Quantum tunneling, adiabatic invariance and black hole spectroscopy
Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao
2017-05-01
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.
Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems
International Nuclear Information System (INIS)
Zhang Mingjiang; Fang Jianhui; Lu Kai; Pang Ting; Lin Peng
2009-01-01
Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained. (general)
Adiabatic invariants of the extended KdV equation
Energy Technology Data Exchange (ETDEWEB)
Karczewska, Anna [Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Rozmej, Piotr, E-mail: p.rozmej@if.uz.zgora.pl [Institute of Physics, Faculty of Physics and Astronomy, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Infeld, Eryk [National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Rowlands, George [Department of Physics, University of Warwick, Coventry, CV4 7A (United Kingdom)
2017-01-30
When the Euler equations for shallow water are taken to the next order, beyond KdV, momentum and energy are no longer exact invariants. (The only one is mass.) However, adiabatic invariants (AI) can be found. When the KdV expansion parameters are zero, exact invariants are recovered. Existence of adiabatic invariants results from general theory of near-identity transformations (NIT) which allow us to transform higher order nonintegrable equations to asymptotically equivalent (when small parameters tend to zero) integrable form. Here we present a direct method of calculations of adiabatic invariants. It does not need a transformation to a moving reference frame nor performing a near-identity transformation. Numerical tests show that deviations of AI from constant values are indeed small. - Highlights: • We suggest a new and simple method for calculating adiabatic invariants of second order wave equations. • It is easy to use and we hope that it will be useful if published. • Interesting numerics included.
Quantum tunneling, adiabatic invariance and black hole spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)
2017-05-15
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)
Dynamical constraints and adiabatic invariants in chemical reactions.
Lorquet, J C
2007-08-23
For long-range electrostatic potentials and, more generally, when the topography of the potential energy surface is locally simple, the reaction path coordinate is adiabatically separable from the perpendicular degrees of freedom. For the ion-permanent dipole and ion-quadrupole interactions, the Poisson bracket of the adiabatic invariant decreases with the interfragment distance more rapidly than the electrostatic potential. The smaller the translational momentum, the moment of inertia of the neutral fragment, and the dipole or quadrupole moments are, the more reliable the adiabatic approximation is, as expected from the usual argumentation. Closed-form expressions for an effective one-dimensional potential in an adiabatic Hamiltonian are given. Connection with a model where the decoupling is exact is obtained in the limit of an infinitely heavy dipole. The dynamics is also constrained by adiabatic invariance for a harmonic valley about a curved reaction path, as shown by the reaction path Hamiltonian method. The maximum entropy method reveals that, as a result of the invariance properties of the entropy, constraints whose validity has been demonstrated locally only subsist in all parts of phase space. However, their form varies continuously, and they are not necessarily expressed in simple terms as they are in the asymptotic region. Therefore, although the influence of adiabatic invariance has been demonstrated at asymptotically large values of the reaction coordinate only, it persists in more interesting ranges.
Change of adiabatic invariant near the separatrix
International Nuclear Information System (INIS)
Bulanov, S.V.
1995-10-01
The properties of particle motion in the vicinity of the separatrix in a phase plane are investigated. The change of adiabatic invariant value due to the separatrix crossing is evaluated as a function of a perturbation parameter magnitude and a phase of a particle for time dependent Hamiltonians. It is demonstrated that the change of adiabatic invariant value near the separatrix birth is much larger than that in the case of the separatrix crossing near the saddle point in a phase plane. The conditions of a stochastic regime to appear around the separatrix are found. The results are applied to study the longitudinal invariant behaviour of charged particles near singular lines of the magnetic field. (author). 22 refs, 9 figs
Adiabatic invariance with first integrals of motion
Adib, Artur B.
2002-10-01
The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.
A many-particle adiabatic invariant of strongly magnetized pure electron plasmas
International Nuclear Information System (INIS)
Hjorth, P.G.
1988-01-01
A pure electron plasma is said to be strongly magnetized if the cyclotron radius of the electrons is much smaller than the classical distance of closest approach. In this parameter regime a many-particle adiabatic invariant constrains the collisional dynamics. For the case of a uniform magnetic field, the adiabatic invariant is the total kinetic energy associated with the electron velocity components that are perpendicular to the magnetic field (i.e., Σ j mv 2 j perpendicular/2). Were the adiabatic invariant an exact constant of the motion, no exchange of energy would be possible between the parallel and the perpendicular degrees of freedom, and the plasma could develop and maintain two different temperatures T parallel and T perpendicular. An adiabatic invariant, however, is not strictly conserved. In the present case, each collision produces an exponentially small exchange of energy between the parallel and the perpendicular degrees of freedom, and these act cumulatively in such a way that T parallel and T perpendicular eventually relax to a common value. The rate of equilibrium is calculated, both in the case where the collisions are described by classical mechanics and in the case where the collisions are described by quantum mechanics, the two calculations giving essentially the same result. A molecular dynamics simulation has been carried out, verifying the existence of this unusual invariant, and verifying the theoretically predicted rate equation
Entropy Spectrum of Black Holes of Heterotic String Theory via Adiabatic Invariance
Institute of Scientific and Technical Information of China (English)
Alexis Larra？ aga; Luis Cabarique; Manuel Londo？ o
2012-01-01
Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.
Directory of Open Access Journals (Sweden)
Jeong Ryeol Choi
2015-01-01
Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.
Evidence for the adiabatic invariance of the black hole horizon area
Mayo, Avraham E.
1998-01-01
Some examples in support of the conjecture that the horizon area of a near equilibrium black hole is an adiabatic invariant are described. These clarify somewhat the conditions under which the conjecture would be true.
Chaotic jumps in the generalized first adiabatic invariant in current sheets
International Nuclear Information System (INIS)
Brittnacher, M.J.; Whipple, E.C.
1991-01-01
In attempting to develop a fluidlike model of plasma dynamics in a current sheet, kinetic effects due to chaotic non-adiabatic particle motion must be included in any realistic description. Using drift variables, derived by the Kruskal averaging procedure, to construct distribution functions may provide an approach in which to develop the fluid description. However, the drift motion is influenced by abrupt changes in the value of the generalized first adiabatic invariant J. In this letter, the authors indicate how the changes in J derived from separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. In particular, the authors propose a method to determine distribution functions for an ensemble of particles following interactions with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant
Could solitons be adiabatic invariants attached to certain non linear equations
International Nuclear Information System (INIS)
Lochak, P.
1984-01-01
Arguments are given to support the claim that solitons should be the adiabatic invariants associated to certain non linear partial differential equations; a precise mathematical form of this conjecture is then stated. As a particular case of the conjecture, the Korteweg-de Vries equation is studied. (Auth.)
International Nuclear Information System (INIS)
Finelli, Fabio; Brandenberger, Robert
2002-01-01
In pre-big-bang and in ekpyrotic cosmology, perturbations on cosmological scales today are generated from quantum vacuum fluctuations during a phase when the Universe is contracting (viewed in the Einstein frame). The backgrounds studied to date do not yield a scale-invariant spectrum of adiabatic fluctuations. Here, we present a new contracting background model (neither of pre-big-bang nor of the ekpyrotic form) involving a single scalar field coupled to gravity in which a scale-invariant spectrum of curvature fluctuations and gravitational waves results. The equation of state of this scalar field corresponds to cold matter. We demonstrate that if this contracting phase can be matched via a nonsingular bounce to an expanding Friedmann cosmology, the scale-invariance of the curvature fluctuations is maintained. We also find new background solutions for pre-big-bang and for ekpyrotic cosmology, which involve two scalar fields with exponential potentials with background values which are evolving in time. We comment on the difficulty of obtaining a scale-invariant spectrum of adiabatic fluctuations with background solutions which have been studied in the past
Adiabatic invariants in stellar dynamics. 1: Basic concepts
Weinberg, Martin D.
1994-01-01
The adiabatic criterion, widely used in astronomical dynamics, is based on the harmonic oscillator. It asserts that the change in action under a slowly varying perturbation is exponentially small. Recent mathematical results that precisely define the conditions for invariance show that this model does not apply in general. In particular, a slowly varying perturbation may cause significant evolution stellar dynamical systems even if its time scale is longer than any internal orbital time scale. This additional 'heating' may have serious implications for the evolution of star clusters and dwarf galaxies which are subject to long-term environmental forces. The mathematical developments leading to these results are reviewed, and the conditions for applicability to and further implications for stellar systems are discussed. Companion papers present a computational method for a general time-dependent disturbance and detailed example.
International Nuclear Information System (INIS)
Piao Yunsong; Zhou, E.
2003-01-01
In this paper we construct an expanding phase with phantom matter, in which the scale factor expands very slowly but the Hubble parameter increases gradually, and assume that this expanding phase could be matched to our late observational cosmology by the proper mechanism. We obtain the nearly scale-invariant spectrum of adiabatic fluctuations in this scenario; different from the simplest inflation and usual ekpyrotic or cyclic scenario, the tilt of the nearly scale-invariant spectrum in this scenario is blue. Although there exists an uncertainty surrounding the way in which the perturbations propagate through the transition in our scenario, which is dependent on the details of possible 'bounce' physics, compared with inflation and the ekpyrotic or cyclic scenario, our work may provide another feasible cosmological scenario generating the nearly scale-invariant perturbation spectrum
International Nuclear Information System (INIS)
Lyons, L.R.; Williams, D.J.
1976-01-01
Explorer 45 observations of ring current protons mirroring near the equator, 1--800 keV, are presented at constant first adiabatic invariant μ throughout the period of the December 17, 1971, geomagnetic storm. To obtain μ, simultaneous magnetic field and particle observations are used. Particle deceleration in response to the storm time magnetic field decrease causes ring current measurements viewed at constant energy to underestimate the storm time increase in proton intensities at energies approximately-less-than200 keV. This adiabatic deceleration also accounts for the large flux decreases observed at energies approximately-greater-than200 keV during the storm, in contradiction with previous results (Soraas and Davis, 1968) obtained using a model for the storm time magnetic field
Fermi-Dirac gas of atoms in a box with low adiabatic invariant
International Nuclear Information System (INIS)
Vlad, V.I.; Inonescu-Pallas, N.
2004-06-01
Quantum degenerate Fermi-Dirac gas of atoms, confined in a cubic box, shows an energy spectrum, which is discrete and strongly dependent on the atomic mass number, A at , box geometry and temperature, for low product of A at and the adiabatic invariant, TV 1/3 , i.e. on γ = A at TV 1/3 . The present study compares the total number of particles and the total energy obtained by summing up the contributions of a finite number of states, defined by the values of γ, to the widespread approximations of the corresponding integrals. The sums show simple calculation algorithms and more precise results for a large interval of values of γ. A new accurate analytic formula for the chemical potential of the Fermi-Dirac quantum gas is also given. (author)
Adiabatic perturbations in pre-big bang models: Matching conditions and scale invariance
International Nuclear Information System (INIS)
Durrer, Ruth; Vernizzi, Filippo
2002-01-01
At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to a slightly modified version of the pre-big bang model. We discuss cosmological perturbations in these models. In particular we address the issue of matching the perturbations from a collapsing to an expanding phase. We show that, under certain physically motivated and quite generic assumptions on the high energy corrections, one obtains n=0 for the spectrum of scalar perturbations in the original pre-big bang model (with a vanishing potential). With the same assumptions, when an exponential potential for the dilaton is included, a scale invariant spectrum (n=1) of adiabatic scalar perturbations is produced under very generic matching conditions, both in a modified pre-big bang and ekpyrotic scenario. We also derive the resulting spectrum for arbitrary power law scale factors matched to a radiation-dominated era
Non-adiabatic perturbations in multi-component perfect fluids
Energy Technology Data Exchange (ETDEWEB)
Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Non-adiabatic perturbations in multi-component perfect fluids
International Nuclear Information System (INIS)
Koshelev, N.A.
2011-01-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models
Dark coupling and gauge invariance
International Nuclear Information System (INIS)
Gavela, M.B.; Honorez, L. Lopez; Mena, O.; Rigolin, S.
2010-01-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data
Dark Coupling and Gauge Invariance
Gavela, M B; Mena, O; Rigolin, S
2010-01-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
Discrete Bose-Einstein systems in a box with low adiabatic invariant
International Nuclear Information System (INIS)
Vlad, V.I.; Ionescu-Pallas, N.
2002-03-01
The Bose-Einstein energy spectrum of a quantum gas, confined in a (cubic) box, is discrete and strongly dependent on the box geometry and temperature, for low product of the atomic mass number, A at and the adiabatic invariant, TV 2/3 , i.e. on γ=A at TV 2/3 . Even within the approximation of noninteracting particles in the gas, the calculation of the thermodynamic properties of Bose-Einstein systems turns out to be a difficult mathematical problem. It is solved in the textbooks and most papers by approximating the sums by integrals. The present study compares the total number of particles and the total energy obtained by summing up the exact contributions of the eigenvalues and their weights, for defined values of γ, to the results of the approximate integrals. Then, the passage from sums to integrals is done in a more rigorous manner and better analytical approximations are found. The corrected thermodynamic functions depend on γ. The critical temperature is corrected also in order to describe more accurately the discrete Bose-Einstein systems and their onset of the phase transition. (author)
Polarization particle drift and quasi-particle invariants
International Nuclear Information System (INIS)
Sosenko, P.P.
1995-01-01
The second-order approximation in quasi-particle description of magnetized plasmas is studied. Reduced particle and guiding-centre velocities are derived taking account of the second-order renormalization and polarization drift modified owing to finite-Larmor-radius effects. The second-order adiabatic invariant of quasi-particle motion is found. Global adiabatic invariants for the magnetized plasma are revealed, and their possible role in energy exchange between particles and fields, nonlinear mode cascades and global plasma stability is shown. 49 refs
On the adiabatic theorem in quantum statistical mechanics
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.
1982-01-01
We show that with suitable assumptions the equilibrium states are exactly the states invariant under adiabatic local perturbations. The relevance of this fact to the problem of ergodicity is discussed. (Author)
Adiabatically steered open quantum systems: Master equation and optimal phase
International Nuclear Information System (INIS)
Salmilehto, J.; Solinas, P.; Ankerhold, J.; Moettoenen, M.
2010-01-01
We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.
Adiabatic invariants in stellar dynamics. 2: Gravitational shocking
Weinberg, Martin D.
1994-01-01
A new theory of gravitational shocking based on time-dependent perturbation theory shows that the changes in energy and angular momentum due to a slowly varying disturbance are not exponentially small for stellar dynamical systems in general. It predicts significant shock heating by slowly varying perturbations previously thought to be negligible according to the adiabatic criterion. The theory extends the scenarios traditionally computed only with the impulse approximation and is applicable to a wide class of disturbances. The approach is applied specifically to the problem of disk shocking of star clusters.
Bailey, Nicholas P; Bøhling, Lasse; Veldhorst, Arno A; Schrøder, Thomas B; Dyre, Jeppe C
2013-11-14
We derive exact results for the rate of change of thermodynamic quantities, in particular, the configurational specific heat at constant volume, CV, along configurational adiabats (curves of constant excess entropy Sex). Such curves are designated isomorphs for so-called Roskilde liquids, in view of the invariance of various structural and dynamical quantities along them. The slope of the isomorphs in a double logarithmic representation of the density-temperature phase diagram, γ, can be interpreted as one third of an effective inverse power-law potential exponent. We show that in liquids where γ increases (decreases) with density, the contours of CV have smaller (larger) slope than configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctuation formula for the slope of the CV-contours is derived. The theoretical results are supported with data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The sign of dγ∕dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of a dynamical quantity, the self-diffusion coefficient, along adiabats and CV-contours, finding it more invariant along adiabats.
Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories
Wang, Tenghui; Zhang, Zhenxing; Xiang, Liang; Gong, Zhihao; Wu, Jianlan; Yin, Yi
2018-04-01
The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the "shortcut to adiabaticity" (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.
Adiabatic theory in regions of strong field gradients. [in magnetosphere
Whipple, E. C.; Northrop, T. G.; Birmingham, T. J.
1986-01-01
The theory for the generalized first invariant for adiabatic motion of charged particles in regions where there are large gradients in magnetic or electric fields is developed. The general condition for an invariant to exist in such regions is that the potential well in which the particle oscillates change its shape slowly as the particle drifts. It is shown how the Kruskal (1962) procedure can be applied to obtain expressions for the invariant and for drift velocities that are asymptotic in a smallness parameter epsilon. The procedure is illustrated by obtaining the invariant and drift velocities for particles traversing a perpendicular shock, and the generalized invariant is compared with the magnetic moment, and the drift orbits with the actual orbits, for a particular case. In contrast to the magnetic moment, the generalized first invariant is better for large gyroradii (large kinetic energies) than for small gyroradii. Expressions for the invariant when an electrostatic potential jump is imposed across the perpendicular shock, and when the particle traverses a rotational shear layer with a small normal component of the magnetic field are given.
Studies in Chaotic adiabatic dynamics
International Nuclear Information System (INIS)
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the open-quotes goodnessclose quotes of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees)
Adiabatic theory of nonlinear electron cyclotron resonance heating
International Nuclear Information System (INIS)
Kotel'nikov, I.A.; Stupakov, G.V.
1989-01-01
Plasma heating at electron frequency by an ordinary wave propagating at right angle to unidirectional magnetic field is treated. Injected microwave power is assumed to be so large that relativistic change of electron gyrofrequency during one flight thorugh the wave beam is much greater than inverse time of flight. The electron motion in the wave field is described using Hamiltonian formalism in adiabatic approximation. It is shown that energy coupling from the wave to electrons is due to a bifurcation of electron trajectory which results in a jumpm of the adiabatic invariant. The probability of bifurcational transition from one trajectory to another is calculated analytically and is used for the estimation of the beam power absorbed in plasma. 6 refs.; 2 figs
A simple proof of the existence of adiabatic invariants for perturbed reversible problems
International Nuclear Information System (INIS)
Chartier, P; Faou, E
2008-01-01
In this paper, we give a simple proof of the existence of invariants for reversible perturbations of action-angle systems. The originality of this proof is that it does not rely on canonical transformations that bring the system gradually closer to a normal form, but rather on a formal development of the invariant itself
Ion motion in the current sheet with sheared magnetic field – Part 2: Non-adiabatic effects
Directory of Open Access Journals (Sweden)
A. V. Artemyev
2013-10-01
Full Text Available We investigate dynamics of charged particles in current sheets with the sheared magnetic field. In our previouspaper (Artemyev et al., 2013 we studied the particle motion in such magnetic field configurations on the basis of the quasi-adiabatic theory and conservation of the quasi-adiabatic invariant. In this paper we concentrate on violation of the adiabaticity due to jumps of this invariant and the corresponding effects of stochastization of a particle motion. We compare effects of geometrical and dynamical jumps, which occur due to the presence of the separatrix in the phase plane of charged particle motion. We show that due to the presence of the magnetic field shear, the average value of dynamical jumps is not equal to zero. This effect results in the decrease of the time interval necessary for stochastization of trapped particle motion. We investigate also the effect of the magnetic field shear on transient trajectories, which cross the current sheet boundaries. Presence of the magnetic field shear leads to the asymmetry of reflection and transition of particles in the current sheet. We discuss the possible influence of single-particle effects revealed in this paper on the current sheet structure and dynamics.
Adiabatic invariants in stellar dynamics, 3: Application to globular cluster evolution
Weinberg, Martin D.
1994-01-01
The previous two companion papers demonstrate that slowly varying perturbations may not result in adiabatic cutoffs and provide a formalism for computing the long-term effects of time-dependent perturbations on stellar systems. Here, the theory is implemented in a Fokker-Planck code and a suite of runs illustrating the effects of shock heating on globular cluster evolution are described. Shock heating alone results in considerable mass loss for clusters with R(sub g) less than or approximately 8 kpc: a concentration c = 1.5 cluster with R(sub g) kpc loses up to 95% of its initial mass in 15 Gyr. Only those with concentration c greater than or approximately 1.3 survive disk shocks inside of this radius. Other effects, such as mass loss by stellar evolution, will decrease this survival bound. Loss of the initial halo together with mass segregation leads to mass spectral indices, x, which may be considerably larger than their initial values.
International Nuclear Information System (INIS)
Kobe, D.H.
1989-01-01
The Berry phase is derived in a manifestly gauge-invariant way, without adiabatic or cyclic requirements. It is invariant under unitary transformations, contrary to recent assertions. A time-dependent generalized harmonic oscillator is taken as an example. The energy of the system is not in general the Hamiltonian. An energy, the time derivative of which is the power, is obtained from the equation of motion. When the system is quantized, the Berry phase is zero, and is invariant under unitary transformations. If the energy is chosen incorrectly to be the Hamiltonian, a nonzero Berry phase is obtained. In this case the total phase, the sun of the dynamical and Berry phases, is equal to the correct total phase through first order in perturbation theory. (author)
International Nuclear Information System (INIS)
Barber, D.P.
2015-10-01
I extend and update earlier work, summarised in an earlier paper (D.P. Barber, M. Voigt, AIP Conference Proceedings 1149 (28)), whereby the invariant polarisation-tensor field (ITF) for deuterons in storage rings was introduced to complement the invariant spin field (ISF). Taken together, the ITF and the ISF provide a definition of the equilibrium spin density-matrix field which, in turn, offers a clean framework for describing equilibrium spin-1 ensembles in storage rings. I show how to construct the ITF by stroboscopic averaging, I give examples, I discuss adiabatic invariance and I introduce a formalism for describing the effect of noise and damping.
Transitionless driving on adiabatic search algorithm
Energy Technology Data Exchange (ETDEWEB)
Oh, Sangchul, E-mail: soh@qf.org.qa [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Kais, Sabre, E-mail: kais@purdue.edu [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Topology hidden behind the breakdown of adiabaticity
International Nuclear Information System (INIS)
Fu, L.-B.; Chen, S.-G.
2005-01-01
For classical Hamiltonian systems, the adiabatic condition may fail at some critical points. However, the breakdown of the adiabatic condition does not always cause the adiabatic evolution to be destroyed. In this paper, we suggest a supplemental condition of the adiabatic evolution for the fixed points of classical Hamiltonian systems when the adiabatic condition breaks down at the critical points. As an example, we investigate the adiabatic evolution of the fixed points of a classical Hamiltonian system which has a number of applications
A smooth bouncing cosmology with scale invariant spectrum
International Nuclear Information System (INIS)
Creminelli, P.; Senatore, L.
2007-01-01
We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n S > or approx. 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling. (author)
Decoherence in adiabatic quantum computation
Albash, Tameem; Lidar, Daniel A.
2015-06-01
Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.
Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor
Energy Technology Data Exchange (ETDEWEB)
Saadi, Y., E-mail: S_yahiadz@yahoo.fr [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria); Maamache, M. [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria)
2012-03-19
We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. -- Highlights: ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.
Adiabatic capture and debunching
International Nuclear Information System (INIS)
Ng, K.Y.
2012-01-01
In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of ∼ ±22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than ∼ 3.46 eVs. The incoming booster bunches have total emittance ∼ 8.4 eVs, or each one with an emittance ∼ 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.
Wireless adiabatic power transfer
International Nuclear Information System (INIS)
Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.
2011-01-01
Research highlights: → Efficient and robust mid-range wireless energy transfer between two coils. → The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. → Wireless energy transfer is insensitive to any resonant constraints. → Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
Lobe, Elisabeth; Stollenwerk, Tobias; Tröltzsch, Anke
2015-01-01
In the recent years, the field of adiabatic quantum computing has gained importance due to the advances in the realisation of such machines, especially by the company D-Wave Systems. These machines are suited to solve discrete optimisation problems which are typically very hard to solve on a classical computer. Due to the quantum nature of the device it is assumed that there is a substantial speedup compared to classical HPC facilities. We explain the basic principles of adiabatic ...
Directory of Open Access Journals (Sweden)
Dave Bacon
2013-06-01
Full Text Available We describe a many-body quantum system that can be made to quantum compute by the adiabatic application of a large applied field to the system. Prior to the application of the field, quantum information is localized on one boundary of the device, and after the application of the field, this information propagates to the other side of the device, with a quantum circuit applied to the information. The applied circuit depends on the many-body Hamiltonian of the material, and the computation takes place in a degenerate ground space with symmetry-protected topological order. Such “adiabatic quantum transistors” are universal adiabatic quantum computing devices that have the added benefit of being modular. Here, we describe this model, provide arguments for why it is an efficient model of quantum computing, and examine these many-body systems in the presence of a noisy environment.
Hierarchical theory of quantum adiabatic evolution
International Nuclear Information System (INIS)
Zhang, Qi; Wu, Biao; Gong, Jiangbin
2014-01-01
Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau–Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory. (paper)
Ion Motion in the Adiabatic Focuser
International Nuclear Information System (INIS)
Henestroza, E.; Sessler, A.M.; Yu, S.S.
2006-01-01
In this paper we numerically study the effect of ion motion in an adiabatic focuser, motivated by a recent suggestion that ion motion in an adiabatic focuser might be significant and even preclude operation of the focuser as previously envisioned. It is shown that despite ion motion the adiabatic focuser should work as well as originally envisioned
Adiabatic temperature change from non-adiabatic measurements
Czech Academy of Sciences Publication Activity Database
Carvalho, A.M.G.; Mejía, C.S.; Ponte, C.A.; Silva, L.E.L.; Kaštil, Jiří; Kamarád, Jiří; Gomes, A.M.
2016-01-01
Roč. 122, č. 3 (2016), s. 1-5, č. článku 246. ISSN 0947-8396 Institutional support: RVO:68378271 Keywords : magnetocaloric effect * adiabatic temperature change * calorimetric device * gadolinium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016
Moment distributions of clusters and molecules in the adiabatic rotor model
Ballentine, G. E.; Bertsch, G. F.; Onishi, N.; Yabana, K.
2008-01-01
We present a Fortran program to compute the distribution of dipole moments of free particles for use in analyzing molecular beams experiments that measure moments by deflection in an inhomogeneous field. The theory is the same for magnetic and electric dipole moments, and is based on a thermal ensemble of classical particles that are free to rotate and that have moment vectors aligned along a principal axis of rotation. The theory has two parameters, the ratio of the magnetic (or electric) dipole energy to the thermal energy, and the ratio of moments of inertia of the rotor. Program summaryProgram title:AdiabaticRotor Catalogue identifier:ADZO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZO_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:479 No. of bytes in distributed program, including test data, etc.:4853 Distribution format:tar.gz Programming language:Fortran 90 Computer:Pentium-IV, Macintosh Power PC G4 Operating system:Linux, Mac OS X RAM:600 Kbytes Word size:64 bits Classification:2.3 Nature of problem:The system considered is a thermal ensemble of rotors having a magnetic or electric moment aligned along one of the principal axes. The ensemble is placed in an external field which is turned on adiabatically. The problem is to find the distribution of moments in the presence of the external field. Solution method:There are three adiabatic invariants. The only nontrivial one is the action associated with the polar angle of the rotor axis with respect to external field. It is found by Newton's method. Running time:3 min on a 3 GHz Pentium IV processor.
Piecewise adiabatic following in non-Hermitian cycling
Gong, Jiangbin; Wang, Qing-hai
2018-05-01
The time evolution of periodically driven non-Hermitian systems is in general nonunitary but can be stable. It is hence of considerable interest to examine the adiabatic following dynamics in periodically driven non-Hermitian systems. We show in this work the possibility of piecewise adiabatic following interrupted by hopping between instantaneous system eigenstates. This phenomenon is first observed in a computational model and then theoretically explained, using an exactly solvable model, in terms of the Stokes phenomenon. In the latter case, the piecewise adiabatic following is shown to be a genuine critical behavior and the precise phase boundary in the parameter space is located. Interestingly, the critical boundary for piecewise adiabatic following is found to be unrelated to the domain for exceptional points. To characterize the adiabatic following dynamics, we also advocate a simple definition of the Aharonov-Anandan (AA) phase for nonunitary cyclic dynamics, which always yields real AA phases. In the slow driving limit, the AA phase reduces to the Berry phase if adiabatic following persists throughout the driving without hopping, but oscillates violently and does not approach any limit in cases of piecewise adiabatic following. This work exposes the rich features of nonunitary dynamics in cases of slow cycling and should stimulate future applications of nonunitary dynamics.
Geometry of the Adiabatic Theorem
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Quantum adiabatic Markovian master equations
International Nuclear Information System (INIS)
Albash, Tameem; Zanardi, Paolo; Boixo, Sergio; Lidar, Daniel A
2012-01-01
We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state. (paper)
Adiabatic evolution of decoherence-free subspaces and its shortcuts
Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.
2017-10-01
The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.
Non-adiabatic perturbations in Ricci dark energy model
International Nuclear Information System (INIS)
Karwan, Khamphee; Thitapura, Thiti
2012-01-01
We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included
Symmetry of the Adiabatic Condition in the Piston Problem
Anacleto, Joaquim; Ferreira, J. M.
2011-01-01
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…
Energy consumption for shortcuts to adiabaticity
Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.
2017-08-01
Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.
Assessment of total efficiency in adiabatic engines
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
Adiabatic motion of charged dust grains in rotating magnetospheres
International Nuclear Information System (INIS)
Northrop, T.G.; Hill, J.R.
1983-01-01
Dust grains in the ring systems and rapidly rotating magnetospheres of the outer planets such as Jupiter and Saturn may be sufficiently charged that the magnetic and electric forces on them are comparable with the gravitational force. The adiabatic theory of charged particle motion has previously been applied to electrons and atomic size particles. But it is also applicable to these charged dust grains in the micrometer and smaller size range. We derive here the guiding center equation of motion, drift velocity, and parallel equation of motion for these grains in a rotating magnetosphere. The effects of periodic grain charge-discharge have not been treated previously and have been included in this analysis. Grain charge is affected by the surrounding plasma properties and by the grain plasma velocity (among other factors), both of which may vary over the gyrocircle. The resulting charge-discharge process at the gyrofrequency destroys the invariance of the magnetic moment and causes a grain to move radially. The magnetic moment may increase or decrease, depending on the gyrophase of the charge variation. If it decreases, the motion is always toward synchronous radius for an equatorial grain. But the orbit becomes circular before the grain reaches synchronous radius, a conclusion that follows from an exact constant of the motion. This circularization can be viewed as a consequence of the gradual reduction in the magnetic moment. This circularization also suggests that dust grains leaving Io could not reach the region of the Jovian ring, but several effects could change that conclusion. Excellent qualitative and quantitative agreement is obtained between adiabatic theory and detailed numerical orbit integrations
Accuracy versus run time in an adiabatic quantum search
International Nuclear Information System (INIS)
Rezakhani, A. T.; Pimachev, A. K.; Lidar, D. A.
2010-01-01
Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: The error decreases exponentially for short times and then decreases polynomially for longer times. We show that the well-known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.
Alinea, Allan L.; Kubota, Takahiro
2018-03-01
We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field inflation with varying speed of sound. The subtraction is performed within the framework of earlier study by Urakawa and Starobinsky dealing with the canonical inflation. Inspired by Fakir and Unruh's model on nonminimally coupled chaotic inflation, we find upon imposing near scale-invariant condition, that the subtraction term exponentially decays with the number of e -folds. As in the result for the canonical inflation, the regularized power spectrum tends to the "bare" power spectrum as the Universe expands during (and even after) inflation. This work justifies the use of the "bare" power spectrum in standard calculation in the most general context of slow-roll single-field inflation involving nonminimal coupling and varying speed of sound.
Spatial non-adiabatic passage using geometric phases
Energy Technology Data Exchange (ETDEWEB)
Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)
2017-12-15
Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)
Fast-forward of quantum adiabatic dynamics in electro-magnetic field
Masuda, Shumpei; Nakamura, Katsuhiro
2010-01-01
We show a method to accelerate quantum adiabatic dynamics of wavefunctions under electro-magnetic field by developing the previous theory (Masuda & Nakamura 2008 and 2010). Firstly we investigate the orbital dynamics of a charged particle. We derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states except for the spatially uniform phase such as the adiabatic phase in any desired short time. Fast-forward of adiabatic squeezing and tran...
Quantum theory of NMR adiabatic pulses and their applications
International Nuclear Information System (INIS)
Ke, Y.
1993-01-01
Recently explosive developments of in vivo NMR spectroscopy (NMRS) and imaging (NMRI) in biological and medical sciences have resulted in the establishment of NMR as one of the most advanced major technique in life sciences. These developments have created huge demands for a variety of NMR adiabatic pulses with play a very important role in NMR experiments in vivo. In order to develop new NMR adiabatic pulses, a rigorous systematical quantum theory for this kind of pulses is greatly needed. Providing such a theory is one of the important goals of this dissertation. Quantum density matrix theory and product operator method have been used throughout this dissertation. Another goal, which is the major goal of this thesis research, is to use the quantum theory as a guide to develop new NMR adiabatic pulses and their applications. To fill this goal, a technique to construct a new type of adiabatic pulses, narrow band selective adiabatic pulses, has been invented, which is described through the example of constructing an adiabatic DANTE inversion pulse. This new adiabatic pulse is the first narrow band selective adiabatic pulses: Adiabatic homonuclear and heteronuclear spectral editing sequences. Unique to the first pulse sequence is a B 1 -field filter which is built by using two non-refocusing adiabatic full passage pulses to refocus the wanted signal and dephase unwanted signals. This extra filter greatly enhance the editing efficiency. Unlike commonly used heteronuclear spectral editing sequences which depend on the polarization transfer or spectral subtraction by phase cycling techniques, the second pulse sequences accomplishes the editing of heteronuclear J-coupled signals based on the fact that this sequence is transparent to the uncoupled spins and is equivalent a 90 degrees excitation pulse to the heteronuclear J-coupled spins. Experimental results have confirmed the ability of spectral editing with these two new sequences
Adiabatic process reversibility: microscopic and macroscopic views
International Nuclear Information System (INIS)
Anacleto, Joaquim; Pereira, Mario G
2009-01-01
The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r≥1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values. (letters and comments)
Quantum entangling power of adiabatically connected Hamiltonians
International Nuclear Information System (INIS)
Hamma, Alioscia; Zanardi, Paolo
2004-01-01
The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate entanglement by moving through energy eigenstates corresponding to different values of the control parameters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for general dxd quantum systems, and specific two-qubit examples are studied
Invariance Signatures: Characterizing contours by their departures from invariance
Squire, David; Caelli, Terry M.
1997-01-01
In this paper, a new invariant feature of two-dimensional contours is reported: the Invariance Signature. The Invariance Signature is a measure of the degree to which a contour is invariant under a variety of transformations, derived from the theory of Lie transformation groups. It is shown that the Invariance Signature is itself invariant under shift, rotation and scaling of the contour. Since it is derived from local properties of the contour, it is well-suited to a neural network implement...
Adiabatic logic future trend and system level perspective
Teichmann, Philip
2012-01-01
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the p...
International Nuclear Information System (INIS)
Zelenyi, L.M.; Vogin, D.V.; Buechner, J.
1989-01-01
Two types of regularity exist for the particle motion in the two-dimensional magnetic field reversals (MFR) with the strongly curves magnetic field lines - the usual adiabatic and another one which we called 'quasiadiabatic'. Here we consider the acceleration of MFR particles in stationary and homogeneous electric field induced by the motion of MFR through the ambient plasma (i.e. solar wind). Assuming that the time scale of acceleration is slow in comparison with the period of orbital motion we introduce the new longitudinal invariant I κ . This enables to describe the process of acceleration in a closed form and to obtain for the first time the laws governing the quasiadiabatic ion acceleration in the Earth's mangetotail. The similarities and differences in adiabatic and quasiadiabatic acceleration mechanisms are discussed. The obtained results give and important insights to the problem of the particle heating in hte Earth's magnetotail and to the formation of accelerated plasma streams along the edges of the plasma sheet. (author). 17 refs.; 7 figs
Huang, Xiao-Bin; Chen, Ye-Hong; Wang, Zhe
2016-05-24
In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the "Lewis-Riesenfeld (LR) invariants" in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-resistant quantum information processing for multi-qubit systems.
Design of ternary clocked adiabatic static random access memory
International Nuclear Information System (INIS)
Wang Pengjun; Mei Fengna
2011-01-01
Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions. (semiconductor integrated circuits)
Design of ternary clocked adiabatic static random access memory
Pengjun, Wang; Fengna, Mei
2011-10-01
Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions.
Shortcuts to adiabaticity in cutting a spin chain
Energy Technology Data Exchange (ETDEWEB)
Ren, Feng-Hua [Department of Physics, Ocean University of China, Qingdao 266100 (China); School of Computer Engineering, Qingdao Technological University, Qingdao 266033 (China); Wang, Zhao-Ming, E-mail: mingmoon78@126.com [Department of Physics, Ocean University of China, Qingdao 266100 (China); Gu, Yong-Jian, E-mail: yjgu@ouc.edu.cn [Department of Physics, Ocean University of China, Qingdao 266100 (China)
2017-01-15
“Shortcuts to adiabaticity” represents a strategy for accelerating a quantum adiabatic process, is useful for preparing or manipulating a quantum state. In this paper, we investigate the adiabaticity in the dynamics of an XY spin chain. During the process of cutting one long chain into two short chains, a “shortcut” can be obtained by applying a sequence of external pulses. The fidelity which measures the adiabaticity can be dramatically enhanced by increasing the pulse strength or pulse duration time. This reliability can be kept for different types of pulses, such as random pulse time interval or random strength. The free choice of the pulse can be explained by the adiabatic representation of the Hamiltonian, and it shows that the control effects are determined by the integral of the control function in the time domain. - Highlights: • “Shortcuts to adiabaticity” is proposed by applying external pulses. • The adiabaticity can be accelerated by increasing pulse strength or duration time. • Control effects are determined by the integral of the control function with respect to time.
Generalized shortcuts to adiabaticity and enhanced robustness against decoherence
Santos, Alan C.; Sarandy, Marcelo S.
2018-01-01
Shortcuts to adiabaticity provide a general approach to mimic adiabatic quantum processes via arbitrarily fast evolutions in Hilbert space. For these counter-diabatic evolutions, higher speed comes at higher energy cost. Here, the counter-diabatic theory is employed as a minimal energy demanding scheme for speeding up adiabatic tasks. As a by-product, we show that this approach can be used to obtain infinite classes of transitionless models, including time-independent Hamiltonians under certain conditions over the eigenstates of the original Hamiltonian. We apply these results to investigate shortcuts to adiabaticity in decohering environments by introducing the requirement of a fixed energy resource. In this scenario, we show that generalized transitionless evolutions can be more robust against decoherence than their adiabatic counterparts. We illustrate this enhanced robustness both for the Landau-Zener model and for quantum gate Hamiltonians.
Quantum adiabatic approximation and the geometric phase
International Nuclear Information System (INIS)
Mostafazadeh, A.
1997-01-01
A precise definition of an adiabaticity parameter ν of a time-dependent Hamiltonian is proposed. A variation of the time-dependent perturbation theory is presented which yields a series expansion of the evolution operator U(τ)=summation scr(l) U (scr(l)) (τ) with U (scr(l)) (τ) being at least of the order ν scr(l) . In particular, U (0) (τ) corresponds to the adiabatic approximation and yields Berry close-quote s adiabatic phase. It is shown that this series expansion has nothing to do with the 1/τ expansion of U(τ). It is also shown that the nonadiabatic part of the evolution operator is generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. This suggests the introduction of an adiabatic product expansion for U(τ) which turns out to yield exact expressions for U(τ) for a large number of quantum systems. In particular, a simple application of the adiabatic product expansion is used to show that for the Hamiltonian describing the dynamics of a magnetic dipole in an arbitrarily changing magnetic field, there exists another Hamiltonian with the same eigenvectors for which the Schroedinger equation is exactly solvable. Some related issues concerning geometric phases and their physical significance are also discussed. copyright 1997 The American Physical Society
Adiabatic graph-state quantum computation
International Nuclear Information System (INIS)
Antonio, B; Anders, J; Markham, D
2014-01-01
Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)
Plasma heating by adiabatic compression
International Nuclear Information System (INIS)
Ellis, R.A. Jr.
1972-01-01
These two lectures will cover the following three topics: (i) The application of adiabatic compression to toroidal devices is reviewed. The special case of adiabatic compression in tokamaks is considered in more detail, including a discussion of the equilibrium, scaling laws, and heating effects. (ii) The ATC (Adiabatic Toroidal Compressor) device which was completed in May 1972, is described in detail. Compression of a tokamak plasma across a static toroidal field is studied in this device. The device is designed to produce a pre-compression plasma with a major radius of 17 cm, toroidal field of 20 kG, and current of 90 kA. The compression leads to a plasma with major radius of 38 cm and minor radius of 10 cm. Scaling laws imply a density increase of a factor 6, temperature increase of a factor 3, and current increase of a factor 2.4. An additional feature of ATC is that it is a large tokamak which operates without a copper shell. (iii) Data which show that the expected MHD behavior is largely observed is presented and discussed. (U.S.)
Magnus approximation in the adiabatic picture
International Nuclear Information System (INIS)
Klarsfeld, S.; Oteo, J.A.
1991-01-01
A simple approximate nonperturbative method is described for treating time-dependent problems that works well in the intermediate regime far from both the sudden and the adiabatic limits. The method consists of applying the Magnus expansion after transforming to the adiabatic basis defined by the eigenstates of the instantaneous Hamiltonian. A few exactly soluble examples are considered in order to assess the domain of validity of the approximation. (author) 32 refs., 4 figs
Semi adiabatic theory of seasonal Markov processes
Energy Technology Data Exchange (ETDEWEB)
Talkner, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.
Adiabatic quantum search algorithm for structured problems
International Nuclear Information System (INIS)
Roland, Jeremie; Cerf, Nicolas J.
2003-01-01
The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as Grover's algorithm. In this paper, we study how the structure of the search problem may be exploited to further improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a complexity that, although still exponential, grows with a reduced order in the problem size
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
Radjavi, Heydar
2003-01-01
This broad survey spans a wealth of studies on invariant subspaces, focusing on operators on separable Hilbert space. Largely self-contained, it requires only a working knowledge of measure theory, complex analysis, and elementary functional analysis. Subjects include normal operators, analytic functions of operators, shift operators, examples of invariant subspace lattices, compact operators, and the existence of invariant and hyperinvariant subspaces. Additional chapters cover certain results on von Neumann algebras, transitive operator algebras, algebras associated with invariant subspaces,
Measurement invariance versus selection invariance: Is fair selection possible?
Borsboom, D.; Romeijn, J.W.; Wicherts, J.M.
2008-01-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement
Measurement invariance versus selection invariance : Is fair selection possible?
Borsboom, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement
Are the reactions of quinones on graphite adiabatic?
International Nuclear Information System (INIS)
Luque, N.B.; Schmickler, W.
2013-01-01
Outer sphere electron transfer reactions on pure metal electrodes are often adiabatic and hence independent of the electrode material. Since it is not clear, whether adiabatic electron transfer can also occur on a semi-metal like graphite, we have re-investigated experimental data presented in a recent communication by Nissim et al. [Chemical Communications 48 (2012) 3294] on the reactions of quinones on graphite. We have supplemented their work by DFT calculations and conclude, that these reactions are indeed adiabatic. This contradicts the assertion of Nissim et al. that the rates are proportional to the density of states at the Fermi level
Improving the positive feedback adiabatic logic familiy
Directory of Open Access Journals (Sweden)
J. Fischer
2004-01-01
Full Text Available Positive Feedback Adiabatic Logic (PFAL shows the lowest energy dissipation among adiabatic logic families based on cross-coupled transistors, due to the reduction of both adiabatic and non-adiabatic losses. The dissipation primarily depends on the resistance of the charging path, which consists of a single p-channel MOSFET during the recovery phase. In this paper, a new logic family called Improved PFAL (IPFAL is proposed, where all n- and pchannel devices are swapped so that the charge can be recovered through an n-channel MOSFET. This allows to decrease the resistance of the charging path up to a factor of 2, and it enables a significant reduction of the energy dissipation. Simulations based on a 0.13µm CMOS process confirm the improvements in terms of power consumption over a large frequency range. However, the same simple design rule, which enables in PFAL an additional reduction of the dissipation by optimal transistor sizing, does not apply to IPFAL. Therefore, the influence of several sources of dissipation for a generic IPFAL gate is illustrated and discussed, in order to lower the power consumption and achieve better performance.
Adiabatic burst evaporation from bicontinuous nanoporous membranes
Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk
2015-01-01
Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406
Adiabatic compression of elongated field-reversed configurations
International Nuclear Information System (INIS)
Spencer, R.L.; Tuszewski, M.; Linford, R.K.
1983-01-01
The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas
Superconducting system for adiabatic quantum computing
Energy Technology Data Exchange (ETDEWEB)
Corato, V [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy); Roscilde, T [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (Canada); Ruggiero, B [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Granata, C [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy)
2006-06-01
We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results.
Albash, Tameem; Lidar, Daniel A.
2018-01-01
Adiabatic quantum computing (AQC) started as an approach to solving optimization problems and has evolved into an important universal alternative to the standard circuit model of quantum computing, with deep connections to both classical and quantum complexity theory and condensed matter physics. This review gives an account of the major theoretical developments in the field, while focusing on the closed-system setting. The review is organized around a series of topics that are essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments and limitations, and its scope in the more general setting of computational complexity theory. Several variants are presented of the adiabatic theorem, the cornerstone of AQC, and examples are given of explicit AQC algorithms that exhibit a quantum speedup. An overview of several proofs of the universality of AQC and related Hamiltonian quantum complexity theory is given. Considerable space is devoted to stoquastic AQC, the setting of most AQC work to date, where obstructions to success and their possible resolutions are discussed.
Adiabatic rotation, quantum search, and preparation of superposition states
International Nuclear Information System (INIS)
Siu, M. Stewart
2007-01-01
We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied 'straight line' adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev's toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm
Dependence of adiabatic population transfer on pulse profile
Indian Academy of Sciences (India)
Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends ...
International Nuclear Information System (INIS)
Buechner, J.M.
1989-01-01
For a number of problems in the Plasma Astrophysics it is necessary to know the laws, which govern the non adiabatic charged particle dynamics in strongly curves magnetic field reversals. These are, e.q., the kinetic theory of the microscopic and macroscopicstability of current sheets in collionless plasma, of microturbulence, causing anomalous resistivity and dissipating currents, the problem of spontaneous reconnection, the formation of non Maxwellian distribution functions, particle acceleration and the use of particles as a diagnostic tool ('tracers'). To find such laws we derived from the differential equations of motion discrete mappings. These mappings allow an investigation of the motion after the break down of the adiabaticity of the magnetic moment. (author). 32 refs.; 5 figs.; 1 tab
Recent developments in trapping and manipulation of atoms with adiabatic potentials
Garraway, Barry M.; Perrin, Hélène
2016-09-01
A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.
Muonic molecules as three-body Coulomb problem in adiabatic approximation
International Nuclear Information System (INIS)
Decker, M.
1994-04-01
The three-body Coulomb problem is treated within the framework of the hyperspherical adiabatic approach. The surface functions are expanded into Faddeev-type components in order to ensure the equivalent representation of all possible two-body contributions. It is shown that this decomposition reduces the numerical effort considerably. The remaining radial equations are solved both in the extreme and the uncoupled adiabatic approximation to determine the binding energies of the systems (dtμ) and (d 3 Heμ). Whereas the ground state is described very well in the uncoupled adiabatic approximation, the excited states should be treated within the coupled adiabatic approximation to obtain good agreement with variational calculations. (orig.)
Adiabatic compression of elongated field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Spencer, R.L.; Tuszewski, M.; Linford, R.K.
1983-06-01
The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.
Adiabatic Compression Sensitivity of AF-M315E
2015-07-01
Brand for their technical expertise and guidance. He also wishes to thank Mr. Stephen McKim from NASA Goddard Space Flight Center for his assistance...Wilson, D. B., and Stoltzfus, J. M. "Adiabatic Compression of Oxygen: Real Fluid Temperatures," 2000. 10Ismail, I. M. K., and Hawkins , T. W. "Adiabatic
Adiabatic and non-adiabatic electron oscillations in a static electric field
International Nuclear Information System (INIS)
Wahlberg, C.
1977-03-01
The influence of a static electric field on the oscillations of a one-dimensional stream of electrons is investigated. In the weak field limit the oscillations are adiabatic and mode coupling negligible, but becomes significant if the field is tronger. The latter effect is believed to be of importance for the stability of e.g. potential double layers
Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata
Toth, Geza; Lent, Craig S.
2000-01-01
Recent experiments have demonstrated a working cell suitable for implementing the Quantum-dot Cellular Automata (QCA) paradigm. These experiments have been performed using metal island clusters. The most promising approach to QCA operation involves quasi-adiabatically switching the cells. This has been analyzed extensively in gated semiconductor cells. Here we present a metal island cell structure that makes quasi-adiabatic switching possible. We show how this permits quasi-adiabatic clocking...
Non-adiabatic effect on Laughlin's argument of the quantum Hall effect
International Nuclear Information System (INIS)
Maruyama, I; Hatsugai, Y
2009-01-01
We have numerically studied a non-adiabatic charge transport in the quantum Hall system pumped by a magnetic flux, as one of the simplest theoretical realizations of non-adiabatic Thouless pumping. In the adiabatic limit, a pumped charge is quantized, known as Laughlin's argument in a cylindrical lattice. In a uniform electric field, we obtained a formula connecting quantized pumping in the adiabatic limit and no-pumping in the sudden limit. The intermediate region between the two limits is determined by the Landau gap. A randomness or impurity effect is also discussed.
Computational invariant theory
Derksen, Harm
2015-01-01
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be ...
Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders
2010-01-01
The thermodynamics of the magnetocaloric effect implies constraints on the allowed variation in the adiabatic temperature change for a magnetocaloric material. An inequality for the derivative of the adiabatic temperature change with respect to temperature is derived for both first- and second...
Energy Technology Data Exchange (ETDEWEB)
Olver, Peter J [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: olver@math.umn.edu
2008-08-29
Given a Lie group acting on a manifold, our aim is to analyze the evolution of differential invariants under invariant submanifold flows. The constructions are based on the equivariant method of moving frames and the induced invariant variational bicomplex. Applications to integrable soliton dynamics, and to the evolution of differential invariant signatures, used in equivalence problems and object recognition and symmetry detection in images, are discussed.
Experimental study on the adiabatic shear bands
International Nuclear Information System (INIS)
Affouard, J.
1984-07-01
Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr
Directory of Open Access Journals (Sweden)
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
Modeling non-adiabatic photoexcited reaction dynamics in condensed phases
International Nuclear Information System (INIS)
Coker, D.F.
2003-01-01
Reactions of photoexcited molecules, ions, and radicals in condensed phase environments involve non-adiabatic dynamics over coupled electronic surfaces. We focus on how local environmental symmetries can effect non-adiabatic coupling between excited electronic states and thus influence, in a possibly controllable way, the outcome of photo-excited reactions. Semi-classical and mixed quantum-classical non-adiabatic molecular dynamics methods, together with semi-empirical excited state potentials are used to probe the dynamical mixing of electronic states in different environments from molecular clusters, to simple liquids and solids, and photo-excited reactions in complex reaction environments such as zeolites
A design study of non-adiabatic electron guns
International Nuclear Information System (INIS)
Barroso, J.J.; Stellati, C.
1994-01-01
The design of a non-adiabatic gun capable of producing a 10 A, 50 KeV high-quality laminar electron beam is reported. In contrast to the magnetron injection gun with a conical cathode, where the beam is generated initially with a transverse velocity component, in the non-adiabatic gun electrons are extracted in a direction parallel to the axial guide magnetic field. The beam electrons acquire cyclotron motion as result of non-adiabatic processes in a strong non uniform electric field across the modulation anode. Such an extraction method gives rise to favourable features that are explored throughout the work. An extensive numerical simulation study has also been done to minimize velocity and energy spreads. (author). 3 refs, 5 figs, 1 tab
Adiabatic and isothermal resistivities
International Nuclear Information System (INIS)
Fishman, R.S.
1989-01-01
The force-balance method is used to calculate the isothermal resistivity to first order in the electric field. To lowest order in the impurity potential, the isothermal resistivity disagrees with the adiabatic results of the Kubo formula and the Boltzmann equation. However, an expansion of the isothermal resistivity in powers of the impurity potential is divergent, with two sets of divergent terms. The first set arises from the density matrix of the relative electron-phonon system. The second set arises from the explicit dependence of the density matrix on the electric field, which was ignored by force-balance calculations. These divergent contributions are calculated inductively, by applying a recursion relation for the Green's functions. Using the λ 2 t→∞ limit of van Hove, I show that the resummation of these divergent terms yields the same result for the resistivity as the adiabatic calculations, in direct analogy with the work of Argyres and Sigel, and Huberman and Chester
Teleportation of an Unknown Atomic State via Adiabatic Passage
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.
Nonadiabatic exchange dynamics during adiabatic frequency sweeps.
Barbara, Thomas M
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Estimation of the adiabatic energy limit versus beta in Baseball II
International Nuclear Information System (INIS)
Foote, J.H.
1976-01-01
Several estimates of the adiabatic energy limit versus beta in Baseball II are summarized, and the calculational methods used to obtain them are described. Some estimates are based on analytic expressions; for others, particle orbits are calculated, magnetic-moment jumps are inspected, and adiabatic limits then derived. The results are sensitive to the assumed variation of the combined vacuum-plus-plasma magnetic field. The calculated adiabatic energy limit falls rapidly with beta, even for a gradual magnetic-field variation. If we assume a sharp depression in the axial profile of the combined magnetic field for a finite-beta plasma, the adiabatic limit can be further markedly reduced
Adiabatic passage and ensemble control of quantum systems
International Nuclear Information System (INIS)
Leghtas, Z; Sarlette, A; Rouchon, P
2011-01-01
This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol-chirped pulse-practised by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude-shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with unknown coupling strengths. These adiabatic control protocols are illustrated by simulations on a four-level ladder.
Topological structures of adiabatic phase for multi-level quantum systems
International Nuclear Information System (INIS)
Liu Zhengxin; Zhou Xiaoting; Liu Xin; Liu Xiongjun; Chen Jingling
2007-01-01
The topological properties of adiabatic gauge fields for multi-level (three-level in particular) quantum systems are studied in detail. Similar to the result that the adiabatic gauge field for SU(2) systems (e.g. two-level quantum system or angular momentum systems, etc) has a monopole structure, the curvature 2-forms of the adiabatic holonomies for SU(3) three-level and SU(3) eight-level quantum systems are shown to have monopole-like (for all levels) or instanton-like (for the degenerate levels) structures
On Adiabatic Processes at the Elementary Particle Level
A, Michaud
2016-01-01
Analysis of adiabatic processes at the elementary particle level and of the manner in which they correlate with the principle of conservation of energy, the principle of least action and entropy. Analysis of the initial and irreversible adiabatic acceleration sequence of newly created elementary particles and its relation to these principles. Exploration of the consequences if this first initial acceleration sequence is not subject to the principle of conservation.
Interplay between electric and magnetic effect in adiabatic polaritonic systems
Alabastri, Alessandro; Toma, Andrea; Liberale, Carlo; Chirumamilla, Manohar; Giugni, Andrea; De Angelis, Francesco De; Das, Gobind; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo
2013-01-01
We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.
Adiabatic condition and the quantum hitting time of Markov chains
International Nuclear Information System (INIS)
Krovi, Hari; Ozols, Maris; Roland, Jeremie
2010-01-01
We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P ' where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP ' and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.
Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure
Jurčišinová, E.; Jurčišin, M.
2017-11-01
We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.
Collapse and equilibrium of rotating, adiabatic clouds
International Nuclear Information System (INIS)
Boss, A.P.
1980-01-01
A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
Energy Technology Data Exchange (ETDEWEB)
Wang, J. F.; Ma, Q. M.; Song, T.; Yuan, S. B. [Research Department of Biomedical Engineering, Institute of Electrical Engineering, Chinese Academy of Science, Beijing 100190 (China); Qin, G., E-mail: wangjunfang@mail.iee.ac.cn, E-mail: qingang@hit.edu.cn [School of Science, Harbin Institute of Technology, Shenzhen 518055 (China)
2017-08-20
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
International Nuclear Information System (INIS)
Wang, J. F.; Ma, Q. M.; Song, T.; Yuan, S. B.; Qin, G.
2017-01-01
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
Calculation of a hydrogen molecule in the adiabatic approximation
International Nuclear Information System (INIS)
Vukajlovich, F.R.; Mogilevskij, O.A.; Ponomarev, L.I.
1979-01-01
The adiabatic approximation js used for calculating the energy levels of a hydrogen molecule, i.e. of the simplest four-body system with a Coulomb interaction. The aim of this paper is the investigation of the possible use of the adiabatic method in the molecular problems. The most effective regions of its application are discussed. An infinite system of integro-differential equations is constructed, which describes the hydrogen molecule in the adiabatic approximation with the effective potentials taking into account the corrections to the nuclear motion. The energy of the first three vibrational states of the hydrogen molecule is calculated and compared with the experimental data. The convergence of the method is discussed
Energy Technology Data Exchange (ETDEWEB)
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M., E-mail: champ@neu.edu [Department of Physics and Center for Interdisciplinary Research on Complex Systems,Northeastern University, Boston, Massachusetts 02115 (United States)
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working
Invariant and Absolute Invariant Means of Double Sequences
Directory of Open Access Journals (Sweden)
Abdullah Alotaibi
2012-01-01
Full Text Available We examine some properties of the invariant mean, define the concepts of strong σ-convergence and absolute σ-convergence for double sequences, and determine the associated sublinear functionals. We also define the absolute invariant mean through which the space of absolutely σ-convergent double sequences is characterized.
Narrow-line laser cooling by adiabatic transfer
Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.
2018-02-01
We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.
Adiabatic approximation with exponential accuracy for many-body systems and quantum computation
International Nuclear Information System (INIS)
Lidar, Daniel A.; Rezakhani, Ali T.; Hamma, Alioscia
2009-01-01
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. Assuming that the Hamiltonian is analytic in a finite strip around the real-time axis, that some number of its time derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is nondegenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time derivative of the Hamiltonian divided by the cube of the minimal gap.
Landahl, Andrew
2012-10-01
Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with
Pulsed adiabatic structure and complete population transfer
International Nuclear Information System (INIS)
Shore, B.W.
1992-10-01
Population can be transferred between atomic or molecular energy states in a variety of ways. The basic idea of adiabatic transfer, discussed in many textbooks, is as follows. One begins with an atom that is in some single energy state (an eigenstate of an initial Hamiltonian). This energy state is one of many possible states, known variously as the unperturbed states or basis states or diabatic states. Next one begins to change the Hamiltonian very slowly. The changes may occur in either the diagonal elements (the basis state energies) or in the off-diagonal elements (interactions between basis states). If there are off-diagonal elements then the Hamiltonian will no longer commute with the original one. Because the Hamiltonian is no longer the one that was used to define the original basis states, it will cause these states to become mixed. However, if the change is sufficiently slow, the system can remain in a single eigenstate of the changing Hamiltonian -- an adiabatic state, composed of a combination of basis states. Finally, at some later time, one examines the system once again in the original basis. One finds that the population has undergone a change, and now resides in a different unperturbed state. One has produced population transfer. There are many illustrative examples of adiabatic passage, both theory and experiment. The author mentions briefly two common examples, inelastic collisions between atoms, and the static Stark effect in Rydberg atoms, before continuing with the main objective, a discussion of adiabatic passage induced by laser pulses
Interpolation approach to Hamiltonian-varying quantum systems and the adiabatic theorem
International Nuclear Information System (INIS)
Pan, Yu; James, Matthew R.; Miao, Zibo; Amini, Nina H.; Ugrinovskii, Valery
2015-01-01
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure resembles the excitation energy or excess work performed in thermodynamics, which can be taken as the error of adiabatic approximation. We prove that under certain conditions, this error can be estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not linearly proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example in which the applicability of the adiabatic theorem is questionable. (orig.)
Non-adiabatic generator-coordinate calculation of H2+
International Nuclear Information System (INIS)
Tostes, J.G.R.; Para Univ., Belem; Toledo Piza, A.F.R. de
1982-10-01
A non-adiabatic calculation of the few lowest J=O states in the H 2+ molecule done within the framework of the Generator Coordinate Method is reported. Substantial accuracy is achivied with the diagonalization of matrices of very modest dimensions. The resulting wavefunctions are strongly dominated by just a few basis states. The computational scheme is set up so as to take the best advantage of good analytical approximations to existing adiabatic molecular wavefunctions. (Author) [pt
Adiabatic supernova expansion into the circumstellar medium
International Nuclear Information System (INIS)
Band, D.L.; Liang, E.P.
1987-01-01
We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs
Dzyaloshinskii-Moriya interactions and adiabatic magnetization dynamics in molecular magnets
De Raedt, H; Miyashita, S; Michielsen, K; Machida, M
A microscopic model of the molecular magnet V-15 is used to study mechanisms for the adiabatic change of the magnetization in time-dependent magnetic fields. The effects of the Dzyaloshinskii-Moriya interaction, the most plausible source for the energy-level repulsions that lead to adiabatic changes
Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians
Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan
2018-02-01
Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.
Dynamic and Thermodynamic Properties of a CA Engine with Non-Instantaneous Adiabats
Directory of Open Access Journals (Sweden)
Ricardo T. Paéz-Hernández
2017-11-01
Full Text Available This paper presents an analysis of a Curzon and Alhborn thermal engine model where both internal irreversibilities and non-instantaneous adiabatic branches are considered, operating with maximum ecological function and maximum power output regimes. Its thermodynamic properties are shown, and an analysis of its local dynamic stability is performed. The results derived are compared throughout the work with the results obtained previously for a case in which the adiabatic branches were assumed as instantaneous. The results indicate a better performance for thermodynamic properties in the model with instantaneous adiabatic branches, whereas there is an improvement in robustness in the case where non-instantaneous adiabatic branches are considered.
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Invariant and semi-invariant probabilistic normed spaces
Energy Technology Data Exchange (ETDEWEB)
Ghaemi, M.B. [School of Mathematics Iran, University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)], E-mail: mghaemi@iust.ac.ir; Lafuerza-Guillen, B. [Departamento de Estadistica y Matematica Aplicada, Universidad de Almeria, Almeria E-04120 (Spain)], E-mail: blafuerz@ual.es; Saiedinezhad, S. [School of Mathematics Iran, University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)], E-mail: ssaiedinezhad@yahoo.com
2009-10-15
Probabilistic metric spaces were introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger . We introduce the concept of semi-invariance among the PN spaces. In this paper we will find a sufficient condition for some PN spaces to be semi-invariant. We will show that PN spaces are normal spaces. Urysohn's lemma, and Tietze extension theorem for them are proved.
Probing Entanglement in Adiabatic Quantum Optimization with Trapped Ions
Directory of Open Access Journals (Sweden)
Philipp eHauke
2015-04-01
Full Text Available Adiabatic quantum optimization has been proposed as a route to solve NP-complete problems, with a possible quantum speedup compared to classical algorithms. However, the precise role of quantum effects, such as entanglement, in these optimization protocols is still unclear. We propose a setup of cold trapped ions that allows one to quantitatively characterize, in a controlled experiment, the interplay of entanglement, decoherence, and non-adiabaticity in adiabatic quantum optimization. We show that, in this way, a broad class of NP-complete problems becomes accessible for quantum simulations, including the knapsack problem, number partitioning, and instances of the max-cut problem. Moreover, a general theoretical study reveals correlations of the success probability with entanglement at the end of the protocol. From exact numerical simulations for small systems and linear ramps, however, we find no substantial correlations with the entanglement during the optimization. For the final state, we derive analytically a universal upper bound for the success probability as a function of entanglement, which can be measured in experiment. The proposed trapped-ion setups and the presented study of entanglement address pertinent questions of adiabatic quantum optimization, which may be of general interest across experimental platforms.
A note on the geometric phase in adiabatic approximation
International Nuclear Information System (INIS)
Tong, D.M.; Singh, K.; Kwek, L.C.; Fan, X.J.; Oh, C.H.
2005-01-01
The adiabatic theorem shows that the instantaneous eigenstate is a good approximation of the exact solution for a quantum system in adiabatic evolution. One may therefore expect that the geometric phase calculated by using the eigenstate should be also a good approximation of exact geometric phase. However, we find that the former phase may differ appreciably from the latter if the evolution time is large enough
An Adiabatic Phase-Matching Accelerator
Energy Technology Data Exchange (ETDEWEB)
Lemery, Francois [DESY; Floettmann, Klaus [DESY; Piot, Philippe [Northern Illinois U.; Kaertner, Franz X. [Hamburg U.; Assmann, Ralph [DESY
2017-12-22
We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that a $\\sim 200$-keV electron beam can be accelerated to an energy of $\\sim10$~MeV over $\\sim 10$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.
Rotationally invariant correlation filtering
International Nuclear Information System (INIS)
Schils, G.F.; Sweeney, D.W.
1985-01-01
A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired
Adiabatic transfer of energy fluctuations between membranes inside an optical cavity
Garg, Devender; Chauhan, Anil K.; Biswas, Asoka
2017-08-01
A scheme is presented for the adiabatic transfer of average fluctuations in the phonon number between two membranes in an optical cavity. We show that by driving the cavity modes with external time-delayed pulses, one can obtain an effect analogous to stimulated Raman adiabatic passage in the atomic systems. The adiabatic transfer of fluctuations from one membrane to the other is attained through a "dark" mode, which is robust against decay of the mediating cavity mode. The results are supported with analytical and numerical calculations with experimentally feasible parameters.
Convergence of hyperspherical adiabatic expansion for helium-like systems
International Nuclear Information System (INIS)
Abrashkevich, A.G.; Abrashkevich, D.G.; Pojda, V.Yu.; Vinitskij, S.I.; Kaschiev, M.S.; Puzynin, I.V.
1988-01-01
The convergence of hyperspherical adiabatic expansion has been studied numerically. The spectral problems arising after separation of variables are solved by the finite-difference and finite element methods. The energies of the ground and some doubly excited staes of a hydrogen ion are calculated in the six-channel approximation within the 10 -4 a.u. accuracy. Obtained results demonstrate a rapid convergence of the hyperspherical adiabatic expansion. 14 refs.; 5 tabs
Properties of invariant modelling and invariant glueing of vector fields
International Nuclear Information System (INIS)
Petukhov, V.R.
1987-01-01
Invariant modelling and invariant glueing of both continuous (rates and accelerations) and descrete vector fields, gradient and divergence cases are considered. The following appendices are discussed: vector fields in crystals, crystal disclinations, topological charges and their fields
Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.
Sobel, Michael I.
1980-01-01
Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Predicting the effect of relaxation during frequency-selective adiabatic pulses
Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus
2017-11-01
Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.
Remarks on the E-invariant and the Casson invariant
International Nuclear Information System (INIS)
Seade, J.
1991-08-01
In this work a framed manifold means a pair (M,F) consisting of a closed C ∞ , stably parallelizable manifold M, together with a trivialization F of its stable tangent bundle. The purpose of this work is to understand and determine in higher dimensions the invariant h(M,F) appearing in connection with the Adams e-invariants. 28 refs
Trapped Ion Quantum Computation by Adiabatic Passage
International Nuclear Information System (INIS)
Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.
2008-01-01
We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Invariants of generalized Lie algebras
International Nuclear Information System (INIS)
Agrawala, V.K.
1981-01-01
Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants
ADIABATIC HEATING OF CONTRACTING TURBULENT FLUIDS
International Nuclear Information System (INIS)
Robertson, Brant; Goldreich, Peter
2012-01-01
Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases 'adiabatically heat', experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.
Adiabatic perturbation theory in quantum dynamics
Teufel, Stefan
2003-01-01
Separation of scales plays a fundamental role in the understanding of the dynamical behaviour of complex systems in physics and other natural sciences. A prominent example is the Born-Oppenheimer approximation in molecular dynamics. This book focuses on a recent approach to adiabatic perturbation theory, which emphasizes the role of effective equations of motion and the separation of the adiabatic limit from the semiclassical limit. A detailed introduction gives an overview of the subject and makes the later chapters accessible also to readers less familiar with the material. Although the general mathematical theory based on pseudodifferential calculus is presented in detail, there is an emphasis on concrete and relevant examples from physics. Applications range from molecular dynamics to the dynamics of electrons in a crystal and from the quantum mechanics of partially confined systems to Dirac particles and nonrelativistic QED.
Random matrix model of adiabatic quantum computing
International Nuclear Information System (INIS)
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-01-01
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size
Compact beam splitters in coupled waveguides using shortcuts to adiabaticity
Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen
2018-04-01
There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.
Adiabatic Expansion of Electron Gas in a Magnetic Nozzle
Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira
2018-01-01
A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.
On density of the Vassiliev invariants
DEFF Research Database (Denmark)
Røgen, Peter
1999-01-01
The main result is that the Vassiliev invariants are dense in the set of numeric knot invariants if and only if they separate knots.Keywords: Knots, Vassiliev invariants, separation, density, torus knots......The main result is that the Vassiliev invariants are dense in the set of numeric knot invariants if and only if they separate knots.Keywords: Knots, Vassiliev invariants, separation, density, torus knots...
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
International Nuclear Information System (INIS)
Anglin, J.R.; Schmiedmayer, J.
2004-01-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r 3 singularity which is an artifact of the adiabatic approximation
Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field
Directory of Open Access Journals (Sweden)
T. J. Barton
2012-12-01
Full Text Available Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K. R. Samokhvalova, J. Zhou, and C. Chen, Phys. Plasmas 14, 103102 (2007PHPAEN1070-664X10.1063/1.2779281; J. Zhou, K. R. Samokhvalova, and C. Chen, Phys. Plasmas 15, 023102 (2008PHPAEN1070-664X10.1063/1.2837891]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.
Connection between optimal control theory and adiabatic-passage techniques in quantum systems
Assémat, E.; Sugny, D.
2012-08-01
This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.
Cohomological invariants in Galois cohomology
Garibaldi, Skip; Serre, Jean Pierre
2003-01-01
This volume is concerned with algebraic invariants, such as the Stiefel-Whitney classes of quadratic forms (with values in Galois cohomology mod 2) and the trace form of �tale algebras (with values in the Witt ring). The invariants are analogues for Galois cohomology of the characteristic classes of topology. Historically, one of the first examples of cohomological invariants of the type considered here was the Hasse-Witt invariant of quadratic forms. The first part classifies such invariants in several cases. A principal tool is the notion of versal torsor, which is an analogue of the universal bundle in topology. The second part gives Rost's determination of the invariants of G-torsors with values in H^3(\\mathbb{Q}/\\mathbb{Z}(2)), when G is a semisimple, simply connected, linear group. This part gives detailed proofs of the existence and basic properties of the Rost invariant. This is the first time that most of this material appears in print.
Perturbative treatment of possible failures in the adiabatic theorem
International Nuclear Information System (INIS)
Vertesi, T.; Englman, R.
2005-01-01
Complete text of publication follows. The adiabatic theorem (AT) is one of the oldest and basic results in quantum physics, and has been in widespread use ever since. The theorem concerns the evolution of systems subject to slowly varying Hamiltonians. Roughly, its content is that a system prepared in an instantaneous eigenstate of a time-dependent Hamiltonian H(t) will remain close to an instantaneous eigenstate at later times, provided the Hamiltonian changes sufficiently slowly. The role of the AT in the study of slowly varying quantum mechanical systems spans a vast array of fields and applications. In a recent application the adiabatic geometric phases have been proposed to perform various quantum computational tasks on a naturally fault-tolerant way. Additional interest has arisen in adiabatic processes in connection with the concept of adiabatic quantum computing, where the solution to a problem is encoded in the (unknown) ground state of a (known) Hamiltonian. The evolution of the quantum state is governed by a time-dependent Hamiltonian H(t), starting with an initial Hamiltonian H i with a known ground state and slowly (adiabatically) evolving to the final Hamiltonian H f with the unknown ground state, e.g., H(t) = (1 - t/T )H i + (t/T )H f , (1) where 0 ≤ t/T ≤ 1 and T controls the rate at which H(t) varies. Since the ground state of the system is very robust against external perturbations and decoherence, this scheme offers many advantages compared to the conventional quantum circuit model of quantum computation. The achievable speed-up of adiabatic quantum algorithms (compared to classical methods) depends on the value of the run-time T. The standard AT yields a general criterion to estimate the necessary run-time T, however recently Marzlin and Sanders have claimed that an inconsistency does exist for a particular class of Hamiltonians, so that the condition for the estimate of T may do not hold. Marzlin and Sanders start with a time
Cosmological disformal invariance
Energy Technology Data Exchange (ETDEWEB)
Domènech, Guillem; Sasaki, Misao [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Naruko, Atsushi, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)
2015-10-01
The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.
Donaldson invariants in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)
Moment invariants for particle beams
International Nuclear Information System (INIS)
Lysenko, W.P.; Overley, M.S.
1988-01-01
The rms emittance is a certain function of second moments in 2-D phase space. It is preserved for linear uncoupled (1-D) motion. In this paper, the authors present new functions of moments that are invariants for coupled motion. These invariants were computed symbolically using a computer algebra system. Possible applications for these invariants are discussed. Also, approximate moment invariants for nonlinear motion are presented
Adiabatic analysis of collisions. III. Remarks on the spin model
International Nuclear Information System (INIS)
Fano, U.
1979-01-01
Analysis of a spin-rotation model illustrates how transitions between adiabatic channel states stem from the second, rather than from the first, rate of change of these states, provided that appropriate identification of channels and scaling of the independent variable are used. These remarks, like the earlier development of a post-adiabatic approach, aim at elucidating the surprising success of approximate separation of variables in the treatment of complex mechanical systems
Non-Adiabatic Molecular Dynamics Methods for Materials Discovery
Energy Technology Data Exchange (ETDEWEB)
Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)
2017-04-04
The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.
Geometry of quantal adiabatic evolution driven by a non-Hermitian Hamiltonian
International Nuclear Information System (INIS)
Wu Zhaoyan; Yu Ting; Zhou Hongwei
1994-01-01
It is shown by using a counter example, which is exactly solvable, that the quantal adiabatic theorem does not generally hold for a non-Hermitian driving Hamiltonian, even if it varies extremely slowly. The condition for the quantal adiabatic theorem to hold for non-Hermitian driving Hamiltonians is given. The adiabatic evolutions driven by a non-Hermitian Hamiltonian provide examples of a new geometric structure, that is the vector bundle in which the inner product of two parallelly transported vectors generally changes. A new geometric concept, the attenuation tensor, is naturally introduced to describe the decay or flourish of the open quantum system. It is constructed in terms of the spectral projector of the Hamiltonian. (orig.)
Feedback-Driven Dynamic Invariant Discovery
Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz
2014-01-01
Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.
Adiabatic flame temperature of sodium combustion and sodium-water reaction
International Nuclear Information System (INIS)
Okano, Y.; Yamaguchi, A.
2001-01-01
In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar
Adiabatic Theorem for Quantum Spin Systems
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Relating measurement invariance, cross-level invariance, and multilevel reliability
Jak, S.; Jorgensen, T.D.
2017-01-01
Data often have a nested, multilevel structure, for example when data are collected from children in classrooms. This kind of data complicate the evaluation of reliability and measurement invariance, because several properties can be evaluated at both the individual level and the cluster level, as well as across levels. For example, cross-level invariance implies equal factor loadings across levels, which is needed to give latent variables at the two levels a similar interpretation. Reliabili...
Adiabatic compression of elongated field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Spencer, R.L.; Tuszewski, M.; Linford, R.K.
1982-01-01
The simplest model of plasma dynamics is the adiabatic model. In this model the plasma is assumed to be in MHD equilibrium at each instant of time. The equilibria are connected by the requirement that they all have the same entropy per unit flux, i.e., the equilibria form a sequence generated by adiabatic changes. The standard way of computing such a sequence of equilibria was developed by Grad, but its practical use requires a fairly complicated code. It would be helpful if approximately the same results could be gotten either with a much simpler code or by analytical techniques. In Sec. II a one-dimensional equilibrium code is described and its results are checked against a two-dimensional equilibrium code; in Sec. III an even simpler analytic calculation is presented.
RFDR with Adiabatic Inversion Pulses: Application to Internuclear Distance Measurements
International Nuclear Information System (INIS)
Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai
2004-01-01
In the context of the structural characterisation of biomolecular systems via MAS solid state NMR, the potential utility of homonuclear dipolar recoupling with adiabatic inversion pulses has been assessed via numerical simulations and experimental measurements. The results obtained suggest that it is possible to obtain reliable estimates of internuclear distances via an analysis of the initial cross-peak intensity buildup curves generated from two-dimensional adiabatic inversion pulse driven longitudinal magnetisation exchange experiments
Foliated vector fields, the Godbillon-Vey invariant and the invariant I(F)
International Nuclear Information System (INIS)
Banyaga, A.; Landa, Alain Musesa
2004-03-01
We prove that if the invariant I(F) constructed in 'An invariant of contact structures and transversally oriented foliations', Ann. Global Analysis and Geom. 14(1996) 427-441 (A. Banyaga), through the Lie algebra of infinitesimal automorphisms of transversally oriented foliations F is trivial, then the Godbillon-Vey invariant GV (F) of F is also trivial, but that the converse is not true. For codimension one foliations, the restrictions I τ , (F) of I(F) to the Lie subalgebra of vector fields tangent to the leaves is the Reeb class R(F) of F. We also prove that if there exists a foliated vector field which is everywhere transverse to a codimension one foliation, then the Reeb class R(F) is trivial, hence so is the GV(F) invariant. (author)
International Nuclear Information System (INIS)
Moriyasu, K.
1978-01-01
A pedagogical approach to gauge invariance is presented which is based on the analogy between gauge transformations and relativity. By using the concept of an internal space, purely geometrical arguments are used to teach the physical ideas behind gauge invariance. Many of the results are applicable to general gauge theories
International Nuclear Information System (INIS)
Abrashkevich, A.G.; Puzynin, I.V.; Vinitskij, S.I.
1997-01-01
A FORTRAN 77 program is presented which calculates asymptotics of potential curves and adiabatic potentials with an accuracy of O(ρ -2 ) in the framework of the hyperspherical adiabatic (HSA) approach. It is shown that matrix elements of the equivalent operator corresponding to the perturbation ρ -2 have a simple form in the basis of the Coulomb parabolic functions in the body-fixed frame and can be easily computed for high values of total orbital momentum and threshold number. The second-order corrections to the adiabatic curves are obtained as the solutions of the corresponding secular equation. The asymptotic potentials obtained can be used for the calculation of the energy levels and radial wave functions of two-electron systems in the adiabatic and coupled-channel approximations of the HSA approach
Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation
Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.
2018-02-01
We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.
Post-adiabatic analysis of atomic collisions
International Nuclear Information System (INIS)
Klar, H.; Fano, U.
1976-01-01
The coupling between adiabatic channels can be partially transformed away. The transformation need not induce any transition between channnels; but it correlates the radial wave functions and their gradients with the channel functions and it depresses the lower effective potentials, as the energy increases, in accordance with empirical evidence
International Nuclear Information System (INIS)
Yang, Y.; Tan, G.Y.; Chen, P.X.; Zhang, Q.M.
2012-01-01
The adiabatic shear susceptibility of 2195 aluminum–lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress–true strain curves and true stress–time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum–lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.
Energy Technology Data Exchange (ETDEWEB)
Yang, Y. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China); Tan, G.Y., E-mail: yangyanggroup@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Chen, P.X. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Q.M. [State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China)
2012-06-01
The adiabatic shear susceptibility of 2195 aluminum-lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress-true strain curves and true stress-time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum-lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.
Link invariants from finite Coxeter racks
Nelson, Sam; Wieghard, Ryan
2008-01-01
We study Coxeter racks over $\\mathbb{Z}_n$ and the knot and link invariants they define. We exploit the module structure of these racks to enhance the rack counting invariants and give examples showing that these enhanced invariants are stronger than the unenhanced rack counting invariants.
International Nuclear Information System (INIS)
Kanungo, Jitendra; Dasgupta, S.
2014-01-01
We analyze the energy performance of a complete adiabatic circuit/system including the Power Clock Generator (PCG) at the 90 nm CMOS technology node. The energy performance in terms of the conversion efficiency of the PCG is extensively carried out under the variations of supply voltage, process corner and the driver transistor's width. We propose an energy-efficient singe cycle control circuit based on the two-stage comparator for the synchronous charge recovery sinusoidal power clock generator (PCG). The proposed PCG is used to drive the 4-bit adiabatic Ripple Carry Adder (RCA) and their simulation results are compared with the adiabatic RCA driven by the reported PCG. We have also simulated the logically equivalent static CMOS RCA circuit to compare the energy saving of adiabatic and non-adiabatic logic circuits. In the clock frequency range from 25 MHz to 1GHz, the proposed PCG gives a maximum conversion efficiency of 56.48%. This research work shows how the design of an efficient PCG increases the energy saving of adiabatic logic. (semiconductor integrated circuits)
Motion of Charged Particles near Magnetic Field Discontinuities
International Nuclear Information System (INIS)
Dodin, I.Y.; Fisch, N.J.
2000-01-01
The motion of charged particles in slowly changing magnetic fields exhibits adiabatic invariance even in the presence of abrupt magnetic discontinuities. Particles near discontinuities in magnetic fields, what we call ''boundary particles'', are constrained to remain near an arbitrarily fractured boundary even as the particle drifts along the discontinuity. A new adiabatic invariant applies to the motion of these particles
DEFF Research Database (Denmark)
Hjorth, Poul G.
2008-01-01
We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...... actions. The phenomenon is illustrated, and calculations of the small change of the adiabatic invariant is outlined....
Thermal reservoir sizing for adiabatic compressed air energy storage
Energy Technology Data Exchange (ETDEWEB)
Kere, Amelie; Goetz, Vincent; Py, Xavier; Olives, Regis; Sadiki, Najim [Perpignan Univ. (France). PROMES CNRS UPR 8521; Mercier-Allart, Eric [EDF R et D, Chatou (France)
2012-07-01
Despite the operation of the two existing industrial facilities to McIntosh (Alabama), and for more than thirty years, Huntorf (Germany), electricity storage in the form of compressed air in underground cavern (CAES) has not seen the development that was expected in the 80s. The efficiency of this form of storage was with the first generation CAES, less than 50%. The evolving context technique can significantly alter this situation. The new generation so-called Adiabatic CAES (A-CAES) is to retrieve the heat produced by the compression via thermal storage, thus eliminating the necessity of gas to burn and would allow consideration efficiency overall energy of the order of 70%. To date, there is no existing installation of A-CAES. Many studies describe the principal and the general working mode of storage systems by adiabatic compression of air. So, efficiencies of different configurations of adiabatic compression process were analyzed. The aim of this paper is to simulate and analyze the performances of a thermal storage reservoir integrated in the system and adapted to the working conditions of a CAES.
Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations
International Nuclear Information System (INIS)
Hartmann, Niklas; Vöhringer, O.; Kruck, C.; Eltrop, L.
2012-01-01
Highlights: ► We modeled several configurations of an adiabatic Compressed Air Energy Storage (CAES) plant. ► We analyzed changes in efficiency of these configurations under varying operating conditions. ► The efficiency of the adiabatic CAES plant can reach about 70% for the isentropic configuration. ► In the polytropic case, the efficiency is about 10% lower (at about 60%) than in the isentropic configuration. ► The efficiency is highest for a two-stage CAES configuration and highly dependent on the cooling and heating demand. - Abstract: In this paper, the efficiency of one full charging and discharging cycle of several adiabatic Compressed Air Energy Storage (CAES) configurations are analyzed with the help of an energy balance. In the second step main driving factors for the efficiency of the CAES configurations are examined with the help of sensitivity analysis. The results show that the efficiency of the polytropic configuration is about 60%, which is considerable lower than literature values of an adiabatic CAES of about 70%. The high value of 70% is only reached for the isentropic (ideal) configuration. Key element to improve the efficiency is to develop high temperature thermal storages (>600 °C) and temperature resistant materials for compressors. The highest efficiency is delivered by the two-stage adiabatic CAES configuration. In this case the efficiency varies between 52% and 62%, depending on the cooling and heating demand. If the cooling is achieved by natural sources (such as a river), a realistic estimation of the efficiency of adiabatic Compressed Air Energy Storages (without any greenhouse gas emissions due to fuel consumption) is about 60%.
Rotation Invariance Neural Network
Li, Shiyuan
2017-01-01
Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...
Adiabatic translation factors in slow ion-atom collisions
International Nuclear Information System (INIS)
Vaaben, J.; Taulbjerg, K.
1981-01-01
The general properties of translation factors in slow atomic collisions are discussed. It is emphasised that an acceptable form of translation factors must be conceptually consistent with the basic underlying assumption of the molecular model; i.e. translation factors must relax adiabatically at intermediate and small internuclear separations. A simple physical argument is applied to derive a general parameter-free expression for the translation factor pertinent to an electron in a two-centre Coulomb field. Within the present approach the adiabatic translation factor is considered to be a property of the two-centre field independently of the molecular state under consideration. The generalisation to many-electron systems is therefore readily made. (author)
Optimal control of the power adiabatic stroke of an optomechanical heat engine.
Bathaee, M; Bahrampour, A R
2016-08-01
We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained.
Lorentz invariance with an invariant energy scale.
Magueijo, João; Smolin, Lee
2002-05-13
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.
Quantum trajectories for time-dependent adiabatic master equations
Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.
2018-02-01
We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.
Adiabatic theory of ionization of atoms by intense laser pulses
International Nuclear Information System (INIS)
Tolstikhin, Oleg I; Morishita, Toru; Watanabe, Shinichi
2009-01-01
As a first step towards the adiabatic theory of ionization of atoms by intense laser pulses, here we consider the simplest one-dimensional zero-range potential model. The asymptotic solution to the time-dependent Schroedinger equation in the adiabatic regime is obtained and the photoelectron spectrum is calculated. The factorization formula for the photoelectron spectrum in the back-rescattering region, first suggested by Morishita et al. [Phys. Rev. Lett. 100, 013903 (2008)] on the basis of ab initio calculations, is derived analytically.
On the adiabatic theorem when eigenvalues dive into the continuum
DEFF Research Database (Denmark)
Cornean, Decebal Horia; Jensen, Arne; Knörr, Hans Konrad
2018-01-01
We consider a reduced two-channel model of an atom consisting of a quantum dot coupled to an open scattering channel described by a three-dimensional Laplacian. We are interested in the survival probability of a bound state when the dot energy varies smoothly and adiabatically in time. The initial...... in the adiabatic limit. At the end of the paper, we present a short outlook on how our method may be extended to cover other classes of Hamiltonians; details will be given elsewhere....
The Dynamical Invariant of Open Quantum System
Wu, S. L.; Zhang, X. Y.; Yi, X. X.
2015-01-01
The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...
Synthesizing Modular Invariants for Synchronous Code
Directory of Open Access Journals (Sweden)
Pierre-Loic Garoche
2014-12-01
Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.
Development of a model for dimethyl ether non-adiabatic reactors to improve methanol conversion
Energy Technology Data Exchange (ETDEWEB)
Nasrollahi, Fatemeh [University of Tehran, Tehran (Iran, Islamic Republic of); Bakeri, Gholamreza; Rahimnejad, Mostafa [Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of); Ismail, Ahmad Fauzi [Universiti Teknologi Malaysia, Skudai (Malaysia); Imanian, Mahdi [Mohajer Technical University, Isfahan (Iran, Islamic Republic of)
2013-10-15
The modeling of adiabatic and non-adiabatic reactors, using three cooling mediums in the shell side of a shell and tube reactor in cocurrent and countercurrent flow regimes has been conducted. The cooling mediums used in this research are saturated water and methanol feed gas to a reactor which is preheated in the shell side and a special type of oil. The results of adiabatic reactor modeling show good compatibility with the data received from a commercial plant. The results of non-adiabatic reactor modeling showed that more methanol conversion can be achieved in a lower length of reactor, even though in some cases the maximum temperature in the tube side of the reactor is more than the deactivation temperature of the catalyst.
Hidden scale invariance of metals
DEFF Research Database (Denmark)
Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.
2015-01-01
Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance...... of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were...... available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant...
Mid-range adiabatic wireless energy transfer via a mediator coil
International Nuclear Information System (INIS)
Rangelov, A.A.; Vitanov, N.V.
2012-01-01
A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies, three resonances are created: emitter–mediator (EM), mediator–receiver (MR) and emitter–receiver (ER). If the frequency sweeps are adiabatic and such that the EM resonance precedes the MR resonance, the energy flows sequentially along the chain emitter–mediator–receiver. If the MR resonance precedes the EM resonance, then the energy flows directly from the emitter to the receiver via the ER resonance; then the losses from the mediator are suppressed. This technique is robust against noise, resonant constraints and external interferences. - Highlights: ► Efficient and robust mid-range wireless energy transfer via a mediator coil. ► The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. ► Wireless energy transfer is insensitive to any resonant constraints. ► Wireless energy transfer is insensitive to noise in the neighborhood of the coils.
Dynamics of ionizing shock waves on adiabatic motions of gases
International Nuclear Information System (INIS)
Zorev, N.N.; Sklizkov, G.V.; Shikanov, A.S.
1982-01-01
Results are presented of an experimental investigation of free (adiabatic) motion of a spherical ionizing wave in deuterium produced by an expanding laser plasma. It is shown that the discrepancy between the free movement of shock waves (which lead to total ionization of the gas) and the Sedov-Taylor model of a spontaneous point explosion is not related to variations in the adiabat exponent γ and the motion occurs for a constant γ=5/3. The effect is ascribed to the influence of the shock wave front structure on the dynamics of its propagation. An analytic expression for the motion of symmetric ionizing shock waves is found which has an accuracy of better than 1%. As a result the adiabat exponent was determined experimentally. A method for determining the energy of a shock wave on the basis of its dynamics of motion is developed which has an accuracy of approximately 5% [ru
Reducing Lookups for Invariant Checking
DEFF Research Database (Denmark)
Thomsen, Jakob Grauenkjær; Clausen, Christian; Andersen, Kristoffer Just
2013-01-01
This paper helps reduce the cost of invariant checking in cases where access to data is expensive. Assume that a set of variables satisfy a given invariant and a request is received to update a subset of them. We reduce the set of variables to inspect, in order to verify that the invariant is still...
Accuracy of the adiabatic-impulse approximation for closed and open quantum systems
Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo
2018-03-01
We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable approximations is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.
Algorithms in invariant theory
Sturmfels, Bernd
2008-01-01
J. Kung and G.-C. Rota, in their 1984 paper, write: "Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics". The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.
Aspects of hyperspherical adiabaticity in an atomic-gas Bose-Einstein condensate
International Nuclear Information System (INIS)
Kushibe, Daisuke; Mutou, Masaki; Morishita, Toru; Watanabe, Shinichi; Matsuzawa, Michio
2004-01-01
Excitation of an atomic-gas Bose-Einstein condensate (BEC) in the zeroth-order ground-state channel is studied with the hyperspherical adiabatic method of Bohn et al. [Bohn et al., Phys. Rev. A 58, 584 (1998)] suitably generalized to accommodate the anisotropic trapping potential. The method exploits the system's size as an adiabatic parameter so that the explicit size dependence is immediately conducive to the virial theorem. The oscillation frequencies associated with the monopole (breathing) and quadrupole modes thus emerge naturally and converge to the well-known Thomas-Fermi limits. Analysis of the single-particle density and the projected excitation wave function shows that the excitation in the single hyperspherical ground-state channel merely represents a progressive increase in occupancy of the first excited single-particle state. The work paves the way for applying the adiabatic picture to other BEC phenomena
Cartan invariants and event horizon detection
Brooks, D.; Chavy-Waddy, P. C.; Coley, A. A.; Forget, A.; Gregoris, D.; MacCallum, M. A. H.; McNutt, D. D.
2018-04-01
We show that it is possible to locate the event horizon of a black hole (in arbitrary dimensions) by the zeros of certain Cartan invariants. This approach accounts for the recent results on the detection of stationary horizons using scalar polynomial curvature invariants, and improves upon them since the proposed method is computationally less expensive. As an application, we produce Cartan invariants that locate the event horizons for various exact four-dimensional and five-dimensional stationary, asymptotically flat (or (anti) de Sitter), black hole solutions and compare the Cartan invariants with the corresponding scalar curvature invariants that detect the event horizon.
Bond selective chemistry beyond the adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Butler, L.J. [Univ. of Chicago, IL (United States)
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Adiabatic theorem and spectral concentration
International Nuclear Information System (INIS)
Nenciu, G.
1981-01-01
The spectral concentration of arbitrary order, for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract theorem about the spectral concentration for self-ad oint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results of Lenard, is also proved [ru
An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems
International Nuclear Information System (INIS)
Baranger, M.; Veneroni, M.
1977-11-01
It is shown how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and one starts from the time-dependent Hartree-Fock equation. To this, the adiabatic approximation is added, and the energy in powers of an adiabatic parameter is expanded, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The adiabatic equations of motion are derived in different ways and their analogy with classical mechanics is stressed. The role of the adiabatic hypothesis and its range of validity, are analyzed in detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given and the moment of inertia under rotation is that of Thouless and Valatin
Kittell, Aaron W.; Hyde, James S.
2015-01-01
Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132
Mass generation within conformal invariant theories
International Nuclear Information System (INIS)
Flato, M.; Guenin, M.
1981-01-01
The massless Yang-Mills theory is strongly conformally invariant and renormalizable; however, when masses are introduced the theory becomes nonrenormalizable and weakly conformally invariant. Conditions which recover strong conformal invariance are discussed in the letter. (author)
International Nuclear Information System (INIS)
Cady, W.A.; Clark, A.P.; Dickinson, A.S.
1975-01-01
Recently a near-adiabatic (perturbed stationary states) approximation was used in an investigation the collinear vibrational excitation of a harmonic oscillator. This approximation reduced the problem to that of obtaining transition probabilities for a harmonic oscillator with time-dependent forcing function. Cady derived an apparently exact solution for this problem. It is shown that this solution is not exact but that the solution results from making a further adiabatic approximation and a derivation is given that clearly shows the adiabatic character of this further approximation
Coordinate-invariant regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-01-01
A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc
Adiabatic energization in the ring current and its relation to other source and loss terms
Liemohn, M. W.; Kozyra, J. U.; Clauer, C. R.; Khazanov, G. V.; Thomsen, M. F.
2002-04-01
The influence of adiabatic energization and deenergization effects, caused by particle drift in radial distance, on ring current growth rates and loss lifetimes is investigated. Growth and loss rates from simulation results of four storms (5 June 1991, 15 May 1997, 19 October 1998, and 25 September 1998) are examined and compared against the y component of the solar wind electric field (Ey,sw). Energy change rates with and without the inclusion of adiabatic energy changes are considered to isolate the influence of this mechanism in governing changes of ring current strength. It is found that the influence of adiabatic drift effects on the energy change rates is very large when energization and deenergization are considered separately as gain and loss mechanisms, often about an order of magnitude larger than all other source or loss terms combined. This is true not only during storm times, when the open drift path configuration of the hot ions dominates the physics of the ring current, but also during quiet times, when the small oscillation in L of the closed trajectories creates a large source and loss of energy each drift orbit. However, the net energy change from adiabatic drift is often smaller than other source and loss processes, especially during quiet times. Energization from adiabatic drift dominates ring current growth only during portions of the main phase of storms. Furthermore, the net-adiabatic energization is often positive, because some particles are lost in the inner magnetosphere before they can adiabatically deenergize. It is shown that the inclusion of only this net-adiabatic drift effect in the total source rate or loss lifetime (depending on the sign of the net-adiabatic energization) best matches the observed source and loss values from empirical Dst predictor methods (that is, for consistency, these values should be compared between the calculation methods). While adiabatic deenergization dominates the loss timescales for all Ey,sw values
Morozov, Albert D; Dragunov, Timothy N; Malysheva, Olga V
1999-01-01
This book deals with the visualization and exploration of invariant sets (fractals, strange attractors, resonance structures, patterns etc.) for various kinds of nonlinear dynamical systems. The authors have created a special Windows 95 application called WInSet, which allows one to visualize the invariant sets. A WInSet installation disk is enclosed with the book.The book consists of two parts. Part I contains a description of WInSet and a list of the built-in invariant sets which can be plotted using the program. This part is intended for a wide audience with interests ranging from dynamical
Directory of Open Access Journals (Sweden)
Barban C.
2013-03-01
Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.
Adiabatic Quantum Optimization for Associative Memory Recall
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic Quantum Optimization for Associative Memory Recall
Directory of Open Access Journals (Sweden)
Hadayat eSeddiqi
2014-12-01
Full Text Available Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO. Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Fast fracture: an adiabatic restriction on thermally activated crack propagation
Energy Technology Data Exchange (ETDEWEB)
Burns, S.J.
1978-01-01
Slow, isothermal, crack propagation is widely suspected to be rate controlled by thermally activated plastic deformation in the crack tip region. Adiabatic conditions are generally established in the fracture modified material at the tip of a crack during fast fracture. The temperature of this material is not the temperature of the specimen and is generally not measured during fast fracture. Thus, a complete thermodynamic description of adiabatic crack propagation data can not be made. When the slow, isothermal, crack propagation mechanisms are assumed to be operative during adiabatic crack propagation then certain predictions can be made. For example: the changes in the driving force due to temperature and rate are always in the opposite sense; there is no minimum in the driving force versus crack velocity without a change in mechanism; the temperature rise in the crack tip fracture modified material is determined mainly by the activation enthalpy for crack propagation; the interpretation of fast fracture structural steel data from simple plastic models is suspect since these materials have dissimilar isothermal temperature dependencies.
Adiabatic theory of Wannier threshold laws and ionization cross sections
International Nuclear Information System (INIS)
Macek, J.H.; Ovchinnikov, S.Y.
1994-01-01
Adiabatic energy eigenvalues of H 2 + are computed for complex values of the internuclear distance R. The infinite number of bound-state eigenenergies are represented by a function ε(R) that is single valued on a multisheeted Riemann surface. A region is found where ε(R) and the corresponding eigenfunctions exhibit harmonic-oscillator structure characteristic of electron motion on a potential saddle. The Schroedinger equation is solved in the adiabatic approximation along a path in the complex R plane to compute ionization cross sections. The cross section thus obtained joins the Wannier threshold region with the keV energy region, but the exponent near the ionization threshold disagrees with well-accepted values. Accepted values are obtained when a lowest-order diabatic correction is employed, indicating that adiabatic approximations do not give the correct zero velocity limit for ionization cross sections. Semiclassical eigenvalues for general top-of-barrier motion are given and the theory is applied to the ionization of atomic hydrogen by electron impact. The theory with a first diabatic correction gives the Wannier threshold law even for this case
Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity
Directory of Open Access Journals (Sweden)
Mathieu Beau
2016-04-01
Full Text Available The finite-time operation of a quantum heat engine that uses a single particle as a working medium generally increases the output power at the expense of inducing friction that lowers the cycle efficiency. We propose to scale up a quantum heat engine utilizing a many-particle working medium in combination with the use of shortcuts to adiabaticity to boost the nonadiabatic performance by eliminating quantum friction and reducing the cycle time. To this end, we first analyze the finite-time thermodynamics of a quantum Otto cycle implemented with a quantum fluid confined in a time-dependent harmonic trap. We show that nonadiabatic effects can be controlled and tailored to match the adiabatic performance using a variety of shortcuts to adiabaticity. As a result, the nonadiabatic dynamics of the scaled-up many-particle quantum heat engine exhibits no friction, and the cycle can be run at maximum efficiency with a tunable output power. We demonstrate our results with a working medium consisting of particles with inverse-square pairwise interactions that includes non-interacting and hard-core bosons as limiting cases.
De Roover, K.; Timmerman, Marieke; De Leersnyder, J.; Mesquita, B.; Ceulemans, Eva
2014-01-01
The issue of measurement invariance is ubiquitous in the behavioral sciences nowadays as more and more studies yield multivariate multigroup data. When measurement invariance cannot be established across groups, this is often due to different loadings on only a few items. Within the multigroup CFA
Habershon, Scott
2013-09-14
We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.
International Nuclear Information System (INIS)
Habershon, Scott
2013-01-01
We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency
Adiabatic pipelining: a key to ternary computing with quantum dots
Pečar, P.; Ramšak, A.; Zimic, N.; Mraz, M.; Lebar Bajec, I.
2008-12-01
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
Adiabatic pipelining: a key to ternary computing with quantum dots
International Nuclear Information System (INIS)
Pecar, P; Zimic, N; Mraz, M; Lebar Bajec, I; Ramsak, A
2008-01-01
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
Adiabatic pipelining: a key to ternary computing with quantum dots.
Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I
2008-12-10
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
High beta lasing in micropillar cavities with adiabatic layer design
DEFF Research Database (Denmark)
Lermer, M.; Gregersen, Niels; Lorke, M.
2013-01-01
We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...... of the threshold pump power by over 2 orders of magnitude from dc = 2.25 μm down to 0.95 μm. Lasing with β factors exceeding 0.5 shows that adiabatic micropillars are operating deeply in the cavity quantum electrodynamics regime....
A Phase Matching, Adiabatic Accelerator
Energy Technology Data Exchange (ETDEWEB)
Lemery, Francois [Hamburg U.; Flöttmann, Klaus [DESY; Kärtner, Franz [CFEL, Hamburg; Piot, Philippe [Northern Illinois U.
2017-05-01
Tabletop accelerators are a thing of the future. Reducing their size will require scaling down electromagnetic wavelengths; however, without correspondingly high field gradients, particles will be more susceptible to phase-slippage – especially at low energy. We investigate how an adiabatically-tapered dielectric-lined waveguide could maintain phase-matching between the accelerating mode and electron bunch. We benchmark our simple model with CST and implement it into ASTRA; finally we provide a first glimpse into the beam dynamics in a phase-matching accelerator.
Directory of Open Access Journals (Sweden)
Kim eDe Roover
2014-06-01
Full Text Available The issue of measurement invariance is ubiquitous in the behavioral sciences nowadays as more and more studies yield multivariate multigroup data. When measurement invariance cannot be established across groups, this is often due to different loadings on only a few items. Within the multigroup CFA framework, methods have been proposed to trace such non-invariant items, but these methods have some disadvantages in that they require researchers to run a multitude of analyses and in that they imply assumptions that are often questionable. In this paper, we propose an alternative strategy which builds on clusterwise simultaneous component analysis (SCA. Clusterwise SCA, being an exploratory technique, assigns the groups under study to a few clusters based on differences and similarities in the covariance matrices, and thus based on the component structure of the items. Non-invariant items can then be traced by comparing the cluster-specific component loadings via congruence coefficients, which is far more parsimonious than comparing the component structure of all separate groups. In this paper we present a heuristic for this procedure. Afterwards, one can return to the multigroup CFA framework and check whether removing the non-invariant items or removing some of the equality restrictions for these items, yields satisfactory invariance test results. An empirical application concerning cross-cultural emotion data is used to demonstrate that this novel approach is useful and can co-exist with the traditional CFA approaches.
Adiabatic theorem for the time-dependent wave operator
International Nuclear Information System (INIS)
Viennot, David; Jolicard, Georges; Killingbeck, John P.; Perrin, Marie-Yvonne
2005-01-01
The application of time-dependent wave operator theory to the development of a quantum adiabatic perturbation theory is treated both theoretically and numerically, with emphasis on the description of field-matter interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system
Gauge-invariant cosmological density perturbations
International Nuclear Information System (INIS)
Sasaki, Misao.
1986-06-01
Gauge-invariant formulation of cosmological density perturbation theory is reviewed with special emphasis on its geometrical aspects. Then the gauge-invariant measure of the magnitude of a given perturbation is presented. (author)
Identification of invariant measures of interacting systems
International Nuclear Information System (INIS)
Chen Jinwen
2004-01-01
In this paper we provide an approach for identifying certain mixture representations of some invariant measures of interacting stochastic systems. This is related to the problem of ergodicity of certain extremal invariant measures that are translation invariant. Corresponding to these, results concerning the existence of invariant measures and certain weak convergence of the systems are also provided
Directory of Open Access Journals (Sweden)
Byung Jae Lee
2014-12-01
Full Text Available In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise (Q∞ and the ternary blended cement mixture had the lowest reaction factor (r. Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.
Lee, Byung Jae; Bang, Jin Wook; Shin, Kyung Joon; Kim, Yun Yong
2014-12-08
In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise ( Q ∞ ) and the ternary blended cement mixture had the lowest reaction factor ( r ). Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q ∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.
Development of Adiabatic Doppler Feedback Model in 3D space time analysis Code ARCH
International Nuclear Information System (INIS)
Dwivedi, D.K.; Gupta, Anurag
2015-01-01
Integrated 3D space-time neutron kinetics with thermal-hydraulic feedback code system is being developed for transient analysis of Compact High Temperature Reactor (CHTR) and Advanced Heavy Water Reactor (AHWR). ARCH (code for Analysis of Reactor transients in Cartesian and Hexagon geometries) has been developed with IQS module for efficient 3D space time analysis. Recently, an adiabatic Doppler (fuel temperature) feedback module has been incorporated in this ARCH-IQS version of tile code. In the adiabatic model of fuel temperature feedback, the transfer of the excess heat from the fuel to the coolant during transient is neglected. The viability of Doppler feedback in ARCH-IQS with adiabatic heating has been checked with AER benchmark (Dyn002). Analyses of anticipated transient without scram (ATWS) case in CHTR as well as in AHWR have been performed with adiabatic fuel temperature feedback. The methodology and results have been presented in this paper. (author)
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
adiabatic transfer process through the 'dark state' by a slow variation of the control laser intensity. ... control field of Rabi frequency C(t) transfers one photon in the cavity mode to a long- .... It gives an approximate statistical description of the.
Sprague, Briana N; Hyun, Jinshil; Molenaar, Peter C M
2017-01-01
Invariance of intelligence across age is often assumed but infrequently explicitly tested. Horn and McArdle (1992) tested measurement invariance of intelligence, providing adequate model fit but might not consider all relevant aspects such as sub-test differences. The goal of the current paper is to explore age-related invariance of the WAIS-R using an alternative model that allows direct tests of age on WAIS-R subtests. Cross-sectional data on 940 participants aged 16-75 from the WAIS-R normative values were used. Subtests examined were information, comprehension, similarities, vocabulary, picture completion, block design, picture arrangement, and object assembly. The two intelligence factors considered were fluid and crystallized intelligence. Self-reported ages were divided into young (16-22, n = 300), adult (29-39, n = 275), middle (40-60, n = 205), and older (61-75, n = 160) adult groups. Results suggested partial metric invariance holds. Although most of the subtests reflected fluid and crystalized intelligence similarly across different ages, invariance did not hold for block design on fluid intelligence and picture arrangement on crystallized intelligence for older adults. Additionally, there was evidence of a correlated residual between information and vocabulary for the young adults only. This partial metric invariance model yielded acceptable model fit compared to previously-proposed invariance models of Horn and McArdle (1992). Almost complete metric invariance holds for a two-factor model of intelligence. Most of the subtests were invariant across age groups, suggesting little evidence for age-related bias in the WAIS-R. However, we did find unique relationships between two subtests and intelligence. Future studies should examine age-related differences in subtests when testing measurement invariance in intelligence.
Constructing Invariant Fairness Measures for Surfaces
DEFF Research Database (Denmark)
Gravesen, Jens; Ungstrup, Michael
1998-01-01
of the size of this vector field is used as the fairness measure on the family.Six basic 3rd order invariants satisfying two quadratic equations are defined. They form a complete set in the sense that any invariant 3rd order function can be written as a function of the six basic invariants together...
Adiabatic tapered optical fiber fabrication in two step etching
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
On logarithmic extensions of local scale-invariance
International Nuclear Information System (INIS)
Henkel, Malte
2013-01-01
Ageing phenomena far from equilibrium naturally present dynamical scaling and in many situations this may be generalised to local scale-invariance. Generically, the absence of time-translation-invariance implies that each scaling operator is characterised by two independent scaling dimensions. Building on analogies with logarithmic conformal invariance and logarithmic Schrödinger-invariance, this work proposes a logarithmic extension of local scale-invariance, without time-translation-invariance. Carrying this out requires in general to replace both scaling dimensions of each scaling operator by Jordan cells. Co-variant two-point functions are derived for the most simple case of a two-dimensional logarithmic extension. Their form is compared to simulational data for autoresponse functions in several universality classes of non-equilibrium ageing phenomena
DEFF Research Database (Denmark)
Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl
1999-01-01
adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...
Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains
International Nuclear Information System (INIS)
Rams, Marek M; Mohseni, Masoud; Campo, Adolfo del
2016-01-01
We introduce an inhomogeneous protocol to drive a weakly disordered quantum spin chain quasi-adiabatically across a quantum phase transition and minimize the residual energy of the final state. The number of spins that simultaneously reach the critical point is controlled by the length scale in which the magnetic field is modulated, introducing an effective size that favors adiabatic dynamics. The dependence of the residual energy on this length scale and the velocity at which the magnetic field sweeps out the chain is shown to be nonmonotonic. We determine the conditions for an optimal suppression of the residual energy of the final state and show that inhomogeneous driving can outperform conventional adiabatic schemes based on homogeneous control fields by several orders of magnitude. (paper)
The adiabatic versus the diabatic approximation in the decoupling of electron and nuclear motion
International Nuclear Information System (INIS)
Every, A.G.
1975-01-01
There are two limiting approximations that are used as starting points for the analysis of a system of interacting electrons and nuclei. The more widely used is the adiabatic approximation in which one assumes that the electrons adjust adiabatically to the instantaneous configuration of the nuclei. This yields an effective internuclear potential. In treating the nuclear motion, this potential can legitimately be expanded to fourth order in nuclear displacements from equilibrium. The difficulties of extending this expansion further are discussed. In situations where two adiabatic potentials approach each other the so-called diabatic approximation has to be used. A novel application to non-radioactive processes in solids is discussed. (author)
FRW-type cosmologies with adiabatic matter creation
International Nuclear Information System (INIS)
Lima, J.A.; Germano, A.S.; Abramo, L.R.
1996-01-01
Some properties of cosmological models with matter creation are investigated in the framework of the Friedmann-Robertson-Walker line element. For adiabatic matter creation, as developed by Prigogine and co-workers, we derive a simple expression relating the particle number density n and energy density ρ which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate ψ=3βnH, where β is a pure number of the order of unity and H is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index γ of the equation of state by an effective parameter γ * =γ(1-β). The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of H suggested by recent measurements. copyright 1996 The American Physical Society
Nonlocal, yet translation invariant, constraints for rotationally invariant slave bosons
Ayral, Thomas; Kotliar, Gabriel
The rotationally-invariant slave boson (RISB) method is a lightweight framework allowing to study the low-energy properties of complex multiorbital problems currently out of the reach of more comprehensive, yet more computationally demanding methods such as dynamical mean field theory. In the original formulation of this formalism, the slave-boson constraints can be made nonlocal by enlarging the unit cell and viewing the quantum states enclosed in this new unit cell as molecular levels. In this work, we extend RISB to constraints which are nonlocal while preserving translation invariance. We apply this extension to the Hubbard model.
Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state
Energy Technology Data Exchange (ETDEWEB)
Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl
2016-05-15
Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis
Saline Cavern Adiabatic Compressed Air Energy Storage Using Sand as Heat Storage Material
Directory of Open Access Journals (Sweden)
Martin Haemmerle
2017-03-01
Full Text Available Adiabatic compressed air energy storage systems offer large energy storage capacities and power outputs beyond 100MWel. Salt production in Austria produces large caverns which are able to hold pressure up to 100 bar, thus providing low cost pressurized air storage reservoirs for adiabatic compressed air energy storage plants. In this paper the results of a feasibility study is presented, which was financed by the Austrian Research Promotion Agency, with the objective to determine the adiabatic compressed air energy storage potential of Austria’s salt caverns. The study contains designs of realisable plants with capacities between 10 and 50 MWel, applying a high temperature energy storage system currently developed at the Institute for Energy Systems and Thermodynamics in Vienna. It could be shown that the overall storage potential of Austria’s salt caverns exceeds a total of 4GWhel in the year 2030 and, assuming an adequate performance of the heat exchanger, that a 10MWel adiabatic compressed air energy storage plant in Upper Austria is currently feasible using state of the art thermal turbomachinery which is able to provide a compressor discharge temperature of 400 °C.
Connection between adiabaticity and the mirror mode
International Nuclear Information System (INIS)
Cohen, R.H.
1976-01-01
The size of magnetic moment jumps of a particle in a long, thin equilibrium magnetic mirror field is shown to be related to the complex zeroes of the mirror mode parameter B + 4πdP/sub perpendicular//dB. A consequence is that adiabaticity places a lower limit on β than does the mirror mode
Analytic invariants of boundary links
Garoufalidis, Stavros; Levine, Jerome
2001-01-01
Using basic topology and linear algebra, we define a plethora of invariants of boundary links whose values are power series with noncommuting variables. These turn out to be useful and elementary reformulations of an invariant originally defined by M. Farber.
Status of time reversal invariance
International Nuclear Information System (INIS)
Henley, E.M.
1989-01-01
Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed. 30 refs., 2 figs., 1 tab
International Nuclear Information System (INIS)
Mackrodt, C.; Reeh, H.
1997-01-01
General summational invariants, i.e., conservation laws acting additively on asymptotic particle states, are investigated within a classical framework for point particles with nontrivial scattering. copyright 1997 American Institute of Physics
Link invariants for flows in higher dimensions
International Nuclear Information System (INIS)
Garcia-Compean, Hugo; Santos-Silva, Roberto
2010-01-01
Linking numbers in higher dimensions and their generalization including gauge fields are studied in the context of BF theories. The linking numbers associated with n-manifolds with smooth flows generated by divergence-free p-vector fields, endowed with an invariant flow measure, are computed in the context of quantum field theory. They constitute invariants of smooth dynamical systems (for nonsingular flows) and generalize previous proposals of invariants. In particular, they generalize Arnold's asymptotic Hopf invariant from three to higher dimensions. This invariant is generalized by coupling with a non-Abelian gauge flat connection with nontrivial holonomy. The computation of the asymptotic Jones-Witten invariants for flows is naturally extended to dimension n=2p+1. Finally, we give a possible interpretation and implementation of these issues in the context of 11-dimensional supergravity and string theory.
Pre-History Of The Concepts Underlying Stimulated Raman Adiabatic Passage (STIRAP)
International Nuclear Information System (INIS)
Shore, B.W.
2013-01-01
This tutorial review discusses some of the work that preceded development, twenty-five years ago, of the stimulated Raman adiabatic passage (STIRAP) technique, now widely used in the controlled coherent dynamics of three-state systems, noting how the use of time-dependent adiabatically-evolving population-trapping dark states made possible the robust and highly-efficient population transfer between quantum states that first popularized STIRAP. Preceding the history discussion is a tutorial definition of STIRAP and its necessary and sufficient ingredients — understanding that has led to applications well beyond those of the original quantum systems. This review also discusses the relationship between STIRAP and two related procedures: chirped Raman adiabatic passage (RCAP or CHIRAP) and electromagnetically induced transparency (EIT) with slow and captured light. It concludes with a brief discussion of ways in which contemporary STIRAP has extended the original concept and enlarged the definition, beyond that of simple quantum systems to classical macroscopic devices. Appendices offer further details. The presentation emphasizes theory but with illustrations of experimental results. (author)
Dynamical topological invariant after a quantum quench
Yang, Chao; Li, Linhu; Chen, Shu
2018-02-01
We show how to define a dynamical topological invariant for one-dimensional two-band topological systems after a quantum quench. By analyzing general two-band models of topological insulators, we demonstrate that the reduced momentum-time manifold can be viewed as a series of submanifolds S2, and thus we are able to define a dynamical topological invariant on each of the spheres. We also unveil the intrinsic relation between the dynamical topological invariant and the difference in the topological invariant of the initial and final static Hamiltonian. By considering some concrete examples, we illustrate the calculation of the dynamical topological invariant and its geometrical meaning explicitly.
Phenomenology of local scale invariance: from conformal invariance to dynamical scaling
International Nuclear Information System (INIS)
Henkel, Malte
2002-01-01
Statistical systems displaying a strongly anisotropic or dynamical scaling behaviour are characterized by an anisotropy exponent θ or a dynamical exponent z. For a given value of θ (or z), we construct local scale transformations, which can be viewed as scale transformations with a space-time-dependent dilatation factor. Two distinct types of local scale transformations are found. The first type may describe strongly anisotropic scaling of static systems with a given value of θ, whereas the second type may describe dynamical scaling with a dynamical exponent z. Local scale transformations act as a dynamical symmetry group of certain non-local free-field theories. Known special cases of local scale invariance are conformal invariance for θ=1 and Schroedinger invariance for θ=2. The hypothesis of local scale invariance implies that two-point functions of quasi primary operators satisfy certain linear fractional differential equations, which are constructed from commuting fractional derivatives. The explicit solution of these yields exact expressions for two-point correlators at equilibrium and for two-point response functions out of equilibrium. A particularly simple and general form is found for the two-time auto response function. These predictions are explicitly confirmed at the uniaxial Lifshitz points in the ANNNI and ANNNS models and in the aging behaviour of simple ferromagnets such as the kinetic Glauber-Ising model and the kinetic spherical model with a non-conserved order parameter undergoing either phase-ordering kinetics or non-equilibrium critical dynamics
Quantifying Translation-Invariance in Convolutional Neural Networks
Kauderer-Abrams, Eric
2017-01-01
A fundamental problem in object recognition is the development of image representations that are invariant to common transformations such as translation, rotation, and small deformations. There are multiple hypotheses regarding the source of translation invariance in CNNs. One idea is that translation invariance is due to the increasing receptive field size of neurons in successive convolution layers. Another possibility is that invariance is due to the pooling operation. We develop a simple ...
Adiabatic pair creation in heavy-ion and laser fields
International Nuclear Information System (INIS)
Pickl, P.; Durr, D.
2008-01-01
The planned generation of lasers and heavy-ion colliders renews the hope to see electron-positron pair creation in strong classical fields. This old prediction is usually referred to as spontaneous pair creation. We observe that both heavy-ion collisions and pair creation in strong laser fields, are instances of the theory of adiabatic pair creation. We shall present the theory, thereby correcting earlier results. We give the momentum distribution of created pairs in overcritical fields. We discuss carefully the proposed experimental verifications and conclude that pure laser-based experiments are highly questionable. We propose a new experiment, joining laser fields and heavy ions, which may be feasible with present-day technology and which may indeed verify the theoretical prediction of adiabatic pair creation. Our presentation relies on recent rigorous works in mathematical physics. (authors)
Adiabatic approximation in the ultrastrong-coupling regime of an oscillator and two qubits
Energy Technology Data Exchange (ETDEWEB)
Yang, Ping; Zou, Ping [Laboratory of Nanophotonic Functional Materials and Devices, SIPSE and LQIT, South China Normal University, Guangzhou 510006 (China); Zhang, Zhi-Ming, E-mail: zmzhang@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, SIPSE and LQIT, South China Normal University, Guangzhou 510006 (China)
2012-10-01
We present a system composed of two flux qubits and a transmission-line resonator. Instead of using the rotating wave approximation (RWA), we analyze the system by the adiabatic approximation methods under two opposite extreme conditions. Basic properties of the system are calculated and compared under these two different conditions. Relative energy-level spectrum of the system in the adiabatic displaced oscillator basis is shown, and the theoretical result is compared with the numerical solution. -- Highlights: ► Our work shows that the adiabatic approximations may work also in the ultrastrong coupling limit. ► Both of the approximation methods are valid in a large range of coupling strength, including the ultrastrong coupling regime. ► The results of the approximate formula meet well the exact numerical solution.
Invariant measures in brain dynamics
International Nuclear Information System (INIS)
Boyarsky, Abraham; Gora, Pawel
2006-01-01
This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a 'folding' property on the space of ensembles
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-04-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.
2018-03-01
We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.
International Nuclear Information System (INIS)
Armour, E.A.G.; Beker, C.A.; Farina, J.E.G.
1981-01-01
P-wave phaseshifts for positron-hydrogen elastic scattering are calculated using a new adiabatic approximation in which the length of the radius vector from the proton to the positron is fixed but its direction is allowed to vary. This adiabatic approximation makes possible the full inclusion in the calculation of virtual states in which angular momentum is transferred to the target H atom. The results obtained agree qualitatively with the highly accurate results of Bhatia and co-workers (Phys. Rev.; A9:219 (1974)) and are much closer to them than the results obtained using the usual adiabatic approximation in which the radius vector from the proton to the positron is fixed. (author)
Adiabatic compression and radiative compression of magnetic fields
International Nuclear Information System (INIS)
Woods, C.H.
1980-01-01
Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape
Adiabatic partial Siberian snake turn-on with no beam depolarization
International Nuclear Information System (INIS)
Phelps, R.A.; Anferov, V.A.; Chu, C.M.; Courant, E.D.; Crandell, D.A.; Derbenev, Y.S.; Kaufman, W.A.; Koulsha, A.V.; Krisch, A.D.; Nurushev, T.S.; Raczkowksi, D.B.; Sund, S.E.; Wong, V.K.; Caussyn, D.D.; Ellison, T.J.P.; Lee, S.Y.; Sperisen, F.; Stephenson, E.J.; von Przewoski, B.; Baiod, R.; Khiari, F.Z.; Ratner, L.G.; Sato, H.
1994-01-01
A recent experiment in the IUCF cooler ring studied the adiabatic turn-on of a partial Siberian snake at 370 MeV, where the spin tune, ν s is 21/2 for all snake strengths. The snake consisted of two rampable warm solenoid magnets in series with a superconducting solenoid; this combination allowed varying the snake strength between about 0 and 25% at 370 MeV. We measured the beam polaraization after varying the snake either 1, 2, or 10 times; we found with good precision that no polarization was lost. This supports the conjecture that a Siberian snake can be ramped adiabatically at an energy where the spin tune is a half integer
The usage of color invariance in SURF
Meng, Gang; Jiang, Zhiguo; Zhao, Danpei
2009-10-01
SURF (Scale Invariant Feature Transform) is a robust local invariant feature descriptor. However, SURF is mainly designed for gray images. In order to make use of the information provided by color (mainly RGB channels), this paper presents a novel colored local invariant feature descriptor, CISURF (Color Invariance based SURF). The proposed approach builds the descriptors in a color invariant space, which stems from Kubelka-Munk model and provides more valuable information than the gray space. Compared with the conventional SURF and SIFT descriptors, the experimental results show that descriptors created by CISURF is more robust to the circumstance changes such as the illumination direction, illumination intensity, and the viewpoints, and are more suitable for the deep space background objects.
On the recirculation of ammonia-lithium nitrate in adiabatic absorbers for chillers
International Nuclear Information System (INIS)
Ventas, R.; Lecuona, A.; Legrand, M.; Rodriguez-Hidalgo, M.C.
2010-01-01
This paper presents a numerical model of single-effect absorption cycles with ammonia-lithium nitrate solution as the working pair and incorporating an adiabatic absorber. It is based on UA-ΔT lm models for separate regions of plate-type heat exchangers and it assumes an approach factor to adiabatic equilibrium. The results are offered as a function of external temperatures. A loop circuit with a heat exchanger upstream the absorber produces subcooling for facilitating absorption process. The effect of the mass flow rate recirculated through the absorber is studied. Results show a diminishing return effect. The value at which the recirculation mass flow yields a reasonable performance is between 4 and 6 times the solution mass flow. With a heat transfer area 6 times smaller than with a conventional diabatic shell-and-tube type absorber, the adiabatic absorber configured with a plate heat exchanger yields a 2% smaller maximum COP and a 15-20% smaller cooling power.
Low-Power Adiabatic Computing with Improved Quasistatic Energy Recovery Logic
Directory of Open Access Journals (Sweden)
Shipra Upadhyay
2013-01-01
Full Text Available Efficiency of adiabatic logic circuits is determined by the adiabatic and non-adiabatic losses incurred by them during the charging and recovery operations. The lesser will be these losses circuit will be more energy efficient. In this paper, a new approach is presented for minimizing power consumption in quasistatic energy recovery logic (QSERL circuit which involves optimization by removing the nonadiabatic losses completely by replacing the diodes with MOSFETs whose gates are controlled by power clocks. Proposed circuit inherits the advantages of quasistatic ERL (QSERL family but is with improved power efficiency and driving ability. In order to demonstrate workability of the newly developed circuit, a 4 × 4 bit array multiplier circuit has been designed. A mathematical expression to calculate energy dissipation in proposed inverter is developed. Performance of the proposed logic (improved quasistatic energy recovery logic (IQSERL is analyzed and compared with CMOS and reported QSERL in their representative inverters and multipliers in VIRTUOSO SPECTRE simulator of Cadence in 0.18 μm UMC technology. In our proposed (IQSERL inverter the power efficiency has been improved to almost 20% up to 50 MHz and 300 fF external load capacitance in comparison to CMOS and QSERL circuits.
Energy Technology Data Exchange (ETDEWEB)
Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)
2017-07-15
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)
The invariant theory of matrices
Concini, Corrado De
2017-01-01
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...
International Nuclear Information System (INIS)
Zacarías, Alejandro; Venegas, María; Lecuona, Antonio; Ventas, Rubén
2013-01-01
This paper presents the experimental assessment of the adiabatic absorption of ammonia vapour into an ammonia–lithium nitrate solution using a fog jet nozzle. The ammonia mass fraction was kept constant at 46.08% and the absorber pressure was varied in the range 355–411 kPa. The nozzle was located at the top of the absorption chamber, at a height of 205 mm measured from the bottom surface. The diluted solution flow rate was modified between 0.04 and 0.08 kg s −1 and the solution inlet temperature in the range 25.9–30.2 °C. The influence of these variables on the approach to adiabatic equilibrium factor, outlet subcooling, absorption ratio and mass transfer coefficient is analysed. The approach to adiabatic equilibrium factor for the conditions essayed is always between 0.82 and 0.93. Pressure drop of the solution entering the absorption chamber is also evaluated. Correlations for the approach to adiabatic equilibrium factor and the Sherwood number are given. - Highlights: ► Adiabatic absorption of NH 3 vapour into NH 3 –LiNO 3 using fog jet nozzle created spray. ► Pressure drop of the solution entering to the absorption chamber is evaluated. ► Approach to adiabatic equilibrium factor (F) is between 0.82 and 0.93 at 205 mm height. ► Experimental values of mass transfer coefficient and outlet subcooling are presented. ► Correlations for F and Sherwood number are given.
Babajanova, Gulmira; Matrasulov, Jasur; Nakamura, Katsuhiro
2018-04-01
With use of the scheme of fast forward which realizes quasistatic or adiabatic dynamics in shortened timescale, we investigate a thermally isolated ideal quantum gas confined in a rapidly dilating one-dimensional (1D) cavity with the time-dependent size L =L (t ) . In the fast-forward variants of equation of states, i.e., Bernoulli's formula and Poisson's adiabatic equation, the force or 1D analog of pressure can be expressed as a function of the velocity (L ˙) and acceleration (L ̈) of L besides rapidly changing state variables like effective temperature (T ) and L itself. The force is now a sum of nonadiabatic (NAD) and adiabatic contributions with the former caused by particles moving synchronously with kinetics of L and the latter by ideal bulk particles insensitive to such a kinetics. The ratio of NAD and adiabatic contributions does not depend on the particle number (N ) in the case of the soft-wall confinement, whereas such a ratio is controllable in the case of hard-wall confinement. We also reveal the condition when the NAD contribution overwhelms the adiabatic one and thoroughly changes the standard form of the equilibrium equation of states.
Scale invariant Volkov–Akulov supergravity
Energy Technology Data Exchange (ETDEWEB)
Ferrara, S., E-mail: sergio.ferrara@cern.ch [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN – Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Italy); Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Porrati, M., E-mail: mp9@nyu.edu [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY 10003 (United States); Sagnotti, A., E-mail: sagnotti@sns.it [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa (Italy)
2015-10-07
A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.
Energy Technology Data Exchange (ETDEWEB)
Moller-Nielsen, Thomas [University of Oxford (United Kingdom)
2014-07-01
Physicists and philosophers have long claimed that the symmetries of our physical theories - roughly speaking, those transformations which map solutions of the theory into solutions - can provide us with genuine insight into what the world is really like. According to this 'Invariance Principle', only those quantities which are invariant under a theory's symmetries should be taken to be physically real, while those quantities which vary under its symmetries should not. Physicists and philosophers, however, are generally divided (or, indeed, silent) when it comes to explaining how such a principle is to be justified. In this paper, I spell out some of the problems inherent in other theorists' attempts to justify this principle, and sketch my own proposed general schema for explaining how - and when - the Invariance Principle can indeed be used as a legitimate tool of metaphysical inference.
A functional LMO invariant for Lagrangian cobordisms
DEFF Research Database (Denmark)
Cheptea, Dorin; Habiro, Kazuo; Massuyeau, Gwénaël
2008-01-01
Lagrangian cobordisms are three-dimensional compact oriented cobordisms between once-punctured surfaces, subject to some homological conditions. We extend the Le–Murakami–Ohtsuki invariant of homology three-spheres to a functor from the category of Lagrangian cobordisms to a certain category...... of Jacobi diagrams. We prove some properties of this functorial LMO invariant, including its universality among rational finite-type invariants of Lagrangian cobordisms. Finally, we apply the LMO functor to the study of homology cylinders from the point of view of their finite-type invariants....
Directory of Open Access Journals (Sweden)
Peter Keefe
2004-03-01
Full Text Available Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of traditional formulations of the Second Law, evidenced by attainment of a final process temperature below that which would result from an adiabatic magneto-caloric process applied to bulk dimensioned specimens.
Continuous Integrated Invariant Inference, Phase I
National Aeronautics and Space Administration — The proposed project will develop a new technique for invariant inference and embed this and other current invariant inference and checking techniques in an...
Test of charge conjugation invariance
International Nuclear Information System (INIS)
Nefkens, B.M.K.; Prakhov, S.; Gaardestig, A.; Clajus, M.; Marusic, A.; McDonald, S.; Phaisangittisakul, N.; Price, J.W.; Starostin, A.; Tippens, W.B.; Allgower, C.E.; Spinka, H.; Bekrenev, V.; Koulbardis, A.; Kozlenko, N.; Kruglov, S.; Lopatin, I.; Briscoe, W.J.; Shafi, A.; Comfort, J.R.
2005-01-01
We report on the first determination of upper limits on the branching ratio (BR) of η decay to π 0 π 0 γ and to π 0 π 0 π 0 γ. Both decay modes are strictly forbidden by charge conjugation (C) invariance. Using the Crystal Ball multiphoton detector, we obtained BR(η→π 0 π 0 γ) -4 at the 90% confidence level, in support of C invariance of isoscalar electromagnetic interactions of the light quarks. We have also measured BR(η→π 0 π 0 π 0 γ) -5 at the 90% confidence level, in support of C invariance of isovector electromagnetic interactions
Scale invariant Volkov–Akulov supergravity
Directory of Open Access Journals (Sweden)
S. Ferrara
2015-10-01
Full Text Available A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.
Directory of Open Access Journals (Sweden)
Min-Suk Jo
2017-11-01
Full Text Available This paper aimed to evaluate the applicability of adiabatic humidification in the heating, ventilation, and air conditioning (HVAC systems of semiconductor cleanrooms. Accurate temperature and humidity control are essential in semiconductor cleanrooms and high energy consumption steam humidification is commonly used. Therefore, we propose an adiabatic humidification system employing a pressurized water atomizer to reduce the energy consumption. The annual energy consumption of three different HVAC systems were analyzed to evaluate the applicability of adiabatic humidification. The studied cases were as follows: (1 CASE 1: a make-up air unit (MAU with a steam humidifier, a dry cooling coil (DCC, and a fan filter unit (FFU; (2 CASE 2: a MAU with the pressurized water atomizer, a DCC, and a FFU; and (3 CASE 3: a MAU, a DCC, and a FFU, and the pressurized water atomizer installed in the return duct. The energy saving potential of adiabatic humidification over steam humidification has been proved, with savings of 8% and 23% in CASE 2 and CASE 3 compared to CASE 1, respectively. Furthermore, the pressurized water atomizer installed in the return duct exhibits greater energy saving effect than when installed in the MAU.
Energy Technology Data Exchange (ETDEWEB)
Todorov, N S [Low Temperature Department of the Institute of Solid State Physics of the Bulgarian Academy of Sciences, Sofia
1981-04-01
It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article rests essentially on the ideology of the preceding articles, in particular article I.
Energy Technology Data Exchange (ETDEWEB)
Todorov, N S
1981-04-01
It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article IV rests essentially on the ideology of the preceding articles, in particular article I.
Recent progress in invariant pattern recognition
Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar
1996-12-01
We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.
Finite type invariants and fatgraphs
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Bene, Alex; Meilhan, Jean-Baptiste Odet Thierry
2010-01-01
–Murakami–Ohtsuki of the link invariant of Andersen–Mattes–Reshetikhin computed relative to choices determined by the fatgraph G; this provides a basic connection between 2d geometry and 3d quantum topology. For each fixed G, this invariant is shown to be universal for homology cylinders, i.e., G establishes an isomorphism...
Ermakov–Lewis invariants and Reid systems
Energy Technology Data Exchange (ETDEWEB)
Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, S.L.P. (Mexico)
2014-06-13
Reid's mth-order generalized Ermakov systems of nonlinear coupling constant α are equivalent to an integrable Emden–Fowler equation. The standard Ermakov–Lewis invariant is discussed from this perspective, and a closed formula for the invariant is obtained for the higher-order Reid systems (m≥3). We also discuss the parametric solutions of these systems of equations through the integration of the Emden–Fowler equation and present an example of a dynamical system for which the invariant is equivalent to the total energy. - Highlights: • Reid systems of order m are connected to Emden–Fowler equations. • General expressions for the Ermakov–Lewis invariants both for m=2 and m≥3 are obtained. • Parametric solutions of the Emden–Fowler equations related to Reid systems are obtained.
Conformal invariance in the long-range Ising model
Directory of Open Access Journals (Sweden)
Miguel F. Paulos
2016-01-01
Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
Conformal Invariance in the Long-Range Ising Model
Paulos, Miguel F; van Rees, Balt C; Zan, Bernardo
2016-01-01
We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
Conformal invariance in the long-range Ising model
Energy Technology Data Exchange (ETDEWEB)
Paulos, Miguel F. [CERN, Theory Group, Geneva (Switzerland); Rychkov, Slava, E-mail: slava.rychkov@lpt.ens.fr [CERN, Theory Group, Geneva (Switzerland); Laboratoire de Physique Théorique de l' École Normale Supérieure (LPTENS), Paris (France); Faculté de Physique, Université Pierre et Marie Curie (UPMC), Paris (France); Rees, Balt C. van [CERN, Theory Group, Geneva (Switzerland); Zan, Bernardo [Institute of Physics, Universiteit van Amsterdam, Amsterdam (Netherlands)
2016-01-15
We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
Directory of Open Access Journals (Sweden)
Salem M. Osta-Omar
2016-11-01
Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.
BRDF invariant stereo using light transport constancy.
Wang, Liang; Yang, Ruigang; Davis, James E
2007-09-01
Nearly all existing methods for stereo reconstruction assume that scene reflectance is Lambertian and make use of brightness constancy as a matching invariant. We introduce a new invariant for stereo reconstruction called light transport constancy (LTC), which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions (BRDFs)). This invariant can be used to formulate a rank constraint on multiview stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies. In addition, we show that this multiview constraint can be used with as few as two cameras and two lighting configurations. Unlike previous methods for BRDF invariant stereo, LTC does not require precisely configured or calibrated light sources or calibration objects in the scene. Importantly, the new constraint can be used to provide BRDF invariance to any existing stereo method whenever appropriate lighting variation is available.
Adiabatic and diabatic aerosol transport to the Jungfraujoch
Energy Technology Data Exchange (ETDEWEB)
Lugauer, M.; Baltensperger, U.; Furger, M.; Jost, D.T.; Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-09-01
Synoptic scale vertical motion, here detected by the geopotential height of the 500 hPa surface, mainly accounts for the aerosol transport to the Jungfraujoch in winter. In summer, diabatic convection provides the dominant vertical transport mechanism. Nevertheless, synoptic scale adiabatic motion still determines whether diabatic convection can develop. (author) 2 figs., 2 refs.
Particle creation and particle number in an expanding universe
International Nuclear Information System (INIS)
Parker, Leonard
2012-01-01
I describe the logical basis of the method that I developed in 1962 and 1963 to define a quantum operator corresponding to the observable particle number of a quantized free scalar field in a spatially-flat isotropically expanding (and/or contracting) universe. This work also showed for the first time that particles were created from the vacuum by the curved spacetime of an expanding spatially-flat Friedmann–Lemaître–Robertson–Walker (FLRW) universe. The same process is responsible for creating the nearly scale-invariant spectrum of quantized perturbations of the inflaton scalar field during the inflationary stage of the expansion of the universe. I explain how the method that I used to obtain the observable particle number operator involved adiabatic invariance of the particle number (hence, the name adiabatic regularization) and the quantum theory of measurement of particle number in an expanding universe. I also show how I was led in a surprising way, to the discovery in 1964 that there would be no particle creation by these spatially-flat FLRW universes for free fields of any integer or half-integer spin satisfying field equations that are invariant under conformal transformations of the metric. The methods I used to define adiabatic regularization for particle number were based on generally-covariant concepts like adiabatic invariance and measurement that were fundamental and determined results that were unique to each given adiabatic order. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)
A scale invariance criterion for LES parametrizations
Directory of Open Access Journals (Sweden)
Urs Schaefer-Rolffs
2015-01-01
Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.
Adiabatic Processes Realized with a Trapped Brownian Particle
Martínez, Ignacio A.; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A.
2015-03-01
The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Adiabatic CMB perturbations in pre-big bang string cosmology
DEFF Research Database (Denmark)
Enqvist, Kari; Sloth, Martin Snoager
2001-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...
Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.
1988-01-01
in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...
Novelli, Anna; Belzig, Wolfgang; Nitzan, Abraham
2015-01-01
The time evolution and the asymptotic outcome of a Landau-Zener-Stueckelberg-Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non-adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength.
An adiabatic matching device for the Orsay linear positron accelerator
International Nuclear Information System (INIS)
Chehab, R.; Le Meur, G.; Mouton, B.; Renard, M.
1983-03-01
An adiabatically tapered solenoidal magnetic field is used to match positron beam source emittance to accelerating section acceptance. Such a matching system improves the accepted energy band which has been accurately computed and compared with analytical determination. The tapered field is provided by stacked pancakes and solenoids of various radii; total lens length is about 0.75m. The adiabatic matching system took place of a quarter wave transformer system and has been in operation for two years. Positron conversion ratio is 3.3% for a 1 GeV incident beam and presents a factor of nearly two of improvement for the positron yield. Energy bandwidth of positron beam has also been increased by a factor of nearly 2.5; the output positron beam energy is of 1.2 GeV
Construction of time-dependent dynamical invariants: A new approach
International Nuclear Information System (INIS)
Bertin, M. C.; Pimentel, B. M.; Ramirez, J. A.
2012-01-01
We propose a new way to obtain polynomial dynamical invariants of the classical and quantum time-dependent harmonic oscillator from the equations of motion. We also establish relations between linear and quadratic invariants, and discuss how the quadratic invariant can be related to the Ermakov invariant.
Wavelet-based moment invariants for pattern recognition
Chen, Guangyi; Xie, Wenfang
2011-07-01
Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.
Adiabatic Wankel type rotary engine
Kamo, R.; Badgley, P.; Doup, D.
1988-01-01
This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.
Novel topological invariants and anomalies
International Nuclear Information System (INIS)
Hirayama, M.; Sugimasa, N.
1987-01-01
It is shown that novel topological invariants are associated with a class of Dirac operators. Trace formulas which are similar to but different from Callias's formula are derived. Implications of these topological invariants to anomalies in quantum field theory are discussed. A new class of anomalies are calculated for two models: one is two dimensional and the other four dimensional
Wilson loop invariants from WN conformal blocks
Directory of Open Access Journals (Sweden)
Oleg Alekseev
2015-12-01
Full Text Available Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern–Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU(N, which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.
Invariants of triangular Lie algebras
International Nuclear Information System (INIS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-01-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated
Action priors for learning domain invariances
CSIR Research Space (South Africa)
Rosman, Benjamin S
2015-04-01
Full Text Available behavioural invariances in the domain, by identifying actions to be prioritised in local contexts, invariant to task details. This information has the effect of greatly increasing the speed of solving new problems. We formalise this notion as action priors...
Optimization using quantum mechanics: quantum annealing through adiabatic evolution
International Nuclear Information System (INIS)
Santoro, Giuseppe E; Tosatti, Erio
2006-01-01
We review here some recent work in the field of quantum annealing, alias adiabatic quantum computation. The idea of quantum annealing is to perform optimization by a quantum adiabatic evolution which tracks the ground state of a suitable time-dependent Hamiltonian, where 'ℎ' is slowly switched off. We illustrate several applications of quantum annealing strategies, starting from textbook toy-models-double-well potentials and other one-dimensional examples, with and without disorder. These examples display in a clear way the crucial differences between classical and quantum annealing. We then discuss applications of quantum annealing to challenging hard optimization problems, such as the random Ising model, the travelling salesman problem and Boolean satisfiability problems. The techniques used to implement quantum annealing are either deterministic Schroedinger's evolutions, for the toy models, or path-integral Monte Carlo and Green's function Monte Carlo approaches, for the hard optimization problems. The crucial role played by disorder and the associated non-trivial Landau-Zener tunnelling phenomena is discussed and emphasized. (topical review)
Adiabatic instability in coupled dark energy/dark matter models
International Nuclear Information System (INIS)
Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark
2008-01-01
We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the Universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled cold dark matter and mass varying neutrino models of dark energy and clarify for these theories the regimes in which the instability can be evaded due to nonadiabaticity or weak coupling.
Maxwell equations in conformal invariant electrodynamics
International Nuclear Information System (INIS)
Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.
1983-01-01
We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)
Embedded graph invariants in Chern-Simons theory
International Nuclear Information System (INIS)
Major, Seth A.
1999-01-01
Chern-Simons gauge theory, since its inception as a topological quantum field theory, has proved to be a rich source of understanding for knot invariants. In this work the theory is used to explore the definition of the expectation value of a network of Wilson lines -- an embedded graph invariant. Using a generalization of the variational method, lowest-order results for invariants for graphs of arbitrary valence and general vertex tangent space structure are derived. Gauge invariant operators are introduced. Higher order results are found. The method used here provides a Vassiliev-type definition of graph invariants which depend on both the embedding of the graph and the group structure of the gauge theory. It is found that one need not frame individual vertices. However, without a global projection of the graph there is an ambiguity in the relation of the decomposition of distinct vertices. It is suggested that framing may be seen as arising from this ambiguity -- as a way of relating frames at distinct vertices
Relating measurement invariance, cross-level invariance, and multilevel reliability
Jak, S.; Jorgensen, T.D.
2017-01-01
Data often have a nested, multilevel structure, for example when data are collected from children in classrooms. This kind of data complicate the evaluation of reliability and measurement invariance, because several properties can be evaluated at both the individual level and the cluster level, as
International Nuclear Information System (INIS)
Li, Keqiao; Cai, Dehua; Liu, Yue; Jiang, Jingkai; Sun, Wei; He, Guogeng
2017-01-01
Graphical abstract: A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle using R290/refrigeration oil has been thermodynamically analyzed. Influences of the ejector and the non-adiabatic absorber applications on the system performance and other system operation parameters have been investigated. The simulation results will be of great help to the miniaturization and practical application of the air-cooled absorption refrigeration system. - Highlights: • A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle is proposed. • Influences of the ejector and the air-cooled non-adiabatic absorber applications on the system performance are investigated. • Variations of system performance and other system operation parameters are investigated. • R290/refrigeration oil mixture used as working pairs is analyzed. - Abstract: This paper thermodynamically analyzes a novel air-cooled non-adiabatic ejection-absorption refrigeration cycle with R290/oil mixture driven by exhaust heat. An ejector located at the upstream of the non-adiabatic absorber is employed to improve the cycle performance. Variations of COP, circulation ratio and component heat load of the system as a function of generating temperature, pressure ratio, absorption temperature, condensing temperature and evaporating temperature have been investigated in this work. The simulation results show that, compared with the conventional absorption refrigeration cycle, this non-adiabatic ejection-absorption refrigeration cycle has higher absorption efficiency, better performance, wider working condition range and lower total heat load and its COP can reach as high as 0.5297. The implementation of the ejector and the non-adiabatic absorber helps to realize the miniaturization and wider application of the absorption refrigeration system. In addition, R290/oil mixture is a kind of highly potential working pairs for absorption refrigeration.
Conformal invariance and two-dimensional physics
International Nuclear Information System (INIS)
Zuber, J.B.
1993-01-01
Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness
Pattern recognition: invariants in 3D
International Nuclear Information System (INIS)
Proriol, J.
1992-01-01
In e + e - events, the jets have a spherical 3D symmetry. A set of invariants are defined for 3D objects with a spherical symmetry. These new invariants are used to tag the number of jets in e + e - events. (K.A.) 3 refs
A test for ordinal measurement invariance
Ligtvoet, R.; Millsap, R.E.; Bolt, D.M.; van der Ark, L.A.; Wang, W.-C.
2015-01-01
One problem with the analysis of measurement invariance is the reliance of the analysis on having a parametric model that accurately describes the data. In this paper an ordinal version of the property of measurement invariance is proposed, which relies only on nonparametric restrictions. This
A scale invariant covariance structure on jet space
DEFF Research Database (Denmark)
Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo
2005-01-01
This paper considers scale invariance of statistical image models. We study statistical scale invariance of the covariance structure of jet space under scale space blurring and derive the necessary structure and conditions of the jet covariance matrix in order for it to be scale invariant. As par...
Inflation in a Scale Invariant Universe
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Noller, Johannes [Zurich U.; Ross, Graham G. [Oxford U., Theor. Phys.
2018-02-16
A scale-invariant universe can have a period of accelerated expansion at early times: inflation. We use a frame-invariant approach to calculate inflationary observables in a scale invariant theory of gravity involving two scalar fields - the spectral indices, the tensor to scalar ratio, the level of isocurvature modes and non-Gaussianity. We show that scale symmetry leads to an exact cancellation of isocurvature modes and that, in the scale-symmetry broken phase, this theory is well described by a single scalar field theory. We find the predictions of this theory strongly compatible with current observations.
Gromov-Witten invariants and localization
Morrison, David R.
2017-11-01
We give a pedagogical review of the computation of Gromov-Witten invariants via localization in 2D gauged linear sigma models. We explain the relationship between the two-sphere partition function of the theory and the Kähler potential on the conformal manifold. We show how the Kähler potential can be assembled from classical, perturbative, and non-perturbative contributions, and explain how the non-perturbative contributions are related to the Gromov-Witten invariants of the corresponding Calabi-Yau manifold. We then explain how localization enables efficient calculation of the two-sphere partition function and, ultimately, the Gromov-Witten invariants themselves. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed V Pestun and M Zabzine) which contains 17 chapters, available at [1].
Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses.
Scheenen, T.W.J.; Heerschap, A.; Klomp, D.W.J.
2008-01-01
OBJECTIVE: To explore the possibilities of proton spectroscopic imaging (1H-MRSI) of the human brain at 7 Tesla with adiabatic refocusing pulses. MATERIALS AND METHODS: A combination of conventional slice selective excitation and two pairs of slice selective adiabatic refocusing pulses (semi-LASER)
International Nuclear Information System (INIS)
Novelli, Anna; Belzig, Wolfgang; Nitzan, Abraham
2015-01-01
The time evolution and the asymptotic outcome of a Landau–Zener–Stueckelberg–Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non-adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength. (paper)
Testing Lorentz invariance of dark matter
Blas, Diego; Sibiryakov, Sergey
2012-01-01
We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.
Testing Lorentz invariance of dark matter
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Ivanov, Mikhail M.; Sibiryakov, Sergey, E-mail: diego.blas@cern.ch, E-mail: mm.ivanov@physics.msu.ru, E-mail: sibir@inr.ac.ru [Faculty of Physics, Moscow State University, Vorobjevy Gory, 119991 Moscow (Russian Federation)
2012-10-01
We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.
Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles
Khalifa, H. E.
1983-01-01
An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).
Affine invariants of convex polygons.
Flusser, Jan
2002-01-01
In this correspondence, we prove that the affine invariants, for image registration and object recognition, proposed recently by Yang and Cohen (see ibid., vol.8, no.7, p.934-46, July 1999) are algebraically dependent. We show how to select an independent and complete set of the invariants. The use of this new set leads to a significant reduction of the computing complexity without decreasing the discrimination power.
Rotational excitation of H2O by para-H2 from an adiabatically reduced dimensional potential.
Scribano, Yohann; Faure, Alexandre; Lauvergnat, David
2012-03-07
Cross sections and rate coefficients for low lying rotational transitions in H(2)O colliding with para-hydrogen pH(2) are computed using an adiabatic approximation which reduces the dimensional dynamics from a 5D to a 3D problem. Calculations have been performed at the close-coupling level using the recent potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)]. A good agreement is found between the reduced adiabatic calculations and the 5D exact calculations, with an impressive time saving and memory gain. This adiabatic reduction of dimensionality seems very promising for scattering studies involving the excitation of a heavy target molecule by a light molecular projectile. © 2012 American Institute of Physics
Adiabatic nanofocusing: Spectroscopy, transport and imaging investigation of the nano world
Giugni, Andrea
2014-11-01
Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.
Adiabatic nanofocusing: Spectroscopy, transport and imaging investigation of the nano world
Giugni, Andrea; Allione, Marco; Torre, Bruno; Das, Gobind; Francardi, Marco; Moretti, Manola; Malerba, Mario; Perozziello, Gerardo; Candeloro, Patrizio; Di Fabrizio, Enzo M.
2014-01-01
Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.
Notes on algebraic invariants for non-commutative dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Longo, R [Rome Univ. (Italy). Istituto di Matematica
1979-11-01
We consider an algebraic invariant for non-commutative dynamical systems naturally arising as the spectrum of the modular operator associated to an invariant state, provided certain conditions of mixing type are present. This invariant turns out to be exactly the annihilator of the invariant T of Connes. Further comments are included, in particular on the type of certain algebras of local observables
Building an adiabatic quantum computer simulation in the classroom
Rodríguez-Laguna, Javier; Santalla, Silvia N.
2018-05-01
We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.
Conformal invariance in supergravity
International Nuclear Information System (INIS)
Bergshoeff, E.A.
1983-01-01
In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)
Acoustic solitary waves in dusty and/or multi-ion plasmas with cold, adiabatic, and hot constituents
International Nuclear Information System (INIS)
Verheest, Frank; Hellberg, Manfred A.; Kourakis, Ioannis
2008-01-01
Large nonlinear acoustic waves are discussed in a four-component plasma, made up of two superhot isothermal species, and two species with lower thermal velocities, being, respectively, adiabatic and cold. First a model is considered in which the isothermal species are electrons and ions, while the cooler species are positive and/or negative dust. Using a Sagdeev pseudopotential formalism, large dust-acoustic structures have been studied in a systematic way, to delimit the compositional parameter space in which they can be found, without restrictions on the charges and masses of the dust species and their charge signs. Solitary waves can only occur for nonlinear structure velocities smaller than the adiabatic dust thermal velocity, leading to a novel dust-acoustic-like mode based on the interplay between the two dust species. If the cold and adiabatic dust are oppositely charged, only solitary waves exist, having the polarity of the cold dust, their parameter range being limited by infinite compression of the cold dust. However, when the charges of the cold and adiabatic species have the same sign, solitary structures are limited for increasing Mach numbers successively by infinite cold dust compression, by encountering the adiabatic dust sonic point, and by the occurrence of double layers. The latter have, for smaller Mach numbers, the same polarity as the charged dust, but switch at the high Mach number end to the opposite polarity. Typical Sagdeev pseudopotentials and solitary wave profiles have been presented. Finally, the analysis has nowhere used the assumption that the dust would be much more massive than the ions and hence, one or both dust species can easily be replaced by positive and/or negative ions and the conclusions will apply to that plasma model equally well. This would cover a number of different scenarios, such as, for example, very hot electrons and ions, together with a mix of adiabatic ions and dust (of either polarity) or a very hot electron
Interacting adiabatic quantum motor
Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix
2018-05-01
We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.
Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loading
Energy Technology Data Exchange (ETDEWEB)
Kuang, Lianjun; Chen, Zhiyong, E-mail: czysh@netease.com; Jiang, Yanghui; Wang, Zhiming; Wang, Renke; Liu, Chuming
2017-02-08
The hat-shaped samples cut from rolled and annealed titanium plates were prepared to explore the adiabatic shear behaviors subjected to high-strain-rate deformation operated via Split Hopkinson Pressure Bar. The dynamic shear response calculation reveals that dynamic deformation processes of both state samples can be divided in similar three stages but rolled sample shows a higher susceptibility of adiabatic shear localization compared with the annealed one. Optical microscopy and electronic backscatter diffraction technique (EBSD) were used to systematically analyze the microstructure and texture characteristics. The results show that adiabatic shear bands form in both state samples and rotational dynamic recrystallization (RDRX) occurs within shear area and results in the formation of ultrafine equiaxed grains. Furthermore, ultrafine equiaxed grains within adiabatic shear bands have the same texture feature that <11–20> direction and {10-10} plane parallel to macro local shear direction and shear plane respectively. In the deformation region around the shear band, {10–12} <–1011> tensile and {11–22} <11-2-3> compressive two types twins are observed in both state samples and {10–12} <–1011> tensile twins are more frequently observed in rolled sample. In the rolled sample, {10–12} <–1011> tensile twins are more likely to happen in the hat-brim side than the hat-body side due to the difference of stress state in two sides.
Object recognition by implicit invariants
Czech Academy of Sciences Publication Activity Database
Flusser, Jan; Kautsky, J.; Šroubek, Filip
2007-01-01
Roč. 2007, č. 4673 (2007), s. 856-863 ISSN 0302-9743. [Computer Analysis of Images and Patterns. Vienna, 27.08.2007-29.08.2007] R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Invariants * implicit invariants * moments * orthogonal polynomials * nonlinear object deformation Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.402, year: 2005 http:// staff .utia.cas.cz/sroubekf/papers/CAIP_07.pdf
International Nuclear Information System (INIS)
Vlad, Valentin I.; Ionescu-Pallas, Nicholas
2000-10-01
The Planck radiation spectrum of ideal cubic and spherical cavities, in the region of small adiabatic invariance, γ = TV 1/3 , is shown to be discrete and strongly dependent on the cavity geometry and temperature. This behavior is the consequence of the random distribution of the state weights in the cubic cavity and of the random overlapping of the successive multiplet components, for the spherical cavity. The total energy (obtained by summing up the exact contributions of the eigenvalues and their weights, for low values of the adiabatic invariance) does not obey any longer Stefan-Boltzmann law. The new law includes a corrective factor depending on γ and imposes a faster decrease of the total energy to zero, for γ → 0. We have defined the double quantized regime both for cubic and spherical cavities by the superior and inferior limits put on the principal quantum numbers or the adiabatic invariance. The total energy of the double quantized cavities shows large differences from the classical calculations over unexpected large intervals, which are measurable and put in evidence important macroscopic quantum effects. (author)
Quantum Adiabatic Algorithms and Large Spin Tunnelling
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
Modelling of an adiabatic trickle-bed reactor with phase change
DEFF Research Database (Denmark)
Ramirez Castelan, Carlos Eduardo; Hidalgo-Vivas, Angelica; Brix, Jacob
2017-01-01
This paper describes a modelling approach of the behavior of trickle-bed reactors used for catalytic hydrotreating of oil fractions. A dynamic plug-flow heterogeneous one-dimensional adiabatic model was used to describe the main reactions present in the hydrotreating process: hydrodesulfurization...
Modular invariance, chiral anomalies and contact terms
International Nuclear Information System (INIS)
Kutasov, D.
1988-03-01
The chiral anomaly in heterotic strings with full and partial modular invariance in D=2n+2 dimensions is calculated. The boundary terms which were present in previous calculations are shown to be cancelled in the modular invariant case by contact terms, which can be obtained by an appropriate analytic continuation. The relation to the low energy field theory is explained. In theories with partial modular invariance, an expression for the anomaly is obtained and shown to be non zero in general. (author)
Energy Technology Data Exchange (ETDEWEB)
Coïsson, M. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Barrera, G. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); University of Torino, Chemistry Department, via P. Giuria 7, 10125 Torino (Italy); Celegato, F.; Martino, L.; Vinai, F. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Martino, P. [Politronica srl, via Livorno 60, 10144 Torino (Italy); Ferraro, G. [Center for Space Human Robotics, Istituto Italiano di Tecnologia - IIT, corso Trento 21, 10129 Torino (Italy); Tiberto, P. [INRIM, strada delle Cacce 91, 10135 Torino (Italy)
2016-10-01
An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained. - Highlights: • Development and thermodynamic modelling of a hyperthermia setup operating in non-adiabatic conditions. • Calibration of the experimental setup and validation of the model. • Accurate measurement of specific absorption rate and intrinsic loss power in non-adiabatic conditions.
Modification of optical properties by adiabatic shifting of resonances in a four-level atom
Dutta, Bibhas Kumar; Panchadhyayee, Pradipta
2018-04-01
We describe the linear and nonlinear optical properties of a four-level atomic system, after reducing it to an effective two-level atomic model under the condition of adiabatic shifting of resonances driven by two coherent off-resonant fields. The reduced form of the Hamiltonian corresponding to the two-level system is obtained by employing an adiabatic elimination procedure in the rate equations of the probability amplitudes for the proposed four-level model. For a weak probe field operating in the system, the nonlinear dependence of complex susceptibility on the Rabi frequencies and the detuning parameters of the off-resonant driving fields makes it possible to exhibit coherent control of single-photon and two-photon absorption and transparency, the evolution of enhanced Self-Kerr nonlinearity and noticeable dispersive switching. We have shown how the quantum interference results in the generic four-level model at the adiabatic limit. The present scheme describes the appearance of single-photon transparency without invoking any exact two-photon resonance.
Väliviita, Jussi; Muhonen, Vesa
2003-09-26
In general correlated models, in addition to the usual adiabatic component with a spectral index n(ad1) there is another adiabatic component with a spectral index n(ad2) generated by entropy perturbation during inflation. We extend the analysis of a correlated mixture of adiabatic and isocurvature cosmic microwave background fluctuations of the Wilkinson Microwave Anisotropy Probe (WMAP) group, who set the two adiabatic spectral indices equal. Allowing n(ad1) and n(ad2) to vary independently we find that the WMAP data favor models where the two adiabatic components have opposite spectral tilts. Using the WMAP data only, the 2sigma upper bound for the isocurvature fraction f(iso) of the initial power spectrum at k(0)=0.05 Mpc(-1) increases somewhat, e.g., from 0.76 of n(ad2)=n(ad1) models to 0.84 with a prior n(iso)<1.84 for the isocurvature spectral index.
Neutron generator based on adiabatic trap
International Nuclear Information System (INIS)
Golovin, I.N.; Zhil'tsov, V.A.; Panov, D.A.; Skovoroda, A.A.; Shatalov, G.E.; Shcherbakov, A.G.
1988-01-01
A possibility of 14 MeV neutron generator (NG) production on the basis of axial-symmetric adiabatic trap with MHD cusped armature for the testing of materials and elements of the DT reactor first wall and blanket structure is discussed. General requirements to NG are formulated. It is shown that the NG variant discussed meets the requirements formulated. Approximate calculation of the NG parameters has shown that total energy consumption by the generator does not exceed 220 MW at neutron flux specific capacity of 2.5 MW/m 2 and radiation test area of 5-6 m 2
Phase avalanches in near-adiabatic evolutions
International Nuclear Information System (INIS)
Vertesi, T.; Englman, R.
2006-01-01
In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes
Strong coupling in a gauge invariant field theory
Energy Technology Data Exchange (ETDEWEB)
Johnson, K. [Physics Department, Massachusetts Institute of Technology, Cambridge, MA (United States)
1963-01-15
I would like to discuss some approximations which may be significant in the domain of strong coupling in a field system analogous to quantum electrodynamics. The motivation of this work is the idea that the strong couplings and elementary particle spectrum may be the consequence of the dynamics of a system whose underlying description is in terms of a set of Fermi fields gauge invariantly coupled to a single (''bare'') massless neutral vector field. The basis of this gauge invariance would of course be the exact conservation law of baryons or ''nucleonic charge''. It seems to me that a coupling scheme based on an invariance principle is most attractive if that invariance is an exact one. It would then be nice to try to account for the approximate invariance principles in the same way one would describe ''accidental degeneracies'' in any quantum system.
Quantum Hall Conductivity and Topological Invariants
Reyes, Andres
2001-04-01
A short survey of the theory of the Quantum Hall effect is given emphasizing topological aspects of the quantization of the conductivity and showing how topological invariants can be derived from the hamiltonian. We express these invariants in terms of Chern numbers and show in precise mathematical terms how this relates to the Kubo formula.
Non-adiabatic rotational excitation of dipolar molecule under the ...
Indian Academy of Sciences (India)
J. Chem. Sci. Vol. 125, No. 5, September 2013, pp. 1213–1221. c Indian Academy of Sciences. ... The rotational wave packets of LiCl molecule excited non-adiabatically by half cycle pulse. (HCP) is .... pared to the intensities required for the ionization of ..... out and with delayed ultrashort HCP at different initial pulse dura-.
Quantized gauge invariant periodic TDHF solutions
International Nuclear Information System (INIS)
Kan, K.-K.; Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.
1979-01-01
Time-dependent Hartree-Fock (TDHF) is used to study steady state large amplitude nuclear collective motions, such as vibration and rotation. As is well known the small amplitude TDHF leads to the RPA equation. The analysis of periodicity in TDHF is not trivial because TDHF is a nonlinear theory and it is not known under what circumstances a nonlinear theory can support periodic solutions. It is also unknown whether such periodic solution, if they exist, form a continuous or a discrete set. But, these properties may be important in obtaining the energy spectrum of the collective states from the TDHF description. The periodicity and Gauge Invariant Periodicity of solutions are investigated for that class of models whose TDHF solutions depend on time through two parameters. In such models TDHF supports a continuous family of periodic solutions, but only a discrete subset of these is gauge invariant. These discrete Gauge Invariant Periodic solutions obey the Bohr-Summerfeld quantization rule. The energy spectrum of the Gauge Invariant Periodic solutions is compared with the exact eigenergies in one specific example
Classification of simple current invariants
Gato-Rivera, Beatriz
1992-01-01
We summarize recent work on the classification of modular invariant partition functions that can be obtained with simple currents in theories with a center (Z_p)^k with p prime. New empirical results for other centers are also presented. Our observation that the total number of invariants is monodromy-independent for (Z_p)^k appears to be true in general as well. (Talk presented in the parallel session on string theory of the Lepton-Photon/EPS Conference, Geneva, 1991.)
Adiabatic quantum games and phase-transition-like behavior between optimal strategies
de Ponte, M. A.; Santos, Alan C.
2018-06-01
In this paper we propose a game of a single qubit whose strategies can be implemented adiabatically. In addition, we show how to implement the strategies of a quantum game through controlled adiabatic evolutions, where we analyze the payment of a quantum player for various situations of interest: (1) when the players receive distinct payments, (2) when the initial state is an arbitrary superposition, and (3) when the device that implements the strategy is inefficient. Through a graphical analysis, it is possible to notice that the curves that represent the gains of the players present a behavior similar to the curves that give rise to a phase transition in thermodynamics. These transitions are associated with optimal strategy changes and occur in the absence of entanglement and interaction between the players.
Keefe, Peter
2004-01-01
Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of tradi...
PIPER Continuous Adiabatic Demagnetization Refrigerator
Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.
2017-01-01
We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.
Multiperiod Maximum Loss is time unit invariant.
Kovacevic, Raimund M; Breuer, Thomas
2016-01-01
Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant.
Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat
Energy Technology Data Exchange (ETDEWEB)
Melvin, J.; Lim, H.; Rana, V.; Glimm, J. [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600 (United States); Cheng, B.; Sharp, D. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-02-15
We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.
Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat
International Nuclear Information System (INIS)
Melvin, J.; Lim, H.; Rana, V.; Glimm, J.; Cheng, B.; Sharp, D. H.; Wilson, D. C.
2015-01-01
We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results
Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat
Melvin, J.; Lim, H.; Rana, V.; Cheng, B.; Glimm, J.; Sharp, D. H.; Wilson, D. C.
2015-02-01
We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.
International Nuclear Information System (INIS)
Das, Parichay K.
2012-01-01
Highlights: ► This method for estimating ΔT ad (t) against time in a semi-batch reactor is distinctively pioneer and novel. ► It has established uniquely a direct correspondence between the evolution of ΔT ad (t) in RC and C A (t) in a semi-batch reactor. ► Through a unique reaction scheme, the independent effects of heat of mixing and reaction on ΔT ad (t) has been demonstrated quantitatively. ► This work will help to build a thermally safe corridor of a thermally hazard reaction. ► This manuscript, the author believes will open a new vista for further research in Adiabatic Calorimetry. - Abstract: A novel method for estimating the transient profile of adiabatic rise in temperature has been developed from the heat flow data for exothermic chemical reactions that are conducted in reaction calorimeter (RC). It has also been mathematically demonstrated by the present design that there exists a direct qualitative equivalence between the temporal evolution of the adiabatic temperature rise and the concentration of the limiting reactant for an exothermic chemical reaction, carried out in semi batch mode. The proposed procedure shows that the adiabatic temperature rise will always be less than that of the reaction executed at batch mode thereby affording a thermally safe corridor. Moreover, a unique reaction scheme has been designed to establish the independent heat effect of dissolution and reaction quantitatively. It is hoped that the testimony of the transient adiabatic temperature rise that can be prepared by the proposed method, may provide ample scope for further research.
Dimuon Level-1 invariant mass in 2017 data
CMS Collaboration
2018-01-01
This document shows the Level-1 (L1) dimuon invariant mass with and without L1 muon track extrapolation to the collision vertex and how it compares with the offline reconstructed dimuon invariant mass. The plots are made with the data sample collected in 2017. The event selection, the matching algorithm and the results of the L1 dimuon invariant mass are described in the next pages.
A Balanced Comparison of Object Invariances in Monkey IT Neurons.
Ratan Murty, N Apurva; Arun, Sripati P
2017-01-01
Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, we targeted invariant neural representations in the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation. Across the recorded population, IT neurons generalized across size and position both stronger and faster than to rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in a temporal order reflective of their underlying computational complexity.
International Nuclear Information System (INIS)
Konrat, Robert; Tollinger, Martin
1999-01-01
A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented
Rotational state dependence of ion-polar molecule reactions at very low temperature
International Nuclear Information System (INIS)
Dubernet, M.L.; McCarroll, R.
1989-01-01
The adiabatic rotational state method is used to investigate the rotational state dependence of the rate coefficients for ion-polar molecule reactions in the very low temperature regime characteristic of interstellar molecular clouds. Results obtained for the systems H 3 + +HCl and H 3 + +HCN indicate that all the methods based on the adiabatic separation of the rotational and radial motion of the collision complex - adiabatic capture centrifugal sudden approximation (ACCSA), statistical adiabatic channel model, classical adiabatic invariance method - agree very satisfactorily in the low temperature limit. Discrepancies observed between some of the published data would appear to arise from numerical inaccuracies rather than from any defect of the theory. (orig.)
Humeniuk, Alexander; Mitrić, Roland
2017-12-01
A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.
Invariant probabilities of transition functions
Zaharopol, Radu
2014-01-01
The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of t...
International Nuclear Information System (INIS)
Pokhozhaev, Stanislav I
2011-01-01
The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.
Modular categories and 3-manifold invariants
International Nuclear Information System (INIS)
Tureav, V.G.
1992-01-01
The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds
Knot invariants and higher representation theory
Webster, Ben
2018-01-01
The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for \\mathfrak{sl}_2 and \\mathfrak{sl}_3 and by Mazorchuk-Stroppel and Sussan for \\mathfrak{sl}_n. The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is \\mathfrak{sl}_n, the author shows that these categories agree with certain subcategories of parabolic category \\mathcal{O} for \\mathfrak{gl}_k.
Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.
Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin
2015-11-21
Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.
Existence of a last invariant of conservative motion
International Nuclear Information System (INIS)
Hall, L.S.
1982-01-01
A general theory of integrable systems in two dimensions is formulated and applied. (The theory also has applications to more dimensions). The constraints are found which admit to general integrability of the orbits for magnetic forces as well as for forces derivable from a potential. When a system admits a given invariant, the invariant is found. A number of examples including known and apparently previously unknown invariants are given. The theory of exact integrals of the motion also can be extended to the derivation of approximate invariants. The general theory admits a variational principle, among other approximation techniques, for the computation of a best approximate invariant. The problem of the general cubic potential with one symmetric coordinate, V = 1/2 Ax 2 + 1/2 By 2 + Cx 2 y + 1/3 Dy 3 (of which the well-studied Henon-Heiles potential is the special case for A = B and C = -D), is examined in detail
Boehler, R.
1982-07-01
The adiabats of olivine, magnesium oxide, and quartz were measured up to 50kbar and 1000 K. An end-loaded piston-cylinder apparatus with an in situ pressure gauge and a very fine thermocouple was used to measure (∂T/∂P)s during adiabatic compression. A power law between (∂T/∂P)s and compression yields values of the power n = -∂ ln (∂T/∂P)s/∂ ln ρ that agree with previous results from salts, metals, and fluids. Assuming constant values for n, the adiabtic gradient for an olivine upper mantle and a magnesium oxide lower mantle was calculated. The results agree well with some previous theoretical estimates. The volume dependence of the Grüneisen parameter γ was calculated from the thermodynamic equation ∂ ln γ/∂ ln ρ = ∂B/∂P - n, where B is the isothermal bulk modulus. γ is found to a good approximation to be proportional to volume. Table 6 is available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C. 20009. Document J82-002; $1.00. Payment must accompany order.
Knot invariants derived from quandles and racks
Kamada, Seiichi
2002-01-01
The homology and cohomology of quandles and racks are used in knot theory: given a finite quandle and a cocycle, we can construct a knot invariant. This is a quick introductory survey to the invariants of knots derived from quandles and racks.
Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction
Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.
2015-01-01
Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.
Invariant approach to CP in unbroken Δ(27
Directory of Open Access Journals (Sweden)
Gustavo C. Branco
2015-10-01
Full Text Available The invariant approach is a powerful method for studying CP violation for specific Lagrangians. The method is particularly useful for dealing with discrete family symmetries. We focus on the CP properties of unbroken Δ(27 invariant Lagrangians with Yukawa-like terms, which proves to be a rich framework, with distinct aspects of CP, making it an ideal group to investigate with the invariant approach. We classify Lagrangians depending on the number of fields transforming as irreducible triplet representations of Δ(27. For each case, we construct CP-odd weak basis invariants and use them to discuss the respective CP properties. We find that CP violation is sensitive to the number and type of Δ(27 representations.
Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Ross, Graham G. [Oxford U., Theor. Phys.
2018-01-23
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of "inertial spontaneous symmetry breaking" that does not involve a potential. This is dictated by the structure of the Weyl current, $K_\\mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEV's of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.
Invariance as a Tool for Ontology of Information
Directory of Open Access Journals (Sweden)
Marcin J. Schroeder
2016-03-01
Full Text Available Attempts to answer questions regarding the ontological status of information are frequently based on the assumption that information should be placed within an already existing framework of concepts of established ontological statuses related to science, in particular to physics. However, many concepts of physics have undetermined or questionable ontological foundations. We can look for a solution in the recognition of the fundamental role of invariance with respect to a change of reference frame and to other transformations as a criterion for objective existence. The importance of invariance (symmetry as a criterion for a primary ontological status can be identified in the methodology of physics from its beginnings in the work of Galileo, to modern classifications of elementary particles. Thus, the study of the invariance of the theoretical description of information is proposed as the first step towards ontology of information. With the exception of only a few works among publications which set the paradigm of information studies, the issues of invariance were neglected. Orthodox analysis of information lacks conceptual framework for the study of invariance. The present paper shows how invariance can be formalized for the definition of information and, accompanying it, mathematical formalism proposed by the author in his earlier publications.
Adiabatic Low-Pass J Filters for Artifact Suppression in Heteronuclear NMR
DEFF Research Database (Denmark)
Meier, Sebastian; Benie, Andrew J; Duus, Jens Øllgaard
2009-01-01
NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts....
Slow feature analysis: unsupervised learning of invariances.
Wiskott, Laurenz; Sejnowski, Terrence J
2002-04-01
Invariant features of temporally varying signals are useful for analysis and classification. Slow feature analysis (SFA) is a new method for learning invariant or slowly varying features from a vectorial input signal. It is based on a nonlinear expansion of the input signal and application of principal component analysis to this expanded signal and its time derivative. It is guaranteed to find the optimal solution within a family of functions directly and can learn to extract a large number of decorrelated features, which are ordered by their degree of invariance. SFA can be applied hierarchically to process high-dimensional input signals and extract complex features. SFA is applied first to complex cell tuning properties based on simple cell output, including disparity and motion. Then more complicated input-output functions are learned by repeated application of SFA. Finally, a hierarchical network of SFA modules is presented as a simple model of the visual system. The same unstructured network can learn translation, size, rotation, contrast, or, to a lesser degree, illumination invariance for one-dimensional objects, depending on only the training stimulus. Surprisingly, only a few training objects suffice to achieve good generalization to new objects. The generated representation is suitable for object recognition. Performance degrades if the network is trained to learn multiple invariances simultaneously.
Normal Anti-Invariant Submanifolds of Paraquaternionic Kähler Manifolds
Directory of Open Access Journals (Sweden)
Novac-Claudiu Chiriac
2006-12-01
Full Text Available We introduce normal anti-invariant submanifolds of paraquaternionic Kähler manifolds and study the geometric structures induced on them. We obtain necessary and sufficient conditions for the integrability of the distributions defined on a normal anti-invariant submanifold. Also, we present characterizations of local (global anti-invariant products.
Energy Technology Data Exchange (ETDEWEB)
Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others
2016-05-15
A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.
Spin foam diagrammatics and topological invariance
International Nuclear Information System (INIS)
Girelli, Florian; Oeckl, Robert; Perez, Alejandro
2002-01-01
We provide a simple proof of the topological invariance of the Turaev-Viro model (corresponding to simplicial 3D pure Euclidean gravity with cosmological constant) by means of a novel diagrammatic formulation of the state sum models for quantum BF theories. Moreover, we prove the invariance under more general conditions allowing the state sum to be defined on arbitrary cellular decompositions of the underlying manifold. Invariance is governed by a set of identities corresponding to local gluing and rearrangement of cells in the complex. Due to the fully algebraic nature of these identities our results extend to a vast class of quantum groups. The techniques introduced here could be relevant for investigating the scaling properties of non-topological state sums, proposed as models of quantum gravity in 4D, under refinement of the cellular decomposition
Non - Adiabaticity and Novel Isotope Effect in the Doped Cuprates
International Nuclear Information System (INIS)
Kresin, V.; WOLF, S. A.
1995-01-01
This paper reports a novel isotope effect which is due to a strong non-adiabaticity that manifests itself in the dependence of the carrier concentration on the isotopic mass. The critical temperature in turn depends on the carrier concentration giving rise to a unique and non-phononic isotope shift. (author)
Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition
International Nuclear Information System (INIS)
Qian Shangwu; Gu Zhiyu
2005-01-01
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the general time-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.
Second-order gauge-invariant perturbations during inflation
International Nuclear Information System (INIS)
Finelli, F.; Marozzi, G.; Vacca, G. P.; Venturi, G.
2006-01-01
The evolution of gauge invariant second-order scalar perturbations in a general single field inflationary scenario are presented. Different second-order gauge-invariant expressions for the curvature are considered. We evaluate perturbatively one of these second order curvature fluctuations and a second-order gauge-invariant scalar field fluctuation during the slow-roll stage of a massive chaotic inflationary scenario, taking into account the deviation from a pure de Sitter evolution and considering only the contribution of super-Hubble perturbations in mode-mode coupling. The spectra resulting from their contribution to the second order quantum correlation function are nearly scale-invariant, with additional logarithmic corrections with respect to the first order spectrum. For all scales of interest the amplitude of these spectra depends on the total number of e-folds. We find, on comparing first and second order perturbation results, an upper limit to the total number of e-folds beyond which the two orders are comparable
Field transformations, collective coordinates and BRST invariance
International Nuclear Information System (INIS)
Alfaro, J.; Damgaard, P.H.
1989-12-01
A very large class of general field transformations can be viewed as a field theory generalization of the method of collective coordinates. The introduction of new variables induces a gauge invariance in the transformed theory, and the freedom left in gauge fixing this new invariance can be used to find equivalent formulations of the same theory. First the Batalin-Fradkin-Vilkovisky formalism is applied to the Hamiltonian formulation of physical systems that can be described in terms of collective coordinates. We then show how this type of collective coordinate scheme can be generalized to field transformations, and discuss the War Identities of the associated BRST invariance. For Yang-Mills theory a connection to topological field theory and the background field method is explained in detail. In general the resulting BRST invariance we find hidden in any quantum field theory can be viewed as a consequence of our freedom in choosing a basis of coordinates φ(χ) in the action S[φ]. (orig.)
Modified dispersion relations, inflation, and scale invariance
Bianco, Stefano; Friedhoff, Victor Nicolai; Wilson-Ewing, Edward
2018-02-01
For a certain type of modified dispersion relations, the vacuum quantum state for very short wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave background. We point out that for this scenario to be possible, it is necessary to redshift these short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost. This requires nontrivial background dynamics before the onset of standard radiation-dominated cosmology; we demonstrate that one possible solution is inflation with a sufficiently large Hubble rate, for this slow roll is not necessary. In addition, we also show that if the slow-roll condition is added to inflation with a large Hubble rate, then for any power law modified dispersion relation quantum vacuum fluctuations become nearly scale-invariant when they exit the Hubble radius.
Adiabatic/diabatic polarization beam splitter
Energy Technology Data Exchange (ETDEWEB)
DeRose, Christopher; Cai, Hong
2017-09-12
The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.
Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter
Energy Technology Data Exchange (ETDEWEB)
Jhu, Can-Yong [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Wang, Yih-Wen, E-mail: g9410825@yuntech.edu.tw [Department of Occupational Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, 79-9, Sha-Luen-Hu, Xi-Zhou-Li, Houlong, Miaoli 35664, Taiwan, ROC (China); Shu, Chi-Min [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Chang, Jian-Chuang; Wu, Hung-Chun [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Rm. 222, Bldg. 77, 2F, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan, ROC (China)
2011-08-15
Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO{sub 2}) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO{sub 2} cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2 V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T{sub 0}), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T{sub max}) and pressure (P{sub max}). The T{sub max} and P{sub max} of the charged Li-ion battery during the runaway reaction reach 903.0 {sup o}C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO{sub 2} batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.
Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter
International Nuclear Information System (INIS)
Jhu, Can-Yong; Wang, Yih-Wen; Shu, Chi-Min; Chang, Jian-Chuang; Wu, Hung-Chun
2011-01-01
Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO 2 ) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO 2 cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2 V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T 0 ), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T max ) and pressure (P max ). The T max and P max of the charged Li-ion battery during the runaway reaction reach 903.0 o C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO 2 batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.
Particle dynamics in a wave with variable amplitude
International Nuclear Information System (INIS)
Cary, J.R.
1992-01-01
Our past research efforts led to the derivation of the adiabatic invariant in spatially varying accelerator structures, to the calculation of the loss of the invariant due to trapping, and to a method for determining transverse invariants using a nonperturbative approach to the Hamilton-Jacobi equation. These research efforts resulted in the training of two graduate students who are now working in the area of accelerator physics
Real-time trajectory analysis using stacked invariance methods
Kitts, B.
1998-01-01
Invariance methods are used widely in pattern recognition as a preprocessing stage before algorithms such as neural networks are applied to the problem. A pattern recognition system has to be able to recognise objects invariant to scale, translation, and rotation. Presumably the human eye implements some of these preprocessing transforms in making sense of incoming stimuli, for example, placing signals onto a log scale. This paper surveys many of the commonly used invariance methods, and asse...
Invariant subsets under compact quantum group actions
Huang, Huichi
2012-01-01
We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.
Borromean surgery formula for the Casson invariant
DEFF Research Database (Denmark)
Meilhan, Jean-Baptiste Odet Thierry
2008-01-01
It is known that every oriented integral homology 3-sphere can be obtained from S3 by a finite sequence of Borromean surgeries. We give an explicit formula for the variation of the Casson invariant under such a surgery move. The formula involves simple classical invariants, namely the framing...
Translationally invariant and non-translationally invariant empirical effective interactions
International Nuclear Information System (INIS)
Golin, M.; Zamick, L.
1975-01-01
In this work empirical deficiencies of the core-renormalized realistic effective interactions are examined and simple corrective potentials are sought. The inability of the current realistic interactions to account for the energies of isobaric analog states is noted, likewise they are unable to reproduce the changes in the single-particle energies, as one goes from one closed shell to another. It is noted that the Schiffer interaction gives better results for these gross properties and this is attributed to a combination of several facts. First, to the inclusion of long range terms in the Schiffer potential, then to the presence of relative p-state terms (l=1), in addition to the usual relative s-state terms (l=0). The strange shape of the above interaction is further attributed to the fact that it is translationally invariant whereas the theory of core-polarization yields non-translationally invariant potentials. Consequently, as a correction to the monopole deficiencies of the realistic interactions the term Vsub(mon)=ar 2 (1)r 2 (2)+r 2 (1)+β[r 4 (1)r 2 (2)r 4 (2) ] is proposed. (Auth.)
How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?
International Nuclear Information System (INIS)
Yarman, T.; Kholmetskii, A. L.
2011-01-01
We continue to analyse the known law of adiabatic transformation for an ideal gas PV 5/3 = Constant, where P is the pressure and V is the volume, and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al. 2010 Int. J. Phys. Sci. 5 1524). We explicitly determine the constant for the general parallelepiped geometry of a container. We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation. Physical implications of the results obtained are discussed. (physics of gases, plasmas, and electric discharges)
Conformal (WEYL) invariance and Higgs mechanism
International Nuclear Information System (INIS)
Zhao Shucheng.
1991-10-01
A massive Yang-Mills field theory with conformal invariance and gauge invariance is proposed. It involves gravitational and various gauge interactions, in which all the mass terms appear as a uniform form of interaction m(x) KΦ(x). When the conformal symmetry is broken spontaneously and gravitation is ignored, the Higgs field emerges naturally, where the imaginary mass μ can be described as a background curvature. (author). 7 refs
Adiabatic superconducting cells for ultra-low-power artificial neural networks
Directory of Open Access Journals (Sweden)
Andrey E. Schegolev
2016-10-01
Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
Topological excitations in U(1) -invariant theories
International Nuclear Information System (INIS)
Savit, R.
1977-01-01
A class of U(1) -invariant theories in d dimensions is introduced on a lattice. These theories are labeled by a simplex number s, with 1 < or = s < d. The case with s = 1 is the X-Y model; and s = 2 gives compact photodynamics. An exact duality transformation is applied to show that the U(1) -invariant theory in d dimensions with simplex number s is the same as a similar theory in d dimensions but which is Z /sub infinity/-invariant and has simplex number s = d-s. This dual theory describes the topological excitations of the original theory. These excitations are of dimension s - 1
Adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems
International Nuclear Information System (INIS)
Baranger, M.; Veneroni, M.
1978-01-01
We show how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and we start from the time-dependent Hartree-Fock equation. To this we add the adiabatic approximation, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The crucial step is the decomposition of the single-particle density matrix p in the form exp(i/sub chi/) rho/sub omicron/exp(-i/sub chi/), where rho/sub omicron/ represents a time-even Slater determinant and plays the role of coordinate. Then chi plays the role of momentum, and the adiabatic assumption is that chi is small. The energy is expanded in powers of chi, the zeroth-order being the collective potential energy. The analogy with classical mechanics is stressed and studied. The same adiabatic equations of motion are derived in three different ways (directly, from the Lagrangian, from the Hamiltonian), thus proving the consistency of the theory. The dynamical equation is not necessary for writing the energy or for the subsequent quantization which leads to a Schroedinger equation, but it must be used to check the validity of various approximation schemes, particularly to reduce the problem to a few degrees of freedom. The role of the adiabatic hypothesis, its definition, and range of validity, are analyzed in great detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given, and the moment of inertia under rotation is that of Thouless and Valatin. For a quadrupole two-body force, the Baranger-Kumar formalism is recovered. The self-consistency brings additional terms to the Inglis cranking formula. Comparison is also made with generator coordinate methods
Invariance group of the Finster metric function
International Nuclear Information System (INIS)
Asanov, G.S.
1985-01-01
An invariance group of the Finsler metric function is introduced and studied that directly generalized the respective concept (a group of Euclidean rolations) of the Rieman geometry. A sequential description of the isotopic invariance of physical fields on the base of the Finsler geometry is possible in terms of this group
Note on Weyl versus conformal invariance in field theory
Energy Technology Data Exchange (ETDEWEB)
Wu, Feng [Nanchang University, Department of Physics, Nanchang (China)
2017-12-15
It was argued recently that conformal invariance in flat spacetime implies Weyl invariance in a general curved background for unitary theories and possible anomalies in the Weyl variation of scalar operators are identified. We argue that generically unitarity alone is not sufficient for a conformal field theory to be Weyl invariant. Furthermore, we show explicitly that when a unitary conformal field theory couples to gravity in a Weyl-invariant way, each primary scalar operator that is either relevant or marginal in the unitary conformal field theory corresponds to a Weyl-covariant operator in the curved background. (orig.)
Invariant functionals in higher-spin theory
Directory of Open Access Journals (Sweden)
M.A. Vasiliev
2017-03-01
Full Text Available A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F⁎(B(x in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space–time points of the factors of B(x, which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.
Quantum implications of a scale invariant regularization
Ghilencea, D. M.
2018-04-01
We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).
How to Find Invariants for Coloured Petri Nets
DEFF Research Database (Denmark)
Jensen, Kurt
1981-01-01
This paper shows how invariants can be found for coloured Petri Nets. We define a set of transformation rules, which can be used to transform the incidence matrix, without changing the set of invariants....
Groups, generators, syzygies, and orbits in invariant theory
Popov, V L
2011-01-01
The history of invariant theory spans nearly a century and a half, with roots in certain problems from number theory, algebra, and geometry appearing in the work of Gauss, Jacobi, Eisenstein, and Hermite. Although the connection between invariants and orbits was essentially discovered in the work of Aronhold and Boole, a clear understanding of this connection had not been achieved until recently, when invariant theory was in fact subsumed by a general theory of algebraic groups. Written by one of the major leaders in the field, this book provides an excellent, comprehensive exposition of invariant theory. Its point of view is unique in that it combines both modern and classical approaches to the subject. The introductory chapter sets the historical stage for the subject, helping to make the book accessible to nonspecialists.
Invariants for the generalized Lotka-Volterra equations
Cairó, Laurent; Feix, Marc R.; Goedert, Joao
A generalisation of Lotka-Volterra System is given when self limiting terms are introduced in the model. We use a modification of the Carleman embedding method to find invariants for this system of equations. The position and stability of the equilibrium point and the regression of system under invariant conditions are studied.
Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes
International Nuclear Information System (INIS)
Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.
2015-01-01
Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.
Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag
Directory of Open Access Journals (Sweden)
S. Shaaban
2012-01-01
Full Text Available Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.
Invariant relations in Boussinesq-type equations
International Nuclear Information System (INIS)
Meletlidou, Efi; Pouget, Joeel; Maugin, Gerard; Aifantis, Elias
2004-01-01
A wide class of partial differential equations have at least three conservation laws that remain invariant for certain solutions of them and especially for solitary wave solutions. These conservation laws can be considered as the energy, pseudomomentum and mass integrals of these solutions. We investigate the invariant relation between the energy and the pseudomomentum for solitary waves in two Boussinesq-type equations that come from the theory of elasticity and lattice models
Hernandez-Garcia, Luis; Lewis, David P.; Moffat, Bradford; Branch, Craig A.
2007-01-01
Continuous arterial spin labeling experiments typically use flow-driven adiabatic fast passage (AFP) inversion of the arterial blood water protons. In this article, we measure the effect of magnetization transfer in blood and how it affects the inversion label. We use modified Bloch equations to model flow-driven adiabatic inversion in the presence of magnetization transfer in blood flowing at velocities from 1 to 30 cm/s in order to explain our findings. Magnetization transfer results in a r...
Deng, Jiawen; Wang, Qing-hai; Liu, Zhihao; Hanggi, Peter; Gong, Jiangbin
2013-01-01
Under a general framework, shortcuts to adiabatic processes are shown to be possible in classical systems. We then study the distribution function of the work done on a small system initially prepared at thermal equilibrium. It is found that the work fluctuations can be significantly reduced via shortcuts to adiabatic processes. For example, in the classical case probabilities of having very large or almost zero work values are suppressed. In the quantum case negative work may be totally remo...
Adiabatic quantum pumping and charge quantization
International Nuclear Information System (INIS)
Kashcheyevs, V; Aharony, A.; Entin-Wohlmanl, O.
2004-01-01
Full Text:Modern techniques for coherent manipulation of electrons at the nano scale (electrostatic gating, surface acoustic waves) allow for studies of the adiabatic quantum pumping effect - a directed current induced by a slowly varying external perturbation. Scattering theory of pumping predicts transfer of an almost integer number of electrons per cycle if instantaneous transmission is determined by a sequence of resonances. We show that this quantization can be explained in terms of loading/unloading quasi-bound virtual states, and derive a tool for analyzing quantized pumping induced by a general potential. This theory is applied to a simple model of pumping due to surface acoustic waves. The results reproduce all the qualitative features observed in actual experiments
Observational tests of non-adiabatic Chaplygin gas
Energy Technology Data Exchange (ETDEWEB)
Carneiro, S.; Pigozzo, C., E-mail: saulo.carneiro@pq.cnpq.br, E-mail: cpigozzo@ufba.br [Instituto de Física, Universidade Federal da Bahia, Campus de Ondina, Salvador, BA 40210-340 (Brazil)
2014-10-01
In a previous paper [1] it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter ω = -1. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter α. The joint analysis best fit gives α ≈ - 0.5, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The ΛCDM model, equivalent to α = 0, stands outside the 3σ confidence interval.
Invariants for minimal conformal supergravity in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Novak, Joseph; Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Golm (Germany)
2016-12-15
We develop a new off-shell formulation for six-dimensional conformal supergravity obtained by gauging the 6D N=(1,0) superconformal algebra in superspace. This formulation is employed to construct two invariants for 6D N=(1,0) conformal supergravity, which contain C{sup 3} and C◻C terms at the component level. Using a conformal supercurrent analysis, we prove that these exhaust all such invariants in minimal conformal supergravity. Finally, we show how to construct the supersymmetric F◻F invariant in curved superspace.
Differential invariants in nonclassical models of hydrodynamics
Bublik, Vasily V.
2017-10-01
In this paper, differential invariants are used to construct solutions for equations of the dynamics of a viscous heat-conducting gas and the dynamics of a viscous incompressible fluid modified by nanopowder inoculators. To describe the dynamics of a viscous heat-conducting gas, we use the complete system of Navier—Stokes equations with allowance for heat fluxes. Mathematical description of the dynamics of liquid metals under high-energy external influences (laser radiation or plasma flow) includes, in addition to the Navier—Stokes system of an incompressible viscous fluid, also heat fluxes and processes of nonequilibrium crystallization of a deformable fluid. Differentially invariant solutions are a generalization of partially invariant solutions, and their active study for various models of continuous medium mechanics is just beginning. Differentially invariant solutions can also be considered as solutions with differential constraints; therefore, when developing them, the approaches and methods developed by the science schools of academicians N. N. Yanenko and A. F. Sidorov will be actively used. In the construction of partially invariant and differentially invariant solutions, there are overdetermined systems of differential equations that require a compatibility analysis. The algorithms for reducing such systems to involution in a finite number of steps are described by Cartan, Finikov, Kuranishi, and other authors. However, the difficultly foreseeable volume of intermediate calculations complicates their practical application. Therefore, the methods of computer algebra are actively used here, which largely helps in solving this difficult problem. It is proposed to use the constructed exact solutions as tests for formulas, algorithms and their software implementations when developing and creating numerical methods and computational program complexes. This combination of effective numerical methods, capable of solving a wide class of problems, with
Manifestly gauge invariant discretizations of the Schrödinger equation
International Nuclear Information System (INIS)
Halvorsen, Tore Gunnar; Kvaal, Simen
2012-01-01
Grid-based discretizations of the time dependent Schrödinger equation coupled to an external magnetic field are converted to manifest gauge invariant discretizations. This is done using generalizations of ideas used in classical lattice gauge theory, and the process defined is applicable to a large class of discretized differential operators. In particular, popular discretizations such as pseudospectral discretizations using the fast Fourier transform can be transformed to gauge invariant schemes. Also generic gauge invariant versions of generic time integration methods are considered, enabling completely gauge invariant calculations of the time dependent Schrödinger equation. Numerical examples illuminating the differences between a gauge invariant discretization and conventional discretization procedures are also presented. -- Highlights: ► We investigate the Schrödinger equation coupled to an external magnetic field. ► Any grid-based discretization is made trivially gauge invariant. ► An extension of classical lattice gauge theory.
Rotation, scale, and translation invariant pattern recognition using feature extraction
Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.
1997-03-01
A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.
Triality invariance in the N=2 superstring
International Nuclear Information System (INIS)
Castellani, Leonardo; Grassi, Pietro Antonio; Sommovigo, Luca
2009-01-01
We prove the discrete triality invariance of the N=2 NSR superstring moving in a D=2+2 target space. We find that triality holds also in the Siegel-Berkovits formulation of the selfdual superstring. A supersymmetric generalization of Cayley's hyperdeterminant, based on a quartic invariant of the SL(2|1) 3 superalgebra, is presented.
Heterotic superstring and curved, scale-invariant superspace
International Nuclear Information System (INIS)
Kuusk, P.K.
1988-01-01
It is shown that the modified heterotic superstring [R. E. Kallosh, JETP Lett. 43, 456 (1986); Phys. Lett. 176B, 50 (1986)] demands a scale-invariant superspace for its existence. Explicit expressions are given for the connection, the torsion, and the curvature of an extended scale-invariant superspace with 506 bosonic and 16 fermionic coordinates
Synthesizing chaotic maps with prescribed invariant densities
International Nuclear Information System (INIS)
Rogers, Alan; Shorten, Robert; Heffernan, Daniel M.
2004-01-01
The Inverse Frobenius-Perron Problem (IFPP) concerns the creation of discrete chaotic mappings with arbitrary invariant densities. In this Letter, we present a new and elegant solution to the IFPP, based on positive matrix theory. Our method allows chaotic maps with arbitrary piecewise-constant invariant densities, and with arbitrary mixing properties, to be synthesized
Invariant differential operators
Dobrev, Vladimir K
2016-01-01
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory.
Invariant differential operators
Dobrev, Vladimir K
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory.
Gauge invariance of the Rayleigh--Schroedinger time-independent perturbation theory
International Nuclear Information System (INIS)
Yang, K.H.
1977-08-01
It is shown that the Rayleigh-Schroedinger time-independent perturbation theory is gauge invariant when the operator concerned is the particle's instantaneous energy operator H/sub B/ = (1/2m)[vector p - (e/c) vector A] 2 + eV 0 . More explicitly, it is shown that the energy perturbation corrections of each individual order of every state is gauge invariant. When the vector potential is curlless, the energy corrections of all orders are shown to vanish identically regardless of the explicit form of the vector potential. The relation between causality and gauge invariance is investigated. It is shown that gauge invariance guarantees conformity with causality and violation of gauge invariance implies violation of causality
Photoionization by a bichromatic field: Adiabatic theory
International Nuclear Information System (INIS)
Pazdzersky, V.A.; Yurovsky, V.A.
1995-01-01
Atom photoionization by the superposition of a fundamental field and its second harmonic is considered. The finite analytical expressions for the photoionization probability are obtained using the adiabatic approximation. They demonstrate that the photoelectron angular distribution has a polar symmetry when the electrical field strength has a maximal polar asymmetry and the distribution is asymmetrical when the field is symmetrical. A strict proof of the polar symmetry of the photoionization probability in the case of the electrical field with maximal asymmetry is deduced using the Keldysh-Faisal-Reiss theories. The obtained results are in agreement with the experimental data available
Decoherence in a scalable adiabatic quantum computer
International Nuclear Information System (INIS)
Ashhab, S.; Johansson, J. R.; Nori, Franco
2006-01-01
We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks
On adiabatic perturbations in the ekpyrotic scenario
International Nuclear Information System (INIS)
Linde, A.; Mukhanov, V.; Vikman, A.
2010-01-01
In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario
Directory of Open Access Journals (Sweden)
Pavol Baňacký
Full Text Available It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized anti-adiabatic multi-gap superconducting state at a temperature that can reach 203 K. Keywords: Superconductivity of sulfur hydride, Electron–phonon coupling in superconductors, Anti-adiabatic theory of superconductivity
S-wave Qanti Qqanti q states in the adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Chao, K T [Oxford Univ. (UK). Dept. of Theoretical Physics
1981-06-01
The static potential energy for an S-wave Qanti Qqanti q system is discussed in an adiabatic (Born-Oppenheimer) approximation. Both spherical bag and arbitrary bag are considered. We concentrate on those Qanti Qqanti q states in which both (Qanti Q) and (qanti q) are colour singlets. Their energy level, wave function, and possible experimental observation are studied.
Triality invariance in the N=2 superstring
Energy Technology Data Exchange (ETDEWEB)
Castellani, Leonardo [Dipartimento di Scienze e Tecnologie Avanzate and INFN Gruppo collegato di Alessandria, Universita del Piemonte Orientale, Via Teresa Michel 11, 15121 Alessandria (Italy)], E-mail: leonardo.castellani@mfn.unipmn.it; Grassi, Pietro Antonio [Dipartimento di Scienze e Tecnologie Avanzate and INFN Gruppo collegato di Alessandria, Universita del Piemonte Orientale, Via Teresa Michel 11, 15121 Alessandria (Italy)], E-mail: pietro.grassi@mfn.unipmn.it; Sommovigo, Luca [Dipartimento di Scienze e Tecnologie Avanzate and INFN Gruppo collegato di Alessandria, Universita del Piemonte Orientale, Via Teresa Michel 11, 15121 Alessandria (Italy)], E-mail: luca.sommovigo@mfn.unipmn.it
2009-07-20
We prove the discrete triality invariance of the N=2 NSR superstring moving in a D=2+2 target space. We find that triality holds also in the Siegel-Berkovits formulation of the selfdual superstring. A supersymmetric generalization of Cayley's hyperdeterminant, based on a quartic invariant of the SL(2|1){sup 3} superalgebra, is presented.
Between ethylene and polyenes--the non-adiabatic dynamics of cis-dienes
DEFF Research Database (Denmark)
Kuhlman, Thomas Scheby; Glover, William J; Mori, Toshifumi
2012-01-01
Using Ab Initio Multiple Spawning (AIMS) with a Multi-State Multi-Reference Perturbation theory (MS-MR-CASPT2) treatment of the electronic structure, we have simulated the non-adiabatic excited state dynamics of cyclopentadiene (CPD) and 1,2,3,4-tetramethyl-cyclopentadiene (Me4-CPD) following exc...
Weyl-Invariant Extension of the Metric-Affine Gravity
International Nuclear Information System (INIS)
Vazirian, R.; Tanhayi, M. R.; Motahar, Z. A.
2015-01-01
Metric-affine geometry provides a nontrivial extension of the general relativity where the metric and connection are treated as the two independent fundamental quantities in constructing the spacetime (with nonvanishing torsion and nonmetricity). In this paper, we study the generic form of action in this formalism and then construct the Weyl-invariant version of this theory. It is shown that, in Weitzenböck space, the obtained Weyl-invariant action can cover the conformally invariant teleparallel action. Finally, the related field equations are obtained in the general case.
Dissipation in adiabatic quantum computers: lessons from an exactly solvable model
Keck, Maximilian; Montangero, Simone; Santoro, Giuseppe E.; Fazio, Rosario; Rossini, Davide
2017-11-01
We introduce and study the adiabatic dynamics of free-fermion models subject to a local Lindblad bath and in the presence of a time-dependent Hamiltonian. The merit of these models is that they can be solved exactly, and will help us to study the interplay between nonadiabatic transitions and dissipation in many-body quantum systems. After the adiabatic evolution, we evaluate the excess energy (the average value of the Hamiltonian) as a measure of the deviation from reaching the final target ground state. We compute the excess energy in a variety of different situations, where the nature of the bath and the Hamiltonian is modified. We find robust evidence of the fact that an optimal working time for the quantum annealing protocol emerges as a result of the competition between the nonadiabatic effects and the dissipative processes. We compare these results with the matrix-product-operator simulations of an Ising system and show that the phenomenology we found also applies for this more realistic case.
Detuning-induced stimulated Raman adiabatic passage in dense two-level systems
Deng, Li; Lin, Gongwei; Niu, Yueping; Gong, Shangqing
2018-05-01
We investigate the coherence generation in dense two-level systems under detuning-induced stimulated Raman adiabatic passage (D-STIRAP). In the dense two-level system, the near dipole-dipole (NDD) interaction should be taken into consideration. With the increase in the strength of the NDD interaction, it is found that a switchlike transition of the generated coherence from maximum value to zero appears. Meanwhile, the adiabatic condition of the D-STIRAP is destroyed in the presence of the NDD interaction. In order to avoid the sudden decrease in the generated coherence and maintain the maximum value, we can use stronger detuning pulse or pump pulse, between which increasing the intensity of the detuning pulse is of more efficiency. Except for taking advantage of such maximum coherence in the high density case into areas like enhancing the four-wave mixing process, we also point out that the phenomenon of the coherence transition can be applied as an optical switch.
International Nuclear Information System (INIS)
Cohen, J.S.; Struensee, M.C.
1991-01-01
The improved adiabatic representation is used in calculations of elastic and isotopic-exchange cross sections for asymmetric collisions of pμ, dμ, and tμ with bare p, d, and t nuclei and with H, D, and T atoms. This formulation dissociates properly, correcting a well-known deficiency of the standard adiabatic method for muonic-atom collisions, and includes some effects at zeroth order that are normally considered nonadiabatic. The electronic screening is calculated directly and precisely within the improved adiabatic description; it is found to be about 30% smaller in magnitude than the previously used value at large internuclear distances and to deviate considerably from the asymptotic form at small distances. The reactance matrices, needed for calculations of molecular-target effects, are given in tables
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
International Nuclear Information System (INIS)
White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry
2014-01-01
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement
Adiabatic partition effect on natural convection heat transfer inside a square cavity
DEFF Research Database (Denmark)
Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; yousefi, Tooraj
2018-01-01
A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach......-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study...... partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms...
Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.
Zamstein, Noa; Tannor, David J
2012-12-14
We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.
The local Gromov-Witten invariants of configurations of rational curves
Karp, D; Marino, M; CERN. Geneva; Karp, Dagan; Liu, Chiu-Chu Melissa; Marino, Marcos
2005-01-01
We compute the local Gromov-Witten invariants of certain configurations of rational curves in a Calabi-Yau threefold. These configurations are connected subcurves of the ``minimal trivalent configuration'', which is a particular tree of CP^1's with specified formal neighborhood. We show that these local invariants are equal to certain global or ordinary Gromov-Witten invariants of a blowup of CP^3 at points, and we compute these ordinary invariants using the geometry of the Cremona transform. We also realize the configurations in question as formal toric schemes and compute their formal Gromov-Witten invariants using the mathematical and physical theories of the topological vertex. In particular, we provide further evidence equating the vertex amplitudes derived from physical and mathematical theories of the topological vertex.
Projective invariants in a conformal finsler space - I
International Nuclear Information System (INIS)
Mishra, C.K.; Singh, M.P.
1989-12-01
The projective invariants in a conformal Finsler space have been studied in regard to certain tensor and scalar which are invariant under projective transformation in a Finsler space. They have been the subject of further investigation by the present authors. (author). 8 refs
Dynamical invariants for variable quadratic Hamiltonians
International Nuclear Information System (INIS)
Suslov, Sergei K
2010-01-01
We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.
Numeric invariants from multidimensional persistence
Energy Technology Data Exchange (ETDEWEB)
Skryzalin, Jacek [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlsson, Gunnar [Stanford Univ., Stanford, CA (United States)
2017-05-19
In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data.
Spontaneously broken abelian gauge invariant supersymmetric model
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)
Stimulated Raman adiabatic passage in Tm3+:YAG
International Nuclear Information System (INIS)
Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.
2008-01-01
We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm 3+ :YAG crystal. Tm 3+ :YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm 3+ :YAG system are presented along with the corresponding experimental results
Machine learning strategies for systems with invariance properties
Ling, Julia; Jones, Reese; Templeton, Jeremy
2016-08-01
In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.
Invariance algorithms for processing NDE signals
Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William
1996-11-01
Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.
Efficient and Invariant Convolutional Neural Networks for Dense Prediction
Gao, Hongyang; Ji, Shuiwang
2017-01-01
Convolutional neural networks have shown great success on feature extraction from raw input data such as images. Although convolutional neural networks are invariant to translations on the inputs, they are not invariant to other transformations, including rotation and flip. Recent attempts have been made to incorporate more invariance in image recognition applications, but they are not applicable to dense prediction tasks, such as image segmentation. In this paper, we propose a set of methods...
The Witten-Reshetikhin-Turaev invariants of finite order mapping tori II
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Himpel, Benjamin
2012-01-01
We identify the leading order term of the asymptotic expansion of the Witten–Reshetikhin–Turaev invariants for finite order mapping tori with classical invariants for all simple and simply-connected compact Lie groups. The square root of the Reidemeister torsion is used as a density on the moduli...... space of flat connections and the leading order term is identified with the integral over this moduli space of this density weighted by a certain phase for each component of the moduli space. We also identify this phase in terms of classical invariants such as Chern–Simons invariants, eta invariants...
Chronoprojective invariance of the five-dimensional Schroedinger formalism
International Nuclear Information System (INIS)
Perrin, M.; Burdet, G.; Duval, C.
1984-10-01
Invariance properties of the five-dimensional Schroedinger formalism describing a quantum test particle in the Newton-Cartan theory of gravitation are studied. The geometry which underlies these invariance properties is presented as a reduction of the 0(5,2) conformal geometry various applications are given
The adiabatic approximation in multichannel scattering
International Nuclear Information System (INIS)
Schulte, A.M.
1978-01-01
Using two-dimensional models, an attempt has been made to get an impression of the conditions of validity of the adiabatic approximation. For a nucleon bound to a rotating nucleus the Coriolis coupling is neglected and the relation between this nuclear Coriolis coupling and the classical Coriolis force has been examined. The approximation for particle scattering from an axially symmetric rotating nucleus based on a short duration of the collision, has been combined with an approximation based on the limitation of angular momentum transfer between particle and nucleus. Numerical calculations demonstrate the validity of the new combined method. The concept of time duration for quantum mechanical collisions has also been studied, as has the collective description of permanently deformed nuclei. (C.F.)
On Noether symmetries and form invariance of mechanico-electrical systems
International Nuclear Information System (INIS)
Fu Jingli; Chen Liqun
2004-01-01
This Letter focuses on form invariance and Noether symmetries of mechanico-electrical systems. Based on the invariance of Hamiltonian actions for mechanico-electrical systems under the infinitesimal transformation of the coordinates, the electric quantities and the time, the authors present the Noether symmetry transformation, the Noether quasi-symmetry transformation, the generalized Noether quasi-symmetry transformation and the general Killing equations of Lagrange mechanico-electrical systems and Lagrange-Maxwell mechanico-electrical systems. Using the invariance of the differential equations, satisfied by physical quantities, such as Lagrangian, non-potential general forces, under the infinitesimal transformation, the authors propose the definition and criterions of the form invariance for mechanico-electrical systems. The Letter also demonstrates connection between the Noether symmetries and the form invariance of mechanico-electrical systems. An example is designed to illustrate these results
Czech Academy of Sciences Publication Activity Database
Suk, Tomáš; Flusser, Jan
2004-01-01
Roč. 26, č. 10 (2004), s. 1364-1367 ISSN 0162-8828 R&D Projects: GA ČR GA201/03/0675 Institutional research plan: CEZ:AV0Z1075907 Keywords : projective transform * moment invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.352, year: 2004 http://library.utia.cas.cz/prace/20040112.pdf
Fractal properties of critical invariant curves
International Nuclear Information System (INIS)
Hunt, B.R.; Yorke, J.A.; Khanin, K.M.; Sinai, Y.G.
1996-01-01
We examine the dimension of the invariant measure for some singular circle homeomorphisms for a variety of rotation numbers, through both the thermodynamic formalism and numerical computation. The maps we consider include those induced by the action of the standard map on an invariant curve at the critical parameter value beyond which the curve is destroyed. Our results indicate that the dimension is universal for a given type of singularity and rotation number, and that among all rotation numbers, the golden mean produces the largest dimension
Lorentz and CPT invariances and the Einstein-Podolsky-Rosen correlations
International Nuclear Information System (INIS)
Beauregard, O.C. de
1984-01-01
This paper shows that there is no conflict between Einstein-Podolsky-Rosen (EPR) correlation and the new 1925 - 55 ''microrelativity principle'' stating the Lorentz and CPT invariance of physical law at the microlevel. The CPT invariance concept is a perfectly legal heir of the 1876 Loschmidt T-invariance concept. Therefore, the EPR-paradox can be understood as synthetizing two earlier ''paradoxes'': the wavelike probability calculus, and the T- or CPT-symmetry of elementary physical processes. The CPT-invariance can be summarized as the basic requirement of second quantization, that particle emission and antiparticle absorption are mathematically equivalent. The phenomenology displays causality as arrowless at the microlevel. The relativistic S-matrix scheme displays the CPT invariance of causality concept at the microlevel. In order to strengthen the point that the Lorentz and CPT invariant schemes of relativistic quantum mechanics do contain the full formalization of the EPR correlation, the covariant calculations pertaining to the subject are presented. The formalization of the EPR correlation and its interpretation are contained in the existing relativistic quantum mechanics. (Kato, T.)
Neurons with two sites of synaptic integration learn invariant representations.
Körding, K P; König, P
2001-12-01
Neurons in mammalian cerebral cortex combine specific responses with respect to some stimulus features with invariant responses to other stimulus features. For example, in primary visual cortex, complex cells code for orientation of a contour but ignore its position to a certain degree. In higher areas, such as the inferotemporal cortex, translation-invariant, rotation-invariant, and even view point-invariant responses can be observed. Such properties are of obvious interest to artificial systems performing tasks like pattern recognition. It remains to be resolved how such response properties develop in biological systems. Here we present an unsupervised learning rule that addresses this problem. It is based on a neuron model with two sites of synaptic integration, allowing qualitatively different effects of input to basal and apical dendritic trees, respectively. Without supervision, the system learns to extract invariance properties using temporal or spatial continuity of stimuli. Furthermore, top-down information can be smoothly integrated in the same framework. Thus, this model lends a physiological implementation to approaches of unsupervised learning of invariant-response properties.
Galilean invariance and homogeneous anisotropic randomly stirred flows
International Nuclear Information System (INIS)
Berera, Arjun; Hochberg, David
2005-01-01
The Ward-Takahashi identities for incompressible flow implied by Galilean invariance are derived for the randomly forced Navier-Stokes equation, in which both the mean and fluctuating velocity components are explicitly present. The consequences of the Galilean invariance for the vertex renormalization are drawn from this identity
Conformal Invariance, Dark Energy, and CMB Non-Gaussianity
Antoniadis, Ignatios; Mottola, Emil
2012-01-01
We show that in addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R^3 sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S^2 horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the sym...
SO(N) reformulated link invariants from topological strings
International Nuclear Information System (INIS)
Borhade, Pravina; Ramadevi, P.
2005-01-01
Large N duality conjecture between U(N) Chern-Simons gauge theory on S 3 and A-model topological string theory on the resolved conifold was verified at the level of partition function and Wilson loop observables. As a consequence, the conjectured form for the expectation value of the topological operators in A-model string theory led to a reformulation of link invariants in U(N) Chern-Simons theory giving new polynomial invariants whose integer coefficients could be given a topological meaning. We show that the A-model topological operator involving SO(N) holonomy leads to a reformulation of link invariants in SO(N) Chern-Simons theory. Surprisingly, the SO(N) reformulated invariants also has a similar form with integer coefficients. The topological meaning of the integer coefficients needs to be explored from the duality conjecture relating SO(N) Chern-Simons theory to A-model closed string theory on orientifold of the resolved conifold background
Manifestly scale-invariant regularization and quantum effective operators
Ghilencea, D.M.
2016-01-01
Scale invariant theories are often used to address the hierarchy problem, however the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which break this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale invariant regularization in (classical) scale invariant theories. We use a dilaton-dependent subtraction function $\\mu(\\sigma)$ which after spontaneous breaking of scale symmetry generates the usual DR subtraction scale $\\mu(\\langle\\sigma\\rangle)$. One consequence is that "evanescent" interactions generated by scale invariance of the action in $d=4-2\\epsilon$ (but vanishing in $d=4$), give rise to new, finite quantum corrections. We find a (finite) correction $\\Delta U(\\phi,\\sigma)$ to the one-loop scalar potential for $\\phi$ and $\\sigma$, beyond the Coleman-Weinberg term. $\\Delta U$ is due to an evanescent correction ($\\propto\\epsilon$) to the field-dependent masses (of...
Differential invariants for higher-rank tensors. A progress report
International Nuclear Information System (INIS)
Tapial, V.
2004-07-01
We outline the construction of differential invariants for higher-rank tensors. In section 2 we outline the general method for the construction of differential invariants. A first result is that the simplest tensor differential invariant contains derivatives of the same order as the rank of the tensor. In section 3 we review the construction for the first-rank tensors (vectors) and second-rank tensors (metrics). In section 4 we outline the same construction for higher-rank tensors. (author)
Infrared asymptotics of a gauge-invariant propagator in quantum electrodynamics
International Nuclear Information System (INIS)
Skachkov, N.B.; Shevchenko, O.Yu.; Solovtsov, I.l.
1987-01-01
A new class of gauge-invariant fields is introduced. For the gauge-invariant propagator of a spinor field the analogue of the Dyson-Schwinger equations is derived. With the help of these equations as well as the functional integration method it is shown that the gauge-invariant spinor propagator has a simple pole singularity in the infrared region
Infrared asymptotics of a gauge-invariant propagator in quantum electrodynamics
International Nuclear Information System (INIS)
Skachkov, N.B.; Shevchenko, O.Yu.
1985-01-01
A new class of the gauge-invariant field is introduced. For the gauge-invariant propagator of a spinor field the analog of the Dyson-Schwinger equations is derived. By using these equations as well as the functional integration method it is shown that the gauge-invariant spinor propagator has a simple pole singularity in the infrared region
On renormalization-invariant masses
International Nuclear Information System (INIS)
Fleming, H.; Furuya, K.
1978-02-01
It is shown that spontaneous generation of renormalization invariant mass is possible in infra-red stable theories with more than one coupling constant. If relations among the coupling constants are permitted the effect can be made compatible with pertubation theory
Classically scale-invariant B–L model and conformal gravity
International Nuclear Information System (INIS)
Oda, Ichiro
2013-01-01
We consider a coupling of conformal gravity to the classically scale-invariant B–L extended standard model which has been recently proposed as a phenomenologically viable model realizing the Coleman–Weinberg mechanism of breakdown of the electroweak symmetry. As in a globally scale-invariant dilaton gravity, it is also shown in a locally scale-invariant conformal gravity that without recourse to the Coleman–Weinberg mechanism, the B–L gauge symmetry is broken in the process of spontaneous symmetry breakdown of the local scale invariance (Weyl invariance) at the tree level and as a result the B–L gauge field becomes massive via the Higgs mechanism. As a bonus of conformal gravity, the massless dilaton field does not appear and the parameters in front of the non-minimal coupling of gravity are completely fixed in the present model. This observation clearly shows that the conformal gravity has a practical application even if the scalar field does not possess any dynamical degree of freedom owing to the local scale symmetry
An Advanced Rotation Invariant Descriptor for SAR Image Registration
Directory of Open Access Journals (Sweden)
Yuming Xiang
2017-07-01
Full Text Available The Scale-Invariant Feature Transform (SIFT algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propose an advanced local descriptor for SAR image registration to achieve rotation invariance without assigning a dominant orientation. Based on the improved intensity orders, we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio orientation histograms of each sub-region are proposed by accumulating the ratio values of different directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation of the histograms of each sub-region. In order to increase the distinctiveness of the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on several satellite SAR images have shown an improvement in the matching performance over other state-of-the-art algorithms.
SO(9,1) invariant matrix formulation of a supermembrane
International Nuclear Information System (INIS)
Fujikawa, K.; Okuyama, K.
1998-01-01
An SO(9,1) invariant formulation of an 11-dimensional supermembrane is presented by combining an SO(10,1) invariant treatment of reparametrization symmetry with an SO(9,1) invariant θ R = 0 gauge of κ-symmetry. The Lagrangian thus defined consists of polynomials in dynamical variables (up to quartic terms in X μ and up to the eighth power in θ), and reparametrization BRST symmetry is manifest. The area preserving diffeomorphism is consistently incorporated and the area preserving gauge symmetry is made explicit. The SO(9,1) invariant theory contains terms which cannot be induced by a naive dimensional reduction of higher-dimensional supersymmetric Yang-Mills theory. The SO(9,1) invariant Hamiltonian and the generator of area preserving diffeomorphism together with the supercharge are matrix regularized by applying the standard procedure. As an application of the present formulation, we evaluate the possible central charges in superalgebra both in the path integral and in the canonical (Dirac) formalism, and we find only the two-form charge [ X μ , X ν ]. (orig.)
Uniqueness of the gauge invariant action for cosmological perturbations
International Nuclear Information System (INIS)
Prokopec, Tomislav; Weenink, Jan
2012-01-01
In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cubic action for one choice of gauge invariant variables is unique in the following sense: the action for any other, non-linearly related variable can be brought to the same bulk action, plus additional boundary terms. These boundary terms correspond to the choice of hypersurface and generate extra, disconnected contributions to the bispectrum. We also discuss uniqueness of the action with respect to conformal frames. When expressed in terms of the gauge invariant curvature perturbation on uniform field hypersurfaces the action for cosmological perturbations has a unique form, independent of the original Einstein or Jordan frame. Crucial is that the gauge invariant comoving curvature perturbation is frame independent, which makes it extremely helpful in showing the quantum equivalence of the two frames, and therefore in calculating quantum effects in nonminimally coupled theories such as Higgs inflation
On the hierarchy of partially invariant submodels of differential equations
Energy Technology Data Exchange (ETDEWEB)
Golovin, Sergey V [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk 630090 (Russian Federation)], E-mail: sergey@hydro.nsc.ru
2008-07-04
It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.
On the hierarchy of partially invariant submodels of differential equations
Golovin, Sergey V.
2008-07-01
It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.
On the hierarchy of partially invariant submodels of differential equations
International Nuclear Information System (INIS)
Golovin, Sergey V
2008-01-01
It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given
Derivation of an adiabatic time-dependent Hartree-Fock formalism from a variational principle
International Nuclear Information System (INIS)
Brink, D.M.; Giannoni, M.J.; Veneroni, M.
1975-10-01
A derivation of the adiabatic time-dependent Hartree-Fock formalism is given, which is based on a variational principle analogous to Hamilton's principle in classical mechanics. The method leads to a Hamiltonian for collective motion which separates into a potential and a kinetic energy and gives mass and potential parameters in terms of the nucleon-nucleon interaction. The adiabatic approximation assumes slow motion but not small amplitudes and can therefore describe anharmonic effects. The RPA is a limiting case where both amplitudes and velocities are small. The variational approach provides a consistent way of extracting coordinated and momenta from the density matrix and of obtaining equations of motion when particular trial forms for this density matrix are chosen. One such choice leads to Thouless-Valatin formula. An other choice leads to irrotational hydrodynamics [fr
Approximations to the non-adiabatic particle response in toroidal geometry
International Nuclear Information System (INIS)
Schep, T.J.; Braams, B.J.
1981-08-01
The non-adiabatic part of the particle response to low-frequency electromagnetic modes with long parallel wavelengths is discussed. Analytic approximations to the kernels of the integrals that relate the amplitudes of the perturbed potentials to the non-adiabatic part of the perturbed density in an axisymmetric toroidal configuration are presented and the results are compared with numerical calculations. It is shown that both in the plane slab and in toroidal geometry the kernel contains a logarithmic singularity. This singularity is associated with particles with vanishing parallel velocity so that, in toroidal geometry, it is related with the behaviour of trapped particles near their turning points. In contrast to the plane slab, in toroidal geometry this logarithmic singularity is mainly real and associated with non-resonant particles. Apart from this logarithmic term, the kernel contains a complex regular part arising from resonant as well as from non-resonant particles. The analytic approximations that will be presented make the dispersion relation of drift-type modes in toroidal geometry amenable to analytic as well as to simpler numerical calculation of the growth rate and of the spatial mode structure
Kinetic Models for Adiabatic Reversible Expansion of a Monatomic Ideal Gas.
Chang, On-Kok
1983-01-01
A fixed amount of an ideal gas is confined in an adiabatic cylinder and piston device. The relation between temperature and volume in initial/final phases can be derived from the first law of thermodynamics. However, the relation can also be derived based on kinetic models. Several of these models are discussed. (JN)
Testing CPT invariance with neutrinos
International Nuclear Information System (INIS)
Ohlsson, Tommy
2003-01-01
We investigate possible tests of CPT invariance on the level of event rates at neutrino factories. We do not assume any specific model, but phenomenological differences in the neutrino-antineutrino masses and mixing angles in a Lorentz invariance preserving context, which could be induced by physics beyond the Standard Model. We especially focus on the muon neutrino and antineutrino disappearance channels in order to obtain constraints on the neutrino-antineutrino mass and mixing angle differences. In a typical neutrino factory setup simulation, we find, for example, that vertical bar m 3 - m-bar 3 vertical bar $1.9 · 10 -4 eV and vertical bar ≡ 23 - ≡-bar 23 vertical bar < or approx. 2 deg
International Nuclear Information System (INIS)
He, H.-Q.; Wan, W.
2012-01-01
The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.
Spontaneously broken supersymmetry and Poincare invariance
International Nuclear Information System (INIS)
Tata, X.R.; Sudarshan, E.C.G.; Schechter, J.M.
1982-12-01
It is argued that the spontaneous breakdown of global supersymmetry is consistent with unbroken Poincare invariance if and only if the supersymmetry algebra A = 0 is understood to mean the invariance of the dynamical variables phi under the transformations generated by the algebra, i.e. [A, phi] = 0 rather than as an operator equation. It is further argued that this weakening of the algebra does not alter any of the conclusions about supersymmetric quantum field theories that have been obtained using the original (stronger) form of the algebra
Nonlinear Lorentz-invariant theory of gravitation
International Nuclear Information System (INIS)
Petry, W.
1976-01-01
A nonlinear Lorentz-invariant theory of gravitation and a Lorentz-invariant Hamiltonian for a particle with spin in the gravitational field are developed. The equations of motions are studied. The theory is applied to the three well known tests of General Relativity. In the special case of the red shift of spectral lines and of the deflection of light, the theory gives the same results as the General Theory of Relativity, whereas in the case of the perihelion of the Mercury, the theory gives 40,3'', in good agreement with experimental results of Dicke. (author)
Spontaneously broken supersymmetry and Poincare invariance
International Nuclear Information System (INIS)
Tata, X.R.; Sudarshan, E.C.G.; Schechter, J.M.
1983-01-01
It is argued that the spontaneous breakdown of global supersymmetry is consistent with unbroken Poincare invariance if and only if the supersymmetry algebra 'A=0' is understood to mean the invariance of the dynamical variables phi under the transformations generated by the algebra, i.e. [A, phi]=0 rather than as an operator equation. It is further argued that this 'weakening' of the algrebra does not alter any of the conclusions about supersymmetry quantum field theories that have been obtained using the original (stronger) form of the algebra. (orig.)
Jet invariant mass in quantum chromodynamics
International Nuclear Information System (INIS)
Clavelli, L.
1979-03-01
We give heuristic argument that a new class of observable related to the invariant mass of jets in e + e - annihilation is infrared finite to all orders of perturbation theory in Quantum Chromodynamics. We calculate the lowest order QCD predictions for the mass distribution as well as for the double differential cross section to produce back to back jets of invariant mass M 1 and M 2 . The resulting cross sections are quite different from that expected in simple hadronic fireball models and should provide experimentally accessible tests of QCD. (orig.) [de
The decomposition of global conformal invariants
Alexakis, Spyros
2012-01-01
This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Dese
Diagonal Born-Oppenheimer correction for coupled-cluster wave-functions
Shamasundar, K. R.
2018-06-01
We examine how geometry-dependent normalisation freedom of electronic wave-functions affects extraction of a meaningful diagonal Born-Oppenheimer correction (DBOC) to the ground-state Born-Oppenheimer potential energy surface (PES). By viewing this freedom as a kind of gauge-freedom, it is shown that DBOC and the resulting associated mass-dependent adiabatic PES are gauge-invariant quantities. A sum-over-states (SOS) formula for DBOC which explicitly exhibits this invariance is derived. A biorthogonal formulation suitable for DBOC computations using standard unnormalised coupled-cluster (CC) wave-functions is presented. This is shown to lead to a biorthogonal version of SOS formula with similar properties. On this basis, different computational schemes for evaluating DBOC using approximate CC wave-functions are derived. One of this agrees with the formula used in the current literature. The connection to adiabatic-to-diabatic transformations in non-adiabatic dynamics is explored and complications arising from biorthogonal nature of CC theory are identified.
Energy Technology Data Exchange (ETDEWEB)
Blanco, Elena [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Ruso, Juan M. [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)]. E-mail: faruso@usc.es; Prieto, Gerardo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Sarmiento, Felix [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)
2005-12-15
Density and ultrasound measurements of sodium heptafluorobutyrate in aqueous solutions at T = (283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15) K have been obtained. From these results partial molar volumes and isentropic partial molar adiabatic compressibilities were calculated. Deviations from the Debye-Hueckel limiting law provide evidence for limited association at lower concentrations. The change of the partial molar volume and isentropic partial molar adiabatic compressibility upon aggregation was calculated. Variations of the change of partial molar volumes and isentropic partial molar adiabatic compressibility upon aggregation are discussed in terms of temperature.
International Nuclear Information System (INIS)
Blanco, Elena; Ruso, Juan M.; Prieto, Gerardo; Sarmiento, Felix
2005-01-01
Density and ultrasound measurements of sodium heptafluorobutyrate in aqueous solutions at T = (283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15) K have been obtained. From these results partial molar volumes and isentropic partial molar adiabatic compressibilities were calculated. Deviations from the Debye-Hueckel limiting law provide evidence for limited association at lower concentrations. The change of the partial molar volume and isentropic partial molar adiabatic compressibility upon aggregation was calculated. Variations of the change of partial molar volumes and isentropic partial molar adiabatic compressibility upon aggregation are discussed in terms of temperature
Random SU(2) invariant tensors
Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei
2018-04-01
SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n = 4. In this paper, we show that for n > 4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.
Anomalies and modular invariance in string theory
International Nuclear Information System (INIS)
Schellekens, A.N.; Warner, N.P.
1986-01-01
All known anomaly cancellations of heterotic string theories are derived directly from one-loop modular invariance, and are shown to be related to a property of modular functions of weight 2. Using modular invariance infinite classes of anomaly free field theories are constructed in (8m+2) dimensions for any m. A generating function is obtained for the anomalies of string-related field theories in (8m+2) dimensions. (orig.)
Computer calculation of Witten's 3-manifold invariant
International Nuclear Information System (INIS)
Freed, D.S.; Gompf, R.E.
1991-01-01
Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant. (orig.)
Infrared asymptotic behavior of gauge-invariant propagator in quantum electrodynamics
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.; Shevchenko, O.Yu.
1987-01-01
A new class of gauge-invariant fields is introduced. The Dyson-Schwinger equations are obtained for the gauge-invariant generalization of the spinor propagator. On the basis of these equations, and also by means of functional methods, it is shown that the gauge-invariant spinor propagator has a singularity in the form of a simple pole in the infrared region
N=2 supergravity in superspace: the invariant action
International Nuclear Information System (INIS)
Gal'perin, A.S.; Sokachev, E.
1987-01-01
This paper continues the formulation of harmonic superspace supergravity. We write down the invariant action for the first off-shell version of the theory. The proof of the invariance relies on the existence of a new 'hybrid' basis in harmonic superspace in which semi-chirality combined with analyticity are manifest
An introduction to the adiabatic time-dependent Hartree-Fock method
International Nuclear Information System (INIS)
Giannoni, M.J.
1984-05-01
The aim of the adiabatic time-dependent Hartree-Fock method is to investigate the microscopic foundations of the phenomenological collective models. We briefly review the general formulation, which consists in deriving a Bohr-like Hamiltonian from a mean field theory, and discuss the limiting case where only a few collective variables participate to the motion. Some applications to soft nuclei and heavy ion collisions are presented
Adiabatic Rearrangement of Hollow PV Towers
Directory of Open Access Journals (Sweden)
Eric A Hendricks
2010-10-01
Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane
A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics
Gingold, H.
1991-01-01
A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.
Baranowski, M; Woźniak-Braszak, A; Jurga, K
2016-01-01
The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2MHz and 28.411MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins (1)H are polarized in the magnetic field B0 while fluorine spins (19)F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal. Copyright © 2015 Elsevier Inc. All rights reserved.
Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions
Czech Academy of Sciences Publication Activity Database
Zobač, Vladimír; Lewis, J.P.; Jelínek, Pavel
2016-01-01
Roč. 27, č. 28 (2016), 1-8, č. článku 285202. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : non-adiabatic molecular dynamics * molecular junctions * molecular switches * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2016
Energy Technology Data Exchange (ETDEWEB)
Zareh, Masoud; Heidari, Mohammad Ghorbani [Islamic Azad University, Tehran (Iran, Islamic Republic of)
2016-07-15
This research represents an experimental investigation of the metastable flow and re-condensation phenomenon through non-adiabatic lateral helical capillary tubes and suction tube heat exchanger. The results show that mass flux ratio has a vital role: It affects metastable flow and also reverse heat transfer phenomenon through non-adiabatic helical capillary tube. Therefore, by increasing of the mass flux ratio, the rate of heat transfer between them decreases. In contrast to the strong rate condition of heat transfer between them, reverse heat transfer or re-condensation maybe happen. Moreover, experimental results show that for R134 flow with mass flux ratio more than 57.84, metastable flow exists in non-adiabatic capillary tube with 0.9144 mm inner diameter, 30 mm coil diameter, 6.18 m length, 4 mm inner diameter of compressor suction tube.
Determination of adiabatic temperature change in MnFe(P,Ge) compounds with pulse-field method
International Nuclear Information System (INIS)
Trung, N T; Tegus, O; Cam Thanh, D T; Buschow, K H J; Brueck, E; Klaasse, J C P
2010-01-01
Fast magnetic measurements performed by means of a 20 T pulse-field magnet provide a good approach for directly monitoring the magnetocaloric effect of the MnFe(P,Ge) compounds. Based on the comparison of magnetization curves obtained either in an adiabatic or isothermal process, we propose that the method introduced by Levitin et al is applicable to determine the adiabatic temperature change for an equivalent field change in first-order magnetic transition materials. More strikingly, experimental results confirm that the first-order nature of the transition in MnFe(P,Ge) alloys is not a limiting factor to the operation frequency of a magnetic refrigerator.
International Nuclear Information System (INIS)
Zrafi, W; Oujia, B; Gadea, F X
2006-01-01
For nearly all states dissociating below the ionic limit, we perform an adiabatic and diabatic study for 1 Σ + and 3 Σ + electronic states dissociating into Cs (6s, 6p, 5d, 7s, 7p, 6d, 8s and 4f) + H (1s). Furthermore, we present the adiabatic results for the 1-5 1,3 Π and 1-3 1,3 Δ states. The calculations rely on an ab initio pseudopotential, semi-empirical operator core-valence correlation and full valence CI approaches, combined to an efficient diabatization procedure. For the low-lying states, our spectroscopic constants and vibrational level spacing are in very good agreement with the available experimental data. Diabatic potentials and dipole moments are analysed, revealing the strong imprint of the ionic state in the 1 Σ + adiabatic states. The H electron affinity correction was accounted for by the use of the efficient diabatization method. This leads to a better agreement with the available experimental data. Experimental suggestions are also given for the higher excited states based on their unusual behaviour
Universal fault-tolerant adiabatic quantum computing with quantum dots or donors
Landahl, Andrew
I will present a conceptual design for an adiabatic quantum computer that can achieve arbitrarily accurate universal fault-tolerant quantum computations with a constant energy gap and nearest-neighbor interactions. This machine can run any quantum algorithm known today or discovered in the future, in principle. The key theoretical idea is adiabatic deformation of degenerate ground spaces formed by topological quantum error-correcting codes. An open problem with the design is making the four-body interactions and measurements it uses more technologically accessible. I will present some partial solutions, including one in which interactions between quantum dots or donors in a two-dimensional array can emulate the desired interactions in second-order perturbation theory. I will conclude with some open problems, including the challenge of reformulating Kitaev's gadget perturbation theory technique so that it preserves fault tolerance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Robust adiabatic approach to optical spin entangling in coupled quantum dots
International Nuclear Information System (INIS)
Gauger, Erik M; Benjamin, Simon C; Lovett, Brendon W; Nazir, Ahsan; Stace, Thomas M
2008-01-01
Excitonic transitions offer a possible route to ultrafast optical spin manipulation in coupled nanostructures. We perform here a detailed study of the three principal exciton-mediated decoherence channels for optically controlled electron spin qubits in coupled quantum dots: radiative decay of the excitonic state, exciton-phonon interactions, and Landau-Zener transitions between laser-dressed states. We consider a scheme for producing an entangling controlled-phase gate on a pair of coupled spins which, in its simplest dynamic form, renders the system subject to fast decoherence rates associated with exciton creation during the gating operation. In contrast, we show that an adiabatic approach employing off-resonant laser excitation allows us to suppress all sources of decoherence simultaneously, significantly increasing the fidelity of operations at only a relatively small gating time cost. We find that controlled-phase gates accurate to one part in 10 2 can realistically be achieved with the adiabatic approach, whereas the conventional dynamic approach does not appear to support a fidelity suitable for scalable quantum computation. Our predictions could be demonstrated experimentally in the near future
Invariant renormalization method for nonlinear realizations of dynamical symmetries
International Nuclear Information System (INIS)
Kazakov, D.I.; Pervushin, V.N.; Pushkin, S.V.
1977-01-01
The structure of ultraviolet divergences is investigated for the field theoretical models with nonlinear realization of the arbitrary semisimple Lie group, with spontaneously broken symmetry of vacuum. An invariant formulation of the background field method of renormalization is proposed which gives the manifest invariant counterterms off mass shell. A simple algorithm for construction of counterterms is developed. It is based on invariants of the group of dynamical symmetry in terms of the Cartan forms. The results of one-loop and two-loop calculations are reported
Lagrangian model of conformal invariant interacting quantum field theory
International Nuclear Information System (INIS)
Lukierski, J.
1976-01-01
A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3
Permutation-invariant distance between atomic configurations
Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel
2015-09-01
We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.
Permutation-invariant distance between atomic configurations
International Nuclear Information System (INIS)
Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel
2015-01-01
We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity
Directory of Open Access Journals (Sweden)
Tristan Aumentado-Armstrong
2015-10-01
Full Text Available Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.
Aumentado-Armstrong, Tristan; Metzen, Michael G; Sproule, Michael K J; Chacron, Maurice J
2015-10-01
Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.
International Nuclear Information System (INIS)
Bramson, B.D.
1978-01-01
An isolated system in general relativity makes a transition between stationary states. It is shown that the spin vectors of the system, long before and long after the emission of radiation, are supertranslation invariant and, hence, independent of the choice of Minkowski observation space. (author)
3D Product authenticity model for online retail: An invariance analysis
Directory of Open Access Journals (Sweden)
Algharabat, R.
2010-01-01
Full Text Available This study investigates the effects of different levels of invariance analysis on three dimensional (3D product authenticity model (3DPAM constructs in the e- retailing context. A hypothetical retailer website presents a variety of laptops using 3D product visualisations. The proposed conceptual model achieves acceptable fit and the hypothesised paths are all valid. We empirically investigate the invariance across the subgroups to validate the results of our 3DPAM. We concluded that the 3D product authenticity model construct was invariant for our sample across different gender, level of education and study backgrounds. These findings suggested that all our subgroups conceptualised the 3DPAM similarly. Also the results show some non-invariance results for the structural and latent mean models. The gender group posits a non-invariance latent mean model. Study backgrounds group reveals a non-invariance result for the structural model. These findings allowed us to understand the 3DPAMs validity in the e-retail context. Managerial implications are explained.