switches and to provide such switches as required to support the development of Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10 K to 50 mK at GSFC. By the time funding began in 5/1/01, the immediate need for mechanical heat switches at GSFC had subsided but, at the same time, the opportunity had arisen to improve the design of mechanical heat switching by incorporating a "latching solenoid". In this device, the solenoid current is required only for changing the state of the switch and not during the whole time that the switch is closed.
Baskin, Lev; Plamenevskii, Boris; Sarafanov, Oleg
2015-01-01
This volume studies electron resonant tunneling in two- and three-dimensional quantum waveguides of variable cross-sections in the time-independent approach. Mathematical models are suggested for the resonant tunneling and develop asymptotic and numerical approaches for investigating the models. Also, schemes are presented for several electronics devices based on the phenomenon of resonant tunneling. Devices based on the phenomenon of electron resonant tunneling are widely used in electronics. Efforts are directed towards refining properties of resonance structures. There are prospects for building new nanosize electronics elements based on quantum dot systems. However, the role of resonance structure can also be given to a quantum wire of variable cross-section. Instead of an "electrode - quantum dot - electrode" system, one can use a quantum wire with two narrows. A waveguide narrow is an effective potential barrier for longitudinal electron motion along a waveguide. The part of the waveguide between ...
Improving the positive feedback adiabatic logic familiy
Directory of Open Access Journals (Sweden)
J. Fischer
2004-01-01
Full Text Available Positive Feedback Adiabatic Logic (PFAL shows the lowest energy dissipation among adiabatic logic families based on cross-coupled transistors, due to the reduction of both adiabatic and non-adiabatic losses. The dissipation primarily depends on the resistance of the charging path, which consists of a single p-channel MOSFET during the recovery phase. In this paper, a new logic family called Improved PFAL (IPFAL is proposed, where all n- and pchannel devices are swapped so that the charge can be recovered through an n-channel MOSFET. This allows to decrease the resistance of the charging path up to a factor of 2, and it enables a significant reduction of the energy dissipation. Simulations based on a 0.13µm CMOS process confirm the improvements in terms of power consumption over a large frequency range. However, the same simple design rule, which enables in PFAL an additional reduction of the dissipation by optimal transistor sizing, does not apply to IPFAL. Therefore, the influence of several sources of dissipation for a generic IPFAL gate is illustrated and discussed, in order to lower the power consumption and achieve better performance.
Amendt, Peter; Wilks, Scott
2012-01-01
The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient and difference in average ionization states . Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated plasma thermodiffusion coefficient is derived, and charge-state diffusion in a single-species plasma is also predicted.
Geometrizing adiabatic quantum computation
Rezakhani, Ali; Kuo, Wan-Jung; Hamma, Alioscia; Lidar, Daniel; Zanardi, Paolo
2010-03-01
A time-optimal approach to adiabatic quantum computation (AQC) is formulated. The corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. We demonstrate this geometrization through some examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance. The underlying connection with quantum phase transitions is also explored.
Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators.
Ma, Wei; Wen, Yongzheng; Yu, Xiaomei
2013-12-16
In this paper, we theoretically and experimentally demonstrate broadband metamaterial absorbers that work in the mid-infrared regime. In the absorbers, two or four gold cross resonators with different sizes are multiplexed in a unit cell on SiO(2) spacing layer on top of gold ground plane. Compared with the single cross resonator absorbers with a Q factor of 6.39, the developed absorber with two cross resonators multiplexed reduces the Q factor to 3.78. When four different cross resonators are integrated, the Q factor drops to as low as 1.85, and the bandwidth almost covers the full mid-infrared regime from 3 μm to 5 μm with absorbance higher than 50%.
Directory of Open Access Journals (Sweden)
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
Albash, Tameem; Lidar, Daniel A.
2018-01-01
Adiabatic quantum computing (AQC) started as an approach to solving optimization problems and has evolved into an important universal alternative to the standard circuit model of quantum computing, with deep connections to both classical and quantum complexity theory and condensed matter physics. This review gives an account of the major theoretical developments in the field, while focusing on the closed-system setting. The review is organized around a series of topics that are essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments and limitations, and its scope in the more general setting of computational complexity theory. Several variants are presented of the adiabatic theorem, the cornerstone of AQC, and examples are given of explicit AQC algorithms that exhibit a quantum speedup. An overview of several proofs of the universality of AQC and related Hamiltonian quantum complexity theory is given. Considerable space is devoted to stoquastic AQC, the setting of most AQC work to date, where obstructions to success and their possible resolutions are discussed.
Geometry of the Adiabatic Theorem
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
POLIDENT: A Module for Generating Continuous-Energy Cross Sections from ENDF Resonance Data
Energy Technology Data Exchange (ETDEWEB)
Dunn, M.E.; Greene, N.M.
2000-12-01
POLIDENT (Point Libraries of Data from ENDF/B Tapes) is an AMPX module that accesses the resonance parameters from File 2 of an ENDF/B library and constructs the continuous-energy cross sections in the resonance energy region. The cross sections in the resonance range are subsequently combined with the File 3 background data to construct the cross-section representation over the complete energy range. POLIDENT has the capability to process all resonance reactions that are identified in File 2 of the ENDF/B library. In addition, the code has the capability to process the single- and multi-level Breit-Wigner, Reich-Moore and Adler-Adler resonance formalisms that are identified in File 2. POLIDENT uses a robust energy-mesh-generation scheme that determines the minimum, maximum and points of inflection in the cross-section function in the resolved-resonance region. Furthermore, POLIDENT processes all continuous-energy cross-section reactions that are identified in File 3 of the ENDF/B library and outputs all reactions in an ENDF/B TAB1 format that can be accessed by other AMPX modules.
Crossing the Dripline to 11N Using Elastic Resonance Scattering
Markenroth, K G; Baxter, S; García-Borge, M J; Donzaud, C; Fayans, S; Fynbo, H O U; Goldberg, V Z; Grévy, S; Guillemaud-Müller, D; Jonson, B; Kallman, K M; Leenhardt, S; Lewitowicz, M; Lönnroth, T; Manngard, P; Martel, I; Müller, A C; Mukha, I; Nilsson, T; Nyman, G H; Orr, N A; Riisager, K; Rogachev, G V; Saint-Laurent, M G; Serikov, I N; Shulgina, N B; Sorlin, O; Steiner, M; Tengblad, O; Thoennessen, M; Tryggestad, E J; Trzaska, W H; Wenander, F; Winfield, J S; Wolski, R
2000-01-01
The level structure of the unbound nucleus 11N has been studied by 10C+p elastic resonance scattering in inverse geometry with the LISE3 spectrometer at GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement was done at the A1200 spectrometer at MSU. The excitation function above the 10C+p threshold has been determined up to 5 MeV. A potential-model analysis revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44 +-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV, (Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and 5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion completely analogous to its mirror partner, 11Be. A narrow resonance in the excitation function at 4.33 (+-0.05) MeV was also observed and assigned spin-parity 3/2-.
Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao
2016-03-01
Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.
Low-power adiabatic 9T static random access memory
Directory of Open Access Journals (Sweden)
Yasuhiro Takahashi
2014-06-01
Full Text Available In this paper, the authors propose a novel static random access memory (SRAM that employs the adiabatic logic principle. To reduce energy dissipation, the proposed adiabatic SRAM is driven by two trapezoidal-wave pulses. The cell structure of the proposed SRAM has two high-value resistors based on a p-type metal-oxide semiconductor transistor, a cross-coupled n-type metal-oxide semiconductor (NMOS pair and an NMOS switch to reduce the short-circuit current. The inclusion of a transmission-gate controlled by a write word line signal allows the proposed circuit to operate as an adiabatic SRAM during data writing. Simulation results show that the energy dissipation of the proposed SRAM is lower than that of a conventional adiabatic SRAM.
Cross-Polarized Surface-Enhanced Infrared Spectroscopy by Fano-Resonant Asymmetric Metamaterials
Ishikawa, Atsushi; Hara, Shuhei; Tanaka, Takuo; Hayashi, Yasuhiko; Tsuruta, Kenji
2017-01-01
Plasmonic metamaterials have overcome fundamental limitations in conventional optics by their capability to engineer material resonances and dispersions at will, holding great promise for sensing applications. Recent demonstrations of metamaterial sensors, however, have mainly relied on their resonant nature for strong optical interactions with molecules, but few examples fully exploit their functionality to manipulate the polarization of light. Here, we present cross-polarized surface-enhanc...
Advances in neutron-induced resonance reaction cross section studies at GELINA
Energy Technology Data Exchange (ETDEWEB)
Borella, A.; Kopecky, S.; Ivanov, I.; Mihailescu, C. [EC-JRC-IRMM, Geel (Belgium); Gunsing, F. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); Moxon, M. [Hyde Copse 3, Marcham, (United Kingdom)
2008-07-01
The neutron time-of-flight facility GELINA at the IRMM Geel, Belgium has been especially designed for neutron-induced reaction cross section studies in the resonance region. It is a multi-user facility, serving up to 10 different experiments simultaneously, and providing a pulsed white neutron source, with a neutron energy range between 1 meV and 20 MeV, a time resolution of 1 ns and flight path lengths ranging from 10 m to 400 m. The main effort of the experimental program at GELINA is devoted to applied research. Over the last decade, the IRMM has made an intense effort to improve the quality of neutron-induced cross section data in the resolved and unresolved resonance region. Due to the progress made, neutron-induced reaction cross section data, including full covariance information, can be obtained at GELINA from thermal up to the unresolved resonance region. (authors)
Cross-Polarized Surface-Enhanced Infrared Spectroscopy by Fano-Resonant Asymmetric Metamaterials.
Ishikawa, Atsushi; Hara, Shuhei; Tanaka, Takuo; Hayashi, Yasuhiko; Tsuruta, Kenji
2017-06-09
Plasmonic metamaterials have overcome fundamental limitations in conventional optics by their capability to engineer material resonances and dispersions at will, holding great promise for sensing applications. Recent demonstrations of metamaterial sensors, however, have mainly relied on their resonant nature for strong optical interactions with molecules, but few examples fully exploit their functionality to manipulate the polarization of light. Here, we present cross-polarized surface-enhanced infrared absorption (SEIRA) by the Fano-resonant asymmetric metamaterial allowing for strong background suppression as well as significant field enhancement. The metamaterial is designed to exhibit the controlled Fano resonance with the cross-polarization conversion property at 1730 cm-1, which spectrally overlaps with the C=O vibrational mode. In the cross-polarized SEIRA measurement, the C=O mode of poly(methyl methacrylate) molecules is clearly observed as a distinct dip within a Fano-resonant transmission peak of the metamaterial. The vibrational signal contrast is then improved based on the cross-polarized detection scheme where only the light interacting with the metamaterial-molecular coupled system is detected by totally eliminating the unwanted background light. Our metamaterial approach achieves the zeptomole sensitivity with a large signal-to-noise ratio in the far-field measurement, paving the way toward the realization of ultrasensitive IR inspection technologies.
Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni
Energy Technology Data Exchange (ETDEWEB)
Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.
2010-08-03
We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.
Non-resonant Particle Heating due to Collisional Separatrix Crossings
Driscoll, C. Fred; Anderegg, F.; Affolter, M.; Dubin, D. H. E.
2015-11-01
We observe plasma heating when a pure ion column is ``sloshed'' back and forth across a trapping separatrix, with heating rate larger than expected from simple collisional viscosity. Here, an externally applied theta-symmetric ``squeeze'' potential creates a velocity separatrix between trapped and passing particles, and weak collisions at rate νc cause separatrix crossings. The trapped particles are repeatedly compressed and expanded (by δL at rate fsl) whereas the passing particles counter-stream and Debye shield the resultant potential variations. LIF diagnostics clearly show the separatrix energy Esep (r) , in close agreement with (r , z) Boltmann-Poisson equilibrium calculations. With νc Science Foundation Grant PHY-1414570, Department of Energy Grants DE-SC0002451.
Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures
Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa
2015-06-01
In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.
Response of quasi-adiabatic ions to magnetotail reconfigurations
Delcourt, D.; Malova, H. V.; Zelenyi, L. M.
2016-12-01
Particles traveling in sharp field reversals like in the Earth's magnetotail may not conserve their magnetic moment (first adiabatic invariant) due to significant variation of the magnetic field on the length scale of their Larmor radius. Although their motion is non-adiabatic per say and differs from a regular helical one, some particles may experience negligible net change of magnetic moment, a behavior that is referred to as quasi-adiabatic [Büchner and Zelenyi, 1989] like in the well-known Speiser orbit [Speiser, 1965]. Such a behavior is more pronounced at specific values of the adiabaticity parameter κ (square root of the minimum curvature radius to maximum Larmor radius ratio) due to resonance between the slow gyromotion in the tail midplane and the fast oscillation in the direction perpendicular to it. On the other hand, during rapid reconfigurations of the magnetotail as observed during substorms, the impulsive electric field induced by the time-varying magnetic field may lead to non-adiabatic behaviors as well, with large variations of the magnetic moment for particles that have cyclotron periods comparable to the field variation time scale. In this case, the κ parameter that is used to characterize spatial non-adiabaticity cannot be used since magnetic field lines are rapidly evolving in time. We examine the response of quasi-adiabatic ions in the presence of such short-lived reconfigurations of the magnetic field lines using single particle calculations. We demonstrate that quasi-adiabatic ions may remain quasi-adiabatic while experiencing an impulsive energization under the effect of the induced electric field ; hence, their faster oscillations about the tail midplane and their higher resonance order. Systematic acceleration up to about 3VE (where VE is the peak ExB drift speed during field line reconfiguration) is found for the lowest energy particles. We show that, altogether, impulsive transport and energization may be responsible for short
Laporta, V; Tennyson, J; Celiberto, R; 10.1088/0963-0252/21/4/045005
2012-01-01
Resonant vibrational and rotation-vibration excitation cross sections for electron-CO scattering are calculated in the 0-10 eV energy range for all 81 vibrational states of CO, assuming that the excitation occur via the 2{\\Pi} shape resonance. Static exchange plus polarization calculations performed using the R-matrix method are used to estimate resonance positions and widths as functions of internuclear separation. The effects of nuclear motion are considered using a local complex potential model. Good agreement is obtained with available experimental data on excitation from the vibrational ground state. Excitation rates and cross sections are provided as a functions of the initial CO vibrational state for all ground state vibrational levels.
Evaluation of neutron total and capture cross sections on 99Tc in the unresolved resonance region
Iwamoto, Nobuyuki; Katabuchi, Tatsuya
2017-09-01
Long-lived fission product Technetium-99 is one of the most important radioisotopes for nuclear transmutation. The reliable nuclear data are indispensable for a wide energy range up to a few MeV, in order to develop environmental load reducing technology. The statistical analyses of resolved resonances were performed by using the truncated Porter-Thomas distribution, coupled-channels optical model, nuclear level density model and Bayes' theorem on conditional probability. The total and capture cross sections were calculated by a nuclear reaction model code CCONE. The resulting cross sections have statistical consistency between the resolved and unresolved resonance regions. The evaluated capture data reproduce those recently measured at ANNRI of J-PARC/MLF above resolved resonance region up to 800 keV.
Physical optics modeling of modal patterns in a crossed porro prism resonator
CSIR Research Space (South Africa)
Litvin, IA
2006-07-01
Full Text Available A physical optics model is proposed to describe the transverse modal patterns in crossed Porro prism resonators. The model departs from earlier attempts in that the prisms are modeled as non-classical rotating elements with amplitude and phase...
Sensitivity of reactor multiplication factor to positions of cross-section resonances
Gopalakrishnan, V.; Vijayaraghavan, K. R.
2017-09-01
Neutron-nuclear interaction cross-section is sensitive to neutron kinetic energy and most nuclei exhibit resonance behaviour at specific energies within the resonance energy range, spanning from a fraction of an electron volt to several tens or hundreds of kilo electron volts. The energy positions of these resonances correspond to the excitation energy levels of the compound nucleus that are formed as intermediate states during the interaction. Though these positions, thanks to sophistication in science and technology, are known reasonably precisely for the materials of reactor interest, deviations or spread in this data among different evaluations cannot be ruled out. In this work, the effect of such a spread in the resonance positions of the reactor materials on the multiplication factor of an infinite reactor, is obtained. The study shows that the effect on a thermal reactor is more pronounced than on a fast reactor.
Interplay between electric and magnetic effect in adiabatic polaritonic systems
Alabastri, Alessandro
2013-01-01
We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.
Interplay between electric and magnetic effect in adiabatic polaritonic systems.
Alabastri, Alessandro; Toma, Andrea; Liberale, Carlo; Chirumamilla, Manohar; Giugni, Andrea; De Angelis, Francesco; Das, Gobind; Di Fabrizio, Enzo; Zaccaria, Remo Proietti
2013-03-25
We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator.
Adiabatic heavy-ion fusion potentials for fusion at deep sub-barrier ...
Indian Academy of Sciences (India)
Abstract. The recently reported unusual behaviour of fusion cross-sections at extreme sub-barrier energies has been examined. The adiabatic limit of fusion barriers has been determined from experimental data using the barrier penetration model. These adia- batic barriers are consistent with the adiabatic fusion barriers ...
Broadband Metamaterial Reflectors for Polarization Manipulation Based on Cross/Ring Resonators
Directory of Open Access Journals (Sweden)
Z. Zhang
2016-09-01
Full Text Available We presented the investigation of broadband metamaterial reflector for polarization manipulation based on cross/ring resonators. It is demonstrated that the meta¬material reflector can convert the linearly polarized inci¬dent wave to its cross polarized wave or circularly polar¬ized wave. Due to the multiple resonances at neighboring frequencies, the proposed reflector presents broadband property and high efficiency. The measured fraction band¬width of cross polarization conversion is 55.5% with effi¬ciency higher than 80%. Furthermore, a broadband circu¬lar polarizer is designed by adjusting the dimension para¬meters and the measured fraction bandwidth exceeds 30%.
A New Scaling Law of Resonance in Total Scattering Cross Section in Gases
Raju, Gorur Govinda
2009-10-01
Electrical discharges in gases continue to be an active area of research because of industrial applications such as power systems, environmental clean up, laser technology, semiconductor fabrication etc. A fundamental knowledge of electron-gas neutral interaction is indispensable and, the total scattering cross section is one of the quantities that have been measured extensively. The energy dependence of the total cross sections shows peaks or resonance processes that are operative in the collision process. These peaks and the energies at which they occur are shown to satisfy a broad relationship involving the polarizability and the dipole moment of the target particle. Data on 62 target particles belonging to the following species are analyzed. (Eq 1) Rare gas atoms (Eq 2) Di-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties Poly-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties. Methods of improving the newly identified scaling law and possible application have been identified. 1 INTRODUCTION: Data on electron-neutral interactions are one of the most fundamental in the study of gaseous electronics and an immense literature, both experimental and theoretical, has become available since about the year 1920. [1-5]. In view of the central role which these data play in all facets of gas discharges and plasma science, it is felt that a critical review of available data is timely, mainly for the community of high voltage engineers and industries connected with plasma science in general. The electron-neutral interaction, often referred to as scattering in the scientific literature, is quantified by using the quantity called the total scattering cross section (QT, m^2). In the literature on cross section, total cross section and total scattering cross section are terms used synonymously and we follow the same practice. A definition may be found in reference [1]. This paper concerns
Gaff, J F; Franzen, S; Delley, B
2010-11-04
A method for the calculation of resonance Raman cross sections is presented on the basis of calculation of structural differences between optimized ground and excited state geometries using density functional theory. A vibrational frequency calculation of the molecule is employed to obtain normal coordinate displacements for the modes of vibration. The excited state displacement relative to the ground state can be calculated in the normal coordinate basis by means of a linear transformation from a Cartesian basis to a normal coordinate one. The displacements in normal coordinates are then scaled by root-mean-square displacement of zero point motion to calculate dimensionless displacements for use in the two-time-correlator formalism for the calculation of resonance Raman spectra at an arbitrary temperature. The method is valid for Franck-Condon active modes within the harmonic approximation. The method was validated by calculation of resonance Raman cross sections and absorption spectra for chlorine dioxide, nitrate ion, trans-stilbene, 1,3,5-cycloheptatriene, and the aromatic amino acids. This method permits significant gains in the efficiency of calculating resonance Raman cross sections from first principles and, consequently, permits extension to large systems (>50 atoms).
Analysis of Adiabatic Batch Reactor
Directory of Open Access Journals (Sweden)
Erald Gjonaj
2016-05-01
Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.
Experiment on space charge driven nonlinear resonance crossing in an ion synchrotron
Directory of Open Access Journals (Sweden)
G. Franchetti
2010-11-01
Full Text Available Trapping of particles in nonlinear resonances in the presence of space charge and synchrotron motion may be a source of beam halo generation and beam loss in high intensity synchrotrons, in particular for extended storage times at the injection plateau as planned for the SIS100 synchrotron of the FAIR project. Although extensive simulation studies have theoretically demonstrated this mechanism, experimental evidence was so far limited to demonstration experiments at the CERN Proton Synchrotron (PS in 2002–2003 using an octupolar resonance. Here we describe new experiments at the SIS18 synchrotron at GSI, where the resonance is driven by a sextupolar field error and horizontal static tune scans are taken across the resonance stop band. The new data significantly extend the previous observations by a complete set of measurements comparing beams with and without rf, both at low and high intensity. The correlation between transverse beam loss and simultaneous bunch length shortening provides strong evidence that the measured emittance and the loss in intensity are indeed caused by periodic resonance crossing, leading to the main effect of scattering but also to a lesser extent to the trapping of particles due to the combined effect of the nonlinear resonance and the space charge.
Adiabatic/diabatic polarization beam splitter
DeRose, Christopher; Cai, Hong
2017-09-12
The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.
Transitionless driving on adiabatic search algorithm
Oh, Sangchul; Kais, Sabre
2014-12-01
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Korsch, H J
2003-01-01
The complex energy resonances of a double delta potential well in a constant (Stark) field are studied. Varying the two system parameters (well distance and field strength) we investigate the behaviour of the resonance energies and wavefunctions both analytically and numerically. Different crossing scenarios for the real and imaginary parts of two resonance energies are observed and compared with a simple two-state model. In addition, a point in parameter space where both the real and imaginary parts of the two energies degenerate, an exceptional point, is found. Varying the system parameters around this exceptional point, the behaviour of energies and wavefunctions is discussed and the corresponding geometric phases, or Berry phases, for this non-Hermitian system are considered.
Adiabatic continuous stirred tank reactor
DEFF Research Database (Denmark)
Schroll-Fleischer, Eskild; Wu, Hao; Huusom, Jakob Kjøbsted
The present report documents the adiabatic CSTR experimental setup after it was refurbished in September 2017. The goal of the refurbishment was firstly to enable computer control of the experiment using the Open Process Control Unified Architecture (OPC-UA) standard, and secondly to improve...
Quantum adiabatic Markovian master equations
Albash, Tameem; Boixo, Sergio; Lidar, Daniel A.; Zanardi, Paolo
2012-12-01
We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state.
Target requirements for neutron-induced cross-section measurements in the resonance region
Energy Technology Data Exchange (ETDEWEB)
Schillebeeckx, P., E-mail: peter.schillebeeckx@ec.europa.e [EC-JRC, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Borella, A.; Drohe, J.C.; Eykens, R.; Kopecky, S. [EC-JRC, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Massimi, C. [EC-JRC, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); University of Bologna, Via Irnerio 46, I-40126 Bologna, Italy and Sezione INFN di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Mihailescu, L.C.; Moens, A. [EC-JRC, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Moxon, M. [Hyde Copse 3, Marcham (United Kingdom); Wynants, R. [EC-JRC, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium)
2010-02-11
The influence of target characteristics on results of neutron-induced cross-section measurements is discussed. The basic principles of total and reaction cross-section experiments are described. The discussion shows that each application needs targets with specific requirements, which are characterized for quantities, such as the total number of nuclei per unit area, effective area and homogeneity. The result of such a characterization can have a strong impact on the total uncertainty of the quantities deduced from the measured data. Based on the measurement principles and on practical experience, recommendations for specific cross-section measurements are presented. These recommendations refer to both the target properties and to the methods used for target characterization. In addition, a characterization method based on the use of neutron resonances is presented. This method can be used to determine the presence and quantity of contaminants and impurities which have a strong impact on the results of cross-section measurements.
High accuracy 234U(n,f cross section in the resonance energy region
Directory of Open Access Journals (Sweden)
Leal-Cidoncha E.
2017-01-01
Full Text Available New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f as reference. The recent evaluation of the 235U(n,f obtained with SAMMY by L. C. Leal et al. (these Proceedings, based on previous n_TOF data [1], has been used to calculate the 234U(n,f cross section through the 234U/235U ratio, being here compared with the results obtained by using the n_TOF neutron flux.
High accuracy 234U(n,f) cross section in the resonance energy region
Leal-Cidoncha, E.; Durán, I.; Paradela, C.; Tassan-Got, L.; Audouin, L.; Leal, L. C.; Naour, C. Le; Noguere, G.; Tarrío, D.; Leong, L. S.; Altstadt, S.; Andrzejewski, J.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Lederer, C.; Leeb, H.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.
2017-09-01
New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f) as reference. The recent evaluation of the 235U(n,f) obtained with SAMMY by L. C. Leal et al. (these Proceedings), based on previous n_TOF data [1], has been used to calculate the 234U(n,f) cross section through the 234U/235U ratio, being here compared with the results obtained by using the n_TOF neutron flux.
Studies in Chaotic adiabatic dynamics
Energy Technology Data Exchange (ETDEWEB)
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).
Thermal neutron capture and resonance integral cross sections of {sup 45}Sc
Energy Technology Data Exchange (ETDEWEB)
Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim [Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi (Viet Nam); Thi Hien, Nguyen [Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi (Viet Nam); Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Kwangsoo [Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Shin, Sung-Gyun; Cho, Moo-Hyun [Department of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Manwoo [Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of)
2015-11-01
The thermal neutron cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the {sup 45}Sc(n,γ){sup 46}Sc reaction have been measured relative to that of the {sup 197}Au(n,γ){sup 198}Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (G{sub th}) and resonance (G{sub epi}) neutron self-shielding, the γ-ray attenuation (F{sub g}) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the {sup 45}Sc(n,γ){sup 46}Sc reaction have been determined relative to the reference values of the {sup 197}Au(n,γ){sup 198}Au reaction, with σ{sub o,Au} = 98.65 ± 0.09 barn and I{sub o,Au} = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σ{sub o,Sc} = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be I{sub o,Sc} = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.
Thermal neutron capture and resonance integral cross sections of 45Sc
Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim; Thi Hien, Nguyen; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Cho, Moo-Hyun; Lee, Manwoo
2015-11-01
The thermal neutron cross section (σ0) and resonance integral (I0) of the 45Sc(n,γ)46Sc reaction have been measured relative to that of the 197Au(n,γ)198Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (Gth) and resonance (Gepi) neutron self-shielding, the γ-ray attenuation (Fg) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the 45Sc(n,γ)46Sc reaction have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σo,Au = 98.65 ± 0.09 barn and Io,Au = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σo,Sc = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be Io,Sc = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.
Alperovich, Z.; Buchinsky, O.; Greenstein, S.; Ishaaya, A. A.
2017-08-01
We investigate the misalignment sensitivity in a crossed-Porro resonator configuration when coherently combining two pulsed multimode Nd:YAG laser channels. To the best of our knowledge, this is the first reported study of this configuration. The configuration is based on a passive intra-cavity interferometric combiner that promotes self-phase locking and coherent combining. Detailed misalignment sensitivity measurements are presented, examining both translation and angular deviations of the end prisms and combiner, and are compared to the results for standard flat end-mirror configurations. The results show that the most sensitive parameter in the crossed-Porro resonator configuration is the angular tuning of the intra-cavity interferometric combiner, which is ~±54 µrad. In comparison, with the flat end mirror configuration, the most sensitive parameter in the resonator is the angular tuning of the output coupler, which is ~±11 µrad. Thus, with the crossed-Porro configuration, we obtain significantly reduced sensitivity. This ability to reduce the misalignment sensitivity in coherently combined solid-state configurations may be beneficial in paving their way into practical use in a variety of demanding applications.
Directory of Open Access Journals (Sweden)
Elham Moomivand
2017-05-01
Full Text Available We investigate adiabatic pumping current in a graphene based normal-insulator-superconductor (NIS junction with Corbino disk structure. The adiabatic pumping current is generated by two electrostatic potentials, oscillating periodically and out of phase, applied to the insulating and superconducting regions. Using the extended Brouwer’s formula for the adiabatic pumping current, which is based on the scattering theory, the pumping current is obtained. The results of this calculation show the pumped current oscillates as a function of the barrier strength and it has maximums at resonances with a π/2 phase shift in comparison to the planar NIS junction.
Comprehensive Amm242 neutron-induced reaction cross sections and resonance parameters
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Wimer, N.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.
2017-06-01
The 242Am metastable isomer's neutron-induced destruction mechanisms were studied at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array with a compact parallel-plate avalanche counter. New Amm242 neutron-capture cross sections were determined from 100 meV to 10 keV, and the absolute scale was set with respect to a concurrent measurement of the well-known Amm242 neutron-induced-fission cross section. The new fission cross section spans an energy range from 100 meV to 1 MeV and was normalized to the ENDF/B-VII.1 evaluated cross section to set the absolute scale. Our Amm242(n ,f ) cross section agrees well with the cross section of Browne et al. [Phys. Rev. C 29, 2188 (1984)], 10.1103/PhysRevC.29.2188 over this large energy interval. The new neutron-capture cross section measurement complements and agrees well with our recent results reported below 1 eV in Buckner et al. [Phys. Rev. C 95, 024610 (2017)], 10.1103/PhysRevC.95.024610. This new work comprises the most comprehensive study of Amm242(n ,γ ) above thermal energy. Neutron-induced resonance energies and parameters were deduced with the sammy R -matrix code for incident neutron energies up to 45 eV, and the new average Γγ is 13 % higher than the evaluated average γ width.
Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage
Energy Technology Data Exchange (ETDEWEB)
Chadwick, Helen, E-mail: helen.chadwick@epfl.ch; Hundt, P. Morten; Reijzen, Maarten E. van; Yoder, Bruce L.; Beck, Rainer D. [Laboratoire de Chimie Physique Moléculaire, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)
2014-01-21
Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.
Neutron capture on (94)Zr: Resonance parameters and Maxwellian-averaged cross sections
Tagliente, G; Fujii, K; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Belloni, F; Berthoumieux, E; Bisterzo, S; Calvino, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapico, C; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Goncalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez, T; Massimi, C; Mastinu, P; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M.T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tain, J.L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M.C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K
2011-01-01
The neutron capture cross sections of the Zr isotopes play an important role in nucleosynthesis studies. The s-process reaction flow between the Fe seed and the heavier isotopes passes through the neutron magic nucleus (90)Zr and through (91,92,93,94)Zr, but only part of the flow extends to (96)Zr because of the branching point at (95)Zr. Apart from their effect on the s-process flow, the comparably small isotopic (n, gamma) cross sections make Zr also an interesting structural material for nuclear reactors. The (94)Zr (n, gamma) cross section has been measured with high resolution at the spallation neutron source n_TOF at CERN and resonance parameters are reported up to 60 keV neutron energy.
TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS
Energy Technology Data Exchange (ETDEWEB)
Lykawka, Patryk Sofia [Astronomy Group, Faculty of Social and Natural Sciences, Kinki University, Shinkamikosaka 228-3, Higashiosaka-shi, Osaka 577-0813 (Japan); Ito, Takashi, E-mail: patryksan@gmail.com [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)
2013-08-10
The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a {approx} 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)
A Many Particle Adiabatic Invariant
DEFF Research Database (Denmark)
Hjorth, Poul G.
1999-01-01
For a system of N charged particles moving in a homogeneous, sufficiently strong magnetic field, a many-particle adiabatic invariant constrains the collisional exchange of energy between the degrees of freedom perpendicular to and parallel to the magnetic field. A description of the phenomenon in...... in terms of Hamiltonian dynamics is given. The relation to the Equipartition Theorem of statistical Mechanics is briefly discussed....
Quantum Computation by Adiabatic Evolution
Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Sipser, Michael
2000-01-01
We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system evolves to the desired final ground state, the evolution time must be big enough. The time required depends on ...
Directory of Open Access Journals (Sweden)
Walsh Jonathan A.
2016-01-01
Full Text Available In this work we describe the development and application of computational methods for processing neutron cross section data in the unresolved resonance region (URR. These methods are integrated with a continuous-energy Monte Carlo neutron transport code, thereby enabling their use in high-fidelity analyses. Enhanced understanding of the effects of URR evaluation representations on calculated results is then obtained through utilization of the methods in Monte Carlo integral benchmark simulations of fast spectrum critical assemblies. First, we present a so-called on-the-fly (OTF method for calculating and Doppler broadening URR cross sections. This method proceeds directly from ENDF-6 average unresolved resonance parameters and, thus, eliminates any need for a probability table generation pre-processing step in which tables are constructed at several energies for all desired temperatures. Significant memory reduction may be realized with the OTF method relative to a probability table treatment if many temperatures are needed. Next, we examine the effects of using a multi-level resonance formalism for resonance reconstruction in the URR. A comparison of results obtained by using the same stochastically-generated realization of resonance parameters in both the single-level Breit-Wigner (SLBW and multi-level Breit-Wigner (MLBW formalisms allows for the quantification of level-level interference effects on integrated tallies such as keff and energy group reaction rates. Though, as is well-known, cross section values at any given incident energy may differ significantly between single-level and multi-level formulations, the observed effects on integral results are minimal in this investigation. Finally, we demonstrate the calculation of true expected values, and the statistical spread of those values, through independent Monte Carlo simulations, each using an independent realization of URR cross section structure throughout. It is observed that both
Ainslie, M.A.; Leighton, T.G.
2007-01-01
When a gas bubble in water undergoes forced pulsations, sound is radiated at the forcing frequency, and the scattering cross-section exhibits a resonance peak when the forcing frequency passes through the bubble’s natural frequency. At resonance, the amplitude of the scattered spherical wave is
Acoustic scattering by elastic cylinders of elliptical cross-section and splitting up of resonances
Energy Technology Data Exchange (ETDEWEB)
Ancey, S., E-mail: ancey@univ-corse.fr; Bazzali, E., E-mail: ebazzali@univ-corse.fr; Gabrielli, P., E-mail: gabrieli@univ-corse.fr; Mercier, M., E-mail: mercier@univ-corse.fr [UMR CNRS 6134 SPE, Faculté des Sciences, Université de Corse, F-20250 Corte (France)
2014-05-21
The scattering of a plane acoustic wave by an infinite elastic cylinder of elliptical cross section is studied from a modal formalism by emphasizing the role of the symmetries. More precisely, as the symmetry is broken in the transition from the infinite circular cylinder to the elliptical one, the splitting up of resonances is observed both theoretically and experimentally. This phenomenon can be interpreted using group theory. The main difficulty stands in the application of this theory within the framework of the vectorial formalism in elastodynamics. This method significantly simplifies the numerical treatment of the problem, provides a full classification of the resonances, and gives a physical interpretation of the splitting up in terms of symmetry breaking. An experimental part based on ultrasonic spectroscopy complements the theoretical study. A series of tank experiments is carried out in the case of aluminium elliptical cylinders immersed in water, in the frequency range 0 ≤ kr ≤ 50, where kr is the reduced wave number in the fluid. The symmetry is broken by selecting various cylinders of increasing eccentricity. More precisely, the greater the eccentricity, the higher the splitting up of resonances is accentuated. The experimental results provide a very good agreement with the theoretical ones, the splitting up is observed on experimental form functions, and the split resonant modes are identified on angular diagrams.
Transverse resonances of periodically widened cyclindrical tubes with circular cross section
Energy Technology Data Exchange (ETDEWEB)
Zotter, B.; Bane, K.
1979-09-01
The transverse resonances of the electromagnetic field in periodic cylindrical cavities connected by concentric side tubes are calculated for arbitrary azimuthal mode numbers by expansion of the Hertz potentials in subregions bounded by coordinate surfaces. The expansion coefficients are determined by matching of the tangential field components across the common surfaces of the subregions. Resonances are characterized by the existence of solutions of the homogeneous wave equation in the absence of source terms, and the resonant frequencies are given by the vanishing of the determinant of an infinite matrix. They can be calculated on a computer by truncating the matrix. Expressions for the stored energy, the loss-factor, and for R/Q are then obtained by integration over the fields at resonance. These results are of interest for the determination of the energy loss and the stability of the beam in high-energy particle accelerators and storage rings when cavities are formed by pairs of cross section variations of the vacuum chamber. 7 refs., 1 fig.
Compact Dual-mode Microstrip Bandpass Filter Based on Greek-cross Fractal Resonator
Directory of Open Access Journals (Sweden)
H.S. Lu
2017-04-01
Full Text Available A geometrically symmetrical fractal structure is presented in this paper to provide an alternative approach for the miniaturization design of microstrip bandpass filters (BPFs. The generation process of the geometric geometry is described in detail, and a new fractal resonator called Greek-cross fractal resonator (GCFR is produced by etching the proposed fractal configuration on the surface of the conventional dual-mode meandered loop resonator. Four microstrip BPFs based on the first four iterations GCFR are modeled and simulated. The simulation results show that with the increase of the number of iterations, the central frequency of the BPF is gradually moving towards the low frequency, which indicates that the proposed fractal resonator has the characteristic of miniaturization. In addition, the parameter optimization and surface current density distribution are also analyzed in order to better understand the performance of the BPF. Finally, a compact dual-mode BPF based on the third iteration GCFR is designed, fabricated and measured. The measurement results are in good agreement with the simulation ones.
$^{197}$Au($n,\\gamma$) cross section in the unresolved resonance region
Lederer, C.; Domingo-Pardo, C; Gunsing, F; Kappeler, F; Massimi, C.; Mengoni, A.; Wallner, A.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Becvar, F.; Belloni, F.; Berthoumieux, E.; Calviani, M.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Losito, R.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Martinez, T.; Mastinu, P.; Mendoza, E.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tarrio, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.
2011-01-01
The cross section of the reaction (197)Au(n,gamma) was measured with the time-of-flight technique at the n_TOF (neutron time-of-flight) facility in the unresolved resonance region between 5 and 400 keV using a pair of C(6)D(6) (where D denotes (2)H) liquid scintillators for the detection of prompt capture gamma rays. The results with a total uncertainty of 3.9%-6.7% for a resolution of 20 bins per energy decade show fair agreement with the Evaluated Nuclear Data File Version B-VII.0 (ENDF B-VII.0), which contains the standard evaluation. The Maxwellian-averaged cross section (MACS) at 30 keV is in excellent agreement with the one according to the ENDF/B-VII.0 evaluation and 4.7% higher than the MACS measured independently by activation technique. Structures in the cross section, which had also been reported earlier, have been interpreted as being due to clusters of resonances.
Solid-state effects on thermal-neutron cross sections and on low-energy resonances
Energy Technology Data Exchange (ETDEWEB)
Harvey, J.A.; Mook, H.A.; Hill, N.W.; Shahal, O.
1982-01-01
The neutron total cross sections of several single crystals (Si, Cu, sapphire), several polycrystalline samples (Cu, Fe, Be, C, Bi, Ta), and a fine-powder copper sample have been measured from 0.002 to 5 eV. The Cu powder and polycrystalline Fe, Be and C data exhibit the expected abrupt changes in cross section. The cross section of the single crystal of Si is smooth with only small broad fluctuations. The data on two single Cu crystals, the sapphire crystal, cast Bi, and rolled samples of Ta and Cu have many narrow peaks approx. 10/sup -3/ eV wide. High resolution (0.3%) transmission measurements were made on the 1.057-eV resonance in /sup 240/Pu and the 0.433-eV resonance in /sup 180/Ta, both at room and low temperatures to study the effects of crystal binding. Although the changes in Doppler broadening with temperature were apparent, no asymmetries due to a recoilless contribution were observed.
Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei
Energy Technology Data Exchange (ETDEWEB)
De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)
1997-08-01
The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.
Laser cooling by adiabatic transfer
Norcia, Matthew; Cline, Julia; Bartolotta, John; Holland, Murray; Thompson, James
2017-04-01
We have demonstrated a new method of laser cooling applicable to particles with narrow linewidth optical transitions. This simple and robust cooling mechanism uses a frequency-swept laser to adiabatically transfer atoms between internal and motional states. The role of spontaneous emission is reduced (though is still critical) compared to Doppler cooling. This allows us to achieve greater slowing forces than would be possible with Doppler cooling, and may make this an appealing technique for cooling molecules. In this talk, I will present a demonstration of this technique in a cold strontium system. DARPA QUASAR, NIST, NSF PFC.
Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady
2017-09-01
The neutron transmission experiments are one of the main sources of information about the neutron cross section resonance structure and effect in the self-shielding. Such kind of data for niobium and silicon nuclides in energy range 7 keV to 3 MeV can be obtained from low-resolution transmission measurements performed earlier in Russia (with samples of 0.027 to 0.871 atom/barn for niobium and 0.076 to 1.803 atom/barn for silicon). A significant calculation-to-experiment discrepancy in energy range 100 to 600 keV and 300 to 800 keV for niobium and silicon, respectively, obtained using the evaluated nuclear data library ROSFOND, were found. The EVPAR code was used for estimation the average resonance parameters in energy range 7 to 600 keV for niobium. For silicon a stochastic optimization method was used to modify the resolved resonance parameters in energy range 300 to 800 keV. The improved ROSFOND evaluated nuclear data files were tested in calculation of ICSBEP integral benchmark experiments.
Directory of Open Access Journals (Sweden)
Hansol Park
2017-09-01
Full Text Available Based on the observation that ignoring the angle dependency of multigroup resonance cross sections within a fuel pellet would result in nontrivial underestimation of the spatial self-shielding of flux, a parametrized spectral superhomogenization (SPH factor library (PSSL method is developed as a practical means of resolving the problem. Region-wise spectral SPH factors are calculated by the normal and transport corrected SPH iterations after ultrafine group slowing down calculations over various light water reactor pin-cell configurations. The parametrization is done with fuel temperature, U-238 number density, fuel radius, moderator source represented by ΣmodVmod, and the number density ratio of resonance nuclides to that of U-238 in a form of resonance interference correction factors. The parametrization is successful in that the root mean square errors of the interpolated SPH factors over the fuel regions of various pin-cells are within 0.1%. The improvement in reactivity error of the PSSL method is shown to be superior to that by the original SPH method in that the reactivity bias of −200 pcm to −300 pcm vanishes almost completely. It is demonstrated that the environment effect takes only about 4% in the reactivity improvement so that the pin-cell based PSSL method is effective in the assembly problems.
Min, Qi; He, Wan-Quan; Wang, Quan-Biao; Tian, Jia-Jin
2016-11-01
The transfer matrix method was used to analyze the acoustical properties of stepped acoustic resonator in the previous paper. The present paper extends the application of the transfer matrix method to analyzing acoustic resonators with gradually varying cross-sectional area. The transfer matrices and the resonant conditions are derived for acoustic resonators with four different kinds of gradually varying geometric shape: tapered, trigonometric, exponential and hyperbolic. Based on the derived transfer matrices, the acoustic properties of these resonators are derived, including the resonant frequency, phase and radiation impedance. Compared with other analytical methods based on the wave equation and boundary conditions, the transfer matrix method is simple to implement and convenient for computation.
A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift
Directory of Open Access Journals (Sweden)
Bo Li
2017-01-01
Full Text Available Presented in this paper is a high-performance resonant accelerometer with low cross-interference, low temperature drift and digital output. The sensor consists of two quartz double-ended tuning forks (DETFs and a silicon substrate. A new differential silicon substrate is proposed to reduce the temperature drift and cross-interference from the undesirable direction significantly. The natural frequency of the quartz DETF is theoretically calculated, and then the axial stress on the vibration beams is verified through finite element method (FEM under a 100 g acceleration which is loaded on x-axis, y-axis and z-axis, respectively. Moreover, sensor chip is wire-bonded to a printed circuit board (PCB which contains two identical oscillating circuits. In addition, a steel shell is selected to package the sensor for experiments. Benefiting from the distinctive configuration of the differential structure, the accelerometer characteristics such as temperature drift and cross-interface are improved. The experimental results demonstrate that the cross-interference is lower than 0.03% and the temperature drift is about 18.16 ppm/°C.
DEFF Research Database (Denmark)
Petersen, Nils Holger
2014-01-01
A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....
Cross-Linked and Biodegradable Polymeric System as a Safe Magnetic Resonance Imaging Contrast Agent.
Luo, Qiang; Xiao, Xueyang; Dai, Xinghang; Duan, Zhenyu; Pan, Dayi; Zhu, Hongyan; Li, Xue; Sun, Ling; Luo, Kui; Gong, Qiyong
2018-01-17
Owing to the low efficacy of clinically used small-molecule gadolinium (Gd)-based magnetic resonance imaging (MRI) agents, we designed and explored biodegradable macromolecular conjugates as MRI contrast agents. The linear polymeric structure and core-cross-linked formulation possessed different characteristics and features, so we prepared and comparatively studied the two kinds of Gd-based N-(2-hydroxypropyl) methacrylamide (HPMA) polymeric systems (the core-cross-linked pHPMA-DOTA-Gd and the linear one) using the clinical agent diethylene-triamine pentaacetic acid-Gd(III) (DTPA-Gd) as a control. This study was aimed to find the optimal polymeric formulation as a biocompatible and efficient MRI contrast agent. The high molecular weight (MW, 181 kDa) and core-cross-linked copolymer was obtained via the cross-linked block linear copolymer and could be degraded to low-MW segments (29 kDa) in the presence of glutathione (GSH) and cleaned from the body. Both core-cross-linked and linear pHPMA-DOTA-Gd copolymers displayed 2-3-fold increased relaxivity (r1 value) than that of DTPA-Gd. Animal studies demonstrated that two kinds of macromolecular systems led to much longer blood circulation time, higher tumor accumulation, and much higher signal intensity compared with the linear and clinical ones. Finally, in vivo and in vitro toxicity studies indicated that the two macromolecular agents had great biocompatibility. Therefore, we performed preliminary but important studies on the Gd-based HPMA polymeric systems as biocompatible and efficient MRI contrast agents and found that the biodegradable core-cross-linked pHPMA-DOTA-Gd copolymer might have greater benefits for the foreground.
Ainslie, Michael A; Leighton, Timothy G
2009-11-01
The scattering cross-section sigma(s) of a gas bubble of equilibrium radius R(0) in liquid can be written in the form sigma(s)=4piR(0) (2)[(omega(1) (2)omega(2)-1)(2)+delta(2)], where omega is the excitation frequency, omega(1) is the resonance frequency, and delta is a frequency-dependent dimensionless damping coefficient. A persistent discrepancy in the frequency dependence of the contribution to delta from radiation damping, denoted delta(rad), is identified and resolved, as follows. Wildt's [Physics of Sound in the Sea (Washington, DC, 1946), Chap. 28] pioneering derivation predicts a linear dependence of delta(rad) on frequency, a result which Medwin [Ultrasonics 15, 7-13 (1977)] reproduces using a different method. Weston [Underwater Acoustics, NATO Advanced Study Institute Series Vol. II, 55-88 (1967)], using ostensibly the same method as Wildt, predicts the opposite relationship, i.e., that delta(rad) is inversely proportional to frequency. Weston's version of the derivation of the scattering cross-section is shown here to be the correct one, thus resolving the discrepancy. Further, a correction to Weston's model is derived that amounts to a shift in the resonance frequency. A new, corrected, expression for the extinction cross-section is also derived. The magnitudes of the corrections are illustrated using examples from oceanography, volcanology, planetary acoustics, neutron spallation, and biomedical ultrasound. The corrections become significant when the bulk modulus of the gas is not negligible relative to that of the surrounding liquid.
DEFF Research Database (Denmark)
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...... of the book: how connotations of past meanings may resonate through time, in new contexts, assuming new meanings without surrendering the old....
Thermal neutron capture cross sections resonance integrals and g-factors
Mughabghab, S F
2003-01-01
The thermal radiative capture cross sections and resonance integrals of elements and isotopes with atomic numbers from 1 to 83 (as well as sup 2 sup 3 sup 2 Th and sup 2 sup 3 sup 8 U) have been re-evaluated by taking into consideration all known pertinent data published since 1979. This work has been undertaken as part of an IAEA co-ordinated research project on 'Prompt capture gamma-ray activation analysis'. Westcott g-factors for radiative capture cross sections at a temperature of 300K were computed by utilizing the INTER code and ENDF-B/VI (Release 8) library files. The temperature dependence of the Westcott g-factor is illustrated for sup 1 sup 1 sup 3 Cd, sup 1 sup 2 sup 4 Xe and sup 1 sup 5 sup 7 Gd at temperatures of 150, 294 and 400K. Comparisons have also been made of the newly evaluated capture cross sections of sup 6 Li, sup 7 Li, sup 1 sup 2 C and sup 2 sup 0 sup 7 Pb with those determined by the k sub 0 method.
QCD string model for hybrid adiabatic potentials
Kalashnikova, Yu. S.; Kuzmenko, D. S.
2001-01-01
Hybrid adiabatic potentials are considered in the framework of the QCD string model. The einbein field formalism is applied to obtain the large-distance behaviour of adiabatic potentials. The calculated excitation curves are shown to be the result of interplay between potential-type longitudinal and string-type transverse vibrations. The results are compared with recent lattice data.
Mao, Lu; Chen, Yu; Xin, Yi; Chen, Yu; Zheng, Li; Kaiser, Nathan K; Marshall, Alan G; Xu, Wei
2015-04-21
To understand the role and function of a biomolecule in a biosystem, it is important to know both its composition and structure. Here, a mass spectrometric based approach has been proposed and applied to demonstrate that collision cross sections and high-resolution mass spectra of biomolecule ions may be obtained simultaneously by Fourier transform ion cyclotron resonance mass spectrometry. With this method, the unfolding phenomena for ubiquitin ions that possess different number of charges have been investigated, and results agree well with ion mobility measurements. In the present approach, we extend ion collision cross-section measurements to lower pressures than in prior ion cyclotron resonance (ICR)-based experiments, thereby maintaining the potentially high resolution of Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), and enabling collision cross section (CCS) measurements for high-mass biomolecules.
Directory of Open Access Journals (Sweden)
Feibiao Dong
2017-01-01
Full Text Available By loading two printed patches to the dielectric resonator antenna (DRA, a compact wide-band hybrid dielectric resonator antenna with enhanced gain and low cross-polarization is presented. The proposed antenna utilizes a combination of a rectangular dielectric resonator and two printed patches. Due to the hybrid design, multiple resonances were obtained. By adding two air layers between the dielectric resonator and the printed patches, the bandwidth has been significantly improved. Compared to the traditional hybrid dielectric resonator antenna, the proposed antenna can achieve wide bandwidth, high gain, low cross-polarization, and even small size simultaneously. The prototype of the proposed antenna has been fabricated and tested. The measured −10 dB return loss bandwidth is 25.6% (1.7–2.2 GHz. The measured antenna gains are about 6.3 and 8.2 dBi in the operating frequency band. Low cross-polarization levels of less than −28.5 dB and −43 dB in the E-plane and H-plane are achieved. Moreover, the overall dimensions of the antenna are only 67 × 67 × 34 (mm3. The proposed antenna is especially attractive for small base antenna applications.
PIPER Continuous Adiabatic Demagnetization Refrigerator
Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.
2017-01-01
We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.
Adiabatic limit in perturbation theory
Epstein, H
1976-01-01
It is shown that, with correct mass and wave function renormalization, the time-ordered products for Wick polynomials T(L(y/sub 1/)...L(y/sub n/)) constructed by a method outlined in a previous paper (Epstein and Glaser, 1970) are such that the vectors of the form integral T(L(y/sub 1/)...L(y/sub n/)) g(y/sub 1/)...g(y/sub n/) psi dy/sub 1/...dy/sub n/ have limits when g tends to a constant, provided psi is chosen in a suitable dense domain. It follows that the S-matrix has unitary adiabatic limit as an operator-valued formal power series in Fock space. (4 refs).
Cross-sectional particle measurement in the resonance domain on the substrate through scatterometry.
Hoshino, Tetsuya; Watanabe, Norio; Aoki, Sadao; Sakurai, Kenji; Itoh, Masahide
2017-10-16
We developed a versatile method for three-dimensional shape measurement where a specific particle can be selected on the substrate and its cross-sectional shape and size can be measured. A non-contact fast measurement is possible for the particle in the resonance domain. We applied rigorous coupled-wave analysis to the particle and calculated the diffraction patterns, comparing the patterns with the experimental results to obtain the size and shape. The shape and position of the focusing spot on the scattering particle was controlled precisely. With this method, the category of the analyzable object is extended to more shapes, such as rectangles and triangles, in addition to a conventional ellipsoid.
He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.
2014-01-01
Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649
Measurement of neutron total cross-section and resonance parameters of xenon
Energy Technology Data Exchange (ETDEWEB)
Skoy, V.R. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Wang, T.F. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, G.N. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)], E-mail: gnkim@knu.ac.kr; Oh, Y.D.; Cho, M.H.; Ko, I.S.; Namkung, W. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)
2009-07-01
We measured the neutron total cross-sections of natural xenon in the neutron energy region from 0.1 to 40 eV by using the time-of-flight method at the Pohang neutron facility, which consists of an electron linear accelerator, a water-cooled tantalum target with a water moderator, and a 12-m long time-of-flight path. A {sup 6}Li-ZnS(Ag) scintillator with a diameter of 12.5 cm and a thickness of 1.6 cm was used as a neutron detector. Notch filters composed of Co, In, Cd were used to estimate the background level and to calculate the neutron flight path length. The present measurement was compared with the existing experimental and the evaluated data. The resonance parameters of Xe isotopes were obtained from the transmission ratio by using the SAMMY code and were compared with other previous results.
Analysis of adiabatic trapping for quasi-integrable area-preserving maps
Bazzani, A; Giovannozzi, M; Hernalsteens, C
2014-01-01
Trapping phenomena involving non-linear resonances have been considered in the past in the framework of adiabatic theory. Several results are known for continuous-time dynamical systems generated by Hamiltonian flows in which the combined effect of non-linear resonances and slow time-variation of some system parameters is considered. The focus of this paper is on discrete-time dynamical systems generated by two-dimensional symplectic maps. The possibility of extending the results of neo-adiabatic theory to quasi-integrable area-preserving maps is discussed. Scaling laws are derived, which describe the adiabatic transport as a function of the system parameters using a probabilistic point of view. These laws can be particularly relevant for physical applications. The outcome of extensive numerical simulations showing the excellent agreement with the analytical estimates and scaling laws is presented and discussed in detail.
Athukorale, Sumudu A; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao
2017-11-20
Rayleigh scattering is a universal material property because all materials have nonzero polarizability. Reliable quantification of the material light scattering cross section in the liquid phase and its depolarization spectra is, however, challenging due to a host of sample and instrument issues. Using the recently developed polarized resonance synchronous spectroscopic method, we reported the light scattering cross section and depolarization spectra measured for a total of 29 liquids including water, methanol, ethanol, 1-propanol, 1-butanol, dimethylformamide, carbon disulfide, dimethyl sulfoxide, hexane and two hexane isomers (3-methylpentane and 2,3-dimethylbutane), tetrahydrofuran, cyclohexane, acetonitrile, pyridine, chloromethanes including di-, tri, tetrachloromethane, acetone, benzene and eight benzene derivatives (toluene, fluorobenzene, 1,2-, 1,3-, and 1,4-difluorobenzene, chlorobenzene, 1,2- and 1,3-dichlorobenzene, and nitrobenzene). The solvent light scattering depolarization is wavelength-independent for the model solvents, and it varies from 0.023 ± 0.011 for CCl4 to 0.619 ± 0.022 for nitrobenzene. The light scattering cross-section spectra can be approximated with the function of σ(λ) = αλ(-4) with the α value varying from 7.2 ± 0.2 × 10(-45) cm(6) for water to a maximum of 8.5 ± 0.6 × 10(-43) cm(6) for nitrobenzene. Structural isomerization has no significant effect on either the depolarization or the scattering cross sections for both hexanes and difluorobenzene isomers. This work represents the most comprehensive experimental study on liquid light scattering features. The insight from this work should be important for understanding the correlation between the material structure and optical properties. The described method can be readily implemented by researchers with access to conventional spectrofluorometers equipped with excitation and detection polarizers.
Partial evolution based local adiabatic quantum search
Sun, Jie; Lu, Song-Feng; Liu, Fang; Yang, Li-Ping
2012-01-01
Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one. Later, they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database. In the present paper, following the idea of Roland and Cerf [Roland J and Cerf N J 2002 Phys. Rev. A 65 042308], if within the small symmetric evolution interval defined by Zhang et al., a local adiabatic evolution is performed instead of the original “global" one, this “new" algorithm exhibits slightly better performance, although they are progressively equivalent with M increasing. In addition, the proof of the optimality for this partial evolution based local adiabatic search when M = 1 is also presented. Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search, which are found to have the same phenomenon above, are also discussed.
Indian Academy of Sciences (India)
Nuclear magnetic resonance (NMR) is a mani- festation of an intrinsic property of the nucleus, i.e. nuclear spin angular momen- tum. Spin angular momentum gives rise to magnetic moments. Thus, nuclei that pos- sess net magnetic moments behave like very small bar magnets. NMR spectroscopy in- volves the study of the ...
A Structural Magnetic Resonance Imaging Study in Transgender Persons on Cross-Sex Hormone Therapy.
Mueller, Sven C; Landré, Lionel; Wierckx, Katrien; T'Sjoen, Guy
2017-01-01
To date, research findings are inconsistent about whether the neuroanatomy in transgender persons resembles that of their natal sex or their gender identity. Moreover, few studies have examined the effects of long-term cross-sex hormonal treatment on neuroanatomy in this cohort. The purpose of the present study was to examine neuroanatomical differences in transgender persons after prolonged cross-sex hormone therapy. Eighteen transgender men (female-to-male), 17 transgender women (male-to-female), 30 nontransgender men (natal men), and 27 nontransgender women (natal women) completed a high-resolution structural magnetic resonance imaging scan at 3 T. Eligibility criteria for transgender persons were gender-affirming surgery and at least 2 years of cross-sex hormone therapy. Exclusion criteria for nontransgender persons were presence of psychiatric or neurological disorders. The mean neuroanatomical volume for the amygdala, putamen, and corpus callosum differed between transgender women and natal women but not between transgender women and natal men. Differences between transgender men and natal men were found in several brain structures, including the medial temporal lobe structures and cerebellum. Differences between transgender men and natal women were found in the medial temporal lobe, nucleus accumbens, and 3rd ventricle. Sexual dimorphism between nontransgender men and women included larger cerebellar volumes and a smaller anterior corpus callosum in natal men than in natal women. The results remained stable after correcting for additional factors including age, total intracranial volume, anxiety, and depressive symptoms. Neuroanatomical differences were region specific between transgender persons and their natal sex as well as their gender identity, raising the possibility of a localized influence of sex hormones on neuroanatomy. © 2016 S. Karger AG, Basel.
Quantum adiabatic protocols using emergent local Hamiltonians.
Modak, Ranjan; Vidmar, Lev; Rigol, Marcos
2017-10-01
We present two applications of emergent local Hamiltonians to speed up quantum adiabatic protocols for isolated noninteracting and weakly interacting fermionic systems in one-dimensional lattices. We demonstrate how to extract maximal work from initial band-insulating states, and how to adiabatically transfer systems from linear and harmonic traps into box traps. Our protocols consist of two stages. The first one involves a free expansion followed by a quench to an emergent local Hamiltonian. In the second stage, the emergent local Hamiltonian is "turned off" quasistatically. For the adiabatic transfer from a harmonic trap, we consider both zero- and nonzero-temperature initial states.
Energy consumption for shortcuts to adiabaticity
Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.
2017-08-01
Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.
Song, Lingchun; Gao, Jiali
2008-12-18
A theoretical model is presented for deriving effective diabatic states based on ab initio valence bond self-consistent field (VBSCF) theory by reducing the multiconfigurational VB Hamiltonian into an effective two-state model. We describe two computational approaches for the optimization of the effective diabatic configurations, resulting in two ways of interpreting such effective diabatic states. In the variational diabatic configuration (VDC) method, the energies of the diabatic states are variationally minimized. In the consistent diabatic configuration (CDC) method, both the configuration coefficients and orbital coefficients are simultaneously optimized to minimize the adiabatic ground-state energy in VBSCF calculations. In addition, we describe a mixed molecular orbital and valence bond (MOVB) approach to construct the CDC diabatic and adiabatic states for a chemical reaction. Note that the VDC-MOVB method has been described previously. Employing the symmetric S(N)2 reaction between NH(3) and CH(3)NH(3)(+) as a test system, we found that the results from ab initio VBSCF and from ab initio MOVB calculations using the same basis set are in good agreement, suggesting that the computationally efficient MOVB method is a reasonable model for VB simulations of condensed phase reactions. The results indicate that CDC and VDC diabatic states converge, respectively, to covalent and ionic states as the molecular geometries are distorted from the minimum of the respective diabatic state along the reaction coordinate. Furthermore, the resonance energy that stabilizes the energy of crossing between the two diabatic states, resulting in the transition state of the adiabatic ground-state reaction, has a strong dependence on the overlap integral between the two diabatic states and is a function of both the exchange integral and the total diabatic ground-state energy.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Thermoelectric Effects under Adiabatic Conditions
Directory of Open Access Journals (Sweden)
George Levy
2013-10-01
Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.
Rapid adiabatic passage in quantum dots: Influence of scattering and dephasing
DEFF Research Database (Denmark)
Schuh, K.; Jahnke, F.; Lorke, Michael
2011-01-01
Theoretical investigations for the realization of population inversion of semiconductor quantum dot ground-state transitions by means of adiabatic passage with chirped optical pulses are presented. While the inversion due to Rabi oscillations depends sensitively on the resonance condition......, the pulse area, as well as on the absence of carrier scattering and dephasing, we find that adiabatic passage is surprisingly insensitive to the excitation conditions and carrier scattering effects. Quantum kinetic models for the interaction of quantum-dot carriers with longitudinal optical phonons are used...
On the response of quasi-adiabatic particles to magnetotail reconfigurations
Delcourt, Dominique C.; Malova, Helmi V.; Zelenyi, Lev M.
2017-01-01
We investigate the response of quasi-adiabatic particles to dynamical reconfigurations of the magnetotail field lines. Although they travel through a sharp field reversal with a characteristic length scale smaller than their Larmor radii, these quasi-adiabatic particles experience a negligible net change in magnetic moment. We examine the robustness of such a quasi-adiabatic behavior in the presence of a large surging electric field induced by magnetic field line reconfiguration as observed during the expansion phase of substorms. We demonstrate that, although such a short-lived electric field can lead to substantial nonadiabatic heating, quasi-adiabaticity is conserved for particles with velocities larger than the peak ExB drift speed. Because of the time-varying character of the magnetic field, it is not possible to use the adiabaticity parameter κ in a straightforward manner to characterize the particle behavior. We rather consider a κ parameter that is averaged over equatorial crossings. We demonstrate that particles intercepting the field reversal in the early stage of the magnetic transition may experience significant energization and enhanced oscillating motion in the direction normal to the midplane. In contrast, particles interacting with the field reversal in the late stage of the magnetic transition experience weaker energization and slower oscillations about the midplane. We show that quasi-adiabatic particles accelerated during such events can lead to energy-time dispersion signatures at low altitudes as is observed in the plasma sheet boundary layer.
On the response of quasi-adiabatic particles to magnetotail reconfigurations
Directory of Open Access Journals (Sweden)
D. C. Delcourt
2017-01-01
Full Text Available We investigate the response of quasi-adiabatic particles to dynamical reconfigurations of the magnetotail field lines. Although they travel through a sharp field reversal with a characteristic length scale smaller than their Larmor radii, these quasi-adiabatic particles experience a negligible net change in magnetic moment. We examine the robustness of such a quasi-adiabatic behavior in the presence of a large surging electric field induced by magnetic field line reconfiguration as observed during the expansion phase of substorms. We demonstrate that, although such a short-lived electric field can lead to substantial nonadiabatic heating, quasi-adiabaticity is conserved for particles with velocities larger than the peak ExB drift speed. Because of the time-varying character of the magnetic field, it is not possible to use the adiabaticity parameter κ in a straightforward manner to characterize the particle behavior. We rather consider a κ parameter that is averaged over equatorial crossings. We demonstrate that particles intercepting the field reversal in the early stage of the magnetic transition may experience significant energization and enhanced oscillating motion in the direction normal to the midplane. In contrast, particles interacting with the field reversal in the late stage of the magnetic transition experience weaker energization and slower oscillations about the midplane. We show that quasi-adiabatic particles accelerated during such events can lead to energy–time dispersion signatures at low altitudes as is observed in the plasma sheet boundary layer.
Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs
Zhong, Jingping; Huang, Yongjun; Wen, Guangjun; Sun, Haibin; Wang, Ping; Gordon, Oghenemuero
2012-08-01
A single-/dual-band metamaterial absorber (MMA) based on cross-circular-loop resonator (CCLR) with shorted stubs is discussed at microwave frequencies in this paper. The single-/dual-band characteristics are realized by adjusting the positions of the shorted stubs. We briefly analyze the equivalent circuit model of the MMA unit cell and then numerically and experimentally investigate the near-perfect absorptions in such two conditions (single- and dual-band). The results indicate that the proposed MMA exhibits near-perfect impedance matching with free space and high absorptivity of 99.74 % at 8.65 GHz for single-band condition, and absorptivities of 99.75 % and 97.35 % at 8.525 and 9.1 GHz, respectively, for dual-band condition. It also exhibits a wide range of angles of incidence for both transverse electric (TE) and transverse magnetic (TM) radiation. The two operating frequency bands, in dual-band condition, can be further controlled by adjusting the positions of shorted stubs or adding other shorted stubs. So it opens the way to fabricate controllable MMAs, and so controllable perfectly matched layers and bolometers.
Krafft, Axel J; Rauschenberg, Jaane; Maier, Florian; Jenne, Jürgen W; Bock, Michael
2013-12-01
To evaluate a novel imaging sequence termed crushed rephased orthogonal slice selection (CROSS) that uses the available time in long echo time (TE) gradient echo (GRE) imaging-as employed for proton resonance frequency (PRF) shift thermometry-to simultaneously acquire two orthogonal magnetic resonance imaging (MRI) temperature maps around the target region. The CROSS sequence encodes a second orthogonal slice between excitation and data readout in long-TE imaging and applies dedicated crusher (CR) gradients to separate the signals from the two slices. Numerical simulations of the Bloch equations and phantom experiments were performed to analyze the MR signal. In phantom and in vivo experiments with two domestic pigs, the applicability of the CROSS sequence for temperature mapping of thermal therapies with focused ultrasound and laser was studied. A successful separation of the signals from the two slices was achieved for CR dephasing lengths approaching the in-plane resolution. In the two animal experiments, CROSS temperature mapping could be successfully demonstrated at a temporal resolution of 2-3 seconds and a temperature uncertainty of 3-4K. At the expense of a reduced signal in the overlap of the two slices, the CROSS sequence achieves an improvement of temporal resolution by 50%, without requiring further acceleration techniques such as parallel imaging, over conventional sequential GRE sequences employing the same repetition time as the CROSS sequence acquires two slices within one repetition interval. Copyright © 2013 Wiley Periodicals, Inc.
Anupriya; Jones, Chad A.; Dearden, David V.
2016-08-01
We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.
Assessment of total efficiency in adiabatic engines
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
Rabi oscillations produced by adiabatic pulse due to initial atomic coherence.
Svidzinsky, Anatoly A; Eleuch, Hichem; Scully, Marlan O
2017-01-01
If an electromagnetic pulse is detuned from atomic transition frequency by amount Δ>1/τ, where τ is the turn-on time of the pulse, then atomic population adiabatically follows the pulse intensity without causing Rabi oscillations. Here we show that, if initially, the atom has nonzero coherence, then the adiabatic pulse yields Rabi oscillations of atomic population ρaa(t), and we obtain analytical solutions for ρaa(t). Our findings can be useful for achieving generation of coherent light in the backward direction in the QASER scheme in which modulation of the coupling between light and atoms is produced by Rabi oscillations. Initial coherence can be created by sending a short resonant pulse into the medium followed by a long adiabatic pulse, which leads to the light amplification in the backward direction.
Gicking, Allison M.; Krane, Kenneth S.
2011-10-01
The neutron capture cross sections of the stable, even-mass Cd isotopes (A = 106, 108, 110, 112, 114, and 116) have been previously measured in sources of natural abundance or low enrichment, often making the results uncertain owing to the large absorption cross section of naturally occurring ^113Cd. Ambiguities in values of the isomeric branching ratios have also contributed to uncertainties in previous results. We have remeasured the Cd neutron capture cross sections using samples of greater than 90% isotopic enrichment irradiated in the OSU TRIGA reactor. Gamma-ray emission spectra were analyzed to determine the effective resonance integrals and thermal cross sections leading to eight radioactive ground and isomeric states in the Cd isotopes.
Capture cross section measurements of {sup 186,187,188}Os at n-TOF: the resolved resonance region
Energy Technology Data Exchange (ETDEWEB)
Fujii, K.; Mosconi, M.; Milazzo, P.M.; Domingo-Pardo, C.; Kappeler, F.; Mengoni, A.; Abbondanno, U.; Aerts, G.; Alvarez, H.; A lvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, H.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Moreau, C.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K
2008-07-01
The neutron capture cross sections of {sup 186,187,188}Os have been measured at the CERN neutron time-of-flight facility, n-TOF, in the neutron energy range from 1 eV up to 1 MeV. In this contribution, we report the results of the analysis of the resolved resonance region (RRR). Resonance parameters have been extracted from a full R-matrix fit of the capture yields with the SAMMY code. A statistical analysis has been performed and the related average resonance parameters are derived. This information is crucial for a complete understanding and modeling in terms of the Hauser-Feshbach statistical model of the capture and inelastic reaction channels, required for the evaluation of the stellar reaction rates of these isotopes. Maxwellian average cross sections for the range of temperatures relevant for s-process nucleosynthesis have been derived from the combined information of the experimental data in the resolved and unresolved resonance regions. A brief account of the implications of this analysis in the estimation of the s-process component of the {sup 187}Os abundance and the related impact on the estimates of the time-duration of the galactic nucleosynthesis through the Re/Os clock is given. (authors)
Directory of Open Access Journals (Sweden)
Šalamon L.
2017-01-01
Full Text Available Neutron capture cross section measurements have been performed at the time-of-flight facility GELINA of the EC-JRC-Geel. Prompt gamma rays, originating from a natural silver sample, were detected by a pair of C6D6 liquid scintillation detectors. The total energy detection principle in combination with the pulse height weighting technique has been used. In this contribution the experimental details together with the data reduction process are described. In addition, first results of calculations with REFIT are presented to verify the quality of recommended cross section data in the resolved resonance region.
Measurement of the 5457Fe(n,γ) Cross Section in the Resolved Resonance Region at CERN n_TOF
Giubrone, G.; Domingo-Pardo, C.; Taín, J. L.; Lederer, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvař, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Massimi, C.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifhart, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tarrio, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.
2014-05-01
54Fe and 57Fe are stable iron isotopes, which play an important role in the nucleosynthesis of the slow neutron capture process (s process). In addition, these nuclei are present in many structural materials, and therefore, the knowledge of their neutron capture cross sections is of importance for reactor design studies. This contribution summarizes the results of the (n, γ) cross sections of these two isotopes in the resolved resonance region. The experiment was carried out at the CERN n_TOF facility using the Pulse-Height Weighting Technique in combination with an experimental set-up optmized for reducing neutron induced backgrounds.
Energy Technology Data Exchange (ETDEWEB)
Munoz-Cobos, J.G.
1981-08-01
The Fortran IV code PAPIN has been developed to calculate cross section probability tables, Bondarenko self-shielding factors and average self-indication ratios for non-fissile isotopes, below the inelastic threshold, on the basis of the ENDF/B prescriptions for the unresolved resonance region. Monte-Carlo methods are utilized to generate ladders of resonance parameters in the unresolved resonance region, from average resonance parameters and their appropriate distribution functions. The neutron cross-sections are calculated by the single level Breit-Wigner (SLBW) formalism, with s, p and d-wave contributions. The cross section probability tables are constructed by sampling the Doppler-broadened cross sections. The various self-shielded factors are computed numerically as Lebesgue integrals over the cross section probability tables. The program PAPIN has been validated through extensive comparisons with several deterministic codes.
Prescott, David
Nuclear quadrupole resonance (NQR) is a type of radio-frequency (rf) spectroscopy which can detect quadrupolar nuclei (I > 1/2), such as nitrogen, in crystalline solids. NQR spectroscopy is useful for the detection of the many types of explosives containing 14N, however it suffers from a low signal to noise ratio (SNR) particularly in samples with long spin-lattice relaxation times. To improve the SNR the nuclear quadrupole spin dynamics are exploited in two limiting cases: systems with long spin relaxation times and systems where the excitation power is limited. The former is addressed through double resonance effects and the latter through spin echoes created by weak rf pulses. The double resonance effect occurs in samples that also contain a second faster relaxing nuclear species, such as 1H in ammonium nitrate. In this sample an 1H-14N double resonance can be created between the species that improves the SNR. While the focus is on the common case of solids containing both nitrogen and hydrogen, the theory is generally applicable to solids containing spin-1 and spin-1/2 nuclei. A model of this system is developed that treats the motionally averaged secular dipolar Hamiltonian as a perturbation of the combined quadrupole and Zeeman Hamiltonians. This model reveals three types of double resonance conditions, involving static and rf fields, and predicts expressions for the cross-relaxation rate (Wd) between the two species. Using this cross-relaxation rate, in addition to the hydrogen and nitrogen autorelaxation rates, expressions governing the relaxation back to equilibrium in a spin-1/2 and spin-1 system are determined. The three different types of double resonance conditions are created experimentally; one of them for the first time in any system and another for the first time in a solid. Under these double resonance conditions, the increase in Wd and improvements in SNR are explored both theoretically and experimentally using ammonium nitrate. The second effect
Dobado, Antonio; Guo, Feng-Kun; Llanes-Estrada, Felipe J.
2015-12-01
We are exploring a generic strongly-interacting Electroweak Symmetry Breaking Sector (EWSBS) with the low-energy effective field theory for the four experimentally known particles (W±L, ZL, h) and its dispersion-relation based unitary extension. In this contribution we provide simple estimates for the production cross-section of pairs of the EWSBS bosons and their resonances at proton-proton colliders as well as in a future e‑e+ (or potentially a μ‑μ+) collider with a typical few-TeV energy. We examine the simplest production mechanisms, tree-level production through a W (dominant when quantum numbers allow) and the simple effective boson approximation (in which the electroweak bosons are considered as collinear partons of the colliding fermions). We exemplify with custodial isovector and isotensor resonances at 2 TeV, the energy currently being discussed because of a slight excess in the ATLAS 2-jet data. We find it hard, though not unthinkable, to ascribe this excess to one of these WLWL rescattering resonances. An isovector resonance could be produced at a rate smaller than, but close to earlier CMS exclusion bounds, depending on the parameters of the effective theory. The ZZ excess is then problematic and requires additional physics (such as an additional scalar resonance). The isotensor one (that would describe all charge combinations) has smaller cross-section. Supported by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT, by Spanish Grants Universidad Complutense UCM:910309 and Ministerio de Economia y Competitividad MINECO:FPA2011-27853-C02-01, MINECO:FPA2014-53375-C2-1-P, by the Deutsche Forschungsgemeinschaft and National Natural Science Foundation of China through Funds Provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311) and by NSFC (Grant No. 11165005)
Energy Technology Data Exchange (ETDEWEB)
Mihailescu, L.C.; Sirakov, I.; Borella, A.; Kopecky, S.; Schillebeeckx, P.; Siegler, P.; Wynants, R. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel (Belgium); Capote, R. [IAEA Nuclear Data Section, Vienna (Austria); Guber, K.H.; Leal, L.C. [Oak Ridge National Laboratory, TN (United States); Soukhovitskii, E. [Joint Institute for Energy and Nuclear Research, Minsk-Sosny (Belarus)
2008-07-01
New capture and transmission measurements have been performed at GELINA to improve the neutron induced cross-section data for {sup 103}Rh in the resonance region. This contribution refers to the evaluation of the neutron cross-section data of {sup 103}Rh in the unresolved resonance region. The capture measurements were done at a 30 m measurement station using C{sub 6}D{sub 6} detectors and applying the total energy detection principle in combination with the pulse height weighting technique. The transmission measurements were performed at a 50 m station using {sup 6}Li-glass scintillators as neutron detectors. The experimental data have been processed with the AGS code, which includes a full propagation of both correlated and uncorrelated uncertainties. The experimental data are interpreted in terms of average resonance parameters using a generalized single level representation. A link to a dispersive coupled-channel optical model is used for information about the energy dependence of the distant level parameters and the neutron strength functions. This link becomes especially valuable when a dispersive potential as the one derived here is employed after being optimized in a wide energy region. Thus, the consistency between the resonance and the high energy region is ensured. The new values obtained for the average total cross-section, both experiment and fit are slightly higher than the Endf/B-7.0 and JENDL-3.3 and agree very well with the JEFF-3.1 evaluation up to about 40 keV, where a discontinuity appears in the latter.
Electrically tuned F\\"orster resonances in collisions of NH$_3$ with Rydberg He atoms
Zhelyazkova, V.; Hogan, S D
2017-01-01
Effects of weak electric fields on resonant energy transfer between NH$_3$ in the X $^1$A$_1$ ground electronic state, and Rydberg He atoms in triplet states with principal quantum numbers $n = 36$-$41$ have been studied in a crossed beam apparatus. For these values of $n$, electric-dipole transitions between the Rydberg states that evolve adiabatically to the $|ns\\rangle$ and $|np\\rangle$ states in zero electric field can be tuned into resonance with the ground-state inversion transitions in...
Electrically tuned Forster resonances in collisions of NH3 with Rydberg He atoms
Zhelyazkova, V.; Hogan, S D
2017-01-01
The effects of weak electric fields on resonant energy transfer between NH3 in the X 1 A1 ground electronic state and Rydberg He atoms in triplet states with principal quantum numbers n = 36–41 have been studied in a crossed-beam apparatus. For these values of n, electric dipole transitions between the Rydberg states that evolve adiabatically to the |ns and |np states in zero electric field can be tuned into resonance with the ground-state inversion transitions in NH3 using ele...
Non-adiabatic rotational excitation of dipolar molecule under the ...
Indian Academy of Sciences (India)
adiabatically by half cycle pulse. (HCP) is controlled using the second ultrashort HCP. ... excited to create a rotational quantum wave packet, a .... Non-adiabatic rotational excitation of dipolar molecule under the influence of delayed pulses. 1215.
Adiabatic pumping through interacting quantum dots
Splettstoesser, Janine; Governale, Michele; König, Jürgen; Fazio, Rosario
2005-01-01
We present a general formalism to study adiabatic pumping through interacting quantum dots. We derive a formula that relates the pumped charge to the local, instantaneous Green function of the dot. This formula is then applied to the infinite-U Anderson model both for weak and strong tunnel-coupling strengths.
Quantum Pumping and Adiabatic Transport in Nanostructures
Wakker, G.M.M.
2011-01-01
This thesis consists of a theoretical exploration of quantum transport phenomena and quantum dynamics in nanostructures. Specifically, we investigate adiabatic quantum pumping of charge in several novel types of nanostructures involving open quantum dots or graphene. For a bilayer of graphene we
Selective excitation in a three-state system using a hybrid adiabatic-nonadiabatic interaction
Song, Yunheung; Jo, Hanlae; Ahn, Jaewook
2016-01-01
The chirped-pulse interaction in the adiabatic coupling regime induces cyclic permutations of the energy states of a three-level system in the $V$-type configuration, which process is known as the three-level chirped rapid adiabatic passage. Here we show that a spectral hole in a chirped pulse can turn on and off one of the two adiabatic crossing points of this process, reducing the system to an effective two-level system. The given hybrid adiabatic-nonadiabatic transition results in selective excitation of the three-level system, controlled by the laser intensity and spectral position of the hole as well as the sign of the chirp parameter. Experiments are performed with shaped femtosecond laser pulses and the three lowest energy-levels (5S$_{1/2}$, 5P$_{1/2}$, and 5P$_{3/2}$) of atomic rubidium ($^{85}$Rb), of which the result shows good agreement with the theoretically analyzed dynamics. The result indicates that our method, being combined with the ordinary chirped-RAP, implements an adiabatic transitions b...
Predicting the effect of relaxation during frequency-selective adiabatic pulses.
Pfaff, Annalise R; McKee, Cailyn E; Woelk, Klaus
2017-10-03
Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange. Copyright © 2017. Published by Elsevier Inc.
Energy Technology Data Exchange (ETDEWEB)
Pigni, Marco T [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leal, Luiz C [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-01-01
Oak Ridge National Laboratory (ORNL) has recently completed the resonance parameter evaluation of four tungsten isotopes, i.e., ^{182,183,184,186}W, in the neutron energy range of thermal up to several keV. This nuclear data work was performed with support from the US Nuclear Criticality Safety Program (NCSP) in an effort to provide improved tungsten cross section and covariance data for criticality safety analyses. The evaluation methodology uses the Reich-Moore approximation of the R-matrix formalism of the code SAMMY to fit high-resolution measurements performed in 2010 and 2012 at the Geel linear accelerator facility (GELINA), as well as other experimental data sets on natural tungsten available in the EXFOR library. In the analyzed energy range, this work nearly doubles the resolved resonance region (RRR) present in the latest US nuclear data library ENDF/B-VII.1. In view of the interest in tungsten for distinct types of nuclear applications and the relatively homogeneous distribution of the isotopic tungsten—namely, ^{182}W(26.5%), ^{183}W(14.31%), ^{184}W(30.64%), and ^{186}W(28.43%) - the completion of these four evaluations represents a significant contribution to the improvement of the ENDF library. This paper presents an overview of the evaluated resonance parameters and related covariances for total and capture cross sections on the four tungsten isotopes.
Fixed-point adiabatic quantum search
Dalzell, Alexander M.; Yoder, Theodore J.; Chuang, Isaac L.
2017-01-01
Fixed-point quantum search algorithms succeed at finding one of M target items among N total items even when the run time of the algorithm is longer than necessary. While the famous Grover's algorithm can search quadratically faster than a classical computer, it lacks the fixed-point property—the fraction of target items must be known precisely to know when to terminate the algorithm. Recently, Yoder, Low, and Chuang [Phys. Rev. Lett. 113, 210501 (2014), 10.1103/PhysRevLett.113.210501] gave an optimal gate-model search algorithm with the fixed-point property. Previously, it had been discovered by Roland and Cerf [Phys. Rev. A 65, 042308 (2002), 10.1103/PhysRevA.65.042308] that an adiabatic quantum algorithm, operating by continuously varying a Hamiltonian, can reproduce the quadratic speedup of gate-model Grover search. We ask, can an adiabatic algorithm also reproduce the fixed-point property? We show that the answer depends on what interpolation schedule is used, so as in the gate model, there are both fixed-point and non-fixed-point versions of adiabatic search, only some of which attain the quadratic quantum speedup. Guided by geometric intuition on the Bloch sphere, we rigorously justify our claims with an explicit upper bound on the error in the adiabatic approximation. We also show that the fixed-point adiabatic search algorithm can be simulated in the gate model with neither loss of the quadratic Grover speedup nor of the fixed-point property. Finally, we discuss natural uses of fixed-point algorithms such as preparation of a relatively prime state and oblivious amplitude amplification.
Differential cross section measurements for γ n →π-p above the first nucleon resonance region
Mattione, P. T.; Carman, D. S.; Strakovsky, I. I.; Workman, R. L.; Kudryavtsev, A. E.; Svarc, A.; Tarasov, V. E.; Adhikari, K. P.; Adhikari, S.; Adikaram, D.; Akbar, Z.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Bashkanov, M.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Defurne, M.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Hollis, G.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Meziani, Z. E.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; CLAS Collaboration
2017-09-01
The quasifree γ d →π-p (p ) differential cross section has been measured with CLAS at photon beam energies Eγ from 0.445 to 2.510 GeV (corresponding to W from 1.311 to 2.366 GeV) for pion center-of-mass angles cosθπc .m . from -0.72 to 0.92. A correction for final state interactions has been applied to these data to extract the γ n →π-p differential cross sections. These cross sections are quoted in 8428 (Eγ,cosθπc .m .) bins, a factor of nearly 3 increase in the world statistics for this channel in this kinematic range. These new data help to constrain coupled-channel analysis fits used to disentangle the spectrum of N* resonances and extract their properties. Selected photon decay amplitudes N*→γ n at the resonance poles are determined for the first time and are reported here.
Adiabatic excitation for (31) P MR spectroscopy in the human heart at 7 T: A feasibility study.
Valkovič, Ladislav; Clarke, William T; Purvis, Lucian A B; Schaller, Benoit; Robson, Matthew D; Rodgers, Christopher T
2017-11-01
Phosphorus magnetic resonance spectroscopy ((31) P-MRS) provides a unique tool for assessing cardiac energy metabolism, often quantified using the phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio. Surface coils are typically used for excitation for (31) P-MRS, but they create an inhomogeneous excitation field across the myocardium, producing undesirable, spatially varying partial saturation. Therefore, we implemented adiabatic excitation in a 3D chemical shift imaging (CSI) sequence for cardiac (31) P-MRS at 7 Tesla (T). We optimized an adiabatic half passage pulse with bandwidth sufficient to excite PCr and γ-ATP together. In addition, the CSI sequence was modified to allow interleaved excitation of PCr and γ-ATP, then 2,3-DPG, to enable PCr/ATP determination with blood correction. Nine volunteers were scanned at 2 transmit voltages to confirm that measured PCr/ATP was independent of B1+ (i.e. over the adiabatic threshold). Six septal voxels were evaluated for each volunteer. Phantom experiments showed that adiabatic excitation can be reached at the depth of the heart using our pulse. The mean evaluated cardiac PCr/ATP ratio from all 9 volunteers corrected for blood signal was 2.14 ± 0.16. Comparing the two acquisitions with different voltages resulted in a minimal mean difference of -0.005. Adiabatic excitation is possible in the human heart at 7 T, and gives consistent PCr/ATP ratios. Magn Reson Med 78:1667-1673, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Energy Technology Data Exchange (ETDEWEB)
Saiz-Jimenez, C.; Hawkins, B.L.; Maciel, G.E.
1986-01-01
Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy was used to characterize humic fractions isolated from different soils. The humic acid fractions are more aromatic than the humin fractions, probably due to the higher polysaccharide content of humins. However, fulvic acid fractions are more aromatic than the corresponding humic acid and humin fractions. These results can be interpreted in terms of the isolation procedure, because the high affinity of Polyclar AT for phenols results in higher aromaticities as compared with other isolation methods (e.g. charcoal).
Non-adiabatic perturbations in multi-component perfect fluids
Energy Technology Data Exchange (ETDEWEB)
Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Neutron total cross-sections and resonance parameters of Mo and Ta
Indian Academy of Sciences (India)
better energy resolutions for the channel widths of the data saving systems. The detailed explanations of the data ... Then the energy resolution can be written by the expression as. Pramana – J. Phys., Vol. 68, No. .... Resonance parameters of Ta-181 isotope obtained by this evaluation with Christensen [13], Harvey et al ...
Malyuskin, Oleksandr; Fusco, Vincent
2017-12-01
A super-resolution defect characterization technique based on near-field resonance reflectometry and cross-correlation image processing is proposed in this paper. The hardware part of the microwave imaging system employs a novel loaded aperture (LA) probe which allows collimation of the electromagnetic field to approximately λ/10 focal spot(s) at λ/100 to λ/10 stand-off distances, λ being the wavelength of radiation in free space. The characteristic raw image spatial resolution of the LA probe is around λ/10 in one dimension with amplitude contrast/sensitivity exceeding 10-20 dB. It is demonstrated that the LA spatial resolution can be at least two times enhanced in two dimensions in the image plane using basic cross-correlation image processing while retaining a very high level of amplitude contrast of at least 10 dB.
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Comment on ``Adiabatic theory for the bipolaron''
Smondyrev, M. A.; Devreese, J. T.
1996-05-01
Comments are given on the application of the Bogoliubov-Tyablikov approach to the bipolaron problem in a recent paper by Lakhno [Phys. Rev. B 51, 3512 (1995)]. This author believes that his model (1) is the translation-invariant adiabatic theory of bipolarons and (2) gives asymptotically exact solutions in the adiabatic limit while the other approaches are considered as either phenomenological or variational in nature. Numerical results by Lakhno are in contradiction with all other papers published on the subject because his model leads to much lower energies. Thus, the author concludes that bipolarons ``are more stable than was considered before.'' We prove that both the analytical and the numerical results presented by Lakhno are wrong.
Adiabatic Quantum Optimization for Associative Memory Recall
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Directory of Open Access Journals (Sweden)
Andrianova Olga
2017-01-01
Full Text Available The report presents the results of an analysis of benchmark experiments form the international ICSBEP Handbook (HEU-MET-INTER-005 carried out at the the SSC RF – IPPE in cooperation with the Idaho National Laboratory (INL, USA applicable to the verification of calculations of a wide range of tasks related to safe storage of vitrified radioactive waste. Experiments on the BFS assemblies make it possible to perform a large series of studies needed for neutron data refinement, including measurements of reactivity effects which allow testing the neutron cross section resonance structure. This series of studies is considered as a sample joint analysis framework for differential and integral experiments required to correct nuclea data files of the ROSFOND evaluated neutron data library. Thus, it is shown that despite the wide range of available experimental data, in so far as it relates to the resonance region refinement, the experiments on reactivity measurement make it possible to more subtly reflect the resonance structure peculiarities in addition to the time-of-flight measurement method.
Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady
2017-09-01
The report presents the results of an analysis of benchmark experiments form the international ICSBEP Handbook (HEU-MET-INTER-005) carried out at the the SSC RF - IPPE in cooperation with the Idaho National Laboratory (INL, USA) applicable to the verification of calculations of a wide range of tasks related to safe storage of vitrified radioactive waste. Experiments on the BFS assemblies make it possible to perform a large series of studies needed for neutron data refinement, including measurements of reactivity effects which allow testing the neutron cross section resonance structure. This series of studies is considered as a sample joint analysis framework for differential and integral experiments required to correct nuclea data files of the ROSFOND evaluated neutron data library. Thus, it is shown that despite the wide range of available experimental data, in so far as it relates to the resonance region refinement, the experiments on reactivity measurement make it possible to more subtly reflect the resonance structure peculiarities in addition to the time-of-flight measurement method.
Adiabatic thermal models for planetary bodies
Spohn, T.
1985-01-01
In a number of recent experiments it was found that the logarithmic derivative with respect to volume of the adiabatic temperature increase with pressure P to be an approximately constant quantity n. It was found that n decreases slightly with temperature, to be virtually unaffected by increasing pressure and to take values between 4 and 8 for a wide variety of materials. It is shown that these findings can be substantiated from thermodynamic arguments, finite strain theory, atomic potential theory and experimental data on the thermal expansion coefficient and the bulk modulus B. It will be shown that n is independent of pressure if it is exactly equal to dB/dP + 1. For these materials d log gamma/d log v = -1, where gamma is the thermodynamic Gruneisenparameter. It will increase with P during an isothermal transformation if n dB/dP + 1 and decrease of n dB/dP + 1. For most materials n is close to dB/dP and the changes will be slight if pressures do not become too extreme. During an adiabatic transformation n is virtually constant. Adiabatic thermal models for planetary bodies were calculated and are presented.
Adiabatic heating in impulsive solar flares
Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.
1978-01-01
A study is made of adiabatic heating in two impulsive solar flares on the basis of dynamic X-ray spectra in the 28-254 keV range, H-alpha, microwave, and meter-wave radio observations. It is found that the X-ray spectra of the events are like those of thermal bremsstrahlung from single-temperature plasmas in the 10-60 keV range if photospheric albedo is taken into account. The temperature-emission correlation indicates adiabatic compression followed by adiabatic expansion and that the electron distribution remains isotropic. H-alpha data suggest compressive energy transfer. The projected areas and volumes of the flares are estimated assuming that X-ray and microwave emissions are produced in a single thermal plasma. Electron densities of about 10 to the 9th/cu cm are found for homogeneous, spherically symmetric sources. It is noted that the strong self-absorption of hot-plasma gyrosynchrotron radiation reveals low magnetic field strengths.
Adiabatic cooling of a tunable Bose-Fermi mixture in an optical lattice
DEFF Research Database (Denmark)
Sørensen, Ole Søe; Nygaard, Nicolai; Blakie, P.B.
2009-01-01
We consider an atomic Fermi gas confined in a uniform optical lattice potential, where the atoms can pair into molecules via a magnetic field controlled narrow Feshbach resonance. Thus by adjusting the magnetic field the portion of fermionic and bosonic particles in the system can be continuously...... varied. We analyze the statistical mechanics of this system and consider the interplay of the lattice physics with the atom-molecule conversion. We study the entropic behavior of the system and characterize the temperature changes that occur during adiabatic ramps across the Feshbach resonance. We show...... that an appropriate choice of filling fraction can be used to reduce the system temperature during such ramps....
Efimov Trimers near the Zero-crossing of a Feshbach Resonance
DEFF Research Database (Denmark)
Zinner, Nikolaj Thomas
2012-01-01
Near a Feshbach resonance, the two-body scattering length can assume any value. When it approaches zero, the next-order term given by the effective range is known to diverge. We consider the question of whether this divergence (and the vanishing of the scattering length) is accompanied by an anom......Near a Feshbach resonance, the two-body scattering length can assume any value. When it approaches zero, the next-order term given by the effective range is known to diverge. We consider the question of whether this divergence (and the vanishing of the scattering length) is accompanied...... by an anomalous solution of the three-boson Schr\\"odinger equation similar to the one found at infinite scattering length by Efimov. Within a simple zero-range model, we find no such solutions, and conclude that higher-order terms do not support Efimov physics....
Energy Technology Data Exchange (ETDEWEB)
Peter Bosted; M. E. Christy
2007-11-08
An empirical fit is described to measurements of inclusive inelastic electron-deuteron cross sections in the kinematic range of four-momentum transfer $0 \\le Q^2<10$ GeV$^2$ and final state invariant mass $1.2<3$ GeV. The deuteron fit relies on a fit of the ratio $R_p$ of longitudinal to transverse cross sections for the proton, and the assumption $R_p=R_n$. The underlying fit parameters describe the average cross section for proton and neutron, with a plane-wave impulse approximation (PWIA) used to fit to the deuteron data. Pseudo-data from MAID 2007 were used to constrain the average nucleon cross sections for $W<1.2$ GeV. The mean deviation of data from the fit is 3\\%, with less than 5\\% of the data points deviating from the fit by more than 10\\%.
Energy Technology Data Exchange (ETDEWEB)
Parikh, Kushal R.; Kraft, Kate H.; Ivancic, Vesna; Smith, Ethan A.; Dillman, Jonathan R. [Section of Pediatric Radiology, Mott Children' s Hospital, Department of Radiology, University of Michigan Health System, Ann Arbor, MI (United States); Hammer, Matthew R. [University of Texas Southwestern, Department of Radiology, Dallas, TX (United States)
2015-11-15
MR Urography (MRU) is an increasingly used imaging modality for the evaluation of pediatric genitourinary obstruction. To determine whether pediatric MR urography (MRU) reliably detects crossing vessels in the setting of suspected ureteropelvic junction (UPJ) obstruction. The clinical significance of these vessels was also evaluated. We identified pediatric patients diagnosed with UPJ obstruction by MRU between May 2009 and June 2014. MRU studies were evaluated by two pediatric radiologists for the presence or absence of crossing vessels. Ancillary imaging findings such as laterality, parenchymal thinning/scarring, trapped fluid in the proximal ureter, and presence of renal parenchymal edema were also evaluated. Imaging findings were compared to surgical findings. We used the Mann-Whitney U test to compare continuous data and the Fisher exact test to compare proportions. Twenty-four of 25 (96%) UPJ obstructions identified by MRU were surgically confirmed. MRU identified crossing vessels in 10 of these cases, with 9 cases confirmed intraoperatively (κ = 0.92 [95% CI: 0.75, 1.0]). Crossing vessels were determined to be the primary cause of UPJ obstruction in 7/9 children intraoperatively, while in two children the vessels were deemed incidental and noncontributory to the urinary tract obstruction. There was no significant difference in age or the proportions of ancillary findings when comparing children without and with obstructing vessels. MRU allows detection of crossing vessels in pediatric UPJ obstruction. Although these vessels are the primary cause of obstruction in some children, they are incidental and non-contributory in others. Our study failed to convincingly identify any significant predictors (e.g., age or presence of renal parenchymal edema) that indicate when a crossing vessel is the primary cause of obstruction. (orig.)
The Decent Care Movement: Subsidiarity, Pragmatic Solidarity, and Cross-Cultural Resonance.
Niforatos, Joshua D
2016-02-01
Decent Care is the World Health Organization and The Ford Foundation's joint effort to articulate a healthcare paradigm that makes a patient's voice equal to the voice of the healthcare provider. In this article, the six tenants of Decent Care are outlined with particular emphasis on subsidiarity. Liberation theology's preferential option for the poor maxim is presented and compared with other major world religions to demonstrate the cross-cultural focus of "decency." The power of this paradigm is in its emphasis and proclamation of human flourishing in a healthcare setting, generally speaking, and more specifically, human flourishing in the presence of affliction from chronic disease or dying cross-culturally.
Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system.
Sun, Xiankai; Liu, Hsi-Chun; Yariv, Amnon
2009-02-01
By analyzing the propagating behavior of the supermodes in a coupled-waveguide system, we have derived a universal criterion for designing adiabatic mode transformers. The criterion relates epsilon, the fraction of power scattered into the unwanted mode, to waveguide design parameters and gives the shortest possible length of an adiabatic mode transformer, which is approximately 2/piepsilon1/2 times the distance of maximal power transfer between the waveguides. The results from numerical calculations based on a transfer-matrix formalism support this theory very well.
Zhou, Xing-Yu; Wang, Ya-Di; Xia, Li-Gang
2017-08-01
A detailed theoretical derivation of the cross sections of e+e- → e+e- and e+e- → μ + μ - around the J/ψ resonance is reported. The resonance and interference parts of the cross sections, related to J/ψ resonance parameters, are calculated. Higher-order corrections for vacuum polarization and initial-state radiation are considered. An arbitrary upper limit of radiative correction integration is involved. Full and simplified versions of analytic formulae are given with precision at the level of 0.1% and 0.2%, respectively. Moreover, the results obtained in the paper can be applied to the case of the ψ(3686) resonance. Supported by National Natural Science Foundation of China (11275211) and Istituto Nazionale di Fisica Nucleare, Italy
Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond.
Golter, D Andrew; Wang, Hailin
2014-03-21
Rabi oscillations and adiabatic passage of single electron spins in a diamond nitrogen vacancy center are demonstrated with two Raman-resonant optical pulses that are detuned from the respective dipole optical transitions. We show that the optical spin control is nuclear-spin selective and can be robust against rapid decoherence, including radiative decay and spectral diffusion, of the underlying optical transitions. A direct comparison between the Rabi oscillation and the adiabatic passage, along with a detailed theoretical analysis, provides significant physical insights into the connections and differences between these coherent spin processes and also elucidates the role of spectral diffusion in these processes. The optically driven coherent spin processes enable the use of nitrogen vacancy excited states to mediate coherent spin-phonon coupling, opening the door to combining optical control of both spin and mechanical degrees of freedom.
Bond selective chemistry beyond the adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Butler, L.J. [Univ. of Chicago, IL (United States)
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Narrow Linewidth Laser Cooling via Adiabatic Transfer
Bartolotta, John; Holland, Murray; Norcia, Matthew; Thompson, James; Cline, Julia
2017-04-01
We simulate and provide a theoretical framework for a new cooling method applicable to particles with narrow-linewidth optical transitions. The particles are adiabatically transferred to lower momentum states upon interaction with counter-propagating laser beams that are repeatedly swept over the transition frequency. A reduced reliance on spontaneous emission (compared to Doppler cooling) allows for larger slowing forces. Cooling via a 7.6 kHz dipole forbidden transition in Strontium-88 is simulated using one-dimensional quantum jump and c-number Langevin equation methods. This ``sweep cooling'' mechanism also shows promise for application to systems lacking closed cycling transitions, such as molecules.
Green's Functions and the Adiabatic Hyperspherical Method
Rittenhouse, Seth T; Greene, Chris H
2010-01-01
We address the few-body problem using the adiabatic hyperspherical representation. A general form for the hyperangular Green's function in $d$-dimensions is derived. The resulting Lippmann-Schwinger equation is solved for the case of three-particles with s-wave zero-range interactions. Identical particle symmetry is incorporated in a general and intuitive way. Complete semi-analytic expressions for the nonadiabatic channel couplings are derived. Finally, a model to describe the atom-loss due to three-body recombination for a three-component fermi-gas of $^{6}$Li atoms is presented.
Inversion produced and reversed by adiabatic passage
Liedenbaum, C.; Stolte, S.; Reuss, J.
1989-06-01
This report deals with non-linear effects produced in molecules by strong laser fields. The molecules experience these laser fields during their passage through the laser waists. We present results on rapid adiabatic passage processes which move the molecules up and down the energy ladder, the latter due to stimulated emission. Experimentally, stimulated emission is observed by opto-thermal detection of a molecular beam where de-excitation by stimulated emission leads to negative signals as compared to straightforward excitation processes. Two-level, three-level and multi-level systems are covered by the following discussion.
The Effect of non-Hermiticity on Adiabatic Elimination
Sharaf, Rahman; Dehghani, Mojgan; Darbari, Sara; Ramezani, Hamidreza
2017-01-01
We investigate the influence of non-Hermiticity on the adiabatic elimination in coupled waveguides. We show that adiabatic elimination is not affected when the system is in parity-time symmetric phase. However, in the broken phase the eliminated waveguide loses its darkness namely its amplitude starts increasing, which means adiabatic elimination does not hold in the broken phase. Our results can advance the control of the dynamics in coupled laser cavities, and help the design of controllabl...
Relaxation versus adiabatic quantum steady-state preparation
Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo
2017-04-01
Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.
McConnell, R; Kolthammer, WS; Richerme, P; Müllers, A; Walz, J; Grzonka, D; Zielinski, M; Fitzakerley, D; George, MC; Hessels, EA; Storry, CH; Weel, M
2016-01-01
Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is expected to be increased by a similar factor.
Moens, V; Redaelli, S; Salvachua, B; Valentino, G
2013-01-01
The LHC collimator settings are qualified regularly via beam loss maps. In this procedure, the beam is artificially excited to create abnormal loss rates. The transverse damper blow up (ADT) and tune resonance crossing methods (QT) are used to increase the betatron amplitude of particles and verify the efficiency of the collimation cleaning hierarchy in IR7. This paper presents a quantitative comparison of the methods, for the qualification of the collimator settings at different operating points in the LHC machine cycle. The analysis is done using Beam Loss Monitor (BLM) with integration times of 1.3 s and 80 ms, the latter being available as from the 2012 run onwards. We present here the use of the faster BLM data (80 ms) to study the time evolution of the losses in IR3 and IR7 during offmomentum loss maps.
A Systematic Search for New Coupling Schemes of Cross-Coupled Resonator Bandpass Filters
Directory of Open Access Journals (Sweden)
A. Lamecki
2014-09-01
Full Text Available In this paper, a systematic approach to an extensive search for topologies of cross-coupled filters with generalized Chebyshev response is presented. The technique applies graph theory to find unique, nonisomorphic filter configurations, and tests whether a specific frequency response can be realized in a given set of topologies. The results of the search are then stored in a database of possible filter configurations.
Directory of Open Access Journals (Sweden)
Z. Zhang
2017-09-01
Full Text Available We propose a polarization-dependent multi-functional metamaterial using ring-cross resonator. Based on the analysis of surface current distributions induced by different polarized incidence, we demonstrate that the proposed metamaterial serves as a polarization filter, a transparent wall and a circular polarizer under different polarization normal incidence. Additionally, parameter analyses on the control of resonance are discussed to complementally explain the physical origin. Simulated results show that the proposed metamaterial functions as a polarization filter eliminating the x-polarization wave at 10.1 GHz and y-polarization wave at 14.3 GHz, a transparent wall transmitting both x-polarized and y-polarized incident waves at 12.6 GHz, and a broadband circular polarizer converting the +45° polarized (-45° polarized incident wave to the left (right handed circularly polarized wave from 10.8 to 12.8 GHz, respectively. Measured results agree well with the simulation and validate the performance of the proposed multifunctional metamaterial.
Dumont, Charles E; Nagy, Ladislav; Ziegler, Dirk; Pfirrmann, Christian W A
2007-04-01
Planning an osteotomy to correct rotational malunions of the forearm is difficult because the uninvolved side is the only available reference to assess radial and ulnar torsions. This study was designed to compare the reliability of 2 methods for the determination of the torsion profile of both forearm bones and to assess side differences further in volunteers. Fluoroscopy in combination with goniometry and magnetic resonance (MR) cross-sectional imaging were used to determine torsion profiles of the radius and the ulna in 24 asymptomatic volunteers. Interrater and interside reliabilities were assessed. For the radius, interclass correlation coefficients were less than 0.65 with fluoroscopy and greater than 0.80 with magnetic resonance imaging (MRI). For the ulna, both methods had an interclass correlation coefficient of greater than 0.90. Maximum side-to-side differences assessed with fluoroscopy and MRI were 25 degrees and 34.5 degrees for the radius and 20 degrees and 32 degrees for the ulna, respectively. There were no statistical differences between sides using both methods for both forearm bones. Fluoroscopy coupled with goniometry is a valuable method for assessing the torsion profile of the ulna. MR cross-sectional imaging is better to assess the torsion profile of the radius; however, a side difference in torsion profile of up to 35 degrees for the radius and of up to 20 degrees for the ulna should be considered physiologic. Hence, only side differences greater than these limits may serve as an indication for an axial osteotomy in the clinical setting.
Sykes, B D; Hull, W E; Snyder, G H
1978-02-01
Proton nuclear magnetic resonance (NMR) spin lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements are presented for a number of proteins with molecular weights spanning the range of 6,500-150,000 daltons. These measurements provide experimental evidence for the role of cross-relaxation in 1H NMR T1 measurements in proteins. The relationship between these measurements and the theory recently presented by Kalk and Berendsen is discussed. The results indicate that cross-relaxation dominates the T1 measurements for the larger proteins, even at relatively low resonance frequencies such as 100 MHz.
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators (ADRs) in space applications, it is desirable to have very light weight, small diameter, high current density...
Symmetry of the adiabatic condition in the piston problem
Energy Technology Data Exchange (ETDEWEB)
Anacleto, Joaquim; Ferreira, J M, E-mail: anacleto@utad.pt [Departamento de Fisica, Escola de Ciencias e Tecnologia, Universidade de Tras-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal)
2011-11-15
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be compatible with the invariance of total entropy under a system-surroundings interchange. This paper also strengthens some recently published ideas concerning the concepts of heat and dissipative work, and is primarily intended for teachers and graduate students, as well as for all who are interested in this fascinating problem.
Threshold-energy region in the electron-excitation cross sections of the sodium resonant transition
Energy Technology Data Exchange (ETDEWEB)
Ying, C.H.; Perales, F.; Vuskovic, L.; Bederson, B. (Physics Department, New York University, New York, New York 10003 (United States))
1993-08-01
We present measurements of absolute excitation differential cross sections for electron scattering by ground-state sodium in the 3[ital P] manifold at 2.3, 2.4, 2.5, 2.6, 3.0, 3.3, and 3.7 eV in the angular range 1[degree] to 60[degree]. No calibration or normalization procedures are involved. Comparisons with computational results of the close-coupling approximation and experimentally obtained [Delta][ital M][sub [ital s
An Adiabatic Phase-Matching Accelerator
Energy Technology Data Exchange (ETDEWEB)
Lemery, Francois [DESY; Floettmann, Klaus [DESY; Piot, Philippe [Northern Illinois U.; Kaertner, Franz X. [Hamburg U.; Assmann, Ralph [DESY
2017-12-22
We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that a $\\sim 200$-keV electron beam can be accelerated to an energy of $\\sim10$~MeV over $\\sim 10$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.
Adiabatic Mass Loss Model in Binary Stars
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the
Gupta, Ranjana; Joshi, Sandeep; Mittal, Amit; Luthra, Ishita; Mittal, Puneet; Verma, Vibha
2015-01-01
Acquired Dyke-Davidoff-Masson syndrome, also known as hemispheric atrophy, is characterized by loss of volume of one cerebral hemisphere from an insult in early life. Crossed cerebellar diaschisis refers to dysfunction/atrophy of cerebellar hemisphere which is secondary to contralateral supratentorial insult. We describe magnetic resonance imaging findings in two cases of acquired Dyke-Davidoff-Masson syndrome with crossed cerebro-cerebellar diaschisis.
Gupta, Ranjana; Joshi, Sandeep; Mittal, Amit; Luthra, Ishita; Mittal, Puneet; Verma, Vibha
2015-01-01
Acquired Dyke–Davidoff–Masson syndrome, also known as hemispheric atrophy, is characterized by loss of volume of one cerebral hemisphere from an insult in early life. Crossed cerebellar diaschisis refers to dysfunction/atrophy of cerebellar hemisphere which is secondary to contralateral supratentorial insult. We describe magnetic resonance imaging findings in two cases of acquired Dyke–Davidoff–Masson syndrome with crossed cerebro-cerebellar diaschisis. PMID:26557182
Energy Technology Data Exchange (ETDEWEB)
Errea, L.F.; Mendez, L.; Riera, A.
1986-07-15
We study the characteristics of charge exchange processes in ion--atom collisions, induced by a strong laser field whose wavelength is resonant to the splitting at a pseudocrossing of two molecular adiabatic energies, where the transition dipole has a sharp maximum. To calculate the charge exchange cross section we use a semiclassical approach and a molecular expansion for the electronic wave function. Using the formalism of Macias and Riera, and of Ho, Chu, and Laughlin, the properties and practical advantages of field-free and dressed molecular wave functions in that expansion are studied in detail. In practice we have found the former basis to be more advantageous from the computational point of view. A limitation of the Floquet approach of Ho et al. is obtained. As an illustration, we treat O/sup 8 +/+H(1s) charge exchange collisions in presence of a laser field whose frequency is quasiresonant with the energy splitting at the pseudocrossing between the 7isigma and the 6hsigma energy curves. The importance of the (usually neglected) diagonal ac Stark terms is stressed.
Energy Technology Data Exchange (ETDEWEB)
Nakamura, S.; Wada, H.; Furutaka, K.; Harada, H.; Katoh, T. [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)
2001-03-01
The thermal neutron capture cross section ({sigma}{sub 0}) and the resonance integral (I{sub 0}) of the {sup 109}Ag(n,{gamma}) reaction were measured by the activation and {gamma}-ray spectroscopic methods to develop a neutron flux monitor for the long irradiation. (author)
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size.
Charvet, Christine J; Hof, Patrick R; Raghanti, Mary Ann; Van Der Kouwe, Andre J; Sherwood, Chet C; Takahashi, Emi
2017-04-01
The isocortex of primates is disproportionately expanded relative to many other mammals, yet little is known about what the expansion of the isocortex entails for differences in cellular composition and connectivity patterns in primates. Across the depth of the isocortex, neurons exhibit stereotypical patterns of projections. Upper-layer neurons (i.e., layers II-IV) project within and across cortical areas, whereas many lower-layer pyramidal neurons (i.e., layers V-VI) favor connections to subcortical regions. To identify evolutionary changes in connectivity patterns, we quantified upper (i.e., layers II-IV)- and lower (i.e., layers V-VI)-layer neuron numbers in primates and other mammals such as rodents and carnivores. We also used MR tractography based on high-angular resolution diffusion imaging and diffusion spectrum imaging to compare anterior-to-posterior corticocortical tracts between primates and other mammals. We found that primates possess disproportionately more upper-layer neurons as well as an expansion of anterior-to-posterior corticocortical tracts compared with other mammals. Taken together, these findings demonstrate that primates deviate from other mammals in exhibiting increased cross-cortical connectivity. J. Comp. Neurol. 525:1075-1093, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Adiabatic heavy-ion fusion potentials for fusion at deep sub-barrier ...
Indian Academy of Sciences (India)
barrier energies has been examined. The adiabatic limit of fusion barriers has been determined from experimental data using the barrier penetration model. These adiabatic barriers are consistent with the adiabatic fusion barriers derived from ...
Adiabatic logic future trend and system level perspective
Teichmann, Philip
2012-01-01
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the p...
Sliding seal materials for adiabatic engines
Lankford, J.
1985-01-01
The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.
Reversible logic gate using adiabatic superconducting devices.
Takeuchi, N; Yamanashi, Y; Yoshikawa, N
2014-09-15
Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage.
Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids
Energy Technology Data Exchange (ETDEWEB)
Natividad, Eva [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Sede Campus Rio Ebro, Maria de Luna, 3, 50018 Zaragoza (Spain); Castro, Miguel [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Sede Campus Rio Ebro, Maria de Luna, 3, 50018 Zaragoza (Spain)], E-mail: mcastro@unizar.es; Mediano, Arturo [Grupo de Electronica de Potencia y Microelectronica (GEPM), Instituto de Investigacion en Ingenieria de Aragon (Universidad de Zaragoza), Maria de Luna, 3, 50018 Zaragoza (Spain)
2009-05-15
The measurement of temperature variations in adiabatic conditions allows the determination of the specific absorption rate of magnetic nanoparticles and ferrofluids from the correct incremental expression, SAR=(1/m{sub MNP})C({delta}T/{delta}t). However, when measurements take place in non-adiabatic conditions, one must approximate this expression by SAR{approx}C{beta}/m{sub MNP}, where {beta} is the initial slope of the temperature vs. time curve during alternating field application. The errors arising from the use of this approximation were estimated through several experiments with different isolating conditions, temperature sensors and sample-sensor contacts. It is concluded that small to appreciable errors can appear, which are difficult to infer or control.
Adiabatic Rearrangement of Hollow PV Towers
Directory of Open Access Journals (Sweden)
Eric A Hendricks
2010-10-01
Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane
The adiabatic/entropy decomposition in $P(\\phi^I,X^{IJ})$ theories with multiple sound speeds
Longden, Chris
2016-01-01
We consider $P(\\phi^I,X^{IJ})$ theories of multi-field inflation and ask the question of how to define the adiabatic and entropy perturbations, widely used in calculating the curvature and isocurvature power spectra, in this general context. It is found that when the field perturbations propagate with different speeds, these adiabatic and entropy modes are not generally the fundamental (most natural to canonically quantise) degrees of freedom that propagate with a single speed. The alternative fields which do propagate with a single speed are found to be a rotation in field space of the adiabatic and entropy perturbations. We show how this affects the form of the horizon-crossing power spectrum, when there is not a single "adiabatic sound speed" sourcing the curvature perturbation. Special cases of our results are discussed, including $P(X)$ theories where the adiabatic and entropy perturbations are fundamental. We finally look at physical motivations for considering multi-speed models of inflation, particula...
Quasielastic pion scattering near the (3,3) resonance. [255 MeV, differential cross section ratio
Energy Technology Data Exchange (ETDEWEB)
Varghese, P.
1978-12-01
The quasielastic pion scattering process (..pi..,..pi..p), in which an energetic pion scatters off a target nucleus, knocking-out a bound proton, was studied to determine the role of recoil nucleon charge exchange in the mechanism of the process near the (3,3) free particle pion-nucleon resonance. Calculations, which incorporate the hypothesis of final state charge exchange of the outgoing nucleon, were performed to predict expectations for observing the process. Experimental measurements were made on /sup 27/Al and /sup 208/Pb, using 255-MeV ..pi../sup +/ and ..pi../sup -/ beams. The outgoing protons were observed in a counter telescope in singles and coincidence modes. Singles spectra were measured at proton angles theta/sub rho/ = 45, 55, 64, and 90/sup 0/ and cross sections were calculated as a function of the energy of the detected proton, for each of the targets. Values of the ratio of ..pi../sup +/ to ..pi../sup -/ cross sections were calculated for each of the angles of observation. The results obtained indicate that the singles spectra contain events from processes other than quasielastic scattering and that the quasielastic events cannot be easily disentangled from the large background due to such events. The study has thus established the inadequacy of observing quasielastic pion scattering in a single arm measurement. Coincidence measurements were made by observing the recoil protons in coincidence with the scattered pions, which were detected in a scintillator counter telescope. The ratio of ..pi../sup +/ to ..pi../sup -/ cross sections were obtained for each target for the angular settings (theta/sub rho/, theta/sub ..pi../) = (55, 50/sup 0/) and (64, 37.5/sup 0/). The measured values of 7.0 +- 0.7 for /sup 27/Al and 4.5 +- 0.5 for /sup 208/Pb are substantially below the impulse approximation no-charge-exchange limit of 9. The observed A dependence of this cross section ratio is in agreement with the predictions of the semiclassical charge exchange
Compton, N.; Taylor, C. E.; Hicks, K.; Cole, P.; Zachariou, N.; Ilieva, Y.; Nadel-Turonski, P.; Klempt, E.; Nikonov, V. A.; Sarantsev, A. V.; Adhikari, K. P.; Adhikari, S.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Camp, M.; Cao, Frank Thanh; Cao, T.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Fradi, A.; Gavalian, G.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Torayev, B.; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zhang, J.; CLAS Collaboration
2017-12-01
We report the first measurement of differential and total cross sections for the γ d →K0Λ (p ) reaction, using data from the CLAS detector at the Thomas Jefferson National Accelerator Facility. Data collected during two separate experimental runs were studied with photon-energy coverage 0.8-3.6 GeV and 0.5- 2.6 GeV, respectively. The two measurements are consistent giving confidence in the method and determination of systematic uncertainties. The cross sections are compared with predictions from the KAON-MAID theoretical model (without kaon exchange), which deviate from the data at higher W and at forward kaon angles. These data, along with previously published cross sections for K+Λ photoproduction, provide essential constraints on the nucleon resonance spectrum. A first partial wave analysis was performed that describes the data without the introduction of new resonances.
Implementation of one-qubit holonomic rotation gate by adiabatic passage
Directory of Open Access Journals (Sweden)
R Nader-Ali
2010-06-01
Full Text Available We propose a robust scheme, using tripod stimulated Raman adiabatic passage, to generate one-qubit rotation gate. In this scheme, a four-level atom interacts with three resonant laser pulses and time evolution of the corresponding coherent system is designed such that the rotation gate is implemented at the end of process. Rotation angle in this gate is holonomic and has a geometrical basis in the parameter space. We also explore the effect of spontaneous emission on the population transfer with numerical solution of Schrödinger and Liouville equations.
Bates, A.L.; Hatcher, P.G.; Lerch, H. E.; Cecil, C.B.; Neuzil, S.G.; ,
1991-01-01
Samples from a 10 cm cross-sectional radius of a peatified angiosperm log from Sumatra, Indonesia, were examined by 13C nuclear magnetic resonance and pyrolysis-gas chromatography in order to understand chemical changes due to the peatification process. NMR results show degradation by selective loss of carbohydrates in all parts of the log section compared with fresh wood; however, the degree of degradation is less near the center of the log section. The degree of ring substitution of aromatic lignin monomeric units, as measured by dipolar dephasing NMR methods, appears to be less at the center of the log section than at the periphery. The methoxyl carbon content of lignin in the log is lower than in unaltered angiospermous lignin but does not appear to change as a function of either radial position or the degree of aromatic ring substitution. Pyrolysis-gas chromatography indicates higher yields of catechols in the outer areas relative to the heartwood. Other than the variations in catechol contents and in the yields of carbohydrate-derived pyrolysis products (e.g. levoglucosan, angelicalactones), the pyrolysis results do not show significant changes related to radial position, indicating that the lignin is not significantly altered across the log section. ?? 1991.
Energy Technology Data Exchange (ETDEWEB)
Wang Taofeng; Lee, Manwoo; Kim, Kyung-Sook [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.k [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Oh, Young Do; Cho, Moo-Hyun; Ko, In Soo; Namkung, Won [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Ro, Tae-Ik [Department of Physics, Dong-A University, Busan 604-714 (Korea, Republic of)
2010-01-15
We measured neutron total cross-sections of natural erbium in the neutron energy region from 0.2 to 120 eV by using the neutron time-of-flight method at the Pohang Neutron Facility, which consists of an electron linear accelerator, a water-cooled tantalum target with a water moderator, and a 12-m-long time-of-flight path. A {sup 6}Li-ZnS(Ag) scintillator with a diameter of 12.5 cm and a thickness of 1.6 cm was used as a neutron detector, and a group of high-purity natural erbium metallic plates with various thickness was used for the neutron transmission measurements. The present measurement was compared with the existing experimental and the evaluated data. The resonance parameters of {sup 166}Er, {sup 167}Er, {sup 168}Er, and {sup 170}Er in the neutron energy region below 120 eV were extracted from the transmission by using the multilevel R-matrix SAMMY code and were compared with the evaluated data from ENDF/B VII.0 and other previous reported results.
Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions
Rezakhani, A. T.; Abasto, D. F.; Lidar, D. A.; Zanardi, P.
2010-07-01
We elucidate the geometry of quantum adiabatic evolution. By minimizing the deviation from adiabaticity, we find a Riemannian metric tensor underlying adiabatic evolution. Equipped with this tensor, we identify a unified geometric description of quantum adiabatic evolution and quantum phase transitions that generalizes previous treatments to allow for degeneracy. The same structure is relevant for applications in quantum information processing, including adiabatic and holonomic quantum computing, where geodesics over the manifold of control parameters correspond to paths which minimize errors. We illustrate this geometric structure with examples, for which we explicitly find adiabatic geodesics. By solving the geodesic equations in the vicinity of a quantum critical point, we identify universal characteristics of optimal adiabatic passage through a quantum phase transition. In particular, we show that in the vicinity of a critical point describing a second-order quantum phase transition, the geodesic exhibits power-law scaling with an exponent given by twice the inverse of the product of the spatial and scaling dimensions.
Burman, Elisabeth D; Keegan, Jennifer; Kilner, Philip J
2016-03-03
We measured by cine cardiovascular magnetic resonance (CMR) main and branch pulmonary artery diameters and cross sectional areas in diastole and systole in order to establish normal ranges and the effects on them of age, gender and body surface area (BSA). Documentation of normal ranges provides a reference for research and clinical investigation in the fields of congenital heart disease, pulmonary hypertension and connective tissue disorders. We recruited 120 healthy volunteers: ten males (M) and ten females (F) in each decile between 20 and 79 years, imaging them in a 1.5 Tesla CMR system. Scout acquisitions guided the placement of steady state free precession cine acquisitions transecting the main, right and left pulmonary arteries (MPA, RPA and LPA). Cross sections were rarely quite circular. From all subjects, the means of the greater and lesser orthogonal diastolic diameters in mm were: MPA, 22.9 ± 2.4 (M) and 21.2 ± 2.1 (F), RPA 16.6 ± 2.8 (M) and 14.7 ± 2.2 (F), and LPA 17.3 ± 2.5 (M) and 15.9 ± 2.0 (F), p measurements of minimum diastolic and maximum systolic cross sectional areas, the % systolic distensions were: MPA 42.7 ± 17.2 (M) and 41.8 ± 15.7 (F), RPA 50.6 ± 16.9 (M) and 48.2 ± 14.5 (F), LPA 35.6 ± 10.1 (M) and 35.2 ± 10.3 (F), and there was a decrease in distension with age (p Measurements of MPA, RPA and LPA by cine CMR are provided for reference, with documentation of their changes with age and BSA.
Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders
2010-01-01
The thermodynamics of the magnetocaloric effect implies constraints on the allowed variation in the adiabatic temperature change for a magnetocaloric material. An inequality for the derivative of the adiabatic temperature change with respect to temperature is derived for both first- and second......-order materials. For materials with a continuous adiabatic temperature change as a function of temperature, this inequality is shown to hold for all temperatures. However, discontinuous materials may violate the inequality. We compare our results with measured results in the literature and discuss...
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
Adiabatic interpretation of particle creation in a de Sitter universe
Energy Technology Data Exchange (ETDEWEB)
Molina-Paris, C.
1998-06-10
The choice of vacuum state for a quantum scalar field propagating in a de Sitter spacetime (massive and arbitrarily coupled to the gravitational field) is discussed. The problem of finite-time initial conditions for the mode functions is analyzed, as well as how these determine the vacuum state of the quantum system. The principle guiding the choice of vacuum state is the following: one wants the vacuum contribution to the energy-momentum tensor to contain all the ultraviolet divergent terms, so that the particle creation terms are finite, and covariantly conserved. There is a suitable set of modes (instantaneous adiabatic basis) in which this splitting of the expectation value of the energy-momentum tensor can be carried out. Numerical results are presented for different finite-time initial conditions (m = 0.6, {zeta} = 1/6). The nature of the particle creation effect is described and its relationship to the concept of a horizon crossing time is shown. These numerical results imply that back-reaction can be important and should be the subject of further research.
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Adiabatic Quantum Computation with Neutral Atoms
Biedermann, Grant
2013-03-01
We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories
On the persistence of adiabatic shear bands
Boakye-Yiadom, S.; Bassim, M. N.; Al-Ameeri, S.
2012-08-01
It is generally agreed that the initiation and development of adiabatic shear bands (ASBs) are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment) or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the "scars" due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.
On the persistence of adiabatic shear bands
Directory of Open Access Journals (Sweden)
Bassim M.N.
2012-08-01
Full Text Available It is generally agreed that the initiation and development of adiabatic shear bands (ASBs are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the “scars” due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.
Adiabatic Quantum Algorithm for Search Engine Ranking
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Kinetically constrained ring-polymer molecular dynamics for non-adiabatic chemical reactions.
Menzeleev, Artur R; Bell, Franziska; Miller, Thomas F
2014-02-14
We extend ring-polymer molecular dynamics (RPMD) to allow for the direct simulation of general, electronically non-adiabatic chemical processes. The kinetically constrained (KC) RPMD method uses the imaginary-time path-integral representation in the set of nuclear coordinates and electronic states to provide continuous equations of motion that describe the quantized, electronically non-adiabatic dynamics of the system. KC-RPMD preserves the favorable properties of the usual RPMD formulation in the position representation, including rigorous detailed balance, time-reversal symmetry, and invariance of reaction rate calculations to the choice of dividing surface. However, the new method overcomes significant shortcomings of position-representation RPMD by enabling the description of non-adiabatic transitions between states associated with general, many-electron wavefunctions and by accurately describing deep-tunneling processes across asymmetric barriers. We demonstrate that KC-RPMD yields excellent numerical results for a range of model systems, including a simple avoided-crossing reaction and condensed-phase electron-transfer reactions across multiple regimes for the electronic coupling and thermodynamic driving force.
Crossing a Nonlinear Resonance
Indian Academy of Sciences (India)
IAS Admin
being reflected from a slowly moving wall, is explained in Box 1. In the quantum mechanical context, ... Let us consider a point particle moving in a rectangular potential well of width l, colliding elastically with the wall. Allowing l to ... fixed energy E, and given initial conditions, the curve traced by the phase space point with ...
Spatial non-adiabatic passage using geometric phases
Energy Technology Data Exchange (ETDEWEB)
Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)
2017-12-15
Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)
Adiabatic projection method for scattering and reactions on the lattice
Energy Technology Data Exchange (ETDEWEB)
Pine, Michelle; Lee, Dean [North Carolina State University, Department of Physics, Raleigh, NC (United States); Rupak, Gautam [Mississippi State University, Department of Physics and Astronomy and HPC2 Center for Computational Sciences, Mississippi State, MS (United States)
2013-12-15
We demonstrate and test the adiabatic projection method, a general new framework for calculating scattering and reactions on the lattice. The method is based upon calculating a low-energy effective theory for clusters which becomes exact in the limit of large Euclidean projection time. As a detailed example we calculate the adiabatic two-body Hamiltonian for elastic fermion-dimer scattering in lattice effective field theory. Our calculation corresponds to neutron-deuteron scattering in the spin-quartet channel at leading order in pionless effective field theory. We show that the spectrum of the adiabatic Hamiltonian reproduces the spectrum of the original Hamiltonian below the inelastic threshold to arbitrary accuracy. We also show that the calculated s -wave phase shift reproduces the known exact result in the continuum and infinite-volume limits. When extended to more than one scattering channel, the adiabatic projection method can be used to calculate inelastic reactions on the lattice in future work. (orig.)
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators(ADR's) for space it is desirable to have very light weight, small diameter, high current density superconducting wires...
Adiabaticity and diabaticity in strong-field ionization
Karamatskou, Antonia; Santra, Robin
2013-01-01
If the photon energy is much less than the electron binding energy, ionization of an atom by a strong optical field is often described in terms of electron tunneling through the potential barrier resulting from the superposition of the atomic potential and the potential associated with the instantaneous electric component of the optical field. In the strict tunneling regime, the electron response to the optical field is said to be adiabatic, and nonadiabatic effects are assumed to be negligible. Here, we investigate to what degree this terminology is consistent with a language based on the so-called adiabatic representation. This representation is commonly used in various fields of physics. For electronically bound states, the adiabatic representation yields discrete potential energy curves that are connected by nonadiabatic transitions. When applying the adiabatic representation to optical strong-field ionization, a conceptual challenge is that the eigenstates of the instantaneous Hamiltonian form a continuu...
Adiabatic Cooling for Rovibrational Spectroscopy of Molecular Ions
DEFF Research Database (Denmark)
Fisher, Karin
2017-01-01
The field of cold molecular ions is a fast growing one, with applications in high resolution spectroscopy and metrology, the search for time variations of fundamental constants, cold chemistry and collisions, and quantum information processing, to name a few. The study of single molecular ions...... proposes to adiabatically relax the trapping potential, called adiabatic cooling, when performing rovibrational excitations of the molecular ion to reduce the energy spacing of the harmonic motional levels, thus increasing the likelihood of a motional transition. The work presented in this thesis covers...... the implementation of adiabatic cooling for the application of rovibrational spectroscopy on single molecular ions. This entailed constructing and testing a new DC supply capable of employing adiabatic ramps of the ion's axial frequency on the 100's of us timescale. The DC supply went through several iterations...
Adiabatic regularization for spin-1/2 fields
Landete, Aitor; Navarro-Salas, José; Torrentí, Francisco
2013-09-01
We extend the adiabatic regularization method to spin-1/2 fields. The ansatz for the adiabatic expansion for fermionic modes differs significantly from the WKB-type template that works for scalar modes. We give explicit expressions for the first adiabatic orders and analyze particle creation in de Sitter spacetime. As for scalar fields, the adiabatic method can be distinguished by its capability to overcome the UV divergences of the particle number operator. We also test the consistency of the extended method by working out the conformal and axial anomalies for a Dirac field in a Friedmann-Lemaître-Robertson-Walker spacetime, in exact agreement with those obtained from other renormalization prescriptions. We finally show its power by computing the renormalized stress-energy tensor for Dirac fermions in de Sitter space.
Honda, A; Matsumoto, M; Kato, T; Umemura, Y
2015-03-01
The associations between mid-femoral cross-sectional geometry and exercise characteristics were investigated in female athletes. The effects on bone geometry for weight-bearing sports with low-to-high-impact were greater than those for non-impact weight-bearing sports, whereas low-impact or high-strain-magnitude/low-strain-rate sports had less of an effect on bone geometry compared with higher-impact sports. Many previous studies have investigated tibial geometry in athletes; however, few studies have examined the associations between femoral cross-sectional geometry and exercise characteristics. The aim of this study was to investigate these relationships using magnetic resonance imaging (MRI) at the femoral mid-shaft. One hundred and fifty-three female elite athletes, aged 18-34 years, were classified into five groups based on the characteristics of their sports. Sports were considered non-impact (n = 27), low- or moderate-impact (n = 39), odd-impact (n = 38), high-strain-magnitude/low-strain-rate (n = 10), or high-impact (n = 39). Bone geometrical parameters, including cortical area, periosteal perimeter, and moment of inertia (bone strength index), were determined using MRI images. Higher-impact groups displayed bone expansion, with significantly greater periosteal perimeters, cortical areas (~37.3%), and minimum moments of inertia (I(min,) ~92.3%) at the mid-femur than non- and low-impact groups. After adjusting for age, height, and weight, the cortical area and I(min) of the low-impact and high-strain-magnitude/low-strain-rate groups were also significantly greater than those of the non-impact group. Higher-impact sports with high strain rates stimulated periosteal bone formation and improved bone geometry and strength indices at the femoral mid-shaft. Although our results indicate that weight-bearing sports are beneficial even if they are low impact, the effects of lower-impact or high-strain-magnitude/low-strain-rate sports on bone geometry were less
Ryan, Terence E; Southern, W Michael; Reynolds, Mary Ann; McCully, Kevin K
2013-12-01
The purpose of this study was to cross-validate measurements of skeletal muscle oxidative capacity made with near-infrared spectroscopy (NIRS) measurements to those made with phosphorus magnetic resonance spectroscopy ((31)P-MRS). Sixteen young (age = 22.5 ± 3.0 yr), healthy individuals were tested with both (31)P-MRS and NIRS during a single testing session. The recovery rate of phosphocreatine was measured inside the bore of a 3-Tesla MRI scanner, after short-duration (∼10 s) plantar flexion exercise as an index of skeletal muscle oxidative capacity. Using NIRS, the recovery rate of muscle oxygen consumption was also measured using repeated, transient arterial occlusions outside the MRI scanner, after short-duration (∼10 s) plantar flexion exercise as another index of skeletal muscle oxidative capacity. The average recovery time constant was 31.5 ± 8.5 s for phosphocreatine and 31.5 ± 8.9 s for muscle oxygen consumption for all participants (P = 0.709). (31)P-MRS time constants correlated well with NIRS time constants for both channel 1 (Pearson's r = 0.88, P < 0.0001) and channel 2 (Pearson's r = 0.95, P < 0.0001). Furthermore, both (31)P-MRS and NIRS exhibit good repeatability between trials (coefficient of variation = 8.1, 6.9, and 7.9% for NIRS channel 1, NIRS channel 2, and (31)P-MRS, respectively). The good agreement between NIRS and (31)P-MRS indexes of skeletal muscle oxidative capacity suggest that NIRS is a valid method for assessing mitochondrial function, and that direct comparisons between NIRS and (31)P-MRS measurements may be possible.
Kruse, Annika; Stafilidis, Savvas; Tilp, Markus
2017-01-01
The major aim of this study was to compare ultrasound (US) and magnetic resonance imaging (MRI) measurements of the Achilles tendon cross-sectional area (CSA). Further aims were to conduct reliability analyses and to assess the influence of transducer pressure on the tendon properties in US measurements. The Achilles tendon CSA of 15 participants was assessed at two positions with US and MRI by use of a standardized protocol. Method comparison was performed by two-way analysis of variance (ANOVA) and paired t test. Reliability was assessed by coefficients of variation (CV), intraclass correlation (ICC2,2), standard error of measurement (SEM), and minimal detectable change (MDC95). A paired t test was performed to investigate the effect of probe pressure on tendon CSA and thickness. Mean US measurements provided a ~5.5% smaller CSA compared to MRI measurements. Intra-rater reliability analyses of US demonstrated CV values of 1.5-4.9%, ICC of 0.89-0.97, SEM and MDC95 values of 0.22-0.77 mm(2) and 0.61-2.16 mm(2) for both raters, whereby CV values for intra-rater reliability of MRI ranged from 1.0 to 3.7%. Inter-rater reliability was lower for both modalities. Pressure applied on the transducer altered Achilles tendon CSA and thickness significantly (p Achilles tendon CSA assessments, however, each imaging modality separately is reliable to assess this property. Pressure applied on the transducer during US measurements causes alterations of the tendon's morphology and should be avoided.
Measurement of the 54,57Fe(n,γ) Cross Section in the Resolved Resonance Region at CERN n_TOF
Giubrone, G; Taín, J L; Lederer, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvař, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Massimi, C; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifhart, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tarrio, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A.; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T; Žugec, P
2014-01-01
Fe-54 and Fe-57 are stable iron isotopes, which play an important role in the nucleosynthesis of the slow neutron capture process (s process). In addition, these nuclei are present in many structural materials, and therefore, the knowledge of their neutron capture cross sections is of importance for reactor design studies. This contribution summarizes the results of the (n,gamma) cross sections of these two isotopes in the resolved resonance region. The experiment was carried out at the CERN n\\_TOF facility using the Pulse-Height Weighting Technique in combination with an experimental set-up optmized for reducing neutron induced backgrounds.
Quadratic fermionic interactions yield effective Hamiltonians for adiabatic quantum computing
O'Hara, Michael J.; O'Leary, Dianne P.
2008-01-01
Polynomially-large ground-state energy gaps are rare in many-body quantum systems, but useful for adiabatic quantum computing. We show analytically that the gap is generically polynomially-large for quadratic fermionic Hamiltonians. We then prove that adiabatic quantum computing can realize the ground states of Hamiltonians with certain random interactions, as well as the ground states of one, two, and three-dimensional fermionic interaction lattices, in polynomial time. Finally, we use the J...
Hybrid adiabatic potentials in the QCD string model
Kalashnikova, Yu. S.; Kuzmenko, D. S.
2002-01-01
The short- and intermediate-distance behaviour of the hybrid adiabatic potentials is calculated in the framework of the QCD string model. The calculations are performed with the inclusion of Coulomb force. Spin-dependent force and the so-called string correction term are treated as perturbation at the leading potential-type regime. Reasonably good agreement with lattice measurements takes place for adiabatic curves excited with magnetic components of field strength correlators.
Multiturn extraction and injection by means of adiabatic capture in stable islands of phase space
Cappi, R
2004-01-01
Recently a novel approach has been proposed for performing multiturn extraction from a circular machine. Such a technique consists of splitting the beam by means of stable islands created in transverse phase space by magnetic elements creating nonlinear fields, such as sextupoles and octupoles. Provided a slow time variation of the linear tune is applied, adiabatic with respect to the betatron motion, the islands can be moved in phase space and eventually charged particles may be trapped inside the stable structures. This generates a certain number of well-separated beamlets. Originally, this principle was successfully tested using a fourth-order resonance. In this paper the approach is generalized by considering other types of resonances as well as the possibility of performing multiple multiturn extractions. The results of numerical simulations are presented and described in detail. Of course, by time reversal, the proposed approach could be used also for multiturn injection.
Cheng, Yong Zhi; Huang, Mu Lin; Chen, Hao Ran; Guo, Zhen Zhong; Mao, Xue Song; Gong, Rong Zhou
2017-05-28
A simple design of an ultrathin six-band polarization-insensitive terahertz perfect metamaterial absorber (PMMA), composed of a metal cross-cave patch resonator (CCPR) placed over a ground plane, was proposed and investigated numerically. The numerical simulation results demonstrate that the average absorption peaks are up to 95% at six resonance frequencies. Owing to the ultra-narrow band resonance absorption of the structure, the designed PMMA also exhibits a higher Q factor (>65). In addition, the absorption properties can be kept stable for both normal incident transverse magnetic (TM) and transverse electric (TE) waves. The physical mechanism behind the observed high-level absorption is illustrated by the electric and power loss density distributions. The perfect absorption originates mainly from the higher-order multipolar plasmon resonance of the structure, which differs sharply from most previous studies of PMMAs. Furthermore, the resonance absorption properties of the PMMA can be modified and adjusted easily by varying the geometric parameters of the unit cell.
Directory of Open Access Journals (Sweden)
Yong Zhi Cheng
2017-05-01
Full Text Available A simple design of an ultrathin six-band polarization-insensitive terahertz perfect metamaterial absorber (PMMA, composed of a metal cross-cave patch resonator (CCPR placed over a ground plane, was proposed and investigated numerically. The numerical simulation results demonstrate that the average absorption peaks are up to 95% at six resonance frequencies. Owing to the ultra-narrow band resonance absorption of the structure, the designed PMMA also exhibits a higher Q factor (>65. In addition, the absorption properties can be kept stable for both normal incident transverse magnetic (TM and transverse electric (TE waves. The physical mechanism behind the observed high-level absorption is illustrated by the electric and power loss density distributions. The perfect absorption originates mainly from the higher-order multipolar plasmon resonance of the structure, which differs sharply from most previous studies of PMMAs. Furthermore, the resonance absorption properties of the PMMA can be modified and adjusted easily by varying the geometric parameters of the unit cell.
Adiabatically switched-on electrical bias and the Landauer-Buttiker formula
DEFF Research Database (Denmark)
Cornean, Horia; Duclos, P.; Nenciu, G.
2008-01-01
Consider a three dimensional system which looks like a cross connected pipe system, i.e., a small sample coupled to a finite number of leads. We investigate the current running through this system, in the linear response regime, when we adiabatically turn on an electrical bias between leads....... The main technical tool is the use of a finite volume regularization, which allows us to define the current coming out of a lead as the time derivative of its charge. We finally prove that in virtually all physically interesting situations, the conductivity tensor is given by a Landauer-Büttiker type...
Adiabatically switched-on electrical bias in continuous systems, and the Landauer-Büttiker formula
DEFF Research Database (Denmark)
Cornean, Horia; Duclos, Pierre; Nenciu, Gheorghe
Consider a three dimensional system which looks like a cross-connected pipe system, i.e. a small sample coupled to a finite number of leads. We investigate the current running through this system, in the linear response regime, when we adiabatically turn on an electrical bias between leads....... The main technical tool is the use of a finite volume regularization, which allows us to define the current coming out of a lead as the time derivative of its charge. We finally prove that in virtually all physically interesting situations, the conductivity tensor is given by a Landauer-Büttiker type...
Adiabatic capture theory applied to N+NH-->N2+H at low temperature.
Frankcombe, Terry J; Nyman, Gunnar
2007-12-20
The adiabatic capture centrifugal sudden approximation (ACCSA) has been applied to the ground state reaction N+NH-->N2+H over the temperature range 2-300 K using an existent potential energy surface. The resultant thermal rate constants are in agreement with available rate constants from quasi-classical trajectory calculations but are significantly larger than the available experimentally derived rate. The calculated rate constants monotonically increase with increasing temperature but could only be approximately described with a simple Arrhenius-like form. Subtle quantum effects are evident in the initial rotational state resolved cross sections and rate constants.
Energy Technology Data Exchange (ETDEWEB)
Panikkath, Priyada; Mohanakrishnan, P. [Manipal University, Manipal Centre for Natural Sciences, Karnataka (India)
2016-09-15
The thermal-neutron capture cross sections and resonance integrals of {sup 138}Ba(n, γ){sup 139}Ba and {sup 141}Pr(n, γ){sup 142}Pr were measured by activation method using an isotopic Am-Be neutron source. The estimations were with respect to that of {sup 55}Mn(n, γ){sup 56}Mn and {sup 197}Au(n, γ){sup 198}Au reference monitors. The measured thermal-capture cross section of {sup 138}Ba with respect to {sup 55}Mn is 0.410±0.023 b and with respect to {sup 197}Au is 0.386±0.019 b. The measured thermal-capture cross section of {sup 141}Pr with respect to {sup 55}Mn is 11.36±1.29 b and with respect to {sup 197}Au is 10.43±1.14 b. The resonance integrals for {sup 138}Ba are 0.380±0.033 b ({sup 55}Mn) and 0.364±0.027 b ({sup 197}Au) and for {sup 141}Pr are 21.05±2.88 b ({sup 55}Mn) and 15.27±1.87 b ({sup 197}Au). The comparison between the present measurements and various reported values are discussed. The cross sections corresponding to the selected isotopes are measured using an Am-Be source facility for the first time. (orig.)
Marante, Carlos; Klinker, Markus; Kjellsson, Tor; Lindroth, Eva; González-Vázquez, Jesús; Argenti, Luca; Martín, Fernando
2017-08-01
The XCHEM approach interfaces well established quantum chemistry packages with scattering numerical methods in order to describe single-ionization processes in atoms and molecules. This should allow one to describe electron correlation in the continuum at the same level of accuracy as quantum chemistry methods do for bound states. Here we have applied this method to study multichannel photoionization of Ne in the vicinity of the autoionizing states lying between the 2 s22 p5 and 2 s 2 p6 ionization thresholds. The calculated total photoionization cross sections are in very good agreement with the absolute measurement of Samson et al. [J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002), 10.1016/S0368-2048(02)00026-9], and with independent benchmark calculations performed at the same level of theory. From these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile parameters, and correlation parameters for the lowest three autoionizing states. The values of these parameters are in good agreement with those reported in earlier theoretical and experimental work. We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from the latter, partial autoionization widths and Starace parameters for the same resonances, not yet available in the literature. Resonant features in the calculated β parameter are in good agreement with the experimental observations. We have found that the three lowest resonances preferentially decay into the 2 p-1ɛ d continuum rather than into the 2 p-1ɛ s one [Phys. Rev. A 89, 043415 (2014), 10.1103/PhysRevA.89.043415], in agreement with previous expectations, and that in the vicinity of the resonances the partial 2 p-1ɛ s cross section can be larger than the 2 p-1ɛ d one, in contrast with the accepted idea that the latter should amply dominate in the whole energy range. These results show the potential of the XCHEM approach to describe highly correlated process
Quantum tunneling, adiabatic invariance and black hole spectroscopy
Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao
2017-05-01
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.
Quantum tunneling, adiabatic invariance and black hole spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)
2017-05-15
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)
Global adiabaticity and non-Gaussianity consistency condition
Romano, Antonio Enea; Sasaki, Misao
2016-01-01
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, $R_c$, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of $R_c$ holds only after the perturbation has reached the adiabatic limit where the constant mode of $R_c$ dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, $\\delta P_{nad}\\equiv\\delta P-c_w^2\\delta\\rho$ where $c_w^2=\\dot P/\\dot\\rho$, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of $R_c$ on super-horizon scales. In this paper, we consider models that satisfies $\\d...
VáÅa, Martin; Houfek, Karel
2017-02-01
A two-dimensional model of the resonant electron-molecule collision processes with one nuclear and one electronic degree of freedom introduced by K. Houfek, T. N. Rescigno, and C. W. McCurdy [Phys. Rev. A 73, 032721 (2006), 10.1103/PhysRevA.73.032721] is reformulated within the time-dependent framework and solved numerically using the finite-element method with the discrete variable representation basis, the exterior complex scaling method, and the generalized Crank-Nicolson method. On this model we illustrate how the time-dependent calculations can provide deep insight into the origin of oscillatory structures in the vibrational excitation cross sections if one evaluates the cross sections not only at sufficiently large time to obtain the final cross sections, but also at several characteristic times which are given by the evolution of the system. It is shown that all details of these structures, especially asymmetrical peaks, can be understood as quantum interference of several experimentally indistinguishable processes separated in time due to a resonant capture of the electron and the subsequent vibrational motion of the negative molecular ion. Numerical results are presented for the N2-like, NO-like, and F2-like models and compared with ones obtained within the time-independent approach and within the local complex potential approximation.
Directory of Open Access Journals (Sweden)
Haifeng Gao
2015-04-01
Full Text Available This research article analyzes the resonant reliability at the rotating speed of 6150.0 r/min for low-pressure compressor rotor blade. The aim is to improve the computational efficiency of reliability analysis. This study applies least squares support vector machine to predict the natural frequencies of the low-pressure compressor rotor blade considered. To build a more stable and reliable least squares support vector machine model, leave-one-out cross-validation is introduced to search for the optimal parameters of least squares support vector machine. Least squares support vector machine with leave-one-out cross-validation is presented to analyze the resonant reliability. Additionally, the modal analysis at the rotating speed of 6150.0 r/min for the rotor blade is considered as a tandem system to simplify the analysis and design process, and the randomness of influence factors on frequencies, such as material properties, structural dimension, and operating condition, is taken into consideration. Back-propagation neural network is compared to verify the proposed approach based on the same training and testing sets as least squares support vector machine with leave-one-out cross-validation. Finally, the statistical results prove that the proposed approach is considered to be effective and feasible and can be applied to structural reliability analysis.
Energy Technology Data Exchange (ETDEWEB)
Zandrino, F.; Sardanelli, F. [Dept. of Experimental Medicine, Section of Diagnostic Imaging and Radiotherapy, University of Genoa School of Medicine (Italy); Molinari, G.; Masperone, M.A. [Dept. of Cardiology, University of Genoa School of Medicine (Italy); Smeraldi, A.; Odaglia, G. [Dept. of Sports Medicine, University of Genoa School of Medicine (Italy)
2000-02-01
To evaluate left ventricular myocardial mass and function as well as ostial coronary artery cross-sectional area in endurance athletes, an athlete group of 12 highly trained rowers and a control group of 12 sedentary healthy subjects underwent MR examination. An ECG-gated breath-hold cine gradient-echo sequence was used to calculate myocardial mass, end-diastolic and end-systolic volumes, stroke volume, and cardiac output, all related to body surface area, as well as ejection fraction. A 3D fat-saturated ECG- and respiratory-triggered navigator echo sequence was used to evaluate coronary arteries: left main (LM), left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA). Cross-sectional area was calculated and divided for body surface area. Myocardial mass was found significantly larger in athlete group than in control group (p = 0.0078), the same being for end-diastolic volume (p = 0.0078), stroke volume (p = 0.0055), LM (p = 0.0066) and LAD (p = 0.0129). No significant difference was found for all the remaining parameters. Significant correlation with myocardial mass was found for LM (p < 0.001) and LAD (p = 0.0340), not for LCx and RCA. Magnetic resonance imaging is a useful tool in evaluating the myocardial hypertrophy and function of athlete's heart. Magnetic resonance angiography is a valuable noninvasive method to visualize the correlated cross-sectional area increase of the left coronary artery system. (orig.)
Sokolovski, D; Akhmatskaya, E; Echeverría-Arrondo, C; De Fazio, D
2015-07-28
State-to-state reactive integral cross sections (ICSs) are often affected by quantum mechanical resonances, especially near a reactive threshold. An ICS is usually obtained by summing partial waves at a given value of energy. For this reason, the knowledge of pole positions and residues in the complex energy plane is not sufficient for a quantitative description of the patterns produced by resonance. Such description is available in terms of the poles of an S-matrix element in the complex plane of the total angular momentum. The approach was recently implemented in a computer code ICS_Regge, available in the public domain [Comput. Phys. Commun., 2014, 185, 2127]. In this paper, we employ the ICS_Regge package to analyse in detail, for the first time, the resonance patterns predicted for integral cross sections (ICSs) of the benchmark F + HD → HF(v' = 3) + D reaction. The v = 0, j = 0, Ω = 0 → v' = 3, j' = 0, 1, 2, and Ω' = 0, 1, 2 transitions are studied for collision energies from 58.54 to 197.54 meV. For these energies, we find several resonances, whose contributions to the ICS vary from symmetric and asymmetric Fano shapes to smooth sinusoidal Regge oscillations. Complex energies of metastable states and Regge pole positions and residues are found by Padé reconstruction of the scattering matrix elements. The accuracy of the ICS_Regge code, relation between complex energies and Regge poles, various types of Regge trajectories, and the origin of the J-shifting approximation are also discussed.
High beta lasing in micropillar cavities with adiabatic layer design
DEFF Research Database (Denmark)
Lermer, M.; Gregersen, Niels; Lorke, M.
2013-01-01
We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh......We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction...... of the threshold pump power by over 2 orders of magnitude from dc = 2.25 μm down to 0.95 μm. Lasing with β factors exceeding 0.5 shows that adiabatic micropillars are operating deeply in the cavity quantum electrodynamics regime....
A Novel Cold Cathode Fluorescent Lamp with an Adiabatic Layer
Nishimura, Kiyoshi; Yajima, Jun; Yuasa, Kunio
A novel cold cathode fluorescent lamp (CCFL) with an adiabatic layer suitable for backlighting in PDAs (Personal Data Assistants) is described. The adiabatic layer (100-200 μm) is formed between a light tube and an outer tube and is filled with low-pressure gases. This raises the temperature of the light tube to the suitable value (50-70°C), which maximizes luminous efficacy even in low lamp wattage operation and at low ambient temperatures. The results of experiments and heat transfer analyses show that the optimum pressure in an adiabatic layer lies between 1Pa and 10Pa. At a pressure of less than 1Pa, the lamp temperature maintains a constant level because the conduction loss is lower than the radiation loss.
Lin, Tzung-Yi; Hsiao, Fu-Chen; Jhang, Yao-Wun; Hu, Chieh; Tseng, Shuo-Yen
2012-10-08
A shortcut to adiabatic mode conversion in multimode waveguides using optical analogy of stimulated Raman adiabatic passage is investigated. The design of mode converters using the shortcut scheme is discussed. Computer-generated planar holograms are used to mimic the shaped pulses used to speed up adiabatic passage in quantum systems based on the transitionless quantum driving algorithm. The mode coupling properties are analyzed using the coupled mode theory and beam propagation simulations. We show reduced device length using the shortcut scheme as compared to the common adiabatic scheme. Modal evolution in the shortened device indeed follows the adiabatic eigenmode exactly amid the violation of adiabatic criterion.
Adiabatic preparation of Rydberg crystals in a cold lattice gas: Influence of atomic relaxations
Petrosyan, David; Molmer, Klaus; Fleischhauer, Michael
2017-04-01
Strong, long-range interactions between atoms in high-lying Rydberg states make them attractive systems for the studies of ordered phases and phase transitions of interacting many-body systems. Different approaches have been explored, both theoretically and experimentally, for the preparation of crystalline order of Rydberg excitations in spatially-extended ensembles of cold atoms. These include direct (near-)resonant laser excitation of interacting Rydberg states in a lattice gas, and adiabatic preparation of crystalline phases of Rydberg excitations in a one-dimensional optical lattice by adiabatic frequency sweep of the excitation laser. We show, however, that taking into account realistic relaxation processes affecting the atoms severely complicates the prospects of attaining sizable crystals of Rydberg excitations in laser-driven atomic media. Our many-body simulations well reproduce the experimental observations of spatial ordering of Rydberg excitations in driven dissipative lattice gases, as well as highly sub-Poissonian probability distribution of the excitation number. We find that the excitations essentially form liquid rather than crystal phases with long-range order.
Role of adiabaticity in controlling alkali-metal fine-structure mixing induced by rare gases
Eshel, Ben; Cardoza, Joseph A.; Weeks, David E.; Perram, Glen P.
2017-04-01
The collision cross sections for alkali-metal-rare-gas spin orbit mixing between the n2P3 /2→n2P1 /2 levels trend strongly with the Massey parameter, or adiabaticity of the collisions. The strength of the interaction, as characterized by the C6 dispersion coefficient, is a secondary influence on the rates. An analytic expression for the probability of energy transfer in alkali-metal-rare-gas collisions is derived using time-dependent perturbation theory. The model agrees well with a broad literature survey of the observed temperature-dependent cross sections. A simple interaction potential successfully organizes the alkali-metal-rare-gas database. The rates become very large for high-lying states, as the collisions are quite sudden and the radius of the valence electron is large. In contrast, the highly adiabatic cesium 62P mixing rates are six to eight orders of magnitude smaller. The mixing rate for the Rb-He diode pumped alkali laser system varies from 0.20 -1.53 ×10-11cm 3/at .s for T =279 -893 K .
On the adiabatic theorem when eigenvalues dive into the continuum
DEFF Research Database (Denmark)
Cornean, Decebal Horia; Jensen, Arne; Knörr, Hans Konrad
For a Wigner-Weisskopf model of an atom consisting of a quantum dot coupled to an energy reservoir described by a three-dimensional Laplacian we study the survival probability of a bound state when the dot energy varies smoothly and adiabatically in time. The initial state corresponds to a discre...... eigenvalue which dives into the continuous spectrum and re-emerges from it as the dot energy is varied in time and finally returns to its initial value. Our main result is that for a large class of couplings, the survival probability of this bound state vanishes in the adiabatic limit....
Classical nuclear motion coupled to electronic non-adiabatic transitions.
Agostini, Federica; Abedi, Ali; Gross, E K U
2014-12-07
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Van Do, Nguyen; Khue, Pham Duc; Thanh, Kim Tien; Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Kye, Yong-Uk; Cho, Moo-Hyun
2017-10-01
We measured the thermal neutron cross-section (σ0) and resonance integral (I0) of the 152Sm(n,γ)153Sm reaction relative to that of the 197Au(n,γ)198Au reaction. Sm and Au foils with and without a cadmium cover of 0.5 mm were irradiated with moderated pulsed neutrons produced from the electron linac. The induced activities of the reaction products were determined via high energy resolution HPGe detector. The present results: σ0,Sm =212±8 b and I0,Sm =3.02±0.19 kb are consistent with most of the existing reference data.
Directory of Open Access Journals (Sweden)
Hippe Daniel S
2009-08-01
Full Text Available Abstract Background Carotid atherosclerotic ulceration is a significant source of stroke. This study evaluates the efficacy of adding longitudinal black-blood (BB cardiovascular magnetic resonance (CMR angiography to cross-sectional CMR images in the identification of carotid atherosclerotic ulceration. Methods Thirty-two subjects (30 males and two females with ages between 48 and 83 years scheduled for carotid endarterectomy were imaged on a 1.5T GE Signa scanner using multisequence [3D time-of-flight, T1, proton density, T2, contrast enhanced T1], cross-sectional CMR images and longitudinal BB CMR angiography (0.625 × 0.625 mm/pixel. Two rounds of review (round 1: cross-sectional CMR images alone and round 2: cross-sectional CMR images plus longitudinal BB CMR angiography were conducted for the presence and volume measurements of ulceration. Ulceration was defined as a distinct depression into the plaque containing blood flow signal on cross-sectional CMR and longitudinal BB CMR angiography. Results Of the 32 plaques examined by histology, 17 contained 21 ulcers. Using the longitudinal BB CMR angiography sequence in addition to the cross-sectional CMR images in round 2, the sensitivity improved to 80% for ulcers of at least 6 mm3 in volume by histology and 52.4% for all ulcers, compared to 30% and 23.8% in round 1, respectively. There was a slight decline in specificity from 88.2% to 82.3%, though both the positive and negative predictive values increased modestly from 71.4% to 78.6% and from 48.4% to 58.3%, respectively. Conclusion The addition of longitudinal BB CMR angiography to multisequence cross-sectional CMR images increases accuracy in the identification of carotid atherosclerotic ulceration.
Tabata, Masayoshi; Sohma, Junkichi; Yokota, Kazuaki; Yamaoka, Hitoshi; Matsuyama, Tomochika
Normal (n)-eicosane was taken as a model compound for polyethylene. ESR combined with the spin-trap method was applied to study the radiation effect of α and neutron beams on the eicosane. Three kinds of radicals, two cross-linked radicals and one precursor radical for cross-linking, were identified by ESR. A difference was found in the molecular mobility between the effects of the α and neutron irradiations. Three kinds of cross-linked eicosane molecules (dimers) were found by 13C-NMR and FI-mass spectroscopy; one is a saturated dimer, the others are two kinds of nonsaturated dimers; one with one double bond, the other with two double bonds. It was concluded from 13C-NMR that a majority of the cross-linked eicosane was of the H-type, in which a cross-link is formed in the central part of the molecules.
Resonance controlled transport in phase space
Leoncini, Xavier; Vasiliev, Alexei; Artemyev, Anton
2018-02-01
We consider the mechanism of controlling particle transport in phase space by means of resonances in an adiabatic setting. Using a model problem describing nonlinear wave-particle interaction, we show that captures into resonances can be used to control transport in momentum space as well as in physical space. We design the model system to provide creation of a narrow peak in the distribution function, thus producing effective cooling of a sub-ensemble of the particles.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Adiabatic CMB perturbations in pre-big bang string cosmology
DEFF Research Database (Denmark)
Enqvist, Kari; Sloth, Martin Snoager
2001-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations in ...
Generalized Design Procedure for Short, Efficient Adiabatic Mode Converters
2016-05-20
ideally follow this trend. This gives an important rule of thumb in adiabatic mode converter design, in that beyond a certain "knee" significant increases...Each section of the linear taper between two cuts is stretched or squeezed based on the calcu- lated value from Eqn. 11. Fig. 2. Shapes of the two
On adiabatic perturbation theory for the energy eigenvalue problem
Michels, M.A.J.; Suttorp, L.G.
1978-01-01
The adiabatic perturbation formalism is used to derive several alternative expressions for the effective Hamiltonian of a discrete energy level. In the nondegenerate case these expressions may be cast in the form of linked-cluster expansions. The connection between the energy shifts and the
Experimental adiabatic vortex ratchet effect in Nb films with ...
Indian Academy of Sciences (India)
Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC ...
Adiabatic invariants of the extended KdV equation
Energy Technology Data Exchange (ETDEWEB)
Karczewska, Anna [Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Rozmej, Piotr, E-mail: p.rozmej@if.uz.zgora.pl [Institute of Physics, Faculty of Physics and Astronomy, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Infeld, Eryk [National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Rowlands, George [Department of Physics, University of Warwick, Coventry, CV4 7A (United Kingdom)
2017-01-30
When the Euler equations for shallow water are taken to the next order, beyond KdV, momentum and energy are no longer exact invariants. (The only one is mass.) However, adiabatic invariants (AI) can be found. When the KdV expansion parameters are zero, exact invariants are recovered. Existence of adiabatic invariants results from general theory of near-identity transformations (NIT) which allow us to transform higher order nonintegrable equations to asymptotically equivalent (when small parameters tend to zero) integrable form. Here we present a direct method of calculations of adiabatic invariants. It does not need a transformation to a moving reference frame nor performing a near-identity transformation. Numerical tests show that deviations of AI from constant values are indeed small. - Highlights: • We suggest a new and simple method for calculating adiabatic invariants of second order wave equations. • It is easy to use and we hope that it will be useful if published. • Interesting numerics included.
Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.
1988-01-01
in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...
Start up of an industrial adiabatic tubular reactor
Verwijs, J.W.; Verwijs, J.W.; van den Berg, Henderikus; Westerterp, K.R.
1992-01-01
The dynamic behaviour of an adiabatic tubular plant reactor during the startup is demonstrated, together with the impact of a feed-pump failure of one of the reactants. A dynamic model of the reactor system is presented, and the system response is calculated as a function of
Adiabatic and diabatic aerosol transport to the Jungfraujoch
Energy Technology Data Exchange (ETDEWEB)
Lugauer, M.; Baltensperger, U.; Furger, M.; Jost, D.T.; Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-09-01
Synoptic scale vertical motion, here detected by the geopotential height of the 500 hPa surface, mainly accounts for the aerosol transport to the Jungfraujoch in winter. In summer, diabatic convection provides the dominant vertical transport mechanism. Nevertheless, synoptic scale adiabatic motion still determines whether diabatic convection can develop. (author) 2 figs., 2 refs.
Perturbation to Noether Symmetries and Adiabatic Invariants for Birkhoffian Systems
Directory of Open Access Journals (Sweden)
Yi Zhang
2015-01-01
Full Text Available Based on El-Nabulsi dynamical model for a non-conservative system, the problem of perturbation to Noether symmetries and adiabatic invariants of a Birkhoffian system under the action of a small disturbance is proposed and studied. Firstly, the El-Nabulsi-Pfaff variational problem from extended exponentially fractional integral is presented and the El-Nabulsi-Birkhoff equations are established. Secondly, the definitions and the criterions criteria of the Noether symmetric transformations and quasisymmetric transformations of the Birkhoffian system are given, and the Noether theorems of the system are established, which reveal the inner relationship between the Noether symmetries and the conserved quantities. Thirdly, the perturbation of Noether symmetries under a small disturbance is studied, and corresponding adiabatic invariants are obtained. As special cases, the deductions in nonconservative Hamiltonian system and nonconservative Lagrangian system and standard Birkhoffian system are given. At the end of the paper, the case known as Hojman-Urrutia problem is discussed to investigate the Noether symmetries and the adiabatic invariants, the perturbation to Noether symmetries and the adiabatic invariants under El-Nabulsi dynamical model.
Probing Entanglement in Adiabatic Quantum Optimization with Trapped Ions
Directory of Open Access Journals (Sweden)
Philipp eHauke
2015-04-01
Full Text Available Adiabatic quantum optimization has been proposed as a route to solve NP-complete problems, with a possible quantum speedup compared to classical algorithms. However, the precise role of quantum effects, such as entanglement, in these optimization protocols is still unclear. We propose a setup of cold trapped ions that allows one to quantitatively characterize, in a controlled experiment, the interplay of entanglement, decoherence, and non-adiabaticity in adiabatic quantum optimization. We show that, in this way, a broad class of NP-complete problems becomes accessible for quantum simulations, including the knapsack problem, number partitioning, and instances of the max-cut problem. Moreover, a general theoretical study reveals correlations of the success probability with entanglement at the end of the protocol. From exact numerical simulations for small systems and linear ramps, however, we find no substantial correlations with the entanglement during the optimization. For the final state, we derive analytically a universal upper bound for the success probability as a function of entanglement, which can be measured in experiment. The proposed trapped-ion setups and the presented study of entanglement address pertinent questions of adiabatic quantum optimization, which may be of general interest across experimental platforms.
Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited
Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.
2012-01-01
The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…
Reversibility and energy dissipation in adiabatic superconductor logic.
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-03-06
Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.
Energy Technology Data Exchange (ETDEWEB)
Matsubayashi, Yasutomo [Juntendo Univ., Tokyo (Japan). School of Medicine
1997-07-01
This study evaluated the usefulness of pre- and postoperative magnetic resonance imaging (MRI) of lumbar disc hernia with special attention to measurement of the cross-sectional area of the dural tube. Twenty-five patients (20 men and 5 women; 25 discs) who underwent posterior lumbar discectomy and 73 normal individuals (44 men and 29 women; 219 discs) of a similar age distribution were studied. Axial MRI was mainly used for the measurement of the dural tube. In the patient group, MRI examination was performed 1, 3, 6, and 12 months postoperatively. Assessment of the clinical symptoms was also included and used for comparison with the MRI evaluation. The cross-sectional area was significantly reduced to about 50% of the normal preoperatively. One month postoperatively, there was no significant increase in the size of the area, but after three months, the area increased significantly and progressed to the normal size within a year. One-month postoperatively, MRI examination was not considered useful because of postoperative hematoma and/or edema at the surgical site. The increase in the size of the cross-sectional area of the dural tube correlated well with the improvement in clinical symptoms. Three-months postoperatively, MRI evaluation of the lumbar disc seemed useful and measurement of the cross-sectional area of the dural tube appeared to serve as an indicator of the effectiveness of the surgery. (author)
Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E
2015-02-01
Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.
Effect of Cross-redistribution on the Resonance Scattering Polarization of O I Line at 1302 Å
Anusha, L. S.; Nagendra, K. N.; Uitenbroek, H.
2014-10-01
Oxygen is the most abundant element on the Sun after hydrogen and helium. The intensity spectrum of resonance lines of neutral oxygen, namely, O I (1302, 1305, and 1306 Å), has been studied in the literature for chromospheric diagnostics. In this paper, we study the resonance scattering polarization in the O I line at 1302 Å using two-dimensional (2D) radiative transfer in a composite atmosphere constructed using a 2D magneto-hydrodynamical snapshot in the photosphere and columns of the one-dimensional FALC atmosphere in the chromosphere. The methods developed by us recently in a series of papers to solve multi-dimensional polarized radiative transfer have been incorporated in our new code POLY2D, which we use for our analysis. We find that multi-dimensional radiative transfer including XRD effects is important in reproducing the amplitude and shape of scattering polarization signals of the O I line at 1302 Å.
Test of adiabatic spin flippers for application at pulsed neutron sources
Energy Technology Data Exchange (ETDEWEB)
Kraan, W.H. E-mail: kraan@iri.tudelft.nl; Grigoriev, S.V.; Rekveldt, M.Th.; Fredrikze, H.; Vroege, C.F. de; Plomp, J
2003-09-11
Experimental results on the flipping efficiency are shown for a set of 2 V-coils as spin flipper and for a high-frequency flipper with adiabatic transition. The influence of the adiabaticity parameter is discussed. The merits of these adiabatic flippers are compared with the use of 'monochromatic' flippers, when operated in a beam from a pulsed neutron source. It is concluded that for 'long pulse' sources adiabatic flippers will be superior.
Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Ajenjo, J M; Barreiro-Lois, A; Llarena-Reino, M; Degollada, E
2014-06-01
The aim of this study was to provide a detailed anatomical description of the thoracic region features in normal common (Delphinus delphis) and striped dolphins (Stenella coeruleoalba) and to compare anatomical cross-sections with computed tomography (CT) and magnetic resonance imaging (MRI) scans. CT and MRI were used to scan 7 very fresh by-caught dolphin cadavers: four common and three striped dolphins. Diagnostic images were obtained from dolphins in ventral recumbency, and after the examinations, six dolphins were frozen (-20°C) and sliced in the same position. As well as CT and MRI scans, cross-sections were obtained in the three body planes: transverse (slices of 1 cm thickness), sagittal (5 cm thickness) and dorsal (5 cm thickness). Relevant anatomical features of the thoracic region were identified and labelled on each section, obtaining a complete bi-dimensional atlas. Furthermore, we compared CT and MRI scans with anatomical cross-sections, and results provided a complete reference guide for the interpretation of imaging studies of common and striped dolphin's thoracic structures. © 2013 Blackwell Verlag GmbH.
Energy Technology Data Exchange (ETDEWEB)
Zawadzka-Kazimierczuk, Anna; Kozminski, Wiktor [University of Warsaw, Faculty of Chemistry (Poland); Billeter, Martin, E-mail: martin.billeter@chem.gu.se [University of Gothenburg, Biophysics Group, Department of Chemistry and Molecular Biology (Sweden)
2012-09-15
While NMR studies of proteins typically aim at structure, dynamics or interactions, resonance assignments represent in almost all cases the initial step of the analysis. With increasing complexity of the NMR spectra, for example due to decreasing extent of ordered structure, this task often becomes both difficult and time-consuming, and the recording of high-dimensional data with high-resolution may be essential. Random sampling of the evolution time space, combined with sparse multidimensional Fourier transform (SMFT), allows for efficient recording of very high dimensional spectra ({>=}4 dimensions) while maintaining high resolution. However, the nature of this data demands for automation of the assignment process. Here we present the program TSAR (Tool for SMFT-based Assignment of Resonances), which exploits all advantages of SMFT input. Moreover, its flexibility allows to process data from any type of experiments that provide sequential connectivities. The algorithm was tested on several protein samples, including a disordered 81-residue fragment of the {delta} subunit of RNA polymerase from Bacillus subtilis containing various repetitive sequences. For our test examples, TSAR achieves a high percentage of assigned residues without any erroneous assignments.
Feldman, Rebecca E; Islam, Haisam M; Xu, Junqian; Balchandani, Priti
2016-02-01
Simultaneous multislice (SMS) imaging is a powerful technique that can reduce image acquisition time for anatomical, functional, and diffusion weighted magnetic resonance imaging. At higher magnetic fields, such as 7 Tesla, increased radiofrequency (RF) field inhomogeneity, power deposition, and changes in relaxation parameters make SMS spin echo imaging challenging. We designed an adiabatic 180° Power Independent of Number of Slices (PINS) pulse and a matched-phase 90° PINS pulse to generate a SEmi-Adiabatic Matched-phase Spin echo (SEAMS) PINS sequence to address these issues. We used the adiabatic Shinnar Le-Roux (SLR) algorithm to generate a 180° pulse. The SLR polynomials for the 180° pulse were then used to create a matched-phase 90° pulse. The pulses were sub-sampled to produce a SEAMS PINS pulse-pair and the performance of this pulse-pair was validated in phantoms and in vivo. Simulations as well as phantom and in vivo results, demonstrate multislice capability and improved B1 -insensitivity of the SEAMS PINS pulse-pair when operating at RF amplitudes of up to 40% above adiabatic threshold. The SEAMS PINS approach presented here achieves multislice spin echo profiles with improved B1 -insensitivity when compared with a conventional spin echo. © 2015 Wiley Periodicals, Inc.
Adiabatic Evolution of an Open Quantum System in its Instantaneous Steady State
Li, Dongxiao; Wu, Songlin; Shen, Hongzhi; Yi, Xuexi
2017-11-01
In this paper, we derive an adiabatic condition for an quantum system subject to environment. The adiabaticity defined here dicates that the open quantum system prepared initially in its steady state would adiabatically follow its instantaneous steady state. We find that if the driving on the open system does not induce transition between the eigenstates of the instantaneous steady state, the open system can evolve adiabatically. In order to examine the validity of the adiabatic condition, a two-band model is exemplified. The results show that the topological quantum phase transition presented in the two-band model is caused by the competition between the effect of decay and the spoiling of the adiabaticity. The geometric phase is also calculated and discussed when the adiabatic condition is satisfied.
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems
Wu, Qi-Cheng; Chen, Ye-Hong; Huang, Bi-Hua; Xia, Yan; Song, Jie
2016-11-01
We generalize the quantum adiabatic theorem to the non-Hermitian system and build a strict adiabaticity condition to make the adiabatic evolution nonlossy when taking into account the effect of the adiabatic phase. According to the strict adiabaticity condition, the nonadiabatic couplings and the effect of the imaginary part of adiabatic phase should be eliminated as much as possible. Also, the non-Hermitian Hamiltonian reverse-engineering method is proposed for adiabatically driving an artificial quantum state. A concrete two-level system is adopted to show the usefulness of the reverse-engineering method. We obtain the desired target state by adjusting extra rotating magnetic fields at a predefined time. Furthermore, the numerical simulation shows that certain noise and dissipation in the systems are no longer undesirable but play a positive role in the scheme. Therefore, the scheme is quite useful for quantum information processing in some dissipative systems.
Adiabatic tapered optical fiber fabrication in two step etching
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
Fast forward of the adiabatic spin dynamics of entangled states
Setiawan, Iwan; Eka Gunara, Bobby; Masuda, Shumpei; Nakamura, Katsuhiro
2017-11-01
We develop a fast-forward scheme of the adiabatic spin dynamics of quantum entangled states. We settle the quasiadiabatic dynamics by adding the regularization terms to the original Hamiltonian and then accelerate it with the use of a large time-scaling factor. Assuming the experimentally realizable candidate Hamiltonian consisting of the exchange interactions and magnetic field, we solve the regularization terms. These terms, multiplied by the velocity function, give rise to the state-dependent counterdiabatic terms. The scheme needs neither knowledge of full spectral properties of the system nor solving the initial- and boundary-value problem. Our fast forward Hamiltonian generates a variety of state-dependent counterdiabatic terms for each of adiabatic states, which can include the state-independent one. We highlight this fact by using minimum (two-spin) models for a simple transverse Ising model, quantum annealing, and generation of entanglement.
Crack propagation of Ti alloy via adiabatic shear bands
Energy Technology Data Exchange (ETDEWEB)
Mendoza, I., E-mail: ivanmendozabravo@gmail.com [Instituto Tecnológico de Veracruz (Mexico); Villalobos, D. [Instituto Tecnológico de Veracruz (Mexico); Alexandrov, B.T. [The Ohio State University (United States)
2015-10-01
This study was focused on the characterization of the origin and mechanism of crack propagation as a result of hot induction bending of Ti alloy. Plates of Ti–6Al–4V alloy with 12.5 mm of thickness were submitted to hot induction bending below the beta transus temperature. Optical and scanning electron microscopy analysis showed crack formation in the tensile zone. Microstructural evidence showed that cracks propagate through the adiabatic shear bands by Dimple-Void mechanism. However, voids formation before shear banding also occurred. In both mechanisms adiabatic shear bands are formed via dynamic recrystallization where the alpha–beta interphase works as stress concentrator promoting the formation of dimples and voids.
Motruk, Johannes; Pollmann, Frank
2017-10-01
We investigate the fate of hardcore bosons in a Harper-Hofstadter model which was experimentally realized by Aidelsburger et al. [Nat. Phys. 11, 162 (2015), 10.1038/nphys3171] at half-filling of the lowest band. We discuss the stability of an emergent fractional Chern insulator (FCI) state in a finite region of the phase diagram that is separated from a superfluid state by a first-order transition when tuning the band topology following the protocol used in the experiment. Since crossing a first-order transition is unfavorable for adiabatically preparing the FCI state, we extend the model to stabilize a featureless insulating state. The transition between this phase and the topological state proves to be continuous, providing a path in parameter space along which an FCI state could be adiabatically prepared. To further corroborate this statement, we perform time-dependent DMRG calculations which demonstrate that the FCI state may indeed be reached by adiabatically tuning a simple product state.
Castro-Fornieles, Josefina; Bargalló, Nuria; Lázaro, Luisa; Andrés, Susana; Falcon, Carles; Plana, Maria Teresa; Junqué, Carme
2007-12-01
There are very few magnetic resonance spectroscopy studies in anorexia nervosa and none of them with young adolescent patients. We studied 12 anorexia nervosa (DSM-IV) patients aged 11-17 consecutively admitted to an Eating Disorders Unit. An evaluation with laboratory data, psychopathological scales, magnetic resonance spectroscopy ((1)H MRS) and a neuropsychological battery was carried out at admission and after 7 months' follow-up and weight recovery. Psychopathological and neuropsychological and MRS examinations were also performed in 12 control subjects. In the MRS study at the frontal gray matter, the anorexic group had a significantly lower N-acetyl-aspartate (NAA) (p = .002), glutamate/glutamine (Glx) (p = .010) and myo-Inositol (mI) (p = .022) than the control group. The NAA correlated positive and significantly with triiodothyronin (Rho = .64) and the estimate level of intelligence measured with the vocabulary subtest of the WISC-R (Rho=.64). There were also positive correlations with body mass index (Rho = .47) and with attention measured with the coding subtest of the WISC-R (Rho=.51) and negative with loss of weight (Rho = -.51) but they were not statistically significant. At follow-up, there was an increase in body mass index (p=.002), triiodothyronin (p = .005), and insulin-like growth factor 1 (p = .017) and a decrease in cortisol (p = .005). In the MRS a significant increase (p = .013) in NAA was observed. The conclusion would be that NAA, Glx and mI are low in the frontal gray matter of adolescents with anorexia nervosa and specially NAA correlates with some nutritional and cognitive parameters. These alterations seem to be reversible in young patients.
A field theory characterization of interacting adiabatic particles in cosmology
Energy Technology Data Exchange (ETDEWEB)
Arteaga, Daniel [Departament de Fisica Fonamental and Institut de Ciencies del Cosmos, Facultat de Fisica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)], E-mail: darteaga@ub.edu
2008-08-07
We explore the adiabatic particle excitations of an interacting field in a cosmological background. By following the time evolution of the quantum state corresponding to the particle excitation, we show how the basic properties characterizing the particle propagation can be recovered from the two-point propagators. As an application, we study the background-induced dissipative effects on the propagation of a two-level atom in an expanding universe.
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... We ﬁnd that the ﬁdelity of storage is better, the stronger the control ﬁeld and the slower the rate of its switching off. On the contrary, unlike the adiabatic notion, retrieval is better with faster rates of switching on of an optimal control ﬁeld. Also, for retrieval, the behaviour with dissipation is non-monotonic.
The Adiabatic Piston and the Second Law of Thermodynamics
Crosignani, Bruno; Di Porto, Paolo; Conti, Claudio
2002-11-01
A detailed analysis of the adiabatic-piston problem reveals peculiar dynamical features that challenge the general belief that isolated systems necessarily reach a static equilibrium state. In particular, the fact that the piston behaves like a perpetuum mobile, i.e., it never stops but keeps wandering, undergoing sizable oscillations, around the position corresponding to maximum entropy, has remarkable implications on the entropy variations of the system and on the validity of the second law when dealing with systems of mesoscopic dimensions.
The adiabatic piston: a perpetuum mobile in the mesoscopic realm
Crosignani, Bruno; Di Porto, Paolo; Conti, Claudio
2004-01-01
Abstract: A detailed analysis of the adiabatic-piston problem reveals, for a finely-tuned choice of the spatial dimensions of the system, peculiar dynamical features that challenge the statement that an isolated system necessarily reaches a time-independent equilibrium state. In particular, the piston behaves like a perpetuum mobile, i.e., it never comes to a stop but keeps wandering, undergoing sizeable oscillations around the position corresponding to maximum entropy; this has remarkable im...
Stomp, Wouter; Krabben, Annemarie; van der Heijde, Désirée; Huizinga, Tom W J; Bloem, Johan L; van der Helm-van Mil, Annette H M; Reijnierse, Monique
2014-08-01
Magnetic resonance imaging (MRI) is increasingly used in rheumatoid arthritis (RA) research. A European League Against Rheumatism (EULAR) task force recently suggested that MRI can improve the certainty of RA diagnosis. Because this recommendation may reflect a tendency to use MRI in daily practice, thorough studies on the value of MRI are required. Thus far no large studies have evaluated the accuracy of MRI to differentiate early RA from other patients with early arthritis. We performed a large cross-sectional study to determine whether patients who are clinically classified with RA differ in MRI features compared to patients with other diagnoses. In our study, 179 patients presenting with early arthritis (median symptom duration 15.4 weeks) underwent 1.5T extremity MRI of unilateral wrist, metacarpophalangeal, and metatarsophalangeal joints according to our arthritis protocol, the foot without contrast. Images were scored according to OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Scoring (RAMRIS) by 2 independent readers. Tenosynovitis was also assessed. The main outcome was fulfilling the 1987 American College of Rheumatology (ACR) criteria for RA. Test characteristics and areas under the receiver-operator-characteristic curves (AUC) were evaluated. In subanalyses, the 2010 ACR/EULAR criteria were used as outcome, and analyses were stratified for anticitrullinated protein antibodies (ACPA). The ACR 1987 criteria were fulfilled in 43 patients (24.0%). Patients with RA had higher scores for synovitis, tenosynovitis, and bone marrow edema (BME) than patients without RA (p arthritis patients.
Energy Technology Data Exchange (ETDEWEB)
Dortmans, P.J.; Canton, L.; Amos, K.
1997-06-01
We have calculated the {pi}{sup +}d{r_reversible} pp reaction cross sections and spin observables from threshold to the {Delta} resonance by considering three types of mechanisms; the impulse (absorption) mechanism, {Delta} rescattering and s-wave {pi} N rescattering. The effect of final state interactions have been included also. While traditionally the first two mechanisms have been included within a sound theoretical basis, the {pi}N s-wave rescattering generally has been treated phenomenologically using a {pi}{pi}NN coupling constant fitted to the low-energy pion-nucleon data. Herein, we treat the isovector component of such a pion rescattering process as being mediated by the {rho}--exchange. Also, in those absorption mechanisms where the pion enters directly without rescattering, we employ a phenomenological cut-off scaling governed by the nucleon coordinates, since at the pion-nucleon vertex the nucleon itself may be off mass shell. Th energy dependence of the total cross section is well explained by the combined effects of the three mechanisms, but we find that this observable is not sensitive enough to give useful insight into fine details of the reaction. We calculated the spin observables of {pi}{sup +}d{r_reversible} pp at a variety of energies spanning the {Delta} resonance, finding such sensitivity to fine details of the calculation that we cannot obtain a complete agreement with the vast experimental data base. A better understanding of the importance of the various aspects of the reaction was obtained when the calculated helicity amplitudes were compared with those extracted via phase-shift-analyses of the {pi}{sup +}d{r_reversible} pp reaction data. (authors). 29 refs., 1 tab., 9 figs.
Lee, Adél; Särkkä, Aila; Madhyastha, Tara M; Grabowski, Thomas J
2017-11-01
We develop a two-stage spatial point process model that introduces new characterizations of activation patterns in multisubject functional Magnetic Resonance Imaging (fMRI) studies. Conventionally multisubject fMRI methods rely on combining information across subjects one voxel at a time in order to identify locations of peak activation in the brain. The two-stage model that we develop here addresses shortcomings of standard methods by explicitly modeling the spatial structure of functional signals and recognizing that corresponding cross-subject functional signals can be spatially misaligned. In our first stage analysis, we introduce a marked spatial point process model that captures the spatial features of the functional response and identifies a configuration of activation units for each subject. The locations of these activation units are used as input for the second stage model. The point process model of the second stage analysis is developed to characterize multisubject activation patterns by estimating the strength of cross-subject interactions at different spatial ranges. The model uses spatial neighborhoods to account for the cross-subject spatial misalignment in corresponding functional units. We applied our methods to an fMRI study of 21 individuals who performed an attention test. We identified four brain regions that are involved in the test and found that our model results agree well with our understanding of how these regions engage with the tasks performed during the attention test. Our results highlighted that cross-subject interactions are stronger in brain areas that have a more specific function in performing the experimental tasks than in other areas. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-Adiabatic Molecular Dynamics Methods for Materials Discovery
Energy Technology Data Exchange (ETDEWEB)
Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)
2017-04-04
The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.
Thermal reservoir sizing for adiabatic compressed air energy storage
Energy Technology Data Exchange (ETDEWEB)
Kere, Amelie; Goetz, Vincent; Py, Xavier; Olives, Regis; Sadiki, Najim [Perpignan Univ. (France). PROMES CNRS UPR 8521; Mercier-Allart, Eric [EDF R et D, Chatou (France)
2012-07-01
Despite the operation of the two existing industrial facilities to McIntosh (Alabama), and for more than thirty years, Huntorf (Germany), electricity storage in the form of compressed air in underground cavern (CAES) has not seen the development that was expected in the 80s. The efficiency of this form of storage was with the first generation CAES, less than 50%. The evolving context technique can significantly alter this situation. The new generation so-called Adiabatic CAES (A-CAES) is to retrieve the heat produced by the compression via thermal storage, thus eliminating the necessity of gas to burn and would allow consideration efficiency overall energy of the order of 70%. To date, there is no existing installation of A-CAES. Many studies describe the principal and the general working mode of storage systems by adiabatic compression of air. So, efficiencies of different configurations of adiabatic compression process were analyzed. The aim of this paper is to simulate and analyze the performances of a thermal storage reservoir integrated in the system and adapted to the working conditions of a CAES.
Directory of Open Access Journals (Sweden)
López-Castillo A.
1998-01-01
Full Text Available Full quantum charge transfer study of the process B3+ + He -> B2+ + He+ has been investigated in the collision energy range 1-102 eV using an ab-initio interaction potential. A new method to solve the Schrödinger equation in an adiabatic basis was used, where the radial and rotational coupling were taken into account, and the importance of the coupling between states of different symmetry was discussed. Moreover, by using the well known Landau-Zener model, it was concluded that the two state model cannot be applied for the present system, and this might indicate that such a model should be applied carefully for other systems when a charge transfer process is considered. Finally, the quantum total cross sections were compared with the previous published work of Gargaud and co-workers and a fair agreement was achieved.
Mughabghab, Said
2018-01-01
Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...
Multi-turn extraction and injection by means of adiabatic capture in stable islands of phase space
Cappi, R
2003-01-01
Recently a novel approach has been proposed aimed at performing multi-turn extraction from a circular machine. Such a technique consists of splitting the beam by means of stable islands created in transverse phase space by magnetic elements creating nonlinear fields, such as sextupoles and octupoles. Provided a slow time-variation of the linear tune is applied, adiabatic with respect to the betatron motion, the islands can be moved in phase space and eventually charged particles may be trapped inside the stable structures. This generates a certain number of well-separated beamlets. Originally, this principle was successfully tested using a fourth-order resonance. In this paper the approach is generalised by considering other type of resonances as well as the possibility of performing multiple multi-turn extractions. The results of numerical simulations are presented and described in detail. Of course, by time-reversal, the proposed approach could be used also for multi-turn injection.
Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?
Directory of Open Access Journals (Sweden)
H. J. Fahr
2008-01-01
Full Text Available We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.
Jirauschek, Christian; Huber, Robert
2015-07-01
We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell's equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth.
Directory of Open Access Journals (Sweden)
Tracey A Willis
Full Text Available We conducted a prospective multinational study of muscle pathology using magnetic resonance imaging (MRI in patients with limb-girdle muscular dystrophy 2I (LGMD2I. Thirty eight adult ambulant LGMD2I patients (19 male; 19 female with genetically identical mutations (c.826C>A in the fukutin-related protein (FKRP gene were recruited. In each patient, T1-weighted (T1w imaging was assessed by qualitative grading for 15 individual lower limb muscles and quantitative Dixon imaging was analysed on 14 individual lower limb muscles by region of interest analysis. We described the pattern and appearance of muscle pathology and gender differences, not previously reported for LGMD2I. Diffuse fat infiltration of the gastrocnemii muscles was demonstrated in females, whereas in males fat infiltration was more prominent in the medial than the lateral gastrocnemius (p = 0.05. In the anterior thigh of males, in contrast to females, median fat infiltration in the vastus medialis muscle (45.7% exceeded that in the vastus lateralis muscle (11.2% (p<0.005. MRI is non-invasive, objective and does not rely on patient effort compared to clinical and physical measures that are currently employed. We demonstrated (i that the quantitative Dixon technique is an objective quantitative marker of disease and (ii new observations of gender specific patterns of muscle involvement in LGMD2I.
Chaput, Christopher D; Allred, Jared J; Pandorf, Jesse J; Song, Juhee; Rahm, Mark D
2013-08-01
Characteristic changes of the facet joints, including synovial cysts, facet joint hypertrophy, and facet joint effusions, on magnetic resonance imaging (MRI) and computed tomography have been associated with lumbar degenerative spondylolisthesis. The cervical facets have not been examined for associations with cervical degenerative spondylolisthesis similar to those seen in the lumbar spine. To define abnormalities of the facet joints seen on supine MRI that correlate with cervical spondylolisthesis seen on upright radiographs. Retrospective radiographic review of consecutive patients with a universally applied standard. A total of 204 consecutive patients from a single institution, with both an MRI and upright radiographs, were reviewed. Sagittal plane displacement on upright lateral radiographs was compared with MRI. The total area of the facet joint and the amount of facet joint asymmetry were measured on an axial MRI. The data were analyzed to determine a significant association between the cervical degenerative spondylolisthesis and the following: facet joint asymmetry, increased total area of the facet joint, and age. Degenerative spondylolisthesis was seen in 26 patients at C3-C4 and in 27 patients at C4-C5. Upright radiographs identified significantly more degenerative spondylolisthesis than MRIs at levels C3-C4 and C4-C5, 26 versus 6 (panterolisthesis on supine MRIs. Copyright © 2013 Elsevier Inc. All rights reserved.
Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Baksay, L.; Balandras, A.; Ball, R.C.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Barone, L.; Bartalini, P.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brigljevic, V.; Brochu, F.; Brock, I.C.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Button, A.; Cai, X.D.; Campanelli, Mario; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colijn, A.P.; Colino, N.; Costantini, S.; Cotorobai, F.; Cozzoni, B.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Denes, P.; De Notaristefani, F.; De Salvo, A.; Diemoz, M.; van Dierendonck, D.; Di Lodovico, F.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; Duran, I.; Dutta, S.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Extermann, P.; Fabre, M.; Faccini, R.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Fredj, L.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Iashvili, I.; Innocente, V.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Koffeman, E.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kuijten, H.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lassila-Perini, K.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Leonardi, Emanuele; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lu, W.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Marchesini, P.; Marian, G.; Martin, J.P.; Marzano, F.; Massaro, G.G.G.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Merk, M.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Molnar, P.; Monteleoni, B.; Moulik, T.; Muanza, G.S.; Muheim, F.; Muijs, A.J.M.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paoloni, A.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Peach, D.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Produit, N.; Prokofev, D.O.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; van Rhee, T.; Riemann, S.; Riles, Keith; Robohm, A.; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruschmeier, D.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Sarakinos, M.E.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Sciarrino, D.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stone, H.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Uwer, U.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; You, J.M.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zoller, M.
2000-01-01
We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years $1993-95$.A total luminosity of 103 pb$^{-1}$ was collected at centre-of-mass energies $\\sqrt{s} \\approx m_\\mathrm{Z}$ and $\\sqrt{s} \\approx m_\\mathrm{Z} \\pm 1.8$ GeVwhich corresponds to 2.5 million hadronic and 245 thousand leptonic events selected.These data lead to a significantly improved determination of Z parameters.From the total cross sections, combined with our measurements in $1990-92$,we obtain the final results:%%%\\begin{eqnarr ay*} m_\\mathrm{Z} = 91189.8 \\pm 3.1\\ \\mathrm{MeV} \\, , & & \\Gamma_\\mathrm{Z} = 2502.4 \\pm 4.2\\ \\mathrm{MeV} \\, , \\\\ \\Gamma_\\mathrm{had} = 1741.1 \\pm 3.8\\ \\mathrm{MeV} \\, , & & \\Gamma_\\ell = 84.14 \\pm 0.17\\ \\mathrm{MeV} \\,. \\label{eq:Zpara_abstract}\\end{eqnarray*}%%%An invisible width of $\\Gamma_\\mathrm{inv} = 499.1 \\pm 2.9$ MeV is derived which in the Standard Model yields for the numberof light neutrino spec...
Energy Technology Data Exchange (ETDEWEB)
Calder, Alistair D.; Hiorns, Melanie P.; Olsen, Oystein E. [Hospital for Children NHS Trust, Department of Radiology, London (United Kingdom); Abhyankar, Aruna; Mushtaq, Imran [Hospital for Children NHS Trust, Department of Urology, London (United Kingdom)
2007-04-15
Crossing renal vessels (CRV) are associated with ureteropelvic junction (UPJ) obstruction, particularly when presentation is beyond the neonatal period. Their presence may influence surgical management. To evaluate the accuracy of contrast-enhanced magnetic resonance angiography (CE-MRA) in the identification of CRV in children requiring surgical treatment of symptomatic UPJ obstruction, against a gold standard of laparoscopic or open surgical findings. We reviewed CE-MRA studies (3-D T2-weighted turbo spin-echo and multiphase 3-D spoiled gradient echo following intravenous gadolinium administration) of 14 children, age range 6-15 years, performed prior to surgery for suspected CRV-related UPJ obstruction. Consensus reviews of the CE-MRA studies were compared with surgical findings. CE-MRA demonstrated CRV at the level of the obstruction in nine and no crossing vessels in five children. These were all verified intraoperatively ({chi}{sup 2} = 14.0; P < 0.001). In eight of the nine patients with CRV there was no evidence of intrinsic obstruction at surgery. In the remaining patient there was fibrosis of the upper ureter. CE-MRA is an accurate means of identifying CRV in children older than 6 years with symptomatic UPJ obstruction. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Derrien, H
2005-12-05
The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.
Georgiou-Karistianis, Nellie; Stout, Julie C; Domínguez D, Juan F; Carron, Sarah P; Ando, Ayaka; Churchyard, Andrew; Chua, Phyllis; Bohanna, India; Dymowski, Alicia R; Poudel, Govinda; Egan, Gary F
2014-05-01
We used functional magnetic resonance imaging (fMRI) to investigate spatial working memory (WM) in an N-BACK task (0, 1, and 2-BACK) in premanifest Huntington's disease (pre-HD, n = 35), early symptomatic Huntington's disease (symp-HD, n = 23), and control (n = 32) individuals. Overall, both WM conditions (1-BACK and 2-BACK) activated a large network of regions throughout the brain, common to all groups. However, voxel-wise and time-course analyses revealed significant functional group differences, despite no significant behavioral performance differences. During 1-BACK, voxel-wise blood-oxygen-level-dependent (BOLD) signal activity was significantly reduced in a number of regions from the WM network (inferior frontal gyrus, anterior insula, caudate, putamen, and cerebellum) in pre-HD and symp-HD groups, compared with controls; however, time-course analysis of the BOLD response in the dorsolateral prefrontal cortex (DLPFC) showed increased activation in symp-HD, compared with pre-HD and controls. The pattern of reduced voxel-wise BOLD activity in pre-HD and symp-HD, relative to controls, became more pervasive during 2-BACK affecting the same structures as in 1-BACK, but also incorporated further WM regions (anterior cingulate gyrus, parietal lobe and thalamus). The DLPFC BOLD time-course for 2-BACK showed a reversed pattern to that observed in 1-BACK, with a significantly diminished signal in symp-HD, relative to pre-HD and controls. Our findings provide support for functional brain reorganisation in cortical and subcortical regions in both pre-HD and symp-HD, which are modulated by task difficulty. Moreover, the lack of a robust striatal BOLD signal in pre-HD may represent a very early signature of change observed up to 15 years prior to clinical diagnosis. Copyright © 2013 Wiley Periodicals, Inc.
Heinonen, A; McKay, H A; Whittall, K P; Forster, B B; Khan, K M
2001-10-01
It is well established that forces applied to bone are the result of muscle contraction. However, data regarding the contribution of muscle cross-sectional area (because muscle area is proportional to muscle strength) to cortical bone area before puberty are controversial. We tested the hypothesis that muscle cross-sectional area is associated with total cortical bone area, and whether there is a region-specific relationship between these parameters in prepubertal and early pubertal girls. Seventeen healthy (9-11 years, Tanner stages I-II) white girls participated in the study. We measured bone loading characteristics (maximal ground reaction forces; GRFs) for a drop jump (50 cm) and side-to-side jump (over a 20-cm-high fence) on a multicomponent force platform. Muscle cross-sectional area and bone cortical area (square centimeters) of the proximal third of the left and right lower leg was measured with a 1.5 T magnetic resonance system using a quadrature head coil. The sequence was T(1) weighted, with spin-echo in transverse (tibial) planes and 3 mm sections with no gap (ten slices). The tibial cross-sectional areas were subdivided into three anatomical sectors (SI-SIII), with the tibial centroid as origin. SI extended from the medial tibial border to the most anterior edge, SII extended from the anterior edge laterally to the interosseous border, and SIII extended posteromedially from the interosseous border to the medial tibial border. The nonparametric bone and muscle volume correlations demonstrated that the total muscle cross-sectional area correlated significantly with the total cortical area in both legs (left leg: r(s) = 0.59, p = 0.020; right leg: r(s) = 0.57, p = 0.016). Significant correlations were also found between left and right muscle area and cortical area in SII (r(s) = 0.68, p = 0.003, 0.67, and 0.003, respectively). There was no significant association between the muscle area and cortical area in SI or SIII. In addition, there was a significant
CSIR Research Space (South Africa)
Chunilall, Viren
2012-03-01
Full Text Available spectroscopy, Cross-Polarization Magic Angle Spinning Carbon 13 - Nuclear Magnetic Resonance (CP/MAS 13C-NMR) spectroscopy and Atomic Force Microscopy (AFM) in conjunction with image analysis. The confocal Raman results showed that there were differences...
Molecule Formation in Optical Lattice Wells by Resonantly Modulated Magnetic Fields
Bertelsen, Jesper Fevre; Molmer, Klaus
2005-01-01
We present a theoretical model for formation of molecules in an optical lattice well where a resonant coupling of atomic and molecular states is provided by small oscillations of a magnetic field in the vicinity of a Feshbach resonance. As opposed to an adiabatic sweep over the full resonance, this provides a coherent coupling with a frequency that can be tuned to meet resonance conditions in the system. The effective Rabi frequencies for this coupling are calculated and simulations show perf...
Optimized sympathetic cooling of atomic mixtures via fast adiabatic strategies
Energy Technology Data Exchange (ETDEWEB)
Choi, Stephen; Sundaram, Bala [Department of Physics, University of Massachusetts, Boston, Massachusetts 02125 (United States); Onofrio, Roberto [Dipartimento di Fisica ' ' Galileo Galilei' ' , Universita di Padova, Via Marzolo 8, Padova I-35131 (Italy); Department of Physics, University of Massachusetts, Boston, Massachusetts 02125 (United States); Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP), Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States)
2011-11-15
We discuss fast frictionless cooling techniques in the framework of sympathetic cooling of cold atomic mixtures. It is argued that optimal cooling of an atomic species--in which the deepest quantum degeneracy regime is achieved--may be obtained by means of sympathetic cooling with another species whose trapping frequency is dynamically changed to maintain constancy of the Lewis-Riesenfeld adiabatic invariant. Advantages and limitations of this cooling strategy are discussed, with particular regard to the possibility of cooling Fermi gases to a deeper degenerate regime.
Designing single-qutrit quantum gates via tripod adiabatic passage
Directory of Open Access Journals (Sweden)
M. Amniat-Talab
2014-04-01
Full Text Available In this paper, we use stimulated Raman adiabatic passage technique to implement single-qutrit quantum gates in tripod systems. It is shown by using the Morris-Shore (MS transformation, the six-state problem with 5 pulsed fields can be reduced to a basis that decouples two states from the others. This imposes three pulses not connected to the initial condition with have the same shape. Using this method, the six-state penta-pod system is reduced to a tripod system. We can design single-qutrit quantum gates by ignoring the fragile dynamical phase, and by suitable design of Rabi frequencies of the effective Hamiltonian
Adiabatic transport of qubits around a black hole
Viennot, David
2016-01-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
Adiabatic quantum computation and quantum annealing theory and practice
McGeoch, Catherine C
2014-01-01
Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'''' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a nov
Ultrasonic velocity and adiabatic compressibility in dioxane-water mixtures
Ciupe, A.; Auslaender, D.
1974-01-01
Using a method of diffraction of light on an ultrasonic beam, the velocity of ultrasounds and the adiabatic compressibility in dioxane-water mixtures were determined. The dependence of these quantities on the temperature (in the 15-50 C range) and on the concentration (0-100%) were studied. For each temperature there was found a velocity maximum and a compressibility minimum for a given value of the dioxane concentration. The different behavior of these mixtures is due to intense interactions between the molecules of the two liquids composing the mixture.
η condensate of fermionic atom pairs via adiabatic state preparation.
Kantian, A; Daley, A J; Zoller, P
2010-06-18
We discuss how an η condensate, corresponding to an exact excited eigenstate of the Fermi-Hubbard model, can be produced with cold atoms in an optical lattice. Using time-dependent density matrix renormalization group methods, we analyze a state preparation scheme beginning from a band insulator state in an optical superlattice. This state can act as an important test case, both for adiabatic preparation methods and the implementation of the many-body Hamiltonian, and measurements on the final state can be used to help detect associated errors.
The adiabatic piston: a perpetuum mobile in the mesoscopic realm
Crosignani, Bruno; Porto, Paolo; Conti, Claudio
2004-03-01
A detailed analysis of the adiabatic-piston problem reveals, for a finely-tuned choice of the spatial dimensions of the system, peculiar dynamical features that challenge the statement that an isolated system necessarily reaches a time-independent equilibrium state. In particular, the piston behaves like a perpetuum mobile, i.e., it never comes to a stop but keeps wandering, undergoing sizeable oscillations around the position corresponding to maximum entropy; this has remarkable implications on the entropy changes of a mesoscopic isolated system and on the limits of validity of the second law of thermodynamics in the mesoscopic realm.
The adiabatic piston: a perpetuum mobile in the mesoscopic realm
Directory of Open Access Journals (Sweden)
Claudio Conti
2004-03-01
Full Text Available Abstract: A detailed analysis of the adiabatic-piston problem reveals, for a finely-tuned choice of the spatial dimensions of the system, peculiar dynamical features that challenge the statement that an isolated system necessarily reaches a time-independent equilibrium state. In particular, the piston behaves like a perpetuum mobile, i.e., it never comes to a stop but keeps wandering, undergoing sizeable oscillations around the position corresponding to maximum entropy; this has remarkable implications on the entropy changes of a mesoscopic isolated system and on the limits of validity of the second law of thermodynamics in the mesoscopic realm.
Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems
Pritula, G. M.; Petrenko, E. V.; Usatenko, O. V.
2018-02-01
A linearized plane pendulum with the slowly varying mass and length of string and the suspension point moving at a slowly varying speed is presented as an example of a simple 1D mechanical system described by the generalized harmonic oscillator equation, which is a basic model in discussion of the adiabatic dynamics and geometric phase. The expression for the pendulum geometric phase is obtained by three different methods. The pendulum is shown to be canonically equivalent to the damped harmonic oscillator. This supports the mathematical conclusion, not widely accepted in physical community, of no difference between the dissipative and Hamiltonian 1D systems.
Tensile Deformation and Adiabatic Heating in Post-Yield Response of Polycarbonate
2015-11-01
ARL-TR-7531 ● NOV 2015 US Army Research Laboratory Tensile Deformation and Adiabatic Heating in Post-Yield Response of...Army Research Laboratory Tensile Deformation and Adiabatic Heating in Post-Yield Response of Polycarbonate by C. Allan Gunnarsson, Bryan Love...REPORT TYPE Final 3. DATES COVERED (From - To) January 2014–August 2015 4. TITLE AND SUBTITLE Tensile Deformation and Adiabatic Heating in Post
Quantum gates in mesoscopic atomic ensembles based on adiabatic passage and Rydberg blockade
Beterov, I. I.; Saffman, M.; Yakshina, E. A.; Zhukov, V. P.; Tretyakov, D. B.; Entin, V. M.; Ryabtsev, I. I.; Mansell, C. W.; MacCormick, C.; Bergamini, S.; Fedoruk, M. P.
2012-01-01
We present schemes for geometric phase compensation in adiabatic passage which can be used for the implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number of strongly interacting atoms. Protocols using double sequences of stimulated Raman adiabatic passage (STIRAP) or adiabatic rapid passage (ARP) pulses are analyzed. Switching the sign of the detuning between two STIRAP sequences, or inverting the phase between two ARP pulses, provides state transfer wit...
Energy Technology Data Exchange (ETDEWEB)
Krix, David; Nienhaus, Hermann, E-mail: hermann.nienhaus@uni-due.de [Faculty of Physics, University of Duisburg-Essen and Center of Nanointegration Duisburg-Essen (CENIDE), Lotharstr. 1, D-47048 Duisburg (Germany)
2014-08-21
Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K{sub 2}O{sub 2} is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-04-11
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-04-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.
Three-particle decays of light-nuclei resonances
DEFF Research Database (Denmark)
Álvarez-Rodríguez, R.; Jensen, A.S.; Garrido, E.
2012-01-01
We have studied the three-particle decay of 12C, 9Be and 6Be resonances. These nuclei have been described as three-body systems by means of the complex scaled hyperspherical adiabatic expansion method. The short-distance part of the wave function is responsible for the energies, whereas the infor...
Tuning Leaky Nanocavity Resonances - Perturbation Treatment
Shlafman, Michael; Bayn, Igal; Salzman, Joseph
2010-01-01
Adiabatic frequency tuning of finite-lifetime-nanocavity electromagnetic modes affects also their quality-factor (Q). Perturbative Q change resulting from (real) frequency tuning, is a controllable parameter. Here, the influence of dielectric constant modulation (DCM) on cavity resonances is presented, by first order perturbation analysis for a 3D cavity with radiation losses. Semi-analytical expressions for DCM induced cavity mode frequency and Q changes are derived. The obtained results are...
Tuning Leaky Nanocavity Resonances - Perturbation Treatment
Shlafman, Michael; Salzman, Joseph
2010-01-01
Adiabatic frequency tuning of finite-lifetime-nanocavity electromagnetic modes affects also their quality-factor (Q). Perturbative Q change resulting from (real) frequency tuning, is a controllable parameter. Here, the influence of dielectric constant modulation (DCM) on cavity resonances is presented, by first order perturbation analysis for a 3D cavity with radiation losses. Semi-analytical expressions for DCM induced cavity mode frequency and Q changes are derived. The obtained results are in good agreement with numerical calculations.
Sliding Seal Materials for Adiabatic Engines, Phase 2
Lankford, J.; Wei, W.
1986-01-01
An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.
Conditions for super-adiabatic droplet growth after entrainment mixing
Directory of Open Access Journals (Sweden)
F. Yang
2016-07-01
Full Text Available Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.
An Adiabatic Quantum Algorithm for Determining Gracefulness of a Graph
Hosseini, Sayed Mohammad; Davoudi Darareh, Mahdi; Janbaz, Shahrooz; Zaghian, Ali
2017-07-01
Graph labelling is one of the noticed contexts in combinatorics and graph theory. Graceful labelling for a graph G with e edges, is to label the vertices of G with 0, 1, ℒ, e such that, if we specify to each edge the difference value between its two ends, then any of 1, 2, ℒ, e appears exactly once as an edge label. For a given graph, there are still few efficient classical algorithms that determine either it is graceful or not, even for trees - as a well-known class of graphs. In this paper, we introduce an adiabatic quantum algorithm, which for a graceful graph G finds a graceful labelling. Also, this algorithm can determine if G is not graceful. Numerical simulations of the algorithm reveal that its time complexity has a polynomial behaviour with the problem size up to the range of 15 qubits. A general sufficient condition for a combinatorial optimization problem to have a satisfying adiabatic solution is also derived.
Directory of Open Access Journals (Sweden)
Allansdotter-Johnsson Ase
2009-01-01
Full Text Available Abstract Background Knowledge about age-specific normal values for left ventricular mass (LVM, end-diastolic volume (EDV, end-systolic volume (ESV, stroke volume (SV and ejection fraction (EF by cardiac magnetic resonance imaging (CMR is of importance to differentiate between health and disease and to assess the severity of disease. The aims of the study were to determine age and gender specific normal reference values and to explore the normal physiological variation of these parameters from adolescence to late adulthood, in a cross sectional study. Methods Gradient echo CMR was performed at 1.5 T in 96 healthy volunteers (11–81 years, 50 male. Gender-specific analysis of parameters was undertaken in both absolute values and adjusted for body surface area (BSA. Results Age and gender specific normal ranges for LV volumes, mass and function are presented from the second through the eighth decade of life. LVM, ESV and EDV rose during adolescence and declined in adulthood. SV and EF decreased with age. Compared to adult females, adult males had higher BSA-adjusted values of EDV (p = 0.006 and ESV (p Conclusion LV volumes, mass and function vary over a broad age range in healthy individuals. LV volumes and mass both rise in adolescence and decline with age. EF showed a rapid decline in adolescence compared to changes throughout adulthood. These findings demonstrate the need for age and gender specific normal ranges for clinical use.
Energy Technology Data Exchange (ETDEWEB)
Katoh, Toshio; Nakamura, Shoji; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan); Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro; Kobayashi, Katsutoshi; Motoishi, Shoji; Tanase, Masakazu
1997-03-01
The thermal neutron(2,200 m/s neutron) capture cross section({sigma}{sub 0}) and the resonance integral(I{sub 0}) of the reaction {sup 135}Cs(n,{gamma}){sup 136}Cs were measured by an activation method. Targets of radioactive cesium, which include {sup 135}Cs, {sup 137}Cs and stable {sup 133}Cs, were irradiated with reactor neutrons within or without a Cd shield case. The ratio of the number of nuclei of {sup 135}Cs to that of {sup 137}Cs was measured with a quadrupole mass spectrometer. This ratio and the ratio of activity of {sup 136}Cs to that of {sup 137}Cs were used for deduction of the {sigma}{sub 0} and the I{sub 0} of {sup 135}Cs. The {sigma}{sub 0} and the I{sub 0} of the reaction {sup 135}Cs(n,{sigma}){sup 136}Cs were 8.3 {+-} 0.3 barn and 38.1 {+-} 2.6 barn, respectively. (author)
Energy Technology Data Exchange (ETDEWEB)
Tintera, Jaroslav; Porod, Vaclav; Rolencova, Eva; Fendrych, Pavel [Institute for Clinical and Experimental Medicine, Department of Radiology, Prague 4 (Czech Republic); Cihak, Robert; Mlcochova, Hanka; Kautzner, Josef [Institute for Clinical and Experimental Medicine, Department of Cardiology, Prague 4 (Czech Republic)
2006-12-15
One of the recognised complications of catheter ablation is pulmonary venous stenosis. The aim of this study was to compare two methods of evaluation of pulmonary venous diameter for follow-up assessment of the above complication: (1) a linear approach evaluating two main diameters of the vein, (2) semiautomatically measured cross-sectional area (CSA). The study population consists of 29 patients. All subjects underwent contrast-enhanced magnetic resonance angiography (CeMRA) of the pulmonary veins (PVs) before and after the ablation; 14 patients were also scanned 3 months later. PV diameter was evaluated from two-dimensional multiplanar reconstructions by measuring either the linear diameter or CSA. A comparison between pulmonary venous CSA and linear measurements revealed a systematic difference in absolute values. This difference was not significant when comparing the relative change CSA and quadratic approximation using linear extents (linear approach). However, a trend towards over-estimation of calibre reduction was documented for the linear approach. Using CSA assessment, significant PV stenosis was found in ten PVs (8%) shortly after ablation. Less significant PV stenosis, ranging from 20 to 50% was documented in other 18 PVs (15%). CeMRA with CSA assessment of the PVs is suitable method for evaluation of PV diameters. (orig.)
Non-adiabatic dynamics in the detachment continuum of radical anions
Verlet, Jan
2015-03-01
Using photoelectron (PE) spectroscopy at a range of photon energies above the detachment threshold of a radical anion, the dynamics of resonances can be identified by the appearance of various channels. These include: (i) direct and prompt autodetachment, which appears in the PE spectra at energies that increase linearly with photon energy; (ii) delayed autodetachment, which is shifted to lower kinetic energy and typically does not shift with photon energy; and (iii) thermionic emission from the radical anion ground state which appears as an exponential decay at low very low kinetic energy. Using time-resolved PE spectroscopy, the non-adiabatic dynamics leading to the formation of the ground state anion can be monitored in real time. In some cases, these dynamics occur on timescales that vastly out-compete autodetachment, even at energies of 3 eV above the neutral. The methodology has been applied to a number of quinone-related molecules and provides insights into how electron capture can lead to stable anions, which is of relevance in electron transfer reactions and astrophysics.
Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.
2017-07-01
We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.
Fermions in optical lattices swept across Feshbach resonances.
Diener, Roberto B; Ho, Tin-Lun
2006-01-13
We point out that the recent experiments at ETH on fermions in optical lattices, where a band insulator evolves continuously into states occupying many bands as the system is swept adiabatically across Feshbach resonance, have implications on a wide range of fundamental issues in condensed matter. We derive the effective Hamiltonian of these systems, obtain expressions for their energies and band populations, and point out the increasing quantum entanglement of the ground state during the adiabatic sweep. Our results also explain why only specific regions in k space can be populated after the sweep as found at ETH.
Quantum adiabatic computation with a constant gap is not useful in one dimension
Energy Technology Data Exchange (ETDEWEB)
Hastings, Matthew [Los Alamos National Laboratory
2009-01-01
We show that it is possible to use a classical computer to efficiently simulate the adiabatic evolution of a quantum system in one dimension with a constant spectral gap, starting the adiabatic evolution from a known initial product state. The proof relies on a recently proven area law for such systems, implying the existence of a good matrix product representation of the ground state, combined with an appropriate algorithm to update the matrix product state as the Hamiltonian is changed. This implies that adiabatic evolution with such Hamiltonians is not useful for universal quantum computation. Therefore, adiabatic algorithms which are useful for universal quantum computation either require a spectral gap tending to zero or need to be implemented in more than one dimension (we leave open the question of the computational power of adiabatic simulation with a constant gap in more than one dimension).
Energy Technology Data Exchange (ETDEWEB)
Wang, Xi-guang; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn; Nie, Yao-zhuang; Xia, Qing-lin; Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Wang, D. [Department of Physics, National University of Defense Technology, Changsha 410073 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)
2013-12-23
We have studied the current-induced displacement of a 180° Bloch wall by means of micromagnetic simulation and analytical approach. It is found that the adiabatic spin-transfer torque can sustain a steady-state domain wall (DW) motion in the direction opposite to that of the electron flow without Walker Breakdown when a transverse microwave field is applied. This kind of motion is very sensitive to the microwave frequency and can be resonantly enhanced by exciting the domain wall thickness oscillation mode. A one-dimensional analytical model was established to account for the microwave-assisted wall motion. These findings may be helpful for reducing the critical spin-polarized current density and designing DW-based spintronic devices.
Grigorenko, E. E.; Shuvalov, S. D.; Malova, H. V.; Dubinin, E.; Popov, V. Yu.; Zelenyi, L. M.; Espley, J.; McFadden, J. P.
2017-10-01
Numerous studies of the current sheets (CS) in the Earth's magnetotail showed that quasi-adiabatic ion dynamics plays an important role in the formation of complicated multilayered current structures. In order to check whether the similar mechanisms operate in the Martian magnetotail, we analyzed 80 CS crossings using MAVEN measurements on the nightside of Mars at radial distances 1.0-2.8RM. We found that CS structures experience similar dependence on the value of the normal component of the magnetic field at the neutral plane (BN) and on the ratio of the ion drift velocity outside the CS to the thermal velocity (VT/VD) as it was observed for the CSs in the Earth's magnetotail. For the small values of BN, a thin and intense CS embedded in a thicker one is observed. The half-thickness L of this layer is 30-100 km ≤ ρH+ (ρH+ is a gyroradius of thermal protons outside the CS). With the increase of BN, the L also increases up to several hundred kilometers ( ρO+, ρO2+), the current density decreases, and the embedding feature disappears. Our statistical analysis showed a good agreement between L values observed by MAVEN and the CS scaling obtained from the quasi-adiabatic model, if the plasma characteristics in Martian CSs are used as input parameters. Thus, we may conclude that in spite of the differences in magnetic topology, ion composition, and plasma thermal characteristics observed in the Earth's and Martian magnetotails, similar quasi-adiabatic mechanisms contribute to the formation of the CSs in the magnetotails of both planets.
Perspective: Stimulated Raman adiabatic passage: The status after 25 years
Bergmann, Klaas; Vitanov, Nikolay V.; Shore, Bruce W.
2015-05-01
The first presentation of the STIRAP (stimulated Raman adiabatic passage) technique with proper theoretical foundation and convincing experimental data appeared 25 years ago, in the May 1st, 1990 issue of The Journal of Chemical Physics. By now, the STIRAP concept has been successfully applied in many different fields of physics, chemistry, and beyond. In this article, we comment briefly on the initial motivation of the work, namely, the study of reaction dynamics of vibrationally excited small molecules, and how this initial idea led to the documented success. We proceed by providing a brief discussion of the physics of STIRAP and how the method was developed over the years, before discussing a few examples from the amazingly wide range of applications which STIRAP now enjoys, with the aim to stimulate further use of the concept. Finally, we mention some promising future directions.
Properties of a two stage adiabatic demagnetization refrigerator
Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.
2015-12-01
Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.
Adiabatic ground state preparation in an expanding lattice
Gazit, Snir; Olund, Chris; Yao, Norman
2017-04-01
We numerically investigate the newly proposed s-source framework for constructing ground state wave functions of gapped Hamiltonians. The key idea is to utilize the adiabatic principle to build a tensor network representation that smoothly interpolates between the ground state of system sizes L and 2L via an interleaved set of ancillary degrees of freedom. Repeatedly applying this procedure reproduces the thermodynamic limit. The scheme should be contrasted with conventional tensor network methods that rely on the variational principle to target the ground state by iteratively improving a variational energy. We introduce a simple yet flexible tensor network structure and an optimization protocol borrowing techniques from quantum control theory. We anticipate that this approach can, in principle, allow access to problems beyond current tensor network technology and even serve as an experimental scheme for ground state preparation in quantum engineered systems.
Optical waveguide device with an adiabatically-varying width
Energy Technology Data Exchange (ETDEWEB)
Watts,; Michael R. (Albuquerque, NM), Nielson; Gregory, N [Albuquerque, NM
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
Quasi-adiabatic compression heating of selected foods
Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan
2011-03-01
The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.
Towards generic adiabatic elimination for bipartite open quantum systems
Azouit, R.; Chittaro, F.; Sarlette, A.; Rouchon, P.
2017-12-01
We consider a composite open quantum system consisting of a fast subsystem coupled to a slow one. Using the time scale separation, we develop an adiabatic elimination technique to derive at any order the reduced model describing the slow subsystem. The method, based on an asymptotic expansion and geometric singular perturbation theory, ensures the physical interpretation of the reduced second-order model by giving the reduced dynamics in a Lindblad form and the state reduction in Kraus map form. We give explicit second-order formulas for Hamiltonian or cascade coupling between the two subsystems. These formulas can be used to engineer, via a careful choice of the fast subsystem, the Hamiltonian and Lindbald operators governing the dissipative dynamics of the slow subsystem.
Electron Correlation from the Adiabatic Connection for Multireference Wave Functions
Pernal, Katarzyna
2018-01-01
An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.
Adiabatic pumping solutions in global AdS
Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre
2017-05-01
We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D = 4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly timeperiodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D = 3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.
Energy Technology Data Exchange (ETDEWEB)
Peelle, R.W.; de Sassure, G.
1977-01-01
Refined knowledge of the thermal neutron cross sections of the fissile nuclides and of the (n,..cap alpha..) reaction standards, together with the reasonably well known energy dependence of the latter, have permitted resonance-region and low-keV fissile nuclide cross sections to be based on these standards together with count-rate ratios observed as a function of energy using a pulsed ''white'' source. As one evaluates cross sections for energies above 20 keV, optimum results require combination of cross section shape measurements with all available absolute measurements. The assumptions of the ''thermal normalization method'' are reviewed, and an opinion is given of the status of some of the standards required for its use. The complications which may limit the accuracy of results using the method are listed and examples are given. For the /sup 235/U(n,f) cross section, the option is discussed of defining resonance-region fission integrals as standards. The area of the approximately 9 eV resonances in this nuclide may be known to one percent accuracy, but at present the fission integral from 0.1 to 1.0 keV is known to no better than about two percent. This uncertainty is based on the scatter among independent results, and has not been reduced by the most recent measurements. This uncertainty now limits the accuracy attainable for the /sup 235/U(n,f) cross section below about 50 keV. Suggestions are given to indicate how future detailed work might overcome past sources of error.
Wigner phase space distribution via classical adiabatic switching
Energy Technology Data Exchange (ETDEWEB)
Bose, Amartya [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Makri, Nancy [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, Illinois 61801 (United States)
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
Energy Technology Data Exchange (ETDEWEB)
Shapovalov, V A; Zhitlukhina, E S; Lamonova, K V; Orel, S M; Pashkevich, Yu G [A A Galkin Donetsk Institute for Physics and Engineering of NASU, 83114, Donetsk (Ukraine); Shapovalov, V V; Rafailovich, M [Garcia Center for Polymers at Engineered Interfaces, Department of Materials Science and Engineering, SUNY Stony Brook, NY 11794 (United States); Schwarz, S A [Department of Physics, Queens College of the City University of New York, NY 11367 (United States); Jahoda, R; Reidy, V J, E-mail: lamonova@fti.dn.u [Bronx High School of Science, NY 10468 (United States)
2010-06-23
Spectroscopic investigations of a ZnAl{sub 2}O{sub 4} spinel doped with bivalent copper ions of 0.05% concentration have been carried out in the temperature range 4.2-290 K using a 3 cm{sup -1} range electron paramagnetic resonance (EPR) spectrometer having an operational frequency f = (9.241 {+-} 0.001) GHz. The spectrum can be represented as a superposition of two components: a low-temperature (LT) and a high-temperature (HT) one. Redistribution of integrated intensity between HT and LT components of the spectra occurs with temperature change that is typical of systems with multi-minimum adiabatic potential. Spectra observed are explained within the modified theory of crystalline field (MTCF). The electron levels of a Cu{sup 2+} ion placed in an octahedral coordination center with trigonal distortion [CuO{sub 6}]{sup 10-} have been calculated. The influence of possible types of oxygen octahedron distortions and possible displacement of copper ions from the symmetry center on the electron spectrum, as well as the shape of the adiabatic potential, has been analyzed. It is shown that in the low-temperature phase the multiple minima of the adiabatic potential occur due to tetragonal distortions while the depth of a minimum is determined by the degree of trigonal octahedron distortions. Tetragonal distortion values and multi-minimum potential barrier heights have been determined.
Fuks, Johanna I
2014-01-01
We explore an asymmetric two-fermion Hubbard dimer to test the accuracy of the adiabatic approximation of time-dependent density functional theory in modelling time-resolved charge transfer. We show that the model shares essential features of a ground state long-range molecule in real-space, and by applying a resonant field we show that the model also reproduces essential traits of the CT dynamics. The simplicity of the model allows us to propagate with an "adiabatically-exact" approximation, i.e. one that uses the exact ground-state exchange-correlation functional, and compare with the exact propagation. This allows us to study the impact of the time-dependent charge-transfer step feature in the exact correlation potential of real molecules on the resulting dynamics. Tuning the parameters of the dimer allows a study both of charge-transfer between open-shell fragments and between closed-shell fragments. We find that the adiabatically-exact functional is unable to properly transfer charge, even in situations ...
DEFF Research Database (Denmark)
Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl
1999-01-01
adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...
Sanna, N.; Baccarelli, I.; Morelli, G.
2009-12-01
VOLSCAT is a computer program which implements the Single Center Expansion (SCE) method to solve the scattering equation for the elastic collision of electrons/positrons off molecular targets. The scattering potential needed is calculated by on-the-fly calls to the external SCELib library for molecular properties, recently ported to GPU computing environment and ClearSpeed platforms, and made available by means of an Application Program Interface (SCELib-API) which is also provided with the VOLSCAT package in a beta version. The result is a high throughput approach to the solution of the complex e/e-molecule scattering problem, with allows for intensive calculations both for the number of systems which can be studied and for their size. Accurate partial and total elastic cross sections are produced in output together with the associated eigenphase sums. Indirect scattering processes arising from the formation of temporary negative ions can also be analyzed through the computation of the resonances' parameters. Program summaryProgram title: VOLSCAT V1.0 Catalogue identifier: AEEW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4 618 353 No. of bytes in distributed program, including test data, etc.: 120 307 536 Distribution format: tar.gz Programming language: Fortran90 Computer: All SMP platforms based on AIX, Linux and SUNOS operating systems over SPARC, POWER, Intel Itanium2, X86, em64t and Opteron processors Operating system: SUNOS, IBM AIX, Linux RedHat (Enterprise), Linux SuSE (SLES) Has the code been vectorized or parallelized?: Yes. The parallel version in the present release of the code is limited to the OpenMP calculation of the exchange potential V or V. The number of OpenMP threads can then be
Rogan, Slavko; Schmidtbleicher, Dietmar; Radlinger, Lorenz
2014-10-01
This pilot study examined the feasibility outcome recruitment, safety and compliance of the investigation for stochastic resonance whole-body vibration (SR-WBV) training. Another aim was to evaluate the effect size of one SR-WBV intervention session on Short Physical Performance Battery (SPPB), Expanded Timed Get Up-and-Go (ETGUG), isometric maximal voluntary contraction (IMVC) and rate of force development (IRFD) and chair rising (CR). Randomised double-blinded controlled cross-over pilot study. Feasibility outcomes included recruitment, safety and compliance. For secondary outcomes, SPPB, ETGUG, IMVC, IRFD and CR were measured before and 2-min after intervention. Nonparametric Rank-Order Tests of Puri and Sen L Statistics to Ranked Data were proposed. Wilcoxon signed-ranked tests were used to analyse the differences after SR-WBV intervention and sham intervention. Treatment effects between the interventions were compared by a Mann-Whitney U test. Among 24 eligible frail elderly, 12 agreed to participate and 3 drop out. The adherence was 15 of 24 intervention sessions. For secondary outcome, effect sizes (ES) for SR-WBV intervention on SPPB, ETGUG and CR were determined. This pilot study indicate that the training protocol used in this form for frail elderly individuals is feasible but with modification due to the fact that not all defined feasibility outcomes target was met. SR-WBV with 6 Hz, noise level 4 shows benefit improvements on SPPB (ES 0.52), ETGUG (part sit-to-stand movement: ES 0.81; total time: ES 0.85) and CR (ES 0.66). Further research is desired to determine whether a new adapted training protocol is necessary for SR-WBV in the "skilling up" phase in frail elderly individuals.
Nota, Nienke M; Burke, Sarah M; den Heijer, Martin; Soleman, Remi S; Lambalk, Cornelis B; Cohen-Kettenis, Peggy T; Veltman, Dick J; Kreukels, Baudewijntje P
2017-12-01
It is hypothesized that transpeople show sex-atypical differentiation of the brain. Various structural neuroimaging studies provide support for this notion, but little is known about the sexual differentiation of functional resting-state networks in transpeople. In this study we therefore aimed to determine whether brain functional connectivity (FC) patterns in transpeople are sex-typical or sex-atypical, before and after the start of cross-sex hormone therapy (CHT). We acquired resting-state functional magnetic resonance data in 36 transpeople (22 with female sex assigned at birth), first during gonadal suppression, and again four months after start of CHT, and in 37 cisgender people (20 females), both sessions without any hormonal intervention. We used independent component analysis to identify the default mode network (DMN), salience network (SN), and left and right working memory network (WMN). These spatial maps were used for group comparisons. Within the DMN, SN, and left WMN similar FC patterns were found across groups. However, within the right WMN, cisgender males showed significantly greater FC in the right caudate nucleus than cisgender females. There was no such sex difference in FC among the transgender groups and they did not differ significantly from either of the cisgender groups. CHT (in transgender participants) and circulating sex steroids (in cisgender participants) did not affect FC. Our findings may suggest that cisgender males and females experience a dissimilar (early) differentiation of the right WMN and that such differentiation is less pronounced in transpeople. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Rude, Erica; Laborie, Marie-Pierre G
2008-05-01
The chemical interactions between maleic anhydride grafted polypropylene (MAPP) and wood were studied with solid-state carbon-13 cross-polarization magic-angle-spinning nuclear magnetic resonance ((13)C CPMAS NMR) spectroscopy. MAPP was synthesized with 100% (13)C enrichment at the C(1) and C(4) carbons to allow detection of the [1,4-(13)C(2)]MAPP functional groups and was melt blended with cellulose, lignin, and maple wood. In the cellulose/MAPP blend, changes in (13)C CPMAS NMR corrected signal intensities for the anhydride and dicarboxylic maleic acid functionalities suggested that esterification may have occurred predominantly from the more numerous diacid carbons. A single proton longitudinal relaxation in the rotating frame, (H)T(1rho), for the MAPP and the cellulose carbons in the blend suggested that they were spin coupled, i.e., homogeneous on a 10-200 Angstrom scale. Esterification was also suggested in the lignin/MAPP blend. Furthermore, the more significant changes in the intensities of the carbonyl signals and (H)T(1rho) values suggested that lignin may be more reactive to MAPP than cellulose. Finally, when maple was melt blended with MAPP, the same trends in the (13)C CP-MAS NMR spectra and (H)T(1rho) behavior were observed as when MAPP was blended with cellulose or lignin. This study therefore clarifies that during melt compounding of wood with MAPP, esterification occurs with wood polymers, preferentially with lignin. Understanding the interactions of MAPP with wood is of significance for the development of natural-fiber-reinforced thermoplastic composites.
Energy Technology Data Exchange (ETDEWEB)
Zolghadri, Samaneh [Radiopharmaceutical Research and Development Laboratory (RRDL), Nuclear Sciences and Technology Research Institute (NSTRI), Tehran 14395-836 (Iran, Islamic Republic of); Yousefnia, Hassan, E-mail: hyousefnia@aeoi.org.ir [Radiopharmaceutical Research and Development Laboratory (RRDL), Nuclear Sciences and Technology Research Institute (NSTRI), Tehran 14395-836 (Iran, Islamic Republic of); Afarideh, Hossein [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Bahrami-Samani, Ali; Jalilian, A.R.; Ghannadi-Maragheh, Mohammad [Radiopharmaceutical Research and Development Laboratory (RRDL), Nuclear Sciences and Technology Research Institute (NSTRI), Tehran 14395-836 (Iran, Islamic Republic of)
2013-01-15
The thermal neutron capture cross-section and resonance integral for the {sup 165}Ho(n,γ){sup 166}Ho reaction were measured experimentally by the activation method. Holmium oxide, manganese oxide and cobalt oxide powders, all dissolved in a mixture of hydrochloric acid and nitric acid, were irradiated within and without cadmium covers in the Tehran Research Reactor. The measured value of the thermal neutron cross-section relative to the {sup 55}Mn(n,γ){sup 56}Mn and {sup 59}Co(n,γ){sup 60}Co monitor reactions (with thermal neutron cross-section of 13.3 ± 0.1b and 37.18 ± 0.06b) was 58.6 ± 1.8b. The result was in a good agreement with the most previously reported values. Also the resonance integral was determined relative to the {sup 55}Mn(n,γ){sup 56}Mn and {sup 59}Co(n,γ){sup 60}Co monitor reactions with the reference value of 14.0 ± 0.3 and 75.9 ± 2.0, respectively. The measured resonance integral of the {sup 165}Ho(n,γ){sup 166}Ho reaction at the cadmium cut-off energy of 0.55 eV was 650 ± 31. The result was measured with high precision and compared with other measurements in the literature.
Hosseinnia, Amir H; Atabaki, Amir H; Eftekhar, Ali A; Adibi, Ali
2015-11-16
Hybrid nanophotonic platforms based on three-dimensional integration of different photonic materials are emerging as promising ecosystems for the optoelectronic device fabrication. In order to benefit from key features of both silicon (Si) and silicon nitride (SiN) on a single chip, we have developed a wafer-scale hybrid photonic platform based on the integration of a thin crystalline Si layer on top of a thin SiN layer with an ultra-thin oxide buffer layer. A complete optical path in the hybrid platform is demonstrated by coupling light back and forth between nanophotonic devices in Si and SiN layers. Using an adiabatic tapered coupling method, a record-low interlayer coupling-loss of 0.02 dB is achieved at 1550 nm telecommunication wavelength window. We also demonstrate high-Q resonators on the hybrid material platform with intrinsic Q's as high as 3 × 10(6) for a 60 μm-radius microring resonator, which is (to the best of our knowledge) the highest Q observed for a micro-resonator on a hybrid Si/SiN platform.
Energy-Efficient and Secure S-Box circuit using Symmetric Pass Gate Adiabatic Logic
Energy Technology Data Exchange (ETDEWEB)
Kumar, Dinesh [University of Kentucky, Lexington; Thapliyal, Himanshu [ORNL; Mohammad, Azhar [University of Kentucky, Lexington; Singh, Vijay [University of Kentucky, Lexington; Perumalla, Kalyan S [ORNL
2016-01-01
Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs. Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.
On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics.
Cotton, Stephen J; Liang, Ruibin; Miller, William H
2017-08-14
The Meyer-Miller (MM) classical vibronic (electronic + nuclear) Hamiltonian for electronically non-adiabatic dynamics-as used, for example, with the recently developed symmetrical quasiclassical (SQC) windowing model-can be written in either a diabatic or an adiabatic representation of the electronic degrees of freedom, the two being a canonical transformation of each other, thus giving the same dynamics. Although most recent applications of this SQC/MM approach have been carried out in the diabatic representation-because most of the benchmark model problems that have exact quantum results available for comparison are typically defined in a diabatic representation-it will typically be much more convenient to work in the adiabatic representation, e.g., when using Born-Oppenheimer potential energy surfaces (PESs) and derivative couplings that come from electronic structure calculations. The canonical equations of motion (EOMs) (i.e., Hamilton's equations) that come from the adiabatic MM Hamiltonian, however, in addition to the common first-derivative couplings, also involve second-derivative non-adiabatic coupling terms (as does the quantum Schrödinger equation), and the latter are considerably more difficult to calculate. This paper thus revisits the adiabatic version of the MM Hamiltonian and describes a modification of the classical adiabatic EOMs that are entirely equivalent to Hamilton's equations but that do not involve the second-derivative couplings. The second-derivative coupling terms have not been neglected; they simply do not appear in these modified adiabatic EOMs. This means that SQC/MM calculations can be carried out in the adiabatic representation, without approximation, needing only the PESs and the first-derivative coupling elements. The results of example SQC/MM calculations are presented, which illustrate this point, and also the fact that simply neglecting the second-derivative couplings in Hamilton's equations (and presumably also in the Schr
Adiabatic regularization and particle creation for spin one-half fields
Landete, Aitor; Navarro-Salas, José; Torrentí, Francisco
2014-02-01
The extension of the adiabatic regularization method to spin-1/2 fields requires a self-consistent adiabatic expansion of the field modes. We provide here the details of such expansion, which differs from the WKB ansatz that works well for scalars, to firmly establish the generalization of the adiabatic renormalization scheme to spin-1/2 fields. We focus on the computation of particle production in de Sitter spacetime and obtain an analytic expression of the renormalized stress-energy tensor for Dirac fermions.
Conical Intersections Between Vibrationally Adiabatic Surfaces in Methanol
Dawadi, Mahesh B.; Perry, David S.
2014-06-01
The discovery of a set of seven conical intersections (CI's) between vibrationally adiabatic surfaces in methanol is reported. The intersecting surfaces represent the energies of the two asymmetric CH stretch vibrations, νb{2} and νb{9}, regarded as adiabatic functions of the torsional angle, γ, and COH bend angle, ρ. One conical intersection, required by symmetry, is located at the C3v geometry where the COH group is linear (ρ = 0°); the other six are in eclipsed conformations with ρ = 62° and 94°. The three CI's at ρ = 62° are close to the equilibrium geometry (ρ = 71.4°), within the zero-point amplitude of the COH bending vibration. CI's between electronic surfaces have long been recognized as crucial conduits for ultrafast relaxation, and recently Hamm, and Stock have shown that vibrational CI's may also provide a mechanism for ultrafast vibrational relaxation. The ab initio data reported here are well described by an extended Zwanziger and Grant model for E ⊗ e Jahn-Teller systems in which Renner-Teller coupling is also active. However, in the present case, the distortion ρ from C3v symmetry is much larger than is typical in the Jahn-Teller coupling of electronic surfaces and accordingly higher-order terms in ρ are required. The present results are also consistent with the two-state model of Xu et al. The cusp-like features, which they found along the internal-rotation path, are explained in the context of the present work in terms of proximity to the CI's. The presence of multiple CI's near the torsional minimum energy path impacts the role of geometric phase in this three-fold internal-rotor system. When the dimensionality of the low-frequency space is extended to include the CO bond length as well as γ and ρ, the individual CI's become seams of CI's. It is shown that the CI's at ρ = 62° and 94° lie along the same seam of CI's in this higher dimensional space. P. Hamm and G. Stock, Phys. Rev. Lett., 109, 173201, (2012) P. Hamm, and G
Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation.
Chung, Hung-Pin; Huang, Kuang-Hsu; Wang, Kai; Yang, Sung-Lin; Yang, Shih-Yuan; Sung, Chun-I; Solntsev, Alexander S; Sukhorukov, Andrey A; Neshev, Dragomir N; Chen, Yen-Hung
2017-12-04
Spontaneous parametric down-conversion (SPDC) is a widely used method to generate entangled photons, enabling a range of applications from secure communication to tests of quantum physics. Integrating SPDC on a chip provides interferometric stability, allows to reduce a physical footprint, and opens a pathway to true scalability. However, dealing with different photon polarizations and wavelengths on a chip presents a number of challenging problems. In this work, we demonstrate an on-chip polarization beam-splitter based on z-cut titanium-diffused lithium niobate asymmetric adiabatic couplers (AAC) designed for integration with a type-II SPDC source. Our experimental measurements reveal unique polarization beam-splitting regime with the ability to tune the splitting ratios based on wavelength. In particular, we measured a splitting ratio of 17 dB over broadband regions (>60 nm) for both H- and V-polarized lights and a specific 50%/50% splitting ratio for a cross-polarized photon pair from the AAC. The results show that such a system can be used for preparing different quantum polarization-path states that are controllable by changing the phase-matching conditions in the SPDC over a broad band. Furthermore, we propose a fully integrated electro-optically tunable type-II SPDC polarization-path-entangled state preparation circuit on a single lithium niobate photonic chip.
Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates
Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.
2014-09-01
A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.
Morishita, Toru; Tolstikhin, Oleg I.
2017-11-01
We present a comprehensive treatise on the derivation of the factorization formula describing strong-field photoelectron momentum distributions near the outermost backward rescattering caustic within the adiabatic theory and its validation by calculations. The formula derived holds for ionization by linearly polarized laser pulses of sufficiently low frequency and becomes exact as the frequency tends to zero for a fixed pulse amplitude. The convergence of the results obtained from the formula to accurate photoelectron momentum distributions obtained by solving the time-dependent Schrödinger equation is demonstrated. The formula is shown to work quantitatively in both tunneling and over-the-barrier regimes of ionization for finite-range potentials as well as potentials with a Coulomb tail. This paves the way for future applications of the present theory in strong-field physics. In particular, the explicit analytical form of the returning photoelectron wave packet given here enables one to extract differential cross sections for elastic scattering of a photoelectron on the parent ion from experimental photoelectron momentum distributions.
Resonant transition-based quantum computation
Chiang, Chen-Fu; Hsieh, Chang-Yu
2017-05-01
In this article we assess a novel quantum computation paradigm based on the resonant transition (RT) phenomenon commonly associated with atomic and molecular systems. We thoroughly analyze the intimate connections between the RT-based quantum computation and the well-established adiabatic quantum computation (AQC). Both quantum computing frameworks encode solutions to computational problems in the spectral properties of a Hamiltonian and rely on the quantum dynamics to obtain the desired output state. We discuss how one can adapt any adiabatic quantum algorithm to a corresponding RT version and the two approaches are limited by different aspects of Hamiltonians' spectra. The RT approach provides a compelling alternative to the AQC under various circumstances. To better illustrate the usefulness of the novel framework, we analyze the time complexity of an algorithm for 3-SAT problems and discuss straightforward methods to fine tune its efficiency.
Energy Technology Data Exchange (ETDEWEB)
Lee, S.M.; Adloff, J.C.; Chevallier, P.; Disdier, D.; Rauch, V.; Scheibling, F.
1978-01-01
To see whether Molecular Resonances may be observed for A>32 systems, the /sup 16/O + /sup 24/Mg reaction was investigated in the 17 to 31 MeV (CM) energy range. Despite the broad structure behavior of the /sup 24/Mg + /sup 16/O outgoing channels, several rather narrow (GAMMA/sub tot/less than or equal to 500 keV) correlated resonances were observed for the /sup 28/Si + /sup 12/C channels at backward angles. The angular distributions of two of these resonances at E/sub CM/ = 21.6 MeV and 28.0 MeV show J/sup ..pi../ = (15/sup -/) and (21/sup -/), respectively. 1 reference.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
Alavi, Saman; Ripmeester, J A
2010-04-14
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Resource efficient gadgets for compiling adiabatic quantum optimization problems
Babbush, Ryan; O'Gorman, Bryan; Aspuru-Guzik, Alán
2013-11-01
We develop a resource efficient method by which the ground-state of an arbitrary k-local, optimization Hamiltonian can be encoded as the ground-state of a (k-1)-local optimization Hamiltonian. This result is important because adiabatic quantum algorithms are often most easily formulated using many-body interactions but experimentally available interactions are generally 2-body. In this context, the efficiency of a reduction gadget is measured by the number of ancilla qubits required as well as the amount of control precision needed to implement the resulting Hamiltonian. First, we optimize methods of applying these gadgets to obtain 2-local Hamiltonians using the least possible number of ancilla qubits. Next, we show a novel reduction gadget which minimizes control precision and a heuristic which uses this gadget to compile 3-local problems with a significant reduction in control precision. Finally, we present numerics which indicate a substantial decrease in the resources required to implement randomly generated, 3-body optimization Hamiltonians when compared to other methods in the literature.
Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.
Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri
2014-01-01
Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.
Hot-electron nanoscopy using adiabatic compression of surface plasmons
Giugni, Andrea
2013-10-20
Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.
Adiabatically deformed ensemble: Engineering nonthermal states of matter
Kennes, D. M.
2017-07-01
We propose a route towards engineering nonthermal states of matter, which show largely unexplored physics. The main idea relies on the adiabatic passage of a thermal ensemble under slow variations of the system Hamiltonian. If the temperature of the initial thermal ensemble is either zero or infinite, the ensemble after the passage is a simple thermal one with the same vanishing or infinite temperature. However, for any finite nonzero temperature, intriguing nonthermal ensembles can be achieved. We exemplify this in (a) a single oscillator, (b) a dimerized interacting one-dimensional chain of spinless fermions, (c) a BCS-type superconductor, and (d) the topological Kitaev chain. We solve these models with a combination of methods: either exactly, numerically using the density matrix renormalization group, or within an approximate functional renormalization group scheme. The designed states show strongly nonthermal behavior in each of the considered models. For example, for the chain of spinless fermions we exemplify how long-ranged nonthermal power-law correlations can be stabilized, and for the Kitaev chain we elucidate how the nonthermal ensemble can largely alter the transition temperature separating topological and trivial phases.
Gilardoni, S S; Martini, M; Métral, E; Steerenberg, R; Müller, A-S
2006-01-01
Recently, a novel technique to perform multi-turn extraction from a circular particle accelerator was proposed. It is based on beam splitting and trapping, induced by a slow crossing of a nonlinear resonance, inside stable islands of transverse phase space. Experiments at the CERN Proton Synchrotron started in 2002 and evidence of beam splitting was obtained by summer 2004. In this paper the measurement results achieved with both a low- and a high-intensity, single-bunch proton beam are presented.
A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics
Gingold, H.
1991-01-01
A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.
Directory of Open Access Journals (Sweden)
Barban C.
2013-03-01
Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.
Adiabatic, Shock, and Plastic Work Heating of Solids and the Cylinder Test
National Research Council Canada - National Science Library
Ruden, E
2000-01-01
Solids subjected to high pressures, shocks, and/or deformation experience an increase in internal energy density and temperature due to adiabatic compression, shock heating, and plastic work heating, respectively...
Hernandez-Bautista, E; Bentz, D P; Sandoval-Torres, S; de Cano-Barrita, P F J
2016-05-01
A model that describes hydration and heat-mass transport in Portland cement mortar during steam curing was developed. The hydration reactions are described by a maturity function that uses the equivalent age concept, coupled to a heat and mass balance. The thermal conductivity and specific heat of mortar with water-to-cement mass ratio of 0.30 was measured during hydration, using the Transient Plane Source method. The parameters for the maturity equation and the activation energy were obtained by isothermal calorimetry at 23 °C and 38 °C. Steam curing and semi-adiabatic experiments were carried out to obtain the temperature evolution and moisture profiles were assessed by magnetic resonance imaging. Three specimen geometries were simulated and the results were compared with experimental data. Comparisons of temperature had maximum residuals of 2.5 °C and 5 °C for semi-adiabatic and steam curing conditions, respectively. The model correctly predicts the evaporable water distribution obtained by magnetic resonance imaging.
Hernandez-Bautista, E.; Bentz, D. P.; Sandoval-Torres, S.; de Cano-Barrita, P. F. J.
2015-01-01
A model that describes hydration and heat-mass transport in Portland cement mortar during steam curing was developed. The hydration reactions are described by a maturity function that uses the equivalent age concept, coupled to a heat and mass balance. The thermal conductivity and specific heat of mortar with water-to-cement mass ratio of 0.30 was measured during hydration, using the Transient Plane Source method. The parameters for the maturity equation and the activation energy were obtained by isothermal calorimetry at 23 °C and 38 °C. Steam curing and semi-adiabatic experiments were carried out to obtain the temperature evolution and moisture profiles were assessed by magnetic resonance imaging. Three specimen geometries were simulated and the results were compared with experimental data. Comparisons of temperature had maximum residuals of 2.5 °C and 5 °C for semi-adiabatic and steam curing conditions, respectively. The model correctly predicts the evaporable water distribution obtained by magnetic resonance imaging. PMID:27022208
Adiabatic Low-Pass J Filters for Artifact Suppression in Heteronuclear NMR
DEFF Research Database (Denmark)
Meier, Sebastian; Benie, Andrew J; Duus, Jens Øllgaard
2009-01-01
NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts.......NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts....
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
Energy Technology Data Exchange (ETDEWEB)
Wang, J. F.; Ma, Q. M.; Song, T.; Yuan, S. B. [Research Department of Biomedical Engineering, Institute of Electrical Engineering, Chinese Academy of Science, Beijing 100190 (China); Qin, G., E-mail: wangjunfang@mail.iee.ac.cn, E-mail: qingang@hit.edu.cn [School of Science, Harbin Institute of Technology, Shenzhen 518055 (China)
2017-08-20
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
Energy Technology Data Exchange (ETDEWEB)
Mattione, P. T.; Carman, D. S.; Strakovsky, I. I.; Workman, R. L.; Kudryavtsev, A. E.; Svarc, A.; Tarasov, V. E.; Adhikari, K. P.; Adhikari, S.; Adikaram, D.; Akbar, Z.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Bashkanov, M.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D' Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Defurne, M.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Hollis, G.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Meziani, Z. E.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.
2017-09-01
The quasifree gamma d -> pi(-)p(p) differential cross section has been measured with CLAS at photon beam energies E-gamma from 0.445 to 2.510 GeV (corresponding to W from 1.311 to 2.366 GeV) for pion center-of-mass angles cos theta(c.m.)(pi) from -0.72 to 0.92. A correction for final state interactions has been applied to these data to extract the gamma n -> pi(-)p differential cross sections. These cross sections are quoted in 8428 (E-gamma, cos theta(c.m)(pi)) bins, a factor of nearly 3 increase in the world statistics for this channel in this kinematic range. These new data help to constrain coupled-channel analysis fits used to disentangle the spectrum of N* resonances and extract their properties. Selected photon decay amplitudes N* -> gamma n at the resonance poles are determined for the first time and are reported here.
General background conditions for K-bounce and adiabaticity
Energy Technology Data Exchange (ETDEWEB)
Romano, Antonio Enea [University of Crete, Department of Physics, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, A.A.1226, Medellin (Colombia)
2017-03-15
We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K(X), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K(X) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K(X), and the other on a K(X) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H. In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H. We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce. (orig.)
Leclerc, Arnaud; Viennot, David; Jolicard, Georges; Lefebvre, Roland; Atabek, Osman
2017-12-01
{{{H}}}2+ is an ideal candidate for the detailed study of strong-field coherent control strategies inspired by basic mechanisms referring to some specific photodissociation resonances. Two of them are considered in this work, namely: zero-width resonances (ZWRs) and coalescing pairs of resonances at exceptional points (EPs). An adiabatic transport theory based on the Floquet Hamiltonian formalism is developed within the challenging context of multiphoton dynamics involving nuclear continua. It is shown that a rigorous treatment is only possible for ZWRs, whereas adiabatic transport mediated by EPs is subjected to restrictions. Numerical maps of resonance widths and non-adiabatic couplings in the laser parameter plane help in optimally shaping control pulses. Full time-dependent wavepacket dynamics shows the possibility of selective, robust filtration and vibrational population transfers, within experimentally feasible criteria.
Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino
2013-01-01
Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…
Avila Ferrer, Francisco J; Barone, Vincenzo; Cappelli, Chiara; Santoro, Fabrizio
2013-08-13
We show that a recently developed time-independent approach for the calculation of vibrational resonance Raman (vRR) spectra is able to describe Duschinsky and Herzberg-Teller (HT) effects acting on a single resonant state, together with interferential contributions arising from multiple electronic resonances, allowing us to investigate in detail how their interplay determines both the vRR spectra at selected wavelengths and the Raman excitation profiles. We apply this methodology to the study of the spectra of pyrene in acetonitrile, an ideal system since it exhibits three close-lying electronic transitions that are bright but also subjected to HT effects. To single out the different contributions to vRR line shapes we adopted two different adiabatic models for resonant-state potential energy surfaces, namely, Adiabatic Shift (only accounting from equilibrium geometry displacements) and Adiabatic Hessian (AH, including also the Duschinsky effects), and Franck-Condon (FC) or HT approximations for the transition dipole. We show that, on balance, FC+HT calculations within the AH model provide the best agreement with experiment. Moreover, our methodology permits to individuate bands in the experimental spectra due to the simultaneous contribution of more than one resonant state and to point out and analyze interferential effects between the FC and HT terms in each resonance Raman process, together with FC-HT and HT-HT interferences between different electronic states.
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivarsson, Jenny; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Socher, Felix; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sopko, Bruno; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz
2014-06-13
Measurements of four-lepton (4$\\ell$, $\\ell=e,\\mu$) production cross sections at the $Z$ resonance in $pp$ collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass region $m_{\\ell^+\\ell^-} > 5$ GeV and $80 < m_{4\\ell} < 100$ GeV, the measured cross sections are $76 \\pm 18 \\text { (stat) } \\pm 4 \\text { (syst) } \\pm 1.4 \\text { (lumi) }$ fb and $107 \\pm 9 \\text{ (stat) } \\pm 4 \\text{ (syst) } \\pm 3.0 \\text { (lumi) }$ fb at $\\sqrt s$ = 7 and 8 TeV, respectively. By subtracting the non-resonant 4$\\ell$ production contributions and normalizing with $Z\\rightarrow \\mu^+\\mu^-$ events, the branching fraction for the $Z$~boson decay to $4\\ell$ is determined to be ($3.20 \\pm 0.25 \\text { (stat) } \\pm 0.13 \\text { (syst) }) \\times 10^{-6}$, consistent with the Standard Model prediction.
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-08-08
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.
Kim, In Je; Kim, Dong Hyun; Song, Yeoung Wook; Guermazi, Ali; Crema, Michel D.; Hunter, David J.; Seo, Young-Il; Kim, Hyun Ah
2016-01-01
Background Previous studies showed that among persons with radiographic knee OA, periarticular lesions were significantly more common among participants with knee pain than those without. However, data were derived mostly from persons with knee OA, and there were few normal participants without knee OA in the data analyses. The objectives of this study were to investigate the prevalence of periarticular lesions detected by magnetic resonance imaging (MRI), and to examine their prevalence acco...
The resonance energy of benzene: a revisit.
Mo, Yirong
2009-04-30
Zielinski and van Lenthe recently extended the block-localized wave function (BLW) method by introducing the resonating BLW (RBLW) method and performed test calculations on hexagonal H(6) and benzene [J. Phys. Chem. A 2008, 112, 13197]. However, the Pauling's resonance energies from their RBLW and ab initio valence bond (VB) calculations were greatly underestimated largely due to the imperfect use of either one-electron orbitals (method = delocal) or resonance structures (method = local). Whereas it has been well recognized that electronic resonance within a molecular system plays a stabilizing role, there are many indirect experimental evidences available to evaluate the resonance energy and, thus, to justify computational results. Here we used the BLW method, which can be regarded as the simplest variant of modern ab initio VB theory, to re-evaluate the resonance energy of benzene at the B3LYP level, following the original definition by Pauling and Wheland, who obtained the resonance energy "by subtracting the actual energy of the molecule in question from that of the most stable contributing structure". The computed vertical resonance energy (or quantum mechanical resonance energy) in benzene is 88.8, 92.2, or 87.9 kcal/mol with the basis sets of 6-31G(d), 6-311+G(d,p), or cc-pVTZ, respectively, while the adiabatic resonance energy (or theoretical resonance energy) is 61.4, 63.2, or 62.4 kcal/mol, exhibiting insignificant basis set dependency for moderate basis sets. In line with predictions, the geometry optimization of the elusive cyclohexatriene (i.e., the Kekule structure) with the BLW method also resulted in carbon-carbon bond lengths (e.g., 1.322 and 1.523 A with the cc-pVTZ basis set) comparable to those in ethylene or ethane.
Twist angle determination in liquid crystal displays by location of local adiabatic points
Moreno, Ignacio; Bennis, Noureddine; Davis, Jeffrey A.; Ferreira, Carlos
1998-12-01
In this work we present a method for the determination of the twist angle of an arbitrary twisted nematic liquid crystal spatial light modulator. The method is based on the location of local adiabatic points, i.e., situations in which the liquid crystal SLM acts only as a rotation device. For these cases, the rotation induced on the polarization of the incident beam is equal to the twist angle. Consequently, the twist angle can be determined with high precision. We show that local adiabatic regime may be achieved in two ways, either by changing the incident beam wavelength, or by applying a voltage to the electrodes of the display. However, the simple model that describes the SLM in the off-state, may break down when a voltage is applied to the display, and it may affect the local adiabatic behaviour. We present theoretical and experimental results.
Optimal control of the power adiabatic stroke of an optomechanical heat engine.
Bathaee, M; Bahrampour, A R
2016-08-01
We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Svrček, M.; Baňacký, P.; Biskupič, S.; Noga, J.; Pelikán, P.; Zajac, A.
1999-01-01
The Born-Handy formula, recently shown by Kutzelnigg to be a rigorous expression for the calculation of the adiabatic correction, has been, on the level of a ground state SCF wavefunction, reformulated and linked to the coefficients of the standard coupled perturbed Hartree-Fock (CPHF) method. The contribution of the electron correlation via second-order perturbation theory is also presented. The solution of the corresponding secular equation of the nuclear motion enables the calculation of the adiabatic correction over the particular normal modes. The method offers the possibility of extending high-precision calculations of the adiabatic correction to more complex systems. Test calculations have been performed for H 2, HD and D 2 and the results are in satisfactory agreement with the exact figures.
Directory of Open Access Journals (Sweden)
S. Gilardoni
2006-10-01
Full Text Available Recently, a novel technique to perform multiturn extraction from a circular particle accelerator was proposed. It is based on beam splitting and trapping, induced by a slow crossing of a nonlinear resonance, inside stable islands of transverse phase space. Experiments at the CERN Proton Synchrotron started in 2002 and evidence of beam splitting was obtained by summer 2004. In this paper, the measurement results achieved with both a low- and a high-intensity, single-bunch proton beam are presented.
849 RESONANCE | September 2013
Indian Academy of Sciences (India)
IAS Admin
849. RESONANCE | September 2013. Page 2. 850. RESONANCE | September 2013. Page 3. 851. RESONANCE | September 2013. Page 4. 852. RESONANCE | September 2013. Page 5. 853. RESONANCE | September 2013. Page 6. 854. RESONANCE | September 2013. Page 7. 855. RESONANCE | September 2013.
Laurent Guiraud
2000-01-01
The Radio-Frequency Quadrupole, RFQD, which further decelerates antiprotons ejected from the Antiproton Decelerator (AD). Starting from a momentum of 100 MeV/c (kinetic energy 5.3 MeV), the RFQD delivers very-low-energy antiprotons, adjustable between 10 and 110 keV, to the experiment ASACUSA. In picture _02, the view from the upstream end shows its 4-rod structure, traversing 35 resonator chambers formed by the vertical partitions. The tank has an inner diameter of 390 mm and is pumped to a vacuum of a few E-8 Torr.
Protecting and accelerating adiabatic passage with time-delayed pulse sequences
Sampedro, Pablo; Sola, Ignacio R
2016-01-01
Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na$_2$ we show that: i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness.
Adiabatic response and quantum thermoelectrics for ac-driven quantum systems
Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana
2016-02-01
We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.
Spectroscopy of the Rotating Kaluza-Klein Spacetime via Revisited Adiabatic Invariant Quantity
Yu, Li; Qi, De-Jiang
2017-07-01
In this paper, we have investigated the spectroscopy of the rotating Kaluza-Klein spacetime by applying Bohr-Sommerfeld quantization rule and the first law of thermodynamics. we derived the expression of the adiabatic invariant quantity in the dragged-Painlevé coordinate system. Then, via revisited adiabatic invariant quantity, we derive the area and entropy spectra of the spacetime. We obtained the area spectrum of the Kaluza-Klein spacetime is {Δ } A=8π {lP2}, and the entropy spectrum is Δ S = 2 π. This result is consistent with the Bekenstein's original result, which imply the entropy and horizon area are discrete and equidistant for the spacetime.
Energy Technology Data Exchange (ETDEWEB)
Olazabal-Loume, M.; Hallo, L. [Bordeaux-1 Univ., CELIA UMR 5107, 33 - Talence (France)
2006-06-15
This study deals with the hydrodynamic stability of a planar target in the context of inertial confinement fusion direct drive. Recently, different schemes have been proposed in order to reduce ablative Rayleigh-Taylor growth. They are based on the target adiabatic shaping in the ablation zone. In this work, we consider an adiabatic shaping scheme by relaxation: a prepulse is followed by a relaxation period where the laser is turned off. A numerical study is performed with a perturbation code dedicated to the linear stability analysis. The simulations show stabilizing effects of the relaxation scheme on the linear Rayleigh-Taylor growth rate. Influence of the picket parameters is also discussed. (authors)
Magnetic Skyrmion Transport in a Nanotrack With Spatially Varying Damping and Non-adiabatic Torque
Zhang, Xichao; Xia, Jing; Zhao, G. P.; Liu, Xiaoxi; Zhou, Yan
2016-01-01
Reliable transport of magnetic skyrmions is required for any future skyrmion-based information processing devices. Here we present a micromagnetic study of the in-plane current-driven motion of a skyrmion in a ferromagnetic nanotrack with spatially sinusoidally varying Gilbert damping and/or non-adiabatic spin-transfer torque coefficients. It is found that the skyrmion moves in a sinusoidal pattern as a result of the spatially varying Gilbert damping and/or non-adiabatic spin-transfer torque ...
Performance Limits of Nanoelectromechanical Switches (NEMS-Based Adiabatic Logic Circuits
Directory of Open Access Journals (Sweden)
Samer Houri
2013-12-01
Full Text Available This paper qualitatively explores the performance limits, i.e., energy vs. frequency, of adiabatic logic circuits based on nanoelectromechanical (NEM switches. It is shown that the contact resistance and the electro-mechanical switching behavior of the NEM switches dictate the performance of such circuits. Simplified analytical expressions are derived based on a 1-dimensional reduced order model (ROM of the switch; the results given by this simplified model are compared to classical CMOS-based, and sub-threshold CMOS-based adiabatic logic circuits. NEMS-based circuits and CMOS-based circuits show different optimum operating conditions, depending on the device parameters and circuit operating frequency.
Vashaee, S; Newling, B; Balcom, B J
2015-12-01
Band selective adiabatic inversion radio frequency pulses were employed for multi-slice T2 distribution measurements in porous media samples. Multi-slice T2 measurement employing longitudinal Hadamard encoding has an inherent sensitivity advantage over slice-by-slice local T2 measurements. The slice selection process is rendered largely immune to B1 variation by employing hyperbolic secant adiabatic inversion pulses, which simultaneously invert spins in several well-defined slices. While Hadamard encoding is well established for local spectroscopy, the current work is the first use of Hadamard encoding for local T2 measurement. Copyright © 2015 Elsevier Inc. All rights reserved.
Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic Traps.
Cui, Yang-Yang; Chen, Xi; Muga, J G
2016-05-19
The expansion of a harmonic potential that holds a quantum particle may be realized without any final particle excitation but much faster than adiabatically via "shortcuts to adiabaticity" (STA). While ideally the process time can be reduced to zero, practical limitations and constraints impose minimal finite times for the externally controlled time-dependent frequency protocols. We examine the role of different time-averaged energies (total, kinetic, potential, nonadiabatic) and of the instantaneous power in characterizing or selecting different protocols. Specifically, we prove a virial theorem for STA processes, set minimal energies (or times) for given times (or energies), and discuss their realizability by means of Dirac impulses or otherwise.
Localization and adiabatic pumping in a generalized Aubry-André-Harper model
Liu, Fangli; Ghosh, Somnath; Chong, Y. D.
2015-01-01
A generalization of the Aubry-André-Harper (AAH) model is developed, containing a tunable phase shift between on-site and off-diagonal modulations. A localization transition can be induced by varying just this phase, keeping all other model parameters constant. The complete localization phase diagram is obtained. Unlike the original AAH model, the generalized model can exhibit a transition between topologically trivial band structures and topologically nontrivial band structures containing protected boundary states. These boundary states can be pumped across the system by adiabatic variations in the phase shift parameter. The model can also be used to demonstrate the phenomenon of adiabatic pumping breakdown due to localization.
Trigonometric protocols for shortcuts to adiabatic transport of cold atoms in anharmonic traps
Li, Jing; Zhang, Qi; Chen, Xi
2017-10-01
Shortcuts to adiabaticity have been proposed to speed up the ;slow; adiabatic transport of ultracold atoms. Their realizations, using inverse engineering protocols, provide families of trajectories with appropriate boundary conditions. These trajectories can be optimized with respect to the operation time and the energy input. In this paper we propose trigonometric protocols for fast and robust atomic transport, taking into account cubic or quartic anharmonicities of the trapping potential. Numerical analysis demonstrates that this choice of the trajectory minimizes the final residual energy efficiently, and shows extraordinary robustness against anharmonic parameters. These results might be of interest for the state-of-the-art experiments on ultracold atoms and ions.
Preheating after multifield inflation with nonminimal couplings. II. Resonance structure
DeCross, Matthew P.; Kaiser, David I.; Prabhu, Anirudh; Prescod-Weinstein, Chanda; Sfakianakis, Evangelos I.
2018-01-01
This is the second in a series of papers on preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. In this paper, we work in the rigid-spacetime approximation and consider field trajectories within the single-field attractor, which is a generic feature of these models. We construct the Floquet charts to find regions of parameter space in which particle production is efficient for both the adiabatic and isocurvature modes, and analyze the resonance structure using analytic and semianalytic techniques. Particle production in the adiabatic direction is characterized by the existence of an asymptotic scaling solution at large values of the nonminimal couplings, ξI≫1 , in which the dominant instability band arises in the long-wavelength limit, for comoving wave numbers k →0 . However, the large-ξI regime is not reached until ξI≥O (100 ). In the intermediate regime, with ξI˜O (1 - 10 ) , the resonance structure depends strongly on wave number and couplings. The resonance structure for isocurvature perturbations is distinct and more complicated than its adiabatic counterpart. An intermediate regime, for ξI˜O (1 - 10 ) , is again evident. For large values of ξI, the Floquet chart consists of densely spaced, nearly parallel instability bands, suggesting a very efficient preheating behavior. The increased efficiency arises from features of the nontrivial field-space manifold in the Einstein frame, which itself arises from the fields' nonminimal couplings in the Jordan frame, and has no analog in models with minimal couplings. Quantitatively, the approach to the large-ξI asymptotic solution for isocurvature modes is slower than in the case of the adiabatic modes.
Fishchuk, A.V.; Merritt, J.M.; Avoird, A. van der
2007-01-01
The three adiabatic potential surfaces of the Br(P-2)-HCN complex that correlate to the P-2 ground state of the Br atom were calculated ab initio. With the aid of a geometry-dependent diabatic mixing angle, also calculated ab initio, these adiabatic potential surfaces were transformed into a set of
Dyvorne, Hadrien; O'Halloran, Rafael; Balchandani, Priti
2016-05-01
To improve ultrahigh field diffusion-weighted imaging (DWI) in the presence of inhomogeneous transmit B1 field by designing a novel semi-adiabatic single-refocused DWI technique. A 180° slice-selective, adiabatic radiofrequency (RF) pulse of 4 ms duration was designed using the adiabatic Shinnar-Le Roux algorithm. A matched-phase slice-selective 90° RF pulse of 8 ms duration was designed to compensate the nonlinear phase of the adiabatic 180° RF pulse. The resulting RF pulse combination, matched-phase adiabatic spin echo (MASE), was integrated into a single-shot echo planar DWI sequence. The performance of this sequence was compared with single-refocused Stejskal-Tanner (ST), twice-refocused spin echo (TRSE) and twice-refocused adiabatic spin echo (TRASE) in simulations, phantoms, and healthy volunteers at 7 Tesla (T). In regions with inhomogeneous B1 , MASE resulted in increased signal intensity compared with ST (up to 64%). Moderate increase in specific absorption rate (35-39%) was observed for adiabatic RF pulses. MASE resulted in higher signal homogeneity at 7T, leading to improved visualization of measures derived from diffusion-weighted images such as white matter tractography and track density images. Efficient adiabatic SLR pulses can be adapted to single-refocused DWI, leading to substantially improved signal uniformity when compared with conventional acquisitions. © 2015 Wiley Periodicals, Inc.
CSIR Research Space (South Africa)
Baloyi, J
2014-06-01
Full Text Available An analysis of irreversibilities generated due to combustion in an adiabatic combustor burning wood was conducted. This was done for a reactant mixture varying from a rich to a lean mixture. A non-adiabatic non-premixed combustion model of a...
Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses.
Scheenen, T.W.J.; Heerschap, A.; Klomp, D.W.J.
2008-01-01
OBJECTIVE: To explore the possibilities of proton spectroscopic imaging (1H-MRSI) of the human brain at 7 Tesla with adiabatic refocusing pulses. MATERIALS AND METHODS: A combination of conventional slice selective excitation and two pairs of slice selective adiabatic refocusing pulses (semi-LASER)
Cao, Xing; Ni, Binbin; Summers, Danny; Zou, Zhengyang; Fu, Song; Zhang, Wenxun
2017-10-01
Bounce resonant interactions with magnetospheric waves have been proposed as an important contributing mechanism for scattering near-equatorially mirroring electrons by violating the second adiabatic invariant associated with the electron bounce motion along a geomagnetic field line. This study demonstrates that low-frequency plasmaspheric hiss with significant wave power below 100 Hz can bounce resonate efficiently with radiation belt electrons. By performing quantitative calculations of pitch angle scattering rates, we show that low-frequency hiss-induced bounce resonant scattering of electrons has a strong dependence on equatorial pitch angle αeq. For electrons with αeq close to 90°, the timescale associated with bounce resonance scattering can be comparable to or even less than 1 h. Cyclotron and Landau resonant interactions between low-frequency hiss and electrons are also investigated for comparisons. It is found that while the bounce and Landau resonances are responsible for the diffusive transport of near-equatorially mirroring electrons to lower αeq, pitch angle scattering by cyclotron resonance could take over to further diffuse electrons into the atmosphere. Bounce resonance provides a more efficient pitch angle scattering mechanism of relativistic (≥1 MeV) electrons than Landau resonance due to the stronger scattering rates and broader resonance coverage of αeq, thereby demonstrating that bounce resonance scattering by low-frequency hiss can contribute importantly to the evolution of the electron pitch angle distribution and the loss of radiation belt electrons.
2012-01-01
The performance of rectangular radio frequency (RF) coils capable of being used to detect nuclear quadrupole resonance (NQR) signals from blister packs of medicines has been compared. The performance of a fixed-pitch RF coil was compared with that from two variable-pitch coils, one based on a design in the literature and the other optimized to obtain the most homogeneous RF field over the whole volume of the coil. It has been shown from 14N NQR measurements with two medicines, the antibiotic ampicillin (as trihydrate) and the analgesic medicine Paracetamol, that the latter design gives NQR signal intensities almost independent of the distribution of the capsules or pills within the RF coil and is therefore more suitable for quantitative analysis. PMID:23057555
Non-adiabatic collisions in H + O2 system: An ab initio study
Indian Academy of Sciences (India)
WINTEC
mentioned above. The degeneracy of the second and the third CT channels which also belongs to the Π symmetry in the collinear approach, is also lifted into A′ and A″ as shown in figure 2. The adiabatic PECs for the same three orientations as shown in figure 2, but as a function of r (internu- clear distance of the diatom) ...
Preparation of Quantum States of H2 using Stark-induced Adiabatic Raman Passage (SARP)
2013-12-02
The Journal of Chemical Physics , (07 2011): 24201. doi: Nandini Mukherjee...Richard N. Zare. Can stimulated Raman pumping cause large population transfers in isolated molecules?, The Journal of Chemical Physics , (11 2011): 0...population to a selected rovibrational state of H2 by Stark-induced adiabatic Raman passage, THE JOURNAL OF CHEMICAL PHYSICS , (02 2013): 51101.
Non-adiabatic radiative collapse of a relativistic star under different ...
Indian Academy of Sciences (India)
We examine the role of space-time geometry in the non-adiabatic collapse of a star dissipating energy in the form of radial heat flow, studying its evolution under different initial conditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with inhomogeneous imperfect fluid ...
Adiabatic flame temperature of sodium combustion and sodium-water reaction
Energy Technology Data Exchange (ETDEWEB)
Okano, Y.; Yamaguchi, A. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)
2001-07-01
In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na{sub 2}O{sub (l)}, and in combustion in moist air, with NaOH{sub (g)}. The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH{sub (g)}, NaOH{sub (l)} and H2{sub (g)}. Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar.
Between ethylene and polyenes--the non-adiabatic dynamics of cis-dienes
DEFF Research Database (Denmark)
Kuhlman, Thomas Scheby; Glover, William J; Mori, Toshifumi
2012-01-01
Using Ab Initio Multiple Spawning (AIMS) with a Multi-State Multi-Reference Perturbation theory (MS-MR-CASPT2) treatment of the electronic structure, we have simulated the non-adiabatic excited state dynamics of cyclopentadiene (CPD) and 1,2,3,4-tetramethyl-cyclopentadiene (Me4-CPD) following exc...
Saline Cavern Adiabatic Compressed Air Energy Storage Using Sand as Heat Storage Material
Directory of Open Access Journals (Sweden)
Martin Haemmerle
2017-03-01
Full Text Available Adiabatic compressed air energy storage systems offer large energy storage capacities and power outputs beyond 100MWel. Salt production in Austria produces large caverns which are able to hold pressure up to 100 bar, thus providing low cost pressurized air storage reservoirs for adiabatic compressed air energy storage plants. In this paper the results of a feasibility study is presented, which was financed by the Austrian Research Promotion Agency, with the objective to determine the adiabatic compressed air energy storage potential of Austria’s salt caverns. The study contains designs of realisable plants with capacities between 10 and 50 MWel, applying a high temperature energy storage system currently developed at the Institute for Energy Systems and Thermodynamics in Vienna. It could be shown that the overall storage potential of Austria’s salt caverns exceeds a total of 4GWhel in the year 2030 and, assuming an adequate performance of the heat exchanger, that a 10MWel adiabatic compressed air energy storage plant in Upper Austria is currently feasible using state of the art thermal turbomachinery which is able to provide a compressor discharge temperature of 400 °C.
Adiabatic superconducting cells for ultra-low-power artificial neural networks
Directory of Open Access Journals (Sweden)
Andrey E. Schegolev
2016-10-01
Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
Correction for adiabatic effects in lethe calculated instantaneous gas consumption of scuba dives
Schellart, Nico A. M.; Le Péchon, Jean-Claude
2015-01-01
Introduction: In scuba-diving practice, instantaneous gas consumption is generally calculated from the fall in cylinder pressure without considering the effects of water temperature (heat transfer) and adiabatic processes. We aimed to develop a simple but precise method for calculating the
An integrated optic adiabatic TE/TM mode splitter on silicon
de Ridder, R.M.; Sander, A.F.M.; Driessen, A.; Fluitman, J.H.J.
1993-01-01
A compact integrated optic fundamental TE/TM mode splitter, based on the mode-sorting characteristics of an asymmetrical adiabatic Y junction of optical waveguides exhibiting shape birefringence, operating at 1550 nm, has been designed using the discrete sine method (DSM) and the beam propagation
Modelling of an adiabatic trickle-bed reactor with phase change
DEFF Research Database (Denmark)
Ramirez Castelan, Carlos Eduardo; Hidalgo-Vivas, Angelica; Brix, Jacob
2017-01-01
This paper describes a modelling approach of the behavior of trickle-bed reactors used for catalytic hydrotreating of oil fractions. A dynamic plug-flow heterogeneous one-dimensional adiabatic model was used to describe the main reactions present in the hydrotreating process: hydrodesulfurization...
Adiabatic partition effect on natural convection heat transfer inside a square cavity
DEFF Research Database (Denmark)
Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; yousefi, Tooraj
2017-01-01
A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder int...
Alos-Palop, M.; Blaauboer, M.
2011-01-01
We investigate adiabatic quantum pumping through a normal-metal–“insulator”–superconductor (NIS) junction in a monolayer of graphene. The pumped current is generated by periodic modulation of two gate voltages, applied to the insulating and superconducting regions, respectively. In the bilinear
Directory of Open Access Journals (Sweden)
Salem M. Osta-Omar
2016-11-01
Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.
DEFF Research Database (Denmark)
Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond
2009-01-01
We report an implementation of adiabatic time-dependent density functional theory based on the 4-component relativistic Dirac-Coulomb Hamiltonian and a closed-shell reference. The implementation includes noncollinear spin magnetization and full derivatives of functionals, including hybrid general...
Directory of Open Access Journals (Sweden)
Min-Suk Jo
2017-11-01
Full Text Available This paper aimed to evaluate the applicability of adiabatic humidification in the heating, ventilation, and air conditioning (HVAC systems of semiconductor cleanrooms. Accurate temperature and humidity control are essential in semiconductor cleanrooms and high energy consumption steam humidification is commonly used. Therefore, we propose an adiabatic humidification system employing a pressurized water atomizer to reduce the energy consumption. The annual energy consumption of three different HVAC systems were analyzed to evaluate the applicability of adiabatic humidification. The studied cases were as follows: (1 CASE 1: a make-up air unit (MAU with a steam humidifier, a dry cooling coil (DCC, and a fan filter unit (FFU; (2 CASE 2: a MAU with the pressurized water atomizer, a DCC, and a FFU; and (3 CASE 3: a MAU, a DCC, and a FFU, and the pressurized water atomizer installed in the return duct. The energy saving potential of adiabatic humidification over steam humidification has been proved, with savings of 8% and 23% in CASE 2 and CASE 3 compared to CASE 1, respectively. Furthermore, the pressurized water atomizer installed in the return duct exhibits greater energy saving effect than when installed in the MAU.
Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions
Czech Academy of Sciences Publication Activity Database
Zobač, Vladimír; Lewis, J.P.; Jelínek, Pavel
2016-01-01
Roč. 27, č. 28 (2016), 1-8, č. článku 285202. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : non-adiabatic molecular dynamics * molecular junctions * molecular switches * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2016
Gas phase adiabatic electron affinities of cyclopenta-fused polycyclic aromatic hydrocarbons
Todorov, P.D.; Koper, C.; van Lenthe, J.H.; Jenneskens, L.W.
2008-01-01
The B3LYP/DZP++ adiabatic electron affinity (AEA) of nine (non)-alternant polycyclic aromatic hydrocarbons are reported and discussed. Calculations became feasible for molecules this size by projecting out the near-linearly dependent part of the one-electron basis. Non-alternant PAH consisting of an
Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio
2015-06-07
We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 - 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.
DEFF Research Database (Denmark)
2014-01-01
The present invention relates to a method for detecting photo-thermal absorbance of a material utilising a mechanically temperature sensitive resonator (20) and a sample being arrange in thermal communication with the temperature sensitive resonator. The present invention further relates...
Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino
2013-01-01
Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and discussed during integrated second-year neuroanatomy, neuroradiology, and neurosurgery lectures over the 2008-2011 period. Anonymous questionnaires, evaluated according to the Likert scale, demonstrated that students appreciated this teaching procedure. Academic performance (examination grades for neuroanatomy) of the students who attended all integrated lectures of neuroanatomy, was slightly though significantly higher compared to that of students who attended these lectures only occasionally or not at all (P=0.04). Significantly better results were obtained during the national progress test (focusing on morphology) by students who attended the MRI/DTI-assisted lectures, compared to those who did so only in part or not at all, compared to the average student participating in the national test. These results were obtained by students attending the second, third and, in particular, the fourth year (P≤0.0001) courses during the three academic years mentioned earlier. This integrated neuroanatomy model can positively direct students in the direction of their future professional careers without any extra expense to the university. In conclusion, interactive learning tools, such as lectures integrated with intraoperative MRI/DTI images, motivate students to study and enhance their neuroanatomy education. Copyright © 2013 American Association of Anatomists.
Lages, Frederico Santos; Willya Douglas-de-Oliveira, Dhelfeson; Ibelli, Guilherme Siqueira; Assaf, Fatimah; Queiroz, Thallita Pereira; Costa, Fernando Oliveira
2017-01-01
Resonance frequency analysis (RFA) has become the main tool used to assess the osseointegration of dental implants. The objective of this study was to verify the relationship between the ISQ values with different prosthetic abutments and with the implant platform. The hypothesis was that ISQ values changes according to the abutment height. Twelve patients were included, whose contribution to the study was 31 dental implants (external hexagon connection implants, 4.1x10 mm). The temporary implant-supported crown and prosthetic components were removed and the following smartpegs were inserted, one at a time: type 1, in the implant platform (G1); type A3, in the microunit component with 1mm transmucosal height (G2) and type A3, in the microunit component with 5mm transmucosal height (G3). In all the smartpegs, RFA measurements were taken on mesial, distal, buccal and lingual surfaces. All evaluations were performed by a single calibrated examiner (ICC = 0.989). Data were analyzed by Friedman and Spearman correlation tests and log-linear marginal regression (pplatform.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Mandal, Anirban; Hunt, Katharine L C
2012-10-28
When a time-dependent perturbation acts on a quantum system that is initially in the nondegenerate ground state ∣0> of an unperturbed Hamiltonian H(0), the wave function acquires excited-state components ∣k> with coefficients c(k)(t) exp(-iE(k)t/ℏ), where E(k) denotes the energy of the unperturbed state ∣k>. It is well known that each coefficient c(k)(t) separates into an adiabatic term a(k)(t) that reflects the adjustment of the ground state to the perturbation--without actual transitions--and a nonadiabatic term b(k)(t) that yields the probability amplitude for a transition to the excited state. In this work, we prove that the energy at any time t also separates completely into adiabatic and nonadiabatic components, after accounting for the secular and normalization terms that appear in the solution of the time-dependent Schrödinger equation via Dirac's method of variation of constants. This result is derived explicitly through third order in the perturbation. We prove that the cross-terms between the adiabatic and nonadiabatic parts of c(k)(t) vanish, when the energy at time t is determined as an expectation value. The adiabatic term in the energy is identical to the total energy obtained from static perturbation theory, for a system exposed to the instantaneous perturbation λH'(t). The nonadiabatic term is a sum over excited states ∣k> of the transition probability multiplied by the transition energy. By evaluating the probabilities of transition to the excited eigenstates ∣k'(t)> of the instantaneous Hamiltonian H(t), we provide a physically transparent explanation of the result for E(t). To lowest order in the perturbation parameter λ, the probability of finding the system in state ∣k'(t)> is given by λ(2) ∣b(k)(t)∣(2). At third order, the transition probability depends on a second-order transition coefficient, derived in this work. We indicate expected differences between the results for transition probabilities obtained from this work
Physics of neutrino flavor transformation through matter–neutrino resonances
Directory of Open Access Journals (Sweden)
Meng-Ru Wu
2016-01-01
Full Text Available In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.
Sabah, Cumali; Dincer, Furkan; Karaaslan, Muharrem; Unal, Emin; Akgol, Oguzhan; Demirel, Ekrem
2014-07-01
We report the design, characterization and experimental verification of a perfect metamaterial absorber (MA) based on rings and cross wires (RCWs) configurations that operate in the microwave regime. The suggested MA provides perfect absorption with incident angle and polarization independencies which can be used for various shielding applications. Maximum absorption rate is 99.9% at 2.76 GHz for simulation and 99.4% at 2.82 GHz for experiment, respectively. The experimental results of the fabricated prototype are in good agreement with the numerical simulations. We also present a numerical analysis in order to explain physical interpretation of MA mechanism in detail. Moreover, a sensor application of the proposed MA is introduced to show additional feature of the model. As a result, proposed MA enables myriad potential applications in S band radar and medical technologies.
Energy Technology Data Exchange (ETDEWEB)
Korkiakoski, A.; Niinimaeki, J.; Karppinen, J.; Korpelainen, R.; Haapea, M.; Natri, A.; Tervonen, O. (Inst. of Clinical Sciences, Dept. of Physical and Rehabilitation Medicine, Univ. of Oulu, Oulu (Finland))
2009-01-15
Background: Recent studies indicate that diminished blood flow may cause low back symptoms and intervertebral disc degeneration. Purpose: To explore the association between lumbar arterial stenosis as detected by two-dimensional time-of-flight magnetic resonance angiography (2D TOF-MRA) and lumbar pain symptoms in an occupational cohort of middle-aged Finnish males. Material and Methods: 228 male subjects aged 36 to 55 years (mean 47 years) were imaged with 2D TOF-MRA. Additionally, 20 randomly selected subjects were scanned with contrast-enhanced MRA (ceMRA). In each subject, the first (L1) to fourth (L4) segmental lumbar arteries were evaluated for lumbar artery stenosis using a dichotomic scale. One subject was excluded because of poor image quality, reducing the study population to 227 subjects. Logistic regression analysis was used to evaluate the association between arterial stenosis in 2D TOF-MRA and low back pain and sciatica symptoms (intensity, duration, frequency). Results: Comparing 2D TOF-MRA and ceMRA images, the kappa value (95% confidence interval) was 0.52 (0.31-0.73). The intraobserver reliability kappa value for 2D TOF-MRA was 0.85 (0.77-0.92), and interobserver kappa was 0.57 (0.49-0.65). The sensitivity of 2D TOF-MRA in detecting stenosis was 0.58, the accuracy 0.89, and the specificity 0.94. In 97 (43%) subjects all arteries were normal, whereas 130 (57%) had at least one stenosed artery. The left L4 artery was most often affected. The degree of arterial stenosis was associated with intensity of low back and sciatic pain, and sciatica pain duration during the past 3 months. Conclusion: 2D TOF-MRA is an acceptable imaging method for arterial stenosis compared to ceMRA. Arterial stenosis was associated with subjective pain symptoms, indicating a role of decreased nutrition in spinal disorders
Crawford, Rebecca J; Cornwall, Jon; Abbott, Rebecca; Elliott, James M
2017-01-19
There is increasing interest in paravertebral muscle composition as a potential prognostic and diagnostic element in lumbar spine health. As a consequence, it is becoming popular to use magnetic resonance imaging (MRI) to examine muscle volume and fatty infiltration in lumbar paravertebral muscles to assess both age-related change and their clinical relevance in low back pain (LBP). A variety of imaging methods exist for both measuring key variables (fat, muscle) and for defining regions of interest, making pooled comparisons between studies difficult and rendering post-production analysis of MRIs confusing. We therefore propose and define a method as an option for use as a standardized MRI procedure for measuring lumbar paravertebral muscle composition, and to stimulate discussion towards establishing consensus for the analysis of skeletal muscle composition amongst clinician researchers. In this descriptive methodological study we explain our method by providing an examination of regional lumbar morphology, followed by a detailed description of the proposed technique. Identification of paravertebral muscles and vertebral anatomy includes axial E12 sheet-plastinates from cadaveric material, combined with a series of axial MRIs that encompass sequencing commonly used for investigations of muscle quality (fat-water DIXON, T1-, and T2-weighted) to illustrate regional morphology; these images are shown for L1 and L4 levels to highlight differences in regional morphology. The method for defining regions of interest (ROI) for multifidus (MF), and erector spinae (ES) is then described. Our method for defining ROIs for lumbar paravertebral muscles on axial MRIs is outlined and discussed in relation to existing literature. The method provides a foundation for standardising the quantification of muscle quality that particularly centres on examining fatty infiltration and composition. We provide recommendations relating to imaging parameters that should additionally inform a
Directory of Open Access Journals (Sweden)
Jeetendra Bajpai
2013-01-01
Full Text Available Introduction: Low backache (LBA is one of the most common problems and herniated lumbar disc is one of the most commonly diagnosed abnormalities associated with LBA. Disc herniation of the same size may be asymptomatic in one patient and can lead to severe nerve root compromise in another patient. Objective: To evaluate correlation between the clinical features of disc collapse and magnetic resonance imaging (MRI finding to determine the clinical importance of anatomical abnormalities identified by MRI technique. Summary: From January 2010 to January 2012, 75 otherwise healthy patients (43 males 32 females between the age of 19 and 55 years (average age was 44.5 years with low back pain and predominant complaint of root pain who presented to our clinic were included in the study. Materials and Methods: Proper screening was done to rule out previous spine affection and subjected to MRI. Results: The results were analyzed under four headings viz. disc herniation, disc degeneration, thecal sac deformation and neural foramen effacement. All patients had a visual analog score (VAS score more than 6. The interrater correlation coefficient kappa was calculated to be k=0.51. There were total 44 patients with herniation, 25 patients had mild, one patient had moderate degree of thecal sac deformation, 21 patients had one or more levels of foraminal effacement by the herniated tissue, 100% of the patients had disc degeneration ranging from grade 1 to 3 at different levels; and 48 patients (64% had radiculopathy, six (8% patients had bilateral and others had ipsilateral affection. Conclusion: In our study, the correlation was made between clinical findings and MRI findings. It can safely be concluded that treating physician should put more emphasis on history, clinical examination, and make the inference by these and then should correlate the clinical findings with that of MRI to reach a final diagnosis.
Kim, In Je; Kim, Dong Hyun; Song, Yeoung Wook; Guermazi, Ali; Crema, Michel D; Hunter, David J; Seo, Young-Il; Kim, Hyun Ah
2016-04-26
Previous studies showed that among persons with radiographic knee OA, periarticular lesions were significantly more common among participants with knee pain than those without. However, data were derived mostly from persons with knee OA, and there were few normal participants without knee OA in the data analyses. The objectives of this study were to investigate the prevalence of periarticular lesions detected by magnetic resonance imaging (MRI), and to examine their prevalence according to the presence of knee pain and radiographic knee osteoarthritis (OA) in community residents in Korea. Demographic and knee pain data were obtained by questionnaire from 358 participants of the population-based Hallym Aging Study who were recruited irrespective of the presence of knee OA or pain. Radiographic evaluations consisted of weight-bearing knee anteroposterior radiographs and 1.5-T MRI scans. Periarticular lesions included prepatellar or anserine bursitis, Baker's cyst, and tibiofibular cyst. The prevalence of each lesion in subjects with knee OA or knee pain compared to those without was examined by a chi-square test. The mean age of the subjects was 72 years and 50.6% were female. Radiographic knee OA was present in 34.5%. The most prevalent peri-articular lesion was Baker's cyst (27.9%), followed by tibiofibular cyst (9.5%). Anserine bursitis and tibulofibular cyst were more common in subjects with knee OA (17.5% vs 2.2% for anserine bursitis, 15.8% vs 6.1% for tibiofibular cyst in subjects with and without OA, respectively), while Baker's cyst and anserine bursitis were more common in subjects with knee pain (36.3% vs 21.8% for Baker's cyst, 14.4% vs 2.5% for anserine bursitis in subjects with and without knee pain, respectively). Periarticular lesions on MRI of the knee are common in middle-aged and elderly persons. Anserine bursitis and Baker's cysts are more common in subjects with knee pain compared to those without.
Patching, Simon G; Brough, Adrian R; Herbert, Richard B; Rajakarier, J Anton; Henderson, Peter J F; Middleton, David A
2004-03-17
We have devised methods in which cross-polarization magic-angle spinning (CP-MAS) solid-state NMR is exploited to measure rigorous parameters for binding of (13)C-labeled substrates to membrane transport proteins. The methods were applied to two proteins from Escherichia coli: a nucleoside transporter, NupC, and a glucuronide transporter, GusB. A substantial signal for the binding of methyl [1-(13)C]-beta-d-glucuronide to GusB overexpressed in native membranes was achieved with a sample that contained as little as 20 nmol of GusB protein. The data were fitted to yield a K(D) value of 4.17 mM for the labeled ligand and 0.42 mM for an unlabeled ligand, p-nitrophenyl beta-d-glucuronide, which displaced the labeled compound. CP-MAS was also used to measure binding of [1'-(13)C]uridine to overexpressed NupC. The spectrum of NupC-enriched membranes containing [1'-(13)C]uridine exhibited a large peak from substrate bound to undefined sites other than the transport site, which obscured the signal from substrate bound to NupC. In a novel application of a cross-polarization/polarization-inversion (CPPI) NMR experiment, the signal from undefined binding was eliminated by use of appropriate inversion pulse lengths. By use of CPPI in a titration experiment, a K(D) value of 2.6 mM was determined for uridine bound to NupC. These approaches are broadly applicable to quantifying binding of substrates, inhibitors, drugs, and antibiotics to numerous membrane proteins.
Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state
Energy Technology Data Exchange (ETDEWEB)
Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl
2016-05-15
Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis
DEFF Research Database (Denmark)
Brooks, Anthony Lewis
2013-01-01
Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....
Efficient near-field wireless energy transfer using adiabatic system variations
Energy Technology Data Exchange (ETDEWEB)
Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.; Soljacic, Marin
2017-11-28
Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.
Ultrafast hydrogen migration in acetylene cation driven by non-adiabatic effects.
Madjet, Mohamed El-Amine; Li, Zheng; Vendrell, Oriol
2013-03-07
Non-adiabatic dynamics of the acetylene cation is investigated using mixed quantum-classical dynamics based on trajectory surface hopping. To describe the non-adiabatic effects, two surface hopping methods are used, namely, Tully's fewest switches and Landau-Zener surface hopping. Similarities and differences between the results based on those two methods are discussed. We find that the photoionization of acetylene into the first excited state A(2)Σg(+) drives the molecule from the linear structure to a trans-bent structure. Through a conical intersection the acetylene cation can relax back to either the ground state of acetylene or vinylidene. We conclude that hydrogen migration always takes place after non-radiative electronic relaxation to the ground state of the monocation. Based on the analysis of correlation functions we identify coherent oscillations between acetylene and vinylidene with a period of about 70 fs after the electronic relaxation.
A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems
Tamascelli, Dario; Zanetti, Luca
2014-08-01
We present a quantum algorithm for solving graph isomorphism problems that is based on an adiabatic protocol. We use a collection of continuous time quantum walks, each one generated by an XY Hamiltonian, to visit the configuration space. In this way we avoid a diffusion over all the possible configurations and significantly reduce the dimensionality of the accessible Hilbert space. Within this restricted space, the graph isomorphism problem can be translated into searching for a satisfying assignment to a 2-SAT (satisfiable) formula and mapped onto a 2-local Hamiltonian without resorting to perturbation gadgets or projective techniques. We present an analysis of the time for execution of the algorithm on small graph isomorphism problem instances and discuss the issue of an implementation of the proposed adiabatic scheme on current quantum computing hardware.
Raefat, Saad; Garoum, Mohammed; Laaroussi, Najma; Thiam, Macodou; Amarray, Khaoula
2017-07-01
In this work experimental investigation of apparent thermal diffusivity and adiabatic limit temperature of expanded granular perlite mixes has been made using the flash technic. Perlite granulates were sieved to produce essentially three characteristic grain sizes. The consolidated samples were manufactured by mixing controlled proportions of the plaster and water. The effect of the particle size on the diffusivity was examined. The inverse estimation of the diffusivity and the adiabatic limit temperature at the rear face as well as the heat losses coefficients were performed using several numerical global minimization procedures. The function to be minimized is the quadratic distance between the experimental temperature rise at the rear face and the analytical model derived from the one dimension heat conduction. It is shown that, for all granulometry tested, the estimated parameters lead to a good agreement between the mathematical model and experimental data.
Adiabatic nanofocusing: Spectroscopy, transport and imaging investigation of the nano world
Giugni, Andrea
2014-11-01
Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.
DFT Study on Adiabatic and Vertical Ionization Potentials of Graphene Sheets
Directory of Open Access Journals (Sweden)
Igor K. Petrushenko
2015-01-01
Full Text Available Adiabatic and vertical ionization potentials (IPs of finite-size graphene sheets as a function of size were determined by using density functional theory. In the case of graphene a very moderate gap between vertical and adiabatic IPs was observed, whereas for coronene molecule as a model compound these values differ considerably. The ionization process induces large changes in the structure of the studied sheets of graphene; “horizontal” and “vertical” bond lengths have different patterns of alternation. It was also established that the HOMO electron density distribution in the neutral graphene sheet affects its size upon ionization. The evolution of IPs of graphene sheets towards their work functions was discussed.
The adiabatic strictly-correlated-electrons functional: kernel and exact properties.
Lani, Giovanna; Di Marino, Simone; Gerolin, Augusto; van Leeuwen, Robert; Gori-Giorgi, Paola
2016-08-03
We investigate a number of formal properties of the adiabatic strictly-correlated electrons (SCE) functional, relevant for time-dependent potentials and for kernels in linear response time-dependent density functional theory. Among the former, we focus on the compliance to constraints of exact many-body theories, such as the generalised translational invariance and the zero-force theorem. Within the latter, we derive an analytical expression for the adiabatic SCE Hartree exchange-correlation kernel in one dimensional systems, and we compute it numerically for a variety of model densities. We analyse the non-local features of this kernel, particularly the ones that are relevant in tackling problems where kernels derived from local or semi-local functionals are known to fail.
Non-adiabatic corrections to the energies of the pure vibrational states of H2
Bubin, Sergiy; Leonarski, Filip; Stanke, Monika; Adamowicz, Ludwik
2009-07-01
Nonrelativistic energies of all fifteen pure vibrational states of the H molecule have been recalculated with much higher accuracy than before. In the calculations we employed explicitly correlated Gaussian functions and an approach where the Born-Oppenheimer (BO) approximation is not assumed. The wave function of each state was expanded in terms of 10 000 Gaussians whose nonlinear parameters were optimized using a procedure involving the analytical energy gradient. The obtained non-BO energies combined with the recent BO adiabatic energies of Pachucki and Komasa [K. Pachucki, J. Komasa, J. Chem. Phys. 129 (2008) 034102] allowed us to determine new improved values of the non-adiabatic corrections for the considered states.
Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T
Kihara, T.; Kohama, Y.; Hashimoto, Y.; Katsumoto, S.; Tokunaga, M.
2013-07-01
Magneto-caloric effects (MCEs) measurement system in adiabatic condition is proposed to investigate the thermodynamic properties in pulsed magnetic fields up to 55 T. With taking the advantage of the fast field-sweep rate in pulsed field, adiabatic measurements of MCEs were carried out at various temperatures. To obtain the prompt response of the thermometer in the pulsed field, a thin film thermometer is grown directly on the sample surfaces. The validity of the present setup was demonstrated in the wide temperature range through the measurements on Gd at about room temperature and on Gd3Ga5O12 at low temperatures. The both results show reasonable agreement with the data reported earlier. By comparing the MCE data with the specific heat data, we could estimate the entropy as functions of magnetic field and temperature. The results demonstrate the possibility that our approach can trace the change in transition temperature caused by the external field.
First-order derivative couplings between excited states from adiabatic TDDFT response theory.
Ou, Qi; Bellchambers, Gregory D; Furche, Filipp; Subotnik, Joseph E
2015-02-14
We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.
Energy Technology Data Exchange (ETDEWEB)
Nebogatov, V. A.; Pastukhov, V. P., E-mail: past@nfi.kiae.ru [National Research Centre Kurchatov Institute (Russian Federation)
2013-06-15
A closed set of reduced equations describing low-frequency nonlinear flute magnetohydrodynamic (MHD) convection and the resulting nondiffusive processes of particle and energy transport in a weakly collisional cylindrical plasma with an anisotropic pressure is derived. The Chew-Goldberger-Low anisotropic magnetohydrodynamics is used as the basic dynamic model, because this model is applicable to describing flute convection in a cylindrical plasma column even in the low-frequency limit. The reduced set of equations was derived using the method of adiabatic separation of fast and slow motions. It is shown that the structure of the adiabatic transformation and the corresponding velocity field are identical to those obtained earlier in the isotropic MHD model. However, the derived heat transfer equations differ drastically from the isotropic pressure model. In particular, they indicate a tendency toward maintaining different radial profiles of the longitudinal and transverse pressures.
Advances in magnetic resonance 9
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion
Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions
Lloyd, Seth; Terhal, Barbara
2016-01-01
We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a mode...
Spherical collapse of a unified dark fluid with constant adiabatic sound speed
Xu, Lixin
2013-03-01
In this paper, we test the spherical collapse of a unified dark fluid (UDF) which has constant adiabatic sound speed. By choosing the different values of model parameters B s and α, we show the non-linear collapse for UDF and baryons which are considered for their formation of the large scale structure of our Universe. The analyzed results show that larger values of α and B s make the structure formation faster and earlier.
Spherical collapse of a unified dark fluid with constant adiabatic sound speed
Energy Technology Data Exchange (ETDEWEB)
Xu, Lixin [Dalian University of Technology, Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian (China); Dalian University of Technology, College of Advanced Science and Technology, Dalian (China)
2013-03-15
In this paper, we test the spherical collapse of a unified dark fluid (UDF) which has constant adiabatic sound speed. By choosing the different values of model parameters B{sub s} and {alpha}, we show the non-linear collapse for UDF and baryons which are considered for their formation of the large scale structure of our Universe. The analyzed results show that larger values of {alpha} and B{sub s} make the structure formation faster and earlier. (orig.)
High-Energy, Multi-Octave-Spanning Mid-IR Sources via Adiabatic Difference Frequency Generation
2016-10-17
ABSTRACT The creation of energetic , arbitrarily shapeable, multi-octave-spanning, coherent sources of short-wave, mid-wave, and long-wave mid-IR...plan. We have evaluated a brand-new concept in nonlinear optics, adiabatic difference frequency generation (ADFG) for the efficient transfer of...generation: limited bandwidth and limited conversion efficiency . 15. SUBJECT TERMS Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Page 1 of
Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter
Energy Technology Data Exchange (ETDEWEB)
Jhu, Can-Yong [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Wang, Yih-Wen, E-mail: g9410825@yuntech.edu.tw [Department of Occupational Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, 79-9, Sha-Luen-Hu, Xi-Zhou-Li, Houlong, Miaoli 35664, Taiwan, ROC (China); Shu, Chi-Min [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Chang, Jian-Chuang; Wu, Hung-Chun [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Rm. 222, Bldg. 77, 2F, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan, ROC (China)
2011-08-15
Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO{sub 2}) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO{sub 2} cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2 V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T{sub 0}), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T{sub max}) and pressure (P{sub max}). The T{sub max} and P{sub max} of the charged Li-ion battery during the runaway reaction reach 903.0 {sup o}C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO{sub 2} batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.
A scalable control system for a superconducting adiabatic quantum optimization processor
Johnson, M. W.; Bunyk, P.; Maibaum, F.; Tolkacheva, E.; Berkley, A. J.; Chapple, E. M.; Harris, R.; Johansson, J.; Lanting, T.; Perminov, I.; Ladizinsky, E.; Oh, T.; Rose, G.
2010-06-01
We have designed, fabricated and operated a scalable system for applying independently programmable time-independent, and limited time-dependent flux biases to control superconducting devices in an integrated circuit. Here we report on the operation of a system designed to supply 64 flux biases to devices in a circuit designed to be a unit cell for a superconducting adiabatic quantum optimization system. The system requires six digital address lines, two power lines, and a handful of global analog lines.
Energy Technology Data Exchange (ETDEWEB)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States)
2016-01-28
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H{sup d}, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H{sup d} individually provides a starting point (seed) from which convergence of the full H{sup d} construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4{sup 1}A states of phenol and the 1,2{sup 1}A states of NH{sub 3}, states which are coupled by conical intersections.
Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion
Palamaru, Mirel; Lalanne, Philippe
2001-01-01
International audience; An accurate model for the out-of-plane radiation losses occurring when a guided wave propagating in a conventional waveguide impinges on a photonic crystal waveguide is presented. The model makes clear that the losses originate from insertion losses resulting from a mode mismatch. A generic taper structure realizing an adiabatic modal conversion is proposed and validated through numerical computations for cavities with large Q's and large peak transmission.
Adiabatic radio-frequency potentials for the coherent manipulation of matter waves
DEFF Research Database (Denmark)
Lesanovsky, Igor; Schumm, Thorsten; Hofferberth, S.
2006-01-01
Adiabatic dressed state potentials are created when magnetic substates of trapped atoms are coupled by a radio-frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fields. The enhanced flexibility enables one...... to implement numerous configurations, including double wells, Mach-Zehnder, and Sagnac interferometers which even allows for internal state-dependent atom manipulation. These can be realized using simple and highly integrated wire geometries on atom chips....
General laser interaction theory in atom-diatom systems for both adiabatic and nonadiabatic cases.
Li, Xuan; Brue, Daniel A; Parker, Gregory A; Chang, Sin-Tarng
2006-04-27
This paper develops the general theory for laser fields interacting with bimolecular systems. In this study, we choose to use the multipolar gauge on the basis of gauge invariance. We consider both the adiabatic and nonadiabatic cases and find they produce similar interaction pictures. As an application of this theory, we present the study of rovibrational energy transfer in Ar + CO collisions in the presence of an intense laser field.
Deterministic single-atom excitation via adiabatic passage and Rydberg blockade
Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; MacCormick, C.; Bergamini, S.
2011-01-01
We propose to use adiabatic rapid passage with a chirped laser pulse in the strong dipole blockade regime to deterministically excite only one Rydberg atom from randomly loaded optical dipole traps or optical lattices. The chirped laser excitation is shown to be insensitive to the random number \\textit{N} of the atoms in the traps. Our method overcomes the problem of the $\\sqrt {N} $ dependence of the collective Rabi frequency, which was the main obstacle for deterministic single-atom excitat...
Adiabatic approximation for the evolution generated by an A-uniformly pseudo-Hermitian Hamiltonian
Wang, Wenhua; Cao, Huaixin; Chen, Zhengli
2017-09-01
We discuss an adiabatic approximation for the evolution generated by an A-uniformly pseudo-Hermitian Hamiltonian H(t). Such a Hamiltonian is a time-dependent operator H(t) similar to a time-dependent Hermitian Hamiltonian G(t) under a time-independent invertible operator A. Using the relation between the solutions of the evolution equations H(t) and G(t), we prove that H(t) and H† (t) have the same real eigenvalues and the corresponding eigenvectors form two biorthogonal Riesz bases for the state space. For the adiabatic approximate solution in case of the minimum eigenvalue and the ground state of the operator H(t), we prove that this solution coincides with the system state at every instant if and only if the ground eigenvector is time-independent. We also find two upper bounds for the adiabatic approximation error in terms of the norm distance and in terms of the generalized fidelity. We illustrate the obtained results with several examples.
Ultra Low Power Adiabatic Logic Using Diode Connected DC Biased PFAL Logic
Directory of Open Access Journals (Sweden)
Akash Agrawal
2017-01-01
Full Text Available With the continuous scaling down of technology in the field of integrated circuit design, low power dissipation has become one of the primary focuses of the research. With the increasing demand for low power devices, adiabatic logic gates prove to be an effective solution. This paper briefs on different adiabatic logic families such as ECRL (Efficient Charge Recovery Logic, 2N-2N2P and PFAL (Positive Feedback Adiabatic Logic, and presents a new proposed circuit based on the PFAL logic circuit. The aim of this paper is to simulate various logic gates using PFAL logic circuits and with the proposed logic circuit, and hence to compare the effectiveness in terms of average power dissipation and delay at different frequencies. This paper further presents implementation of C17 and C432 benchmark circuits, using the proposed logic circuit and the conventional PFAL logic circuit to compare effectiveness of the proposed logic circuit in terms of average power dissipation at different frequencies. All simulations are carried out by using HSPICE Simulator at 65 nm technology at different frequency ranges. Finally, average power dissipation characteristics are plotted with the help of graphs, and comparisons are made between PFAL logic family and new proposed PFAL logic family.
Energy Technology Data Exchange (ETDEWEB)
Coïsson, M. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Barrera, G. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); University of Torino, Chemistry Department, via P. Giuria 7, 10125 Torino (Italy); Celegato, F.; Martino, L.; Vinai, F. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Martino, P. [Politronica srl, via Livorno 60, 10144 Torino (Italy); Ferraro, G. [Center for Space Human Robotics, Istituto Italiano di Tecnologia - IIT, corso Trento 21, 10129 Torino (Italy); Tiberto, P. [INRIM, strada delle Cacce 91, 10135 Torino (Italy)
2016-10-01
An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained. - Highlights: • Development and thermodynamic modelling of a hyperthermia setup operating in non-adiabatic conditions. • Calibration of the experimental setup and validation of the model. • Accurate measurement of specific absorption rate and intrinsic loss power in non-adiabatic conditions.
A scalable readout system for a superconducting adiabatic quantum optimization system
Berkley, A. J.; Johnson, M. W.; Bunyk, P.; Harris, R.; Johansson, J.; Lanting, T.; Ladizinsky, E.; Tolkacheva, E.; Amin, M. H. S.; Rose, G.
2010-10-01
We have designed, fabricated and tested an XY-addressable readout system that is specifically tailored for the reading of superconducting flux qubits in an integrated circuit that could enable adiabatic quantum optimization. In such a system, the flux qubits only need to be read at the end of an adiabatic evolution when quantum mechanical tunneling has been suppressed, thus simplifying many aspects of the readout process. The readout architecture for an N-qubit adiabatic quantum optimization system comprises N hysteretic dc SQUIDs and N rf SQUID latches controlled by 2\\sqrt {N}+2 bias lines. The latching elements are coupled to the qubits and the dc SQUIDs are then coupled to the latching elements. This readout scheme provides two key advantages: first, the latching elements provide exceptional flux sensitivity that significantly exceeds what may be achieved by directly coupling the flux qubits to the dc SQUIDs using a practical mutual inductance. Second, the states of the latching elements are robust against the influence of ac currents generated by the switching of the hysteretic dc SQUIDs, thus allowing one to interrogate the latching elements repeatedly so as to mitigate the effects of stochastic switching of the dc SQUIDs. We demonstrate that it is possible to achieve single-qubit read error rates of < 10 - 6 with this readout scheme. We have characterized the system level performance of a 128-qubit readout system and have measured a readout error probability of 8 × 10 - 5 in the presence of optimal latching element bias conditions.
Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag
Directory of Open Access Journals (Sweden)
S. Shaaban
2012-01-01
Full Text Available Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.
Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction
Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.
2015-01-01
Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.
(Non-adiabatic) string creation on nice slices in Schwarzschild black holes
Puhm, Andrea; Rojas, Francisco; Ugajin, Tomonori
2017-04-01
Nice slices have played a pivotal role in the discussion of the black hole information paradox as they avoid regions of strong spacetime curvature and yet smoothly cut through the infalling matter and the outgoing Hawking radiation, thus, justifying the use of low energy field theory. To avoid information loss it has been argued recently, however, that local effective field theory has to break down at the horizon. To assess the extent of this breakdown in a UV complete framework we study string-theoretic effects on nice slices in Schwarzschild black holes. Our purpose is two-fold. First, we use nice slices to address various open questions and caveats of [1] where it was argued that boost-enhanced non-adiabatic string-theoretic effects at the horizon could provide a dynamical mechanism for the firewall. Second, we identify two non-adiabatic effects on nice slices in Schwarzschild black holes: pair production of open strings near the horizon enhanced by the presence of the infinite tower of highly excited string states and a late-time non-adiabatic effect intrinsic to nice slices.
Adiabatic reduction of a model of stochastic gene expression with jump Markov process.
Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C
2014-04-01
This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.
Extension of the adiabatic regularization method to spin-1/2 fields
Landete, Aitor
2015-04-01
The adiabatic regularization method was designed by L. Parker [1] for scalar fields in order to to subtract the potentially UV divergences that appear in the particle number operator. After that the method was generalized [2] to remove, in a consistent way, the UV divergences that appear in the expectation value of the stress-energy tensor in homogeneous cosmological backgrounds. We are going to provide here the extension of the adiabatic regularization method to spin-1/2 fields first given in [3]. In order to achieve this extension we will show the generalization of the adiabatic expansion for fermionic fields which differs significantly from the WKB-type expansion that works for the scalar modes. We will also show the consistency of the extended method computing well-known results, computed by other renormalization methods for a Dirac field in a FLRW spacetime, like the conformal and axial anomalies. Finally we will compute the expectation value of the stress-energy tensor for a Dirac field in a de Sitter spacetime.
Low-Power Adiabatic Computing with Improved Quasistatic Energy Recovery Logic
Directory of Open Access Journals (Sweden)
Shipra Upadhyay
2013-01-01
Full Text Available Efficiency of adiabatic logic circuits is determined by the adiabatic and non-adiabatic losses incurred by them during the charging and recovery operations. The lesser will be these losses circuit will be more energy efficient. In this paper, a new approach is presented for minimizing power consumption in quasistatic energy recovery logic (QSERL circuit which involves optimization by removing the nonadiabatic losses completely by replacing the diodes with MOSFETs whose gates are controlled by power clocks. Proposed circuit inherits the advantages of quasistatic ERL (QSERL family but is with improved power efficiency and driving ability. In order to demonstrate workability of the newly developed circuit, a 4 × 4 bit array multiplier circuit has been designed. A mathematical expression to calculate energy dissipation in proposed inverter is developed. Performance of the proposed logic (improved quasistatic energy recovery logic (IQSERL is analyzed and compared with CMOS and reported QSERL in their representative inverters and multipliers in VIRTUOSO SPECTRE simulator of Cadence in 0.18 μm UMC technology. In our proposed (IQSERL inverter the power efficiency has been improved to almost 20% up to 50 MHz and 300 fF external load capacitance in comparison to CMOS and QSERL circuits.
Chandrashekar, R.; Segar, J
2012-01-01
A unified framework to describe the adiabatic class of ensembles in the generalized statistical mechanics based on Schwammle-Tsallis two parameter (q, q') entropy is proposed. The generalized form of the equipartition theorem, virial theorem and the adiabatic theorem are derived. Each member of the class of ensembles is illustrated using the classical nonrelativistic ideal gas and we observe that the heat functions could be written in terms of the Lambert's W-function in the large N limit. In...
Energy Technology Data Exchange (ETDEWEB)
Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)
2017-10-15
We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Dobrescu, Bogdan A. [Fermilab; Fox, Patrick J. [Fermilab; Kearney, John [Fermilab
2017-05-23
We study models that produce a Higgs boson plus photon ($h^0 \\gamma$) resonance at the LHC. When the resonance is a $Z'$ boson, decays to $h^0 \\gamma$ occur at one loop. If the $Z'$ boson couples at tree-level to quarks, then the $h^0 \\gamma$ branching fraction is typically of order $10^{-5}$ or smaller. Nevertheless, there are models that would allow the observation of $Z' \\to h^0 \\gamma$ at $\\sqrt{s} = 13$ TeV with a cross section times branching fraction larger than 1 fb for a $Z'$ mass in the 200--450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The 1-loop decay of the $Z'$ into lepton pairs competes with $h^0 \\gamma$, even if the $Z'$ couplings to leptons vanish at tree level. We also present a model in which a $Z'$ boson decays into a Higgs boson and a pair of collimated photons, mimicking an $h^0 \\gamma$ resonance. In this model, the $h^0 \\gamma$ resonance search would be the discovery mode for a $Z'$ as heavy as 2 TeV. When the resonance is a scalar, although decay to $h^0 \\gamma$ is forbidden by angular momentum conservation, the $h^0$ plus collimated photons channel is allowed. We comment on prospects of observing an $h^0 \\gamma$ resonance through different Higgs decays, on constraints from related searches, and on models where $h^0$ is replaced by a nonstandard Higgs boson.
Tremblay, Jean Christophe
2013-06-28
A model for treating excitation and relaxation of adsorbates at metallic surfaces induced by non-adiabatic coupling is developed. The derivation is based on the concept of resonant electron transfer, where the adsorbate serves as a molecular bridge for the inelastic transition between an electron source and a sink. In this picture, energy relaxation and scanning tunneling microscopy (STM) at metallic surfaces are treated on an equal footing as a quasi-thermal process. The model goes beyond the local harmonic approximation and allows for an unbiased description of floppy systems with multiple potential wells. Further, the limitation of the product ansatz for the vibronic wave function to include the position-dependence of the non-adiabatic couplings is avoided by explicitly enforcing detailed balance. The theory is applied to the excitation of hydrogen on palladium, which has multiple local potential minima connected by low energy barriers. The main aspects investigated are the lifetimes of adsorbate vibrations in different adsorption sites, as well as the dependence of the excitation, response, and transfer rates on an applied potential bias. The excitation and relaxation simulations reveal intricate population dynamics that depart significantly from the simplistic tunneling model in a truncated harmonic potential. In particular, the population decay from an initially occupied local minimum induced by the contact with an STM tip is found to be better described by a double exponential. The two rates are interpreted as a response to the system perturbation and a transfer rate following the perturbation. The transfer rate is found to obey a power law, as was the case in previous experimental and theoretical work.
Effects of non-adiabatic and Coriolis couplings on the bound states of He(2 {sup 3}S)+He(2 {sup 3}P)
Energy Technology Data Exchange (ETDEWEB)
Cocks, D G; Whittingham, I B [School of Engineering and Physical Sciences, James Cook University, Townsville 4811 (Australia); Peach, G, E-mail: daniel.cocks@jcu.edu.a [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)
2010-07-14
The effects of non-adiabatic and Coriolis couplings on the bound states of the He(2 {sup 3}S{sub 1}) + He(2 {sup 3}P{sub j}) system, where j = 0, 1, 2, are investigated using the recently available ab initio short-range {sup 1,} {sup 3,} {sup 5{Sigma}+}{sub g,} {sub u} and {sup 1,} {sup 3,} {sup 5{Pi}}{sub g,} {sub u} potentials computed by Deguilhem et al (2009 J. Phys. B: At. Mol. Opt. Phys. 42 015102). Three sets of calculations have been undertaken: single-channel, multichannel without Coriolis couplings and full multichannel with Coriolis couplings. We find that non-adiabatic effects are negligible for 0{sup -}{sub u}, 0{sup {+-}}{sub g}, 1{sub u}, 2{sub g}, 2{sub u}, 3{sub g} Hund case (c) sets of levels in the j = 2 asymptote but can be up to 15% for some of the 0{sup +}{sub u} and 1{sub g} sets of levels where near degeneracies are present in the single-channel diagonalized potentials. Coriolis couplings are most significant for weakly bound levels, ranging from 1% to 5% for total angular momenta J = 1, 2 and up to 10% for J = 3. Levels near the j = 1 and j = 0 asymptotes agree closely with previous multichannel calculations based upon long-range potentials constructed from retarded resonance dipole and dispersion interactions. Assignment of theoretical levels to experimental observations using criteria based upon the short-range character of each level and their coupling to metastable ground states produces well-matched assignments for the majority of observations. After a 1% increase in the slope of the {sup 5{Sigma}+}{sub g,} {sub u} and {sup 5{Pi}}{sub g,} {sub u} input potentials near the classical turning point is applied, improved matching of previous assignments is obtained and further assignments can be made, reproducing very closely the number of experimental observations.
Orlova, Anna; Blinder, Rémi; Kermarrec, Edwin; Dupont, Maxime; Laflorencie, Nicolas; Capponi, Sylvain; Mayaffre, Hadrien; Berthier, Claude; Paduan-Filho, Armando; Horvatić, Mladen
2017-02-01
By measuring the nuclear magnetic resonance (NMR) T1-1 relaxation rate in the Br (bond) doped DTN compound, Ni (Cl1 -xBrx )2-4 SC (NH2 )2(DTN X ) , we show that the low-energy spin dynamics of its high magnetic field "Bose-glass" regime is dominated by a strong peak of spin fluctuations found at the nearly doping-independent position H*≅13.6 T . From its temperature and field dependence, we conclude that this corresponds to a level crossing of the energy levels related to the doping-induced impurity states. Observation of the local NMR signal from the spin adjacent to the doped Br allowed us to fully characterize this impurity state. We have thus quantified a microscopic theoretical model that paves the way to better understanding of the Bose-glass physics in DTN X , as revealed in the related theoretical study [M. Dupont, S. Capponi, and N. Laflorencie, Phys. Rev. Lett. 118, 067204 (2017)., 10.1103/PhysRevLett.118.067204].
Nakamura, S; Shcherbakov, O A; Furutaka, K; Harada, H; Katoh, T
2003-01-01
In order to develop a neutron flux monitor for long-term neutron irradiation, the thermal neutron (2,200 m/s neutron) capture cross section (sigma sub 0) and the resonance integral (I sub 0) of the sup 1 sup 0 sup 9 Ag(n, gamma) sup 1 sup 1 sup 0 sup m Ag reaction were measured by the activation and gamma-ray spectroscopic methods. Silver foils were irradiated with and without a Cd shield capsule at the Rikkyo Research Reactor. The Co/Al and Au/Al alloy wires were irradiated together with silver foils in order to monitor the thermal neutron flux and the fraction of the epi-thermal neutron part (Westcott's index). A high purity Ge detector was used for the gamma-ray measurements of the irradiated samples. The sigma sub 0 and the I sub 0 of the sup 1 sup 0 sup 9 Ag(n, gamma) sup 1 sup 1 sup 0 sup m Ag reaction are 4.12+-0.10 b and 67.9+-3.1 b, respectively. The sigma sub 0 is 12% smaller than the tabulated one (4.7+-0.2 b). On the other hand, the I sub 0 is in agreement with the tabulated one (72.3+-4.0 b) with...
Esposito, A.; Polosa, A.D.
2016-01-01
Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.
Neutron resonance spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Gunsing, F
2005-06-15
The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)
Indian Academy of Sciences (India)
IAS Admin
996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...
Indian Academy of Sciences (India)
IAS Admin
817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...
Indian Academy of Sciences (India)
IAS Admin
369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.
Resonant multiphoton ionisation probe of the photodissociation dynamics of ammonia.
Smith, Adam D; Watts, Hannah M; Jager, Edward; Horke, Daniel A; Springate, Emma; Alexander, Oliver; Cacho, Cephise; Chapman, Richard T; Minns, Russell S
2016-10-12
The dissociation dynamics of the Ã-state of ammonia have been studied using a resonant multiphoton ionisation probe in a photoelectron spectroscopy experiment. The use of a resonant intermediate in the multiphoton ionisation process changes the ionisation propensity, allowing access to different ion states when compared with equivalent single photon ionisation experiments. Ionisation through the E' 1A1' Rydberg intermediate means we maintain overlap with the ion state for an extended period, allowing us to monitor the excited state population for several hundred femtoseconds. The vibrational states in the photoelectron spectrum show two distinct timescales, 200 fs and 320 fs, that we assign to the non-adiabatic and adiabatic dissociation processes respectively. The different timescales derive from differences in the wavepacket trajectories for the two dissociation pathways that resonantly excite different vibrational states in the intermediate Rydberg state. The timescales are similar to those obtained from time resolved ion kinetic energy release measurements, suggesting we can measure the different trajectories taken out to the region of conical intersection.
Recent results on giant dipole resonance decays in highly excited nuclei
Energy Technology Data Exchange (ETDEWEB)
Snover, K.A.
1991-12-31
Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus `motionally narrowed` GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following {sup 58}Ni {plus} {sup 92}Zr fusion. 22 refs.
Recent results on giant dipole resonance decays in highly excited nuclei
Energy Technology Data Exchange (ETDEWEB)
Snover, K.A.
1991-01-01
Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus motionally narrowed' GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following [sup 58]Ni [plus] [sup 92]Zr fusion. 22 refs.
Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes
2012-09-01
Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.
Central diffractive resonance production at the LHC
Directory of Open Access Journals (Sweden)
Fiore Roberto
2016-01-01
Full Text Available Central production of resonances resulting from the scattering of Pomerons in the central rapidity region of proton-proton scattering is studied. Estimates for relevant cross sections are presented.
Resonance propagation in heavy-ion scattering
Indian Academy of Sciences (India)
We also observe that, for not so heavy nuclear systems and/or for fast moving resonances, the shape, magnitude and peak position of the invariant mass distribution is substantially different if the contributions from the resonance decay inside and outside are summedup at the amplitude level (coherently) or at the cross ...
Scattering cross section for various potential systems
Directory of Open Access Journals (Sweden)
Myagmarjav Odsuren
2017-08-01
Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.