Albash, Tameem; Lidar, Daniel A.
2018-01-01
Adiabatic quantum computing (AQC) started as an approach to solving optimization problems and has evolved into an important universal alternative to the standard circuit model of quantum computing, with deep connections to both classical and quantum complexity theory and condensed matter physics. This review gives an account of the major theoretical developments in the field, while focusing on the closed-system setting. The review is organized around a series of topics that are essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments and limitations, and its scope in the more general setting of computational complexity theory. Several variants are presented of the adiabatic theorem, the cornerstone of AQC, and examples are given of explicit AQC algorithms that exhibit a quantum speedup. An overview of several proofs of the universality of AQC and related Hamiltonian quantum complexity theory is given. Considerable space is devoted to stoquastic AQC, the setting of most AQC work to date, where obstructions to success and their possible resolutions are discussed.
Geometrizing adiabatic quantum computation
Rezakhani, Ali; Kuo, Wan-Jung; Hamma, Alioscia; Lidar, Daniel; Zanardi, Paolo
2010-03-01
A time-optimal approach to adiabatic quantum computation (AQC) is formulated. The corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. We demonstrate this geometrization through some examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance. The underlying connection with quantum phase transitions is also explored.
Quantum Computation by Adiabatic Evolution
Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Sipser, Michael
2000-01-01
We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system evolves to the desired final ground state, the evolution time must be big enough. The time required depends on ...
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Adiabatic quantum computation and quantum annealing theory and practice
McGeoch, Catherine C
2014-01-01
Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'''' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a nov
Adiabatic Quantum Computation with Neutral Atoms
Biedermann, Grant
2013-03-01
We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories
Quadratic fermionic interactions yield effective Hamiltonians for adiabatic quantum computing
O'Hara, Michael J.; O'Leary, Dianne P.
2008-01-01
Polynomially-large ground-state energy gaps are rare in many-body quantum systems, but useful for adiabatic quantum computing. We show analytically that the gap is generically polynomially-large for quadratic fermionic Hamiltonians. We then prove that adiabatic quantum computing can realize the ground states of Hamiltonians with certain random interactions, as well as the ground states of one, two, and three-dimensional fermionic interaction lattices, in polynomial time. Finally, we use the J...
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Quantum adiabatic computation with a constant gap is not useful in one dimension
Energy Technology Data Exchange (ETDEWEB)
Hastings, Matthew [Los Alamos National Laboratory
2009-01-01
We show that it is possible to use a classical computer to efficiently simulate the adiabatic evolution of a quantum system in one dimension with a constant spectral gap, starting the adiabatic evolution from a known initial product state. The proof relies on a recently proven area law for such systems, implying the existence of a good matrix product representation of the ground state, combined with an appropriate algorithm to update the matrix product state as the Hamiltonian is changed. This implies that adiabatic evolution with such Hamiltonians is not useful for universal quantum computation. Therefore, adiabatic algorithms which are useful for universal quantum computation either require a spectral gap tending to zero or need to be implemented in more than one dimension (we leave open the question of the computational power of adiabatic simulation with a constant gap in more than one dimension).
Quantum Adiabatic Brachistochrone
Rezakhani, A. T.; Kuo, W.-J.; Hamma, A.; Lidar, D. A.; Zanardi, P.
2009-08-01
We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.
Directory of Open Access Journals (Sweden)
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
Adapting the traveling salesman problem to an adiabatic quantum computer
Warren, Richard H.
2013-04-01
We show how to guide a quantum computer to select an optimal tour for the traveling salesman. This is significant because it opens a rapid solution method for the wide range of applications of the traveling salesman problem, which include vehicle routing, job sequencing and data clustering.
Dissipation in adiabatic quantum computers: lessons from an exactly solvable model
Keck, Maximilian; Montangero, Simone; Santoro, Giuseppe E.; Fazio, Rosario; Rossini, Davide
2017-11-01
We introduce and study the adiabatic dynamics of free-fermion models subject to a local Lindblad bath and in the presence of a time-dependent Hamiltonian. The merit of these models is that they can be solved exactly, and will help us to study the interplay between nonadiabatic transitions and dissipation in many-body quantum systems. After the adiabatic evolution, we evaluate the excess energy (the average value of the Hamiltonian) as a measure of the deviation from reaching the final target ground state. We compute the excess energy in a variety of different situations, where the nature of the bath and the Hamiltonian is modified. We find robust evidence of the fact that an optimal working time for the quantum annealing protocol emerges as a result of the competition between the nonadiabatic effects and the dissipative processes. We compare these results with the matrix-product-operator simulations of an Ising system and show that the phenomenology we found also applies for this more realistic case.
Adiabaticity in open quantum systems
Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo
2016-03-01
We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.
Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions
Rezakhani, A. T.; Abasto, D. F.; Lidar, D. A.; Zanardi, P.
2010-07-01
We elucidate the geometry of quantum adiabatic evolution. By minimizing the deviation from adiabaticity, we find a Riemannian metric tensor underlying adiabatic evolution. Equipped with this tensor, we identify a unified geometric description of quantum adiabatic evolution and quantum phase transitions that generalizes previous treatments to allow for degeneracy. The same structure is relevant for applications in quantum information processing, including adiabatic and holonomic quantum computing, where geodesics over the manifold of control parameters correspond to paths which minimize errors. We illustrate this geometric structure with examples, for which we explicitly find adiabatic geodesics. By solving the geodesic equations in the vicinity of a quantum critical point, we identify universal characteristics of optimal adiabatic passage through a quantum phase transition. In particular, we show that in the vicinity of a critical point describing a second-order quantum phase transition, the geodesic exhibits power-law scaling with an exponent given by twice the inverse of the product of the spatial and scaling dimensions.
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size.
Fixed-point adiabatic quantum search
Dalzell, Alexander M.; Yoder, Theodore J.; Chuang, Isaac L.
2017-01-01
Fixed-point quantum search algorithms succeed at finding one of M target items among N total items even when the run time of the algorithm is longer than necessary. While the famous Grover's algorithm can search quadratically faster than a classical computer, it lacks the fixed-point property—the fraction of target items must be known precisely to know when to terminate the algorithm. Recently, Yoder, Low, and Chuang [Phys. Rev. Lett. 113, 210501 (2014), 10.1103/PhysRevLett.113.210501] gave an optimal gate-model search algorithm with the fixed-point property. Previously, it had been discovered by Roland and Cerf [Phys. Rev. A 65, 042308 (2002), 10.1103/PhysRevA.65.042308] that an adiabatic quantum algorithm, operating by continuously varying a Hamiltonian, can reproduce the quadratic speedup of gate-model Grover search. We ask, can an adiabatic algorithm also reproduce the fixed-point property? We show that the answer depends on what interpolation schedule is used, so as in the gate model, there are both fixed-point and non-fixed-point versions of adiabatic search, only some of which attain the quadratic quantum speedup. Guided by geometric intuition on the Bloch sphere, we rigorously justify our claims with an explicit upper bound on the error in the adiabatic approximation. We also show that the fixed-point adiabatic search algorithm can be simulated in the gate model with neither loss of the quadratic Grover speedup nor of the fixed-point property. Finally, we discuss natural uses of fixed-point algorithms such as preparation of a relatively prime state and oblivious amplitude amplification.
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Directory of Open Access Journals (Sweden)
Jeong Ryeol Choi
2015-01-01
Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.
Quantum Pumping and Adiabatic Transport in Nanostructures
Wakker, G.M.M.
2011-01-01
This thesis consists of a theoretical exploration of quantum transport phenomena and quantum dynamics in nanostructures. Specifically, we investigate adiabatic quantum pumping of charge in several novel types of nanostructures involving open quantum dots or graphene. For a bilayer of graphene we
Relaxation versus adiabatic quantum steady-state preparation
Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo
2017-04-01
Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.
Partial evolution based local adiabatic quantum search
Sun, Jie; Lu, Song-Feng; Liu, Fang; Yang, Li-Ping
2012-01-01
Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one. Later, they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database. In the present paper, following the idea of Roland and Cerf [Roland J and Cerf N J 2002 Phys. Rev. A 65 042308], if within the small symmetric evolution interval defined by Zhang et al., a local adiabatic evolution is performed instead of the original “global" one, this “new" algorithm exhibits slightly better performance, although they are progressively equivalent with M increasing. In addition, the proof of the optimality for this partial evolution based local adiabatic search when M = 1 is also presented. Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search, which are found to have the same phenomenon above, are also discussed.
Quantum adiabatic protocols using emergent local Hamiltonians.
Modak, Ranjan; Vidmar, Lev; Rigol, Marcos
2017-10-01
We present two applications of emergent local Hamiltonians to speed up quantum adiabatic protocols for isolated noninteracting and weakly interacting fermionic systems in one-dimensional lattices. We demonstrate how to extract maximal work from initial band-insulating states, and how to adiabatically transfer systems from linear and harmonic traps into box traps. Our protocols consist of two stages. The first one involves a free expansion followed by a quench to an emergent local Hamiltonian. In the second stage, the emergent local Hamiltonian is "turned off" quasistatically. For the adiabatic transfer from a harmonic trap, we consider both zero- and nonzero-temperature initial states.
Quantum adiabatic Markovian master equations
Albash, Tameem; Boixo, Sergio; Lidar, Daniel A.; Zanardi, Paolo
2012-12-01
We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state.
Adiabatic pumping through interacting quantum dots
Splettstoesser, Janine; Governale, Michele; König, Jürgen; Fazio, Rosario
2005-01-01
We present a general formalism to study adiabatic pumping through interacting quantum dots. We derive a formula that relates the pumped charge to the local, instantaneous Green function of the dot. This formula is then applied to the infinite-U Anderson model both for weak and strong tunnel-coupling strengths.
Adiabatic Quantum Optimization for Associative Memory Recall
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Adiabatic Quantum Algorithm for Search Engine Ranking
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Li, Shu-shen; Long, Gui-Lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi
2001-01-01
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.
Traub, Joseph F.
2014-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Nonadiabatic corrections to a quantum dot quantum computer ...
Indian Academy of Sciences (India)
2014-07-02
Jul 2, 2014 ... Abstract. The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the nonadiabatic cor- rections to an adiabatic quantum computer are merely theoretical considerations. By the above reason, we consider the ...
Nonadiabatic corrections to a quantum dot quantum computer ...
Indian Academy of Sciences (India)
The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the nonadiabatic corrections to an adiabatic quantum computer are merely theoretical considerations. By the above reason, we consider the particular case of a ...
Quantum Spin Glasses, Annealing and Computation
Tanaka, Shu; Tamura, Ryo; Chakrabarti, Bikas K.
2017-05-01
List of tables; List of figures, Preface; 1. Introduction; Part I. Quantum Spin Glass, Annealing and Computation: 2. Classical spin models from ferromagnetic spin systems to spin glasses; 3. Simulated annealing; 4. Quantum spin glass; 5. Quantum dynamics; 6. Quantum annealing; Part II. Additional Notes: 7. Notes on adiabatic quantum computers; 8. Quantum information and quenching dynamics; 9. A brief historical note on the studies of quantum glass, annealing and computation.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 9. Quantum Computation - Particle and Wave Aspects of Algorithms. Apoorva Patel. General Article Volume 16 ... Keywords. Boolean logic; computation; computational complexity; digital language; Hilbert space; qubit; superposition; Feynman.
Superadiabatic Controlled Evolutions and Universal Quantum Computation
Santos, Alan C.; Sarandy, Marcelo S.
2015-01-01
Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts. PMID:26511064
Probing Entanglement in Adiabatic Quantum Optimization with Trapped Ions
Directory of Open Access Journals (Sweden)
Philipp eHauke
2015-04-01
Full Text Available Adiabatic quantum optimization has been proposed as a route to solve NP-complete problems, with a possible quantum speedup compared to classical algorithms. However, the precise role of quantum effects, such as entanglement, in these optimization protocols is still unclear. We propose a setup of cold trapped ions that allows one to quantitatively characterize, in a controlled experiment, the interplay of entanglement, decoherence, and non-adiabaticity in adiabatic quantum optimization. We show that, in this way, a broad class of NP-complete problems becomes accessible for quantum simulations, including the knapsack problem, number partitioning, and instances of the max-cut problem. Moreover, a general theoretical study reveals correlations of the success probability with entanglement at the end of the protocol. From exact numerical simulations for small systems and linear ramps, however, we find no substantial correlations with the entanglement during the optimization. For the final state, we derive analytically a universal upper bound for the success probability as a function of entanglement, which can be measured in experiment. The proposed trapped-ion setups and the presented study of entanglement address pertinent questions of adiabatic quantum optimization, which may be of general interest across experimental platforms.
Steffen, Matthias
Solving computational problems require resources such as time, memory, and space. In the classical model of computation, computational complexity theory has categorized problems according to how difficult it is to solve them as the problem size increases. Remarkably, a quantum computer could solve certain problems using fundamentally fewer resources compared to a conventional computer, and therefore has garnered significant attention. Yet because of the delicate nature of entangled quantum states, the construction of a quantum computer poses an enormous challenge for experimental and theoretical scientists across multi-disciplinary areas including physics, engineering, materials science, and mathematics. While the field of quantum computing still has a long way to grow before reaching full maturity, state-of-the-art experiments on the order of 10 qubits are beginning to reach a fascinating stage at which they can no longer be emulated using even the fastest supercomputer. This raises the hope that small quantum computer demonstrations could be capable of approximately simulating or solving problems that also have practical applications. In this talk I will review the concepts behind quantum computing, and focus on the status of superconducting qubits which includes steps towards quantum error correction and quantum simulations.
Models of optical quantum computing
Directory of Open Access Journals (Sweden)
Krovi Hari
2017-03-01
Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.
Ladd, T D; Jelezko, F; Laflamme, R; Nakamura, Y; Monroe, C; O'Brien, J L
2010-03-04
Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.
Quantum tunneling, adiabatic invariance and black hole spectroscopy
Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao
2017-05-01
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.
Quantum tunneling, adiabatic invariance and black hole spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)
2017-05-15
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)
A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems
Tamascelli, Dario; Zanetti, Luca
2014-08-01
We present a quantum algorithm for solving graph isomorphism problems that is based on an adiabatic protocol. We use a collection of continuous time quantum walks, each one generated by an XY Hamiltonian, to visit the configuration space. In this way we avoid a diffusion over all the possible configurations and significantly reduce the dimensionality of the accessible Hilbert space. Within this restricted space, the graph isomorphism problem can be translated into searching for a satisfying assignment to a 2-SAT (satisfiable) formula and mapped onto a 2-local Hamiltonian without resorting to perturbation gadgets or projective techniques. We present an analysis of the time for execution of the algorithm on small graph isomorphism problem instances and discuss the issue of an implementation of the proposed adiabatic scheme on current quantum computing hardware.
Designing single-qutrit quantum gates via tripod adiabatic passage
Directory of Open Access Journals (Sweden)
M. Amniat-Talab
2014-04-01
Full Text Available In this paper, we use stimulated Raman adiabatic passage technique to implement single-qutrit quantum gates in tripod systems. It is shown by using the Morris-Shore (MS transformation, the six-state problem with 5 pulsed fields can be reduced to a basis that decouples two states from the others. This imposes three pulses not connected to the initial condition with have the same shape. Using this method, the six-state penta-pod system is reduced to a tripod system. We can design single-qutrit quantum gates by ignoring the fragile dynamical phase, and by suitable design of Rabi frequencies of the effective Hamiltonian
2010-03-04
be required. In 2001, a breakthrough known as the KLM (Knill–Laflamme– Milburn13) scheme showed that scalable quantum computing is possible using only...and single-photon detection to induce interactions nondeterministically. In the past five years, the KLM scheme has moved from a mathematical proof
Indian Academy of Sciences (India)
start-up company at liT. Mumbai. Part 1. Building Blocks of Quan- tum Computers, Resonance, ..... by modeling the errors caused by decoherence. The interaction of a quantum system with the environment obstructs the unitary evolution of the system and causes dissipation of information, reducing coherence of information.
Adiabatic response and quantum thermoelectrics for ac-driven quantum systems
Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana
2016-02-01
We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.
Resonant transition-based quantum computation
Chiang, Chen-Fu; Hsieh, Chang-Yu
2017-05-01
In this article we assess a novel quantum computation paradigm based on the resonant transition (RT) phenomenon commonly associated with atomic and molecular systems. We thoroughly analyze the intimate connections between the RT-based quantum computation and the well-established adiabatic quantum computation (AQC). Both quantum computing frameworks encode solutions to computational problems in the spectral properties of a Hamiltonian and rely on the quantum dynamics to obtain the desired output state. We discuss how one can adapt any adiabatic quantum algorithm to a corresponding RT version and the two approaches are limited by different aspects of Hamiltonians' spectra. The RT approach provides a compelling alternative to the AQC under various circumstances. To better illustrate the usefulness of the novel framework, we analyze the time complexity of an algorithm for 3-SAT problems and discuss straightforward methods to fine tune its efficiency.
Adiabatic Evolution of an Open Quantum System in its Instantaneous Steady State
Li, Dongxiao; Wu, Songlin; Shen, Hongzhi; Yi, Xuexi
2017-11-01
In this paper, we derive an adiabatic condition for an quantum system subject to environment. The adiabaticity defined here dicates that the open quantum system prepared initially in its steady state would adiabatically follow its instantaneous steady state. We find that if the driving on the open system does not induce transition between the eigenstates of the instantaneous steady state, the open system can evolve adiabatically. In order to examine the validity of the adiabatic condition, a two-band model is exemplified. The results show that the topological quantum phase transition presented in the two-band model is caused by the competition between the effect of decay and the spoiling of the adiabaticity. The geometric phase is also calculated and discussed when the adiabatic condition is satisfied.
Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions
Lloyd, Seth; Terhal, Barbara
2016-01-01
We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a mode...
Quantum information and computation
Bub, Jeffrey
2005-01-01
This article deals with theoretical developments in the subject of quantum information and quantum computation, and includes an overview of classical information and some relevant quantum mechanics. The discussion covers topics in quantum communication, quantum cryptography, and quantum computation, and concludes by considering whether a perspective in terms of quantum information sheds new light on the conceptual problems of quantum mechanics.
Superadiabatic holonomic quantum computation in cavity QED
Liu, Bao-Jie; Huang, Zhen-Hua; Xue, Zheng-Yuan; Zhang, Xin-Ding
2017-06-01
Adiabatic quantum control is a powerful tool for quantum engineering and a key component in some quantum computation models, where accurate control over the timing of the involved pulses is not needed. However, the adiabatic condition requires that the process be very slow and thus limits its application in quantum computation, where quantum gates are preferred to be fast due to the limited coherent times of the quantum systems. Here, we propose a feasible scheme to implement universal holonomic quantum computation based on non-Abelian geometric phases with superadiabatic quantum control, where the adiabatic manipulation is sped up while retaining its robustness against errors in the timing control. Consolidating the advantages of both strategies, our proposal is thus both robust and fast. The cavity QED system is adopted as a typical example to illustrate the merits where the proposed scheme can be realized in a tripod configuration by appropriately controlling the pulse shapes and their relative strength. To demonstrate the distinct performance of our proposal, we also compare our scheme with the conventional adiabatic strategy.
An Adiabatic Quantum Algorithm for Determining Gracefulness of a Graph
Hosseini, Sayed Mohammad; Davoudi Darareh, Mahdi; Janbaz, Shahrooz; Zaghian, Ali
2017-07-01
Graph labelling is one of the noticed contexts in combinatorics and graph theory. Graceful labelling for a graph G with e edges, is to label the vertices of G with 0, 1, ℒ, e such that, if we specify to each edge the difference value between its two ends, then any of 1, 2, ℒ, e appears exactly once as an edge label. For a given graph, there are still few efficient classical algorithms that determine either it is graceful or not, even for trees - as a well-known class of graphs. In this paper, we introduce an adiabatic quantum algorithm, which for a graceful graph G finds a graceful labelling. Also, this algorithm can determine if G is not graceful. Numerical simulations of the algorithm reveal that its time complexity has a polynomial behaviour with the problem size up to the range of 15 qubits. A general sufficient condition for a combinatorial optimization problem to have a satisfying adiabatic solution is also derived.
Towards generic adiabatic elimination for bipartite open quantum systems
Azouit, R.; Chittaro, F.; Sarlette, A.; Rouchon, P.
2017-12-01
We consider a composite open quantum system consisting of a fast subsystem coupled to a slow one. Using the time scale separation, we develop an adiabatic elimination technique to derive at any order the reduced model describing the slow subsystem. The method, based on an asymptotic expansion and geometric singular perturbation theory, ensures the physical interpretation of the reduced second-order model by giving the reduced dynamics in a Lindblad form and the state reduction in Kraus map form. We give explicit second-order formulas for Hamiltonian or cascade coupling between the two subsystems. These formulas can be used to engineer, via a careful choice of the fast subsystem, the Hamiltonian and Lindbald operators governing the dissipative dynamics of the slow subsystem.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-04-11
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-04-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Automata and Quantum Computing
Ambainis, Andris; Yakaryilmaz, Abuzer
2015-01-01
Quantum computing is a new model of computation, based on quantum physics. Quantum computers can be exponentially faster than conventional computers for problems such as factoring. Besides full-scale quantum computers, more restricted models such as quantum versions of finite automata have been studied. In this paper, we survey various models of quantum finite automata and their properties. We also provide some open questions and new directions for researchers.
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Quantum gates in mesoscopic atomic ensembles based on adiabatic passage and Rydberg blockade
Beterov, I. I.; Saffman, M.; Yakshina, E. A.; Zhukov, V. P.; Tretyakov, D. B.; Entin, V. M.; Ryabtsev, I. I.; Mansell, C. W.; MacCormick, C.; Bergamini, S.; Fedoruk, M. P.
2012-01-01
We present schemes for geometric phase compensation in adiabatic passage which can be used for the implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number of strongly interacting atoms. Protocols using double sequences of stimulated Raman adiabatic passage (STIRAP) or adiabatic rapid passage (ARP) pulses are analyzed. Switching the sign of the detuning between two STIRAP sequences, or inverting the phase between two ARP pulses, provides state transfer wit...
Quantum computational supremacy
Harrow, Aram W.; Montanaro, Ashley
2017-09-01
The field of quantum algorithms aims to find ways to speed up the solution of computational problems by using a quantum computer. A key milestone in this field will be when a universal quantum computer performs a computational task that is beyond the capability of any classical computer, an event known as quantum supremacy. This would be easier to achieve experimentally than full-scale quantum computing, but involves new theoretical challenges. Here we present the leading proposals to achieve quantum supremacy, and discuss how we can reliably compare the power of a classical computer to the power of a quantum computer.
De Raedt, H. A.; Hams, A. H.; Michielsen, K. F. L.; De Raedt, K.
2000-01-01
We describe a quantum computer emulator for a generic, general purpose quantum computer. This emulator consists of a simulator of the physical realization of the quantum computer and a graphical user interface to program and control the simulator. We illustrate the use of the quantum computer emulator through various implementations of the Deutsch-Jozsa and Grover's database search algorithm.
Quantum Computing for Computer Architects
Metodi, Tzvetan
2011-01-01
Quantum computers can (in theory) solve certain problems far faster than a classical computer running any known classical algorithm. While existing technologies for building quantum computers are in their infancy, it is not too early to consider their scalability and reliability in the context of the design of large-scale quantum computers. To architect such systems, one must understand what it takes to design and model a balanced, fault-tolerant quantum computer architecture. The goal of this lecture is to provide architectural abstractions for the design of a quantum computer and to explore
Resource efficient gadgets for compiling adiabatic quantum optimization problems
Babbush, Ryan; O'Gorman, Bryan; Aspuru-Guzik, Alán
2013-11-01
We develop a resource efficient method by which the ground-state of an arbitrary k-local, optimization Hamiltonian can be encoded as the ground-state of a (k-1)-local optimization Hamiltonian. This result is important because adiabatic quantum algorithms are often most easily formulated using many-body interactions but experimentally available interactions are generally 2-body. In this context, the efficiency of a reduction gadget is measured by the number of ancilla qubits required as well as the amount of control precision needed to implement the resulting Hamiltonian. First, we optimize methods of applying these gadgets to obtain 2-local Hamiltonians using the least possible number of ancilla qubits. Next, we show a novel reduction gadget which minimizes control precision and a heuristic which uses this gadget to compile 3-local problems with a significant reduction in control precision. Finally, we present numerics which indicate a substantial decrease in the resources required to implement randomly generated, 3-body optimization Hamiltonians when compared to other methods in the literature.
Optimal blind quantum computation.
Mantri, Atul; Pérez-Delgado, Carlos A; Fitzsimons, Joseph F
2013-12-06
Blind quantum computation allows a client with limited quantum capabilities to interact with a remote quantum computer to perform an arbitrary quantum computation, while keeping the description of that computation hidden from the remote quantum computer. While a number of protocols have been proposed in recent years, little is currently understood about the resources necessary to accomplish the task. Here, we present general techniques for upper and lower bounding the quantum communication necessary to perform blind quantum computation, and use these techniques to establish concrete bounds for common choices of the client's quantum capabilities. Our results show that the universal blind quantum computation protocol of Broadbent, Fitzsimons, and Kashefi, comes within a factor of 8/3 of optimal when the client is restricted to preparing single qubits. However, we describe a generalization of this protocol which requires exponentially less quantum communication when the client has a more sophisticated device.
Indian Academy of Sciences (India)
In the early 1980s Richard Feynman noted that quan- tum systems cannot be efficiently simulated on a clas- sical computer. Till then the accepted view was that any reasonable !{lodel of computation can be efficiently simulated on a classical computer. Hence, this observa- tion led to a lot of rethinking about the basic ...
National Research Council Canada - National Science Library
Jeremy L. O'Brien
2007-01-01
In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors...
Quantum computing and probability.
Ferry, David K
2009-11-25
Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.
Quantum computing: Quantum advantage deferred
Childs, Andrew M.
2017-12-01
A type of optics experiment called a boson sampler could be among the easiest routes to demonstrating the power of quantum computers. But recent work shows that super-classical boson sampling may be a long way off.
Indian Academy of Sciences (India)
can be represented using only n = log2 N bits, which is an exponential reduction in the required resources com- pared to the situation where every value is represented by a different physical state. Mathematically this struc- ture is known as a `tensor product', and I will refer to a similar break-up of computational algorithms ...
Rapid adiabatic passage in quantum dots: Influence of scattering and dephasing
DEFF Research Database (Denmark)
Schuh, K.; Jahnke, F.; Lorke, Michael
2011-01-01
Theoretical investigations for the realization of population inversion of semiconductor quantum dot ground-state transitions by means of adiabatic passage with chirped optical pulses are presented. While the inversion due to Rabi oscillations depends sensitively on the resonance condition......, the pulse area, as well as on the absence of carrier scattering and dephasing, we find that adiabatic passage is surprisingly insensitive to the excitation conditions and carrier scattering effects. Quantum kinetic models for the interaction of quantum-dot carriers with longitudinal optical phonons are used...
Kendon, Vivien M; Nemoto, Kae; Munro, William J
2010-08-13
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.
Introduction to quantum computers
Berman, Gennady P; Mainieri, Ronnie; Tsifrinovich, Vladimir I
1998-01-01
Quantum computing promises to solve problems which are intractable on digital computers. Highly parallel quantum algorithms can decrease the computational time for some problems by many orders of magnitude. This important book explains how quantum computers can do these amazing things. Several algorithms are illustrated: the discrete Fourier transform, Shorâ€™s algorithm for prime factorization; algorithms for quantum logic gates; physical implementations of quantum logic gates in ion traps and in spin chains; the simplest schemes for quantum error correction; correction of errors caused by im
Quantum computer games: quantum minesweeper
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
Fujii, Toshiyuki; Matsuo, Shigemasa; Hatakenaka, Noriyuki
2009-01-01
We propose a fluxon-controlled quantum computer incorporated with three-qubit quantum error correction using special gate operations, i.e., joint-phase and SWAP gate operations, inherent in capacitively coupled superconducting flux qubits. The proposed quantum computer acts exactly like a knitting machine at home.
Simulation of quantum computers
De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB
2001-01-01
We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... We ﬁnd that the ﬁdelity of storage is better, the stronger the control ﬁeld and the slower the rate of its switching off. On the contrary, unlike the adiabatic notion, retrieval is better with faster rates of switching on of an optimal control ﬁeld. Also, for retrieval, the behaviour with dissipation is non-monotonic.
Blind Quantum Signature with Blind Quantum Computation
Li, Wei; Shi, Ronghua; Guo, Ying
2017-04-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Lanzagorta, Marco
2009-01-01
In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distin
Explorations in quantum computing
Williams, Colin P
2011-01-01
By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. ""Quantum computing"" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers -- and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking suppos
Alos-Palop, M.; Blaauboer, M.
2011-01-01
We investigate adiabatic quantum pumping through a normal-metal–“insulator”–superconductor (NIS) junction in a monolayer of graphene. The pumped current is generated by periodic modulation of two gate voltages, applied to the insulating and superconducting regions, respectively. In the bilinear
Duality and Recycling Computing in Quantum Computers
Long, Gui Lu; Liu, Yang
2007-01-01
Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving quantum computer pass...
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-08-08
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.
Zak, M.
1998-01-01
Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.
Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions
Lloyd, Seth; Terhal, Barbara M.
2016-02-01
We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a model for universal quantum computation with time-independent two-qubit ZZ and XX+YY interactions on an (almost) planar grid. The effective Hamiltonian is arrived at by a single use of first-order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral properties of the effective Hamiltonian can be fully determined as it corresponds to a particular realization of a mapping between a quantum circuit and a Hamiltonian called the space-time circuit-to-Hamiltonian construction. Because of the simple interactions required, and because no higher-order perturbation gadgets are employed, our construction is potentially realizable using superconducting or other solid-state qubits.
Quantum entanglement and quantum computational algorithms
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 56; Issue 2-3. Quantum entanglement ... Arvind. Quantum information processing Volume 56 Issue 2-3 February-March 2001 pp 357-365 ... The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum ...
Quantum computing with trapped ions
Energy Technology Data Exchange (ETDEWEB)
Hughes, R.J.
1998-01-01
The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.
Energy Technology Data Exchange (ETDEWEB)
Lloyd, S.
1992-12-01
Digital computers are machines that can be programmed to perform logical and arithmetical operations. Contemporary digital computers are ``universal,`` in the sense that a program that runs on one computer can, if properly compiled, run on any other computer that has access to enough memory space and time. Any one universal computer can simulate the operation of any other; and the set of tasks that any such machine can perform is common to all universal machines. Since Bennett`s discovery that computation can be carried out in a non-dissipative fashion, a number of Hamiltonian quantum-mechanical systems have been proposed whose time-evolutions over discrete intervals are equivalent to those of specific universal computers. The first quantum-mechanical treatment of computers was given by Benioff, who exhibited a Hamiltonian system with a basis whose members corresponded to the logical states of a Turing machine. In order to make the Hamiltonian local, in the sense that its structure depended only on the part of the computation being performed at that time, Benioff found it necessary to make the Hamiltonian time-dependent. Feynman discovered a way to make the computational Hamiltonian both local and time-independent by incorporating the direction of computation in the initial condition. In Feynman`s quantum computer, the program is a carefully prepared wave packet that propagates through different computational states. Deutsch presented a quantum computer that exploits the possibility of existing in a superposition of computational states to perform tasks that a classical computer cannot, such as generating purely random numbers, and carrying out superpositions of computations as a method of parallel processing. In this paper, we show that such computers, by virtue of their common function, possess a common form for their quantum dynamics.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
in the setting of cavity quantum electrodynamics (QED) [2]. For practical applications, the coupling between a single atom located in an optical cavity and a single intercavity photon should be strong. The strong coupling condition requires that g0/2 ≫ , κ, where g0 is the one-photon Rabi frequency, is the atomic decay rate to ...
Quantum computation: Honesty test
Morimae, Tomoyuki
2013-11-01
Alice does not have a quantum computer so she delegates a computation to Bob, who does own one. But how can Alice check whether the computation that Bob performs for her is correct? An experiment with photonic qubits demonstrates such a verification protocol.
Energy Technology Data Exchange (ETDEWEB)
Castagnoli, G. (Dipt. di Informatica, Sistemistica, Telematica, Univ. di Genova, Viale Causa 13, 16145 Genova (IT))
1991-08-10
This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition.
A scalable control system for a superconducting adiabatic quantum optimization processor
Johnson, M. W.; Bunyk, P.; Maibaum, F.; Tolkacheva, E.; Berkley, A. J.; Chapple, E. M.; Harris, R.; Johansson, J.; Lanting, T.; Perminov, I.; Ladizinsky, E.; Oh, T.; Rose, G.
2010-06-01
We have designed, fabricated and operated a scalable system for applying independently programmable time-independent, and limited time-dependent flux biases to control superconducting devices in an integrated circuit. Here we report on the operation of a system designed to supply 64 flux biases to devices in a circuit designed to be a unit cell for a superconducting adiabatic quantum optimization system. The system requires six digital address lines, two power lines, and a handful of global analog lines.
A scalable readout system for a superconducting adiabatic quantum optimization system
Berkley, A. J.; Johnson, M. W.; Bunyk, P.; Harris, R.; Johansson, J.; Lanting, T.; Ladizinsky, E.; Tolkacheva, E.; Amin, M. H. S.; Rose, G.
2010-10-01
We have designed, fabricated and tested an XY-addressable readout system that is specifically tailored for the reading of superconducting flux qubits in an integrated circuit that could enable adiabatic quantum optimization. In such a system, the flux qubits only need to be read at the end of an adiabatic evolution when quantum mechanical tunneling has been suppressed, thus simplifying many aspects of the readout process. The readout architecture for an N-qubit adiabatic quantum optimization system comprises N hysteretic dc SQUIDs and N rf SQUID latches controlled by 2\\sqrt {N}+2 bias lines. The latching elements are coupled to the qubits and the dc SQUIDs are then coupled to the latching elements. This readout scheme provides two key advantages: first, the latching elements provide exceptional flux sensitivity that significantly exceeds what may be achieved by directly coupling the flux qubits to the dc SQUIDs using a practical mutual inductance. Second, the states of the latching elements are robust against the influence of ac currents generated by the switching of the hysteretic dc SQUIDs, thus allowing one to interrogate the latching elements repeatedly so as to mitigate the effects of stochastic switching of the dc SQUIDs. We demonstrate that it is possible to achieve single-qubit read error rates of < 10 - 6 with this readout scheme. We have characterized the system level performance of a 128-qubit readout system and have measured a readout error probability of 8 × 10 - 5 in the presence of optimal latching element bias conditions.
An Introduction to Quantum Computing
Yanofsky, Noson S.
2007-01-01
Quantum Computing is a new and exciting field at the intersection of mathematics, computer science and physics. It concerns a utilization of quantum mechanics to improve the efficiency of computation. Here we present a gentle introduction to some of the ideas in quantum computing. The paper begins by motivating the central ideas of quantum mechanics and quantum computation with simple toy models. From there we move on to a formal presentation of the small fraction of (finite dimensional) quan...
A subgradient approach for constrained binary optimization via quantum adiabatic evolution
Karimi, Sahar; Ronagh, Pooya
2017-08-01
Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.
Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization
Energy Technology Data Exchange (ETDEWEB)
Imam, Neena [ORNL; Humble, Travis S. [ORNL; McCaskey, Alex [ORNL; Schrock, Jonathan [ORNL; Hamilton, Kathleen E. [ORNL
2017-09-01
A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recall accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.
Realization of a holonomic quantum computer in a chain of three-level systems
Energy Technology Data Exchange (ETDEWEB)
Gürkan, Zeynep Nilhan, E-mail: nilhan.gurkan@gediz.edu.tr [Department of Industrial Engineering, Gediz University, Seyrek, 35665 Menemen, Izmir (Turkey); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Sjöqvist, Erik, E-mail: erik.sjoqvist@kemi.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala (Sweden)
2015-12-18
Holonomic quantum computation is the idea to use non-Abelian geometric phases to implement universal quantum gates that are robust to fluctuations in control parameters. Here, we propose a compact design for a holonomic quantum computer based on coupled three-level systems. The scheme does not require adiabatic evolution and can be implemented in arrays of atoms or ions trapped in tailored standing wave potentials. - Highlights: • We develop a novel scheme for universal holonomic quantum computation. • The scheme involves non-Abelian geometric phases in a spin-chain. • The resources scale linearly with the number of logical qubits. • The scheme does not require adiabatic evolution.
Introduction to topological quantum matter & quantum computation
Stanescu, Tudor D
2017-01-01
What is -topological- about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-know...
Hybrid annealing: Coupling a quantum simulator to a classical computer
Graß, Tobias; Lewenstein, Maciej
2017-05-01
Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Annealing strategies, either classical or quantum, explore the configuration space by evolving the system under the influence of thermal or quantum fluctuations. The thermal annealing dynamics can rapidly freeze the system into a low-energy configuration, and it can be simulated well on a classical computer, but it easily gets stuck in local minima. Quantum annealing, on the other hand, can be guaranteed to find the true ground state and can be implemented in modern quantum simulators; however, quantum adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here, we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such a hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configuration and enforces a lowering of the energy. We have simulated this algorithm for small instances of the random energy model, showing that it potentially outperforms both simulated thermal annealing and adiabatic quantum annealing. It becomes most efficient for problems involving many quasidegenerate ground states.
Demonstration of blind quantum computing.
Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip
2012-01-20
Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.
Quantum entanglement and quantum computational algorithms
Indian Academy of Sciences (India)
Abstract. The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped ...
Cluster State Quantum Computation
2014-02-01
important result is called the threshold theorem of quantum computation [Aliferis06]. Fault-tolerant schemes for OWQC using photons have recently...defined in terms of the standard Fubini -Study distance Approved for Public Release; Distribution Unlimited. 25 ( ) ( ) 1
Undergraduate computational physics projects on quantum computing
Candela, D.
2015-08-01
Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.
A Heterogeneous Quantum Computer Architecture
Fu, X.; Riesebos, L.; Lao, L.; Garcia Almudever, C.; Sebastiano, F.; Versluis, R.; Charbon, E.; Bertels, K.
2016-01-01
In this paper, we present a high level view of the heterogeneous quantum computer architecture as any future quantum computer will consist of both a classical and quantum computing part. The classical part is needed for error correction as well as for the execution of algorithms that contain both
Layered Architecture for Quantum Computing
Directory of Open Access Journals (Sweden)
N. Cody Jones
2012-07-01
Full Text Available We develop a layered quantum-computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface-code quantum error correction. In doing so, we propose a new quantum-computer architecture based on optical control of quantum dots. The time scales of physical-hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum-dot architecture we study could solve such problems on the time scale of days.
Relativistic quantum chemistry on quantum computers
DEFF Research Database (Denmark)
Veis, L.; Visnak, J.; Fleig, T.
2012-01-01
The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...
Heaps, Charles W
2016-01-01
Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. In this paper, we employ pseudospectral sampling of time-dependent Gaussian basis functions for the simulation of non-adiabatic dynamics. Unlike other methods, the pseudospectral Gaussian molecular dynamics tests the Schr\\"{o}dinger equation with $N$ Dirac delta functions located at the centers of the Gaussian functions reducing the scaling of potential energy evaluations from $\\mathcal{O}(N^2)$ to $\\mathcal{O}(N)$. By projecting the Gaussian basis onto discrete points in space, the method is capable of efficiently and quantitatively describing nonadiabatic population transfer and intra-surface quantum coherence. We investigate three model systems; the photodissociation of three coupled Morse oscillators, the bound state dynamics of two coupled Morse oscillators, and a two-d...
Directory of Open Access Journals (Sweden)
López-Castillo A.
1998-01-01
Full Text Available Full quantum charge transfer study of the process B3+ + He -> B2+ + He+ has been investigated in the collision energy range 1-102 eV using an ab-initio interaction potential. A new method to solve the Schrödinger equation in an adiabatic basis was used, where the radial and rotational coupling were taken into account, and the importance of the coupling between states of different symmetry was discussed. Moreover, by using the well known Landau-Zener model, it was concluded that the two state model cannot be applied for the present system, and this might indicate that such a model should be applied carefully for other systems when a charge transfer process is considered. Finally, the quantum total cross sections were compared with the previous published work of Gargaud and co-workers and a fair agreement was achieved.
The consequences of quantum computing
Malenko, Kokan
2017-01-01
Quantum computing is a new promising field that might bring great improvements to present day technology. But it might also break some currently used cryptography algorithms. Usable and stable quantum computers do not exist yet, but their potential power and usefulness has spurred a great interest. In this work, we explain the basic properties of a quantum computer, which uses the following quantum properties: superposition, interference and entanglement. We talk about qubits,...
Quantum computer for dummies (in Russian)
Grozin, Andrey
2011-01-01
An introduction (in Russian) to quantum computers, quantum cryptography, and quantum teleportation for students who have no previous knowledge of these subjects, but know quantum mechanics. Several simple examples are considered in detail using the quantum computer emulator QCL.
Hoang, Thai M; Bharath, Hebbe M; Boguslawski, Matthew J; Anquez, Martin; Robbins, Bryce A; Chapman, Michael S
2016-08-23
Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu-Goldstone modes and massive Anderson-Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble-Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition.
Quantum computing on encrypted data.
Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.
Programmable architecture for quantum computing
Chen, J.; Wang, L.; Charbon, E.; Wang, B.
2013-01-01
A programmable architecture called “quantum FPGA (field-programmable gate array)” (QFPGA) is presented for quantum computing, which is a hybrid model combining the advantages of the qubus system and the measurement-based quantum computation. There are two kinds of buses in QFPGA, the local bus and
Quantum computing with defects.
Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D
2010-05-11
Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.
Interfacing external quantum devices to a universal quantum computer.
Directory of Open Access Journals (Sweden)
Antonio A Lagana
Full Text Available We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.
Interfacing external quantum devices to a universal quantum computer.
Lagana, Antonio A; Lohe, Max A; von Smekal, Lorenz
2011-01-01
We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer. © 2011 Lagana et al.
Layered Architecture for Quantum Computing
National Research Council Canada - National Science Library
Jones, N. Cody; Van Meter, Rodney; Fowler, Austin G; McMahon, Peter L; Kim, Jungsang; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2012-01-01
.... We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface-code quantum error correction...
Quantum Computation and Many Worlds
Hewitt-Horsman, Clare
2002-01-01
An Everett (`Many Worlds') interpretation of quantum mechanics due to Saunders and Zurek is presented in detail. This is used to give a physical description of the process of a quantum computation. Objections to such an understanding are discussed.
Lin, Tzung-Yi; Hsiao, Fu-Chen; Jhang, Yao-Wun; Hu, Chieh; Tseng, Shuo-Yen
2012-10-08
A shortcut to adiabatic mode conversion in multimode waveguides using optical analogy of stimulated Raman adiabatic passage is investigated. The design of mode converters using the shortcut scheme is discussed. Computer-generated planar holograms are used to mimic the shaped pulses used to speed up adiabatic passage in quantum systems based on the transitionless quantum driving algorithm. The mode coupling properties are analyzed using the coupled mode theory and beam propagation simulations. We show reduced device length using the shortcut scheme as compared to the common adiabatic scheme. Modal evolution in the shortened device indeed follows the adiabatic eigenmode exactly amid the violation of adiabatic criterion.
Towards quantum chemistry on a quantum computer.
Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G
2010-02-01
Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.
Experimental Aspects of Quantum Computing
Everitt, Henry O
2005-01-01
Practical quantum computing still seems more than a decade away, and researchers have not even identified what the best physical implementation of a quantum bit will be. There is a real need in the scientific literature for a dialog on the topic of lessons learned and looming roadblocks. These papers, which appeared in the journal of "Quantum Information Processing" are dedicated to the experimental aspects of quantum computing These papers highlight the lessons learned over the last ten years, outline the challenges over the next ten years, and discuss the most promising physical implementations of quantum computing.
Massively parallel quantum computer simulator
De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.
2007-01-01
We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray
Quantum Computing with Endohedral Fullerenes
Harneit, Wolfgang
2017-01-01
We review the present state of the art in using the endohedral fullerenes N@C60 and P@C60 as qubits in a spin quantum computer. After a brief introduction to spin quantum computing, we first discuss the rich spin structure of these endohedral fullerenes and specific theoretical proposals for architectures and operation models leading to a scalable quantum computer. We then briefly discuss those aspects of materials science that are needed to realize the proposed architectures. The central par...
Quantum information processing in nanostructures Quantum optics; Quantum computing
Reina-Estupinan, J H
2002-01-01
Since information has been regarded os a physical entity, the field of quantum information theory has blossomed. This brings novel applications, such as quantum computation. This field has attracted the attention of numerous researchers with backgrounds ranging from computer science, mathematics and engineering, to the physical sciences. Thus, we now have an interdisciplinary field where great efforts are being made in order to build devices that should allow for the processing of information at a quantum level, and also in the understanding of the complex structure of some physical processes at a more basic level. This thesis is devoted to the theoretical study of structures at the nanometer-scale, 'nanostructures', through physical processes that mainly involve the solid-state and quantum optics, in order to propose reliable schemes for the processing of quantum information. Initially, the main results of quantum information theory and quantum computation are briefly reviewed. Next, the state-of-the-art of ...
Visualizing a silicon quantum computer
Sanders, Barry C.; Hollenberg, Lloyd C. L.; Edmundson, Darran; Edmundson, Andrew
2008-12-01
Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.
Quantum Computing-Building Blocks of a Quantum Computer
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Quantum Computing - Building Blocks of a Quantum Computer. C S Vijay Vishal Gupta. General Article Volume 5 Issue 9 September 2000 pp 69-81. Fulltext. Click here to view fulltext PDF. Permanent link:
Quantum computation and hidden variables
Aristov, V V
2010-01-01
Many physicists limit oneself to an instrumentalist description of quantum phenomena and ignore the problems of foundation and interpretation of quantum mechanics. This instrumentalist approach results to "specialization barbarism" and mass delusion concerning the problem, how a quantum computer can be made. The idea of quantum computation can be described within the limits of quantum formalism. But in order to understand how this idea can be put into practice one should realize the question: "What could the quantum formalism describe?", in spite of the absence of an universally recognized answer. Only a realization of this question and the undecided problem of quantum foundations allows to see in which quantum systems the superposition and EPR correlation could be expected. Because of the "specialization barbarism" many authors are sure that Bell proved full impossibility of any hidden-variables interpretation. Therefore it is important to emphasize that in reality Bell has restricted to validity limits of t...
Simulating chemistry using quantum computers.
Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán
2011-01-01
The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.
Algorithms on ensemble quantum computers.
Boykin, P Oscar; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh
2010-06-01
In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements usually does not resolve this ensemble-measurement problem. Here we present several new strategies for resolving this problem. Based on these strategies we provide new versions of some of the most important quantum algorithms, versions that are suitable for implementing on ensemble quantum computers, e.g., on liquid NMR quantum computers. These algorithms are Shor's factorization algorithm, Grover's search algorithm (with several marked items), and an algorithm for quantum fault-tolerant computation. The first two algorithms are simply modified using a randomizing and a sorting strategies. For the last algorithm, we develop a classical-quantum hybrid strategy for removing measurements. We use it to present a novel quantum fault-tolerant scheme. More explicitly, we present schemes for fault-tolerant measurement-free implementation of Toffoli and σ(z)(¼) as these operations cannot be implemented "bitwise", and their standard fault-tolerant implementations require measurement.
De Grandi, C.; Polkovnikov, A.
Dynamics in closed systems recently attracted a lot of theoretical interest largely following experimental developments in cold atom systems (see e.g., [1] for a review). Several spectacular experiments already explored different aspects of non-equilibrium dynamics in interacting many-particle systems [2-8]. Recent theoretical works in this context focused on various topics, for instance: connection of dynamics and thermodynamics [9-11 M. Rigol, unpublished], dynamics following a sudden quench in low dimensional systems [11-23, L. Mathey and A. Polkovnikov, unpublished; A. Iucci and M.A. Cazalilla,unpublished], adiabatic dynamics near quantum critical points [24-37, D. Chowdhury et al., unpublished; K. Sengupta and D. Sen, unpublished; A.P. Itin and P. Törmä, unpublished; F. Pollmann et al., unpublished] and others. Though there is still very limited understanding of the generic aspects of non-equilibrium quantum dynamics, it has been recognized that such issues as integrability, dimensionality, universality (near critical points) can be explored to understand the non-equilibrium behavior of many-particle systems in various specific situations.
Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation.
Chung, Hung-Pin; Huang, Kuang-Hsu; Wang, Kai; Yang, Sung-Lin; Yang, Shih-Yuan; Sung, Chun-I; Solntsev, Alexander S; Sukhorukov, Andrey A; Neshev, Dragomir N; Chen, Yen-Hung
2017-12-04
Spontaneous parametric down-conversion (SPDC) is a widely used method to generate entangled photons, enabling a range of applications from secure communication to tests of quantum physics. Integrating SPDC on a chip provides interferometric stability, allows to reduce a physical footprint, and opens a pathway to true scalability. However, dealing with different photon polarizations and wavelengths on a chip presents a number of challenging problems. In this work, we demonstrate an on-chip polarization beam-splitter based on z-cut titanium-diffused lithium niobate asymmetric adiabatic couplers (AAC) designed for integration with a type-II SPDC source. Our experimental measurements reveal unique polarization beam-splitting regime with the ability to tune the splitting ratios based on wavelength. In particular, we measured a splitting ratio of 17 dB over broadband regions (>60 nm) for both H- and V-polarized lights and a specific 50%/50% splitting ratio for a cross-polarized photon pair from the AAC. The results show that such a system can be used for preparing different quantum polarization-path states that are controllable by changing the phase-matching conditions in the SPDC over a broad band. Furthermore, we propose a fully integrated electro-optically tunable type-II SPDC polarization-path-entangled state preparation circuit on a single lithium niobate photonic chip.
Coherent state mapping ring polymer molecular dynamics for non-adiabatic quantum propagations
Chowdhury, Sutirtha N.; Huo, Pengfei
2017-12-01
We introduce the coherent-state mapping ring polymer molecular dynamics (CS-RPMD), a new method that accurately describes electronic non-adiabatic dynamics with explicit nuclear quantization. This new approach is derived by using coherent-state mapping representation for the electronic degrees of freedom (DOF) and the ring-polymer path-integral representation for the nuclear DOF. The CS-RPMD Hamiltonian does not contain any inter-bead coupling term in the state-dependent potential and correctly describes electronic Rabi oscillations. A classical equation of motion is used to sample initial configurations and propagate the trajectories from the CS-RPMD Hamiltonian. At the time equivalent to zero, the quantum Boltzmann distribution (QBD) is recovered by reweighting the sampled distribution with an additional phase factor. In a special limit that there is one bead for mapping variables and multiple beads for nuclei, CS-RPMD satisfies detailed balance and preserves an approximate QBD. Numerical tests of this method with a two-state model system show very good agreement with exact quantum results over a broad range of electronic couplings.
Efficient universal blind quantum computation.
Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G
2013-12-06
We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.
Distinguishing Short Quantum Computations
Rosgen, Bill
2008-01-01
Distinguishing logarithmic depth quantum circuits on mixed states is shown to be complete for $QIP$, the class of problems having quantum interactive proof systems. Circuits in this model can represent arbitrary quantum processes, and thus this result has implications for the verification of implementations of quantum algorithms. The distinguishability problem is also complete for $QIP$ on constant depth circuits containing the unbounded fan-out gat...
Toward a superconducting quantum computer
Tsai, Jaw-Shen
2010-01-01
Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers. PMID:20431256
Quantum Computation Beyond the Circuit Model
Jordan, Stephen P.
2008-01-01
The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, several other models of quantum computation exist which provide useful alternative frameworks for both discovering new quantum algorithms and devising new physical implementations of quantum computers. In this thesis, I first present necessary background material for a ge...
Universal blind quantum computation for hybrid system
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Deng, Jiawen; Wang, Qing-hai; Liu, Zhihao; Hänggi, Peter; Gong, Jiangbin
2013-12-01
Under a general framework, shortcuts to adiabatic processes are shown to be possible in classical systems. We study the distribution function of the work done on a small system initially prepared at thermal equilibrium. We find that the work fluctuations can be significantly reduced via shortcuts to adiabatic processes. For example, in the classical case, probabilities of having very large or almost zero work values are suppressed. In the quantum case, negative work may be totally removed from the otherwise non-positive-definite work values. We also apply our findings to a micro Otto-cycle-based heat engine. It is shown that the use of shortcuts, which directly enhances the engine output power, can also increase the heat-engine efficiency substantially, in both quantum and classical regimes.
Experimental quantum computing without entanglement.
Lanyon, B P; Barbieri, M; Almeida, M P; White, A G
2008-11-14
Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.
2015-11-23
including superconducting metamaterial structures for coupling to qubits [1] and Josephson photomultiplier circuits for photon-counting based qubit ... metamaterial circuit on ADR. For our ARO-funded project in the quantum computing measurement program – Scalable Readout of Superconducting Qubits ...designs [3] for experiments with superconducting transmon qubits coupled to metamaterials (Fig. 2). The rapid thermal cycle time for this system has been
Quantum information and computing
Ohya, M; Watanabe, N
2006-01-01
The main purpose of this volume is to emphasize the multidisciplinary aspects of this very active new line of research in which concrete technological and industrial realizations require the combined efforts of experimental and theoretical physicists, mathematicians and engineers. Contents: Coherent Quantum Control of ?-Atoms through the Stochastic Limit (L Accardi et al.); Recent Advances in Quantum White Noise Calculus (L Accardi & A Boukas); Joint Extension of States of Fermion Subsystems (H Araki); Fidelity of Quantum Teleportation Model Using Beam Splittings (K-H Fichtner et al.); Quantum
Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.
2017-07-01
We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.
Quantum chromodynamics with advanced computing
Energy Technology Data Exchange (ETDEWEB)
Kronfeld, Andreas S.; /Fermilab
2008-07-01
We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.
Physical Realizations of Quantum Computing
Kanemitsu, Shigeru; Salomaa, Martti; Takagi, Shin; Are the DiVincenzo Criteria Fulfilled in 2004 ?
2006-01-01
The contributors of this volume are working at the forefront of various realizations of quantum computers. They survey the recent developments in each realization, in the context of the DiVincenzo criteria, including nuclear magnetic resonance, Josephson junctions, quantum dots, and trapped ions. There are also some theoretical contributions which have relevance in the physical realizations of a quantum computer. This book fills the gap between elementary introductions to the subject and highly specialized research papers to allow beginning graduate students to understand the cutting-edge of r
Semiconductor adiabatic qubits
Energy Technology Data Exchange (ETDEWEB)
Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib
2016-12-27
A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.
Quantum Computation with Ultrafast Laser Pulse Shaping
Indian Academy of Sciences (India)
Quantum computing exploits the quantum mechanical na- ture of matter to exist in multiple possible states simulta- neously. BUilding up on the digital binary logic of bits, quantum computing is built on the basis of interacting two- level quantum systems or 'qubits' that follow the laws of quantum mechanics. Addressability of ...
Using a quantum computer to investigate quantum chaos
Schack, Ruediger
1997-01-01
We show that the quantum baker's map, a prototypical map invented for theoretical studies of quantum chaos, has a very simple realization in terms of quantum gates. Chaos in the quantum baker's map could be investigated experimentally on a quantum computer based on only 3 qubits.
Computing on quantum shared secrets
Ouyang, Yingkai; Tan, Si-Hui; Zhao, Liming; Fitzsimons, Joseph F.
2017-11-01
A (k ,n )-threshold secret-sharing scheme allows for a string to be split into n shares in such a way that any subset of at least k shares suffices to recover the secret string, but such that any subset of at most k -1 shares contains no information about the secret. Quantum secret-sharing schemes extend this idea to the sharing of quantum states. Here we propose a method of performing computation securely on quantum shared secrets. We introduce a (n ,n )-quantum secret sharing scheme together with a set of algorithms that allow quantum circuits to be evaluated securely on the shared secret without the need to decode the secret. We consider a multipartite setting, with each participant holding a share of the secret. We show that if there exists at least one honest participant, no group of dishonest participants can recover any information about the shared secret, independent of their deviations from the algorithm.
QCE : A Simulator for Quantum Computer Hardware
Michielsen, Kristel; Raedt, Hans De
2003-01-01
The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms.
Handbook of computational quantum chemistry
Cook, David B
2005-01-01
Quantum chemistry forms the basis of molecular modeling, a tool widely used to obtain important chemical information and visual images of molecular systems. Recent advances in computing have resulted in considerable developments in molecular modeling, and these developments have led to significant achievements in the design and synthesis of drugs and catalysts. This comprehensive text provides upper-level undergraduates and graduate students with an introduction to the implementation of quantum ideas in molecular modeling, exploring practical applications alongside theoretical explanations.Wri
DEFF Research Database (Denmark)
Salvail, Louis; Arrighi, Pablo
2006-01-01
protocol for the class of functions which admit an efficient procedure to generate random input-output pairs, e.g. factorization. The cheat-sensitive security achieved relies only upon quantum theory being true. The security analysis carried out assumes the eavesdropper performs individual attacks....
A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics
Gingold, H.
1991-01-01
A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.
Cluster State Quantum Computing
2012-12-01
discuss the potential advantages of such a system and the difficulties of the design. When an incident photon strikes a Niobium nitride ( NbN ...counted. Present superconducting nanowire systems, such as NbN , have reasonably good counting efficiency [Dauler10], [Marsili11], by which we mean...L. O’Brein, A. Furusawa, J. Vuchovic, “Photonic quantum technologies ,” Nat. Photonics 3 Dec. (2009) doi:10.1038/nphoton.2009.229. [Pawlowski09
Photonic quantum computing (Conference Presentation)
O'Brien, Jeremy L.
2017-05-01
Of the various approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation at the single photon level; while the challenge of entangling interactions between photons can be met via measurement induced non-linearities. However, the real excitement with this architecture is the promise of ultimate manufacturability: All of the components--inc. sources, detectors, filters, switches, delay lines--have been implemented on chip, and increasingly sophisticated integration of these components is being achieved. We will discuss the opportunities and challenges of a fully integrated photonic quantum computer.
Quantum Walks for Computer Scientists
Venegas-Andraca, Salvador
2008-01-01
Quantum computation, one of the latest joint ventures between physics and the theory of computation, is a scientific field whose main goals include the development of hardware and algorithms based on the quantum mechanical properties of those physical systems used to implement such algorithms. Solving difficult tasks (for example, the Satisfiability Problem and other NP-complete problems) requires the development of sophisticated algorithms, many of which employ stochastic processes as their mathematical basis. Discrete random walks are a popular choice among those stochastic processes. Inspir
Continuous-variable blind quantum computation.
Morimae, Tomoyuki
2012-12-07
Blind quantum computation is a secure delegated quantum computing protocol where Alice, who does not have sufficient quantum technology at her disposal, delegates her computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output, and algorithm. Protocols of blind quantum computation have been proposed for several qudit measurement-based computation models, such as the graph state model, the Affleck-Kennedy-Lieb-Tasaki model, and the Raussendorf-Harrington-Goyal topological model. Here, we consider blind quantum computation for the continuous-variable measurement-based model. We show that blind quantum computation is possible for the infinite squeezing case. We also show that the finite squeezing causes no additional problem in the blind setup apart from the one inherent to the continuous-variable measurement-based quantum computation.
Quantum Computation: Entangling with the Future
Jiang, Zhang
2017-01-01
Commercial applications of quantum computation have become viable due to the rapid progress of the field in the recent years. Efficient quantum algorithms are discovered to cope with the most challenging real-world problems that are too hard for classical computers. Manufactured quantum hardware has reached unprecedented precision and controllability, enabling fault-tolerant quantum computation. Here, I give a brief introduction on what principles in quantum mechanics promise its unparalleled computational power. I will discuss several important quantum algorithms that achieve exponential or polynomial speedup over any classical algorithm. Building a quantum computer is a daunting task, and I will talk about the criteria and various implementations of quantum computers. I conclude the talk with near-future commercial applications of a quantum computer.
ASCR Workshop on Quantum Computing for Science
Energy Technology Data Exchange (ETDEWEB)
Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.
Reversible computing fundamentals, quantum computing, and applications
De Vos, Alexis
2010-01-01
Written by one of the few top internationally recognized experts in the field, this book concentrates on those topics that will remain fundamental, such as low power computing, reversible programming languages, and applications in thermodynamics. It describes reversible computing from various points of view: Boolean algebra, group theory, logic circuits, low-power electronics, communication, software, quantum computing. It is this multidisciplinary approach that makes it unique.Backed by numerous examples, this is useful for all levels of the scientific and academic community, from undergr
Problems and solutions in quantum computing and quantum information
Steeb, Willi-Hans
2012-01-01
Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton opera...
Experimental realization of nonadiabatic holonomic quantum computation.
Feng, Guanru; Xu, Guofu; Long, Guilu
2013-05-10
Because of its geometric nature, holonomic quantum computation is fault tolerant against certain types of control errors. Although proposed more than a decade ago, the experimental realization of holonomic quantum computation is still an open challenge. In this Letter, we report the first experimental demonstration of nonadiabatic holonomic quantum computation in a liquid NMR quantum information processor. Two noncommuting one-qubit holonomic gates, rotations about x and z axes, and the two-qubit holonomic CNOT gate are realized by evolving the work qubits and an ancillary qubit nonadiabatically. The successful realizations of these universal elementary gates in nonadiabatic holonomic quantum computation demonstrates the experimental feasibility of this quantum computing paradigm.
An Early Quantum Computing Proposal
Energy Technology Data Exchange (ETDEWEB)
Lee, Stephen Russell [Los Alamos National Laboratory; Alexander, Francis Joseph [Los Alamos National Laboratory; Barros, Kipton Marcos [Los Alamos National Laboratory; Daniels, Marcus G. [Los Alamos National Laboratory; Gattiker, James R. [Los Alamos National Laboratory; Hamada, Michael Scott [Los Alamos National Laboratory; Howse, James Walter [Los Alamos National Laboratory; Loncaric, Josip [Los Alamos National Laboratory; Pakin, Scott D. [Los Alamos National Laboratory; Somma, Rolando Diego [Los Alamos National Laboratory; Vernon, Louis James [Los Alamos National Laboratory
2016-04-04
The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems, it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for
Quantum computing from the ground up
Perry, Riley Tipton
2012-01-01
Quantum computing - the application of quantum mechanics to information - represents a fundamental break from classical information and promises to dramatically increase a computer's power. Many difficult problems, such as the factorization of large numbers, have so far resisted attack by classical computers yet are easily solved with quantum computers. If they become feasible, quantum computers will end standard practices such as RSA encryption. Most of the books or papers on quantum computing require (or assume) prior knowledge of certain areas such as linear algebra or quantum mechanics. The majority of the currently-available literature is hard to understand for the average computer enthusiast or interested layman. This text attempts to teach quantum computing from the ground up in an easily readable way, providing a comprehensive tutorial that includes all the necessary mathematics, computer science and physics.
Quantum chemistry simulation on quantum computers: theories and experiments.
Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng
2012-07-14
It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.
Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system.
Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng
2012-03-30
Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.
Exploiting Locality in Quantum Computation for Quantum Chemistry.
McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-12-18
Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.
Geometry of quantum computation with qutrits.
Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming
2013-01-01
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.
Preparation of Quantum States of H2 using Stark-induced Adiabatic Raman Passage (SARP)
2013-12-02
The Journal of Chemical Physics , (07 2011): 24201. doi: Nandini Mukherjee...Richard N. Zare. Can stimulated Raman pumping cause large population transfers in isolated molecules?, The Journal of Chemical Physics , (11 2011): 0...population to a selected rovibrational state of H2 by Stark-induced adiabatic Raman passage, THE JOURNAL OF CHEMICAL PHYSICS , (02 2013): 51101.
A theory of quantum gravity based on quantum computation
Lloyd, Seth
2005-01-01
This paper proposes a method of unifying quantum mechanics and gravity based on quantum computation. In this theory, fundamental processes are described in terms of pairwise interactions between quantum degrees of freedom. The geometry of space-time is a construct, derived from the underlying quantum information processing. The computation gives rise to a superposition of four-dimensional spacetimes, each of which obeys the Einstein-Regge equations. The theory makes explicit predictions for t...
Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.
Tsai, Jaw-Shen
2010-01-01
Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.
Layered Architectures for Quantum Computers and Quantum Repeaters
Jones, Nathan C.
This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.
Brain Neurons as Quantum Computers:
Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.
The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.
Unconditionally verifiable blind quantum computation
Fitzsimons, Joseph F.; Kashefi, Elham
2017-07-01
Blind quantum computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's input, output, and computation remain private. A desirable property for any BQC protocol is verification, whereby the client can verify with high probability whether the server has followed the instructions of the protocol or if there has been some deviation resulting in a corrupted output state. A verifiable BQC protocol can be viewed as an interactive proof system leading to consequences for complexity theory. We previously proposed [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual Symposium on Foundations of Computer Science, Atlanta, 2009 (IEEE, Piscataway, 2009), p. 517] a universal and unconditionally secure BQC scheme where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. In this paper we extend that protocol with additional functionality allowing blind computational basis measurements, which we use to construct another verifiable BQC protocol based on a different class of resource states. We rigorously prove that the probability of failing to detect an incorrect output is exponentially small in a security parameter, while resource overhead remains polynomial in this parameter. This resource state allows entangling gates to be performed between arbitrary pairs of logical qubits with only constant overhead. This is a significant improvement on the original scheme, which required that all computations to be performed must first be put into a nearest-neighbor form, incurring linear overhead in the number of qubits. Such an improvement has important consequences for efficiency and fault-tolerance thresholds.
Quantum machine learning what quantum computing means to data mining
Wittek, Peter
2014-01-01
Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L
A quantum computer only needs one universe
Steane, A. M.
The nature of quantum computation is discussed. It is argued that, in terms of the amount of information manipulated in a given time, quantum and classical computation are equally efficient. Quantum superposition does not permit quantum computers to "perform many computations simultaneously" except in a highly qualified and to some extent misleading sense. Quantum computation is therefore not well described by interpretations of quantum mechanics which invoke the concept of vast numbers of parallel universes. Rather, entanglement makes available types of computation processes which, while not exponentially larger than classical ones, are unavailable to classical systems. The essence of quantum computation is that it uses entanglement to generate and manipulate a physical representation of the correlations between logical entities, without the need to completely represent the logical entities themselves.
Elucidating reaction mechanisms on quantum computers
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias
2017-01-01
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011
Elucidating reaction mechanisms on quantum computers.
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias
2017-07-18
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
Elucidating reaction mechanisms on quantum computers
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias
2017-07-01
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
The Quantum Human Computer (QHC) Hypothesis
Salmani-Nodoushan, Mohammad Ali
2008-01-01
This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…
Probability Analysis of a Quantum Computer
Einarsson, Göran
2003-01-01
The quantum computer algorithm by Peter Shor for factorization of integers is studied. The quantum nature of a QC makes its outcome random. The output probability distribution is investigated and the chances of a successful operation is determined
Non-unitary probabilistic quantum computing
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Geometry of the Adiabatic Theorem
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Helping Students Learn Quantum Mechanics for Quantum Computing
Singh, Chandralekha
2016-01-01
Quantum information science and technology is a rapidly growing interdisciplinary field drawing researchers from science and engineering fields. Traditional instruction in quantum mechanics is insufficient to prepare students for research in quantum computing because there is a lack of emphasis in the current curriculum on quantum formalism and dynamics. We are investigating the difficulties students have with quantum mechanics and are developing and evaluating quantum interactive learning tutorials (QuILTs) to reduce the difficulties. Our investigation includes interviews with individual students and the development and administration of free-response and multiple-choice tests. We discuss the implications of our research and development project on helping students learn quantum mechanics relevant for quantum computing.
Model dynamics for quantum computing
Tabakin, Frank
2017-08-01
A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.
Parallel computing and quantum chromodynamics
Bowler, K C
1999-01-01
The study of Quantum Chromodynamics (QCD) remains one of the most challenging topics in elementary particle physics. The lattice formulation of QCD, in which space-time is treated as a four- dimensional hypercubic grid of points, provides the means for a numerical solution from first principles but makes extreme demands upon computational performance. High Performance Computing (HPC) offers us the tantalising prospect of a verification of QCD through the precise reproduction of the known masses of the strongly interacting particles. It is also leading to the development of a phenomenological tool capable of disentangling strong interaction effects from weak interaction effects in the decays of one kind of quark into another, crucial for determining parameters of the standard model of particle physics. The 1980s saw the first attempts to apply parallel architecture computers to lattice QCD. The SIMD and MIMD machines used in these pioneering efforts were the ICL DAP and the Cosmic Cube, respectively. These wer...
Embracing the quantum limit in silicon computing.
Morton, John J L; McCamey, Dane R; Eriksson, Mark A; Lyon, Stephen A
2011-11-16
Quantum computers hold the promise of massive performance enhancements across a range of applications, from cryptography and databases to revolutionary scientific simulation tools. Such computers would make use of the same quantum mechanical phenomena that pose limitations on the continued shrinking of conventional information processing devices. Many of the key requirements for quantum computing differ markedly from those of conventional computers. However, silicon, which plays a central part in conventional information processing, has many properties that make it a superb platform around which to build a quantum computer. © 2011 Macmillan Publishers Limited. All rights reserved
Contextuality supplies the 'magic' for quantum computation.
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-19
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.
Blind topological measurement-based quantum computation.
Morimae, Tomoyuki; Fujii, Keisuke
2012-01-01
Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3 × 10(-3), which is comparable to that (7.5 × 10(-3)) of non-blind topological quantum computation. As the error per gate of the order 10(-3) was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.
DEFF Research Database (Denmark)
Gammelmark, Søren; Eckardt, André
2013-01-01
We theoretically study the adiabatic preparation of an antiferromagnetic phase in a mixed Mott insulator of two bosonic atom species in a one-dimensional optical lattice. In such a system one can engineer a tunable parabolic inhomogeneity by controlling the difference of the trapping potentials f...... that during the preparation finite size effects will play a crucial role for a system of realistic size. The experiment that we propose can be realized, for example, using atomic mixtures of rubidium 87 with potassium 41, or ytterbium 168 with ytterbium 174....
Pure spin current induced by adiabatic quantum pumping in zigzag-edged graphene nanoribbons
Energy Technology Data Exchange (ETDEWEB)
Souma, Satofumi, E-mail: ssouma@harbor.kobe-u.ac.jp; Ogawa, Matsuto [Department of Electrical and Electronic Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)
2014-05-05
We show theoretically that pure spin current can be generated in zigzag edged graphene nanoribbons through the adiabatic pumping by edge selective pumping potentials. The origin of such pure spin current is the spin splitting of the edge localized states, which are oppositely spin polarized at opposite edges. In the proposed device, each edge of the ribbon is covered by two independent time-periodic local gate potentials with a definite phase difference, inducing the edge spin polarized current. When the pumping phase difference is opposite in sign between two edges, the total charge currents is zero and the pure edge spin current is generated.
Quantum computing with incoherent resources and quantum jumps.
Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R
2012-04-27
Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.
Quantum computing. Defining and detecting quantum speedup.
Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias
2014-07-25
The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question. Copyright © 2014, American Association for the Advancement of Science.
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Quantum fields on the computer
1992-01-01
This book provides an overview of recent progress in computer simulations of nonperturbative phenomena in quantum field theory, particularly in the context of the lattice approach. It is a collection of extensive self-contained reviews of various subtopics, including algorithms, spectroscopy, finite temperature physics, Yukawa and chiral theories, bounds on the Higgs meson mass, the renormalization group, and weak decays of hadrons.Physicists with some knowledge of lattice gauge ideas will find this book a useful and interesting source of information on the recent developments in the field.
Adiabatically modeling quantum gates with two-site Heisenberg spins chain: Noise vs interferometry
Jipdi, M. N.; Tchoffo, M.; Fai, L. C.
2018-02-01
We study the Landau Zener (LZ) dynamics of a two-site Heisenberg spin chain assisted with noise and focus on the implementation of logic gates via the resulting quantum interference. We present the evidence of the quantum interference phenomenon in triplet spin states and confirm that, three-level systems mimic Landau-Zener-Stückelberg (LZS) interferometers with occupancies dependent on the effective phase. It emerges that, the critical parameters tailoring the system are obtained for constructive interferences where the two sets of the chain are found to be maximally entangled. Our findings demonstrate that the enhancement of the magnetic field strength suppresses noise effects; consequently, the noise severely impacts the occurrence of quantum interference for weak magnetic fields while for strong fields, quantum interference subsists and allows the modeling of universal sets of quantum gates.
Computational quantum-classical boundary of noisy commuting quantum circuits.
Fujii, Keisuke; Tamate, Shuhei
2016-05-18
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.
The Heisenberg representation of quantum computers
Energy Technology Data Exchange (ETDEWEB)
Gottesman, D.
1998-06-24
Since Shor`s discovery of an algorithm to factor numbers on a quantum computer in polynomial time, quantum computation has become a subject of immense interest. Unfortunately, one of the key features of quantum computers--the difficulty of describing them on classical computers--also makes it difficult to describe and understand precisely what can be done with them. A formalism describing the evolution of operators rather than states has proven extremely fruitful in understanding an important class of quantum operations. States used in error correction and certain communication protocols can be described by their stabilizer, a group of tensor products of Pauli matrices. Even this simple group structure is sufficient to allow a rich range of quantum effects, although it falls short of the full power of quantum computation.
Quantum Computer Games: Schrodinger Cat and Hounds
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…
Quantum computing with realistically noisy devices.
Knill, E
2005-03-03
In theory, quantum computers offer a means of solving problems that would be intractable on conventional computers. Assuming that a quantum computer could be constructed, it would in practice be required to function with noisy devices called 'gates'. These gates cause decoherence of the fragile quantum states that are central to the computer's operation. The goal of so-called 'fault-tolerant quantum computing' is therefore to compute accurately even when the error probability per gate (EPG) is high. Here we report a simple architecture for fault-tolerant quantum computing, providing evidence that accurate quantum computing is possible for EPGs as high as three per cent. Such EPGs have been experimentally demonstrated, but to avoid excessive resource overheads required by the necessary architecture, lower EPGs are needed. Assuming the availability of quantum resources comparable to the digital resources available in today's computers, we show that non-trivial quantum computations at EPGs of as high as one per cent could be implemented.
Disciplines, models, and computers: the path to computational quantum chemistry.
Lenhard, Johannes
2014-12-01
Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Benchmarking gate-based quantum computers
Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans
2017-11-01
With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.
Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage
Energy Technology Data Exchange (ETDEWEB)
Chadwick, Helen, E-mail: helen.chadwick@epfl.ch; Hundt, P. Morten; Reijzen, Maarten E. van; Yoder, Bruce L.; Beck, Rainer D. [Laboratoire de Chimie Physique Moléculaire, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)
2014-01-21
Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.
Quantum Field Symbolic Analog Computation: Relativity Model
Manoharan, A. C.
2000-01-01
It is natural to consider a quantum system in the continuum limit of space-time configuration. Incorporating also, Einstein's special relativity, leads to the quantum theory of fields. Non-relativistic quantum mechanics and classical mechanics are special cases. By studying vacuum expectation values (Wightman functions W(n; z) where z denotes the set of n complex variables) of products of quantum field operators in a separable Hilbert space, one is led to computation of holomorphy domains for...
Quantum computer: an appliance for playing market games
Piotrowski, Edward W.; Jan Sladkowski
2003-01-01
Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The authors have recently proposed a quantum description of financial market in terms of quantum game theory. The paper contain an analysis of such markets that shows that there would be advantage in using quantum computers and quantum strategies.
The potential of the quantum computer
2006-01-01
The Physics Section of the University of Geneva is continuing its series of lectures, open to the general public, on the most recent developments in the field of physics. The next lecture, given by Professor Michel Devoret of Yale University in the United States, will be on the potential of the quantum computer. The quantum computer is, as yet, a hypothetical machine which would operate on the basic principles of quantum mechanics. Compared to standard computers, it represents a significant gain in computing power for certain complex calculations. Quantum operations can simultaneously explore a very large number of possibilities. The correction of quantum errors, which until recently had been deemed impossible, has now become a well-established technique. Several prototypes for, as yet, very simple quantum processors have been developed. The lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de M...
Performing quantum computing experiments in the cloud
Devitt, Simon J.
2016-09-01
Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.
Quantum Computation Using Optically Coupled Quantum Dot Arrays
Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)
1998-01-01
A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.
Universal quantum computation with little entanglement.
Van den Nest, Maarten
2013-02-08
We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers.
Computational security of quantum encryption
Alagic, G.; Broadbent, A.; Fefferman, B.; Gagliardoni, T.; Schaffner, C.; St. Jules, M.; Nascimento, A.C.A.; Barreto, P.
2016-01-01
Quantum-mechanical devices have the potential to transform cryptography. Most research in this area has focused either on the information-theoretic advantages of quantum protocols or on the security of classical cryptographic schemes against quantum attacks. In this work, we initiate the study of
Transitionless driving on adiabatic search algorithm
Oh, Sangchul; Kais, Sabre
2014-12-01
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Racing a quantum computer through Minkowski spacetime
Energy Technology Data Exchange (ETDEWEB)
Biamonte, Jacob D [Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD (United Kingdom)
2010-05-01
The Lorentzian length of a timelike curve connecting both endpoints of a computation in Minkowski spacetime is smaller than the Lorentzian length of the corresponding geodesic. In this talk, I will point out some properties of spacetime that allow an inertial classical computer to outperform a quantum one, at the completion of a long journey. We will focus on a comparison between the optimal quadratic Grover speed up from quantum computing and an n=2 speedup using classical computers and relativistic effects. These results are not practical as a new model of computation, but allow us to probe the ultimate limits physics places on computers.
Measurement Based Quantum Computation on Fractal Lattices
Directory of Open Access Journals (Sweden)
Michal Hajdušek
2010-06-01
Full Text Available In this article we extend on work which establishes an analology between one-way quantum computation and thermodynamics to see how the former can be performed on fractal lattices. We find fractals lattices of arbitrary dimension greater than one which do all act as good resources for one-way quantum computation, and sets of fractal lattices with dimension greater than one all of which do not. The difference is put down to other topological factors such as ramification and connectivity. This work adds confidence to the analogy and highlights new features to what we require for universal resources for one-way quantum computation.
Concatenated codes for fault tolerant quantum computing
Energy Technology Data Exchange (ETDEWEB)
Knill, E.; Laflamme, R.; Zurek, W.
1995-05-01
The application of concatenated codes to fault tolerant quantum computing is discussed. We have previously shown that for quantum memories and quantum communication, a state can be transmitted with error {epsilon} provided each gate has error at most c{epsilon}. We show how this can be used with Shor`s fault tolerant operations to reduce the accuracy requirements when maintaining states not currently participating in the computation. Viewing Shor`s fault tolerant operations as a method for reducing the error of operations, we give a concatenated implementation which promises to propagate the reduction hierarchically. This has the potential of reducing the accuracy requirements in long computations.
PhD thesis: Multipartite entanglement and quantum algorithms
Alsina, Daniel
2017-01-01
PhD thesis dealing with various aspects of multipartite entanglement, such as entanglement measures, absolutely maximally entangled states, bell inequalities, entanglement spectrum and quantum frustration. Also some quantum algorithms run with the IBM quantum computer are covered, together with others applied to adiabatic quantum computation and quantum thermodynamics.
Quantum Computing and the Limits of the Efficiently Computable
CERN. Geneva
2015-01-01
I'll discuss how computational complexity---the study of what can and can't be feasibly computed---has been interacting with physics in interesting and unexpected ways. I'll first give a crash course about computer science's P vs. NP problem, as well as about the capabilities and limits of quantum computers. I'll then touch on speculative models of computation that would go even beyond quantum computers, using (for example) hypothetical nonlinearities in the Schrodinger equation. Finally, I'll discuss BosonSampling ---a proposal for a simple form of quantum computing, which nevertheless seems intractable to simulate using a classical computer---as well as the role of computational complexity in the black hole information puzzle.
Materials Frontiers to Empower Quantum Computing
Energy Technology Data Exchange (ETDEWEB)
Taylor, Antoinette Jane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarrao, John Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richardson, Christopher [Laboratory for Physical Sciences, College Park, MD (United States)
2015-06-11
This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.
Quantum Photonics Beyond Conventional Computing
2015-07-10
device can perform quantum simulations of the evolution of vibrational wave-packets in molecules , suggesting that such an approach could yield the...perform quantum simulations of the evolution of vibrational wave-packets in molecules , an application pointing the way towards the first physically...spatial degrees of freedom (e.g. polarisation, frequency). If the photons are distinguishable from each other, no quantum interference takes place
Experimental comparison of two quantum computing architectures.
Linke, Norbert M; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A; Wright, Kenneth; Monroe, Christopher
2017-03-28
We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www. ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.
Is the Brain a Quantum Computer?
Litt, Abninder; Eliasmith, Chris; Kroon, Frederick W.; Weinstein, Steven; Thagard, Paul
2006-01-01
We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic…
He, Yin-Chen; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus; Vishwanath, Ashvin
2017-11-01
We study the ground states of two-dimensional lattice bosons in an artificial gauge field. Using state-of-the-art density matrix renormalization group (DMRG) simulations we obtain the zero-temperature phase diagram for hard-core bosons at densities nb with flux nϕ per unit cell, which determines a filling ν =nb/nϕ . We find the bosonic Jain sequence [ν =p /(p +1 )] states, in particular, a bosonic integer quantum Hall phase at ν =2 , are fairly robust in the hard-core boson limit, In addition to identifying Hamiltonians whose ground states realize these phases, we discuss their preparation, beginning from independent chains, and ramping up interchain couplings. Using time-dependent DMRG simulations, these are shown to reliably produce states close to the ground state for experimentally relevant system sizes. Our proposal only utilizes existing experimental capabilities.
Low-Power Adiabatic Computing with Improved Quasistatic Energy Recovery Logic
Directory of Open Access Journals (Sweden)
Shipra Upadhyay
2013-01-01
Full Text Available Efficiency of adiabatic logic circuits is determined by the adiabatic and non-adiabatic losses incurred by them during the charging and recovery operations. The lesser will be these losses circuit will be more energy efficient. In this paper, a new approach is presented for minimizing power consumption in quasistatic energy recovery logic (QSERL circuit which involves optimization by removing the nonadiabatic losses completely by replacing the diodes with MOSFETs whose gates are controlled by power clocks. Proposed circuit inherits the advantages of quasistatic ERL (QSERL family but is with improved power efficiency and driving ability. In order to demonstrate workability of the newly developed circuit, a 4 × 4 bit array multiplier circuit has been designed. A mathematical expression to calculate energy dissipation in proposed inverter is developed. Performance of the proposed logic (improved quasistatic energy recovery logic (IQSERL is analyzed and compared with CMOS and reported QSERL in their representative inverters and multipliers in VIRTUOSO SPECTRE simulator of Cadence in 0.18 μm UMC technology. In our proposed (IQSERL inverter the power efficiency has been improved to almost 20% up to 50 MHz and 300 fF external load capacitance in comparison to CMOS and QSERL circuits.
An introduction to quantum computing algorithms
Pittenger, Arthur O
2000-01-01
In 1994 Peter Shor [65] published a factoring algorithm for a quantum computer that finds the prime factors of a composite integer N more efficiently than is possible with the known algorithms for a classical com puter. Since the difficulty of the factoring problem is crucial for the se curity of a public key encryption system, interest (and funding) in quan tum computing and quantum computation suddenly blossomed. Quan tum computing had arrived. The study of the role of quantum mechanics in the theory of computa tion seems to have begun in the early 1980s with the publications of Paul Benioff [6]' [7] who considered a quantum mechanical model of computers and the computation process. A related question was discussed shortly thereafter by Richard Feynman [35] who began from a different perspec tive by asking what kind of computer should be used to simulate physics. His analysis led him to the belief that with a suitable class of "quantum machines" one could imitate any quantum system.
Relativistic quantum chemistry on quantum computers
Czech Academy of Sciences Publication Activity Database
Veis, Libor; Višňák, Jakub; Fleig, T.; Knecht, S.; Saue, T.; Visscher, L.; Pittner, Jiří
2012-01-01
Roč. 85, č. 3 (2012), 030304 ISSN 1050-2947 R&D Projects: GA ČR GA203/08/0626 Institutional support: RVO:61388955 Keywords : simulation * algorithm * computation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.042, year: 2012
Scaling ion traps for quantum computing
CSIR Research Space (South Africa)
Uys, H
2010-09-01
Full Text Available The design, fabrication and preliminary testing of a chipscale, multi-zone, surface electrode ion trap is reported. The modular design and fabrication techniques used are anticipated to advance scalability of ion trap quantum computing architectures...
Elucidating reaction mechanisms on quantum computers
National Research Council Canada - National Science Library
Markus Reiher; Nathan Wiebe; Krysta M Svore; Dave Wecker; Matthias Troyer
2017-01-01
.... Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example...
Computer science: Data analysis meets quantum physics
Schramm, Steven
2017-10-01
A technique that combines machine learning and quantum computing has been used to identify the particles known as Higgs bosons. The method could find applications in many areas of science. See Letter p.375
Quantum Computing and Shor`s Factoring Algorithm
Volovich, Igor V.
2001-01-01
Lectures on quantum computing. Contents: Algorithms. Quantum circuits. Quantum Fourier transform. Elements of number theory. Modular exponentiation. Shor`s algorithm for finding the order. Computational complexity of Schor`s algorithm. Factoring integers. NP-complete problems.
Braid group representation on quantum computation
Energy Technology Data Exchange (ETDEWEB)
Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com [Department of Computational Sciences, Bandung Institute of Technology (Indonesia); Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id [Algebra Research Group, Bandung Institute of Technology (Indonesia)
2015-09-30
There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.
Iterated Gate Teleportation and Blind Quantum Computation.
Pérez-Delgado, Carlos A; Fitzsimons, Joseph F
2015-06-05
Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.
Private quantum computation: an introduction to blind quantum computing and related protocols
Fitzsimons, Joseph F.
2017-06-01
Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area.
Robust dynamical decoupling for quantum computing and quantum memory.
Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter
2011-06-17
Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.
EDITORIAL: Quantum Computing and the Feynman Festival
Brandt, Howard E.; Kim, Young S.; Man'ko, Margarita A.
2003-12-01
The Feynman Festival is a new interdisciplinary conference developed for studying Richard Feynman and his physics. The first meeting of this new conference series was held at the University of Maryland on 23--28 August 2002 (http://www.physics.umd.edu/robot/feynman.html) and the second meeting is scheduled for August 2004 at the same venue. According to Feynman, the different aspects of nature are different aspects of the same thing. Therefore, the ultimate purpose of the conference is to find Feynman's same thing from all different theories. For this reason, the first meeting of the Festival did not begin with a fixed formula, but composed its scientific programme based on responses from the entire physics community. The conference drew the most enthusiastic response from the community of quantum computing, the field initiated by Feynman. Encouraged by the response, we decided to edit a special issue of Journal of Optics B: Quantum and Semiclassical Optics on quantum computing in connection with the first Feynman Festival. The authorship is not restricted to the participants of the Feynman Festival, and all interested parties were encouraged to submit their papers on this subject. Needless to say, all the papers were peer reviewed according to the well-established standards of the journal. The subject of quantum computing is not restricted to building and operating computers. It requires a deeper understanding of how quantum mechanics works in materials as well as in our minds. Indeed, it covers the basic foundations of quantum mechanics, measurement theory, information theory, quantum optics, atomic physics and condensed matter physics. It may be necessary to develop new mathematical tools to accommodate the language that nature speaks. It is gratifying to note that this special issue contains papers covering all these aspects of quantum computing. As Feynman noted, we could be discussing these diversified issues to study one problem. In our case, this `one
Quantum computing with black-box quantum subroutines
Energy Technology Data Exchange (ETDEWEB)
Thompson, Jayne [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Gu, Mile [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing (China); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Modi, Kavan [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore (Singapore)
2014-07-01
In classical computation a subroutine is treated as a black box and we do not need to know its exact physical implementation to use it. A complex problem can be decomposed into smaller problems using such modularity. We show that quantum mechanically applying an unknown quantum process as a subroutine is impossible, and this restricts computation models such as DQC1 from operating on unknown inputs. We present a method to avoid this situation for certain computational problems and apply to a modular version of Shor's factoring algorithm. We examine how quantum entanglement and discord fare in this implementation. In this way we are able to study the role of discord in Shor's factoring algorithm.
Elements of quantum computing history, theories and engineering applications
Akama, Seiki
2015-01-01
A quantum computer is a computer based on a computational model which uses quantum mechanics, which is a subfield of physics to study phenomena at the micro level. There has been a growing interest on quantum computing in the 1990's, and some quantum computers at the experimental level were recently implemented. Quantum computers enable super-speed computation, and can solve some important problems whose solutions were regarded impossible or intractable with traditional computers. This book provides a quick introduction to quantum computing for readers who have no backgrounds of both theory of computation and quantum mechanics. “Elements of Quantum Computing” presents the history, theories, and engineering applications of quantum computing. The book is suitable to computer scientists, physicist, and software engineers.
Quantum Genetic Algorithms for Computer Scientists
Directory of Open Access Journals (Sweden)
Rafael Lahoz-Beltra
2016-10-01
Full Text Available Genetic algorithms (GAs are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data has led to a new class of GAs known as “Quantum Genetic Algorithms” (QGAs. In this review, we present a discussion, future potential, pros and cons of this new class of GAs. The review will be oriented towards computer scientists interested in QGAs “avoiding” the possible difficulties of quantum-mechanical phenomena.
Universal Quantum Computation with Gapped Boundaries
Cong, Iris; Cheng, Meng; Wang, Zhenghan
2017-10-01
This Letter discusses topological quantum computation with gapped boundaries of two-dimensional topological phases. Systematic methods are presented to encode quantum information topologically using gapped boundaries, and to perform topologically protected operations on this encoding. In particular, we introduce a new and general computational primitive of topological charge measurement and present a symmetry-protected implementation of this primitive. Throughout the Letter, a concrete physical example, the Z3 toric code [D (Z3)], is discussed. For this example, we have a qutrit encoding and an abstract universal gate set. Physically, gapped boundaries of D (Z3) can be realized in bilayer fractional quantum Hall 1 /3 systems. If a practical implementation is found for the required topological charge measurement, these boundaries will give rise to a direct physical realization of a universal quantum computer based on a purely Abelian topological phase.
Quantum algorithms for computational nuclear physics
Directory of Open Access Journals (Sweden)
Višňák Jakub
2015-01-01
Full Text Available While quantum algorithms have been studied as an efficient tool for the stationary state energy determination in the case of molecular quantum systems, no similar study for analogical problems in computational nuclear physics (computation of energy levels of nuclei from empirical nucleon-nucleon or quark-quark potentials have been realized yet. Although the difference between the above mentioned studies might seem negligible, it will be examined. First steps towards a particular simulation (on classical computer of the Iterative Phase Estimation Algorithm for deuterium and tritium nuclei energy level computation will be carried out with the aim to prove algorithm feasibility (and extensibility to heavier nuclei for its possible practical realization on a real quantum computer.
Compressed quantum computation using a remote five-qubit quantum computer
Hebenstreit, M.; Alsina, D.; Latorre, J. I.; Kraus, B.
2017-05-01
The notion of compressed quantum computation is employed to simulate the Ising interaction of a one-dimensional chain consisting of n qubits using the universal IBM cloud quantum computer running on log2(n ) qubits. The external field parameter that controls the quantum phase transition of this model translates into particular settings of the quantum gates that generate the circuit. We measure the magnetization, which displays the quantum phase transition, on a two-qubit system, which simulates a four-qubit Ising chain, and show its agreement with the theoretical prediction within a certain error. We also discuss the relevant point of how to assess errors when using a cloud quantum computer with a limited amount of runs. As a solution, we propose to use validating circuits, that is, to run independent controlled quantum circuits of similar complexity to the circuit of interest.
Efficient quantum circuits for one-way quantum computing.
Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco
2009-03-13
While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.
Universality of black hole quantum computing
Energy Technology Data Exchange (ETDEWEB)
Dvali, Gia [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); New York Univ., NY (United States). Center for Cosmology and Particle Physics; Gomez, Cesar [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM-CSIC; Luest, Dieter [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Omar, Yasser [Instituto de Telecomunicacoes (Portugal). Physics of Information and Quantum Technologies Group; Lisboa Univ. (Portugal). Inst. Superior Tecnico; Richter, Benedikt [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Instituto de Telecomunicacoes (Portugal). Physics of Information and Quantum Technologies Group; Lisboa Univ. (Portugal). Inst. Superior Tecnico
2017-01-15
By analyzing the key properties of black holes from the point of view of quantum information, we derive a model-independent picture of black hole quantum computing. It has been noticed that this picture exhibits striking similarities with quantum critical condensates, allowing the use of a common language to describe quantum computing in both systems. We analyze such quantum computing by allowing coupling to external modes, under the condition that the external influence must be soft-enough in order not to offset the basic properties of the system. We derive model-independent bounds on some crucial time-scales, such as the times of gate operation, decoherence, maximal entanglement and total scrambling. We show that for black hole type quantum computers all these time-scales are of the order of the black hole half-life time. Furthermore, we construct explicitly a set of Hamiltonians that generates a universal set of quantum gates for the black hole type computer. We find that the gates work at maximal energy efficiency. Furthermore, we establish a fundamental bound on the complexity of quantum circuits encoded on these systems, and characterize the unitary operations that are implementable. It becomes apparent that the computational power is very limited due to the fact that the black hole life-time is of the same order of the gate operation time. As a consequence, it is impossible to retrieve its information, within the life-time of a black hole, by externally coupling to the black hole qubits. However, we show that, in principle, coupling to some of the internal degrees of freedom allows acquiring knowledge about the micro-state. Still, due to the trivial complexity of operations that can be performed, there is no time advantage over the collection of Hawking radiation and subsequent decoding. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
On Quantum Search, Experts and Geometry
Drezgich, Milosh
2010-01-01
The problem of unstructured search plays the central role in our current understanding of the computational power of quantum computers. Improvement in the efficiency of solving unstructured search problem has an immediate consequence in the improvement in solving NP-complete problems. We introduce the new framework of natural continuous time quantum search algorithms, that in contrast to the adiabatic quantum algorithms, require neither the ground state initialization nor the adiabatic change...
Biologically inspired path to quantum computer
Ogryzko, Vasily; Ozhigov, Yuri
2014-12-01
We describe an approach to quantum computer inspired by the information processing at the molecular level in living cells. It is based on the separation of a small ensemble of qubits inside the living system (e.g., a bacterial cell), such that coherent quantum states of this ensemble remain practically unchanged for a long time. We use the notion of a quantum kernel to describe such an ensemble. Quantum kernel is not strictly connected with certain particles; it permanently exchanges atoms and molecules with the environment, which makes quantum kernel a virtual notion. There are many reasons to expect that the state of quantum kernel of a living system can be treated as the stationary state of some Hamiltonian. While the quantum kernel is responsible for the stability of dynamics at the time scale of cellular life, at the longer inter-generation time scale it can change, varying smoothly in the course of biological evolution. To the first level of approximation, quantum kernel can be described in the framework of qubit modification of Jaynes-Cummings-Hubbard model, in which the relaxation corresponds to the exchange of matter between quantum kernel and the rest of the cell and is represented as Lindblad super-operators.
Theoretical studies for experimental implementation of quantum computing with trapped ions
Yoshimura, Bryce T.
Certain quantum many-body physics problems, such as the transverse field Ising model are intractable on a classical computer, meaning that as the number of particles grows, or spins, the amount of memory and computational time required to solve the problem exactly increases faster than a polynomial behavior. However, quantum simulators are being developed to efficiently solve quantum problems that are intractable via conventional computing. Some of the most successful quantum simulators are based on ion traps. Their success depends on the ability to achieve long coherence time, precise spin control, and high fidelity in state preparation. In this work, I present calculations that characterizes the oblate Paul trap that creates two-dimensional Coulomb crystals in a triangular lattice and phonon modes. We also calculate the spin-spin Ising-like interaction that can be generated in the oblate Paul trap using the same techinques as the linear radiofrequency Paul trap. In addition, I discuss two possible challenges that arise in the Penning trap: the effects of defects ( namely when Be+ → BeH+) and the creation of a more uniform spin-spin Ising-like interaction. We show that most properties are not significantly influenced by the appearance of defects, and that by adding two potentials to the Penning trap a more uniform spin-spin Ising-like interaction can be achieved. Next, I discuss techniques tfor preparing the ground state of the Ising-like Hamiltonian. In particular, we explore the use of the bang-bang protocol to prepare the ground state and compare optimized results to conventional adiabatic ramps ( the exponential and locally adiabatic ramp ). The bang-bang optimization in general outperforms the exponential; however the locally adiabatic ramp consistently is somewhat better. However, compared to the locally adiabatic ramp, the bang-bang optimization is simpler to implement, and it has the advantage of providingrovide a simple procedure for estimating the
Quantum Heterogeneous Computing for Satellite Positioning Optimization
Bass, G.; Kumar, V.; Dulny, J., III
2016-12-01
Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any
Adiabatic transport of qubits around a black hole
Viennot, David
2016-01-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
Extending matchgates into universal quantum computation
Energy Technology Data Exchange (ETDEWEB)
Brod, Daniel J.; Galvao, Ernesto F. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, RJ, 24210-340 (Brazil)
2011-08-15
Matchgates are a family of two-qubit gates associated with noninteracting fermions. They are classically simulatable if acting only on nearest neighbors but become universal for quantum computation if we relax this restriction or use swap gates [Jozsa and Miyake, Proc. R. Soc. A 464, 3089 (2008)]. We generalize this result by proving that any nonmatchgate parity-preserving unitary is capable of extending the computational power of matchgates into universal quantum computation. We identify the single local invariant of parity-preserving unitaries responsible for this, and discuss related results in the context of fermionic systems.
Finding resource states of measurement-based quantum computing is harder than quantum computing
Morimae, Tomoyuki
2017-11-01
Measurement-based quantum computing enables universal quantum computing with only adaptive single-qubit measurements on certain many-qubit states, such as the graph state, the Affleck-Kennedy-Lieb-Tasaki (AKLT) state, and several tensor-network states. Finding new resource states of measurement-based quantum computing is a hard task, since for a given state there are exponentially many possible measurement patterns on the state. In this paper, we consider the problem of deciding, for a given state and a set of unitary operators, whether there exists a way of measurement-based quantum computing on the state that can realize all unitaries in the set, or not. We show that the decision problem is QCMA-hard (where QCMA stands for quantum classical Merlin Arthur), which means that finding new resource states of measurement-based quantum computing is harder than quantum computing itself [unless BQP (bounded-error quantum polynomial time) is equal to QCMA]. We also derive an upper bound of the decision problem: the problem is in a quantum version of the second level of the polynomial hierarchy.
Unordered Tuples in Quantum Computation
Directory of Open Access Journals (Sweden)
Robert Furber
2015-11-01
Full Text Available It is well known that the C*-algebra of an ordered pair of qubits is M_2 (x M_2. What about unordered pairs? We show in detail that M_3 (+ C is the C*-algebra of an unordered pair of qubits. Then we use Schur-Weyl duality to characterize the C*-algebra of an unordered n-tuple of d-level quantum systems. Using some further elementary representation theory and number theory, we characterize the quantum cycles. We finish with a characterization of the von Neumann algebra for unordered words.
Universal quantum computation with unlabelled qubits
Energy Technology Data Exchange (ETDEWEB)
Severini, Simone [Department of Mathematics and Department of Computer Science, University of York, Heslington, YO10 5DD York (United Kingdom)
2006-06-30
We show that an nth root of the Walsh-Hadamard transform (obtained from the Hadamard gate and a cyclic permutation of the qubits), together with two diagonal matrices, namely a local qubit-flip (for a fixed but arbitrary qubit) and a non-local phase-flip (for a fixed but arbitrary coefficient), can do universal quantum computation on n qubits. A quantum computation, making use of n qubits and based on these operations, is then a word of variable length, but whose letters are always taken from an alphabet of cardinality three. Therefore, in contrast with other universal sets, no choice of qubit lines is needed for the application of the operations described here. A quantum algorithm based on this set can be interpreted as a discrete diffusion of a quantum particle on a de Bruijn graph, corrected on-the-fly by auxiliary modifications of the phases associated with the arcs.
Entanglement and Quantum Computation: An Overview
Energy Technology Data Exchange (ETDEWEB)
Perez, R.B.
2000-06-27
This report presents a selective compilation of basic facts from the fields of particle entanglement and quantum information processing prepared for those non-experts in these fields that may have interest in an area of physics showing counterintuitive, ''spooky'' (Einstein's words) behavior. In fact, quantum information processing could, in the near future, provide a new technology to sustain the benefits to the U.S. economy due to advanced computer technology.
Consequences and Limitations of Conventional Computers and their Solutions through Quantum Computers
Nilesh BARDE; Thakur, Deepak; Pranav BARDAPURKAR; Sanjaykumar DALVI
2012-01-01
Quantum computer is the current topic of research in the field of computational science, which uses principles of quantum mechanics. Quantum computers will be much more powerful than the classical computer due to its enormous computational speed. Recent developments in quantum computers which are based on the laws of quantum mechanics, shows different ways of performing efficient calculations along with the various results which are not possible on the classical computers in an efficient peri...
Tempel, David G; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.
Trading Classical and Quantum Computational Resources
Directory of Open Access Journals (Sweden)
Sergey Bravyi
2016-06-01
Full Text Available We propose examples of a hybrid quantum-classical simulation where a classical computer assisted by a small quantum processor can efficiently simulate a larger quantum system. First, we consider sparse quantum circuits such that each qubit participates in O(1 two-qubit gates. It is shown that any sparse circuit on n+k qubits can be simulated by sparse circuits on n qubits and a classical processing that takes time 2^{O(k}poly(n. Second, we study Pauli-based computation (PBC, where allowed operations are nondestructive eigenvalue measurements of n-qubit Pauli operators. The computation begins by initializing each qubit in the so-called magic state. This model is known to be equivalent to the universal quantum computer. We show that any PBC on n+k qubits can be simulated by PBCs on n qubits and a classical processing that takes time 2^{O(k}poly(n. Finally, we propose a purely classical algorithm that can simulate a PBC on n qubits in a time 2^{αn}poly(n, where α≈0.94. This improves upon the brute-force simulation method, which takes time 2^{n}poly(n. Our algorithm exploits the fact that n-fold tensor products of magic states admit a low-rank decomposition into n-qubit stabilizer states.
Methodological testing: Are fast quantum computers illusions?
Energy Technology Data Exchange (ETDEWEB)
Meyer, Steven [Tachyon Design Automation, San Francisco, CA (United States)
2013-07-01
Popularity of the idea for computers constructed from the principles of QM started with Feynman's 'Lectures On Computation', but he called the idea crazy and dependent on statistical mechanics. In 1987, Feynman published a paper in 'Quantum Implications - Essays in Honor of David Bohm' on negative probabilities which he said gave him cultural shock. The problem with imagined fast quantum computers (QC) is that speed requires both statistical behavior and truth of the mathematical formalism. The Swedish Royal Academy 2012 Nobel Prize in physics press release touted the discovery of methods to control ''individual quantum systems'', to ''measure and control very fragile quantum states'' which enables ''first steps towards building a new type of super fast computer based on quantum physics.'' A number of examples where widely accepted mathematical descriptions have turned out to be problematic are examined: Problems with the use of Oracles in P=NP computational complexity, Paul Finsler's proof of the continuum hypothesis, and Turing's Enigma code breaking versus William tutte's Colossus. I view QC research as faith in computational oracles with wished for properties. Arther Fine's interpretation in 'The Shaky Game' of Einstein's skepticism toward QM is discussed. If Einstein's reality as space-time curvature is correct, then space-time computers will be the next type of super fast computer.
Quantum Computing: Selected Internet Resources for Librarians, Researchers, and the Casually Curious
Cirasella, Jill
2009-01-01
This article is an annotated selection of the most important and informative Internet resources for learning about quantum computing, finding quantum computing literature, and tracking quantum computing news.
A surface code quantum computer in silicon
Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.
2015-01-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310
A surface code quantum computer in silicon.
Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L
2015-10-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.
Quantum computing implementations with neutral particles
DEFF Research Database (Denmark)
Negretti, Antonio; Treutlein, Philipp; Calarco, Tommaso
2011-01-01
We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our...... discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how...... optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation....
Quantum Computation and Information From Theory to Experiment
Imai, Hiroshi
2006-01-01
Recently, the field of quantum computation and information has been developing through a fusion of results from various research fields in theoretical and practical areas. This book consists of the reviews of selected topics charterized by great progress and cover the field from theoretical areas to experimental ones. It contains fundamental areas, quantum query complexity, quantum statistical inference, quantum cloning, quantum entanglement, additivity. It treats three types of quantum security system, quantum public key cryptography, quantum key distribution, and quantum steganography. A photonic system is highlighted for the realization of quantum information processing.
Fourier-transforming with quantum annealers
Directory of Open Access Journals (Sweden)
Itay eHen
2014-07-01
Full Text Available We introduce a set of quantum adiabatic evolutions that we argue may be used as `building blocks', or subroutines, in the onstruction of an adiabatic algorithm that executes Quantum Fourier Transform (QFT with the same complexity and resources as its gate-model counterpart. One implication of the above construction is the theoretical feasibility of implementing Shor's algorithm for integer factorization in an optimal manner, and any other algorithm that makes use of QFT, on quantum annealing devices. We discuss the possible advantages, as well as the limitations, of the proposed approach as well as its relation to traditional adiabatic quantum computation.
Quantum computation with nuclear spins in quantum dots
Energy Technology Data Exchange (ETDEWEB)
Christ, H.
2008-01-24
The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin
Combinatorial algorithms for perturbation theory and application on quantum computing
Cao, Yudong
2016-01-01
Quantum computing is an emerging area between computer science and physics. Numerous problems in quantum computing involve quantum many-body interactions. This dissertation concerns the problem of simulating arbitrary quantum many-body interactions using realistic two-body interactions. To address this issue, a general class of techniques called perturbative reductions (or perturbative gadgets) is adopted from quantum complexity theory and in this dissertation these techniques are improved fo...
Random Numbers and Quantum Computers
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…
Simulations of Probabilities for Quantum Computing
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
Blind quantum computing with weak coherent pulses.
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-18
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.
General approaches in ensemble quantum computing
Indian Academy of Sciences (India)
WINTEC
Abstract. We have developed methodology for NMR quantum computing focusing on enhancing the efficiency of initialization, of logic gate implementation and of readout. Our general strategy involves the application of rotating frame pulse sequences to prepare pseudopure states and to perform logic opera- tions.
A simulator for quantum computer hardware
Michielsen, K.F L; de Raedt, H.A.; De Raedt, K.
We present new examples of the use of the quantum computer (QC) emulator. For educational purposes we describe the implementation of the CNOT and Toffoli gate, two basic building blocks of a QC, on a three qubit NMR-like QC.
The quantum computer game: citizen science
Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob
2013-05-01
Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.
Blind Quantum Computing with Weak Coherent Pulses
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-01
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.
Geometry of abstraction in quantum computation
Pavlovic, Dusko; Abramsky, S.; Mislove, M.W.
2012-01-01
Quantum algorithms are sequences of abstract operations, per formed on non-existent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contribu tions of Abramsky, Goecke and Selinger. In particular, we analyze function
Geometry of abstraction in quantum computation
Pavlovic, Dusko; Abramsky, S.; Mislove, M.W.
2012-01-01
Quantum algorithms are sequences of abstract operations, per formed on non-existent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contribu tions of Abramsky, Goecke and Selinger. In particular, we analyze function abstraction
General approaches in ensemble quantum computing
Indian Academy of Sciences (India)
We have developed methodology for NMR quantum computing focusing on enhancing the efficiency of initialization, of logic gate implementation and of readout. Our general strategy involves the application of rotating frame pulse sequences to prepare pseudopure states and to perform logic operations. We demonstrate ...
Quantum Computation with Ultrafast Laser Pulse Shaping
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Quantum Computation with Ultrafast Laser Pulse Shaping. Debabrata Goswami. General Article Volume 10 Issue 6 June 2005 pp 8-14. Fulltext. Click here to view fulltext PDF. Permanent link:
Data Structures in Classical and Quantum Computing
M.J. Fillinger (Max)
2013-01-01
textabstractThis survey summarizes several results about quantum computing related to (mostly static) data structures. First, we describe classical data structures for the set membership and the predecessor search problems: Perfect Hash tables for set membership by Fredman, Koml\\'{o}s and
Energy efficient quantum machines
Abah, Obinna; Lutz, Eric
2017-05-01
We investigate the performance of a quantum thermal machine operating in finite time based on shortcut-to-adiabaticity techniques. We compute efficiency and power for a paradigmatic harmonic quantum Otto engine by taking the energetic cost of the shortcut driving explicitly into account. We demonstrate that shortcut-to-adiabaticity machines outperform conventional ones for fast cycles. We further derive generic upper bounds on both quantities, valid for any heat engine cycle, using the notion of quantum speed limit for driven systems. We establish that these quantum bounds are tighter than those stemming from the second law of thermodynamics.
Hardware for dynamic quantum computing.
Ryan, Colm A; Johnson, Blake R; Ristè, Diego; Donovan, Brian; Ohki, Thomas A
2017-10-01
We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.
Hardware for dynamic quantum computing
Ryan, Colm A.; Johnson, Blake R.; Ristè, Diego; Donovan, Brian; Ohki, Thomas A.
2017-10-01
We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.
Quantum vertex model for reversible classical computing.
Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C
2017-05-12
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
Quantum vertex model for reversible classical computing
Chamon, C.; Mucciolo, E. R.; Ruckenstein, A. E.; Yang, Z.-C.
2017-05-01
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without `learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
Entanglement spectroscopy on a quantum computer
Johri, Sonika; Steiger, Damian S.; Troyer, Matthias
2017-11-01
We present a quantum algorithm to compute the entanglement spectrum of arbitrary quantum states. The interesting universal part of the entanglement spectrum is typically contained in the largest eigenvalues of the density matrix which can be obtained from the lower Renyi entropies through the Newton-Girard method. Obtaining the p largest eigenvalues (λ1>λ2⋯>λp ) requires a parallel circuit depth of O [p (λ1/λp) p] and O [p log(N )] qubits where up to p copies of the quantum state defined on a Hilbert space of size N are needed as the input. We validate this procedure for the entanglement spectrum of the topologically ordered Laughlin wave function corresponding to the quantum Hall state at filling factor ν =1 /3 . Our scaling analysis exposes the tradeoffs between time and number of qubits for obtaining the entanglement spectrum in the thermodynamic limit using finite-size digital quantum computers. We also illustrate the utility of the second Renyi entropy in predicting a topological phase transition and in extracting the localization length in a many-body localized system.
Quantum Computers: A New Paradigm in Information Technology
Directory of Open Access Journals (Sweden)
Mahesh S. Raisinghani
2001-01-01
Full Text Available The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference. Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, it may be well into the 21st century before we see quantum computing used at a commercial level for a variety of reasons discussed in this paper. The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This paper discusses some of the current advances, applications, and chal-lenges of quantum computing as well as its impact on corporate computing and implications for management. It shows how quantum computing can be utilized to process and store information, as well as impact cryptography for perfectly secure communication, algorithmic searching, factorizing large numbers very rapidly, and simulating quantum-mechanical systems efficiently. A broad interdisciplinary effort will be needed if quantum com-puters are to fulfill their destiny as the world's fastest computing devices.
A repeat-until-success quantum computing scheme
Energy Technology Data Exchange (ETDEWEB)
Beige, A [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Lim, Y L [DSO National Laboratories, 20 Science Park Drive, Singapore 118230, Singapore (Singapore); Kwek, L C [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore (Singapore)
2007-06-15
Recently we proposed a hybrid architecture for quantum computing based on stationary and flying qubits: the repeat-until-success (RUS) quantum computing scheme. The scheme is largely implementation independent. Despite the incompleteness theorem for optical Bell-state measurements in any linear optics set-up, it allows for the implementation of a deterministic entangling gate between distant qubits. Here we review this distributed quantum computation scheme, which is ideally suited for integrated quantum computation and communication purposes.
Quantum Factorization of 143 on a Dipolar-Coupling NMR system
Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng
2011-01-01
Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importan...
Mathematical Models of Contemporary Elementary Quantum Computing Devices
Chen, G.; Church, D. A.; Englert, B. -G.; Zubairy, M. S.
2003-01-01
Computations with a future quantum computer will be implemented through the operations by elementary quantum gates. It is now well known that the collection of 1-bit and 2-bit quantum gates are universal for quantum computation, i.e., any n-bit unitary operation can be carried out by concatenations of 1-bit and 2-bit elementary quantum gates. Three contemporary quantum devices--cavity QED, ion traps and quantum dots--have been widely regarded as perhaps the most promising candidates for the c...
A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation
Lomonaco, Samuel J.; jr
2000-01-01
The purpose of these lecture notes is to provide readers, who have some mathematical background but little or no exposure to quantum mechanics and quantum computation, with enough material to begin reading the research literature in quantum computation and quantum information theory. This paper is a written version of the first of eight one hour lectures given in the American Mathematical Society (AMS) Short Course on Quantum Computation held in conjunction with the Annual Meeting of the AMS ...
Efficient quantum computing using coherent photon conversion.
Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A
2011-10-12
Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
Scheme for Quantum Computing Immune to Decoherence
Williams, Colin; Vatan, Farrokh
2008-01-01
A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report
CSIR Research Space (South Africa)
Baloyi, J
2014-06-01
Full Text Available An analysis of irreversibilities generated due to combustion in an adiabatic combustor burning wood was conducted. This was done for a reactant mixture varying from a rich to a lean mixture. A non-adiabatic non-premixed combustion model of a...
Non-adiabatic rotational excitation of dipolar molecule under the ...
Indian Academy of Sciences (India)
adiabatically by half cycle pulse. (HCP) is controlled using the second ultrashort HCP. ... excited to create a rotational quantum wave packet, a .... Non-adiabatic rotational excitation of dipolar molecule under the influence of delayed pulses. 1215.
Universal quantum gates for Single Cooper Pair Box based quantum computing
Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.
2000-01-01
We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.
Logic and algebraic structures in quantum computing
Eskandarian, Ali; Harizanov, Valentina S
2016-01-01
Arising from a special session held at the 2010 North American Annual Meeting of the Association for Symbolic Logic, this volume is an international cross-disciplinary collaboration with contributions from leading experts exploring connections across their respective fields. Themes range from philosophical examination of the foundations of physics and quantum logic, to exploitations of the methods and structures of operator theory, category theory, and knot theory in an effort to gain insight into the fundamental questions in quantum theory and logic. The book will appeal to researchers and students working in related fields, including logicians, mathematicians, computer scientists, and physicists. A brief introduction provides essential background on quantum mechanics and category theory, which, together with a thematic selection of articles, may also serve as the basic material for a graduate course or seminar.
QDENSITY—A Mathematica quantum computer simulation
Juliá-Díaz, Bruno; Burdis, Joseph M.; Tabakin, Frank
2009-03-01
This Mathematica 6.0 package is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g., multiqubit kets, projectors, gates, etc. New version program summaryProgram title: QDENSITY 2.0 Catalogue identifier: ADXH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26 055 No. of bytes in distributed program, including test data, etc.: 227 540 Distribution format: tar.gz Programming language: Mathematica 6.0 Operating system: Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux FC4 Catalogue identifier of previous version: ADXH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 914 Classification: 4.15 Does the new version supersede the previous version?: Offers an alternative, more up to date, implementation Nature of problem: Analysis and design of quantum circuits, quantum algorithms and quantum clusters. Solution method: A Mathematica package is provided which contains commands to create and analyze quantum circuits. Several Mathematica notebooks containing relevant examples: Teleportation, Shor's Algorithm and Grover's search are explained in detail. A tutorial, Tutorial.nb is also enclosed. Reasons for new version: The package has been updated to make it fully compatible with Mathematica 6.0 Summary of revisions: The package has been updated to make it fully compatible with Mathematica 6.0 Running time: Most examples
Non-unitary probabilistic quantum computing circuit and method
Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)
2009-01-01
A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.
Quantum computer gate simulations | Dada | Journal of the Nigerian ...
African Journals Online (AJOL)
A new interactive simulator for Quantum Computation has been developed for simulation of the universal set of quantum gates and for construction of new gates of up to 3 qubits. The simulator also automatically generates an equivalent quantum circuit for any arbitrary unitary transformation on a qubit. Available quantum ...
Quantum computation with indefinite causal structures
Araújo, Mateus; Guérin, Philippe Allard; Baumeler, ńmin
2017-11-01
One way to study the physical plausibility of closed timelike curves (CTCs) is to examine their computational power. This has been done for Deutschian CTCs (D-CTCs) and postselection CTCs (P-CTCs), with the result that they allow for the efficient solution of problems in PSPACE and PP, respectively. Since these are extremely powerful complexity classes, which are not expected to be solvable in reality, this can be taken as evidence that these models for CTCs are pathological. This problem is closely related to the nonlinearity of this models, which also allows, for example, cloning quantum states, in the case of D-CTCs, or distinguishing nonorthogonal quantum states, in the case of P-CTCs. In contrast, the process matrix formalism allows one to model indefinite causal structures in a linear way, getting rid of these effects and raising the possibility that its computational power is rather tame. In this paper, we show that process matrices correspond to a linear particular case of P-CTCs, and therefore that its computational power is upperbounded by that of PP. We show, furthermore, a family of processes that can violate causal inequalities but nevertheless can be simulated by a causally ordered quantum circuit with only a constant overhead, showing that indefinite causality is not necessarily hard to simulate.
PREFACE: Quantum Information, Communication, Computation and Cryptography
Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D.
2007-07-01
The application of quantum mechanics to information related fields such as communication, computation and cryptography is a fast growing line of research that has been witnessing an outburst of theoretical and experimental results, with possible practical applications. On the one hand, quantum cryptography with its impact on secrecy of transmission is having its first important actual implementations; on the other hand, the recent advances in quantum optics, ion trapping, BEC manipulation, spin and quantum dot technologies allow us to put to direct test a great deal of theoretical ideas and results. These achievements have stimulated a reborn interest in various aspects of quantum mechanics, creating a unique interplay between physics, both theoretical and experimental, mathematics, information theory and computer science. In view of all these developments, it appeared timely to organize a meeting where graduate students and young researchers could be exposed to the fundamentals of the theory, while senior experts could exchange their latest results. The activity was structured as a school followed by a workshop, and took place at The Abdus Salam International Center for Theoretical Physics (ICTP) and The International School for Advanced Studies (SISSA) in Trieste, Italy, from 12-23 June 2006. The meeting was part of the activity of the Joint European Master Curriculum Development Programme in Quantum Information, Communication, Cryptography and Computation, involving the Universities of Cergy-Pontoise (France), Chania (Greece), Leuven (Belgium), Rennes1 (France) and Trieste (Italy). This special issue of Journal of Physics A: Mathematical and Theoretical collects 22 contributions from well known experts who took part in the workshop. They summarize the present day status of the research in the manifold aspects of quantum information. The issue is opened by two review articles, the first by G Adesso and F Illuminati discussing entanglement in continuous variable
Energy Technology Data Exchange (ETDEWEB)
Dallaire-Demers, Pierre-Luc
2016-10-07
Quantum computers are the ideal platform for quantum simulations. Given enough coherent operations and qubits, such machines can be leveraged to simulate strongly correlated materials, where intricate quantum effects give rise to counter-intuitive macroscopic phenomena such as high-temperature superconductivity. Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model. In general, no closed-form solution is known for lattices of more than one spatial dimension, but they can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists in finding its self-energy through a variational principle. As is shown in this thesis, this allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. We show theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. We also provide a gate decomposition of the cluster Hamiltonian and a simple planar architecture for a quantum simulator that can also be used to simulate more general fermionic systems. We briefly analyze the Trotter-Suzuki errors and estimate the scaling properties of the algorithm for more complex applications. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.
Hybrid architecture for encoded measurement-based quantum computation.
Zwerger, M; Briegel, H J; Dür, W
2014-06-20
We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication.
Towards A Novel Environment For Simulation Of Quantum Computing
Directory of Open Access Journals (Sweden)
Joanna Patrzyk
2015-01-01
Full Text Available In this paper we analyze existing quantum computer simulation techniquesand their realizations to minimize the impact of the exponentialcomplexity of simulated quantum computations. As a result of thisinvestigation, we propose a quantum computer simulator with an integrateddevelopment environment - QuIDE - supporting development of algorithms forfuture quantum computers. The simulator simplifies building and testingquantum circuits and understand quantum algorithms in an efficient way.The development environment provides flexibility of source codeedition and ease of graphical building of circuit diagrams. We alsodescribe and analyze the complexity of algorithms used for simulationand present performance results of the simulator as well as results ofits deployment during university classes.
Designing, programming, and optimizing a (small) quantum computer
Svore, Krysta
In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.
Modeling of quantum noise and the quality of hardware components of quantum computers
Bogdanov, Yu. I.; Chernyavskiy, A. Yu.; Holevo, Alexander; Lukichev, V. F.; Orlikovsky, A. A.
2013-01-01
In the present paper methods and algorithms of modeling quantum operations for quantum computer integrated circuits design are developed. The results of modeling of practically important quantum gates: controlled-NOT (CNOT), and controlled Z-transform (CZ) subject to different decoherence mechanisms are presented. These mechanisms include analysis of depolarizing quantum noise and processes of amplitude and phase relaxation.
Flow Ambiguity: A Path Towards Classically Driven Blind Quantum Computation
Mantri, Atul; Demarie, Tommaso F.; Menicucci, Nicolas C.; Fitzsimons, Joseph F.
2017-07-01
Blind quantum computation protocols allow a user to delegate a computation to a remote quantum computer in such a way that the privacy of their computation is preserved, even from the device implementing the computation. To date, such protocols are only known for settings involving at least two quantum devices: either a user with some quantum capabilities and a remote quantum server or two or more entangled but noncommunicating servers. In this work, we take the first step towards the construction of a blind quantum computing protocol with a completely classical client and single quantum server. Specifically, we show how a classical client can exploit the ambiguity in the flow of information in measurement-based quantum computing to construct a protocol for hiding critical aspects of a computation delegated to a remote quantum computer. This ambiguity arises due to the fact that, for a fixed graph, there exist multiple choices of the input and output vertex sets that result in deterministic measurement patterns consistent with the same fixed total ordering of vertices. This allows a classical user, computing only measurement angles, to drive a measurement-based computation performed on a remote device while hiding critical aspects of the computation.
Homomorphic encryption experiments on IBM's cloud quantum computing platform
Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su
2017-02-01
Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.
Milestones Toward Majorana-Based Quantum Computing
Aasen, David; Hell, Michael; Mishmash, Ryan V.; Higginbotham, Andrew; Danon, Jeroen; Leijnse, Martin; Jespersen, Thomas S.; Folk, Joshua A.; Marcus, Charles M.; Flensberg, Karsten; Alicea, Jason
2016-07-01
We introduce a scheme for preparation, manipulation, and read out of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current, (2) validation of a prototype topological qubit, and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system's excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and read out schemes as well.
One-way quantum computing in the optical frequency comb.
Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier
2008-09-26
One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.
Computational intelligence applied to the growth of quantum dots
Singulani, Anderson P.; Vilela Neto, Omar P.; Aurélio Pacheco, Marco C.; Vellasco, Marley B. R.; Pires, Maurício P.; Souza, Patrícia L.
2008-11-01
We apply two computational intelligence techniques, namely, artificial neural network and genetic algorithm to the growth of self-assembled quantum dots. The method relies on an existing database of growth parameters with a resulting quantum dot characteristic to be able to later obtain the growth parameters needed to reach a specific value for such a quantum dot characteristic. The computational techniques were used to associate the growth input parameters with the mean height of the deposited quantum dots. Trends of the quantum dot mean height behavior as a function of growth parameters were correctly predicted and the growth parameters required to minimize the quantum dot mean height were provided.
Reversible logic synthesis methodologies with application to quantum computing
Taha, Saleem Mohammed Ridha
2016-01-01
This book opens the door to a new interesting and ambitious world of reversible and quantum computing research. It presents the state of the art required to travel around that world safely. Top world universities, companies and government institutions are in a race of developing new methodologies, algorithms and circuits on reversible logic, quantum logic, reversible and quantum computing and nano-technologies. In this book, twelve reversible logic synthesis methodologies are presented for the first time in a single literature with some new proposals. Also, the sequential reversible logic circuitries are discussed for the first time in a book. Reversible logic plays an important role in quantum computing. Any progress in the domain of reversible logic can be directly applied to quantum logic. One of the goals of this book is to show the application of reversible logic in quantum computing. A new implementation of wavelet and multiwavelet transforms using quantum computing is performed for this purpose. Rese...
Stability of Quantum Loops and Exchange Operations in the Construction of Quantum Computation Gates
Bermúdez, D.; Delgado, F.
2017-05-01
Quantum information and quantum computation is a rapidly emergent field where quantum systems and their applications play a central role. In the gate version of quantum computation, the construction of universal quantum gates to manipulate quantum information is currently an intensive arena for quantum engineering. Specific properties of systems should be able to reproduce such idealized gates imitating the classically inspired computational gates. Recently, for magnetic systems driven by the bipartite Heisenberg-Ising model a universal set of gates has been realized, an alternative easy design for the Boykin set but using the Bell states as grammar. Exact control can be then used to construct specific prescriptions to achieve those gates. Physical parameters impose a challenge in the gate control. This work analyzes, based on the worst case quantum fidelity, the associated instability for the proposed set of gates. An strong performance is found in those gates for the most of quantum states involved.
The clock of a quantum computer
Apolloni, B
2002-01-01
If the physical agent (the 'pointer', or 'cursor', or 'clocking mechanism') that sequentially scans the T lines of a long computer program is a microscopic system, two quantum phenomena become relevant: spreading of the probability distribution of the pointer along the program lines, and scattering of the probability amplitude at the two endpoints of the physical space allowed for its motion. We show that the first effect determines an upper bound O(T sup - sup 2 sup / sup 3) on the probability of finding the pointer exactly at the END line. By adding an adequate number delta of further empty lines ('telomers'), one can store the result of the computation up to the moment in which the pointer is scattered back into the active region. This leads to a less severe upper bound O(sq root delta/T) on the probability of finding the pointer either at the END line or within the additional empty lines. Our analysis is performed in the context of Feynman's model of quantum computation, the only model, to our knowledge, ...
Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation
Liu, Wen-Jie; Chen, Zhen-Yu; Ji, Sai; Wang, Hai-Bin; Zhang, Jun
2017-10-01
A multi-party semi-quantum key agreement (SQKA) protocol based on delegating quantum computation (DQC) model is proposed by taking Bell states as quantum resources. In the proposed protocol, the participants only need the ability of accessing quantum channel and preparing single photons {|0〉, |1〉, |+〉, |-〉}, while the complicated quantum operations, such as the unitary operations and Bell measurement, will be delegated to the remote quantum center. Compared with previous quantum key agreement protocols, this client-server model is more feasible in the early days of the emergence of quantum computers. In order to prevent the attacks from outside eavesdroppers, inner participants and quantum center, two single photon sequences are randomly inserted into Bell states: the first sequence is used to perform the quantum channel detection, while the second is applied to disorder the positions of message qubits, which guarantees the security of the protocol.
Quantum computation with two-electron spins in semi-conductor quantum dots
Hiltunen, Tuukka
2015-01-01
A quantum computer would exploit the phenomena of quantum superposition and entanglement in its functioning and with them offer pathways to solving problems that are too hard or complex to even the best classical computers built today. The implementation of a large-scale working quantum computer could bring about a change in our society rivaling the one started by the digital computer. However, the field is still in its infancy and there are many theoretical and practical issues needing to be...
Quantum computing accelerator I/O : LDRD 52750 final report.
Energy Technology Data Exchange (ETDEWEB)
Schroeppel, Richard Crabtree; Modine, Normand Arthur; Ganti, Anand; Pierson, Lyndon George; Tigges, Christopher P.
2003-12-01
In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be
Baianu,I C
2004-01-01
The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In previous publications (Baianu,1971a, b) the formal concept of quantum automaton and quantum computation, respectively, were introduced and their possible implications for genetic processes and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural transformations (Baianu,1971b; 1977; 1987; 2004; Baianu et al, 2004). The notions of topological semigroup, quantum automaton, or quantum computer, were then suggested with a view to their potential applications to the analogous simulation of biological systems, and especially genetic activities and nonlinear dynamics in genetic networks. Further, detailed studies of nonlinear dynamics in genetic networks were carried out in categories of n-valued, Lukasiewicz Logic Algebra...
Control aspects of quantum computing using pure and mixed states.
Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J
2012-10-13
Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.
Knill-laflamme-milburn linear optics quantum computation as a measurement-based computation.
Popescu, Sandu
2007-12-21
We show that the Knill Lafllame Milburn method of quantum computation with linear optics gates can be interpreted as a one-way, measurement-based quantum computation of the type introduced by Briegel and Raussendorf. We also show that the permanent state of n n-dimensional systems is a universal state for quantum computation.
Computational Studies of Strongly Correlated Quantum Matter
Shi, Hao
The study of strongly correlated quantum many-body systems is an outstanding challenge. Highly accurate results are needed for the understanding of practical and fundamental problems in condensed-matter physics, high energy physics, material science, quantum chemistry and so on. Our familiar mean-field or perturbative methods tend to be ineffective. Numerical simulations provide a promising approach for studying such systems. The fundamental difficulty of numerical simulation is that the dimension of the Hilbert space needed to describe interacting systems increases exponentially with the system size. Quantum Monte Carlo (QMC) methods are one of the best approaches to tackle the problem of enormous Hilbert space. They have been highly successful for boson systems and unfrustrated spin models. For systems with fermions, the exchange symmetry in general causes the infamous sign problem, making the statistical noise in the computed results grow exponentially with the system size. This hinders our understanding of interesting physics such as high-temperature superconductivity, metal-insulator phase transition. In this thesis, we present a variety of new developments in the auxiliary-field quantum Monte Carlo (AFQMC) methods, including the incorporation of symmetry in both the trial wave function and the projector, developing the constraint release method, using the force-bias to drastically improve the efficiency in Metropolis framework, identifying and solving the infinite variance problem, and sampling Hartree-Fock-Bogoliubov wave function. With these developments, some of the most challenging many-electron problems are now under control. We obtain an exact numerical solution of two-dimensional strongly interacting Fermi atomic gas, determine the ground state properties of the 2D Fermi gas with Rashba spin-orbit coupling, provide benchmark results for the ground state of the two-dimensional Hubbard model, and establish that the Hubbard model has a stripe order in the
Reversibility and energy dissipation in adiabatic superconductor logic.
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-03-06
Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.
Classical and quantum computing with C++ and Java simulations
Hardy, Y
2001-01-01
Classical and Quantum computing provides a self-contained, systematic and comprehensive introduction to all the subjects and techniques important in scientific computing. The style and presentation are readily accessible to undergraduates and graduates. A large number of examples, accompanied by complete C++ and Java code wherever possible, cover every topic. Features and benefits: - Comprehensive coverage of the theory with many examples - Topics in classical computing include boolean algebra, gates, circuits, latches, error detection and correction, neural networks, Turing machines, cryptography, genetic algorithms - For the first time, genetic expression programming is presented in a textbook - Topics in quantum computing include mathematical foundations, quantum algorithms, quantum information theory, hardware used in quantum computing This book serves as a textbook for courses in scientific computing and is also very suitable for self-study. Students, professionals and practitioners in computer...
Statistical constraints on state preparation for a quantum computer
Indian Academy of Sciences (India)
Quantum computing algorithms require that the quantum register be initially present in a superposition state. To achieve this, we consider the practical problem of creating a coherent superposition state of several qubits. We show that the constraints of quantum statistics require that the entropy of the system be brought ...
Billeter, S R
1998-01-01
This thesis describes the methodology of quantum dynamical (QD) simulation of proton transfers in aqueous solutions, its implementation in the simulation program QDGROMOS and its application to protonated water and aqueous solutions of acetic acid. QDGROMOS is based on the GROMOS96 molecular dynamics (MD) program package. Many of the solutions to partial problems such as the representation of the quantum state, the solution of the time-dependent Schrodinger equation, the forces from the quantum subsystem, the time-ordering of the propagations and the correlations between the subsystems, are complementary. In chapter 1, various numerical propagation algorithms for solving the time-dependent Schrodinger equation under the influence of a constant Hamilton operator are compared against each other, mainly in one dimension. A Chebysheff series expansion and the expansion in terms of eigenstates of the Hamilton operator were found to be most stable. Chapter 2 describes the theory, the methods and the algorithms of Q...
Quantum Accelerators for High-performance Computing Systems
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL
2017-11-01
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.
A Quantum Computing Approach to Model Checking for Advanced Manufacturing Problems
2014-07-01
This project studied the feasibility of integrating the capabilities of the D-Wave adiabatic quantum annealing processor into a Model Checking (MC...imposed by the limited connectivity of the processor, performed a set of benchmarking tests of the device, and implemented a proof of concept example that integrated the quantum processor with regular model checking techniques.
The computer-based model of quantum measurements
Sevastianov, L. A.; Zorin, A. V.
2017-07-01
Quantum theory of measurements is an extremely important part of quantum mechanics. Currently perturbations by quantum measurements of observable quantities of atomic systems are rarely taken into account in computing algorithms and calculations. In the previous studies of the authors, constructive model of quantum measurements has been developed and implemented in the form of symbolic and numerical calculations for the hydrogen-like atoms. This work describes a generalization of these results to the alkali metal atoms.
Heterotic quantum and classical computing on convergence spaces
Patten, D. R.; Jakel, D. W.; Irwin, R. J.; Blair, H. A.
2015-05-01
Category-theoretic characterizations of heterotic models of computation, introduced by Stepney et al., combine computational models such as classical/quantum, digital/analog, synchronous/asynchronous, etc. to obtain increased computational power. A highly informative classical/quantum heterotic model of computation is represented by Abramsky's simple sequential imperative quantum programming language which extends the classical simple imperative programming language to encompass quantum computation. The mathematical (denotational) semantics of this classical language serves as a basic foundation upon which formal verification methods can be developed. We present a more comprehensive heterotic classical/quantum model of computation based on heterotic dynamical systems on convergence spaces. Convergence spaces subsume topological spaces but admit finer structure from which, in prior work, we obtained differential calculi in the cartesian closed category of convergence spaces allowing us to define heterotic dynamical systems, given by coupled systems of first order differential equations whose variables are functions from the reals to convergence spaces.
Blueprint for a microwave trapped ion quantum computer
Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G.; Mølmer, Klaus; Devitt, Simon J.; Wunderlich, Christof; Hensinger, Winfried K.
2017-01-01
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects. PMID:28164154
Blueprint for a microwave trapped ion quantum computer.
Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K
2017-02-01
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.
Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing
2016-02-03
Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole...technical development is to achieve fast loading and qubit manipulation in the single- atom traps, which will enable our scientific investigation. The...goal of our scientific investigation is to demonstrate high fidelity and fast atom - atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4
From transistor to trapped-ion computers for quantum chemistry.
Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E
2014-01-07
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
Experimental Blind Quantum Computing for a Classical Client.
Huang, He-Liang; Zhao, Qi; Ma, Xiongfeng; Liu, Chang; Su, Zu-En; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Sanders, Barry C; Lu, Chao-Yang; Pan, Jian-Wei
2017-08-04
To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.
Experimental Blind Quantum Computing for a Classical Client
Huang, He-Liang; Zhao, Qi; Ma, Xiongfeng; Liu, Chang; Su, Zu-En; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Sanders, Barry C.; Lu, Chao-Yang; Pan, Jian-Wei
2017-08-01
To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.
Rydberg-atom-based scheme of nonadiabatic geometric quantum computation
Zhao, P. Z.; Cui, Xiao-Dan; Xu, G. F.; Sjöqvist, Erik; Tong, D. M.
2017-11-01
Nonadiabatic geometric quantum computation provides a means to perform fast and robust quantum gates. It has been implemented in various physical systems, such as trapped ions, nuclear magnetic resonance, and superconducting circuits. Another system being adequate for implementation of nonadiabatic geometric quantum computation may be Rydberg atoms, since their internal states have very long coherence time and the Rydberg-mediated interaction facilitates the implementation of a two-qubit gate. Here, we propose a scheme of nonadiabatic geometric quantum computation based on Rydberg atoms, which combines the robustness of nonadiabatic geometric gates with the merits of Rydberg atoms.
Verifiable fault tolerance in measurement-based quantum computation
Fujii, Keisuke; Hayashi, Masahito
2017-09-01
Quantum systems, in general, cannot be simulated efficiently by a classical computer, and hence are useful for solving certain mathematical problems and simulating quantum many-body systems. This also implies, unfortunately, that verification of the output of the quantum systems is not so trivial, since predicting the output is exponentially hard. As another problem, the quantum system is very delicate for noise and thus needs an error correction. Here, we propose a framework for verification of the output of fault-tolerant quantum computation in a measurement-based model. In contrast to existing analyses on fault tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state is tested by using only single-qubit measurements to verify whether or not the output of measurement-based quantum computation on it is correct. Verifiability is equipped by a constant time repetition of the original measurement-based quantum computation in appropriate measurement bases. Since full characterization of quantum noise is exponentially hard for large-scale quantum computing systems, our framework provides an efficient way to practically verify the experimental quantum error correction.
Consequences and Limitations of Conventional Computers and their Solutions through Quantum Computers
Directory of Open Access Journals (Sweden)
Nilesh BARDE
2012-08-01
Full Text Available Quantum computer is the current topic of research in the field of computational science, which uses principles of quantum mechanics. Quantum computers will be much more powerful than the classical computer due to its enormous computational speed. Recent developments in quantum computers which are based on the laws of quantum mechanics, shows different ways of performing efficient calculations along with the various results which are not possible on the classical computers in an efficient period of time. One of the most striking results that have obtained on the quantum computers is the prime factorization of the large integer in a polynomial time. The idea of involvement of the quantum mechanics for the computational purpose is outlined briefly in the present work that reflects the importance and advantages of the next generation of the 21st century classical computers, named as quantum computers, in terms of the cost as well as time period required for the computation purpose. Present paper presents a quantum computer simulator for executing the limitations of classical computer with respect to time and the number of digits of a composite integer used for calculating its prime factors.
Statistical constraints on state preparation for a quantum computer ∑
Indian Academy of Sciences (India)
tation on a quantum computer. How do we load information on the quantum register if the information-carrying particles in the cells of the register are indistinguishable? Quantum computing algorithms as visualized now [1,2] proceed with the register of n cells in a pure state. Each cell is seen to store a qubit αeiθ1 0 +βeiθ2 1 ...
Quantum Cryptography, Quantum Communication, and Quantum Computer in a Noisy Environment
Nagata, Koji; Nakamura, Tadao
2017-07-01
First, we study several information theories based on quantum computing in a desirable noiseless situation. (1) We present quantum key distribution based on Deutsch's algorithm using an entangled state. (2) We discuss the fact that the Bernstein-Vazirani algorithm can be used for quantum communication including an error correction. Finally, we discuss the main result. We study the Bernstein-Vazirani algorithm in a noisy environment. The original algorithm determines a noiseless function. Here we consider the case that the function has an environmental noise. We introduce a noise term into the function f( x). So we have another noisy function g( x). The relation between them is g( x) = f( x) ± O( 𝜖). Here O( 𝜖) ≪ 1 is the noise term. The goal is to determine the noisy function g( x) with a success probability. The algorithm overcomes classical counterpart by a factor of N in a noisy environment.
Space-Efficient Error Reduction for Unitary Quantum Computations
Fefferman, Bill; Kobayashi, Hirotada; Yen-Yu Lin, Cedric; Morimae, Tomoyuki; Nishimura, Harumichi
2016-01-01
This paper develops general space-efficient methods for error reduction for unitary quantum computation. Consider a polynomial-time quantum computation with completeness $c$ and soundness $s$, either with or without a witness (corresponding to QMA and BQP, respectively). To convert this computation into a new computation with error at most $2^{-p}$, the most space-efficient method known requires extra workspace of ${O \\bigl( p \\log \\frac{1}{c-s} \\bigr)}$ qubits. This space requirement is too ...
The Brain Is both Neurocomputer and Quantum Computer
Hameroff, Stuart R.
2007-01-01
In their article, "Is the Brain a Quantum Computer,?" Litt, Eliasmith, Kroon, Weinstein, and Thagard (2006) criticize the Penrose-Hameroff "Orch OR" quantum computational model of consciousness, arguing instead for neurocomputation as an explanation for mental phenomena. Here I clarify and defend Orch OR, show how Orch OR and neurocomputation are…
Quantum computation with Majorana modes in superconducting circuits
Heck, Bernard van
2015-01-01
The research contained in this thesis lies at the interface between quantum phyiscs, nanotechnology and the theory of computation. Its goal is to design electronic circuits to realize computations that follow the laws of quantum mechanics, and which would allow to execute some algorithms faster than
Milestones Toward Majorana-Based Quantum Computing
Directory of Open Access Journals (Sweden)
David Aasen
2016-08-01
Full Text Available We introduce a scheme for preparation, manipulation, and read out of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1 detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current, (2 validation of a prototype topological qubit, and (3 demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system’s excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and read out schemes as well.
Continuous-variable quantum computing in optical time-frequency modes using quantum memories.
Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A
2014-09-26
We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.
Demonstration of a small programmable quantum computer with atomic qubits.
Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C
2016-08-04
Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.
Ancilla-driven quantum computation for qudits and continuous variables
Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; Andersson, Erika; Kendon, Viv
2017-05-01
Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general "quantum variable" formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated "quantum memory" register and which may be applied to the setting of qubits, qudits (for d >2 ), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of a single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. Finally, we discuss settings in which these models may be of practical interest.
Quantum computation architecture using optical tweezers
DEFF Research Database (Denmark)
Weitenberg, Christof; Kuhr, Stefan; Mølmer, Klaus
2011-01-01
due to vibrational excitations and spontaneous scattering below 10−3. The requirements on the positioning error and intensity noise of the optical tweezer and the magnetic field stability are analyzed and we show that atoms in optical lattices could meet the requirements for fault-tolerant scalable......We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits...... require the transport of atoms to neighboring sites. We numerically optimize the nonadiabatic transport of the atoms through the lattice and the intensity ramps of the optical tweezer in order to maximize the gate fidelities. We find overall gate times of a few 100 μs, while keeping the error probability...
Experimental realization of quantum cheque using a five-qubit quantum computer
Behera, Bikash K.; Banerjee, Anindita; Panigrahi, Prasanta K.
2017-12-01
Quantum cheques could be a forgery-free way to make transaction in a quantum networked banking system with perfect security against any no-signalling adversary. Here, we demonstrate the implementation of quantum cheque, proposed by Moulick and Panigrahi (Quantum Inf Process 15:2475-2486, 2016), using the five-qubit IBM quantum computer. Appropriate single qubit, CNOT and Fredkin gates are used in an optimized configuration. The accuracy of implementation is checked and verified through quantum state tomography by comparing results from the theoretical and experimental density matrices.
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.
Lau, Hoi-Kwan; Plenio, Martin B
2016-09-02
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.
Development and Application of Semiconductor Quantum Dots to Quantum Computing
National Research Council Canada - National Science Library
Steel, Duncan
2002-01-01
.... Several major milestones were achieved during the present program including the demonstration of optically induced and detected quantum entanglement of two qubits, Rabi oscillation (one bit rotation...
The 2004 Latsis Symposium: Quantum optics for Communication and Computing
2004-01-01
1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental ...
The 2004 Latsis Symposium: Quantum optics for Communication and Computing
2004-01-01
1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental c...
The 2004 Latsis Symposium: Quantum optics for Communication and Computing
2004-01-01
1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental...
Experimental magic state distillation for fault-tolerant quantum computing.
Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond
2011-01-25
Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.
Binary Gates in Three Valued Quantum Computational Logics
Sergioli, Giuseppe; Ledda, Antonio; Giuntini, Roberto
The standard theory of quantum computation relies on the idea that the qubit - the basic information quantity - is represented by a superposition of elements of the standard quantum computational basis B(2) = {|0>, |1>}. In the present paper we focus on the case of qutrits where the standard quantum computational bases is replaced by a three-valued computational basis B^{( 3 )} = { | 0 ,|. {{1 over 2}} rangle ,| 1 } . Recently in [13], unary gates on the Hilbert space ℂ3 were considered. In this work we propose an extensive method that allows to extend binary gates to the framework of qutrits.
Secure Multiparty Quantum Computation for Summation and Multiplication.
Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2016-01-21
As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.
Quantum Monte Carlo Endstation for Petascale Computing
Energy Technology Data Exchange (ETDEWEB)
Lubos Mitas
2011-01-26
NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13
On Computational Power of Quantum Read-Once Branching Programs
Directory of Open Access Journals (Sweden)
Farid Ablayev
2011-03-01
Full Text Available In this paper we review our current results concerning the computational power of quantum read-once branching programs. First of all, based on the circuit presentation of quantum branching programs and our variant of quantum fingerprinting technique, we show that any Boolean function with linear polynomial presentation can be computed by a quantum read-once branching program using a relatively small (usually logarithmic in the size of input number of qubits. Then we show that the described class of Boolean functions is closed under the polynomial projections.
Quantum computing with acceptor spins in silicon.
Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie
2016-06-17
The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.
Silicon CMOS architecture for a spin-based quantum computer.
Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S
2017-12-15
Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.
Energy Technology Data Exchange (ETDEWEB)
Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)
2016-01-07
The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.
Cryogenic setup for trapped ion quantum computing.
Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R
2016-11-01
We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40Ca+ and 88Sr+ ions. The instability of the laser manipulating the optical qubits in 40Ca+ is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10-15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40Ca+ ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.
On the Relation Between Quantum Computational Speedup and Retrocausality
Directory of Open Access Journals (Sweden)
Giuseppe Castagnoli
2016-01-01
Full Text Available We investigate the reason for the quantum speedup (quantum algorithms require fewer computation steps than their classical counterparts. We extend the representation of the quantum algorithm to the process of setting the problem, namely choosing the function computed by the black box. The initial measurement selects a setting at random, Bob (the problem setter unitarily changes it into the desired one. With reference to the observer dependent quantum states of relational quantum mechanics, this representation is with respect to Bob and any external observer, it cannot be with respect to Alice (the problem solver. It would tell her the function computed by the black box, which to her should be hidden. To Alice, the projection of the quantum state due to the initial measurement is retarded at the end of her problem solving action, so that the algorithm input state remains one of complete ignorance of the setting. By black box computations, she unitarily sends it into the output state that, for each possible setting, encodes the corresponding solution, acquired by the final measurement. Mathematically, we can ascribe to the final measurement the selection of any fraction R of the random outcome of the initial measurement. This projects the input state to Alice on one of lower entropy where she knows the corresponding fraction of the problem setting. Given the appropriate value of R, the quantum algorithm is a sum over classical histories in each of which Alice, knowing in advance one of the R-th parts of the setting, performs the black box computations still required to identify the solution. Given a quantum algorithm, this retrocausality model provides the value of R that explains its speed up; in the major quantum algorithms, R is 1/2 or slightly above it. Conversely, given the problem, R=1/2 always yields the order of magnitude of the number of black box computations required to solve it in an optimal quantum way. Quanta 2016; 5: 34–52.
The potential impact of quantum computers on society
2017-01-01
textabstractThis paper considers the potential impact that the nascent technology of quantum computing may have on society. It focuses on three areas: cryptography, optimization, and simulation of quantum systems. We will also discuss some ethical aspects of these developments, and ways to mitigate
Simulation of quantum computation : A deterministic event-based approach
Michielsen, K; De Raedt, K; De Raedt, H
We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and
Simulation of Quantum Computation : A Deterministic Event-Based Approach
Michielsen, K.; Raedt, K. De; Raedt, H. De
2005-01-01
We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and
Energy Technology Data Exchange (ETDEWEB)
Wu, Guorong [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Schalk, Oliver [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 109 61 Stockholm (Sweden); Sekikawa, Taro [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Departments of Chemistry and Physics, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada)
2015-02-21
The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.
Secure entanglement distillation for double-server blind quantum computation.
Morimae, Tomoyuki; Fujii, Keisuke
2013-07-12
Blind quantum computation is a new secure quantum computing protocol where a client, who does not have enough quantum technologies at her disposal, can delegate her quantum computation to a server, who has a fully fledged quantum computer, in such a way that the server cannot learn anything about the client's input, output, and program. If the client interacts with only a single server, the client has to have some minimum quantum power, such as the ability of emitting randomly rotated single-qubit states or the ability of measuring states. If the client interacts with two servers who share Bell pairs but cannot communicate with each other, the client can be completely classical. For such a double-server scheme, two servers have to share clean Bell pairs, and therefore the entanglement distillation is necessary in a realistic noisy environment. In this Letter, we show that it is possible to perform entanglement distillation in the double-server scheme without degrading the security of blind quantum computing.
Experimental quantum computing to solve systems of linear equations.
Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2013-06-07
Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
Quantum perceptron over a field and neural network architecture selection in a quantum computer.
da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa
2016-04-01
In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adiabatic continuous stirred tank reactor
DEFF Research Database (Denmark)
Schroll-Fleischer, Eskild; Wu, Hao; Huusom, Jakob Kjøbsted
The present report documents the adiabatic CSTR experimental setup after it was refurbished in September 2017. The goal of the refurbishment was firstly to enable computer control of the experiment using the Open Process Control Unified Architecture (OPC-UA) standard, and secondly to improve...
Continuous Variable Quantum Communication and Computation
DEFF Research Database (Denmark)
Andersen, Ulrik Lund; Dong, Ruifang; Jezek, Miroslav
2011-01-01
We use squeezed states of light to implement a robust continuous variable quantum key distribution scheme and an optical Hadamard gate based on coherent state qubits.......We use squeezed states of light to implement a robust continuous variable quantum key distribution scheme and an optical Hadamard gate based on coherent state qubits....
Thermalization in nature and on a quantum computer.
Riera, Arnau; Gogolin, Christian; Eisert, Jens
2012-02-24
In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for physically relevant weak system-bath couplings that is applicable even in the thermodynamic limit. We identify conditions under which thermalization happens and discuss the underlying physics. Based on these results, we also present a fully general quantum algorithm for preparing Gibbs states on a quantum computer with a certified runtime and error bound. This complements quantum Metropolis algorithms, which are expected to be efficient but have no known runtime estimates and only work for local Hamiltonians.
Experimental demonstration of a programmable quantum computer by NMR.
Kim, Jaehyun; Lee, Jae-Seung; Hwang, Taesoon; Lee, Soonchil
2004-01-01
A programmable quantum computer is experimentally demonstrated by nuclear magnetic resonance using one qubit for the program and two qubits for data. A non-separable two-qubit operation is performed in a programmable way to show the successful demonstration. Projective measurements required in the programmable quantum computer are simulated by averaging the results of experiments just like when producing an effective pure state.
Matchgate and space-bounded quantum computations are equivalent
Jozsa, Richard; Kraus, Barbara; Miyake, Akimasa; Watrous, John
2009-01-01
Matchgates are an especially multiflorous class of two-qubit nearest neighbour quantum gates, defined by a set of algebraic constraints. They occur for example in the theory of perfect matchings of graphs, non-interacting fermions, and one-dimensional spin chains. We show that the computational power of circuits of matchgates is equivalent to that of space-bounded quantum computation with unitary gates, with space restricted to being logarithmic in the width of the matchgate circuit. In parti...
Computing protein infrared spectroscopy with quantum chemistry.
Besley, Nicholas A
2007-12-15
Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.
Fano, Guido
2017-01-01
This book is designed to make accessible to nonspecialists the still evolving concepts of quantum mechanics and the terminology in which these are expressed. The opening chapters summarize elementary concepts of twentieth century quantum mechanics and describe the mathematical methods employed in the field, with clear explanation of, for example, Hilbert space, complex variables, complex vector spaces and Dirac notation, and the Heisenberg uncertainty principle. After detailed discussion of the Schrödinger equation, subsequent chapters focus on isotropic vectors, used to construct spinors, and on conceptual problems associated with measurement, superposition, and decoherence in quantum systems. Here, due attention is paid to Bell’s inequality and the possible existence of hidden variables. Finally, progression toward quantum computation is examined in detail: if quantum computers can be made practicable, enormous enhancements in computing power, artificial intelligence, and secure communication will result...
Building logical qubits in a superconducting quantum computing system
Gambetta, Jay M.; Chow, Jerry M.; Steffen, Matthias
2017-01-01
The technological world is in the midst of a quantum computing and quantum information revolution. Since Richard Feynman's famous `plenty of room at the bottom' lecture (Feynman, Engineering and Science23, 22 (1960)), hinting at the notion of novel devices employing quantum mechanics, the quantum information community has taken gigantic strides in understanding the potential applications of a quantum computer and laid the foundational requirements for building one. We believe that the next significant step will be to demonstrate a quantum memory, in which a system of interacting qubits stores an encoded logical qubit state longer than the incorporated parts. Here, we describe the important route towards a logical memory with superconducting qubits, employing a rotated version of the surface code. The current status of technology with regards to interconnected superconducting-qubit networks will be described and near-term areas of focus to improve devices will be identified. Overall, the progress in this exciting field has been astounding, but we are at an important turning point, where it will be critical to incorporate engineering solutions with quantum architectural considerations, laying the foundation towards scalable fault-tolerant quantum computers in the near future.
Quantum Computing: Selected Internet Resources for Librarians, Researchers, and the Casually Curious
Cirasella, Jill
2009-01-01
This article presents an annotated selection of the most important and informative Internet resources for learning about quantum computing, finding quantum computing literature, and tracking quantum computing news. All of the quantum computing resources described in this article are freely available, English-language web sites that fall into one…
Exponential rise of dynamical complexity in quantum computing through projections.
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-10-10
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.
The Rabi Oscillation in Subdynamic System for Quantum Computing
Directory of Open Access Journals (Sweden)
Bi Qiao
2015-01-01
Full Text Available A quantum computation for the Rabi oscillation based on quantum dots in the subdynamic system is presented. The working states of the original Rabi oscillation are transformed to the eigenvectors of subdynamic system. Then the dissipation and decoherence of the system are only shown in the change of the eigenvalues as phase errors since the eigenvectors are fixed. This allows both dissipation and decoherence controlling to be easier by only correcting relevant phase errors. This method can be extended to general quantum computation systems.
Möller, M.; Vuik, C.
2017-01-01
Quantum computing technologies have become a hot topic in academia and industry receiving much attention and financial support from all sides. Building a quantum computer that can be used practically is in itself an outstanding challenge that has become the ‘new race to the moon’. Next to
Continuous-Variable Instantaneous Quantum Computing is Hard to Sample.
Douce, T; Markham, D; Kashefi, E; Diamanti, E; Coudreau, T; Milman, P; van Loock, P; Ferrini, G
2017-02-17
Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of quantum information, which was previously shown to enable fault-tolerant CV quantum computation. Finally, we show that, in order to render postselected computational classes in CVs meaningful, a logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a polynomial scaling of the input energy.
Continuous-Variable Instantaneous Quantum Computing is Hard to Sample
Douce, T.; Markham, D.; Kashefi, E.; Diamanti, E.; Coudreau, T.; Milman, P.; van Loock, P.; Ferrini, G.
2017-02-01
Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of quantum information, which was previously shown to enable fault-tolerant CV quantum computation. Finally, we show that, in order to render postselected computational classes in CVs meaningful, a logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a polynomial scaling of the input energy.
Analyzing Many-Body Localization with a Quantum Computer
Directory of Open Access Journals (Sweden)
Bela Bauer
2014-11-01
Full Text Available Many-body localization, the persistence against electron-electron interactions of the localization of states with nonzero excitation energy density, poses a challenge to current methods of theoretical and numerical analyses. Numerical simulations have so far been limited to a small number of sites, making it difficult to obtain reliable statements about the thermodynamic limit. In this paper, we explore the ways in which a relatively small quantum computer could be leveraged to study many-body localization. We show that, in addition to studying time evolution, a quantum computer can, in polynomial time, obtain eigenstates at arbitrary energies to sufficient accuracy that localization can be observed. The limitations of quantum measurement, which preclude the possibility of directly obtaining the entanglement entropy, make it difficult to apply some of the definitions of many-body localization used in the recent literature. We discuss alternative tests of localization that can be implemented on a quantum computer.
Quantum triangulations moduli spaces, strings, and quantum computing
Carfora, Mauro
2012-01-01
Research on polyhedral manifolds often points to unexpected connections between very distinct aspects of Mathematics and Physics. In particular triangulated manifolds play quite a distinguished role in such settings as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, and critical phenomena. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is rather often a consequence of an underlying structure which naturally calls into play non-trivial aspects of representation theory, of complex analysis and topology in a way which makes manifest the basic geometric structures of the physical interactions involved. Yet, in most of the existing literature, triangulated manifolds are still merely viewed as a convenient discretization of a given physical theory to make it more amenable for numerical treatment. The motivation for these lectures notes is thus ...
Directory of Open Access Journals (Sweden)
Alexis De Vos
2011-06-01
Full Text Available Whereas quantum computing circuits follow the symmetries of the unitary Lie group, classical reversible computation circuits follow the symmetries of a finite group, i.e., the symmetric group. We confront the decomposition of an arbitrary classical reversible circuit with w bits and the decomposition of an arbitrary quantum circuit with w qubits. Both decompositions use the control gate as building block, i.e., a circuit transforming only one (qubit, the transformation being controlled by the other w−1 (qubits. We explain why the former circuit can be decomposed into 2w − 1 control gates, whereas the latter circuit needs 2w − 1 control gates. We investigate whether computer circuits, not based on the full unitary group but instead on a subgroup of the unitary group, may be decomposable either into 2w − 1 or into 2w − 1 control gates.
Geometric algebra and information geometry for quantum computational software
Cafaro, Carlo
2017-03-01
The art of quantum algorithm design is highly nontrivial. Grover's search algorithm constitutes a masterpiece of quantum computational software. In this article, we use methods of geometric algebra (GA) and information geometry (IG) to enhance the algebraic efficiency and the geometrical significance of the digital and analog representations of Grover's algorithm, respectively. Specifically, GA is used to describe the Grover iterate and the discretized iterative procedure that exploits quantum interference to amplify the probability amplitude of the target-state before measuring the query register. The transition from digital to analog descriptions occurs via Stone's theorem which relates the (unitary) Grover iterate to a suitable (Hermitian) Hamiltonian that controls Schrodinger's quantum mechanical evolution of a quantum state towards the target state. Once the discrete-to-continuos transition is completed, IG is used to interpret Grover's iterative procedure as a geodesic path on the manifold of the parametric density operators of pure quantum states constructed from the continuous approximation of the parametric quantum output state in Grover's algorithm. Finally, we discuss the dissipationless nature of quantum computing, recover the quadratic speedup relation, and identify the superfluity of the Walsh-Hadamard operation from an IG perspective with emphasis on statistical mechanical considerations.
Quantum Gauss-Jordan Elimination and Simulation of Accounting Principles on Quantum Computers
Diep, Do Ngoc; Giang, Do Hoang; Van Minh, Nguyen
2017-06-01
The paper is devoted to a version of Quantum Gauss-Jordan Elimination and its applications. In the first part, we construct the Quantum Gauss-Jordan Elimination (QGJE) Algorithm and estimate the complexity of computation of Reduced Row Echelon Form (RREF) of N × N matrices. The main result asserts that QGJE has computation time is of order 2 N/2. The second part is devoted to a new idea of simulation of accounting by quantum computing. We first expose the actual accounting principles in a pure mathematics language. Then, we simulate the accounting principles on quantum computers. We show that, all accounting actions are exhousted by the described basic actions. The main problems of accounting are reduced to some system of linear equations in the economic model of Leontief. In this simulation, we use our constructed Quantum Gauss-Jordan Elimination to solve the problems and the complexity of quantum computing is a square root order faster than the complexity in classical computing.
Effective quantum state reconstruction using compressed sensing in NMR quantum computing
Yang, J.; Cong, S.; Liu, X.; Li, Z.; Li, K.
2017-11-01
Compressed sensing (CS) has been verified as an effective technique in the reconstruction of quantum state; however, it is still unknown if CS can reconstruct quantum states given the incomplete data measured by nuclear magnetic resonance (NMR). In this paper, we propose an effective NMR quantum state reconstruction method based on CS. Different from the conventional CS-based quantum state reconstruction, our method uses the actual observation data from NMR experiments rather than the data measured by the Pauli operators. We implement measurements on quantum states in practical NMR computing experiments and reconstruct states of two, three, and four qubits using fewer number of measurement settings, respectively. The proposed method is easy to implement and performs more efficiently with the increase of the system dimension size. The performance reveals both efficiency and accuracy, which provides an alternative for the quantum state reconstruction in practical NMR.
From transistor to trapped-ion computers for quantum chemistry
Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.
2014-01-01
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology. PMID:24395054
Nonunitary quantum computation in the ground space of local Hamiltonians
Usher, Naïri; Hoban, Matty J.; Browne, Dan E.
2017-09-01
A central result in the study of quantum Hamiltonian complexity is that the k -local Hamiltonian problem is quantum-Merlin-Arthur-complete. In that problem, we must decide if the lowest eigenvalue of a Hamiltonian is bounded below some value, or above another, promised one of these is true. Given the ground state of the Hamiltonian, a quantum computer can determine this question, even if the ground state itself may not be efficiently quantum preparable. Kitaev's proof of QMA-completeness encodes a unitary quantum circuit in QMA into the ground space of a Hamiltonian. However, we now have quantum computing models based on measurement instead of unitary evolution; furthermore, we can use postselected measurement as an additional computational tool. In this work, we generalize Kitaev's construction to allow for nonunitary evolution including postselection. Furthermore, we consider a type of postselection under which the construction is consistent, which we call tame postselection. We consider the computational complexity consequences of this construction and then consider how the probability of an event upon which we are postselecting affects the gap between the ground-state energy and the energy of the first excited state of its corresponding Hamiltonian. We provide numerical evidence that the two are not immediately related by giving a family of circuits where the probability of an event upon which we postselect is exponentially small, but the gap in the energy levels of the Hamiltonian decreases as a polynomial.
The Magic of Universal Quantum Computing with Permutations
Directory of Open Access Journals (Sweden)
Michel Planat
2017-01-01
Full Text Available The role of permutation gates for universal quantum computing is investigated. The “magic” of computation is clarified in the permutation gates, their eigenstates, the Wootters discrete Wigner function, and state-dependent contextuality (following many contributions on this subject. A first classification of a few types of resulting magic states in low dimensions d≤9 is performed.
Continuous-variable quantum computing on encrypted data.
Marshall, Kevin; Jacobsen, Christian S; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L
2016-12-14
The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks.
Entanglement-based machine learning on a quantum computer.
Cai, X-D; Wu, D; Su, Z-E; Chen, M-C; Wang, X-L; Li, Li; Liu, N-L; Lu, C-Y; Pan, J-W
2015-03-20
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.
Entanglement-Based Machine Learning on a Quantum Computer
Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.
2015-03-01
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.
Continuous-variable quantum computing on encrypted data
Marshall, Kevin; Jacobsen, Christian S.; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L.
2016-12-01
The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks.
Scheme for Entering Binary Data Into a Quantum Computer
Williams, Colin
2005-01-01
A quantum algorithm provides for the encoding of an exponentially large number of classical data bits by use of a smaller (polynomially large) number of quantum bits (qubits). The development of this algorithm was prompted by the need, heretofore not satisfied, for a means of entering real-world binary data into a quantum computer. The data format provided by this algorithm is suitable for subsequent ultrafast quantum processing of the entered data. Potential applications lie in disciplines (e.g., genomics) in which one needs to search for matches between parts of very long sequences of data. For example, the algorithm could be used to encode the N-bit-long human genome in only log2N qubits. The resulting log2N-qubit state could then be used for subsequent quantum data processing - for example, to perform rapid comparisons of sequences.
Computational physics simulation of classical and quantum systems
Scherer, Philipp O J
2017-01-01
This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented ...
Quantum information and computation for chemistry
Kais, Sabre; Rice, Stuart A
2014-01-01
Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
How to simulate a universal quantum computer using negative probabilities
Hofmann, Holger F.
2009-07-01
The concept of negative probabilities can be used to decompose the interaction of two qubits mediated by a quantum controlled-NOT into three operations that require only classical interactions (that is, local operations and classical communication) between the qubits. For a single gate, the probabilities of the three operations are 1, 1 and -1. This decomposition can be applied in a probabilistic simulation of quantum computation by randomly choosing one of the three operations for each gate and assigning a negative statistical weight to the outcomes of sequences with an odd number of negative probability operations. The maximal exponential speed-up of a quantum computer can then be evaluated in terms of the increase in the number of sequences needed to simulate a single operation of the quantum circuit.
A quantum computer based on electrons floating on liquid helium
Dykman, M. I.; Platzman, P. M.
2001-01-01
Electrons on a helium surface form a quasi two-dimensional system which displays the highest mobility reached in condensed matter physics. We propose to use this system as a set of interacting quantum bits. We will briefly describe the system and discuss how the qubits can be addressed and manipulated, including interqubit excitation transfer. The working frequency of the proposed quantum computer is ~1GHz. The relaxation rate can be at least 5 orders of magnitude smaller, for low temperatures.
An Invitation to the Mathematics of Topological Quantum Computation
Rowell, E. C.
2016-03-01
Two-dimensional topological states of matter offer a route to quantum computation that would be topologically protected against the nemesis of the quantum circuit model: decoherence. Research groups in industry, government and academic institutions are pursuing this approach. We give a mathematician's perspective on some of the advantages and challenges of this model, highlighting some recent advances. We then give a short description of how we might extend the theory to three-dimensional materials.
Prime factorization using quantum annealing and computational algebraic geometry
Dridi, Raouf; Alghassi, Hedayat
2017-01-01
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians. PMID:28220854
Prime factorization using quantum annealing and computational algebraic geometry.
Dridi, Raouf; Alghassi, Hedayat
2017-02-21
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.
Prime factorization using quantum annealing and computational algebraic geometry
Raouf Dridi; Hedayat Alghassi
2017-01-01
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gr?bner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gr?bner bases can be used to reduce the degree of Hamiltonians.
Topological quantum computing with Read-Rezayi states.
Hormozi, L; Bonesteel, N E; Simon, S H
2009-10-16
Read-Rezayi fractional quantum Hall states are among the prime candidates for realizing non-Abelian anyons which, in principle, can be used for topological quantum computation. We present a prescription for efficiently finding braids which can be used to carry out a universal set of quantum gates on encoded qubits based on anyons of the Read-Rezayi states with k>2, k not equal 4. This work extends previous results which only applied to the case k=3 (Fibonacci) and clarifies why, in that case, gate constructions are simpler than for a generic Read-Rezayi state.
Computational electronics semiclassical and quantum device modeling and simulation
Vasileska, Dragica; Klimeck, Gerhard
2010-01-01
Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of
Computer studies of multiple-quantum spin dynamics
Energy Technology Data Exchange (ETDEWEB)
Murdoch, J.B.
1982-11-01
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
Many Worlds, the Cluster-state Quantum Computer, and the Problem of the Preferred Basis
Cuffaro, Michael
2011-01-01
I argue that the many worlds explanation of quantum computation is not licensed by, and in fact is conceptually inferior to, the many worlds interpretation of quantum mechanics from which it is derived. I argue that the many worlds explanation of quantum computation is incompatible with the recently developed cluster state model of quantum computation. Based on these considerations I conclude that we should reject the many worlds explanation of quantum computation.
Error-corrected quantum annealing with hundreds of qubits
Pudenz, Kristen L.; Albash, Tameem; Lidar, Daniel A.
2014-02-01
Quantum information processing offers dramatic speedups, yet is susceptible to decoherence, whereby quantum superpositions decay into mutually exclusive classical alternatives, thus robbing quantum computers of their power. This makes the development of quantum error correction an essential aspect of quantum computing. So far, little is known about protection against decoherence for quantum annealing, a computational paradigm aiming to exploit ground-state quantum dynamics to solve optimization problems more rapidly than is possible classically. Here we develop error correction for quantum annealing and experimentally demonstrate it using antiferromagnetic chains with up to 344 superconducting flux qubits in processors that have recently been shown to physically implement programmable quantum annealing. We demonstrate a substantial improvement over the performance of the processors in the absence of error correction. These results pave the way towards large-scale noise-protected adiabatic quantum optimization devices, although a threshold theorem such as has been established in the circuit model of quantum computing remains elusive.
Solid State Quantum Computer in Silicon
2008-09-30
focused microprobe of 2 MeV alpha particles, produced by the 5U Pelletron accelerator at the University of Melbourne and the MP2 nuclear microprobe...Kotthaus and S. Ludwig, “ Electrostatically defined serial triple quantum dot charged with few electrons”, Physical Review B 76, 075306 (2007). M.Y...ESR line to induce Rabi oscillation of the spin state. In addition, the electrostatic potential on the ESR line is used to shift the Zeeman-split
Qudit quantum computation in the Jaynes-Cummings model
DEFF Research Database (Denmark)
Mischuck, Brian; Mølmer, Klaus
2013-01-01
- and two-qudit gates necessary for universal quantum computation by breaking down the desired unitary transformations into a series of state preparations implemented with the Law-Eberly scheme [ Law and Eberly Phys. Rev. Lett. 76 1055 (1996)]. The second method replaces some of the analytical pulse......We have developed methods for performing qudit quantum computation in the Jaynes-Cummings model with the qudits residing in a finite subspace of individual harmonic oscillator modes, resonantly coupled to a spin-1/2 system. The first method determines analytical control sequences for the one...
Computational Physics Simulation of Classical and Quantum Systems
Scherer, Philipp O. J
2010-01-01
This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills.
Limit on the Speed of Quantum Computation in Determining Parity
Energy Technology Data Exchange (ETDEWEB)
Farhi, E.; Goldstone, J. [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Gutmann, S. [Department of Mathematics, Northeastern University, Boston, Massachusetts 02115 (United States); Sipser, M. [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
1998-12-01
Consider a function f which is defined on the integers from 1 to N and takes the values {minus}1 and +1 . The parity of f is the product over all x from 1 to N of f(x) . With no further information about f , to classically determine the parity of f requires N calls of the function f . We show that any quantum algorithm capable of determining the parity of f contains at least N/2 applications of the unitary operator which evaluates f . Thus, for this problem, quantum computers cannot outperform classical computers. {copyright} {ital 1998} {ital The American Physical Society}
Limit on the Speed of Quantum Computation in Determining Parity
Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Sipser, Michael
1998-12-01
Consider a function f which is defined on the integers from 1 to N and takes the values -1 and +1. The parity of f is the product over all x from 1 to N of f\\(x\\). With no further information about f, to classically determine the parity of f requires N calls of the function f. We show that any quantum algorithm capable of determining the parity of f contains at least N/2 applications of the unitary operator which evaluates f. Thus, for this problem, quantum computers cannot outperform classical computers.
Small-scale quantum computers: current state of the art and applications
Lloyd, Seth
This talk discusses the various applications of small scale quantum computers consisting of a few hundred qubits and capable of performing a few thousand quantum logic operations reliably without error corrections. Such small scale quantum computers could perform useful quantum simulations of many-body quantum systems, including processes of many body localization and scrambling. I will show that such small scale quantum computers could also be useful for quantum machine learning, revealing patterns in quantum states and in classical data that could not be revealed by even the most powerful classical supercomputer.
A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions
Debnath, Shantanu
Quantum computers can solve certain problems more efficiently compared to conventional classical methods. In the endeavor to build a quantum computer, several competing platforms have emerged that can implement certain quantum algorithms using a few qubits. However, the demonstrations so far have been done usually by tailoring the hardware to meet the requirements of a particular algorithm implemented for a limited number of instances. Although such proof of principal implementations are important to verify the working of algorithms on a physical system, they further need to have the potential to serve as a general purpose quantum computer allowing the flexibility required for running multiple algorithms and be scaled up to host more qubits. Here we demonstrate a small programmable quantum computer based on five trapped atomic ions each of which serves as a qubit. By optically resolving each ion we can individually address them in order to perform a complete set of single-qubit and fully connected two-qubit quantum gates and alsoperform efficient individual qubit measurements. We implement a computation architecture that accepts an algorithm from a user interface in the form of a standard logic gate sequence and decomposes it into fundamental quantum operations that are native to the hardware using a set of compilation instructions that are defined within the software. These operations are then effected through a pattern of laser pulses that perform coherent rotations on targeted qubits in the chain. The architecture implemented in the experiment therefore gives us unprecedented flexibility in the programming of any quantum algorithm while staying blind to the underlying hardware. As a demonstration we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms on the five-qubit processor and achieve average success rates of 95 and 90 percent, respectively. We also implement a five-qubit coherent quantum Fourier transform and examine its performance in the period
Quantum computers and their impact on DoD in the 21st century
Mades, John E.
1999-01-01
Computer processor speeds double every eighteen months according to Moore's law. This growth will reach a limit by the year 2020. Quantum computation is one proposed alternative to bypass this limitation. This thesis explores the topic of quantum computation. Specifically, we address what is a quantum computer, its various proposed implementations, its technological feasibility, and its military applications. Recent experiments have provided a proof of concept for quantum computation and some...
Exploring the Quantum Speed Limit with Computer Games
DEFF Research Database (Denmark)
Sørensen, Jens Jakob Winther Hedemann; Pedersen, Mads Kock; Munch, Michael Kulmback
2016-01-01
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science exploits this intuition by presenting scientific research problems to non-experts. Gamification is an effective tool for attracting citizen...... scientists and allowing them to provide novel solutions to the research problems. Citizen science games have been used successfully in Foldit, EteRNA and EyeWire to study protein and RNA folding and neuron mapping. However, gamification has never been applied in quantum physics. Everyday experiences of non......-experts are based on classical physics and it is \\textit{a priori} not clear that they should have an intuition for quantum dynamics. Does this premise hinder the use of citizen scientists in the realm of quantum mechanics? Here we report on Quantum Moves, an online platform gamifying optimization problems...
Quantum computer games: Schrödinger cat and hounds
Gordon, Michal; Gordon, Goren
2012-05-01
The quantum computer game 'Schrödinger cat and hounds' is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. 'Schrödinger cat and hounds' demonstrates the effects of superposition, destructive and constructive interference, measurements and entanglement. More advanced concepts, like particle-wave duality and decoherence, can also be taught using the game as a model. The game that has an optimal solution in the classical version, can have many different solutions and a new balance of powers in the quantum world. Game-aided lectures were given to high-school students which showed that it is a valid and entertaining teaching platform.
QSPIN: A High Level Java API for Quantum Computing Experimentation
Barth, Tim
2017-01-01
QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.
Decoherence and Zeno time in quantum computations
Antoniou, I; Pronko, G; Yarevsky, E
2003-01-01
We analyze the short-time behaviour of the survival probability in the frame of the Friedrichs model for different form factors. We have shown that the probability may not be quadratic for the short times while the quantum Zeno effect (QZE) still exists in this case. We have found that the time when the QZE could be observed is much smaller than usually assumed. We have studied the anti-Zeno era and have estimated its duration. Related decoherence processes are also discussed.
Computational Multiqubit Tunnelling in Programmable Quantum Annealers
2016-08-25
height in Fig. 2 for different values of s (Fig. 7). A disadvantage of SVMC as outlined above and introduced in ref. 20 is that there is no natural...be an important future task to determine the maximal K attainable by current technology and how large it can be made in next generations. The...annealing of a disordered spin system. Science 284, 779–781 (1999). 5. Santoro, G. E., Martoňák, R., Tosatti, E. & Car, R. Theory of quantum annealing of an
Quantum Computing with an Electron Spin Ensemble
DEFF Research Database (Denmark)
Wesenberg, Janus; Ardavan, A.; Briggs, G.A.D.
2009-01-01
We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized...... radiation field. The transformation between different spin waves is achieved by applying gradient magnetic fields across the sample, while a Cooper pair box, resonant with the cavity field, may be used to carry out one- and two-qubit gate operations....
Complete 3-Qubit Grover search on a programmable quantum computer.
Figgatt, C; Maslov, D; Landsman, K A; Linke, N M; Debnath, S; Monroe, C
2017-12-04
The Grover quantum search algorithm is a hallmark application of a quantum computer with a well-known speedup over classical searches of an unsorted database. Here, we report results for a complete three-qubit Grover search algorithm using the scalable quantum computing technology of trapped atomic ions, with better-than-classical performance. Two methods of state marking are used for the oracles: a phase-flip method employed by other experimental demonstrations, and a Boolean method requiring an ancilla qubit that is directly equivalent to the state marking scheme required to perform a classical search. We also report the deterministic implementation of a Toffoli-4 gate, which is used along with Toffoli-3 gates to construct the algorithms; these gates have process fidelities of 70.5% and 89.6%, respectively.
Roads towards fault-tolerant universal quantum computation
Campbell, Earl T.; Terhal, Barbara M.; Vuillot, Christophe
2017-09-01
A practical quantum computer must not merely store information, but also process it. To prevent errors introduced by noise from multiplying and spreading, a fault-tolerant computational architecture is required. Current experiments are taking the first steps toward noise-resilient logical qubits. But to convert these quantum devices from memories to processors, it is necessary to specify how a universal set of gates is performed on them. The leading proposals for doing so, such as magic-state distillation and colour-code techniques, have high resource demands. Alternative schemes, such as those that use high-dimensional quantum codes in a modular architecture, have potential benefits, but need to be explored further.
Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing.
Hayashi, Masahito; Morimae, Tomoyuki
2015-11-27
We introduce a simple protocol for verifiable measurement-only blind quantum computing. Alice, a client, can perform only single-qubit measurements, whereas Bob, a server, can generate and store entangled many-qubit states. Bob generates copies of a graph state, which is a universal resource state for measurement-based quantum computing, and sends Alice each qubit of them one by one. Alice adaptively measures each qubit according to her program. If Bob is honest, he generates the correct graph state, and, therefore, Alice can obtain the correct computation result. Regarding the security, whatever Bob does, Bob cannot get any information about Alice's computation because of the no-signaling principle. Furthermore, malicious Bob does not necessarily send the copies of the correct graph state, but Alice can check the correctness of Bob's state by directly verifying the stabilizers of some copies.
Quantum dots for lasers, amplifiers and computing
Energy Technology Data Exchange (ETDEWEB)
Bimberg, Dieter [Technische Universitaet Berlin, Hardenbergstr. 36, 10623, Berlin (Germany)
2005-07-07
For InAs-GaAs based quantum dot lasers emitting at 1300 nm, digital modulation showing an open eye pattern up to 12 Gb s{sup -1} at room temperature is demonstrated, at 10 Gb s{sup -1} the bit error rate is below 10{sup -12} at -2 dB m receiver power. Cut-off frequencies up to 20 GHz are realised for lasers emitting at 1.1 {mu}m. Passively mode-locked QD lasers generate optical pulses with repetition frequencies between 5 and 50 GHz, with a minimum Fourier limited pulse length of 3 ps. The uncorrelated jitter is below 1 ps. We use here deeply etched narrow ridge waveguide structures which show excellent performance similar to shallow mesa structures, but a circular far field at a ridge width of 1 {mu}m, improving coupling efficiency into fibres. No beam filamentation of the fundamental mode, low a-factors and strongly reduced sensitivity to optical feedback are observed. QD lasers are thus superior to QW lasers for any system or network. Quantum dot semiconductor optical amplifier (QD SOAs) demonstrate gain recovery times of 120-140 fs, 4-7 times faster than bulk/QW SOAs, and a net gain larger than 0.4 dB/(mm*QD-layer) providing us with novel types of booster amplifiers and Mach-Zehnder interferometers. These breakthroughs became possible due to systematic development of self-organized growth technologies.
Continuous-variable quantum computing on encrypted data
DEFF Research Database (Denmark)
Marshall, Kevin; Jacobsen, Christian Scheffmann; Schäfermeier, Clemens
2016-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure...... in future cloud-based computing networks....... in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables...
Computational nuclear quantum many-body problem: The UNEDF project
Bogner, S.; Bulgac, A.; Carlson, J.; Engel, J.; Fann, G.; Furnstahl, R. J.; Gandolfi, S.; Hagen, G.; Horoi, M.; Johnson, C.; Kortelainen, M.; Lusk, E.; Maris, P.; Nam, H.; Navratil, P.; Nazarewicz, W.; Ng, E.; Nobre, G. P. A.; Ormand, E.; Papenbrock, T.; Pei, J.; Pieper, S. C.; Quaglioni, S.; Roche, K. J.; Sarich, J.; Schunck, N.; Sosonkina, M.; Terasaki, J.; Thompson, I.; Vary, J. P.; Wild, S. M.
2013-10-01
The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.
Towards accurate quantum simulations of large systems with small computers.
Yang, Yonggang
2017-01-24
Numerical simulations are important for many systems. In particular, various standard computer programs have been developed for solving the quantum Schrödinger equations. However, the accuracy of these calculations is limited by computer capabilities. In this work, an iterative method is introduced to enhance the accuracy of these numerical calculations, which is otherwise prohibitive by conventional methods. The method is easily implementable and general for many systems.
Quantum computer gate simulations | Dada | Journal of the Nigerian ...
African Journals Online (AJOL)
As a result of this, beginners are often at a loss when trying to interact with them. The simulator here proposed therefore is aimed at bridging the gap somewhat, making quantum computer simulation more accessible to novices in the field. Journal of the Nigerian Association of Mathematical Physics Vol. 10 2006: pp. 433- ...
Decoherence control in quantum computing with simple chirped ...
Indian Academy of Sciences (India)
We show how the use of optimally shaped pulses to guide the time evolution of a system ('coherent control') can be an effective approach towards quantum computation logic. We demonstrate this with selective control of decoherence for a multilevel system with a simple linearly chirped pulse. We use a multiphoton ...
Quantum computing applied to calculations of molecular energies
Czech Academy of Sciences Publication Activity Database
Pittner, Jiří; Veis, L.
2011-01-01
Roč. 241, - (2011), 151-phys ISSN 0065-7727. [National Meeting and Exposition of the American-Chemical-Society (ACS) /241./. 27.03.2011-31.03.2011, Anaheim] Institutional research plan: CEZ:AV0Z40400503 Keywords : molecular energie * quantum computers Subject RIV: CF - Physical ; Theoretical Chemistry
Decoherence control in quantum computing with simple chirped ...
Indian Academy of Sciences (India)
Decoherence control in quantum computing with simple chirped pulses. DEBABRATA GOSWAMI. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. Abstract. We show how the use of optimally shaped pulses to guide the time evolution of a system. ('coherent control') can be an effective ...
Synthesis, quantum chemical computations and x-ray ...
African Journals Online (AJOL)
Benyza N
2017-05-01
May 1, 2017 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. SYNTHESIS, QUANTUM CHEMICAL COMPUTATIONS AND X-RAY.
Dispersive Readout of Adiabatic Phases
Kohler, Sigmund
2017-11-01
We propose a protocol for the measurement of adiabatic phases of periodically driven quantum systems coupled to an open cavity that enables dispersive readout. It turns out that the cavity transmission exhibits peaks at frequencies determined by a resonance condition that involves the dynamical and the geometric phase. Since these phases scale differently with the driving frequency, one can determine them by fitting the peak positions to the theoretically expected behavior. For the derivation of the resonance condition and for a numerical study, we develop a Floquet theory for the dispersive readout of ac driven quantum systems. The feasibility is demonstrated for two test cases that generalize Landau-Zener-Stückelberg-Majorana interference to two-parameter driving.
Quantum computing: a prime modality in neurosurgery's future.
Lee, Brian; Liu, Charles Y; Apuzzo, Michael L J
2012-11-01
With each significant development in the field of neurosurgery, our dependence on computers, small and large, has continuously increased. From something as mundane as bipolar cautery to sophisticated intraoperative navigation with real-time magnetic resonance imaging-assisted surgical guidance, both technologies, however simple or complex, require computational processing power to function. The next frontier for neurosurgery involves developing a greater understanding of the brain and furthering our capabilities as surgeons to directly affect brain circuitry and function. This has come in the form of implantable devices that can electronically and nondestructively influence the cortex and nuclei with the purpose of restoring neuronal function and improving quality of life. We are now transitioning from devices that are turned on and left alone, such as vagus nerve stimulators and deep brain stimulators, to "smart" devices that can listen and react to the body as the situation may dictate. The development of quantum computers and their potential to be thousands, if not millions, of times faster than current "classical" computers, will significantly affect the neurosciences, especially the field of neurorehabilitation and neuromodulation. Quantum computers may advance our understanding of the neural code and, in turn, better develop and program implantable neural devices. When quantum computers reach the point where we can actually implant such devices in patients, the possibilities of what can be done to interface and restore neural function will be limitless. Copyright © 2012 Elsevier Inc. All rights reserved.
A Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon
Berman, G. P.; Doolen, G. D.; Tsifrinovich, V. I.
2000-01-01
We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines the well-developed silicon technology with expected advances in MRFM.
Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.
2008-02-01
A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data
Wei, Hai-Rui; Deng, Fu-Guo
2013-07-29
We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.
Quantum triangulations moduli space, quantum computing, non-linear sigma models and Ricci flow
Carfora, Mauro
2017-01-01
This book discusses key conceptual aspects and explores the connection between triangulated manifolds and quantum physics, using a set of case studies ranging from moduli space theory to quantum computing to provide an accessible introduction to this topic. Research on polyhedral manifolds often reveals unexpected connections between very distinct aspects of mathematics and physics. In particular, triangulated manifolds play an important role in settings such as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, critical phenomena and complex systems. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is also often a consequence of an underlying structure that naturally calls into play non-trivial aspects of representation theory, complex analysis and topology in a way that makes the basic geometric structures of the physical interactions involv...
Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems
Wu, Qi-Cheng; Chen, Ye-Hong; Huang, Bi-Hua; Xia, Yan; Song, Jie
2016-11-01
We generalize the quantum adiabatic theorem to the non-Hermitian system and build a strict adiabaticity condition to make the adiabatic evolution nonlossy when taking into account the effect of the adiabatic phase. According to the strict adiabaticity condition, the nonadiabatic couplings and the effect of the imaginary part of adiabatic phase should be eliminated as much as possible. Also, the non-Hermitian Hamiltonian reverse-engineering method is proposed for adiabatically driving an artificial quantum state. A concrete two-level system is adopted to show the usefulness of the reverse-engineering method. We obtain the desired target state by adjusting extra rotating magnetic fields at a predefined time. Furthermore, the numerical simulation shows that certain noise and dissipation in the systems are no longer undesirable but play a positive role in the scheme. Therefore, the scheme is quite useful for quantum information processing in some dissipative systems.
Efficient quantum algorithm for computing n-time correlation functions.
Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E
2014-07-11
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.
Computing with a single qubit faster than the computation quantum speed limit
Sinitsyn, Nikolai A.
2018-02-01
The possibility to save and process information in fundamentally indistinguishable states is the quantum mechanical resource that is not encountered in classical computing. I demonstrate that, if energy constraints are imposed, this resource can be used to accelerate information-processing without relying on entanglement or any other type of quantum correlations. In fact, there are computational problems that can be solved much faster, in comparison to currently used classical schemes, by saving intermediate information in nonorthogonal states of just a single qubit. There are also error correction strategies that protect such computations.
Semiconductor-inspired design principles for superconducting quantum computing.
Shim, Yun-Pil; Tahan, Charles
2016-03-17
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.
Quantum computation of the electromagnetic cross section of dielectric targets
Lanzagorta, Marco; Uhlmann, Jeffrey; Jitrik, Oliverio; Venegas-Andraca, Salvador E.; Wiesman, Seth
2016-05-01
The Radar Cross Section (RCS) is a crucial element for assessing target visibility and target characterization, and it depends not only on the target's geometry but also on its composition. However, the calculation of the RCS is a challenging task due to the mathematical description of electromagnetic phenomena as well as the computational resources needed. In this paper, we will introduce two ideas for the use of quantum information processing techniques to calculate the RCS of dielectric targets. The first is to use toolboxes of quantum functions to determine the geometric component of the RCS. The second idea is to use quantum walks, expressed in terms of scattering processes, to model radar absorbing materials.
Flux-controlled quantum computation with Majorana zero modes
DEFF Research Database (Denmark)
Hyart, Timo; van Heck, Bernard; Fulga, Ion Cosma
2014-01-01
Majorana zero modes, exotic quasiparticles which are their own antiparticles, can be constructed out of electron and hole excitations in topological superconductors. Because widely separated Majorana zero modes can store quantum information nonlocally and their non-Abelian braiding statistics...... allows accurate quantum gates, Majorana zero modes offer a promise for topological quantum computation. The coupling of Majorana zero modes to superconducting transmon qubits permits braiding of Majoranas and readout operations by external variation of magnetic fluxes. We identify the minimal circuit...... for the demonstration of the non-Abelian Majorana statistics and discuss the possible limitations which might hinder the braiding operation. A key benefit of our approach is that the whole operation is performed at the electrical circuit level, without requiring local control of microscopic parameters. Finally, we take...
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-18
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Exploring the quantum speed limit with computer games.
Sørensen, Jens Jakob W H; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F
2016-04-14
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. 'Gamification'--the application of game elements in a non-game context--is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.
Exploring the quantum speed limit with computer games
Sørensen, Jens Jakob W. H.; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F.
2016-04-01
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. ‘Gamification’—the application of game elements in a non-game context—is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.
Effect of correlated decay on fault-tolerant quantum computation
Lemberger, B.; Yavuz, D. D.
2017-12-01
We analyze noise in the circuit model of quantum computers when the qubits are coupled to a common bosonic bath and discuss the possible failure of scalability of quantum computation. Specifically, we investigate correlated (super-radiant) decay between the qubit energy levels from a two- or three-dimensional array of qubits without imposing any restrictions on the size of the sample. We first show that regardless of how the spacing between the qubits compares with the emission wavelength, correlated decay produces errors outside the applicability of the threshold theorem. This is because the sum of the norms of the two-body interaction Hamiltonians (which can be viewed as the upper bound on the single-qubit error) that decoheres each qubit scales with the total number of qubits and is unbounded. We then discuss two related results: (1) We show that the actual error (instead of the upper bound) on each qubit scales with the number of qubits. As a result, in the limit of large number of qubits in the computer, N →∞ , correlated decay causes each qubit in the computer to decohere in ever shorter time scales. (2) We find the complete eigenvalue spectrum of the exchange Hamiltonian that causes correlated decay in the same limit. We show that the spread of the eigenvalue distribution grows faster with N compared to the spectrum of the unperturbed system Hamiltonian. As a result, as N →∞ , quantum evolution becomes completely dominated by the noise due to correlated decay. These results argue that scalable quantum computing may not be possible in the circuit model in a two- or three- dimensional geometry when the qubits are coupled to a common bosonic bath.
Quantum One Go Computation and the Physical Computation Level of Biological Information Processing
Castagnoli, Giuseppe
2010-02-01
By extending the representation of quantum algorithms to problem-solution interdependence, the unitary evolution part of the algorithm entangles the register containing the problem with the register containing the solution. Entanglement becomes correlation, or mutual causality, between the two measurement outcomes: the string of bits encoding the problem and that encoding the solution. In former work, we showed that this is equivalent to the algorithm knowing in advance 50% of the bits of the solution it will find in the future, which explains the quantum speed up. Mutual causality between bits of information is also equivalent to seeing quantum measurement as a many body interaction between the parts of a perfect classical machine whose normalized coordinates represent the qubit populations. This “hidden machine” represents the problem to be solved. The many body interaction (measurement) satisfies all the constraints of a nonlinear Boolean network “together and at the same time”—in one go—thus producing the solution. Quantum one go computation can formalize the physical computation level of the theories that place consciousness in quantum measurement. In fact, in visual perception, we see, thus recognize, thus process, a significant amount of information “together and at the same time”. Identifying the fundamental mechanism of consciousness with that of the quantum speed up gives quantum consciousness, with respect to classical consciousness, a potentially enormous evolutionary advantage.
Quantum computation of a complex system: The kicked Harper model
Lévi, B.; Georgeot, B.
2004-11-01
The simulation of complex quantum systems on a quantum computer is studied, taking the kicked Harper model as an example. This well-studied system has a rich variety of dynamical behavior depending on parameters, displays interesting phenomena such as fractal spectra, mixed phase space, dynamical localization, anomalous diffusion, or partial delocalization, and can describe electrons in a magnetic field. Three different quantum algorithms are presented and analyzed, enabling us to simulate efficiently the evolution operator of this system with different precision using different resources. Depending on the parameters chosen, the system is near integrable, localized, or partially delocalized. In each case we identify transport or spectral quantities which can be obtained more efficiently on a quantum computer than on a classical one. In most cases, a polynomial gain compared to classical algorithms is obtained, which can be quadratic or less depending on the parameter regime. We also present the effects of static imperfections on the quantities selected and show that depending on the regime of parameters, very different behaviors are observed. Some quantities can be obtained reliably with moderate levels of imperfection even for large number of qubits, whereas others are exponentially sensitive to the number of qubits. In particular, the imperfection threshold for delocalization becomes exponentially small in the partially delocalized regime. Our results show that interesting behavior can be observed with as little as 7-8qubits and can be reliably measured in presence of moderate levels of internal imperfections.
Promoting Conceptual Coherence in Quantum Learning through Computational Models
Lee, Hee-Sun
2012-02-01
In order to explain phenomena at the quantum level, scientists use multiple representations in verbal, pictorial, mathematical, and computational forms. Conceptual coherence among these multiple representations is used as an analytical framework to describe student learning trajectories in quantum physics. A series of internet-based curriculum modules are designed to address topics in quantum mechanics, semiconductor physics, and nano-scale engineering applications. In these modules, students are engaged in inquiry-based activities situated in a highly interactive computational modeling environment. This study was conducted in an introductory level solid state physics course. Based on in-depth interviews with 13 students, methods for identifying conceptual coherence as a function of students' level of understanding are presented. Pre-post test comparisons of 20 students in the course indicate a statistically significant improvement in students' conceptual coherence of understanding quantum phenomena before and after the course, Effect Size = 1.29 SD. Additional analyses indicate that students who responded to the modules more coherently improved their conceptual coherence to a greater extent than those who did less to the modules after controlling for their course grades.
Quantum Computation-Based Image Representation, Processing Operations and Their Applications
Directory of Open Access Journals (Sweden)
Fei Yan
2014-10-01
Full Text Available A flexible representation of quantum images (FRQI was proposed to facilitate the extension of classical (non-quantum-like image processing applications to the quantum computing domain. The representation encodes a quantum image in the form of a normalized state, which captures information about colors and their corresponding positions in the images. Since its conception, a handful of processing transformations have been formulated, among which are the geometric transformations on quantum images (GTQI and the CTQI that are focused on the color information of the images. In addition, extensions and applications of FRQI representation, such as multi-channel representation for quantum images (MCQI, quantum image data searching, watermarking strategies for quantum images, a framework to produce movies on quantum computers and a blueprint for quantum video encryption and decryption have also been suggested. These proposals extend classical-like image and video processing applications to the quantum computing domain and offer a significant speed-up with low computational resources in comparison to performing the same tasks on traditional computing devices. Each of the algorithms and the mathematical foundations for their execution were simulated using classical computing resources, and their results were analyzed alongside other classical computing equivalents. The work presented in this review is intended to serve as the epitome of advances made in FRQI quantum image processing over the past five years and to simulate further interest geared towards the realization of some secure and efficient image and video processing applications on quantum computers.
Quantum computer simulation using the CUDA programming model
Gutiérrez, Eladio; Romero, Sergio; Trenas, María A.; Zapata, Emilio L.
2010-02-01
Quantum computing emerges as a field that captures a great theoretical interest. Its simulation represents a problem with high memory and computational requirements which makes advisable the use of parallel platforms. In this work we deal with the simulation of an ideal quantum computer on the Compute Unified Device Architecture (CUDA), as such a problem can benefit from the high computational capacities of Graphics Processing Units (GPU). After all, modern GPUs are becoming very powerful computational architectures which is causing a growing interest in their application for general purpose. CUDA provides an execution model oriented towards a more general exploitation of the GPU allowing to use it as a massively parallel SIMT (Single-Instruction Multiple-Thread) multiprocessor. A simulator that takes into account memory reference locality issues is proposed, showing that the challenge of achieving a high performance depends strongly on the explicit exploitation of memory hierarchy. Several strategies have been experimentally evaluated obtaining good performance results in comparison with conventional platforms.
Control of magnetotransport in quantum billiards theory, computation and applications
Morfonios, Christian V
2017-01-01
In this book the coherent quantum transport of electrons through two-dimensional mesoscopic structures is explored in dependence of the interplay between the confining geometry and the impact of applied magnetic fields, aiming at conductance controllability. After a top-down, insightful presentation of the elements of mesoscopic devices and transport theory, a computational technique which treats multiterminal structures of arbitrary geometry and topology is developed. The method relies on the modular assembly of the electronic propagators of subsystems which are inter- or intra-connected providing large flexibility in system setups combined with high computational efficiency. Conductance control is first demonstrated for elongated quantum billiards and arrays thereof where a weak magnetic field tunes the current by phase modulation of interfering lead-coupled states geometrically separated from confined states. Soft-wall potentials are then employed for efficient and robust conductance switching by isolating...
Computational Complexity of Continuous Variable Quantum Key Distribution
Zhao, Yi-Bo; Gui, You-Zhen; Chen, Jin-Jian; Han, Zheng-Fu; Guo, Guang-Can
2006-01-01
The continuous variable quantum key distribution has been considered to have the potential to provide high secret key rate. However, in present experimental demonstrations, the secret key can be distilled only under very small loss rates. Here, by calculating explicitly the computational complexity with the channel transmission, we show that under high loss rate it is hard to distill the secret key in present continuous variable scheme and one of its advantages, the potential of providing hig...
Using Electrons on Liquid Helium for Quantum Computing
Dahm, A. J.; Goodkind, J. M.; Karakurt, I.; Pilla, S.
2001-01-01
We describe a quantum computer based on electrons supported by a helium film and localized laterally by small electrodes just under the helium surface. Each qubit is made of combinations of the ground and first excited state of an electron trapped in the image potential well at the surface. Mechanisms for preparing the initial state of the qubit, operations with the qubits, and a proposed readout are described. This system is, in principle, capable of 100,000 operations in a decoherence time.
Integrated Visible Photonics for Trapped-Ion Quantum Computing
2017-06-10
necessarily reflect the views of the Department of Defense. Abstract- A scalable trapped-ion-based quantum- computing architecture requires the...span the visible and near IR spectrum. Further, a scalable trap architecture requires many (thousands to millions of) ions in close proximity to one...silicon nitride separated by a 2-µm oxide gap. The platform is similar in structure to those demonstrated by others for 1550 nm operation [2], but here
Schrödinger's killer app race to build the world's first quantum computer
Dowling, Jonathan P
2013-01-01
The race is on to construct the first quantum code breaker, as the winner will hold the key to the entire Internet. From international, multibillion-dollar financial transactions to top-secret government communications, all would be vulnerable to the secret-code-breaking ability of the quantum computer. Written by a renowned quantum physicist closely involved in the U.S. government's development of quantum information science, Schrodinger's Killer App: Race to Build the World's First Quantum Computer presents an inside look at the government's quest to build a quantum computer capable of solvi
Numerical simulation of NQR/NMR: Applications in quantum computing.
Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C
2011-04-01
A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.
Quantum field theory and coalgebraic logic in theoretical computer science.
Basti, Gianfranco; Capolupo, Antonio; Vitiello, Giuseppe
2017-11-01
We suggest that in the framework of the Category Theory it is possible to demonstrate the mathematical and logical dual equivalence between the category of the q-deformed Hopf Coalgebras and the category of the q-deformed Hopf Algebras in quantum field theory (QFT), interpreted as a thermal field theory. Each pair algebra-coalgebra characterizes a QFT system and its mirroring thermal bath, respectively, so to model dissipative quantum systems in far-from-equilibrium conditions, with an evident significance also for biological sciences. Our study is in fact inspired by applications to neuroscience where the brain memory capacity, for instance, has been modeled by using the QFT unitarily inequivalent representations. The q-deformed Hopf Coalgebras and the q-deformed Hopf Algebras constitute two dual categories because characterized by the same functor T, related with the Bogoliubov transform, and by its contravariant application T op , respectively. The q-deformation parameter is related to the Bogoliubov angle, and it is effectively a thermal parameter. Therefore, the different values of q identify univocally, and label the vacua appearing in the foliation process of the quantum vacuum. This means that, in the framework of Universal Coalgebra, as general theory of dynamic and computing systems ("labelled state-transition systems"), the so labelled infinitely many quantum vacua can be interpreted as the Final Coalgebra of an "Infinite State Black-Box Machine". All this opens the way to the possibility of designing a new class of universal quantum computing architectures based on this coalgebraic QFT formulation, as its ability of naturally generating a Fibonacci progression demonstrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Berman, G P; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I
2003-01-01
We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of th...
Computational physics simulation of classical and quantum systems
Scherer, Philipp O J
2013-01-01
This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. Many clear mathematical descriptions of important techniques in computational physics are given. The first part of the book discusses the basic numerical methods. A large number of exercises and computer experiments allows to study the properties of these methods. The second part concentrates on simulation of classical and quantum systems. It uses a rather general concept for the equation of motion which can be applied to ordinary and partial differential equations. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multistep methods and the class of Verlet methods which is introduced by studying the motion in Liouville space. Besides the classical methods, inverse interpolation is discussed, together with the p...
Ohya, Masanori
2011-01-01
This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.
2008-04-17
Bandyopadhyay, “Self Assembling Quantum Dots and Wires”, Encyclopedia of Nanoscience and Nanotechnology, Eds. James . A. Schwartz, Cristian Contescu and Karol...Mexico, October 29 - November 3, 2006. 10. M. Cahay, K. Garre, D. J. Lockwood, J. Frazer , B. Kanchibotla, S. Pramanik, S. Bandyopadhyay, V. Semet... George Mason and Virginia Commonwealth University), Newport News, VA, June 12, 2006 (plenary). 10. S. Bandyopadhyay, Computing, Detecting, Storing
Quantum-Enhanced Cyber Security: Experimental Computation on Quantum-Encrypted Data
2017-03-02
of using polarization qubits on a chip is coupling the photons from free space spontaneous parametric down- conversion sources to the chip...respect to regular quantum computer architectures , creating processes without a causal order is an experimental task. Supported by this project we...definite causal order by measuring a causal witness. This mathematical object incorporates a series of measurements which are designed to yield a
Probing the Structure of Quantum Mechanics : Nonlinearity, Nonlocality, Computation and Axiomatics
Durt, Thomas; Czachor, Marek
2002-01-01
During the last decade, scientists working in quantum theory have been engaging in promising new fields such as quantum computation and quantum information processing, and have also been reflecting on the possibilities of nonlinear behavior on the quantum level. These are challenging undertakings because (1) they will result in new solutions to important technical and practical problems that were unsolvable by the classical approaches (for example, quantum computers can calculate problems that are intractable if one uses classical computers); and (2) they open up new 'hard' problems of a fundamental nature that touch the foundation of quantum theory itself (for example, the contradiction between locality and nonlinearity and the interpretation of quantum computing as a universal process). In this book, one can distinguish two main streams of research to approach the just-mentioned problem field: (1) a theoretical structural part, which concentrates on the elaboration of a nonlinear quantum mechanics and the ...
Spatial non-adiabatic passage using geometric phases
Energy Technology Data Exchange (ETDEWEB)
Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)
2017-12-15
Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)
Towards quantum computing for the classical O(2) model
Zou, Haiyuan; Lai, Chen-Yen; Unmuth-Yockey, J; Bazavov, A; Xie, Z Y; Xiang, T; Chandrasekharan, S; Tsai, S -W; Meurice, Y
2014-01-01
We construct a sequence of steps connecting the classical $O(2)$ model in 1+1 dimensions, a model having common features with those considered in lattice gauge theory, to physical models potentially implementable on optical lattices and evolving at physical time. We show that the tensor renormalization group formulation of the classical model allows reliable calculations of the largest eigenvalues of the transfer matrix. We take the time continuum limit and check that finite dimensional projections used in recent proposals for quantum simulators provide controllable approximations of the original model. We propose two-species Bose-Hubbard models corresponding to these finite dimensional projections at strong coupling and discuss their possible implementations on optical lattices. The full completion of this program would provide a proof of principle that quantum computing is possible for classical lattice models.
Milestones toward Majorana-based quantum computing (Conference Presentation)
Mishmash, Ryan V.; Aasen, David; Hell, Michael; Higginbotham, Andrew; Danon, Jeroen; Leijnse, Martin; Jespersen, Thomas S.; Folk, Joshua A.; Marcus, Charles M.; Flensberg, Karsten; Alicea, Jason
2016-10-01
We introduce a scheme for preparation, manipulation, and readout of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate-control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current; (2) validation of a prototype topological qubit; and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system's excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and readout schemes as well.
Computational Quantum Mechanics for Materials Engineers The EMTO Method and Applications
Vitos, L
2007-01-01
Traditionally, new materials have been developed by empirically correlating their chemical composition, and the manufacturing processes used to form them, with their properties. Until recently, metallurgists have not used quantum theory for practical purposes. However, the development of modern density functional methods means that today, computational quantum mechanics can help engineers to identify and develop novel materials. Computational Quantum Mechanics for Materials Engineers describes new approaches to the modelling of disordered alloys that combine the most efficient quantum-level th
Adiabatic Cooling of Antiprotons
Gabrielse, G; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J
2011-01-01
Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3 x 10(6) (p) over bar are cooled to 3.5 K-10(3) times more cold (p) over bar and a 3 times lower (p) over bar temperature than previously reported. A second cooling method cools (p) over bar plasmas via the synchrotron radiation of embedded (p) over bar (with many fewer (p) over bar than (p) over bar) in preparation for adiabatic cooling. No (p) over bar are lost during either process-a significant advantage for rare particles.
Multilevel distillation of magic states for quantum computing
Jones, Cody
2013-04-01
We develop a procedure for distilling magic states used in universal quantum computing that requires substantially fewer initial resources than prior schemes. Our distillation circuit is based on a family of concatenated quantum codes that possess a transversal Hadamard operation, enabling each of these codes to distill the eigenstate of the Hadamard operator. A crucial result of this design is that low-fidelity magic states can be consumed to purify other high-fidelity magic states to even higher fidelity, which we call multilevel distillation. When distilling in the asymptotic regime of infidelity ɛ→0 for each input magic state, the number of input magic states consumed on average to yield an output state with infidelity O(ɛ2r) approaches 2r+1, which comes close to saturating the conjectured bound in another investigation [Bravyi and Haah, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.86.052329 86, 052329 (2012)]. We show numerically that there exist multilevel protocols such that the average number of magic states consumed to distill from error rate ɛin=0.01 to ɛout in the range 10-5-10-40 is about 14log10(1/ɛout)-40; the efficiency of multilevel distillation dominates all other reported protocols when distilling Hadamard magic states from initial infidelity 0.01 to any final infidelity below 10-7. These methods are an important advance for magic-state distillation circuits in high-performance quantum computing and provide insight into the limitations of nearly resource-optimal quantum error correction.
High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation
House, Matthew; Bartlett, Ian; Pakkiam, Prasanna; Koch, Matthias; Peretz, Eldad; van der Heijden, Joost; Kobayashi, Takashi; Rogge, Sven; Simmons, Michelle
We report the development of a high sensitivity semiconductor charge sensor based on a quantum dot coupled to a single lead, designed to minimize the geometric requirements of a charge sensor for scalable quantum computing architectures. The quantum dot is fabricated in Si:P using atomic precision lithography and its charge transitions are measured with rf reflectometry. A second quantum dot with two leads placed 42 nm away serves as both a charge for the sensor to measure and as a conventional rf single electron transistor (rf-SET) with which to make a comparison of the charge detection sensitivity. We demonstrate sensitivity equivalent to an integration time of 550 ns to detect a single charge with a signal-to-noise ratio of 1, compared with an integration time of 55 ns for the rf-SET. This level of sensitivity is suitable for fast (Communication Technology (Project No. CE110001027) and the U.S. Army Research Office under Contract No. W911NF-13-1-0024.
Nonuniform code concatenation for universal fault-tolerant quantum computing
Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza
2017-09-01
Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.
Assessment of total efficiency in adiabatic engines
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
Repeat-until-success linear optics distributed quantum computing.
Lim, Yuan Liang; Beige, Almut; Kwek, Leong Chuan
2005-07-15
We demonstrate the possibility to perform distributed quantum computing using only single-photon sources (atom-cavity-like systems), linear optics, and photon detectors. The qubits are encoded in stable ground states of the sources. To implement a universal two-qubit gate, two photons should be generated simultaneously and pass through a linear optics network, where a measurement is performed on them. Gate operations can be repeated until a success is heralded without destroying the qubits at any stage of the operation. In contrast with other schemes, this does not require explicit qubit-qubit interactions, a priori entangled ancillas, nor the feeding of photons into photon sources.
SAYANTAN GUPTA
2017-01-01
This paper on the Theory of Quantum Computation provides an outline of modern day Quantum computation with its drawbacks and limitations and provides various solutions using existing or newer Models and Approaches. This paper will enlighten us to get a broader aspect of the recent day technology of computer evolution and why this QC still remains a mere concept.
Computing the rates of measurement-induced quantum jumps
Bauer, Michel; Bernard, Denis; Tilloy, Antoine
2015-06-01
Small quantum systems can now be continuously monitored experimentally which allows for the reconstruction of quantum trajectories. A peculiar feature of these trajectories is the emergence of jumps between the eigenstates of the observable which is measured. Using the stochastic master equation (SME) formalism for continuous quantum measurements, we show that the density matrix of a system indeed shows a jumpy behaviour when it is subjected to a tight measurement (even if the noise in the SME is Gaussian). We are able to compute the jump rates analytically for any system evolution, i.e. any Lindbladian, and we illustrate how our general recipe can be applied to two simple examples. We then discuss the mathematical, foundational and practical applications of our results. The analysis we present is based on a study of the strong noise limit of a class of stochastic differential equations (the SME) and as such the method may be applicable to other physical situations in which a strong noise limit plays a role.
Fast holonomic quantum computation based on solid-state spins with all-optical control
Zhou, Jian; Liu, BaoJie; Hong, ZhuoPing; Xue, ZhengYuan
2018-01-01
Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here, we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin. Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.
Rigidity of quantum steering and one-sided device-independent verifiable quantum computation
Gheorghiu, Alexandru; Wallden, Petros; Kashefi, Elham
2017-02-01
The relationship between correlations and entanglement has played a major role in understanding quantum theory since the work of Einstein et al (1935 Phys. Rev. 47 777-80). Tsirelson proved that Bell states, shared among two parties, when measured suitably, achieve the maximum non-local correlations allowed by quantum mechanics (Cirel’son 1980 Lett. Math. Phys. 4 93-100). Conversely, Reichardt et al showed that observing the maximal correlation value over a sequence of repeated measurements, implies that the underlying quantum state is close to a tensor product of maximally entangled states and, moreover, that it is measured according to an ideal strategy (Reichardt et al 2013 Nature 496 456-60). However, this strong rigidity result comes at a high price, requiring a large number of entangled pairs to be tested. In this paper, we present a significant improvement in terms of the overhead by instead considering quantum steering where the device of the one side is trusted. We first demonstrate a robust one-sided device-independent version of self-testing, which characterises the shared state and measurement operators of two parties up to a certain bound. We show that this bound is optimal up to constant factors and we generalise the results for the most general attacks. This leads us to a rigidity theorem for maximal steering correlations. As a key application we give a one-sided device-independent protocol for verifiable delegated quantum computation, and compare it to other existing protocols, to highlight the cost of trust assumptions. Finally, we show that under reasonable assumptions, the states shared in order to run a certain type of verification protocol must be unitarily equivalent to perfect Bell states.
Chuluunbaatar, O.; Gusev, A. A.; Abrashkevich, A. G.; Amaya-Tapia, A.; Kaschiev, M. S.; Larsen, S. Y.; Vinitsky, S. I.
2007-10-01
A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4224 No. of bytes in distributed program, including test data, etc.: 31 232 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986] Nature of problem: In the hyperspherical adiabatic
A shortcut through time The path to the quantum computer
Johnson, George
2003-01-01
The newest Pentium chip powering PCs and laptops contains 40 million electronic switches packed onto a piece of silicon about the size of a thumbnail. Several years from now, if this incredible shrinking continues, a single chip will hold a billion switches, then a trillion. The logical culmination is a computer in which the switches are so tiny that each consists of an individual atom. At that point something miraculous happens: Quantum mechanics kick in. Anyone who follows the science news or watches 'Star Trek' has at least a notion of what that means: particles that can be in two or more places at once, that can seem one moment like hard little specks of matter and the next like waves. Atoms obey a peculiar logic of their own - and if it can be harnessed society will be transformed. Problems that would now take for ever even on a supercomputer would be solved almost instantly. Quantum computing promises nothing less than a shortcut through time. In this brief and totally absorbing book, we are brought to ...
Error Correction for Non-Abelian Topological Quantum Computation
Directory of Open Access Journals (Sweden)
James R. Wootton
2014-03-01
Full Text Available The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However, the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here, we address this issue by considering the properties of non-Abelian error correction, in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of D(S_{3}. This shares many properties with important models such as the Fibonacci anyons, making our method more generally applicable. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of 7% for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.
Efficient parabolic evaluation of coupling terms in hybrid quantum/classical simulations
Energy Technology Data Exchange (ETDEWEB)
Bastida, Adolfo, E-mail: bastida@um.es [Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Murcia, 30100 Murcia (Spain); Soler, Miguel Angel; Zuniga, Jose; Requena, Alberto [Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Murcia, 30100 Murcia (Spain); Miguel, Beatriz [Departamento de Ingenieria Quimica y Ambiental, Universidad Politecnica de Cartagena, 30203 Cartagena (Spain)
2009-03-30
A parabolic interpolation function of time is proposed to evaluate the non-adiabatic coupling matrix elements and the adiabatic energies at intermediate times within the classical time integration interval in hybrid quantum/classical simulations. The accuracy and the computational efficiency of this parabolic approximation are illustrated by carrying out a numerical application to the well-studied vibrational relaxation of I{sub 2} in liquid xenon.
Instantaneous non-local computation of low T-depth quantum circuits
F. Speelman (Florian)
2015-01-01
htmlabstractThe instantaneous non-local quantum computation task requires multiple parties to jointly perform a quantum operation, using pre-shared entanglement and a single round of simultaneous communication. We study this task for its close connection to position-based quantum cryptography, but
Instantaneous non-local computation of low T-depth quantum circuits
F. Speelman (Florian)
2016-01-01
textabstractInstantaneous non-local quantum computation requires multiple parties to jointly perform a quantum operation, using pre-shared entanglement and a single round of simultaneous communication. We study this task for its close connection to position-based quantum cryptography, but it also
Computer-automated tuning of semiconductor double quantum dots into the single-electron regime
Baart, T.A.; Eendebak, P.T.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.
2016-01-01
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the
A novel quantum scheme for secure two-party distance computation
Peng, Zhen-wan; Shi, Run-hua; Zhong, Hong; Cui, Jie; Zhang, Shun
2017-12-01
Secure multiparty computational geometry is an essential field of secure multiparty computation, which computes a computation geometric problem without revealing any private information of each party. Secure two-party distance computation is a primitive of secure multiparty computational geometry, which computes the distance between two points without revealing each point's location information (i.e., coordinate). Secure two-party distance computation has potential applications with high secure requirements in military, business, engineering and so on. In this paper, we present a quantum solution to secure two-party distance computation by subtly using quantum private query. Compared to the classical related protocols, our quantum protocol can ensure higher security and better privacy protection because of the physical principle of quantum mechanics.
Simulating quantum systems on classical computers with matrix product states
Energy Technology Data Exchange (ETDEWEB)
Kleine, Adrian
2010-11-08
In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of
Computer-automated tuning of semiconductor double quantum dots into the single-electron regime
Energy Technology Data Exchange (ETDEWEB)
Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)
2016-05-23
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.