National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators (ADRs) in space applications, it is desirable to have very light weight, small diameter, high current density...
Properties of a two stage adiabatic demagnetization refrigerator
Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.
2015-12-01
Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.
Properties of a two stage adiabatic demagnetization refrigerator
International Nuclear Information System (INIS)
Fukuda, H; Ueda, S; Arai, R; Numazawa, T; Li, J; Saito, A T; Nakagome, H
2015-01-01
Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units. (paper)
Improved PID method of temperature control for adiabatic demagnetization refrigerators
International Nuclear Information System (INIS)
Hoshino, A.; Shinozaki, K.; Ishisaki, Y.; Mihara, T.
2006-01-01
We report a new method of precise temperature control for an adiabatic demagnetization refrigerator (ADR). Temperature of the experimental stage of ADRs is usually controlled with the standard PID (Proportional, Integral, and Derivative control) method by decreasing the magnet current of the superconducting solenoid surrounding the paramagnetic salt inside the ADR. In controlling the temperature of our portable ADR system, we found a small residual between the aimed and measured temperatures, which gradually increased in time as the magnet current decreases. This phenomenon is explained by the magnetic cooling theory, and we have introduced a new functional parameter to improve the standard PID method. Applying this improvement to our system, highly stabilized temperature of 10μK rms at 100mK up to the period of ∼15ks is presented. It is demonstrated that the temperature controlled time was increased by ∼30% in our experiment. Our improved PID method is useful to maintain the long-term temperature stability down to almost zero magnet current with a relatively small ADR
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators(ADR's) for space it is desirable to have very light weight, small diameter, high current density superconducting wires...
The Primordial Inflation Polarization ExploreR Continuous Adiabatic Demagnetization Refrigerator
Pawlyk, Samuel; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Datta, Rahul; Dotson, Jessie; Essinger-Hileman, Thomas; Fixsen, Dale; Halpern, Mark; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Wollack, Edward; Walts, Alexander
2018-01-01
The Primordial Inflation Polarization ExploreR (PIPER) uses a Continuous Adiabatic Demagnetization Refrigerator (CADR) to cool its detectors. The CADR consists of four independent stages with adjacent stages connected by gas gap (GG) or superconducting (SC) heat switches. The three warm stages cycle to transfer heat from the 100 mK detector package to the 1.5 K liquid helium bath. The coldest stage maintains a continuous temperature of 100 mK for the detector package with 10 uW cooling power. We describe the mechanical, electrical, and software design of the CADR and present recent results.
THE ADIABATIC DEMAGNETIZATION REFRIGERATOR FOR THE MICRO-X SOUNDING ROCKET TELESCOPE
International Nuclear Information System (INIS)
Wikus, P.; Bagdasarova, Y.; Figueroa-Feliciano, E.; Leman, S. W.; Rutherford, J. M.; Trowbridge, S. N.; Adams, J. S.; Bandler, S. R.; Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Doriese, W. B.; McCammon, D.
2010-01-01
The Micro-X Imaging X-ray Spectrometer is a sounding rocket payload slated for launch in 2011. An array of Transition Edge Sensors, which is operated at a bath temperature of 50 mK, will be used to obtain a high resolution spectrum of the Puppis-A supernova remnant. An Adiabatic Demagnetization Refrigerator (ADR) with a 75 gram Ferric Ammonium Alum (FAA) salt pill in the bore of a 4 T superconducting magnet provides a stable heat sink for the detector array only a few seconds after burnout of the rocket motors. This requires a cold stage design with very short thermal time constants. A suspension made from Kevlar strings holds the 255 gram cold stage in place. It is capable of withstanding loads in excess of 200 g. Stable operation of the TES array in proximity to the ADR magnet is ensured by a three-stage magnetic shielding system which consists of a superconducting can, a high-permeability shield and a bucking coil. The development and testing of the Micro-X payload is well underway.
Ultra-Flexible Thermal Bus for Use in the Astro-H Adiabatic Demagnetization Refrigerator
Kimball, Mark O.; Shirron, Peter J.
2015-01-01
The adiabatic demagnetization refrigerator (ADR) developed for the Astro-H Soft-X-ray Spectrometer (SXS) is a multi-stage solid-state cooler. It is capable of holding the SXS detector array at 0.050 K for greater than 24 hours with a recycle time of less than one hour. This quick recycle time relies upon high-conductivity thermal straps to couple the individual stages to a pair of heat switches without imposing a lateral load on the paramagnetic salt pills. To accomplish this we construct thermal straps using a technique of diffusion bonding together the ends of high-purity copper straps leaving the length between as individual foils. A thermal bus created this way has a thermal conductivity comparable to a solid strap of the equivalent thickness but with much-increased flexibility. The technique for selecting the base material, machining, cleaning, forming into final shape, and finally bonding together individual foils will be discussed along with examples of complete straps in various geometries.
Magneto Caloric Properties of Polycrystalline Gd2O2S for an Adiabatic Demagnetization Refrigerator
Directory of Open Access Journals (Sweden)
Fukuda H.
2017-01-01
Full Text Available Currently, many space missions that use cryogenic equipment are being planned. In particular, high resolution sensors, such as transition edge sensors, require very low operating temperatures, below 100 mK. Adiabatic demagnetization refrigerator (ADR systems are a useful tool for producing ultra-low temperatures in space because these devices can operate independently of gravity. The magnetic material is one of the most important components with respect to effectiveness of the cooling power. Thus, we could increase the cooling power using a magnetic material that has a large entropy change over the operating temperature range. Polycrystalline Gd2O2S (GOS, which was developed by Numazawa et al, can be used as such as a magnetic regenerator material. Furthermore, GOS has a very large specific heat and a magnetic phase transition temperature of about 5.2 K. These features make GOS suitable for use in the high temperature stage of an ADR. In this study, we measured and evaluated the physical properties of GOS for applications to ADRs.
Kimball, Mark O.; Shirron, Peter J.; Wegel, Donald C.; James, Bryan L.; Galassi, Nicholas M.; Faulkner, Richard L.; San Sebastian, Marcelino
2011-01-01
An adiabatic demagnetization refrigerator (ADR) utilizes the magnetocholoric effect in a paramagnetic salt to produce sub-Kelvin temperatures. It is a solid-state device that has no moving parts and does not rely upon a density gradient in a working fluid. This makes it ideal for cooling space-based instruments. ·Typically the salt is enclosed in a cylindrical pill that is suspended within the bore of a magnet. The suspension between the salt pill and magnet must be robust enough to survive a launch yet have a thermal conductance that minimizes heat from the magnet that is mechanically, and thermally, anchored to a stage at a higher temperature. Here we detail such a design that uses Kevlar(Trade Mark) as the supporting media in a system that limits motion of the salt pill axial as well as laterally with respect to the magnet bore.
Shirron, Peter; Kimball, Mark; James, Bryan; Muench, Theodore; Canavan, Edgar; DiPirro, Michael; Bialas, Thomas; Sneiderman, Gary; Boyce, Kevin; Kilbourne, Caroline;
2016-01-01
The Soft X-ray Spectrometer instrument on the Astro-H observatory contains a 6x6 array of x-ray microcalorimeters, which is cooled to 50 mK by an adiabatic demagnetization refrigerator (ADR). The ADR consists of three stages in order to provide stable detector cooling using either a 1.2 K superfluid helium bath or a 4.5 K Joule-Thomson (JT) cryocooler as its heat sink. When liquid helium is present, two of the ADRs stages are used to single-shot cool the detectors while rejecting heat to the helium. After the helium is depleted, all three stages are used to cool both the helium tank (to about 1.5 K) and the detectors (to 50 mK) using the JT cryocooler as its heat sink. The Astro-H observatory, renamed Hitomi after its successful launch in February 2016, carried approximately 36 liters of helium into orbit. On day 5, the helium had cooled sufficiently (1.4 K) to allow operation of the ADR. This paper describes the design, operation and on-orbit performance of the ADR.
Magneto caloric effect in (Dy{sub x}Gd{sub 1-x}){sub 3}Ga{sub 5}O{sub 12} for adiabatic demagnetization refrigeration
Energy Technology Data Exchange (ETDEWEB)
Numazawa, Takenori; Kamiya, Koji; Okano, Takahiro; Matsumoto, Koichi
2003-05-01
Gadolinium and dysprosium gallium garnet single crystals (Dy{sub x}Gd{sub 1-x}){sub 3}Ga{sub 5}O{sub 12} (x=0,0.5 and 1) have been investigated for adiabatic demagnetization refrigeration used as magnetic materials between 0.5 and 5 K. Specific heat measurement of (Dy{sub 0.5}Gd{sub 0.5}){sub 3}Ga{sub 5}O{sub 12} showed a large and broad peak similar to that of Gd{sub 3}Ga{sub 5}O{sub 12} and it suggests that the geometrical frustration in Gd{sub 3}Ga{sub 5}O{sub 12} still remains in (Dy{sub 0.5}Gd{sub 0.5}){sub 3}Ga{sub 5}O{sub 12}. Magneto caloric effect of (Dy{sub 0.5}Gd{sub 0.5}){sub 3}Ga{sub 5}O{sub 12} was about four times larger than that of Gd{sub 3}Ga{sub 5}O{sub 12} for the magnetic field of 1 T between 0.5 and 5 K. Therefore, the magnetic entropy change of Gd{sub 3}Ga{sub 5}O{sub 12} by the external magnetic fields could be enhanced by substituting Dy{sup 3+} ion for Gd{sup 3+} ion for the magnetic fields of <2 T between 0.5 and 5 K.
The effect of demagnetization on the magnetocaloric properties of gadolinium
DEFF Research Database (Denmark)
Bahl, Christian Robert Haffenden; Nielsen, Kaspar Kirstein
2009-01-01
of gadolinium. The adiabatic temperature change DeltaTad of gadolinium sheets upon application of a magnetic field has been measured at a range of applied magnetic fields and sample orientations. A significant dependence of DeltaTad on the sample orientation is observed. This can be accounted...... for by the demagnetization factor. Also, the temperature dependence of DeltaTad has been measured experimentally and modeled by mean field theory. Corrections to mean field theory modeling due to the demagnetization field are proposed and discussed. ©2009 American Institute of Physics...
DEFF Research Database (Denmark)
Lipsø, Hans Kasper Wigh; Nielsen, Kaspar Kirstein; Christensen, Dennis
2011-01-01
The effect of demagnetization in a stack of gadolinium plates is determined experimentally by using spatially resolved measurements of the adiabatic temperature change due to the magnetocaloric effect. The number of plates in the stack, the spacing between them and the position of the plate...
Demagnetizing fields in active magnetic regenerators
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders
2014-01-01
A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....
Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure
Jurčišinová, E.; Jurčišin, M.
2017-11-01
We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.
Magnetoelastic Demagnetization of Steel under Cyclic Loading
Muratov, K. R.; Novikov, V. F.; Neradovskii, D. F.; Kazakov, R. Kh.
2018-01-01
Magnetoelastic demagnetization of steel samples under cyclic tensile loads has been analyzed. It has been established that values of residual magnetization that correspond to peak loads are characterized by the power-law dependence on the number of loading cycles. In some cases, in the region of high loads, the qualitative transition to exponential dependence has been observed. Coefficients of the power-law approximation of peak magnetization depend on the value of amplitude load and have specific characteristics in the vicinity of characteristic loads. The ratios of approximated slide load coefficients depending on the load are common for the three considered samples, and there is an outburst in the vicinity of the fatigue limit, which can be used as the basis for developing the rapid nondestructive method for determination of this limit.
Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.
1988-01-01
in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...... constant-temperature or constant-magnetic-field quenches into the antiferromagnetic phase is found at late times to obey the classical Allen-Cahn growth law. The qualitative features of isentropic quenches and the nonequilibrium ordering phenomena during controlled heating treatments at constant rate...
Demagnetization factor for a powder of randomly packed spherical particles
DEFF Research Database (Denmark)
Bjørk, Rasmus; Bahl, Christian R.H.
2013-01-01
The demagnetization factors for randomly packed spherical particle powders with different porosities, sample aspect ratios, and monodisperse, normal, and log-normal particle size distributions have been calculated using a numerical model. For a relative permeability of 2, comparable to room...... temperature Gd, the calculated demagnetization factor is close to the theoretical value. The normalized standard deviation of the magnetization in the powder was 6.0%-6.7%. The demagnetization factor decreased significantly, while the standard deviation of the magnetization increased, for increasing relative...
Theory of laser-induced demagnetization at high temperatures
Manchon, Aurelien
2012-02-17
Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among electrons, spins, and lattice. Assuming that the demagnetization processes take place during the thermalization of the subsystems, the temperature dynamics is given by the energy transfer between the thermalized interacting baths. These energy transfers are accounted for explicitly through electron-magnon and electron-phonon interactions, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular, we show several salient features for understanding magnetization dynamics near the Curie temperature. While the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics. We discuss the implication of the fast dynamics in the application of heat-assisted magnetic recording.
Failure Diagnosis for Demagnetization in Interior Permanent Magnet Synchronous Motors
Directory of Open Access Journals (Sweden)
Takeo Ishikawa
2017-01-01
Full Text Available Since a high degree of reliability is necessary for permanent magnet synchronous motors, the detection of a precursor for the demagnetization of permanent magnets is very important. This paper investigates the diagnosis of very slight PM demagnetization. The permanent magnet volume is altered so as to mimic the effect of demagnetization. This paper investigates the influence of demagnetization by using several methods: the 3D finite element analysis (FEA of the motor, the measurement of high-frequency impedance, and the measurement and FEA of the stator voltage and current under vector control. We have obtained the following results. The back-EMF is proportional to permanent magnet volume, and there is no difference in the demagnetization in the radial direction and in the axial direction. Even harmonics and subharmonics of flux density at the teeth tip could be useful for diagnosis if a search coil is installed there. The relatively low frequency resistance at the d-axis position is useful for diagnosis. Under vector control, the stator voltage is useful except in an intermediate torque range, and the intermediate torque is expressed by a simple equation.
Directory of Open Access Journals (Sweden)
Dave Bacon
2013-06-01
Full Text Available We describe a many-body quantum system that can be made to quantum compute by the adiabatic application of a large applied field to the system. Prior to the application of the field, quantum information is localized on one boundary of the device, and after the application of the field, this information propagates to the other side of the device, with a quantum circuit applied to the information. The applied circuit depends on the many-body Hamiltonian of the material, and the computation takes place in a degenerate ground space with symmetry-protected topological order. Such “adiabatic quantum transistors” are universal adiabatic quantum computing devices that have the added benefit of being modular. Here, we describe this model, provide arguments for why it is an efficient model of quantum computing, and examine these many-body systems in the presence of a noisy environment.
Bednyakova, Anastasia; Turitsyn, Sergei K
2015-03-20
The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity-the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.
Adiabatic capture and debunching
International Nuclear Information System (INIS)
Ng, K.Y.
2012-01-01
In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of ∼ ±22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than ∼ 3.46 eVs. The incoming booster bunches have total emittance ∼ 8.4 eVs, or each one with an emittance ∼ 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.
Betatron with demagnetization of magnetic circuit with extracted electron beam
International Nuclear Information System (INIS)
Rychkov, M.M.; Chakhlov, V.L.; Chertov, A.S.
2003-01-01
The magnetic scheme of the betatron with the magnetic circuit demagnetization, wherein the excitation winding is switched on consecutively and contrarily with the compensation winding is described. The experimental study on the betatron magnetic system with the magnetic circuit demagnetization is carried out on the basis of the electromagnet of the series-produced betatron MIB-6. The feed-up scheme, providing for the electrons lead-out beyond the emitter limits at the end of the acceleration cycle is developed for this magnetic system. The start-up of the betatron with the magnetic circuit demagnetization onto the kinetic energy of the accelerated electrons in the extracted beam, of 6 MeV with the radiation pulse recurrence frequency of 50 Hz is accomplished. The curves for the dose fields distribution of the extracted electron beam are presented [ru
Ion Demagnetization in the Magnetopause Current Layer Observed by MMS
Wang, Shan; Chen, Li-Jen; Hesse, Michael; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Lavraud, Benoit; Strangeway, Robert;
2016-01-01
We report ion velocity distribution functions (VDfs) observed by Magnetospheric Multiscale Mission (MMS) and present evidence for demagnetized ion Speiser motion during magnetopause reconnection. The demagnetization is observed in the vicinity of the X llne, as well as near the current sheet midlplane about tens of ion skin depths (d(sub 1)) away from the X line. Close to the X line before the outflow is built up, the VDFs are elongated, and the elongated part of VDFs rotates from the out-of-plane current direction toward the outflow directions downstream from the X line. Farther downstream, demagnetized ions exhibit a characteristic half-ring structure in the VDFs, as a result of the mixture of ions that have experienced different amounts of cyclotron turning around the magnetic field normal to the current sheet. Signatures of acceleration by electric fields are more pronounced in the VDFs near the X line than downstream.
Demagnetization factors for cylindrical shells and related shapes
Czech Academy of Sciences Publication Activity Database
Beleggia, M.; Vokoun, David; De Graef, M.
2009-01-01
Roč. 321, č. 9 (2009), s. 1306-1315 ISSN 0304-8853 EU Projects: European Commission(XE) 46559 - CERINKA Institutional research plan: CEZ:AV0Z10100520 Keywords : demagnetization factor * magnetostaticenergy * nano-ring * core-shell * dipolar interaction * shape anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.204, year: 2009
Quantum Adiabatic Brachistochrone
Rezakhani, A. T.; Kuo, W.-J.; Hamma, A.; Lidar, D. A.; Zanardi, P.
2009-08-01
We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.
Albash, Tameem; Lidar, Daniel A.
2018-01-01
Adiabatic quantum computing (AQC) started as an approach to solving optimization problems and has evolved into an important universal alternative to the standard circuit model of quantum computing, with deep connections to both classical and quantum complexity theory and condensed matter physics. This review gives an account of the major theoretical developments in the field, while focusing on the closed-system setting. The review is organized around a series of topics that are essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments and limitations, and its scope in the more general setting of computational complexity theory. Several variants are presented of the adiabatic theorem, the cornerstone of AQC, and examples are given of explicit AQC algorithms that exhibit a quantum speedup. An overview of several proofs of the universality of AQC and related Hamiltonian quantum complexity theory is given. Considerable space is devoted to stoquastic AQC, the setting of most AQC work to date, where obstructions to success and their possible resolutions are discussed.
Directory of Open Access Journals (Sweden)
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
Landahl, Andrew
2012-10-01
Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with
Research into methods of pipe end demagnetization under main pipeline repair
Directory of Open Access Journals (Sweden)
P.N. Dobrodeyev
2014-06-01
Full Text Available Efficiency of pipe end demagnetization methods is experimentally investigated to avoid arc magnetism at repair welding jobs on main pipelines. It is found that multi-polar biased static and dynamic demagnetization provides an acceptable level of magnetic flux density on pipe ends and stability of their magnetic state, which allows shortening repair time by means of executing demagnetization in parallel with other operation procedures.
The efficiency and the demagnetization field of a general Halbach cylinder
DEFF Research Database (Denmark)
Bjørk, Rasmus; Smith, Anders; Bahl, C.R.H.
2015-01-01
values of the demagnetizing field are either at φ=0,π at the outer radius, where the field is always equal to the remanence, or at φ=±π/2 at the inner radius, where it is the magnitude of the field in the bore. Thus to avoid demagnetization the coercivity of the magnets must be larger than these values....
Frozen flux violation, electron demagnetization and magnetic reconnection
Scudder, J. D.; Karimabadi, H.; Daughton, W.; Roytershteyn, V.
2015-10-01
We argue that the analogue in collisionless plasma of the collisional diffusion region of magnetic reconnection is properly defined in terms of the demagnetization of the plasma electrons that enable "frozen flux" slippage to occur. This condition differs from the violation of the "frozen-in" condition, which only implies that two fluid effects are involved, rather than the necessary slippage of magnetic flux as viewed in the electron frame. Using 2D Particle In Cell (PIC) simulations, this approach properly finds the saddle point region of the flux function. Our demagnetization conditions are the dimensionless guiding center approximation expansion parameters for electrons which we show are observable and determined locally by the ratio of non-ideal electric to magnetic field strengths. Proxies for frozen flux slippage are developed that (a) are measurable on a single spacecraft, (b) are dimensionless with theoretically justified threshold values of significance, and (c) are shown in 2D simulations to recover distinctions theoretically possible with the (unmeasurable) flux function. A new potentially observable dimensionless frozen flux rate, ΛΦ, differentiates significant from anecdotal frozen flux slippage. A single spacecraft observable, ϒ, is shown with PIC simulations to be essentially proportional to the unobservable local Maxwell frozen flux rate. This relationship theoretically establishes electron demagnetization in 3D as the general cause of frozen flux slippage. In simple 2D cases with an isolated central diffusion region surrounded by separatrices, these diagnostics uniquely identify the traditional diffusion region (without confusing it with the two fluid "ion-diffusion" region) and clarify the role of the separatrices where frozen flux violations do occur but are not substantial. In the more complicated guide and asymmetric 2D cases, substantial flux slippage regions extend out along, but inside of, the preferred separatrices, demonstrating that
Oana Maria Marinica
2017-01-01
Static magnetization data of eight transformer oil based magnetic fluid samples, with saturation magnetization ranging in a large interval from 9 kA/m to 90 kA/m, have been subjected to the demagnetizing field correction. Using the tabulated demagnetization factors and the differential magnetic susceptibility of the samples, the values of the radial magnetometric demagnetization factor were obtained in the particular case of VSM880 magnetometer. It was found that the demagnetizing field corre...
Analysis of Adiabatic Batch Reactor
Directory of Open Access Journals (Sweden)
Erald Gjonaj
2016-05-01
Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.
Adiabatic temperature change from non-adiabatic measurements
Czech Academy of Sciences Publication Activity Database
Carvalho, A.M.G.; Mejía, C.S.; Ponte, C.A.; Silva, L.E.L.; Kaštil, Jiří; Kamarád, Jiří; Gomes, A.M.
2016-01-01
Roč. 122, č. 3 (2016), s. 1-5, č. článku 246. ISSN 0947-8396 Institutional support: RVO:68378271 Keywords : magnetocaloric effect * adiabatic temperature change * calorimetric device * gadolinium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016
Sagnotti, Leonardo
2013-04-01
Modern rock magnetometers and stepwise demagnetization procedures result in the production of large datasets, which need a versatile and fast software for their display and analysis. Various software packages for paleomagnetic analyses have been recently developed to overcome the problems linked to the limited capability and the loss of operability of early codes written in obsolete computer languages and/or platforms, not compatible with modern 64 bit processors. The Demagnetization Analysis in Excel (DAIE) workbook is a new software that has been designed to make the analysis of demagnetization data easy and accessible on an application (Microsoft Excel) widely diffused and available on both the Microsoft Windows and Mac OS X operating systems. The widespread diffusion of Excel should guarantee a long term working life, since compatibility and functionality of current Excel files should be most likely maintained during the development of new processors and operating systems. DAIE is designed for viewing and analyzing stepwise demagnetization data of both discrete and u-channel samples. DAIE consists of a single file and has an open modular structure organized in 10 distinct worksheets. The standard demagnetization diagrams and various parameters of common use are shown on the same worksheet including selectable parameters and user's choices. The remanence characteristic components may be computed by principal component analysis (PCA) on a selected interval of demagnetization steps. Saving of the PCA data can be done both sample by sample, or in automatic by applying the selected choices to all the samples included in the file. The DAIE open structure allows easy personalization, development and improvement. The workbook has the following features which may be valuable for various users: - Operability in nearly all the computers and platforms; - Easy inputs of demagnetization data by "copy and paste" from ASCII files; - Easy export of computed parameters and
Influence of demagnetizing field on the permeability of soft magnetic composites
International Nuclear Information System (INIS)
Lin, G.Q.; Li, Z.W.; Chen, Linfeng; Wu, Y.P.; Ong, C.K.
2006-01-01
The influence of demagnetizing field on the effective permeability of magnetic composites has been investigated. A theoretical expression of the effective permeability has been obtained and discussed according to four typical composites with spheres, needles, flakes, and aligned prolate ellipsoidal particles. The results indicate that the demagnetizing field within the particles can reduce the effective permeability significantly. In order to increase the effective permeability, it is necessary to decrease the demagnetizing field within the particles. A linear relationship between effective permeability and volume fraction is also observed for composites filled with spherical particles at low volume fraction
A Many Particle Adiabatic Invariant
DEFF Research Database (Denmark)
Hjorth, Poul G.
1999-01-01
For a system of N charged particles moving in a homogeneous, sufficiently strong magnetic field, a many-particle adiabatic invariant constrains the collisional exchange of energy between the degrees of freedom perpendicular to and parallel to the magnetic field. A description of the phenomenon...
Adiabatic Theorem without a Gap Condition
International Nuclear Information System (INIS)
Avron, J.E.; Elgar, A.
1999-01-01
We prove the adiabatic theorem for quantum evolution without the traditional gap condition. All that this adiabatic theorem needs is a (piecewise) twice differentiable finite dimensional spectral projection. The result implies that the adiabatic theorem holds for the ground state of atoms in quantized radiation field. She general result we prove gives no information on the rate at which the adiabatic limit is approached. With additional spectral information one can also estimate this rate
The 23 to 300 C demagnetization resistance of samarium-cobalt permanent magnets
Niedra, Janis M.; Overton, Eric
1991-01-01
The influence of temperature on knee point and squareness of the M-H demagnetization characteristic of permanent magnets is important information for the full utilization of the capabilities of samarium-cobalt magnets at high temperature in demagnetization resistent permanent magnet devices. Composite plots of the knee field and the demagnetizing field required to produce a given magnetic induction swing below remanence were obtained for several commercial Sm2Co17 type magnet samples in the temperature range of 23 to 300 C. Using the knee point to define the limits of operation safe against irreversible demagnetization, such plots are shown to provide an effective overview of the useable regions in the space of temperature-induction swing parameters. The observed second quadrant M-H characteristic squareness is shown, by two measures, to increase gradually with temperature, reaching a peak in the interval 200 to 300 C.
van Berkum, S.; Erné, B.H.
2013-01-01
The magnetic remanence of silica microspheres with a low concentration of embedded cobalt ferrite nanoparticles is studied after demagnetization and remagnetization treatments. When the microspheres are dispersed in a liquid, alternating current (AC) magnetic susceptibility spectra reveal a constant
Detection of Partial Demagnetization Fault in PMSMs Operating under Nonstationary Conditions
DEFF Research Database (Denmark)
Wang, Chao; Delgado Prieto, Miguel; Romeral, Luis
2016-01-01
Demagnetization fault detection of in-service Permanent Magnet Synchronous Machines (PMSMs) is a challenging task because most PMSMs operate under nonstationary circumstances in industrial applications. A novel approach based on tracking characteristic orders of stator current using Vold...
Measurement of NdFeB permanent magnets demagnetization induced by high energy electron radiation
Energy Technology Data Exchange (ETDEWEB)
Temnykh, Alexander B. [Wilson Lab, Cornell University, LEPP, Ithaca, NY 14850 (United States)], E-mail: abt6@cornell.edu
2008-03-11
Demagnetization of NdFeB permanent magnets has been measured as function of radiation dose induced by high energy electrons. The magnet samples were of different intrinsic coercive forces, {approx_equal}12 and {approx_equal}20KOe, dimensions and direction of magnetization. 5 GeV electron beam from 12 GeV Cornell Synchrotron was used as a radiation source. A calorimetric technique was employed for radiation dose measurement. Results indicated that depending on the sample intrinsic coercive force, shape and direction of magnetization the radiation dose causing 1% of demagnetization of the sample varies from 0.0765{+-}0.005Mrad to 11.3{+-}3.0Mrad, i.e., by more than a factor of 100. Experimental data analysis revealed that demagnetization of the given sample induced by radiation is strongly correlated with the sample demagnetizing temperature. This correlation was approximated by an exponential function with two parameters obtained from the data fitting. The function can be used to predict the critical radiation dose for permanent magnet assemblies like undulator magnets based on its demagnetizing temperature. The latter (demagnetization temperature) can be determined at the design stage from 3-D magnetic modeling and permanent magnet material properties.
Fan, Deyang; Quan, Li; Zhu, Xiaoyong; Xiang, Zixuan; Wu, Wenye
2017-05-01
In this paper, the partitioned rotor flux switching permanent magnet machine with ferrite permanent magnet is proposed. By the adoption of the partitioned rotor configuration, the stator flux leakage is eliminated and the permanent magnet utilization is improved. The ferrite permanent magnet machine often suffers from irreversible demagnetization due to the inherent relatively low coercivity of ferrite permanent magnet. To mitigate the machine irreversible demagnetization risk, an improved partitioned rotor flux switching permanent magnet machine with hybrid permanent magnet topology is also proposed. Two little pieces of rare-earth permanent magnet are installed at the corners of ferrite permanent magnet, thus forming the hybrid permanent magnet topology. And the demagnetization mechanisms of both machines are clarified by the magnetic equivalent circuit method, which prove that the rare-earth permanent magnet offer magnetic protection function for the ferrite permanent magnet. Furthermore, by the 2-D finite element analysis, the demagnetization characteristics and the electromagnetic performances of the two machines are quantitively assessed, revealing that the demagnetization risk is reduced significantly. Both theoretical analysis and simulation results verify that the improved machine can not only maintain low-cost design, but also possess enhanced demagnetization withstand capability and competitive electromagnetic performances as expected.
Borradaile, Graham J.; Lagroix, France; Trimble, Dale
2001-09-01
Conventional alternating field (AF) demagnetization of the magnetite-bearing claystone foundations of a Saxon or late medieval lime kiln in Lincolnshire, England fail to isolate stable characteristic remanences, or remanences compatible with possible contemporary geomagnetic field orientations. Consolidation of the material prevented thermal demagnetization. When low temperature demagnetization (LTD) precedes AF demagnetization, however, the vector plots show a stable characteristic (primary) component. Magnetic anisotropy measurements show that the LTD did not significantly disturb the mineral fabric of the claystone, that the mineral fabric did not deflect the palaeofield, and that AF demagnetization did not induce a field-impressed anisotropy during the experiments. Anisotropy of low-field magnetic susceptibility (AMS) is affected by all minerals, and therefore the anisotropy of the magnetite was isolated by measuring anisotropy of anhysteretic remanence (AARM); this is of more relevance in evaluating the potential for palaeofield deflection. Thus, we conclude that LTD preceding AF demagnetization is responsible for improving the isolation of a characteristic remanence, which then favours a late medieval age for the kiln foundation.
Plasma heating by adiabatic compression
International Nuclear Information System (INIS)
Ellis, R.A. Jr.
1972-01-01
These two lectures will cover the following three topics: (i) The application of adiabatic compression to toroidal devices is reviewed. The special case of adiabatic compression in tokamaks is considered in more detail, including a discussion of the equilibrium, scaling laws, and heating effects. (ii) The ATC (Adiabatic Toroidal Compressor) device which was completed in May 1972, is described in detail. Compression of a tokamak plasma across a static toroidal field is studied in this device. The device is designed to produce a pre-compression plasma with a major radius of 17 cm, toroidal field of 20 kG, and current of 90 kA. The compression leads to a plasma with major radius of 38 cm and minor radius of 10 cm. Scaling laws imply a density increase of a factor 6, temperature increase of a factor 3, and current increase of a factor 2.4. An additional feature of ATC is that it is a large tokamak which operates without a copper shell. (iii) Data which show that the expected MHD behavior is largely observed is presented and discussed. (U.S.)
A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer
Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.
2015-12-01
We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.
International Nuclear Information System (INIS)
Chernyshenko, Dmitri; Fangohr, Hans
2015-01-01
In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii). - Highlights: • We study the accuracy of demagnetization in finite difference micromagnetics. • We introduce a new sparse integration method to compute the tensor more accurately. • Newell, sparse integration and asymptotic method are compared for all ranges
Systematics of adiabatic modes: flat universes
Pajer, E.; Jazayeri, S.
2018-03-01
Adiabatic modes are cosmological perturbations that are locally indistinguishable from a (large) change of coordinates. At the classical level, they provide model independent solutions. At the quantum level, they lead to soft theorems for cosmological correlators. We present a systematic derivation of adiabatic modes in spatially-flat cosmological backgrounds with asymptotically-perfect fluids. We find several new adiabatic modes including vector, time-dependent tensor and time-dependent scalar modes. The new vector and tensor modes decay with time in standard cosmologies but are the leading modes in contracting universes. We present a preliminary derivation of the related soft theorems. In passing, we discuss a distinction between classical and quantum adiabatic modes, we clarify the subtle nature of Weinberg's second adiabatic mode and point out that the adiabatic nature of a perturbation is a gauge dependent statement.
International Nuclear Information System (INIS)
Beleggia, M.; Graef, M. de
2003-01-01
A method is presented to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. By means of a Fourier space approach it is possible to compute analytically the Fourier representation of the demagnetization tensor field for a given shape. Then, specifying the direction of the uniform magnetization, the demagnetizing field and the magnetostatic energy associated with the particle can be evaluated. In some particular cases, the real space representation is computable analytically. In general, a numerical inverse fast Fourier transform is required to perform the inversion. As an example, the demagnetization tensor field for the tetrahedron will be given
Laser cooling by adiabatic transfer
Norcia, Matthew; Cline, Julia; Bartolotta, John; Holland, Murray; Thompson, James
2017-04-01
We have demonstrated a new method of laser cooling applicable to particles with narrow linewidth optical transitions. This simple and robust cooling mechanism uses a frequency-swept laser to adiabatically transfer atoms between internal and motional states. The role of spontaneous emission is reduced (though is still critical) compared to Doppler cooling. This allows us to achieve greater slowing forces than would be possible with Doppler cooling, and may make this an appealing technique for cooling molecules. In this talk, I will present a demonstration of this technique in a cold strontium system. DARPA QUASAR, NIST, NSF PFC.
A Phase Matching, Adiabatic Accelerator
Energy Technology Data Exchange (ETDEWEB)
Lemery, Francois [Hamburg U.; Flöttmann, Klaus [DESY; Kärtner, Franz [CFEL, Hamburg; Piot, Philippe [Northern Illinois U.
2017-05-01
Tabletop accelerators are a thing of the future. Reducing their size will require scaling down electromagnetic wavelengths; however, without correspondingly high field gradients, particles will be more susceptible to phase-slippage – especially at low energy. We investigate how an adiabatically-tapered dielectric-lined waveguide could maintain phase-matching between the accelerating mode and electron bunch. We benchmark our simple model with CST and implement it into ASTRA; finally we provide a first glimpse into the beam dynamics in a phase-matching accelerator.
Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples
Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao
2018-04-01
Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.
Study on optimal design of 210kW traction IPMSM considering thermal demagnetization characteristics
Kim, Young Hyun; Lee, Seong Soo; Cheon, Byung Chul; Lee, Jung Ho
2018-04-01
This study analyses the permanent magnet (PM) used in the rotor of an interior permanent magnet synchronous motor (IPMSM) used for driving an electric railway vehicle (ERV) in the context of controllable shape, temperature, and external magnetic field. The positioning of the inserted magnets is a degree of freedom in the design of such machines. This paper describes a preliminary analysis using parametric finite-element method performed with the aim of achieving an effective design. Next, features of the experimental design, based on methods such as the central-composition method, Box-Behnken and Taguchi method, are explored to optimise the shape of the high power density. The results are used to produce an optimal design for IPMSMs, with design errors minimized using Maxwell 2D, a commercial program. Furthermore, the demagnetization process is analysed based on the magnetization and demagnetization theory for PM materials in computer simulation. The result of the analysis can be used to calculate the magnetization and demagnetization phenomenon according to the input B-H curve. This paper presents the conditions for demagnetization by the external magnetic field in the driving and stopped states, and proposes a simulation method that can analyse demagnetization phenomena according to each condition and design the IPMSM that maximizes efficiency and torque characteristics. Finally, operational characteristics are analysed in terms of the operation patterns of railway vehicles, and control conditions are deduced to achieve maximum efficiency in all sections. This was experimentally verified.
Directory of Open Access Journals (Sweden)
Xiaonong Xu
2017-09-01
Full Text Available The Halbach type hollow cylindrical permanent magnet array (HCPMA is a volume compact and energy conserved field source, which have attracted intense interests in many practical applications. Here, using the complex variable integration method based on the Biot-Savart Law (including current distributions inside the body and on the surfaces of magnet, we derive analytical field solutions to an ideal multipole HCPMA in entire space including the interior of magnet. The analytic field expression inside the array material is used to construct an analytic demagnetization function, with which we can explain the origin of demagnetization phenomena in HCPMA by taking into account an ideal magnetic hysteresis loop with finite coercivity. These analytical field expressions and demagnetization functions provide deeper insight into the nature of such permanent magnet array systems and offer guidance in designing optimized array system.
Investigation on demagnetization of Nd2Fe14B permanent magnets induced by irradiation
Li, Zhefu; Jia, Yanyan; Liu, Renduo; Xu, Yuhai; Wang, Guanghong; Xia, Xiaobin
2017-12-01
Nd2Fe14B is an important component of insertion devices, which are used in synchrotron radiation sources, and could be demagnetized by irradiation. In the present study, the Monte Carlo code FLUKA was used to analyze the irradiation field of Nd2Fe14B, and it was confirmed that the main demagnetization particle was neutron. Nd2Fe14B permanent magnet samples were irradiated by Ar ions at different doses to simulate neutron irradiation damage. The hysteresis loops were measured using a vibrating sample magnetometer, and the microstructure evolutions were characterized by transmission electron microscopy. Moreover, the relationship between them was discussed. The results indicate that the decrease in saturated magnetization is caused by the changes in microstructure. The evolution of single crystals into an amorphous structure is the reason for the demagnetization phenomenon of Nd2Fe14B permanent magnets when considering its microscopic structure.
Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min
2017-09-01
The Halbach type hollow cylindrical permanent magnet array (HCPMA) is a volume compact and energy conserved field source, which have attracted intense interests in many practical applications. Here, using the complex variable integration method based on the Biot-Savart Law (including current distributions inside the body and on the surfaces of magnet), we derive analytical field solutions to an ideal multipole HCPMA in entire space including the interior of magnet. The analytic field expression inside the array material is used to construct an analytic demagnetization function, with which we can explain the origin of demagnetization phenomena in HCPMA by taking into account an ideal magnetic hysteresis loop with finite coercivity. These analytical field expressions and demagnetization functions provide deeper insight into the nature of such permanent magnet array systems and offer guidance in designing optimized array system.
M-H characteristics and demagnetization resistance of samarium-cobalt permanent magnets to 300 C
Niedra, Janis M.
1992-01-01
The influence of temperature on the M-H demagnetization characteristics of permanent magnets is important information for the full utilization of the capabilities of samarium-cobalt magnets at high temperatures in demagnetization-resistant permanent magnet devices. In high temperature space power converters, such as free-piston Stirling engine driven linear alternators, magnet demagnetization can occur as a long-term consequence of thermal agitation of domains and of metallurgical change, and also as an immediate consequence of too large an applied field. Investigated here is the short-term demagnetization resistance to applied fields derived from basic M-H data. This quasistatic demagnetization data was obtained for commercial, high-intrinsic-coercivity, Sm2Co17-type magnets from 5 sources, in the temperature range 23 to 300 C. An electromagnet driven, electronic hysteresigraph was used to test the 1-cm cubic samples. The observed variation of the 2nd quadrant M-H characteristics was a typical rapid loss of M-coercivity and a relatively lesser loss of remanence with increasing temperature. The 2nd quadrant M-H curve knee point is used to define the limits of operation safe against irreversible demagnetization due to an excessive bucking field for a given flux density swing at temperature. Such safe operating area plots are shown to differentiate the high temperature capabilities of the samples from different sources. For most of the samples, their 2nd quadrant M-H loop squareness increased with temperature, reaching a peak or a plateau above 250 C.
DEFF Research Database (Denmark)
Almeida, Trevor P.; Muxworthy, Adrian R.; Kovács, András
2016-01-01
heating is achieved through the construction and examination of magnetic-induction maps. Stepwise demagnetization of the remanence-induced Fe3O4 particle upon heating to above the Curie temperature, performed in a similar fashion to bulk thermal demagnetization measurements, revealed that its vortex state...... remains stable under heating close to its unblocking temperature and is recovered upon cooling with the same or reversed vorticity. Hence, the PSD Fe3O4 particle exhibits thermomagnetic behavior comparable to a single-domain carrier, and thus, vortex states are considered reliable magnetic recorders...
Adiabatic limit in perturbation theory
Epstein, H
1976-01-01
It is shown that, with correct mass and wave function renormalization, the time-ordered products for Wick polynomials T(L(y/sub 1/)...L(y/sub n/)) constructed by a method outlined in a previous paper (Epstein and Glaser, 1970) are such that the vectors of the form integral T(L(y/sub 1/)...L(y/sub n/)) g(y/sub 1/)...g(y/sub n/) psi dy/sub 1/...dy/sub n/ have limits when g tends to a constant, provided psi is chosen in a suitable dense domain. It follows that the S-matrix has unitary adiabatic limit as an operator-valued formal power series in Fock space. (4 refs).
Energy Technology Data Exchange (ETDEWEB)
Moosavi, S.S., E-mail: anchepoli@gmail.com [University of Technology Belfort Montbeliard (UTBM), Laboratory of IRTES-SET, Belfort (France); Engineering Department, Amol University of Special Modern Technology, Amol (Iran, Islamic Republic of); Djerdir, A. [University of Technology Belfort Montbeliard (UTBM), Laboratory of IRTES-SET, Belfort (France); Amirat, Y.Ait. [Laboratory of Femto-ST, University of Franche-Comte (France); Khaburi, D.A. [Center of Excellence for Power System Automation and Operation, Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)
2015-10-01
There are a lot of research activities on developing techniques to detect permanent magnet (PM) demagnetization faults (DF). These faults decrease the performance, the reliability and the efficiency of permanent magnet synchronous motor (PMSM) drive systems. In this work, we draw a broad perspective on the status of these studies. The advantages, disadvantages of each method, a deeper view investigated and a comprehensive list of references are reported. - Highlights: • A review of state of the art on demagnetization fault diagnosis was studied deeply. • Critical points in fault diagnosis are discussed aiming to safety and cost management. • Critical comparison on all existent demagnetization diagnosis methods was done. • It is proved that DE and UL have the same signature frequencies as partial demagnetization. • MCSA have some limitations in frequency component under uniform demagnetization.
International Nuclear Information System (INIS)
Moosavi, S.S.; Djerdir, A.; Amirat, Y.Ait.; Khaburi, D.A.
2015-01-01
There are a lot of research activities on developing techniques to detect permanent magnet (PM) demagnetization faults (DF). These faults decrease the performance, the reliability and the efficiency of permanent magnet synchronous motor (PMSM) drive systems. In this work, we draw a broad perspective on the status of these studies. The advantages, disadvantages of each method, a deeper view investigated and a comprehensive list of references are reported. - Highlights: • A review of state of the art on demagnetization fault diagnosis was studied deeply. • Critical points in fault diagnosis are discussed aiming to safety and cost management. • Critical comparison on all existent demagnetization diagnosis methods was done. • It is proved that DE and UL have the same signature frequencies as partial demagnetization. • MCSA have some limitations in frequency component under uniform demagnetization
Demagnetization Tests Performed on a Linear Alternator for a Stirling Power Convertor
Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.
2012-01-01
The NASA Glenn Research Center (GRC) is conducting in-house research on rare-earth permanent magnets and linear alternators to assist in developing free-piston Stirling convertors for radioisotope space power systems and for developing advanced linear alternator technology. This research continues at GRC, but, with the exception of Advanced Stirling Radioisotope Generator references, the work presented in this paper was conducted in 2005. A special arc-magnet characterization fixture was designed and built to measure the M-H characteristics of the magnets used in Technology Demonstration Convertors developed under the 110-W Stirling Radioisotope Generator (SRG110) project. This fixture was used to measure these characteristics of the arc magnets and to predict alternator demagnetization temperatures in the SRG110 application. Demagnetization tests using the TDC alternator on the Alternator Test Rig were conducted for two different magnet grades: Sumitomo Neomax 44AH and 42AH. The purpose of these tests was to determine the demagnetization temperatures of the magnets for the alternator under nominal loads. Measurements made during the tests included the linear alternator terminal voltage, current, average power, magnet temperatures, and stator temperatures. The results of these tests were found to be in good agreement with predictions. Alternator demagnetization temperatures in the Advanced Stirling Convertor (ASC-developed under the Advanced Stirling Radioisotope Generator project) were predicted as well because the prediction method had been validated through the SRG110 alternator tests. These predictions led to a specification for maximum temperatures of the ASC pressure vessel.
DEFF Research Database (Denmark)
Richards, H.L.; Rikvold, P.A.
1996-01-01
particularly promising as materials for high-density magnetic recording media. In this paper we use analytic arguments and Monte Carlo simulations to quantitatively study the effects of the demagnetizing field on the dynamics of magnetization switching in two-dimensional, single-domain, kinetic Ising systems...
Mancusi, D.; Galluzzi, A.; Pace, S.; Polichetti, M.
2017-10-01
A model has been developed to determine the effective ac magnetic response of magnetic systems, taking into account the demagnetization effects arising from the sample geometry which determine the out-of-phase components of the applied fundamental frequency and higher harmonic components. Indeed, demagnetization fields and their intermodulation can significantly affect the ac magnetic response. This approach provides a system of self-consistent linear equations relating the magnetic response to the external magnetic field by means of nonlinear magnetic susceptibility. The model is extended to the magnetic response of granular systems in terms of the contributions of the individual grains and of the whole sample in the presence of demagnetization effects of the whole sample and of the grains on a macroscopic scale. In particular, our model is applied to a granular superconducting system. The comparison between the performed numerical simulations and the experimental data shows that the demagnetization fields of the single grains and of the whole sample, and their intermodulation, are relevant if magnetic measurements are used to extract detailed information about the analyzed material.
van Berkum, Susanne; Erné, Ben H
2013-09-04
The magnetic remanence of silica microspheres with a low concentration of embedded cobalt ferrite nanoparticles is studied after demagnetization and remagnetization treatments. When the microspheres are dispersed in a liquid, alternating current (AC) magnetic susceptibility spectra reveal a constant characteristic frequency, corresponding to the rotational diffusion of the microparticles; this depends only on particle size and liquid viscosity, making the particles suitable as a rheological probe and indicating that interactions between the microspheres are weak. On the macroscopic scale, a sample with the dry microparticles is magnetically remanent after treatment in a saturating field, and after a demagnetization treatment, the remanence goes down to zero. The AC susceptibility of a liquid dispersion, however, characterizes the remanence on the scale of the individual microparticles, which does not become zero after demagnetization. The reason is that an individual microparticle contains only a relatively small number of magnetic units, so that even if they can be reoriented magnetically at random, the average vector sum of the nanoparticle dipoles is not negligible on the scale of the microparticle. In contrast, on the macroscopic scale, the demagnetization procedure randomizes the orientations of a macroscopic number of magnetic units, resulting in a remanent magnetization that is negligible compared to the saturation magnetization of the entire sample.
EVIDENCE FOR QUASI-ADIABATIC MOTION OF CHARGED PARTICLES IN STRONG CURRENT SHEETS IN THE SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Malova, H. V. [Scobeltsyn Nuclear Physics Institute of Lomonosov Moscow State University, Moscow (Russian Federation); Popov, V. Yu.; Grigorenko, E. E.; Petrukovich, A. A.; Zelenyi, L. M. [Space Research Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Delcourt, D. [Laboratoire de Physique des Plasmas, Ecole Politechnique, CNRS (France); Sharma, A. S. [Department of Astronomy, University of Maryland, College Park, MD (United States); Khabarova, O. V. [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation)
2017-01-01
We investigate quasi-adiabatic dynamics of charged particles in strong current sheets (SCSs) in the solar wind, including the heliospheric current sheet (HCS), both theoretically and observationally. A self-consistent hybrid model of an SCS is developed in which ion dynamics is described at the quasi-adiabatic approximation, while the electrons are assumed to be magnetized, and their motion is described in the guiding center approximation. The model shows that the SCS profile is determined by the relative contribution of two currents: (i) the current supported by demagnetized protons that move along open quasi-adiabatic orbits, and (ii) the electron drift current. The simplest modeled SCS is found to be a multi-layered structure that consists of a thin current sheet embedded into a much thicker analog of a plasma sheet. This result is in good agreement with observations of SCSs at ∼1 au. The analysis of fine structure of different SCSs, including the HCS, shows that an SCS represents a narrow current layer (with a thickness of ∼10{sup 4} km) embedded into a wider region of about 10{sup 5} km, independently of the SCS origin. Therefore, multi-scale structuring is very likely an intrinsic feature of SCSs in the solar wind.
Quantum entangling power of adiabatically connected Hamiltonians
International Nuclear Information System (INIS)
Hamma, Alioscia; Zanardi, Paolo
2004-01-01
The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate entanglement by moving through energy eigenstates corresponding to different values of the control parameters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for general dxd quantum systems, and specific two-qubit examples are studied
Quantum adiabatic protocols using emergent local Hamiltonians.
Modak, Ranjan; Vidmar, Lev; Rigol, Marcos
2017-10-01
We present two applications of emergent local Hamiltonians to speed up quantum adiabatic protocols for isolated noninteracting and weakly interacting fermionic systems in one-dimensional lattices. We demonstrate how to extract maximal work from initial band-insulating states, and how to adiabatically transfer systems from linear and harmonic traps into box traps. Our protocols consist of two stages. The first one involves a free expansion followed by a quench to an emergent local Hamiltonian. In the second stage, the emergent local Hamiltonian is "turned off" quasistatically. For the adiabatic transfer from a harmonic trap, we consider both zero- and nonzero-temperature initial states.
Thermoelectric Effects under Adiabatic Conditions
Directory of Open Access Journals (Sweden)
George Levy
2013-10-01
Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.
Experimental demonstration of composite adiabatic passage
Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.
2013-12-01
We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.
Adiabatic Motion of Fault Tolerant Qubits
Drummond, David Edward
This work proposes and analyzes the adiabatic motion of fault tolerant qubits in two systems as candidates for the building blocks of a quantum computer. The first proposal examines a pair of electron spins in double quantum dots, finding that the leading source of decoherence, hyperfine dephasing, can be suppressed by adiabatic rotation of the dots in real space. The additional spin-orbit effects introduced by this motion are analyzed, simulated, and found to result in an infidelity below the error-correction threshold. The second proposal examines topological qubits formed by Majorana zero modes theorized to exist at the ends of semiconductor nanowires coupled to conventional superconductors. A model is developed to design adiabatic movements of the Majorana bound states to produce entangled qubits. Analysis and simulations indicate that these adiabatic operations can also be used to demonstrate entanglement experimentally by testing Bell's theorem.
Asano, Yoshihiro; Bizen, Teruhiko; Maréchal, Xavier
2009-05-01
Demagnetization owing to high-energy electron irradiation has been analyzed for permanent magnets used in insertion devices of synchrotron radiation sources, using the Monte Carlo code FLUKA. The experimental data of a thermally treated Nd(2)Fe(14)B permanent magnet with a copper or a tantalum block at electron energies ranging from 2 to 8 GeV were compared with the calculation data of the absorbed doses, photoneutron production distributions and star densities. The results indicate that low-energy photoneutrons and bremsstrahlung photons are not involved in the demagnetization process, and suggest that the star density owing to the photoneutrons is strongly correlated with the demagnetization process.
International Nuclear Information System (INIS)
Tandon, S.; Beleggia, M.; Zhu, Y.; De Graef, M.
2004-01-01
A Fourier space formalism based on the shape amplitude of a particle is used to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. We provide a list of explicit shape amplitudes for important particle shapes, among others: the sphere, the cylindrical tube, an arbitrary polyhedral shape, a truncated paraboloid, and a cone truncated by a spherical cap. In Part I of this two-part paper, an analytical representation of the demagnetization tensor field for particles with cylindrical symmetry is provided, as well as expressions for the magnetostatic energy and the volumetric demagnetization factors
Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael
2018-01-01
Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Assessment of total efficiency in adiabatic engines
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
Directory of Open Access Journals (Sweden)
Oana Maria Marinica
2017-01-01
Full Text Available Static magnetization data of eight transformer oil based magnetic fluid samples, with saturation magnetization ranging in a large interval from 9 kA/m to 90 kA/m, have been subjected to the demagnetizing field correction. Using the tabulated demagnetization factors and the differential magnetic susceptibility of the samples, the values of the radial magnetometric demagnetization factor were obtained in the particular case of VSM880 magnetometer. It was found that the demagnetizing field correction keeps the saturation magnetization values unchanged, but instead the initial magnetic susceptibility of the magnetic fluid samples varies widely. The mean magnetic diameter, obtained through magnetogranulometry from the measured data, is higher than that obtained from the corrected ones and the variation rate increases with the magnetic particle volume fraction growth.
Directory of Open Access Journals (Sweden)
Kai-Hui Zhao
2014-12-01
Full Text Available To prevent irreversible demagnetization of a permanent magnet (PM for interior permanent magnet synchronous motors (IPMSMs by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LABplatform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance.
Directory of Open Access Journals (Sweden)
I.I. Gimazov, Yu.I. Talanov
2015-12-01
Full Text Available The results of the electron spin resonance study of the La1-xCaxMnO3 manganite and the diphenyl-picrylhydrazyl thin films for the magnetic field parallel and perpendicular to plane of the films are presented. The temperature dependence of the demagnetizing field is obtained. The parameters of the Curie-Weiss law are estimated for the paramagnetic thin film.
Directory of Open Access Journals (Sweden)
Stefan Sjökvist
2017-10-01
Full Text Available Faults in electrical machines can vary in severity and affect different parts of the machine. This study focuses on various kinds of short-circuits on the terminal side of a generic 20 kW surface mounted permanent magnet synchronous generator and how successive faults affect the performance of the machine. The study was conducted with the commercially available finite element method software COMSOL Multiphysics ® , and two time-dependent models for demagnetization of permanent magnets were compared, one using only internal models and the other using a proprietary external function. The study is simulation based and the two models were compared to a previously experimentally verified stationary model. Results showed that the power output decreased by more than 30% after five successive faults. In addition, the no-load voltage had become unsymmetrical, which was explained by the uneven demagnetization of the permanent magnets. The permanent magnet with the lowest reduction in average remanence was decreased by 0.8%, while the highest average reduction was 23.8% in another permanent magnet. The internal simulation model was about four times faster than the external model, but slightly overestimated the demagnetization.
Demagnetization monitoring and life extending control for permanent magnet-driven traction systems
Niu, Gang; Liu, Senyi
2018-03-01
This paper presents a novel scheme of demagnetization monitoring and life extending control for traction systems driven by permanent magnet synchronous motors (PMSMs). Firstly, the offline training is carried to evaluate fatigue damage of insulated gate bipolar transistors (IGBTs) under different flux loss based on first-principle modeling. Then an optimal control law can be extracted by turning down the power distribution factor of the demagnetizing PMSM until all damages of IGBTs turn to balance. Next, the similarity-based empirical modeling is employed to online estimate remaining flux of PMSMs, which is used to update the power distribution factor by referring the optimal control law for the health-oriented autonomous control. The proposed strategy can be demonstrated by a case study of traction drive system coupled with dual-PMSMs. Compared with traditional control strategy, the results show that the novel scheme can not only guarantee traction performance but also extend remaining useful life (RUL) of the system after suffering demagnetization fault.
Accurate adiabatic correction in the hydrogen molecule
Energy Technology Data Exchange (ETDEWEB)
Pachucki, Krzysztof, E-mail: krp@fuw.edu.pl [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Komasa, Jacek, E-mail: komasa@man.poznan.pl [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland)
2014-12-14
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Adiabatic quantum search algorithm for structured problems
International Nuclear Information System (INIS)
Roland, Jeremie; Cerf, Nicolas J.
2003-01-01
The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as Grover's algorithm. In this paper, we study how the structure of the search problem may be exploited to further improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a complexity that, although still exponential, grows with a reduced order in the problem size
Experimental study on the adiabatic shear bands
International Nuclear Information System (INIS)
Affouard, J.
1984-07-01
Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr
Adiabatic optimization versus diffusion Monte Carlo methods
Jarret, Michael; Jordan, Stephen P.; Lackey, Brad
2016-10-01
Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k -SAT at k =2 ,3 ,4 .
The Global Paleomagnetic Database Should Include Specimen-Level Demagnetization Data
Kirschvink, J. L.; Kazansky, A.
2002-12-01
In their description of the paleomagnetic database, McElhinny and Smethurst [1] provided a reasonable description of the status quo in terms of compiling and storing a quantitative summary of the results from the past 50 years of paleomagnetic investigation. However, recent developments in science and technology have far outpaced the response of the paleomagnetic community on the issue of data archive and storage, and as a consequence this field risks being left in the dust. It is our opinion that the database should be expanded to include the entire set of specimen-level demagnetization data that go into a paleomagnetic study, along with the interpretation made by the authors. A simple back-of-the-envelope estimate suggests that all the raw paleomagnetic demagnetization data generated in the past 50 years would fit easily on a single hard drive of a personal computer. Other fields are doing precisely this type of the data archiving -- for example, nothing is accepted for publication in the good, peer-reviewed molecular genetics journals until the raw sequence data have been deposited in one of the internationally-accepted genetic databanks. As we feel that geophysics is in no way inferior to genetics, we should have no fear of archiving our data and making it publicly available in a similar fashion. The actual process of measuring and demagnetizing typical paleomagnetic materials has not changed much in the 30 years since the introduction of superconducting magnetometers, with most studies still utilizing some combination of alternating field, thermal, microwave, or chemical demagnetization to isolate the principal magnetic components (although the number of demagnetization steps per specimen has certainly improved with the increasing use of automation). In contrast, techniques for the analysis of paleomagnetic data have improved substantially (e.g., [2,3]). Hence, public access to the archived raw demagnetization data would not only allow independent scrutiny of
Tigner, Benjamin
1994-01-01
A novel top-loading cryostat has been constructed which allows experimental samples to be cooled from room temperature to under 100 mK in 6 hours without warming the cryostat's sample plate above 200 mK. The cryostat uses dilution refrigeration and adiabatic demagnetization to reach an ultimate base temperature of 1 mK, achievable after precooling the demagnetization stage for 42 hours. Unusual cryostat design features include a hydraulic thermal clamp mechanism, a multi-segment top-load rod, and beryllium -copper fingers used for contact precooling of the sample carrier. Non-linear behavior is observed in the AC dielectric response of amorphous SiO_2 and SiO_{rm x} (x ~ 2.2) at temperatures below 320 mK and frequencies between 100 Hz and 10 kHz. The present observations are immune to the suspected measurement imperfections which plagued qualitatively similar results reported by Frossati, Maynard, Rammal, and Thoulouze [1977 ]. Above a temperature-dependent field threshold, the dielectric constant is seen to increase approximately logarithmically with increasing AC electric field amplitude. Typical threshold fields at 100 mK and 1 kHz are 5 times 10^4 V/m for bulk SiO_2 and 5 times 10^3 V/m for SiO_{rm x}. Typical field dependencies above the threshold at these same temperatures and frequencies are.018%/field-decade in bulk SiO _2 and.35%/field-decade in SiO_ {rm x}. At high AC field amplitudes, the observed non-linearity weakens the usual power law frequency dependence of the temperature of the dielectric constant minimum, such that T_{rm min} ~ f ^alpha, where alpha varies from 1/3 for low fields to.16 for fields of 1.2 times 10^5 V/m in SiO_2, and.20 for fields of 1.5 times 10^5 V/m in SiO_{rm x} . The non-linear dielectric properties cannot be explained in terms of the calculations of Anthony and Anderson [1979]. A modified calculation is proposed, involving an ensemble of degenerate two-level systems, which predicts non-linear dielectric behavior whose
Collapse and equilibrium of rotating, adiabatic clouds
International Nuclear Information System (INIS)
Boss, A.P.
1980-01-01
A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand
Adiabatic supernova expansion into the circumstellar medium
International Nuclear Information System (INIS)
Band, D.L.; Liang, E.P.
1987-01-01
We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs
Semi adiabatic theory of seasonal Markov processes
Energy Technology Data Exchange (ETDEWEB)
Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.
On the double adiabatic continuous spectrum
International Nuclear Information System (INIS)
Scheffel, J.
1984-09-01
In earlier work it has been found that the Alfven and cusp (or slow) continuous spectra can become unstable in toroidal geometry, as judged from the linearized double adiabatic equations. In this paper the validity of fluid approaches to the present problem is investigated. The physical implications of the stability conditions are discussed. (Author)
Improving the positive feedback adiabatic logic familiy
Directory of Open Access Journals (Sweden)
J. Fischer
2004-01-01
Full Text Available Positive Feedback Adiabatic Logic (PFAL shows the lowest energy dissipation among adiabatic logic families based on cross-coupled transistors, due to the reduction of both adiabatic and non-adiabatic losses. The dissipation primarily depends on the resistance of the charging path, which consists of a single p-channel MOSFET during the recovery phase. In this paper, a new logic family called Improved PFAL (IPFAL is proposed, where all n- and pchannel devices are swapped so that the charge can be recovered through an n-channel MOSFET. This allows to decrease the resistance of the charging path up to a factor of 2, and it enables a significant reduction of the energy dissipation. Simulations based on a 0.13µm CMOS process confirm the improvements in terms of power consumption over a large frequency range. However, the same simple design rule, which enables in PFAL an additional reduction of the dissipation by optimal transistor sizing, does not apply to IPFAL. Therefore, the influence of several sources of dissipation for a generic IPFAL gate is illustrated and discussed, in order to lower the power consumption and achieve better performance.
Adiabatic excitation of longitudinal bunch shape oscillations
Directory of Open Access Journals (Sweden)
M. Bai
2000-06-01
Full Text Available By modulating the rf voltage at near twice the synchrotron frequency, the longitudinal bunch shape can be modulated. This method can be used to shorten bunches. We show experimentally that the bunch shape can be modulated while preserving the longitudinal emittance when the rf voltage modulation is turned on adiabatically. Experimental measurements will be presented along with theoretical predictions.
Adiabatic burst evaporation from bicontinuous nanoporous membranes
Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk
2015-01-01
Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406
Non-adiabatic perturbations in multi-component perfect fluids
Energy Technology Data Exchange (ETDEWEB)
Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Non-adiabatic perturbations in multi-component perfect fluids
International Nuclear Information System (INIS)
Koshelev, N.A.
2011-01-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models
Directory of Open Access Journals (Sweden)
Yakhlef Malika
2015-01-01
Full Text Available The aim of this paper is the modeling of the stress demagnetization effect on the magnetic properties in a non-oriented Fe-Si 3% sheet under different external stresses. The magneto-mechanical model used for magnetic hysteresis is based on a model originally formulated by Sablik-Jiles-Atherthon (S.J.A.. This latter has been modified by including both the stress demagnetization factor and the eddy current effects. The influence of the stress demagnetization term SDT on the magnetostrictive behavior of the material is also modeled. The proposed model has been validated by extensive simulations at different stresses, namely compressive and tensile stresses. Simulation results obtained by this model are very close to those published in the literature. Using the proposed model, very satisfactory performance has been achieved.
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Change of adiabatic invariant near the separatrix
International Nuclear Information System (INIS)
Bulanov, S.V.
1995-10-01
The properties of particle motion in the vicinity of the separatrix in a phase plane are investigated. The change of adiabatic invariant value due to the separatrix crossing is evaluated as a function of a perturbation parameter magnitude and a phase of a particle for time dependent Hamiltonians. It is demonstrated that the change of adiabatic invariant value near the separatrix birth is much larger than that in the case of the separatrix crossing near the saddle point in a phase plane. The conditions of a stochastic regime to appear around the separatrix are found. The results are applied to study the longitudinal invariant behaviour of charged particles near singular lines of the magnetic field. (author). 22 refs, 9 figs
Trapped Ion Quantum Computation by Adiabatic Passage
International Nuclear Information System (INIS)
Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.
2008-01-01
We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Adiabatic Theorem for Quantum Spin Systems
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Adiabatic Quantum Optimization for Associative Memory Recall
Directory of Open Access Journals (Sweden)
Hadayat eSeddiqi
2014-12-01
Full Text Available Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO. Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic invariants for field-reversed configurations
International Nuclear Information System (INIS)
Schwarzmeier, J.L.; Lewis, H.R.; Seyler, C.E.
1982-01-01
Field reversed configurations (FRCs) are characterized by azimuthal symmetry, so two exact constants of the particle motion are the total particle energy E and the canonical angular momentum P/sub theta/. For many purposes it is desirable to construct a third (diabatic) constant of the motion if this is possible. It is shown that for parameters characteristic of current FRCs that the magnetic moment μ is a poor adiabatic invariant, while the radial action J is conserved rather well
Sagnotti, L.
2012-12-01
Modern rock magnetometers and stepwise demagnetization procedures result in the production of large datasets, which need a versatile and fast software for their display and analysis. Various software packages for paleomagnetic analyses have been recently developed to overcome the problems linked to the limited capability and the loss of operability of early codes written in obsolete computer languages and/or platforms, not compatible with modern 64 bit processors. Here I present a new software for viewing and analyzing demagnetization data from paleomagnetic discrete samples and u-channels, which consists of a workbook for Microsoft Excel. The widespread diffusion of Excel ensures multiplatform operability and offers guarantees for long term operability, independently form the development of new processors and operating systems. In order to reduce the problems linked to the rapid evolution of the programming environments, the workbook makes use of a few macros, written in Visual Basic and necessary only to automatically save the output data. The workbook is designed for an interactive operability and all the commands and choices can be entered by sliding menus associated to single cells. All the standard demagnetization diagrams (Zijderveld orthogonal projection diagrams, stereographic projection of unit vectors, decay of the remanence intensity) are featured and both the user-driven and the automatic computation of the remanence characteristic components by principal component analysis are allowed. In addition, various other common demagnetization parameters (MDF, deltaGRM) are computed. The whole workbook is free for use and modification. The program has the following features which may be valuable for various users: - Operability in nearly all the computers and platforms; - Easy inputs of demagnetization data by "copy and paste" from ASCII files. The required data consist of only 9 columns: (1) sample code, (2) demagnetization steps, (3-5) raw measurements from
Adiabatic heating in impulsive solar flares
Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.
1978-01-01
A study is made of adiabatic heating in two impulsive solar flares on the basis of dynamic X-ray spectra in the 28-254 keV range, H-alpha, microwave, and meter-wave radio observations. It is found that the X-ray spectra of the events are like those of thermal bremsstrahlung from single-temperature plasmas in the 10-60 keV range if photospheric albedo is taken into account. The temperature-emission correlation indicates adiabatic compression followed by adiabatic expansion and that the electron distribution remains isotropic. H-alpha data suggest compressive energy transfer. The projected areas and volumes of the flares are estimated assuming that X-ray and microwave emissions are produced in a single thermal plasma. Electron densities of about 10 to the 9th/cu cm are found for homogeneous, spherically symmetric sources. It is noted that the strong self-absorption of hot-plasma gyrosynchrotron radiation reveals low magnetic field strengths.
Adiabatic graph-state quantum computation
International Nuclear Information System (INIS)
Antonio, B; Anders, J; Markham, D
2014-01-01
Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)
Random matrix model of adiabatic quantum computing
International Nuclear Information System (INIS)
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-01-01
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size
Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system.
Sun, Xiankai; Liu, Hsi-Chun; Yariv, Amnon
2009-02-01
By analyzing the propagating behavior of the supermodes in a coupled-waveguide system, we have derived a universal criterion for designing adiabatic mode transformers. The criterion relates epsilon, the fraction of power scattered into the unwanted mode, to waveguide design parameters and gives the shortest possible length of an adiabatic mode transformer, which is approximately 2/piepsilon1/2 times the distance of maximal power transfer between the waveguides. The results from numerical calculations based on a transfer-matrix formalism support this theory very well.
The role of demagnetizing factors in the occurrence of vortex avalanches in Nb thin films
Energy Technology Data Exchange (ETDEWEB)
Colauto, F; Ortiz, W A [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, C P 676, 13565-905, Sao Carlos, SP (Brazil); Patino, E J; Aprilli, M, E-mail: fcolauto@df.ufscar.b [Laboratoire de Physique des Solides, Universite Paris-Sud, C.N.R.S., 91405 Orsay cedex (France)
2009-03-01
Under specific circumstances, magnetic flux penetrates into superconducting thin films as dendritic flux jumps. The phenomenon has a thermomagnetic origin, where flux motion generates heat that suppresses flux pining and facilitates further flux motion. We have studied the thickness influence on the flux stability for very thin Nb films, 20, 40, 60, and 80 nm, through dc-magnetometry. The thicker the film; the higher is the threshold field where instabilities first take place. Due to the demagnetizing factor in a perpendicular geometry, the effective magnetic field at the border of the film is largely amplified. For thin specimens, a linear dependence between the threshold field and the thickness is expected and has been actually observed. When normalized by the sample aspect ratio, the effective threshold magnetic field is nearly the same for all specimens studied.
Raminosoa, Tsarafidy; Alexander, James Pellegrino; EL-Refaie, Ayman Mohamed Fawzi
2017-06-06
A permanent magnet electrical machine includes a stator having conductive windings wound thereon and one or more permanent magnets embedded in the stator. A magnetic keeper element is positioned on the stator so as to form a magnetic flux path with the permanent magnets, with the magnetic keeper element closing the magnetic flux path of the permanent magnets by providing a low reluctance flux path to magnetic flux generated by the permanent magnets. A vacuum pressure impregnation (VPI) process is performed on the stator to increase a thermal conductivity of the windings, with the VPI process including a curing step that is performed at a selected temperature. The magnetic keeper element sets an operating point of the permanent magnets to an internal flux density level above a demagnetization threshold associated with the selected temperature at which the curing step is performed.
Tsunakawa-Shaw method - an absolute paleointensity technique using alternating field demagnetization
Yamamoto, Y.; Mochizuki, N.; Shibuya, H.; Tsunakawa, H.
2015-12-01
Among geologic materials volcanic rocks have been typically used to deduce an absolute paleointensity. In the last decade, however, there seems a becoming consensus that volcanic rocks are not so ideal materials due to such as magnetic grains other than non-interacting single domain particles. One approach to obtain a good paleointensity estimate from the rocks is to reduce and correct the non-ideality, suppress alterations in laboratory and screen out suspicious results. We have been working on a development and an application of the Tsunakawa-Shaw method, which has been previously called the LTD-DHT Shaw method. This method is an AF(alternating field)-based technique and thus a paleointensity is estimated using coercivity spectra. To reduce the non-ideality, all remanences undergo low-temperature demagnetization (LTD) before any AF demagnetizations to remove multi-domain like component. To correct the non-ideality, anhysteretic remanent magnetizations (ARMs) are imparted with their directions parallel to natural remanent magnetizations and laboratory-imparted thermoremanent magnetizations (TRMs) and measured before and after laboratory heating. These ARMs are used to correct remanence anisotropies, possible interaction effects originated from the non-ideal grains and TRM changes caused by laboratory alterations. TRMs are imparted by heating specimens above their Curie temperatures and then cooling to room temperature at once to simulate nature conditions. These cycles are done in vacuum to suppress alterations in laboratory. Obtained results are judged by selection criteria, including a check for validity of the ARM corrections.It has been demonstrated that successful paleointensities are obtained from historical lavas in Japan and Hawaii, and from baked clay samples from a reconstructed ancient kiln, with the flow-mean precision of 5-10%. In case of old volcanic rocks, however, the method does not necessarily seem to be perfect. We will summarize these points in
Accuracy versus run time in an adiabatic quantum search
International Nuclear Information System (INIS)
Rezakhani, A. T.; Pimachev, A. K.; Lidar, D. A.
2010-01-01
Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: The error decreases exponentially for short times and then decreases polynomially for longer times. We show that the well-known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.
Adiabatic regularization for gauge fields and the conformal anomaly
Chu, Chong-Sun; Koyama, Yoji
2017-03-01
Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.
Parallel interaction-free measurement using spatial adiabatic passage
International Nuclear Information System (INIS)
Hill, Charles D; Hollenberg, Lloyd C L; Greentree, Andrew D
2011-01-01
Interaction-free measurement (IFM) is a surprising consequence of quantum interference, where the presence of objects can be sensed without any disturbance of the object being measured. Here, we show an extension of IFM using techniques from spatial adiabatic passage, specifically multiple recipient adiabatic passage. Due to subtle properties of the adiabatic passage, it is possible to image an object without interaction between the imaging photons and the sample. The technique can be used on multiple objects in parallel and is entirely deterministic in the adiabatic limit. Unlike more conventional IFM schemes, this adiabatic process is driven by the symmetry of the system, and not by more usual interference effects. As such it provides an interesting alternative quantum protocol that may be applicable to photonic implementations of spatial adiabatic passage. We also show that this scheme can be used to implement a collision-free quantum routing protocol. (paper)
Bond selective chemistry beyond the adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Butler, L.J. [Univ. of Chicago, IL (United States)
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Narrow Linewidth Laser Cooling via Adiabatic Transfer
Bartolotta, John; Holland, Murray; Norcia, Matthew; Thompson, James; Cline, Julia
2017-04-01
We simulate and provide a theoretical framework for a new cooling method applicable to particles with narrow-linewidth optical transitions. The particles are adiabatically transferred to lower momentum states upon interaction with counter-propagating laser beams that are repeatedly swept over the transition frequency. A reduced reliance on spontaneous emission (compared to Doppler cooling) allows for larger slowing forces. Cooling via a 7.6 kHz dipole forbidden transition in Strontium-88 is simulated using one-dimensional quantum jump and c-number Langevin equation methods. This ``sweep cooling'' mechanism also shows promise for application to systems lacking closed cycling transitions, such as molecules.
On adiabatic perturbations in the ekpyrotic scenario
International Nuclear Information System (INIS)
Linde, A.; Mukhanov, V.; Vikman, A.
2010-01-01
In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario
Adiabatic matching section for plasma accelerated beams
Directory of Open Access Journals (Sweden)
Klaus Floettmann
2014-05-01
Full Text Available An adiabatic matching section is discussed as option to control the divergence and emittance growth of a beam exiting a plasma channel. Based on a general analytical solution of a focusing channel with varying focusing strength, a focusing profile is proposed which allows for a fast expansion of the beam size while keeping the emittance growth minimal. The solution is also applicable to other cases, e.g., the matching of a positron source to the downstream accelerating section, which are, however, not discussed in this contribution.
How fast and robust is the quantum adiabatic passage?
Takahashi, Kazutaka
2013-08-01
We study the assisted adiabatic passage, and equivalently the transitionless quantum driving, as a quantum brachistochrone trajectory. The optimal Hamiltonian for given constraints is constructed from the quantum brachistochrone equation. We discuss how the adiabatic passage is realized as the solution of the equation. The formulation of the quantum brachistochrone is based on the principle of least action. We utilize it to discuss the stability of the adiabatic passage.
How fast and robust is the quantum adiabatic passage?
Takahashi, Kazutaka
2013-01-01
We study the assisted adiabatic passage, and equivalently the transitionless quantum driving, as a quantum brachistochrone trajectory. The optimal Hamiltonian for given constraints is constructed from the quantum brachistochrone equation. We discuss how the adiabatic passage is realized as the solution of the equation. The formulation of the quantum brachistochrone is based on the principle of least action. We utilize it to discuss the stability of the adiabatic passage.
Adiabatic and non-adiabatic electron oscillations in a static electric field
International Nuclear Information System (INIS)
Wahlberg, C.
1977-03-01
The influence of a static electric field on the oscillations of a one-dimensional stream of electrons is investigated. In the weak field limit the oscillations are adiabatic and mode coupling negligible, but becomes significant if the field is tronger. The latter effect is believed to be of importance for the stability of e.g. potential double layers
Quantum Adiabatic Algorithms and Large Spin Tunnelling
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
An Adiabatic Phase-Matching Accelerator
Energy Technology Data Exchange (ETDEWEB)
Lemery, Francois [DESY; Floettmann, Klaus [DESY; Piot, Philippe [Northern Illinois U.; Kaertner, Franz X. [Hamburg U.; Assmann, Ralph [DESY
2017-12-22
We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that a $\\sim 200$-keV electron beam can be accelerated to an energy of $\\sim10$~MeV over $\\sim 10$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.
Adiabatic quantum optimization with the wrong Hamiltonian
Young, Kevin C.; Blume-Kohout, Robin; Lidar, Daniel A.
2013-12-01
Analog models of quantum information processing, such as adiabatic quantum computation and analog quantum simulation, require the ability to subject a system to precisely specified Hamiltonians. Unfortunately, the hardware used to implement these Hamiltonians will be imperfect and limited in its precision. Even small perturbations and imprecisions can have profound effects on the nature of the ground state. Here we consider an imperfect implementation of adiabatic quantum optimization and show that, for a widely applicable random control noise model, quantum stabilizer encodings are able to reduce the effective noise magnitude and thus improve the likelihood of a successful computation or simulation. This reduction builds upon two design principles: summation of equivalent logical operators to increase the energy scale of the encoded optimization problem, and the inclusion of a penalty term comprising the sum of the code stabilizer elements. We illustrate our findings with an Ising ladder and show that classical repetition coding drastically increases the probability that the ground state of a perturbed model is decodable to that of the unperturbed model, while using only realistic two-body interaction. Finally, we note that the repetition encoding is a special case of quantum stabilizer encodings, and show that this in principle allows us to generalize our results to many types of analog quantum information processing, albeit at the expense of many-body interactions.
Dependence of adiabatic population transfer on pulse profile
Indian Academy of Sciences (India)
Research Articles Volume 66 Issue 6 June 2006 pp 999-1015 ... Adiabatic passage; population inversion; selectivity; robustness. Abstract. Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant.
Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders
2010-01-01
The thermodynamics of the magnetocaloric effect implies constraints on the allowed variation in the adiabatic temperature change for a magnetocaloric material. An inequality for the derivative of the adiabatic temperature change with respect to temperature is derived for both first- and second...
Dependence of adiabatic population transfer on pulse profile
Indian Academy of Sciences (India)
Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends ...
Adiabatic passage of light in coupled optical waveguides
International Nuclear Information System (INIS)
Longhi, Stefano
2006-01-01
Adiabatic passage of light in coupled optical waveguides with a curved axis is theoretically investigated and shown to bear a close connection with coherent population transfer among quantum states of atoms and molecules. In particular, the optical analog of stimulated Raman adiabatic passage can be realized in a three-waveguide optical directional coupler
An integrated programming and development environment for adiabatic quantum optimization
International Nuclear Information System (INIS)
S Humble, T; J McCaskey, A; S Bennink, R; J Billings, J; F D'Azevedo, E; D Sullivan, B; F Klymko, C; Seddiqi, H
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community. (paper)
Design of ternary clocked adiabatic static random access memory
Pengjun, Wang; Fengna, Mei
2011-10-01
Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions.
Design of ternary clocked adiabatic static random access memory
International Nuclear Information System (INIS)
Wang Pengjun; Mei Fengna
2011-01-01
Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions. (semiconductor integrated circuits)
Adiabatically steered open quantum systems: Master equation and optimal phase
International Nuclear Information System (INIS)
Salmilehto, J.; Solinas, P.; Ankerhold, J.; Moettoenen, M.
2010-01-01
We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.
Adiabatic logic future trend and system level perspective
Teichmann, Philip
2012-01-01
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the p...
Adiabatic heavy-ion fusion potentials for fusion at deep sub-barrier ...
Indian Academy of Sciences (India)
barrier energies has been examined. The adiabatic limit of fusion barriers has been determined from experimental data using the barrier penetration model. These adiabatic barriers are consistent with the adiabatic fusion barriers derived from ...
Computational Bottlenecks of Quantum Adiabatic Annealing
Knysh, Sergey
2015-03-01
Quantum annealing in a transverse field with rate dΓ / dt inversely proportional to the system size N suppresses non-adiabatic transitions for fully connected spin glass such as the Sherrington-Kirpatrick (SK) model at the quantum critical point. This alone is not sufficient to ensure that the problem is solvable in polynomial time. I conjecture the appearance of small gaps associated with macroscopic tunneling events deep in the spin glass phase. This effect is demonstrated rigorously for the annealing of a toy model that shares a set of crtical exponents with SK model: Hopfield network with two Gaussian patterns. It presents with 0 . 15 lnN additional bottlenecks with gaps that scale as a stretched exponential exp[-c (NΓ) 3 / 4]. Further, I extend the analysis to the ρ-landscapes model (random energy model with correlations) which more faithfully represents real spin glasses.
Adiabatic/diabatic polarization beam splitter
Energy Technology Data Exchange (ETDEWEB)
DeRose, Christopher; Cai, Hong
2017-09-12
The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.
The adiabatic approximation in multichannel scattering
International Nuclear Information System (INIS)
Schulte, A.M.
1978-01-01
Using two-dimensional models, an attempt has been made to get an impression of the conditions of validity of the adiabatic approximation. For a nucleon bound to a rotating nucleus the Coriolis coupling is neglected and the relation between this nuclear Coriolis coupling and the classical Coriolis force has been examined. The approximation for particle scattering from an axially symmetric rotating nucleus based on a short duration of the collision, has been combined with an approximation based on the limitation of angular momentum transfer between particle and nucleus. Numerical calculations demonstrate the validity of the new combined method. The concept of time duration for quantum mechanical collisions has also been studied, as has the collective description of permanently deformed nuclei. (C.F.)
Adiabatic theory for anisotropic cold molecule collisions
Energy Technology Data Exchange (ETDEWEB)
Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
Adiabatic equilibrium models for direct containment heating
International Nuclear Information System (INIS)
Pilch, M.; Allen, M.D.
1991-01-01
Probabilistic risk assessment (PRA) studies are being extended to include a wider spectrum of reactor plants than was considered in NUREG-1150. There is a need for simple direct containment heating (DCH) models that can be used for screening studies aimed at identifying potentially significant contributors to overall risk in individual nuclear power plants. This paper presents two adiabatic equilibrium models suitable for the task. The first, a single-cell model, places a true upper bound on DCH loads. This upper bound, however, often far exceeds reasonable expectations of containment loads based on CONTAIN calculations and experiment observations. In this paper, a two cell model is developed that captures the major mitigating feature of containment compartmentalization, thus providing more reasonable estimates of the containment load
International Nuclear Information System (INIS)
Buechner, J.M.
1989-01-01
For a number of problems in the Plasma Astrophysics it is necessary to know the laws, which govern the non adiabatic charged particle dynamics in strongly curves magnetic field reversals. These are, e.q., the kinetic theory of the microscopic and macroscopicstability of current sheets in collionless plasma, of microturbulence, causing anomalous resistivity and dissipating currents, the problem of spontaneous reconnection, the formation of non Maxwellian distribution functions, particle acceleration and the use of particles as a diagnostic tool ('tracers'). To find such laws we derived from the differential equations of motion discrete mappings. These mappings allow an investigation of the motion after the break down of the adiabaticity of the magnetic moment. (author). 32 refs.; 5 figs.; 1 tab
Adiabatic Rearrangement of Hollow PV Towers
Directory of Open Access Journals (Sweden)
Eric A Hendricks
2010-10-01
Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane
He, Wei; Zhu, Tao; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua
2013-10-07
The laser-induced ultrafast demagnetization of CoFeB/MgO/CoFeB magnetic tunneling junction is exploited by time-resolved magneto-optical Kerr effect (TRMOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two CoFeB layers via the tunneling of hot electrons through the MgO barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electrons tunneling current. It opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions.
Zhang, Wei; He, Wei; Zhang, Xiang-Qun; Cheng, Zhao-Hua; Teng, Jiao; Fähnle, Manfred
2017-12-01
The ability to controllably manipulate the laser-induced ultrafast magnetic dynamics is a prerequisite for future high-speed spintronic devices. The optimization of devices requires the controllability of the ultrafast demagnetization time τM and intrinsic Gilbert damping αintr. In previous attempts to establish a relationship between τM and αintr, the rare-earth doping of a permalloy film with two different demagnetization mechanisms was not a suitable candidate. Here, we choose Co/Ni bilayers to investigate the relations between τM and αintr by means of the time-resolved magneto-optical Kerr effect (TR-MOKE) via adjusting the thickness of the Ni layers, and obtain an approximately proportional relation between these two parameters. The remarkable agreement between the TR-MOKE experiment and the prediction of a breathing Fermi-surface model confirms that a large Elliott-Yafet spin-mixing parameter b2 is relevant to the strong spin-orbital coupling at the Co/Ni interface. More importantly, a proportional relation between τM and αintr in such metallic films or heterostructures with electronic relaxation near the Fermi surface suggests the local spin-flip scattering dominates the mechanism of ultrafast demagnetization, otherwise the spin-current mechanism dominates. It is an effective method to distinguish the dominant contributions to ultrafast magnetic quenching in metallic heterostructures by simultaneously investigating both the ultrafast demagnetization time and Gilbert damping. Our work can open an avenue to manipulate the magnitude and efficiency of terahertz emission in metallic heterostructures such as perpendicular magnetic anisotropic Ta/Pt/Co/Ni/Pt/Ta multilayers, and then it has an immediate implication for the design of high-frequency spintronic devices.
Polley, Debanjan; Pancaldi, Matteo; Hudl, Matthias; Vavassori, Paolo; Urazhdin, Sergei; Bonetti, Stefano
2018-02-01
We study THz-driven spin dynamics in thin CoPt films with perpendicular magnetic anisotropy. Femtosecond magneto-optical Kerr effect measurements show that demagnetization amplitude of about 1% can be achieved with a peak THz electric field of 300 kV cm‑1, and a corresponding peak magnetic field of 0.1 T. The effect is more than an order of magnitude larger than observed in samples with easy-plane anisotropy irradiated with the same field strength. We also utilize finite-element simulations to design a meta-material structure that can enhance the THz magnetic field by more than an order of magnitude, over an area of several tens of square micrometers. Magnetic fields exceeding 1 Tesla, generated in such meta-materials with the available laser-based THz sources, are expected to produce full magnetization reversal via ultrafast ballistic precession driven by the THz radiation. Our results demonstrate the possibility of table-top ultrafast magnetization reversal induced by THz radiation.
A compact copper nuclear demagnetization cryostat and a search for superfluidity in solid 4He
International Nuclear Information System (INIS)
Haar, P.G. van de.
1991-01-01
The subject of this thesis is the theoretical and experimental study of matter at low temperatures, and the development of techniques to reach and measure these temperatures. A copper nuclear demagnetization cryostat was developed in order to reach low temperatures. This system distinguishes itself from other cryostats by its compact construction. The lowest temperature recorded by a pulsed Pt-NMR thermometer was 115 μK. This system was used to search for superfluidity in solid 4 He. Due to the large zero-point motion of the atoms, 4He remains liquid down to zero temperature; a pressure of 25.3 bar is needed to force the atoms in a lattice. Even in solid state, the 4 He atoms remain very mobile, changing lattice sites at a frequency of approximately 10 7 Hz. It is possible that solid 4 He contains vacancies at zero temperature. These zero point vacancies are expected to behave like a gas of bosons, and should Bose-condense at some temperature. From experiments the upper limit to the vacancy concentration is set of 4·10-5. (author). 217 refs.; 46 figs.; 2 tabs
Ultrafast demagnetization in Ni: theory of magneto-optics for non-equilibrium electron distributions
Energy Technology Data Exchange (ETDEWEB)
Oppeneer, P M [Leibniz-Institute of Solid State and Materials Research, PO Box 27006, D-01171 Dresden (Germany); Liebsch, A [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, D-52425 Juelich (Germany)
2004-08-04
The sensitivity of the magneto-optical Kerr response to electronic thermalization processes in ultrafast pump-probe experiments is studied by evaluating the complex conductivity tensor of Ni for non-equilibrium electron distributions. The electronic structure and optical matrix elements are calculated within density functional theory. To account for the electronic redistributions generated by the intense pump-laser pulse during the initial stages of electronic thermalization, two kinds of model electron distributions are considered which mimic the so-called dichroic bleaching or state-blocking effect. Thus, certain optical transitions which are allowed under equilibrium conditions are not accessible to the probe laser. It is shown that the conductivity tensor and the complex Kerr angle can be modified substantially by the non-equilibrium electron distributions. Moreover, in striking contrast to the case for ordinary equilibrium conditions, the Kerr rotation and ellipticity are no longer proportional to the magnetization of the sample. The Kerr response at ultrashort times can therefore not be taken as a measure of demagnetization.
Directory of Open Access Journals (Sweden)
C. Haldoupis
Full Text Available A previous study, based on incoherent and coherent radar measurements, suggested that during auroral E-region electron heating conditions, the electron flow in the auroral electrojet undergoes a systematic counterclockwise rotation of several degrees relative to the E×B direction. The observational evidence is re-examined here in the light of theoretical predictions concerning E-region electron demagnetization caused by enhanced anomalous cross-field diffusion during strongly-driven Farley-Buneman instability. It is shown that the observations are in good agreement with this theory. This apparently endorses the concept of wave-induced diffusion and anomalous electron collision frequency, and consequently electron demagnetization, under circumstances of strong heating of the electron gas in the auroral electrojet plasma. We recognize, however, that the evidence for electron demagnetization presented in this report cannot be regarded as definitive because it is based on a limited set of data. More experimental research in this direction is thus needed.
Sánchez, F. H.; Mendoza Zélis, P.; Arciniegas, M. L.; Pasquevich, G. A.; Fernández van Raap, M. B.
2017-04-01
Aiming to analyze relevant aspects of interacting magnetic nanoparticle systems (frequently called interacting superparamagnets), a model is built from magnetic dipolar interaction and demagnetizing mean-field concepts. By making reasonable simplifying approximations, a simple and useful expression for effective demagnetizing factors is achieved, which allows the analysis of uniform and nonuniform spatial distributions of nanoparticles, in particular the occurrence of clustering. This expression is a function of demagnetizing factors associated with specimen shape and clusters shape, and of the mean distances between near neighbor nanoparticles and between clusters, relative to the characteristic sizes of each of these two types of objects, respectively. The model explains effects of magnetic dipolar interactions, such as the observation of apparent nanoparticle magnetic moments smaller than real ones and approaching to zero as temperature decreases. It is shown that by performing a minimum set of experimental determinations along principal directions of geometrically well-defined specimens, model application allows retrieval of nanoparticle intrinsic properties, like mean volume, magnetic moment, and susceptibility in the absence of interactions. It also permits the estimation of mean interparticle and intercluster relative distances, as well as mean values of demagnetizing factors associated with clusters shape. An expression for average magnetic dipolar energy per nanoparticle is also derived, which is a function of specimen effective demagnetizing factor and magnetization. Experimental test of the model was performed by analysis of results reported in the literature and of original results reported here. The first case corresponds to oleic-acid-coated 8-nm magnetite particles dispersed in PEGDA-600 polymer, and the second one to polyacrilic-acid-coated 13-nm magnetite particles dispersed in PVA solutions from which ferrogels were later produced by a physical
Modeling non-adiabatic photoexcited reaction dynamics in condensed phases
International Nuclear Information System (INIS)
Coker, D.F.
2003-01-01
Reactions of photoexcited molecules, ions, and radicals in condensed phase environments involve non-adiabatic dynamics over coupled electronic surfaces. We focus on how local environmental symmetries can effect non-adiabatic coupling between excited electronic states and thus influence, in a possibly controllable way, the outcome of photo-excited reactions. Semi-classical and mixed quantum-classical non-adiabatic molecular dynamics methods, together with semi-empirical excited state potentials are used to probe the dynamical mixing of electronic states in different environments from molecular clusters, to simple liquids and solids, and photo-excited reactions in complex reaction environments such as zeolites
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
Adiabatically describing rare earths using microscopic deformations
Nobre, Gustavo; Dupuis, Marc; Herman, Michal; Brown, David
2017-09-01
Recent works showed that reactions on well-deformed nuclei in the rare-earth region are very well described by an adiabatic method. This assumes a spherical optical potential (OP) accounting for non-rotational degrees of freedom while the deformed configuration is described by couplings to states of the g.s. rotational band. This method has, apart from the global OP, only the deformation parameters as inputs, with no additional fit- ted variables. For this reason, it has only been applied to nuclei with well-measured deformations. With the new computational capabilities, microscopic large-scale calculations of deformation parameters within the HFB method based on the D1S Gogny force are available in the literature. We propose to use such microscopic deformations in our adi- abatic method, allowing us to reproduce the cross sections agreements observed in stable nuclei, and to reliably extend this description to nuclei far from stability, describing the whole rare-earth region. Since all cross sections, such as capture and charge exchange, strongly depend on the correct calculation of absorption from the incident channel (from direct reaction mechanisms), this approach significantly improves the accuracy of cross sections and transitions relevant to astrophysical studies. The work at BNL was sponsored by the Office of Nuclear Physics, Office of Science of the US Department of Energy, under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC.
On the persistence of adiabatic shear bands
Directory of Open Access Journals (Sweden)
Bassim M.N.
2012-08-01
Full Text Available It is generally agreed that the initiation and development of adiabatic shear bands (ASBs are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the “scars” due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.
Adiabatic Quantum Computation with Neutral Atoms
Biedermann, Grant
2013-03-01
We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Directory of Open Access Journals (Sweden)
Cebollada, F.
2005-06-01
Full Text Available In this paper we present a comparative analysis of the magnetic interactions and reversal mechanisms of two different systems: NdFeB-type alloys with grain sizes in the single domain range and Fe-SiO2 nanocomposites with Fe concentrations above and below the percolation threshold. We evidence that the use of the coercivity as the main parameter to analyse them might be misleading due to the convolution of both reversible and irreversible magnetization variations. We show that the switching field and thermally assisted demagnetization allow a better understanding of these mechanisms since they involve just irreversible magnetization changes. Specifically, the experimental analysis of the coercivity adquisition process for the NdFeB-type system suggests that the magnetization reversal is nucleated at the spin misalignments present due to intergranular exchange interactions. On the other hand, the study of the magnetic viscosity and of the isothermal remanent magnetization (IRM and direct field demagnetization (DCD remanence curves indicates that the dipolar interactions are responsible for the propagation of the switching started at individual particles.
En este artículo presentamos un análisis comparativo de la influencia de la microestructura a través de las interacciones magnéticas en los mecanismos de inversión de la magnetización en dos sistemas diferentes: aleaciones tipo NdFeB con tamaños de grano en el rango de monodominio y nanocompuestos de Fe-SiO2 con concentraciones de Fe tanto por encima como por debajo del umbral de percolación. Ponemos de manifiesto que el uso del campo coercitivo como parámetro de análisis puede llevar a equívocos debido a la coexistencia de variaciones reversibles e irreversibles de la magnetización. También mostramos que el campo de conmutación y la desimanación térmicamente asistida permiten una mejor comprensión de dichos mecanismos ya que reflejan exclusivamente cambios irreversibles de
Adiabatic Cooling for Rovibrational Spectroscopy of Molecular Ions
DEFF Research Database (Denmark)
Fisher, Karin
2017-01-01
proposes to adiabatically relax the trapping potential, called adiabatic cooling, when performing rovibrational excitations of the molecular ion to reduce the energy spacing of the harmonic motional levels, thus increasing the likelihood of a motional transition. The work presented in this thesis covers...... the implementation of adiabatic cooling for the application of rovibrational spectroscopy on single molecular ions. This entailed constructing and testing a new DC supply capable of employing adiabatic ramps of the ion's axial frequency on the 100's of us timescale. The DC supply went through several iterations...... is possible with some optimization. Rovibrational transitions in 24MgH+ are only known to the 1.5 GHz level compared to their Hz-linewidths. Simulations for broadband spectroscopy aimed reducing this uncertainty are presented for a rovibrational transition in 24MgH+. This technique allows for illumination...
Spatial non-adiabatic passage using geometric phases
Energy Technology Data Exchange (ETDEWEB)
Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)
2017-12-15
Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)
Adiabatic and isocurvature perturbation projections in multi-field inflation
International Nuclear Information System (INIS)
Gordon, Chris; Saffin, Paul M.
2013-01-01
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit
Ab initio adiabatic and quasidiabatic potential energy surfaces of H ...
Indian Academy of Sciences (India)
s12039-015-1022-8. Ab initio adiabatic and quasidiabatic potential energy surfaces of H. ++. CN system. BHARGAVA ANUSURI and SANJAY KUMAR. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
Adiabatic regularization for spin-1/2 fields
Landete, Aitor; Navarro-Salas, José; Torrentí, Francisco
2013-09-01
We extend the adiabatic regularization method to spin-1/2 fields. The ansatz for the adiabatic expansion for fermionic modes differs significantly from the WKB-type template that works for scalar modes. We give explicit expressions for the first adiabatic orders and analyze particle creation in de Sitter spacetime. As for scalar fields, the adiabatic method can be distinguished by its capability to overcome the UV divergences of the particle number operator. We also test the consistency of the extended method by working out the conformal and axial anomalies for a Dirac field in a Friedmann-Lemaître-Robertson-Walker spacetime, in exact agreement with those obtained from other renormalization prescriptions. We finally show its power by computing the renormalized stress-energy tensor for Dirac fermions in de Sitter space.
RFDR with Adiabatic Inversion Pulses: Application to Internuclear Distance Measurements
International Nuclear Information System (INIS)
Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai
2004-01-01
In the context of the structural characterisation of biomolecular systems via MAS solid state NMR, the potential utility of homonuclear dipolar recoupling with adiabatic inversion pulses has been assessed via numerical simulations and experimental measurements. The results obtained suggest that it is possible to obtain reliable estimates of internuclear distances via an analysis of the initial cross-peak intensity buildup curves generated from two-dimensional adiabatic inversion pulse driven longitudinal magnetisation exchange experiments
Convergence of hyperspherical adiabatic expansion for helium-like systems
International Nuclear Information System (INIS)
Abrashkevich, A.G.; Abrashkevich, D.G.; Pojda, V.Yu.; Vinitskij, S.I.; Kaschiev, M.S.; Puzynin, I.V.
1988-01-01
The convergence of hyperspherical adiabatic expansion has been studied numerically. The spectral problems arising after separation of variables are solved by the finite-difference and finite element methods. The energies of the ground and some doubly excited staes of a hydrogen ion are calculated in the six-channel approximation within the 10 -4 a.u. accuracy. Obtained results demonstrate a rapid convergence of the hyperspherical adiabatic expansion. 14 refs.; 5 tabs
Adiabatic analysis of collisions. III. Remarks on the spin model
International Nuclear Information System (INIS)
Fano, U.
1979-01-01
Analysis of a spin-rotation model illustrates how transitions between adiabatic channel states stem from the second, rather than from the first, rate of change of these states, provided that appropriate identification of channels and scaling of the independent variable are used. These remarks, like the earlier development of a post-adiabatic approach, aim at elucidating the surprising success of approximate separation of variables in the treatment of complex mechanical systems
On Adiabatic Processes at the Elementary Particle Level
A, Michaud
2016-01-01
Analysis of adiabatic processes at the elementary particle level and of the manner in which they correlate with the principle of conservation of energy, the principle of least action and entropy. Analysis of the initial and irreversible adiabatic acceleration sequence of newly created elementary particles and its relation to these principles. Exploration of the consequences if this first initial acceleration sequence is not subject to the principle of conservation.
Dynamical constraints and adiabatic invariants in chemical reactions.
Lorquet, J C
2007-08-23
For long-range electrostatic potentials and, more generally, when the topography of the potential energy surface is locally simple, the reaction path coordinate is adiabatically separable from the perpendicular degrees of freedom. For the ion-permanent dipole and ion-quadrupole interactions, the Poisson bracket of the adiabatic invariant decreases with the interfragment distance more rapidly than the electrostatic potential. The smaller the translational momentum, the moment of inertia of the neutral fragment, and the dipole or quadrupole moments are, the more reliable the adiabatic approximation is, as expected from the usual argumentation. Closed-form expressions for an effective one-dimensional potential in an adiabatic Hamiltonian are given. Connection with a model where the decoupling is exact is obtained in the limit of an infinitely heavy dipole. The dynamics is also constrained by adiabatic invariance for a harmonic valley about a curved reaction path, as shown by the reaction path Hamiltonian method. The maximum entropy method reveals that, as a result of the invariance properties of the entropy, constraints whose validity has been demonstrated locally only subsist in all parts of phase space. However, their form varies continuously, and they are not necessarily expressed in simple terms as they are in the asymptotic region. Therefore, although the influence of adiabatic invariance has been demonstrated at asymptotically large values of the reaction coordinate only, it persists in more interesting ranges.
Fast-forward of quantum adiabatic dynamics in electro-magnetic field
Masuda, Shumpei; Nakamura, Katsuhiro
2010-01-01
We show a method to accelerate quantum adiabatic dynamics of wavefunctions under electro-magnetic field by developing the previous theory (Masuda & Nakamura 2008 and 2010). Firstly we investigate the orbital dynamics of a charged particle. We derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states except for the spatially uniform phase such as the adiabatic phase in any desired short time. Fast-forward of adiabatic squeezing and tran...
Interplay between electric and magnetic effect in adiabatic polaritonic systems
Alabastri, Alessandro
2013-01-01
We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.
Quantum tunneling, adiabatic invariance and black hole spectroscopy
Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao
2017-05-01
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.
Shortcuts to adiabaticity in cutting a spin chain
Energy Technology Data Exchange (ETDEWEB)
Ren, Feng-Hua [Department of Physics, Ocean University of China, Qingdao 266100 (China); School of Computer Engineering, Qingdao Technological University, Qingdao 266033 (China); Wang, Zhao-Ming, E-mail: mingmoon78@126.com [Department of Physics, Ocean University of China, Qingdao 266100 (China); Gu, Yong-Jian, E-mail: yjgu@ouc.edu.cn [Department of Physics, Ocean University of China, Qingdao 266100 (China)
2017-01-15
“Shortcuts to adiabaticity” represents a strategy for accelerating a quantum adiabatic process, is useful for preparing or manipulating a quantum state. In this paper, we investigate the adiabaticity in the dynamics of an XY spin chain. During the process of cutting one long chain into two short chains, a “shortcut” can be obtained by applying a sequence of external pulses. The fidelity which measures the adiabaticity can be dramatically enhanced by increasing the pulse strength or pulse duration time. This reliability can be kept for different types of pulses, such as random pulse time interval or random strength. The free choice of the pulse can be explained by the adiabatic representation of the Hamiltonian, and it shows that the control effects are determined by the integral of the control function in the time domain. - Highlights: • “Shortcuts to adiabaticity” is proposed by applying external pulses. • The adiabaticity can be accelerated by increasing pulse strength or duration time. • Control effects are determined by the integral of the control function with respect to time.
Quantum tunneling, adiabatic invariance and black hole spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)
2017-05-15
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)
Shi, J. Y.; Tang, M.; Zhang, Z.; Ma, L.; Sun, L.; Zhou, C.; Hu, X. F.; Zheng, Z.; Shen, L. Q.; Zhou, S. M.; Wu, Y. Z.; Chen, L. Y.; Zhao, H. B.
2018-02-01
Ultrafast laser induced magnetization reversal in L10 FePt films with high perpendicular magnetic anisotropy was investigated using single- and double-pulse excitations. Single-pulse excitation beyond 10 mJ cm-2 caused magnetization (M) reversal at the applied fields much smaller than the static coercivity of the films. For double-pulse excitation, both coercivity reduction and reversal percentage showed a rapid and large decrease with the increasing time interval (Δt) of the two pulses in the range of 0-2 ps. In this Δt range, the maximum demagnetization (ΔMp) was also strongly attenuated, whereas the integrated demagnetization signals over more than 10 ps, corresponding to the average lattice heat effect, showed little change. These results indicate that laser induced M reversal in FePt films critically relies on ΔMp. Because ΔMp is determined by spin temperature, which is higher than lattice temperature, utilizing an ultrafast laser instead of a continuous-wave laser in laser-assisted M reversal may reduce the overall deposited energy and increase the speed of recording. The effective control of M reversal by slightly tuning the time delay of two laser pulses may also be useful for ultrafast spin manipulation.
Adiabatic Expansion of Electron Gas in a Magnetic Nozzle
Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira
2018-01-01
A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.
Joint composite-rotation adiabatic-sweep isotope filtration
International Nuclear Information System (INIS)
Valentine, Elizabeth R.; Ferrage, Fabien; Massi, Francesca; Cowburn, David; Palmer, Arthur G.
2007-01-01
Joint composite-rotation adiabatic-sweep isotope filters are derived by combining the composite-rotation [Stuart AC et al. (1999) J Am Chem Soc 121: 5346-5347] and adiabatic-sweep [Zwahlen C et al. (1997) J Am Chem Soc 119:6711-6721; Kupce E, Freeman R (1997) J Magn Reson 127:36-48] approaches. The joint isotope filters have improved broadband filtration performance, even for extreme values of the one-bond 1 H- 13 C scalar coupling constants in proteins and RNA molecules. An average Hamiltonian analysis is used to describe evolution of the heteronuclear scalar coupling interaction during the adiabatic sweeps within the isotope filter sequences. The new isotope filter elements permit improved selective detection of NMR resonance signals originating from 1 H spins attached to an unlabeled natural abundance component of a complex in which the other components are labeled with 13 C and 15 N isotopes
Coherent tunneling adiabatic passage with the alternating coupling scheme
International Nuclear Information System (INIS)
Jong, L M; Greentree, A D; Conrad, V I; Hollenberg, L C L; Jamieson, D N
2009-01-01
The use of adiabatic passage techniques to mediate particle transport through real space, rather than phase space, is becoming an interesting possibility. We have investigated the properties of coherent tunneling adiabatic passage (CTAP) with alternating tunneling matrix elements. This coupling scheme, not previously considered in the donor in silicon paradigm, provides an interesting route to long-range quantum transport. We introduce simplified coupling protocols and transient eigenspectra as well as a realistic gate design for this transport protocol. Using a pairwise treatment of the tunnel couplings for a five-donor device with 30 nm donor spacings, 120 nm total chain length, we estimate the timescale required for adiabatic operation to be ∼70 ns, a time well within the measured electron spin and estimated charge relaxation times for phosphorus donors in silicon.
A design study of non-adiabatic electron guns
International Nuclear Information System (INIS)
Barroso, J.J.; Stellati, C.
1994-01-01
The design of a non-adiabatic gun capable of producing a 10 A, 50 KeV high-quality laminar electron beam is reported. In contrast to the magnetron injection gun with a conical cathode, where the beam is generated initially with a transverse velocity component, in the non-adiabatic gun electrons are extracted in a direction parallel to the axial guide magnetic field. The beam electrons acquire cyclotron motion as result of non-adiabatic processes in a strong non uniform electric field across the modulation anode. Such an extraction method gives rise to favourable features that are explored throughout the work. An extensive numerical simulation study has also been done to minimize velocity and energy spreads. (author). 3 refs, 5 figs, 1 tab
Global adiabaticity and non-Gaussianity consistency condition
Directory of Open Access Journals (Sweden)
Antonio Enea Romano
2016-10-01
Full Text Available In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad≡δP−cw2δρ where cw2=P˙/ρ˙, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad=0 on all scales, which we call global adiabaticity (GA, which is guaranteed if cw2=cs2, where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR inflation in which cw2=cs2=1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2=cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.
On the adiabatic theorem when eigenvalues dive into the continuum
DEFF Research Database (Denmark)
Cornean, Decebal Horia; Jensen, Arne; Knörr, Hans Konrad
For a Wigner-Weisskopf model of an atom consisting of a quantum dot coupled to an energy reservoir described by a three-dimensional Laplacian we study the survival probability of a bound state when the dot energy varies smoothly and adiabatically in time. The initial state corresponds to a discrete...... eigenvalue which dives into the continuous spectrum and re-emerges from it as the dot energy is varied in time and finally returns to its initial value. Our main result is that for a large class of couplings, the survival probability of this bound state vanishes in the adiabatic limit....
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
A three-level atom in a conﬁguration trapped in an optical cavity forms a basic unit in a number of proposed protocols for quantum information processing. This system allows for efﬁcient storage of cavity photons into long-lived atomic excitations, and their retrieval with high ﬁdelity, in an adiabatic transfer process through ...
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
study the full quantum mechanics of this transfer process with a view to examine the non-adiabatic effects arising from inevitable excitations of the system to states involving the upper level of , which is radiative. We find that the fidelity of storage is better, the stronger the control field and the slower the rate of its switching off.
Fully controllable adiabatic geometric phase in nonlinear optics.
Karnieli, Aviv; Arie, Ady
2018-02-19
We propose and analyze a new way for obtaining an adiabatic geometric phase for light, via the sum-frequency-generation nonlinear process. The state of light is represented by the complex amplitudes at two different optical frequencies, coupled by the second order nonlinearity of the medium. The dynamics of this system is then shown to be equivalent to that of a spin-1/2 particle in a magnetic field, which in turn can be rotated adiabatically on the Bloch sphere. When the input wave itself is an eigenstate of the magnetic field equivalent, the geometric phase is manifested as a pure phase factor. Two adiabatic rotation schemes, based on specific modulations of the quasi-phase-matching poling parameters, are discussed. In the first, the geometric phase is shown to be sensitive to the pump intensity variations, as a result of the Bloch sphere deformation. The second can be utilized for the realization of nonlinear-optics-based geometric phase plates. Moreover, non-closed adiabatic trajectories are investigated, which are expected to provide a robust and broadband geometric wavefront shaping in the sum frequency.
Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition
International Nuclear Information System (INIS)
Qian Shangwu; Gu Zhiyu
2005-01-01
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the general time-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.
Adiabatic compression and radiative compression of magnetic fields
International Nuclear Information System (INIS)
Woods, C.H.
1980-01-01
Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape
Start up of an industrial adiabatic tubular reactor
Verwijs, J.W.; Verwijs, J.W.; van den Berg, Henderikus; Westerterp, K.R.
1992-01-01
The dynamic behaviour of an adiabatic tubular plant reactor during the startup is demonstrated, together with the impact of a feed-pump failure of one of the reactants. A dynamic model of the reactor system is presented, and the system response is calculated as a function of
Adiabatic invariants of the extended KdV equation
Energy Technology Data Exchange (ETDEWEB)
Karczewska, Anna [Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Rozmej, Piotr, E-mail: p.rozmej@if.uz.zgora.pl [Institute of Physics, Faculty of Physics and Astronomy, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Infeld, Eryk [National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Rowlands, George [Department of Physics, University of Warwick, Coventry, CV4 7A (United Kingdom)
2017-01-30
When the Euler equations for shallow water are taken to the next order, beyond KdV, momentum and energy are no longer exact invariants. (The only one is mass.) However, adiabatic invariants (AI) can be found. When the KdV expansion parameters are zero, exact invariants are recovered. Existence of adiabatic invariants results from general theory of near-identity transformations (NIT) which allow us to transform higher order nonintegrable equations to asymptotically equivalent (when small parameters tend to zero) integrable form. Here we present a direct method of calculations of adiabatic invariants. It does not need a transformation to a moving reference frame nor performing a near-identity transformation. Numerical tests show that deviations of AI from constant values are indeed small. - Highlights: • We suggest a new and simple method for calculating adiabatic invariants of second order wave equations. • It is easy to use and we hope that it will be useful if published. • Interesting numerics included.
High beta lasing in micropillar cavities with adiabatic layer design
DEFF Research Database (Denmark)
Lermer, M.; Gregersen, Niels; Lorke, M.
2013-01-01
We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...
Adiabatic CMB perturbations in pre-big bang string cosmology
DEFF Research Database (Denmark)
Enqvist, Kari; Sloth, Martin Snoager
2001-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...
Experimental adiabatic vortex ratchet effect in Nb films with ...
Indian Academy of Sciences (India)
Keywords. Vortices; asymmetric pinning; rectifier; adiabatic ratchet. Abstract. Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect ...
Non-adiabatic rotational excitation of dipolar molecule under the ...
Indian Academy of Sciences (India)
of which rotational angular momentum J ranges among various values while its projection onto the space fixed axis M is preserved to the initial value. In this respect, the non-adiabatic orientation is inherently accomplished by NAREX. An efficient method to achieve an enhanced degree of orientation is to employ delayed ...
Adiabatic and diabatic aerosol transport to the Jungfraujoch
Energy Technology Data Exchange (ETDEWEB)
Lugauer, M.; Baltensperger, U.; Furger, M.; Jost, D.T.; Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-09-01
Synoptic scale vertical motion, here detected by the geopotential height of the 500 hPa surface, mainly accounts for the aerosol transport to the Jungfraujoch in winter. In summer, diabatic convection provides the dominant vertical transport mechanism. Nevertheless, synoptic scale adiabatic motion still determines whether diabatic convection can develop. (author) 2 figs., 2 refs.
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
These results lend themselves to experimental tests. Our exact computations, when applied to slow variations of the control intensity for strong atom–photon couplings, are in very good agreement with Berry's superadiabatic transfer results without dissipation. Keywords. Cavity quantum electrodynamics; adiabatic transfer; ...
Role of rotational temperature in adiabatic molecular alignment
DEFF Research Database (Denmark)
Kumarappan, Vinod; Bisgaard, Christer Z; Viftrup, Simon
2006-01-01
One-dimensional alignment of molecules in the adiabatic limit, where the pulse duration greatly exceeds the molecular rotational periods, is studied experimentally. Four different asymmetric top molecules (iodobenzene, p-diiodobenzene, 3,4-dibromothiophene, and 4,4(')-dibromobiphenyl), rotationally...
Low-loss adiabatic bend using minimised chip area.
Roeloffzen, C.G.H.; de Ridder, R.M.; Driessen, A.; Leijtens, X.J.M.; Besten, J.H.
2000-01-01
For the increasing complexity of integrated optical structures, there is a need of bends, which occupy a chip area as small as possible. The best results with respect to loss can be obtained by adiabatic bends with decreasing radius and variable waveguide width. Detailed simulations using 2D bend
Experimental adiabatic vortex ratchet effect in Nb films with ...
Indian Academy of Sciences (India)
Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC ...
Optical realization of multilevel adiabatic population transfer in curved waveguide arrays
International Nuclear Information System (INIS)
Longhi, S.
2006-01-01
Adiabatic transfer of light in tunneling-coupled waveguide arrays made of an odd number of waveguides with curved axis is proposed to mimic multilevel adiabatic population transfer of atoms or molecules driven by a counterintuitive pulse sequence
Non-adiabatic quantum reactive scattering in hyperspherical coordinates
Kendrick, Brian K.
2018-01-01
A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B2(v , j) ↔ AB(v ', j') + B and A + AB(v , j) → A + AB(v ', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchange symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v ', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. The results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Adiabatic instability in coupled dark energy/dark matter models
International Nuclear Information System (INIS)
Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark
2008-01-01
We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the Universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled cold dark matter and mass varying neutrino models of dark energy and clarify for these theories the regimes in which the instability can be evaded due to nonadiabaticity or weak coupling.
On the adiabatic theorem when eigenvalues dive into the continuum
DEFF Research Database (Denmark)
Cornean, Decebal Horia; Jensen, Arne; Knörr, Hans Konrad
2018-01-01
We consider a reduced two-channel model of an atom consisting of a quantum dot coupled to an open scattering channel described by a three-dimensional Laplacian. We are interested in the survival probability of a bound state when the dot energy varies smoothly and adiabatically in time. The initia...... in the adiabatic limit. At the end of the paper, we present a short outlook on how our method may be extended to cover other classes of Hamiltonians; details will be given elsewhere....... state corresponds to a discrete eigenvalue which dives into the continuous spectrum and re-emerges from it as the dot energy is varied in time and finally returns to its initial value. Our main result is that for a large class of couplings, the survival probability of this bound state vanishes...
Steam bottoming cycle for an adiabatic diesel engine
Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.
1984-01-01
Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.
Adiabatic theory of nonlinear electron cyclotron resonance heating
International Nuclear Information System (INIS)
Kotel'nikov, I.A.; Stupakov, G.V.
1989-01-01
Plasma heating at electron frequency by an ordinary wave propagating at right angle to unidirectional magnetic field is treated. Injected microwave power is assumed to be so large that relativistic change of electron gyrofrequency during one flight thorugh the wave beam is much greater than inverse time of flight. The electron motion in the wave field is described using Hamiltonian formalism in adiabatic approximation. It is shown that energy coupling from the wave to electrons is due to a bifurcation of electron trajectory which results in a jumpm of the adiabatic invariant. The probability of bifurcational transition from one trajectory to another is calculated analytically and is used for the estimation of the beam power absorbed in plasma. 6 refs.; 2 figs
Nonlocal adiabatic theory. I. The action distribution function
Bénisti, Didier
2017-09-01
In this paper, we address the motion of charged particles acted upon by a sinusoidal electrostatic wave, whose amplitude and phase velocity vary slowly enough in time for neo-adiabatic theory to apply. Moreover, we restrict to the situation when only few separatrix crossings have occurred, so that the adiabatic invariant, I , remains nearly constant. We insist here on the fact that I is different from the dynamical action, I. In particular, we show that I depends on the whole time history of the wave variations, while the action is usually defined as a local function of the wave amplitude and phase velocity. Moreover, we provide several numerical results showing how the action distribution function, f(I), varies with time, and we explain how to derive it analytically. The derivation is then generalized to the situation when the wave is weakly inhomogeneous.
Adiabatic tapered optical fiber fabrication in two step etching
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
Experimental Investigation of Adiabatic Shear Banding at Different Impact Velocities
1993-01-01
Mechanical and Physical Behaviour of Materials Under DQynamic Loading, Les ýditions de physique, Les Ulis (1988), C3-277. [8) C. Fressengeas, Adiabatic...Behaviour of Materials under Dynamic Loading, Les dditions de physique, Les Ulis (1991), C3-323. [24] Z. Marcinak and K. Kuczynski, Limit strains in...28] M.V. B uisson and A. Molinari, Bandes de cisaillement stationnaires dans un acier , in: Proc. Int. Conf. on Mlechanical and Physicil Behaviour
Non-adiabatic Dynamics of Molecules in Optical Cavities
Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
Molecular systems coupled to optical cavities are promising candidates for a novel kind of photo chemistry. Strong coupling to the vacuum field of the cavity can modify the potential energy surfaces opening up new reaction pathways. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime. The possibilities for photo chemistry are demonstrated for a set of model systems representing typical situations found in molecules. Supported by the Alexander von Humboldt Foundation.
Adiabatic pipelining: a key to ternary computing with quantum dots
International Nuclear Information System (INIS)
Pecar, P; Zimic, N; Mraz, M; Lebar Bajec, I; Ramsak, A
2008-01-01
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
Adiabatic pipelining: a key to ternary computing with quantum dots
Pečar, P.; Ramšak, A.; Zimic, N.; Mraz, M.; Lebar Bajec, I.
2008-12-01
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
Probing the energy reactance with adiabatically driven quantum dots
Ludovico, María Florencia; Arrachea, Liliana; Moskalets, Michael; Sánchez, David
2018-02-01
The tunneling Hamiltonian describes a particle transfer from one region to another. Although there is no particle storage in the tunneling region itself, it has an associated amount of energy. The corresponding energy flux was named reactance since, such as an electrical reactance, it manifests itself in time-dependent transport only. We show here that the existence of the energy reactance leads to the universal response of a mesoscopic thermometer, a floating contact coupled to an adiabatically driven quantum dot.
Non-Adiabatic Molecular Dynamics Methods for Materials Discovery
Energy Technology Data Exchange (ETDEWEB)
Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)
2017-04-04
The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.
Adiabatic theory of Wannier threshold laws and ionization cross sections
International Nuclear Information System (INIS)
Macek, J.H.; Ovchinnikov, S.Y.
1994-01-01
Adiabatic energy eigenvalues of H 2 + are computed for complex values of the internuclear distance R. The infinite number of bound-state eigenenergies are represented by a function ε(R) that is single valued on a multisheeted Riemann surface. A region is found where ε(R) and the corresponding eigenfunctions exhibit harmonic-oscillator structure characteristic of electron motion on a potential saddle. The Schroedinger equation is solved in the adiabatic approximation along a path in the complex R plane to compute ionization cross sections. The cross section thus obtained joins the Wannier threshold region with the keV energy region, but the exponent near the ionization threshold disagrees with well-accepted values. Accepted values are obtained when a lowest-order diabatic correction is employed, indicating that adiabatic approximations do not give the correct zero velocity limit for ionization cross sections. Semiclassical eigenvalues for general top-of-barrier motion are given and the theory is applied to the ionization of atomic hydrogen by electron impact. The theory with a first diabatic correction gives the Wannier threshold law even for this case
Narrow-line laser cooling by adiabatic transfer
Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.
2018-02-01
We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.
Quantum trajectories for time-dependent adiabatic master equations
Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.
2018-02-01
We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.
Zhao, Qian; Chen, Jun; Wang, Jiaqi; Zhang, Xuefeng; Zhao, Guoping; Ma, Qiang
2017-06-27
The demagnetization progress of various hard/soft multilayers with perpendicular crystalline anisotropy has been studied by a micromagnetic model, incorporating the effect of the interface anisotropy, which is evident on the nucleation field when the soft layer thickness is small. Both microscopic and macroscopic hysteresis loops as well as angular distributions for the magnetizations in the thickness direction have been calculated, taking into account of realistic values of the interface anisotropy. The formula for the nucleation field has been derived analytically, where the nucleation field increases linearly with the interface anisotropy for a wide thickness region. While the nucleation field could change by more than 90% due to the influence of the interface anisotropy, the interface anisotropy has no effect on the pinning field or the coercivity, but it has some slight influence on the angular distributions. On the other hand, positive interface anisotropy enhances the remanence and the energy products, whereas negative interface anisotropy deteriorates both of them. Comparison with the experimental data justifies our calculation, indicating that negative interface anisotropy should be avoided in the experiment.
Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories
Wang, Tenghui; Zhang, Zhenxing; Xiang, Liang; Gong, Zhihao; Wu, Jianlan; Yin, Yi
2018-04-01
The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the "shortcut to adiabaticity" (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Adiabatic plasma equilibrium and application to a reconnection problem
International Nuclear Information System (INIS)
Zaharia, Sorin; Birn, J.
2007-01-01
The evolution of many plasma systems is adiabatic, i.e., plasma entropy is conserved in each magnetic flux tube. An apparently surprising result found recently from simulations of a forced magnetic reconnection problem (the 'Newton Challenge' [J. Birn et al., Phys. Plasmas 13, 092117 (2006)]) is that even in the presence of a dissipative process such as reconnection, the entropy within a flux tube can still be approximately conserved, due to the strong localization of the dissipation. To address plasma equilibrium with such adiabatic constraints, a novel code has been developed that computes equilibria with entropy profile as input, using the alternating dimension method [H. Grad et al., Proc. Natl. Acad. Sci. USA 72, 3789 (1975)]. The code alternates between solving the two-dimensional (2D) Grad-Shafranov equation to obtain the field configuration (flux function A) from the pressure profile P(A) and a 1D ordinary differential equation that uses the entropy conservation to derive the pressure function P(A) from a flux surface average. As a particular application, the code is used to compute equilibria relevant to the Newton Challenge, with a grid reflecting the reconnected state topology (with an X and an O point). The equilibria found agree very well with late stages of magnetohydrodynamic simulations of the Newton Challenge. This agreement not only validates the new code, but also proves that the final state approached by the reconnection simulations is indeed an equilibrium quasiadiabatically connected with the initial state. The results also show a significant release of magnetic energy through reconnection. Finally, other potential applications of the new code, especially to adiabatic evolution of space plasmas, are discussed
Designing single-qutrit quantum gates via tripod adiabatic passage
Directory of Open Access Journals (Sweden)
M. Amniat-Talab
2014-04-01
Full Text Available In this paper, we use stimulated Raman adiabatic passage technique to implement single-qutrit quantum gates in tripod systems. It is shown by using the Morris-Shore (MS transformation, the six-state problem with 5 pulsed fields can be reduced to a basis that decouples two states from the others. This imposes three pulses not connected to the initial condition with have the same shape. Using this method, the six-state penta-pod system is reduced to a tripod system. We can design single-qutrit quantum gates by ignoring the fragile dynamical phase, and by suitable design of Rabi frequencies of the effective Hamiltonian
Quantum state transfer in spin chains via shortcuts to adiabaticity
Huang, Bi-Hua; Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2018-01-01
Based on shortcuts to adiabaticity and quantum Zeno dynamics, we present a protocol to implement quantum state transfer (QST) in a quantum spin-1/2 chain. In the protocol, the complex Hamiltonian of an N -site system is simplified, and a simple effective Hamiltonian is present. It is shown that only the control of the coupling strengths between the boundary spins and the bulk spins are required for QST. Numerical simulations demonstrate that the protocol possesses high efficiency and is robust against the decay and the fluctuations of the control fields. The protocol might provide an alternative choice for transferring quantum states via spin chain systems.
Stimulated Raman adiabatic passage in Tm3+:YAG
International Nuclear Information System (INIS)
Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.
2008-01-01
We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm 3+ :YAG crystal. Tm 3+ :YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm 3+ :YAG system are presented along with the corresponding experimental results
Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems
Pritula, G. M.; Petrenko, E. V.; Usatenko, O. V.
2018-02-01
A linearized plane pendulum with the slowly varying mass and length of string and the suspension point moving at a slowly varying speed is presented as an example of a simple 1D mechanical system described by the generalized harmonic oscillator equation, which is a basic model in discussion of the adiabatic dynamics and geometric phase. The expression for the pendulum geometric phase is obtained by three different methods. The pendulum is shown to be canonically equivalent to the damped harmonic oscillator. This supports the mathematical conclusion, not widely accepted in physical community, of no difference between the dissipative and Hamiltonian 1D systems.
Heavy ion interaction in the sudden and adiabatic approximation
International Nuclear Information System (INIS)
Ali, S.El-Sayed
1997-01-01
This thesis is concerned with the calculation of the real part of the optical potential and the fusion cross-section of the 1 2C+ 1 2C system in the framework of the energy density formalism. The energy density functional of Skyrme interaction is used in the calculation. The densities of the combined system 1 2C+ 1 2C and of the separated nuclei are determined by the two center shell model (TCSM) in the sudden and adiabatic approximations. The spin density part of the interaction potential and its effects on the nuclear potential and the fusion cross- section is studied. Chapter(1) is an introduction. Chapter (2) gives the derivation of the model densities. The ground state of the two nuclei is taken as slater determinant built from a non-orthogonal basis of two harmonic oscillator potentials centered at two different points separated by a distance R. In this framework the matter, kinetic energy, momentum densities and the spin density are calculated. Chapter (3) presents the calculation of the real part of the optical potential of the system 1 2C+ 1 2C, in the sudden and adiabatic approximations. The calculations are based on the TCSM proposed in chapter (2), for different values of the relative energy between the ions where the Skyrme force parameters SIII and skm are used. We assumed a simple adiabatic model, where the nucleons rearrangement at each separation can be simulated in the densities by considering a variational oscillator parameter b, determined by minimizing the energy with respect to it. The spin density part of the interaction potential and its effect on the nuclear potential is examined. In chapter (4), the fusion cross-section of the system 1 2C+ 1 2C is calculated using the interaction potential calculated in chapter (3). We studied the effect of the spin density part of the interaction potential on the fusion cross-section, in the sudden and adiabatic approximations. The results are compared with experiments. 1 tabs.,4-4 figs.,43 refs
Observational tests of non-adiabatic Chaplygin gas
Carneiro, S.; Pigozzo, C.
2014-01-01
In a previous paper it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter $\\omega = -1$. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Ch...
Adiabatic quantum computation and quantum annealing theory and practice
McGeoch, Catherine C
2014-01-01
Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'''' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a nov
Non-adiabatic study of the Kepler subgiant KIC 6442183
Directory of Open Access Journals (Sweden)
Grosjean M.
2015-01-01
Full Text Available Thanks to the precision of Kepler observations, [3] were able to measure the linewidth and amplitude of individual modes (including mixed modes in several subgiant power spectra. We perform a forward modelling of a Kepler subgiant based on surface properties and observed frequencies. Non-adiabatic computations including a time- dependent treatment of convection give the lifetimes of radial and non-radial modes. Next, combining the lifetimes and inertias with a stochastic excitation model gives the amplitudes of the modes. We can now directly compare theoretical and observed linewidths and amplitudes of mixed-modes to obtain new constraints on our theoretical models.
Piecewise Adiabatic Passage with a Series of Femtosecond Pulses
International Nuclear Information System (INIS)
Shapiro, E. A.; Milner, V.; Menzel-Jones, C.; Shapiro, M.
2007-01-01
We develop a method of executing complete population transfers between quantum states in a piecewise manner using a series of femtosecond laser pulses. The method can be applied to a large class of problems as it benefits from the high peak powers and large spectral bandwidths afforded by femtosecond pulses. The degree of population transfer is robust to a wide variation in the absolute and relative intensities, durations, and time ordering of the pulses. The method is studied in detail for atomic sodium where piecewise adiabatic population transfer, as well as the induction of Ramsey-type interferences, is demonstrated
Relativistic blast waves in two dimensions. I - The adiabatic case
Shapiro, P. R.
1979-01-01
Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.
Shortcut to adiabatic control of soliton matter waves by tunable interaction
Li, Jing; Sun, Kun; Chen, Xi
2016-01-01
We propose a method for shortcut to adiabatic control of soliton matter waves in harmonic traps. The tunable interaction controlled by Feshbach resonance is inversely designed to achieve fast and high-fidelity compression of soliton matter waves as compared to the conventional adiabatic compression. These results pave the way to control the nonlinear dynamics for matter waves and optical solitons by using shortcuts to adiabaticity. PMID:28009007
International Nuclear Information System (INIS)
Zhang Yi; Fan Cunxin
2007-01-01
The perturbation of symmetries and adiabatic invariants for mechanical systems with unilateral holonomic constraints are studied. The exact invariant in the form of Hojman led by special Lie symmetries for an undisturbed system with unilateral constraints is given. Based on the concept of high-order adiabatic invariant of mechanical systems, the perturbation of Lie symmetries for the system under the action of small disturbance is investigated, and a new adiabatic invariant for the system with unilateral holonomic constraints is obtained, which can be called Hojman adiabatic invariant. In the end of the paper, an example is given to illustrate the application of the results.
Non-adiabatic effect on Laughlin's argument of the quantum Hall effect
International Nuclear Information System (INIS)
Maruyama, I; Hatsugai, Y
2009-01-01
We have numerically studied a non-adiabatic charge transport in the quantum Hall system pumped by a magnetic flux, as one of the simplest theoretical realizations of non-adiabatic Thouless pumping. In the adiabatic limit, a pumped charge is quantized, known as Laughlin's argument in a cylindrical lattice. In a uniform electric field, we obtained a formula connecting quantized pumping in the adiabatic limit and no-pumping in the sudden limit. The intermediate region between the two limits is determined by the Landau gap. A randomness or impurity effect is also discussed.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-02-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs.
Adiabatic Processes Realized with a Trapped Brownian Particle
Martínez, Ignacio A.; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A.
2015-03-01
The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.
Optimization using quantum mechanics: quantum annealing through adiabatic evolution
International Nuclear Information System (INIS)
Santoro, Giuseppe E; Tosatti, Erio
2006-01-01
We review here some recent work in the field of quantum annealing, alias adiabatic quantum computation. The idea of quantum annealing is to perform optimization by a quantum adiabatic evolution which tracks the ground state of a suitable time-dependent Hamiltonian, where 'ℎ' is slowly switched off. We illustrate several applications of quantum annealing strategies, starting from textbook toy-models-double-well potentials and other one-dimensional examples, with and without disorder. These examples display in a clear way the crucial differences between classical and quantum annealing. We then discuss applications of quantum annealing to challenging hard optimization problems, such as the random Ising model, the travelling salesman problem and Boolean satisfiability problems. The techniques used to implement quantum annealing are either deterministic Schroedinger's evolutions, for the toy models, or path-integral Monte Carlo and Green's function Monte Carlo approaches, for the hard optimization problems. The crucial role played by disorder and the associated non-trivial Landau-Zener tunnelling phenomena is discussed and emphasized. (topical review)
Enhanced diffusion weighting generated by selective adiabatic pulse trains
Sun, Ziqi; Bartha, Robert
2007-09-01
A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1-Ph-6) were studied on a 4 T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3-0.8 mM) water solutions (Ph-2-Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H 2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2-Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant.
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
International Nuclear Information System (INIS)
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-01-01
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Conditions for super-adiabatic droplet growth after entrainment mixing
Directory of Open Access Journals (Sweden)
F. Yang
2016-07-01
Full Text Available Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.
Adiabatic heavy-ion fusion potentials for fusion at deep sub-barrier ...
Indian Academy of Sciences (India)
Abstract. The recently reported unusual behaviour of fusion cross-sections at extreme sub-barrier energies has been examined. The adiabatic limit of fusion barriers has been determined from experimental data using the barrier penetration model. These adia- batic barriers are consistent with the adiabatic fusion barriers ...
Adiabatic approximation with exponential accuracy for many-body systems and quantum computation
International Nuclear Information System (INIS)
Lidar, Daniel A.; Rezakhani, Ali T.; Hamma, Alioscia
2009-01-01
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. Assuming that the Hamiltonian is analytic in a finite strip around the real-time axis, that some number of its time derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is nondegenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time derivative of the Hamiltonian divided by the cube of the minimal gap.
Diskoseismology: Probing accretion disks. I - Trapped adiabatic oscillations
Nowak, Michael A.; Wagoner, Robert V.
1991-01-01
The normal modes of acoustic oscillations within thin accretion disks which are terminated by an innermost stable orbit around a slowly rotating black hole or weakly magnetized compact neutron star are analyzed. The dominant relativistic effects which allow modes to be trapped within the inner region of the disk are approximated via a modified Newtonian potential. A general formalism is developed for investigating the adiabatic oscillations of arbitrary unperturbed disk models. The generic behavior is explored by way of an expansion of the Lagrangian displacement about the plane of symmetry and by assuming separable solutions with the same radial wavelength for the horizontal and vertical perturbations. The lowest eigenfrequencies and eigenfunctions of a particular set of radial and quadrupole modes which have minimum motion normal for the plane are obtained. These modes correspond to the standard dispersion relation of disk theory.
Hydrodynamics of adiabatic inverted annular flow: an experimental study
International Nuclear Information System (INIS)
De Jarlais, G.; Ishii, M.
1983-01-01
For low-quality film boiling in tubes or rod bundles, the flow pattern may consist of a liquid jet-like core surrounded by a vapor annulus, i.e., inverted annular flow. The stability, shape, and break-up mechanisms of this liquid core must be understood in order to model correctly this regime and to develop appropriate interfacial transfer correlations. This paper reports on a study in which inverted annular flow was simulated in an adiabatic system. Turbulent water jets, issuing downward from long-aspect nozzles were enclosed within cocurrent gas annuli. Jet-core diameter and velocity, and gas-annulus diameter, velocity, and species were varied, yielding liquid Reynolds numbers up to 33,000, void fractions from 0.29 to 0.95, and relative velocities from near zero to over 80 m/s. Jet-core break-up lengths and secondarily, core break-up mechanisms, were observed visually, using strobe lighting
Yang-Mills moduli space in the adiabatic limit
Lechtenfeld, Olaf; Popov, Alexander D.
2015-10-01
We consider the Yang-Mills equations for a matrix gauge group G inside the future light cone of four-dimensional Minkowski space, which can be viewed as a Lorentzian cone C({H}3) over the three-dimensional hyperbolic space H3. Using the conformal equivalence of C({H}3) and the cylinder {{R}}× {H}3, we show that, in the adiabatic limit when the metric on H3 is scaled down, classical Yang-Mills dynamics is described by geodesic motion in the infinite-dimensional group manifold {C}∞ ({S}∞ 2,G) of smooth maps from the boundary two-sphere {S}∞ 2=\\partial {H}3 into the gauge group G.
Electron Correlation from the Adiabatic Connection for Multireference Wave Functions
Pernal, Katarzyna
2018-01-01
An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.
Controlled Rapid Adiabatic Passage in a V-Type System
Song, Yunheung; Lee, Han-Gyeol; Jo, Hanlae; Ahn, Jaewook
2016-05-01
In chirped rapid adiabatic passage (RAP), chirp sign determines the final state to which the complete population transfer (CPT) occurs in a three-level V-type system. In this study, we show that laser intensity can be alternatively used as a control means in RAP, when the laser pulse is chirped and of a spectral hole resonant to one of the excited states. We verified such excitation selectivity in the experiment performed as-shaped femtosecond laser pulses interacting with the lowest three levels (5S, 5 P1/2, and 5 P3/2) of atomic rubidium. The successful demonstration implies that this intensity-dependent RAP in conjunction with laser beam profile programming may allow excitation selectivity for atoms or ions arranged in space.
Towards generic adiabatic elimination for bipartite open quantum systems
Azouit, R.; Chittaro, F.; Sarlette, A.; Rouchon, P.
2017-12-01
We consider a composite open quantum system consisting of a fast subsystem coupled to a slow one. Using the time scale separation, we develop an adiabatic elimination technique to derive at any order the reduced model describing the slow subsystem. The method, based on an asymptotic expansion and geometric singular perturbation theory, ensures the physical interpretation of the reduced second-order model by giving the reduced dynamics in a Lindblad form and the state reduction in Kraus map form. We give explicit second-order formulas for Hamiltonian or cascade coupling between the two subsystems. These formulas can be used to engineer, via a careful choice of the fast subsystem, the Hamiltonian and Lindbald operators governing the dissipative dynamics of the slow subsystem.
Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry
International Nuclear Information System (INIS)
Liu Lijun; Wei Chunyang; Guo Yuyan; Rogers, William J.; Sam Mannan, M.
2009-01-01
Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified
Adiabatic surface thermometer for improved production braze quality
International Nuclear Information System (INIS)
Dittbenner, G.R.
1975-01-01
An adiabatic surface thermometer was developed to control automatically the critical temperature-time cycle of a production vacuum-brazing process. Investigations revealed that optimum braze-joint strength required precise control of the brazing temperature. Spot-welded thermocouples could not be used because the spot welds cause surface damage. This thermometer touches the surface and uses a differential thermocouple and heater to measure surface temperature without heat flow, thereby eliminating large errors caused by conduction losses common to conventional spring-loaded thermocouples. Temperatures in air or vacuum are measured to 800 0 C with errors less than 5 0 C. This thermometer has minimized the rejection of production parts, resulting in a cost saving to the U. S. Energy Research and Development Administration
Adiabatic quantum-flux-parametron cell library adopting minimalist design
International Nuclear Information System (INIS)
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-01-01
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits
Effect of Poisson noise on adiabatic quantum control
Kiely, A.; Muga, J. G.; Ruschhaupt, A.
2017-01-01
We present a detailed derivation of the master equation describing a general time-dependent quantum system with classical Poisson white noise and outline its various properties. We discuss the limiting cases of Poisson white noise and provide approximations for the different noise strength regimes. We show that using the eigenstates of the noise superoperator as a basis can be a useful way of expressing the master equation. Using this, we simulate various settings to illustrate different effects of Poisson noise. In particular, we show a dip in the fidelity as a function of noise strength where high fidelity can occur in the strong-noise regime for some cases. We also investigate recent claims [J. Jing et al., Phys. Rev. A 89, 032110 (2014), 10.1103/PhysRevA.89.032110] that this type of noise may improve rather than destroy adiabaticity.
Thermodynamic study of ibuprofen by adiabatic calorimetry and thermal analysis
International Nuclear Information System (INIS)
Xu Fen; Sun Lixian; Tan Zhicheng; Liang Jianguo; Li Ruilian
2004-01-01
Molar heat capacities of ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 400 K. The polynomial functions of C p,m (J K -1 mol -1 ) versus T were established on the heat capacity measurements by means of the least fitting square method. The functions are as follows: for solid ibuprofen, at the temperature range of 79.105 K≤T≤333.297 K, C p,m =144.27+77.046X+3.5171X 2 +10.925X 3 +11.224X 4 , where X=(T-206.201)/127.096; for liquid ibuprofen, at the temperature range of 353.406 K≤T≤378.785 K, C p,m =325.79+8.9696X-1.6073X 2 -1.5145X 3 , where X=(T-366.095)/12.690. A fusion transition at T=348.02 K was found from the C p -T curve. The molar enthalpy and entropy of the fusion transition were determined to be 26.65 kJ mol -1 and 76.58 J mol -1 K -1 , respectively. The thermodynamic functions on the base of the reference temperature of 298.15 K, (H T -H 298.15 ) and (S T -S 298.15 ), were derived. Thermal characteristic of ibuprofen was studied by thermo-gravimetric analysis (TG-DTG) and differential scanning calorimeter (DSC). The temperature of fusion, the molar enthalpy and entropy of fusion obtained by DSC were well consistent with those obtained by adiabatic calorimeter. The evaporation process of ibuprofen was investigated further by TG and DTG, and the activation energy of the evaporation process was determined to be 80.3±1.4 kJ mol -1
DEFF Research Database (Denmark)
Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl
1999-01-01
adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...
Adiabatic modeling of the relativistic electron fluxes during the storm main phase
Kim, H.-J.; Rostoker, G.; Kamide, Y.
Satellite observations have shown that flux variations of outer belt relativistic electrons exhibit a strong radial dependence during the storm main phase. This L dependence can be characterized as small decreases (or at times increases) near the inner edge of the belt and large decreases in its outer region. This paper examines the characteristic radial dependence in terms of the fully adiabatic response of relativistic electrons to magnetic field perturbations. We calculate storm time electron fluxes by adiabatically evolving quiet time values, using Lionville's theorem and the conservation of the three adiabatic invariants. In an adiabatic process, the main phase electron fluxes are affected by the radial structure of magnetic field perturbations and the spatial and energy dependence of the quiet time electron distribution. In response to the field perturbations, adiabatic flux changes become larger at higher L shells where electrons can experience strong deceleration and considerable radial displacement. We conclude that a fully adiabatic treatment can reproduce the overall pattern of the observed radial dependence of relativistic electron fluxes during the storm main phase, although this does not deny the importance of non-adiabatic processes during individual geomagnetic storms.
On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics.
Cotton, Stephen J; Liang, Ruibin; Miller, William H
2017-08-14
The Meyer-Miller (MM) classical vibronic (electronic + nuclear) Hamiltonian for electronically non-adiabatic dynamics-as used, for example, with the recently developed symmetrical quasiclassical (SQC) windowing model-can be written in either a diabatic or an adiabatic representation of the electronic degrees of freedom, the two being a canonical transformation of each other, thus giving the same dynamics. Although most recent applications of this SQC/MM approach have been carried out in the diabatic representation-because most of the benchmark model problems that have exact quantum results available for comparison are typically defined in a diabatic representation-it will typically be much more convenient to work in the adiabatic representation, e.g., when using Born-Oppenheimer potential energy surfaces (PESs) and derivative couplings that come from electronic structure calculations. The canonical equations of motion (EOMs) (i.e., Hamilton's equations) that come from the adiabatic MM Hamiltonian, however, in addition to the common first-derivative couplings, also involve second-derivative non-adiabatic coupling terms (as does the quantum Schrödinger equation), and the latter are considerably more difficult to calculate. This paper thus revisits the adiabatic version of the MM Hamiltonian and describes a modification of the classical adiabatic EOMs that are entirely equivalent to Hamilton's equations but that do not involve the second-derivative couplings. The second-derivative coupling terms have not been neglected; they simply do not appear in these modified adiabatic EOMs. This means that SQC/MM calculations can be carried out in the adiabatic representation, without approximation, needing only the PESs and the first-derivative coupling elements. The results of example SQC/MM calculations are presented, which illustrate this point, and also the fact that simply neglecting the second-derivative couplings in Hamilton's equations (and presumably also in the Schr
The adiabatic versus the diabatic approximation in the decoupling of electron and nuclear motion
International Nuclear Information System (INIS)
Every, A.G.
1975-01-01
There are two limiting approximations that are used as starting points for the analysis of a system of interacting electrons and nuclei. The more widely used is the adiabatic approximation in which one assumes that the electrons adjust adiabatically to the instantaneous configuration of the nuclei. This yields an effective internuclear potential. In treating the nuclear motion, this potential can legitimately be expanded to fourth order in nuclear displacements from equilibrium. The difficulties of extending this expansion further are discussed. In situations where two adiabatic potentials approach each other the so-called diabatic approximation has to be used. A novel application to non-radioactive processes in solids is discussed. (author)
Stochasticity, superadiabaticity, and the theory of adiabatic invariants and guiding center motion
International Nuclear Information System (INIS)
Dubin, D.H.E.; Krommes, J.A.
1981-07-01
The theory of adiabatic invariants is discussed within the modern framework of symplectic Hamiltonian dynamics. The distinctions between exact, adiabatic, and superadiabatic invariants are clarified. The intimate connection between adiabatic (as opposed to exact) invariance and resonant interactions between motions on disparate time scales is elucidated. For the important case of charged particle motion in a strong magnetic field, resonances between gyration, bounce motion, and an external sinusoidal perturbation are described explicitly by introducing a time-dependent symplectic formulation of the guiding center motion. Destruction of invariance is discussed for quite general situations of physical interest, including the case of a trapped particle in a tokamak
Adiabatic regularization and particle creation for spin one-half fields
Landete, Aitor; Navarro-Salas, José; Torrentí, Francisco
2014-02-01
The extension of the adiabatic regularization method to spin-1/2 fields requires a self-consistent adiabatic expansion of the field modes. We provide here the details of such expansion, which differs from the WKB ansatz that works well for scalars, to firmly establish the generalization of the adiabatic renormalization scheme to spin-1/2 fields. We focus on the computation of particle production in de Sitter spacetime and obtain an analytic expression of the renormalized stress-energy tensor for Dirac fermions.
Adiabatic non-equilibrium steady states in the partition free approach
DEFF Research Database (Denmark)
Cornean, Horia; Duclos, Pierre; Purice, Radu
2012-01-01
Consider a small sample coupled to a finite number of leads and assume that the total (continuous) system is at thermal equilibrium in the remote past. We construct a non-equilibrium steady state (NESS) by adiabatically turning on an electrical bias between the leads. The main mathematical...... challenge is to show that certain adiabatic wave operators exist and to identify their strong limit when the adiabatic parameter tends to zero. Our NESS is different from, though closely related with the NESS provided by the Jakic–Pillet–Ruelle approach. Thus we partly settle a question asked by Caroli et...
Conical Intersections Between Vibrationally Adiabatic Surfaces in Methanol
Dawadi, Mahesh B.; Perry, David S.
2014-06-01
The discovery of a set of seven conical intersections (CI's) between vibrationally adiabatic surfaces in methanol is reported. The intersecting surfaces represent the energies of the two asymmetric CH stretch vibrations, νb{2} and νb{9}, regarded as adiabatic functions of the torsional angle, γ, and COH bend angle, ρ. One conical intersection, required by symmetry, is located at the C3v geometry where the COH group is linear (ρ = 0°); the other six are in eclipsed conformations with ρ = 62° and 94°. The three CI's at ρ = 62° are close to the equilibrium geometry (ρ = 71.4°), within the zero-point amplitude of the COH bending vibration. CI's between electronic surfaces have long been recognized as crucial conduits for ultrafast relaxation, and recently Hamm, and Stock have shown that vibrational CI's may also provide a mechanism for ultrafast vibrational relaxation. The ab initio data reported here are well described by an extended Zwanziger and Grant model for E ⊗ e Jahn-Teller systems in which Renner-Teller coupling is also active. However, in the present case, the distortion ρ from C3v symmetry is much larger than is typical in the Jahn-Teller coupling of electronic surfaces and accordingly higher-order terms in ρ are required. The present results are also consistent with the two-state model of Xu et al. The cusp-like features, which they found along the internal-rotation path, are explained in the context of the present work in terms of proximity to the CI's. The presence of multiple CI's near the torsional minimum energy path impacts the role of geometric phase in this three-fold internal-rotor system. When the dimensionality of the low-frequency space is extended to include the CO bond length as well as γ and ρ, the individual CI's become seams of CI's. It is shown that the CI's at ρ = 62° and 94° lie along the same seam of CI's in this higher dimensional space. P. Hamm and G. Stock, Phys. Rev. Lett., 109, 173201, (2012) P. Hamm, and G
Adiabatically deformed ensemble: Engineering nonthermal states of matter
Kennes, D. M.
2017-07-01
We propose a route towards engineering nonthermal states of matter, which show largely unexplored physics. The main idea relies on the adiabatic passage of a thermal ensemble under slow variations of the system Hamiltonian. If the temperature of the initial thermal ensemble is either zero or infinite, the ensemble after the passage is a simple thermal one with the same vanishing or infinite temperature. However, for any finite nonzero temperature, intriguing nonthermal ensembles can be achieved. We exemplify this in (a) a single oscillator, (b) a dimerized interacting one-dimensional chain of spinless fermions, (c) a BCS-type superconductor, and (d) the topological Kitaev chain. We solve these models with a combination of methods: either exactly, numerically using the density matrix renormalization group, or within an approximate functional renormalization group scheme. The designed states show strongly nonthermal behavior in each of the considered models. For example, for the chain of spinless fermions we exemplify how long-ranged nonthermal power-law correlations can be stabilized, and for the Kitaev chain we elucidate how the nonthermal ensemble can largely alter the transition temperature separating topological and trivial phases.
Development of a semi-adiabatic isoperibol solution calorimeter.
Venkata Krishnan, R; Jogeswararao, G; Parthasarathy, R; Premalatha, S; Prabhakar Rao, J; Gunasekaran, G; Ananthasivan, K
2014-12-01
A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.
Development of a semi-adiabatic isoperibol solution calorimeter
International Nuclear Information System (INIS)
Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K.
2014-01-01
A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%
Hot-electron nanoscopy using adiabatic compression of surface plasmons
Giugni, Andrea
2013-10-20
Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.
Adiabatic Low-Pass J Filters for Artifact Suppression in Heteronuclear NMR
DEFF Research Database (Denmark)
Meier, Sebastian; Benie, Andrew J; Duus, Jens Øllgaard
2009-01-01
NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts....
Directory of Open Access Journals (Sweden)
Barban C.
2013-03-01
Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.
An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems
International Nuclear Information System (INIS)
Baranger, M.; Veneroni, M.
1977-11-01
It is shown how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and one starts from the time-dependent Hartree-Fock equation. To this, the adiabatic approximation is added, and the energy in powers of an adiabatic parameter is expanded, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The adiabatic equations of motion are derived in different ways and their analogy with classical mechanics is stressed. The role of the adiabatic hypothesis and its range of validity, are analyzed in detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given and the moment of inertia under rotation is that of Thouless and Valatin
Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide
International Nuclear Information System (INIS)
Longhi, S.; Marangoni, M.; Janner, D.; Ramponi, R.; Laporta, P.; Cianci, E.; Foglietti, V.
2005-01-01
We report on the first experimental observation of wave packet dichotomy and adiabatic stabilization of light in a periodically bent optical waveguide in analogy with similar behavior of atoms in high-frequency strong laser fields
Bang-bang shortcut to adiabaticity in trapped-ion quantum simulators
Balasubramanian, S.; Han, Shuyang; Yoshimura, B. T.; Freericks, J. K.
2018-02-01
We model the bang-bang optimization protocol as a shortcut to adiabaticity in the ground-state preparation of a trapped-ion quantum simulator. Compared to a locally adiabatic evolution, the bang-bang protocol typically produces a lower ground-state probability, but its implementation is so much simpler than the locally adiabatic approach, that it can become a competitive choice to use for maximizing ground-state preparation in systems that cannot be solved with conventional computers. We describe how one can optimize the shortcut and provide specific details for how it can be implemented with current trapped-ion quantum simulators. However, when frustration is strong enough, no method appears to work well for adiabatic state preparation within the experimental time frames, and one must confront the issue of dealing with diabatic excitations within the simulation.
Rapid adiabatic passage in quantum dots: Influence of scattering and dephasing
DEFF Research Database (Denmark)
Schuh, K.; Jahnke, F.; Lorke, Michael
2011-01-01
Theoretical investigations for the realization of population inversion of semiconductor quantum dot ground-state transitions by means of adiabatic passage with chirped optical pulses are presented. While the inversion due to Rabi oscillations depends sensitively on the resonance condition...
Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation
Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.
2018-02-01
We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.
A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics
Gingold, H.
1991-01-01
A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.
Adiabatic, Shock, and Plastic Work Heating of Solids and the Cylinder Test
National Research Council Canada - National Science Library
Ruden, E
2000-01-01
Solids subjected to high pressures, shocks, and/or deformation experience an increase in internal energy density and temperature due to adiabatic compression, shock heating, and plastic work heating, respectively...
High-Energy, Multi-Octave-Spanning Mid-IR Sources via Adiabatic Difference Frequency Generation
2016-10-17
AFRL-AFOSR-VA-TR-2016-0354 High-Energy, Multi-Octave-Spanning Mid- IR Sources via Adiabatic Difference Frequency Generation Franz Kaertner...COVERED (From - To) 15 Mar 2013 to 14 Jul 2016 4. TITLE AND SUBTITLE High-Energy, Multi-Octave-Spanning Mid- IR Sources via Adiabatic Difference Frequency...ABSTRACT The creation of energetic, arbitrarily shapeable, multi-octave-spanning, coherent sources of short-wave, mid-wave, and long-wave mid- IR
The adiabatic invariant of the n-degree-of-freedom harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Devaud, M; Bacri, J-C; Hocquet, T [Laboratoire Matiere et Systemes Complexes, Universite Paris 7 and CNRS UMR 7057, 10 rue Alice Domon et Leonie Duquet, 75013 Paris (France); Leroy, V [Laboratoire Ondes et Acoustique, Universite Paris 7 and CNRS UMR 7587, ESPCI, 10 rue Vauquelin, 75005 Paris (France)], E-mail: Thierry.Hocquet@upmc.fr
2008-07-15
In this graduate-level theoretical paper, we propose a general derivation of the adiabatic invariant of the n-degree-of-freedom harmonic oscillator, available whichever the physical nature of the oscillator and of the parametrical excitation it undergoes. This derivation is founded on the use of the classical Glauber variables and ends up with this simplest result: the oscillator's adiabatic invariant is just the sum of all the semiclassical quanta numbers associated with its different eigenmodes.
An adiabatic charging reversible circuit with stepwise voltage control method using a microprocessor
Directory of Open Access Journals (Sweden)
Shunji Nakata
Full Text Available An adiabatic circuit was designed for dissipationless charging of a capacitor. The duty ratio of the switching transistors is changed stepwise and controlled by a microprocessor. The charging efficiency, that is the ratio between the work done by the power supply and electrostatic energy of the capacitor, is calculated from experimental results. The efficiency is 94% when the number of stepwise voltage is 32, which is consistent with the theoretical value. Keywords: Adiabatic, Reversible circuit, Energy recovery, Stepwise charging
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
International Nuclear Information System (INIS)
Wang, J. F.; Ma, Q. M.; Song, T.; Yuan, S. B.; Qin, G.
2017-01-01
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
Energy Technology Data Exchange (ETDEWEB)
Wang, J. F.; Ma, Q. M.; Song, T.; Yuan, S. B. [Research Department of Biomedical Engineering, Institute of Electrical Engineering, Chinese Academy of Science, Beijing 100190 (China); Qin, G., E-mail: wangjunfang@mail.iee.ac.cn, E-mail: qingang@hit.edu.cn [School of Science, Harbin Institute of Technology, Shenzhen 518055 (China)
2017-08-20
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
General background conditions for K-bounce and adiabaticity
Energy Technology Data Exchange (ETDEWEB)
Romano, Antonio Enea [University of Crete, Department of Physics, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, A.A.1226, Medellin (Colombia)
2017-03-15
We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K(X), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K(X) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K(X), and the other on a K(X) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H. In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H. We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce. (orig.)
On adiabatic pair potentials of highly charged colloid particles
Sogami, Ikuo S.
2018-03-01
Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.
Adiabatic energization in the ring current and its relation to other source and loss terms
Liemohn, M. W.; Kozyra, J. U.; Clauer, C. R.; Khazanov, G. V.; Thomsen, M. F.
2002-04-01
The influence of adiabatic energization and deenergization effects, caused by particle drift in radial distance, on ring current growth rates and loss lifetimes is investigated. Growth and loss rates from simulation results of four storms (5 June 1991, 15 May 1997, 19 October 1998, and 25 September 1998) are examined and compared against the y component of the solar wind electric field (Ey,sw). Energy change rates with and without the inclusion of adiabatic energy changes are considered to isolate the influence of this mechanism in governing changes of ring current strength. It is found that the influence of adiabatic drift effects on the energy change rates is very large when energization and deenergization are considered separately as gain and loss mechanisms, often about an order of magnitude larger than all other source or loss terms combined. This is true not only during storm times, when the open drift path configuration of the hot ions dominates the physics of the ring current, but also during quiet times, when the small oscillation in L of the closed trajectories creates a large source and loss of energy each drift orbit. However, the net energy change from adiabatic drift is often smaller than other source and loss processes, especially during quiet times. Energization from adiabatic drift dominates ring current growth only during portions of the main phase of storms. Furthermore, the net-adiabatic energization is often positive, because some particles are lost in the inner magnetosphere before they can adiabatically deenergize. It is shown that the inclusion of only this net-adiabatic drift effect in the total source rate or loss lifetime (depending on the sign of the net-adiabatic energization) best matches the observed source and loss values from empirical Dst predictor methods (that is, for consistency, these values should be compared between the calculation methods). While adiabatic deenergization dominates the loss timescales for all Ey,sw values
Petruk, O.; Kuzyo, T.; Beshley, V.
2016-06-01
The evolution of the adiabatic supernova remnants (SNRs) is typically described by the Sedov analytical solutions for the strong point explosion. The speed and the temperature of the shock wave decreases with time and the adiabatic condition is violated due to increase of the radiative losses of energy. As a result, the SNR shock enters the radiative stage. The duration of the transition phase from the adiabatic to the fully radiative stage is almost the same as the adiabatic stage. The period of time between the end of the adiabatic and the beginning of the radiative stage is called the post-adiabatic stage. Hydrodynamic properties of the post-adiabatic SNRs are well known. In contrast, the effect of the interstellar magnetic field on the evolution of such SNRs is not studied. We have used the code PLUTO (Mignone et al. 2007) in order to solve the system of magneto-hydrodynamic (MHD) equations with the radiative losses numerically. Influence of different values of the magnetic field strengths as well as its different orientation (perpendicular and parallel to the shock normal) on the evolution of SNRs are investigated. We have shown that the parallel magnetic field does not affect the distribution of the hydrodynamic parameters, while the presence of the perpendicular field leads to the significant decrease of the gas compression factor; this effect becomes more prominent for higher magnetic field strengths. The study is important in particular for the cases of the SNR-molecular cloud interaction where one may expect an increase of the hadronic component of the gamma-ray emission.
Adiabatic many-body state preparation and information transfer in quantum dot arrays
Farooq, Umer; Bayat, Abolfazl; Mancini, Stefano; Bose, Sougato
2015-04-01
Quantum simulation of many-body systems are one of the most interesting tasks of quantum technology. Among them is the preparation of a many-body system in its ground state when the vanishing energy gap makes the cooling mechanisms ineffective. Adiabatic theorem, as an alternative to cooling, can be exploited for driving the many-body system to its ground state. In this paper, we study two most common disorders in quantum dot arrays, namely exchange coupling fluctuations and hyperfine interaction, in adiabatic preparation of ground state in such systems. We show that the adiabatic ground-state preparation is highly robust against those disorder effects making it a good analog simulator. Moreover, we also study the adiabatic quantum information transfer, using singlet-triplet states, across a spin chain. In contrast to ground-state preparation the transfer mechanism is highly affected by disorder and in particular, the hyperfine interaction is very destructive for the performance. This suggests that for communication tasks across such arrays adiabatic evolution is not as effective and quantum quenches could be preferable.
Selective excitation in a three-state system using a hybrid adiabatic-nonadiabatic interaction
Song, Yunheung; Lee, Han-gyeol; Jo, Hanlae; Ahn, Jaewook
2016-08-01
The chirped-pulse interaction in the adiabatic coupling regime induces cyclic permutations of the energy states of a three-level system in the V -type configuration, which process is known as the three-level chirped rapid adiabatic passage (RAP). Here we show that a spectral hole in a chirped pulse can turn on or off the level mixing at adiabatic crossing points of this process, reducing the system to an effective two-level system. The given hybrid adiabatic-nonadiabatic transition enables selective excitation of the three-level system, controlled by the laser intensity and spectral position of the hole, as well as the sign of the chirp parameter. Experiments performed with shaped femtosecond laser pulses and the three lowest energy levels (5 S1 /2 , 5 P1 /2 , and 5 P3 /2 ) of atomic rubidium (Rb) show good agreement with the theoretically analyzed dynamics. The result indicates that our method, when being combined with the ordinary chirped RAP, implements an adiabatic transition between the Raman-coupled excited states. Furthermore, our laser intensity-dependent control may have applications including selective excitations of atoms or ions arranged in space when being used in conjunction with laser beam profile programming.
Rabi oscillations produced by adiabatic pulse due to initial atomic coherence.
Svidzinsky, Anatoly A; Eleuch, Hichem; Scully, Marlan O
2017-01-01
If an electromagnetic pulse is detuned from atomic transition frequency by amount Δ>1/τ, where τ is the turn-on time of the pulse, then atomic population adiabatically follows the pulse intensity without causing Rabi oscillations. Here we show that, if initially, the atom has nonzero coherence, then the adiabatic pulse yields Rabi oscillations of atomic population ρaa(t), and we obtain analytical solutions for ρaa(t). Our findings can be useful for achieving generation of coherent light in the backward direction in the QASER scheme in which modulation of the coupling between light and atoms is produced by Rabi oscillations. Initial coherence can be created by sending a short resonant pulse into the medium followed by a long adiabatic pulse, which leads to the light amplification in the backward direction.
Predicting the effect of relaxation during frequency-selective adiabatic pulses
Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus
2017-11-01
Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.
Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains
International Nuclear Information System (INIS)
Rams, Marek M; Mohseni, Masoud; Campo, Adolfo del
2016-01-01
We introduce an inhomogeneous protocol to drive a weakly disordered quantum spin chain quasi-adiabatically across a quantum phase transition and minimize the residual energy of the final state. The number of spins that simultaneously reach the critical point is controlled by the length scale in which the magnetic field is modulated, introducing an effective size that favors adiabatic dynamics. The dependence of the residual energy on this length scale and the velocity at which the magnetic field sweeps out the chain is shown to be nonmonotonic. We determine the conditions for an optimal suppression of the residual energy of the final state and show that inhomogeneous driving can outperform conventional adiabatic schemes based on homogeneous control fields by several orders of magnitude. (paper)
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Analysis of adiabatic trapping for quasi-integrable area-preserving maps
Bazzani, A; Giovannozzi, M; Hernalsteens, C
2014-01-01
Trapping phenomena involving non-linear resonances have been considered in the past in the framework of adiabatic theory. Several results are known for continuous-time dynamical systems generated by Hamiltonian flows in which the combined effect of non-linear resonances and slow time-variation of some system parameters is considered. The focus of this paper is on discrete-time dynamical systems generated by two-dimensional symplectic maps. The possibility of extending the results of neo-adiabatic theory to quasi-integrable area-preserving maps is discussed. Scaling laws are derived, which describe the adiabatic transport as a function of the system parameters using a probabilistic point of view. These laws can be particularly relevant for physical applications. The outcome of extensive numerical simulations showing the excellent agreement with the analytical estimates and scaling laws is presented and discussed in detail.
Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.
1989-01-01
A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.
Geometry of quantal adiabatic evolution driven by a non-Hermitian Hamiltonian
International Nuclear Information System (INIS)
Wu Zhaoyan; Yu Ting; Zhou Hongwei
1994-01-01
It is shown by using a counter example, which is exactly solvable, that the quantal adiabatic theorem does not generally hold for a non-Hermitian driving Hamiltonian, even if it varies extremely slowly. The condition for the quantal adiabatic theorem to hold for non-Hermitian driving Hamiltonians is given. The adiabatic evolutions driven by a non-Hermitian Hamiltonian provide examples of a new geometric structure, that is the vector bundle in which the inner product of two parallelly transported vectors generally changes. A new geometric concept, the attenuation tensor, is naturally introduced to describe the decay or flourish of the open quantum system. It is constructed in terms of the spectral projector of the Hamiltonian. (orig.)
Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations
International Nuclear Information System (INIS)
Hartmann, Niklas; Vöhringer, O.; Kruck, C.; Eltrop, L.
2012-01-01
Highlights: ► We modeled several configurations of an adiabatic Compressed Air Energy Storage (CAES) plant. ► We analyzed changes in efficiency of these configurations under varying operating conditions. ► The efficiency of the adiabatic CAES plant can reach about 70% for the isentropic configuration. ► In the polytropic case, the efficiency is about 10% lower (at about 60%) than in the isentropic configuration. ► The efficiency is highest for a two-stage CAES configuration and highly dependent on the cooling and heating demand. - Abstract: In this paper, the efficiency of one full charging and discharging cycle of several adiabatic Compressed Air Energy Storage (CAES) configurations are analyzed with the help of an energy balance. In the second step main driving factors for the efficiency of the CAES configurations are examined with the help of sensitivity analysis. The results show that the efficiency of the polytropic configuration is about 60%, which is considerable lower than literature values of an adiabatic CAES of about 70%. The high value of 70% is only reached for the isentropic (ideal) configuration. Key element to improve the efficiency is to develop high temperature thermal storages (>600 °C) and temperature resistant materials for compressors. The highest efficiency is delivered by the two-stage adiabatic CAES configuration. In this case the efficiency varies between 52% and 62%, depending on the cooling and heating demand. If the cooling is achieved by natural sources (such as a river), a realistic estimation of the efficiency of adiabatic Compressed Air Energy Storages (without any greenhouse gas emissions due to fuel consumption) is about 60%.
Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice
Lamberti, F. R.; Esmann, M.; Lemaître, A.; Gomez Carbonell, C.; Krebs, O.; Favero, I.; Jusserand, B.; Senellart, P.; Lanco, L.; Lanzillotti-Kimura, N. D.
2017-10-01
We propose a nanocavity design which is able to confine acoustic phonons by adiabatically changing the thicknesses of a GaAs/AlAs superlattice. By means of high resolution Raman scattering, we experimentally demonstrate the presence of a confined acoustic mode around 350 GHz. We observe an excellent agreement between the experimental data and numerical simulations based on a photoelastic model. We demonstrate that the spatial profile of the confined mode can be tuned by changing the magnitude of the adiabatic deformation, leading to strong variations of its mechanical quality factor and Raman scattering cross-section. The reported design could significantly improve the acoustic confinement properties of nanophononic and optomechanical devices.
Energy Technology Data Exchange (ETDEWEB)
Olazabal-Loume, M.; Hallo, L. [Bordeaux-1 Univ., CELIA UMR 5107, 33 - Talence (France)
2006-06-15
This study deals with the hydrodynamic stability of a planar target in the context of inertial confinement fusion direct drive. Recently, different schemes have been proposed in order to reduce ablative Rayleigh-Taylor growth. They are based on the target adiabatic shaping in the ablation zone. In this work, we consider an adiabatic shaping scheme by relaxation: a prepulse is followed by a relaxation period where the laser is turned off. A numerical study is performed with a perturbation code dedicated to the linear stability analysis. The simulations show stabilizing effects of the relaxation scheme on the linear Rayleigh-Taylor growth rate. Influence of the picket parameters is also discussed. (authors)
DEFF Research Database (Denmark)
Olsen, Thomas; Thygesen, Kristian S.
2012-01-01
while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation...... of the ALDA kernel for wave vectors q > 2kF, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can...... be straightforwardly applied to other adiabatic local kernels....
Deviation from Berry's adiabatic geometric phase in a [sup 131]Xe nuclear gyroscope
Energy Technology Data Exchange (ETDEWEB)
Appelt, S.; Waeckerle, G.; Mehring, M. (2. Physikalisches Institut, Universitaet Stuttgart, D-70550 Stuttgart (Germany))
1994-06-20
The concept of geometric phase is demonstrated in a nuclear gyroscope using [sup 131]Xe nuclear spins ([ital I]=3/2) as sensors for quantum-phase accumulation. By spatial rotation sub-Hertz splittings due to geometric phases are resolved in nuclear-quadrupole spectra. Deviations from Berry's adiabatic geometric phase appear in the regime of nonadiabatic rotation. The observed frequency splittings are no longer linear in the rotational frequency, as expected from adiabatic rotations, and all possible transitions, namely, six in this partially degenerate spin-3/3 system, are observed experimentally.
Deviation from Berry's adiabatic geometric phase in a 131Xe nuclear gyroscope
Appelt, S.; Wäckerle, G.; Mehring, M.
1994-06-01
The concept of geometric phase is demonstrated in a nuclear gyroscope using 131Xe nuclear spins (I=3/2) as sensors for quantum-phase accumulation. By spatial rotation sub-Hertz splittings due to geometric phases are resolved in nuclear-quadrupole spectra. Deviations from Berry's adiabatic geometric phase appear in the regime of nonadiabatic rotation. The observed frequency splittings are no longer linear in the rotational frequency, as expected from adiabatic rotations, and all possible transitions, namely, six in this partially degenerate spin-3/3 system, are observed experimentally.
Vashaee, S; Newling, B; Balcom, B J
2015-12-01
Band selective adiabatic inversion radio frequency pulses were employed for multi-slice T2 distribution measurements in porous media samples. Multi-slice T2 measurement employing longitudinal Hadamard encoding has an inherent sensitivity advantage over slice-by-slice local T2 measurements. The slice selection process is rendered largely immune to B1 variation by employing hyperbolic secant adiabatic inversion pulses, which simultaneously invert spins in several well-defined slices. While Hadamard encoding is well established for local spectroscopy, the current work is the first use of Hadamard encoding for local T2 measurement. Copyright © 2015 Elsevier Inc. All rights reserved.
Adiabatic response and quantum thermoelectrics for ac-driven quantum systems
Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana
2016-02-01
We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.
Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses.
Scheenen, T.W.J.; Heerschap, A.; Klomp, D.W.J.
2008-01-01
OBJECTIVE: To explore the possibilities of proton spectroscopic imaging (1H-MRSI) of the human brain at 7 Tesla with adiabatic refocusing pulses. MATERIALS AND METHODS: A combination of conventional slice selective excitation and two pairs of slice selective adiabatic refocusing pulses (semi-LASER)
Fishchuk, A.V.; Merritt, J.M.; Avoird, A. van der
2007-01-01
The three adiabatic potential surfaces of the Br(P-2)-HCN complex that correlate to the P-2 ground state of the Br atom were calculated ab initio. With the aid of a geometry-dependent diabatic mixing angle, also calculated ab initio, these adiabatic potential surfaces were transformed into a set of
CSIR Research Space (South Africa)
Baloyi, J
2014-06-01
Full Text Available An analysis of irreversibilities generated due to combustion in an adiabatic combustor burning wood was conducted. This was done for a reactant mixture varying from a rich to a lean mixture. A non-adiabatic non-premixed combustion model of a...
The study of adiabatic shear band instability in a pearlitic 4340 steel using a dynamic punch test
Zurek, Anna K.
1994-11-01
The formation of adiabatic shear band instabilities in a pearlitic 4340 steel using a dynamic punch test has been studied. The dynamic punch-impact test produced white-etching adiabatic shear bands. The average strain of 0.5 was sufficient to produce adiabatic shear bands in this steel at an average strain rate of 18,000 s-1. Nanohardness variations found across the adiabatic shear band are thought to be caused by the fragmentation and spheroidization of the Fe3C and the overall deformation and work hardening of the pearlitic microstructure. The cracks formed at the termination of the adiabatic shear band caused the sample to fracture in a ductile mode.
Directory of Open Access Journals (Sweden)
Emrah Turgut
2013-09-01
Full Text Available In the following, we show that the conclusions of our article titled “Ultrafast Demagnetization Measurements Using Extreme Ultraviolet Light: Comparison of Electronic and Magnetic Contributions” are correct. The Comment of Vodungbo et al. argues that a unique determination of the refractive index variation over time is not possible using the data set presented in our paper. Furthermore, it was suggested that the lack of uniqueness allows for the possibility of a very specific time-dependent trajectory of the refractive index in the complex plane that could give rise to a large nonmagnetic modulation of the measured asymmetry, in spite of a negligible change in the s-polarized reflectivity. In this Reply, we conclusively show that any nonmagnetic contribution to the measured asymmetry is indeed negligible (<2%, below the noise level of the magnetic-asymmetry measurements. First, we use a few additional measurements to unambiguously rule out the presence of any nonmagnetic contributions to the signal. Second, we show that the scenario proposed by Vodungbo et al. would require both exotic time and energy dependences of the refractive index near the M edge that are extremely unlikely (virtually impossible in real materials. Thus, the conclusions of our original article are preserved.
Directory of Open Access Journals (Sweden)
Lin Li
2017-12-01
Full Text Available In this paper, a permanent magnet synchronous motor (PMSM with sleeves on the rotor outer surface is investigated. The purpose of sleeves is to fix the permanent magnets and protect them from being destroyed by the large centrifugal force. However, the sleeve material characteristics have a great influence on the PMSM, and therewith, most of the rotor eddy-current losses are generated in the rotor sleeve, which could increase the device temperature and even cause thermal demagnetization of the magnets. Thus, a sleeve scheme design with low eddy-current losses is necessary, and a method suppressing the local temperature peak of permanent magnets is presented. The 3-D electromagnetic finite element model of a 12.5 kW, 2000 r/min PMSM with a segmented sleeve is established, and the electromagnetic field is calculated by using the finite element method. The results show the effectiveness of the presented method in reducing the eddy current losses in the rotor. Using the thermal method, it can be found that the maximum temperature position and zone of permanent magnet will change. Thus, some strategies are comparatively analyzed in order to obtain the change rule of the position and zone. The obtained conclusions may provide a useful reference for the design and research of PMSMs.
Non-adiabatic dynamics of pyrrole: Dependence of deactivation mechanisms on the excitation energy
Czech Academy of Sciences Publication Activity Database
Barbatti, M.; Pittner, Jiří; Pederzoli, Marek; Werner, U.; Mitrić, R.; Bonačić-Koutecký, V.; Lischka, H.
2010-01-01
Roč. 375, č. 1 (2010), s. 26-34 ISSN 0301-0104 R&D Projects: GA AV ČR IAA400400810 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-adiabatic dynamics * ultrafast phenomena * pyrrole Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.017, year: 2010
Directory of Open Access Journals (Sweden)
Min-Suk Jo
2017-11-01
Full Text Available This paper aimed to evaluate the applicability of adiabatic humidification in the heating, ventilation, and air conditioning (HVAC systems of semiconductor cleanrooms. Accurate temperature and humidity control are essential in semiconductor cleanrooms and high energy consumption steam humidification is commonly used. Therefore, we propose an adiabatic humidification system employing a pressurized water atomizer to reduce the energy consumption. The annual energy consumption of three different HVAC systems were analyzed to evaluate the applicability of adiabatic humidification. The studied cases were as follows: (1 CASE 1: a make-up air unit (MAU with a steam humidifier, a dry cooling coil (DCC, and a fan filter unit (FFU; (2 CASE 2: a MAU with the pressurized water atomizer, a DCC, and a FFU; and (3 CASE 3: a MAU, a DCC, and a FFU, and the pressurized water atomizer installed in the return duct. The energy saving potential of adiabatic humidification over steam humidification has been proved, with savings of 8% and 23% in CASE 2 and CASE 3 compared to CASE 1, respectively. Furthermore, the pressurized water atomizer installed in the return duct exhibits greater energy saving effect than when installed in the MAU.
Accuracy of the adiabatic-impulse approximation for closed and open quantum systems
Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo
2018-03-01
We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable approximations is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.
Adiabatic flame temperature of sodium combustion and sodium-water reaction
International Nuclear Information System (INIS)
Okano, Y.; Yamaguchi, A.
2001-01-01
In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar
Calculation of non-adiabatic coupling vectors in a local-orbital basis set
Czech Academy of Sciences Publication Activity Database
Abad, E.; Lewis, J.P.; Zobač, Vladimír; Hapala, Prokop; Jelínek, Pavel; Ortega, J.
2013-01-01
Roč. 138, č. 15 (2013), "154106-1"-"154106-8" ISSN 0021-9606 R&D Projects: GA ČR GAP204/10/0952; GA MŠk ME09048 Institutional support: RVO:68378271 Keywords : non adiabatic couplings * molecular dynamics * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.122, year: 2013
Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions
Czech Academy of Sciences Publication Activity Database
Zobač, Vladimír; Lewis, J.P.; Jelínek, Pavel
2016-01-01
Roč. 27, č. 28 (2016), 1-8, č. článku 285202. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : non-adiabatic molecular dynamics * molecular junctions * molecular switches * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2016
Correction for adiabatic effects in lethe calculated instantaneous gas consumption of scuba dives
Schellart, Nico A. M.; Le Péchon, Jean-Claude
2015-01-01
Introduction: In scuba-diving practice, instantaneous gas consumption is generally calculated from the fall in cylinder pressure without considering the effects of water temperature (heat transfer) and adiabatic processes. We aimed to develop a simple but precise method for calculating the
Between ethylene and polyenes--the non-adiabatic dynamics of cis-dienes
DEFF Research Database (Denmark)
Kuhlman, Thomas Scheby; Glover, William J; Mori, Toshifumi
2012-01-01
Using Ab Initio Multiple Spawning (AIMS) with a Multi-State Multi-Reference Perturbation theory (MS-MR-CASPT2) treatment of the electronic structure, we have simulated the non-adiabatic excited state dynamics of cyclopentadiene (CPD) and 1,2,3,4-tetramethyl-cyclopentadiene (Me4-CPD) following...
DEFF Research Database (Denmark)
Gammelmark, Søren; Eckardt, André
2013-01-01
felt by the two species. Using numerical simulations we predict that a finite parabolic potential can assist the adiabatic preparation of the antiferromagnet. The optimal strength of the parabolic inhomogeneity depends sensitively on the number imbalance between the two species. We also find...
Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat
International Nuclear Information System (INIS)
Melvin, J.; Lim, H.; Rana, V.; Glimm, J.; Cheng, B.; Sharp, D. H.; Wilson, D. C.
2015-01-01
We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results
Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat
Melvin, J.; Lim, H.; Rana, V.; Cheng, B.; Glimm, J.; Sharp, D. H.; Wilson, D. C.
2015-02-01
We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.
An integrated optic adiabatic TE/TM mode splitter on silicon
de Ridder, R.M.; Sander, A.F.M.; Driessen, A.; Fluitman, J.H.J.
1993-01-01
A compact integrated optic fundamental TE/TM mode splitter, based on the mode-sorting characteristics of an asymmetrical adiabatic Y junction of optical waveguides exhibiting shape birefringence, operating at 1550 nm, has been designed using the discrete sine method (DSM) and the beam propagation
Zhu, Xiaolei; Yarkony, David R.
2016-01-01
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, Hd, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of Hd individually provides a starting point (seed) from which convergence of the full Hd construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,41A states of phenol and the 1,21A states of NH3, states which are coupled by conical intersections.
International Nuclear Information System (INIS)
Zhu, Xiaolei; Yarkony, David R.
2016-01-01
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H d , and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H d individually provides a starting point (seed) from which convergence of the full H d construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4 1 A states of phenol and the 1,2 1 A states of NH 3 , states which are coupled by conical intersections
Saline Cavern Adiabatic Compressed Air Energy Storage Using Sand as Heat Storage Material
Directory of Open Access Journals (Sweden)
Martin Haemmerle
2017-03-01
Full Text Available Adiabatic compressed air energy storage systems offer large energy storage capacities and power outputs beyond 100MWel. Salt production in Austria produces large caverns which are able to hold pressure up to 100 bar, thus providing low cost pressurized air storage reservoirs for adiabatic compressed air energy storage plants. In this paper the results of a feasibility study is presented, which was financed by the Austrian Research Promotion Agency, with the objective to determine the adiabatic compressed air energy storage potential of Austria’s salt caverns. The study contains designs of realisable plants with capacities between 10 and 50 MWel, applying a high temperature energy storage system currently developed at the Institute for Energy Systems and Thermodynamics in Vienna. It could be shown that the overall storage potential of Austria’s salt caverns exceeds a total of 4GWhel in the year 2030 and, assuming an adequate performance of the heat exchanger, that a 10MWel adiabatic compressed air energy storage plant in Upper Austria is currently feasible using state of the art thermal turbomachinery which is able to provide a compressor discharge temperature of 400 °C.
Alos-Palop, M.; Blaauboer, M.
2011-01-01
We investigate adiabatic quantum pumping through a normal-metal–“insulator”–superconductor (NIS) junction in a monolayer of graphene. The pumped current is generated by periodic modulation of two gate voltages, applied to the insulating and superconducting regions, respectively. In the bilinear
Directory of Open Access Journals (Sweden)
Salem M. Osta-Omar
2016-11-01
Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.
Adiabatic superconducting cells for ultra-low-power artificial neural networks
Directory of Open Access Journals (Sweden)
Andrey E. Schegolev
2016-10-01
Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
Adiabatic flame temperature of sodium combustion and sodium-water reaction
Energy Technology Data Exchange (ETDEWEB)
Okano, Y.; Yamaguchi, A. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)
2001-07-01
In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na{sub 2}O{sub (l)}, and in combustion in moist air, with NaOH{sub (g)}. The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH{sub (g)}, NaOH{sub (l)} and H2{sub (g)}. Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar.
Could solitons be adiabatic invariants attached to certain non linear equations
International Nuclear Information System (INIS)
Lochak, P.
1984-01-01
Arguments are given to support the claim that solitons should be the adiabatic invariants associated to certain non linear partial differential equations; a precise mathematical form of this conjecture is then stated. As a particular case of the conjecture, the Korteweg-de Vries equation is studied. (Auth.)
International Nuclear Information System (INIS)
Martin, P.; Sebastia, J.-M.
1982-01-01
The deviation velocities and the first adiabatic invariant of a charged particle moving in an electromagnetic field are obtained by a technique which uses the motion description in terms of a complex (transversal component) and a real (longitudinal component) variables referred to a rotational reference trihedral. (L.C.) [pt
Kinetic Models for Adiabatic Reversible Expansion of a Monatomic Ideal Gas.
Chang, On-Kok
1983-01-01
A fixed amount of an ideal gas is confined in an adiabatic cylinder and piston device. The relation between temperature and volume in initial/final phases can be derived from the first law of thermodynamics. However, the relation can also be derived based on kinetic models. Several of these models are discussed. (JN)
Tensile Deformation and Adiabatic Heating in Post-Yield Response of Polycarbonate
2015-11-01
adiabatic heat generation to be quantified. 2. Experiments ASTM D638-1018 standard polymer tensile dog-bone specimens were cut out of 5.75-mm-thick PC...sheet by waterjet . The specimen geometry is shown in Fig. 1 (in millimeters). The specimen edges were hand polished using wetted 600-grit sandpaper
Adiabatic cooling of a tunable Bose-Fermi mixture in an optical lattice
DEFF Research Database (Denmark)
Sørensen, Ole Søe; Nygaard, Nicolai; Blakie, P.B.
2009-01-01
varied. We analyze the statistical mechanics of this system and consider the interplay of the lattice physics with the atom-molecule conversion. We study the entropic behavior of the system and characterize the temperature changes that occur during adiabatic ramps across the Feshbach resonance. We show...
Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers
DEFF Research Database (Denmark)
Lægsgaard, Jesper; Roberts, John
2009-01-01
Adiabatic soliton compression by means of a pressure gradient in a hollow-core photonic bandgap fiber is investigated theoretically and numerically. It is shown that the dureation of the compressed pulse is limited mainly by the interplay between third-order dispersion and the Raman-induced soliton...
Non-adiabatic radiative collapse of a relativistic star under different ...
Indian Academy of Sciences (India)
We examine the role of space-time geometry in the non-adiabatic collapse of a star dissipating energy in the form of radial heat flow, studying its evolution under different initial conditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with inhomogeneous imperfect fluid ...
DEFF Research Database (Denmark)
Petrosyan, David; Molmer, Klaus
2013-01-01
We study two-photon excitation of Rydberg states of atoms under stimulated adiabatic passage with delayed laser pulses. We find that the combination of strong interaction between the atoms in Rydberg state and the spontaneous decay of the intermediate exited atomic state leads to the Rydberg...
Moore, William M.
1984-01-01
Describes the procedures and equipment for an experiment on the adiabatic expansion of gases suitable for demonstration and discussion in the physical chemical laboratory. The expansion produced shows how the process can change temperature and still return to a different location on an isotherm. (JN)
Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state
Energy Technology Data Exchange (ETDEWEB)
Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl
2016-05-15
Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis
Boehler, R.
1982-07-01
The adiabats of olivine, magnesium oxide, and quartz were measured up to 50kbar and 1000 K. An end-loaded piston-cylinder apparatus with an in situ pressure gauge and a very fine thermocouple was used to measure (∂T/∂P)s during adiabatic compression. A power law between (∂T/∂P)s and compression yields values of the power n = -∂ ln (∂T/∂P)s/∂ ln ρ that agree with previous results from salts, metals, and fluids. Assuming constant values for n, the adiabtic gradient for an olivine upper mantle and a magnesium oxide lower mantle was calculated. The results agree well with some previous theoretical estimates. The volume dependence of the Grüneisen parameter γ was calculated from the thermodynamic equation ∂ ln γ/∂ ln ρ = ∂B/∂P - n, where B is the isothermal bulk modulus. γ is found to a good approximation to be proportional to volume. Table 6 is available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C. 20009. Document J82-002; $1.00. Payment must accompany order.
Habershon, Scott
2013-09-14
We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.
Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond.
Golter, D Andrew; Wang, Hailin
2014-03-21
Rabi oscillations and adiabatic passage of single electron spins in a diamond nitrogen vacancy center are demonstrated with two Raman-resonant optical pulses that are detuned from the respective dipole optical transitions. We show that the optical spin control is nuclear-spin selective and can be robust against rapid decoherence, including radiative decay and spectral diffusion, of the underlying optical transitions. A direct comparison between the Rabi oscillation and the adiabatic passage, along with a detailed theoretical analysis, provides significant physical insights into the connections and differences between these coherent spin processes and also elucidates the role of spectral diffusion in these processes. The optically driven coherent spin processes enable the use of nitrogen vacancy excited states to mediate coherent spin-phonon coupling, opening the door to combining optical control of both spin and mechanical degrees of freedom.
DFT Study on Adiabatic and Vertical Ionization Potentials of Graphene Sheets
Directory of Open Access Journals (Sweden)
Igor K. Petrushenko
2015-01-01
Full Text Available Adiabatic and vertical ionization potentials (IPs of finite-size graphene sheets as a function of size were determined by using density functional theory. In the case of graphene a very moderate gap between vertical and adiabatic IPs was observed, whereas for coronene molecule as a model compound these values differ considerably. The ionization process induces large changes in the structure of the studied sheets of graphene; “horizontal” and “vertical” bond lengths have different patterns of alternation. It was also established that the HOMO electron density distribution in the neutral graphene sheet affects its size upon ionization. The evolution of IPs of graphene sheets towards their work functions was discussed.
Natural convection around a horizontal cylinder near an adiabatic cover wall
International Nuclear Information System (INIS)
Correa, M.; Parra, R.; Vidal, A.; Rodriguez, M.E.; Gonzalez-Mendizabal, D.
2005-01-01
The main objective of this work was to determine numerically the influence of the proximity of an adiabatic top surface over the natural convective coefficient, around an isothermal horizontal cylinder in atmospheric air. The local and mean Nusselt numbers around the cylinder were obtained through a numerical solution of the dimensionless equations for two-dimensional laminar natural convection flow at steady state in Cartesian coordinates, using the ω, ψ, Τ, formulation. The software was run for different Rayleigh values (10 2 5 ) and distances cylinder-cover wall (0.55 < L/D < 2.5). The results allow concluding that the top adiabatic surface diminishes the convective coefficient in comparison with the value obtained using an infinite medium as boundary condition, it occurs when L/D<2, at any Rayleigh number value. (authors)
Adiabatic nanofocusing: Spectroscopy, transport and imaging investigation of the nano world
Giugni, Andrea
2014-11-01
Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.
Derivation of an adiabatic time-dependent Hartree-Fock formalism from a variational principle
International Nuclear Information System (INIS)
Brink, D.M.; Giannoni, M.J.; Veneroni, M.
1975-10-01
A derivation of the adiabatic time-dependent Hartree-Fock formalism is given, which is based on a variational principle analogous to Hamilton's principle in classical mechanics. The method leads to a Hamiltonian for collective motion which separates into a potential and a kinetic energy and gives mass and potential parameters in terms of the nucleon-nucleon interaction. The adiabatic approximation assumes slow motion but not small amplitudes and can therefore describe anharmonic effects. The RPA is a limiting case where both amplitudes and velocities are small. The variational approach provides a consistent way of extracting coordinated and momenta from the density matrix and of obtaining equations of motion when particular trial forms for this density matrix are chosen. One such choice leads to Thouless-Valatin formula. An other choice leads to irrotational hydrodynamics [fr
Raefat, Saad; Garoum, Mohammed; Laaroussi, Najma; Thiam, Macodou; Amarray, Khaoula
2017-07-01
In this work experimental investigation of apparent thermal diffusivity and adiabatic limit temperature of expanded granular perlite mixes has been made using the flash technic. Perlite granulates were sieved to produce essentially three characteristic grain sizes. The consolidated samples were manufactured by mixing controlled proportions of the plaster and water. The effect of the particle size on the diffusivity was examined. The inverse estimation of the diffusivity and the adiabatic limit temperature at the rear face as well as the heat losses coefficients were performed using several numerical global minimization procedures. The function to be minimized is the quadratic distance between the experimental temperature rise at the rear face and the analytical model derived from the one dimension heat conduction. It is shown that, for all granulometry tested, the estimated parameters lead to a good agreement between the mathematical model and experimental data.
International Nuclear Information System (INIS)
Garis, N.S.; Karlsson, J.K.H.; Pazsit, I.
2000-01-01
The neutron noise, induced by a rod manoeuvring experiment in a pressurized water reactor, has been calculated by the incore fuel management code SIMULATE. The space- and frequency-dependent noise in the thermal group was calculated through the adiabatic approximation in three dimensions and two-group theory, with the spatial resolution of the nodal model underlying the SIMULATE algorithm. The calculated spatial noise profiles were interpreted on physical terms. They were also compared with model calculations in a 2-D one-group model, where various approximations as well as the full space-dependent response could be calculated. The adiabatic results obtained with SIMULATE can be regarded as reliable for sub-plateau frequencies (below 0.1 Hz). (orig.) [de
Rapid adiabatic passage in a Pr3+:Y2SiO5 crystal
Klein, Jens; Beil, Fabian; Halfmann, Thomas
2007-06-01
We report on rapid adiabatic passage (RAP) in a Pr3+:Y2SiO5 crystal, cooled to cryogenic temperatures. The medium is prepared by optical pumping and spectral hole burning, creating a spectrally isolated two-level system within the inhomogeneous bandwidth of the 3H4 → 1D2 transition of the Pr3+ ions. A chirped laser pulse drives a RAP process in the medium, i.e. inverts the initial population distribution. We study the properties and dynamics of RAP by means of fluorescence detection, absorption spectroscopy and amplified spontaneous emission. Time-resolved absorption measurements serve to monitor the adiabatic population dynamics during the excitation process. In addition, we compare the results with coherent excitation at fixed laser frequency detuned from resonance, i.e. coherent population return (CPR).
Adiabatic partial Siberian snake turn-on with no beam depolarization
International Nuclear Information System (INIS)
Phelps, R.A.; Anferov, V.A.; Chu, C.M.; Courant, E.D.; Crandell, D.A.; Derbenev, Y.S.; Kaufman, W.A.; Koulsha, A.V.; Krisch, A.D.; Nurushev, T.S.; Raczkowksi, D.B.; Sund, S.E.; Wong, V.K.; Caussyn, D.D.; Ellison, T.J.P.; Lee, S.Y.; Sperisen, F.; Stephenson, E.J.; von Przewoski, B.; Baiod, R.; Khiari, F.Z.; Ratner, L.G.; Sato, H.
1994-01-01
A recent experiment in the IUCF cooler ring studied the adiabatic turn-on of a partial Siberian snake at 370 MeV, where the spin tune, ν s is 21/2 for all snake strengths. The snake consisted of two rampable warm solenoid magnets in series with a superconducting solenoid; this combination allowed varying the snake strength between about 0 and 25% at 370 MeV. We measured the beam polaraization after varying the snake either 1, 2, or 10 times; we found with good precision that no polarization was lost. This supports the conjecture that a Siberian snake can be ramped adiabatically at an energy where the spin tune is a half integer
International Nuclear Information System (INIS)
Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian
2012-01-01
The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.
Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages
Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.
2010-09-01
In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.113601 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.
Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages
International Nuclear Information System (INIS)
Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.
2010-01-01
In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.
Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T
Kihara, T.; Kohama, Y.; Hashimoto, Y.; Katsumoto, S.; Tokunaga, M.
2013-07-01
Magneto-caloric effects (MCEs) measurement system in adiabatic condition is proposed to investigate the thermodynamic properties in pulsed magnetic fields up to 55 T. With taking the advantage of the fast field-sweep rate in pulsed field, adiabatic measurements of MCEs were carried out at various temperatures. To obtain the prompt response of the thermometer in the pulsed field, a thin film thermometer is grown directly on the sample surfaces. The validity of the present setup was demonstrated in the wide temperature range through the measurements on Gd at about room temperature and on Gd3Ga5O12 at low temperatures. The both results show reasonable agreement with the data reported earlier. By comparing the MCE data with the specific heat data, we could estimate the entropy as functions of magnetic field and temperature. The results demonstrate the possibility that our approach can trace the change in transition temperature caused by the external field.
A study of transcritical carbon dioxide flow through adiabatic capillary tubes
Energy Technology Data Exchange (ETDEWEB)
da Silva, Diogo L.; Hermes, Christian J.L.; Melo, Claudio [POLO Research Laboratories for Emerging Technologies in Cooling and Thermophysics, Federal University of Santa Catarina, 88040-970 Florianopolis, SC (Brazil); Goncalves, Joaquim M. [CEFET/SC, Rua Jose Lino Kretzer 608, 88103-310 Sao Jose, SC (Brazil); Weber, Gustavo C. [EMBRACO S.A., Rua Rui Barbosa 1020, 89219-901 Joinville, SC (Brazil)
2009-08-15
This paper advances a study of the transcritical expansion of carbon dioxide (R-744, CO{sub 2}) through adiabatic capillary tubes. The influence of both operating conditions (inlet and exit pressures, inlet temperature) and tube geometry (capillary diameter and tube length) on the CO{sub 2} mass flow rate was experimentally evaluated using a purpose-built testing facility with a strict control of the measured variables. A dimensionless correlation to predict the refrigerant mass flow rate as a function of tube geometry and operating conditions was developed. In addition, a theoretical model was put forward based on the mass, energy and momentum conservation principles. The model results were compared with experimental data, when it was found that the model predicts 95% of the measured refrigerant mass flow rate within an error band of {+-}10%. The model was also employed to advance the knowledge about the transcritical carbon dioxide flow through adiabatic capillary tubes. (author)
Adiabatic partition effect on natural convection heat transfer inside a square cavity
DEFF Research Database (Denmark)
Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; yousefi, Tooraj
2018-01-01
A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach......-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study...... for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions...
Adiabatic radio-frequency potentials for the coherent manipulation of matter waves
DEFF Research Database (Denmark)
Lesanovsky, Igor; Schumm, Thorsten; Hofferberth, S.
2006-01-01
Adiabatic dressed state potentials are created when magnetic substates of trapped atoms are coupled by a radio-frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fields. The enhanced flexibility enables one...... to implement numerous configurations, including double wells, Mach-Zehnder, and Sagnac interferometers which even allows for internal state-dependent atom manipulation. These can be realized using simple and highly integrated wire geometries on atom chips....
Quasi-adiabatic motion of energetic particles in a dipole magnetic field
International Nuclear Information System (INIS)
Il'in, V.D.; Kuznetsov, S.N.; Yushkov, B.Yu.
1992-01-01
A moving coordinate system for a dipole magnetic field, in which reversible variations of magnetic moment for the range of obvious violations of adiabatic conditions are absent, and the description of magnetic moment violations is relatively simple, is considered. Constructing of a coordinate system, features of the central trajectory, determining its motion, the application range, the main application field and consequences are discussed. 11 refs.; 3 figs
Socci, Luciano; Sorianello, Vito; Romagnoli, Marco
2015-07-27
Adiabatic polarization splitter-rotators are investigated exploiting continuous symmetry breaking thereby achieving significant device size and losses reduction in a single mask fabrication process for both SOI channel and ridge waveguides. A crosstalk lower than -25 dB is expected over 300nm bandwidth, making the device suitable for full grid CWDM and diplexer/triplexer FTTH applications at 1310, 1490 and 1550nm.
Stable adiabatic circuit using advanced series capacitors and time variation of energy dissipation
Nakata, Shunji; Mutoh, Shin'ichiro; Makino, Hiroshi; Miyama, Masayuki; Matsuda, Yoshio
2010-01-01
We discuss the stability of an adiabatic stepwise-charging circuit with advanced series capacitors, which is effective for the reduction of the applied voltage to each capacitor. SPICE simulation shows that this circuit is stable even if the initial voltages are lower than zero. For the analytical discussion, we derive a matrix that connects charge and voltage in the circuit and show that the matrix is a positive-definite symmetric one. Therefore, the step voltage is generated spontaneously. ...
An introduction to the adiabatic time-dependent Hartree-Fock method
International Nuclear Information System (INIS)
Giannoni, M.J.
1984-05-01
The aim of the adiabatic time-dependent Hartree-Fock method is to investigate the microscopic foundations of the phenomenological collective models. We briefly review the general formulation, which consists in deriving a Bohr-like Hamiltonian from a mean field theory, and discuss the limiting case where only a few collective variables participate to the motion. Some applications to soft nuclei and heavy ion collisions are presented
Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter
International Nuclear Information System (INIS)
Jhu, Can-Yong; Wang, Yih-Wen; Shu, Chi-Min; Chang, Jian-Chuang; Wu, Hung-Chun
2011-01-01
Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO 2 ) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO 2 cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2 V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T 0 ), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T max ) and pressure (P max ). The T max and P max of the charged Li-ion battery during the runaway reaction reach 903.0 o C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO 2 batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.
Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air-Steam for Partial Oxidation
Catalina Rodriguez; Gerardo Gordillo
2011-01-01
Colombian coffee industry produces about 0.6 million tons of husk (CH) per year which could serve as feedstock for thermal gasification to produce gaseous and liquid fuels. The current paper deals with: (i) CH adiabatic gasification modeling using air-steam blends for partial oxidation and (ii) experimental thermogravimetric analysis to determine the CH activation energy (E). The Chemical Equilibrium with Applications Program (CEA), developed by NASA, was used to estimate the effect of equiva...
General laser interaction theory in atom-diatom systems for both adiabatic and nonadiabatic cases.
Li, Xuan; Brue, Daniel A; Parker, Gregory A; Chang, Sin-Tarng
2006-04-27
This paper develops the general theory for laser fields interacting with bimolecular systems. In this study, we choose to use the multipolar gauge on the basis of gauge invariance. We consider both the adiabatic and nonadiabatic cases and find they produce similar interaction pictures. As an application of this theory, we present the study of rovibrational energy transfer in Ar + CO collisions in the presence of an intense laser field.
Modelling of an adiabatic trickle-bed reactor with phase change
DEFF Research Database (Denmark)
Ramirez Castelan, Carlos Eduardo; Hidalgo-Vivas, Angelica; Brix, Jacob
2017-01-01
This paper describes a modelling approach of the behavior of trickle-bed reactors used for catalytic hydrotreating of oil fractions. A dynamic plug-flow heterogeneous one-dimensional adiabatic model was used to describe the main reactions present in the hydrotreating process: hydrodesulfurization......, hydrodenitrogenation, and hydrodearomatization. The model was solved using a finite differences scheme and was coupled with a flash calculation in ProII and thus, obtaining a simulation framework that can be generally used for such reactors....
Hossein Safaei; Michael J. Aziz
2017-01-01
We present analyses of three families of compressed air energy storage (CAES) systems: conventional CAES, in which the heat released during air compression is not stored and natural gas is combusted to provide heat during discharge; adiabatic CAES, in which the compression heat is stored; and CAES in which the compression heat is used to assist water electrolysis for hydrogen storage. The latter two methods involve no fossil fuel combustion. We modeled both a low-temperature and a high-temper...
Dispersion interactions in density-functional theory: An adiabatic-connection analysis
Strømsheim, Marie D.; Kumar, Naveen; Coriani, Sonia; Sagvolden, Espen; Teale, Andrew M.; Helgaker, Trygve
2011-11-01
We present an analysis of the dispersion interaction energy and forces in density-functional theory from the point of view of the adiabatic connection between the Kohn-Sham non-interacting and fully interacting systems. Accurate coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] densities are computed for the helium dimer and used to construct the exchange-correlation potential of Kohn-Sham theory, showing agreement with earlier results presented for the Hartree-Fock-Kohn-Sham method [M. Allen and D. J. Tozer, J. Chem. Phys. 117, 11113 (2002), 10.1063/1.1522715]. The accuracy of the methodology utilized to determine these solutions is checked by calculation of the Hellmann-Feynman forces based on the Kohn-Sham densities, which are compared with analytic CCSD(T) forces. To ensure that this comparison is valid in a finite atomic-orbital basis set, we employ floating Gaussian basis functions throughout and all results are counterpoise corrected. The subtle charge-rearrangement effects associated with the dispersion interaction are highlighted as the origin of a large part of the dispersion force. To recover the exchange-correlation components of the interaction energy, adiabatic connections are constructed for the supermolecular system and for its constituent atoms; subtraction of the resulting adiabatic-connection curves followed by integration over the interaction strength recovers the exchange-correlation contribution relevant to the density-functional description of the dispersion interaction. The results emphasize the long-ranged, dynamically correlated nature of the dispersion interaction between closed-shell species. An alternative adiabatic-connection path is also explored, where the electronic interactions are introduced in a manner that emphasizes the range of the electronic interactions, highlighting their purely long-ranged nature, consistent with the success of range-separated hybrid approaches in this context.
Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter.
Jhu, Can-Yong; Wang, Yih-Wen; Shu, Chi-Min; Chang, Jian-Chuang; Wu, Hung-Chun
2011-08-15
Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO(2)) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO(2) cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T(0)), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T(max)) and pressure (P(max)). The T(max) and P(max) of the charged Li-ion battery during the runaway reaction reach 903.0°C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO(2) batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology. Copyright © 2011 Elsevier B.V. All rights reserved.
Oscillating potential well in the complex plane and the adiabatic theorem
Longhi, Stefano
2017-10-01
A quantum particle in a slowly changing potential well V (x ,t ) =V ( x -x0(ɛ t ) ) , periodically shaken in time at a slow frequency ɛ , provides an important quantum mechanical system where the adiabatic theorem fails to predict the asymptotic dynamics over time scales longer than ˜1 /ɛ . Specifically, we consider a double-well potential V (x ) sustaining two bound states spaced in frequency by ω0 and periodically shaken in a complex plane. Two different spatial displacements x0(t ) are assumed: the real spatial displacement x0(ɛ t ) =A sin(ɛ t ) , corresponding to ordinary Hermitian shaking, and the complex one x0(ɛ t ) =A -A exp(-i ɛ t ) , corresponding to non-Hermitian shaking. When the particle is initially prepared in the ground state of the potential well, breakdown of adiabatic evolution is found for both Hermitian and non-Hermitian shaking whenever the oscillation frequency ɛ is close to an odd resonance of ω0. However, a different physical mechanism underlying nonadiabatic transitions is found in the two cases. For the Hermitian shaking, an avoided crossing of quasienergies is observed at odd resonances and nonadiabatic transitions between the two bound states, resulting in Rabi flopping, can be explained as a multiphoton resonance process. For the complex oscillating potential well, breakdown of adiabaticity arises from the appearance of Floquet exceptional points at exact quasienergy crossing.
International Nuclear Information System (INIS)
Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A.
2016-01-01
A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.
Directory of Open Access Journals (Sweden)
Lovinger Zev
2015-01-01
Full Text Available Shear bands formation in collapsing thick walled cylinders occurs in a spontaneous manner. The advantage of examining spontaneous, as opposed to forced shear localization, is that it highlights the inherent susceptibility of the material to adiabatic shear banding without prescribed geometrical constraints. The Thick-Walled Cylinder technique (TWC provides a controllable and repeatable technique to create and study multiple adiabatic shear bands. The technique, reported in the literature uses an explosive cylinder to create the driving force, collapsing the cylindrical sample. Recently, we developed an electro-magnetic set-up using a pulsed current generator to provide the collapsing force, replacing the use of explosives. Using this platform we examined the shear band evolution at different stages of formation in 7 metallic alloys, spanning a wide range of strength and failure properties. We examined the number of shear bands and spacing between them for the different materials to try and figure out what controls these parameters. The examination of the different materials enabled us to better comprehend the mechanisms which control the spatial distribution of multiple shear bands in this geometry. The results of these tests are discussed and compared to explosively driven collapsing TWC results in the literature and to existing analytical models for spontaneous adiabatic shear localization.
Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes
International Nuclear Information System (INIS)
Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.
2015-01-01
Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.
Low-Power Adiabatic Computing with Improved Quasistatic Energy Recovery Logic
Directory of Open Access Journals (Sweden)
Shipra Upadhyay
2013-01-01
Full Text Available Efficiency of adiabatic logic circuits is determined by the adiabatic and non-adiabatic losses incurred by them during the charging and recovery operations. The lesser will be these losses circuit will be more energy efficient. In this paper, a new approach is presented for minimizing power consumption in quasistatic energy recovery logic (QSERL circuit which involves optimization by removing the nonadiabatic losses completely by replacing the diodes with MOSFETs whose gates are controlled by power clocks. Proposed circuit inherits the advantages of quasistatic ERL (QSERL family but is with improved power efficiency and driving ability. In order to demonstrate workability of the newly developed circuit, a 4 × 4 bit array multiplier circuit has been designed. A mathematical expression to calculate energy dissipation in proposed inverter is developed. Performance of the proposed logic (improved quasistatic energy recovery logic (IQSERL is analyzed and compared with CMOS and reported QSERL in their representative inverters and multipliers in VIRTUOSO SPECTRE simulator of Cadence in 0.18 μm UMC technology. In our proposed (IQSERL inverter the power efficiency has been improved to almost 20% up to 50 MHz and 300 fF external load capacitance in comparison to CMOS and QSERL circuits.
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
International Nuclear Information System (INIS)
White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry
2014-01-01
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement
Adiabatic motion of a neutral spinning particle in an inhomogeneous magnetic field
International Nuclear Information System (INIS)
Littlejohn, R.G.; Weigert, S.
1993-01-01
The motion of a neutral particle with a magnetic moment in an inhomogeneous magnetic field is considered. This situation, occurring, for example, in a Stern-Gerlach experiment, is investigated from classical and semiclassical points of view. It is assumed that the magnetic field is strong or slowly varying in space, i.e., that adiabatic conditions hold. To the classical model, a systematic Lie-transform perturbation technique is applied up to second order in the adiabatic-expansion parameter. The averaged classical Hamiltonian contains not only terms representing fictitious electric and magnetic fields but also an additional velocity-dependent potential. The Hamiltonian of the quantum-mechanical system is diagonalized by means of a systematic WKB analysis for coupled wave equations up to second order in the adiabaticity parameter, which is coupled to Planck's constant. An exact term-by-term correspondence with the averaged classical Hamiltonian is established, thus confirming the relevance of the additional velocity-dependent second-order contribution
Adiabatic reduction of a model of stochastic gene expression with jump Markov process.
Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C
2014-04-01
This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.
Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag
Directory of Open Access Journals (Sweden)
S. Shaaban
2012-01-01
Full Text Available Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.
Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction
Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.
2015-01-01
Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.
Modification of optical properties by adiabatic shifting of resonances in a four-level atom
Dutta, Bibhas Kumar; Panchadhyayee, Pradipta
2018-04-01
We describe the linear and nonlinear optical properties of a four-level atomic system, after reducing it to an effective two-level atomic model under the condition of adiabatic shifting of resonances driven by two coherent off-resonant fields. The reduced form of the Hamiltonian corresponding to the two-level system is obtained by employing an adiabatic elimination procedure in the rate equations of the probability amplitudes for the proposed four-level model. For a weak probe field operating in the system, the nonlinear dependence of complex susceptibility on the Rabi frequencies and the detuning parameters of the off-resonant driving fields makes it possible to exhibit coherent control of single-photon and two-photon absorption and transparency, the evolution of enhanced Self-Kerr nonlinearity and noticeable dispersive switching. We have shown how the quantum interference results in the generic four-level model at the adiabatic limit. The present scheme describes the appearance of single-photon transparency without invoking any exact two-photon resonance.
Mid-range adiabatic wireless energy transfer via a mediator coil
International Nuclear Information System (INIS)
Rangelov, A.A.; Vitanov, N.V.
2012-01-01
A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies, three resonances are created: emitter–mediator (EM), mediator–receiver (MR) and emitter–receiver (ER). If the frequency sweeps are adiabatic and such that the EM resonance precedes the MR resonance, the energy flows sequentially along the chain emitter–mediator–receiver. If the MR resonance precedes the EM resonance, then the energy flows directly from the emitter to the receiver via the ER resonance; then the losses from the mediator are suppressed. This technique is robust against noise, resonant constraints and external interferences. - Highlights: ► Efficient and robust mid-range wireless energy transfer via a mediator coil. ► The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. ► Wireless energy transfer is insensitive to any resonant constraints. ► Wireless energy transfer is insensitive to noise in the neighborhood of the coils.
Extension of the adiabatic regularization method to spin-1/2 fields
Landete, Aitor
2015-04-01
The adiabatic regularization method was designed by L. Parker [1] for scalar fields in order to to subtract the potentially UV divergences that appear in the particle number operator. After that the method was generalized [2] to remove, in a consistent way, the UV divergences that appear in the expectation value of the stress-energy tensor in homogeneous cosmological backgrounds. We are going to provide here the extension of the adiabatic regularization method to spin-1/2 fields first given in [3]. In order to achieve this extension we will show the generalization of the adiabatic expansion for fermionic fields which differs significantly from the WKB-type expansion that works for the scalar modes. We will also show the consistency of the extended method computing well-known results, computed by other renormalization methods for a Dirac field in a FLRW spacetime, like the conformal and axial anomalies. Finally we will compute the expectation value of the stress-energy tensor for a Dirac field in a de Sitter spacetime.
Physics of Non-Adiabatic Transport and Field-Domain Effect in Quantum-Well Infrared Photodetectors
National Research Council Canada - National Science Library
Huang, Danhong; Cardimona, David A
2003-01-01
A previous theory for studying the distribution of non-uniform fields in multiple-quantum-well photodetectors under an ac voltage is generalized by including non-adiabatic space-charge-field effects...
Numerical Simulation of Adiabatic Shear Bands in Ti-6Al-4V Alloy Due to Fragment Impact
National Research Council Canada - National Science Library
Fermen-Coker, Muege
2004-01-01
... and lethality technologies for the Army's Future Combat Systems. Onset and propagation of adiabatic shear bands are investigated both experimentally and computationally by studying the ballistic impact of 20-mm steel fragments against Ti-6Al-4V plates...
Hernandez-Garcia, Luis; Lewis, David P.; Moffat, Bradford; Branch, Craig A.
2007-01-01
Continuous arterial spin labeling experiments typically use flow-driven adiabatic fast passage (AFP) inversion of the arterial blood water protons. In this article, we measure the effect of magnetization transfer in blood and how it affects the inversion label. We use modified Bloch equations to model flow-driven adiabatic inversion in the presence of magnetization transfer in blood flowing at velocities from 1 to 30 cm/s in order to explain our findings. Magnetization transfer results in a r...
National Oceanic and Atmospheric Administration, Department of Commerce — WBAN-31 is a form on which the Weather Bureau, Army and Navy recorded weather observations in the upper air as observed by rawinsonde and radiosonde. The collection...
Jin Han Min; Park, W S; Park, M J; Wang Xue Feng
1998-01-01
Hysteresis loops of melt-spun Nd sub 1 sub 3 Fe sub 7 sub 7 B sub 1 sub 0 cooled down at the remanent state were measured at 4.2 K. The loop for fields of H sub m sub a sub x =6.4 MA m sup - sup 1 is characterized by low- and high-field steps. The loop for fields of H sub m sub a sub x =4.0 MA m sup - sup 1 is very thin with only a low-field step and is shifted profoundly along the H-axes. The loops and the spin distribution during the demagnetization process were analysed by micromagnetic finite-element calculations. Quantitatively, the calculations reproduce the experimental loops fairly well. The spin distribution is fairly nonuniform, and a domain-wall-like distribution appears not only at some grain boundaries but also within some grains at the high-field step. The demagnetization proceeds by nonuniform reversion as a whole, and neither the model of single-domain reversion nor the model of domain-wall pinning in the grain boundary model describes the process appropriately. (author)
Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.
2018-02-01
A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.
Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models
Directory of Open Access Journals (Sweden)
L. M. Zelenyi
2000-01-01
Full Text Available Thin anisotropic current sheets (CSs are phenomena of the general occurrence in the magnetospheric tail. We develop an analytical theory of the self-consistent thin CSs. General solitions of the Grad-Shafranov equation are obtained in a quasi-adiabatic approximation which neglects the jumps of the sheet adiabatic invariant Iz This is possible if the anisotropy of the initial distribution function is not too strong. The resulting structure of the thin CSs is interpreted as a sum of negative dia- and positive paramagnetic currents flowing near the neutral plane. In the immediate vicinity of the magnetic field reversal region the paramagnetic current arising from the meandering motion of the ions on Speiser orbits dominates. The maximum CS thick-ness is achieved in the case of weak plasma anisotropy and is of the order of the thermal ion gyroradius outside the sheet. A unified picture of thin CS scalings includes both the quasi-adiabatic regimes of weak and strong anisotropies and the nonadiabatic limit of super-strong anisotropy of the source ion distribution. The later limit corresponds to the case of almost field-aligned initial distribution, when the ratio of the drift velocity outside the CS to the thermal ion velocity exceeds the ratio of the magnetic field outside the CS to its value in-side the CS (vD/vT> B0/Bn. In this regime the jumps of Iz, become essential, and the current sheet thickness is approaching to some small but finite value, which depends upon the parameter Bn /B0. Convective electric field increases the effective anisotropy of the source distribution and might produce the essential CS thinning which could have important implications for the sub-storm dynamics.
Tiwari, Vivek; Peters, William K; Jonas, David M
2017-10-21
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Enqvist, Kari; Kasuya, Shinta; Mazumdar, Anupam
2003-03-07
We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small.
Non-adiabatic description of proton emission from the odd-odd nucleus 130Eu
Directory of Open Access Journals (Sweden)
Patial Monika
2014-03-01
Full Text Available We discuss the non-adiabatic quasiparticle approach for calculating the rotational spectra and decay width of odd-odd proton emitters. The Coriolis effects are incorporated in both the parent and daughter wave functions. Results for the two probable ground states (1+ and 2+ of the proton emitter 130Eu are discussed. With our calculations, we confirm the proton emitting state to be the Iπ = 1+ state, irrespective of the strength of the Coriolis interaction. This study provides us with an opportunity to look into the details of wave functions of deformed odd-odd nuclei to which the proton emission halflives are quite sensitive.
Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory
Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.
2017-12-01
The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.
Adiabatic calorimeter with static vacuum for the measurement of the heating of in- pile materials
International Nuclear Information System (INIS)
Brun, J.
1964-01-01
After having reviewed the various interaction processes occurring between radiations present in nuclear reactors and matter, the author describes the different calorimetric methods which may be used for measuring the energy absorbed in the materials. He then gives a detailed description of the adiabatic calorimeter, the associated measurement device and the calibration methods which have been chosen. He finally gives values for the heating produced at various experimental positions in the reactors EL-2 and EL-3 for several materials currently used in reactor construction. (author) [fr
Implementation of one-qubit holonomic rotation gate by adiabatic passage
Directory of Open Access Journals (Sweden)
R Nader-Ali
2010-06-01
Full Text Available We propose a robust scheme, using tripod stimulated Raman adiabatic passage, to generate one-qubit rotation gate. In this scheme, a four-level atom interacts with three resonant laser pulses and time evolution of the corresponding coherent system is designed such that the rotation gate is implemented at the end of process. Rotation angle in this gate is holonomic and has a geometrical basis in the parameter space. We also explore the effect of spontaneous emission on the population transfer with numerical solution of Schrödinger and Liouville equations.
The analysis of the elastic scattering of 11Be and 6Li by adiabatic approximation
International Nuclear Information System (INIS)
Takagi, S.
2000-01-01
The unstable nuclei, particularly, the neutron halo nuclei which exist near by the neutron dripline, are recently one of the interesting topics in the nuclear physics. By the adiabatic approximation, R. C. Jhonson et al. have reproduced the experimental differential cross-section of the elastic scattering of the neutron halo nucleus 11 Be (+ l2 C) [1]. We have applied their method to the elastic scattering of another nucleus 6 Li which is not a halo nucleus but has the cluster structure as 11 Be. But it couldn't reproduce the experimental data, so that the method of Johnson et al. is poor in the case of 6 Li. (author)
Modelling of the processes of heat and mass transfer in adiabatic steam and drop flows
International Nuclear Information System (INIS)
Andrizhievskij, A.A.; Mikhalevich, A.A.; Nesterenko, V.B.; Trifonov, A.G.
1983-01-01
The mathematical models for investigating the local and integral characteristics of heat and mass transfer processes during simultaneous motion of adiabatic steam and drop flow and a flux of impurity particles are given. The mathematical model is constrUcted on the basis of one-dimensional stationary eqUations of conservation of mass, thermal energy and momentum of liquid and vapor phases. Dispersion composition of condensed moisture is described by the Nukiyama-Tanasava distribution function formed taking into account the Veber number critical value. Equations of motion and mass balance conservation for impurity particles are included into the mathematical model. These equations are considered as additional inactive phase
Adiabatic tapered optical fiber fabrication for exciting whispering gallery modes in microcavities
Chenari, Z.; Latifi, H.; Hashemi, R. S.; Doroudmand, F.
2014-05-01
This article demonstrates an investigation and analysis of a tapered fiber fabrication using an etchant droplet method. To achieve precise control on process, a two-step etching method is proposed (using 48% concentration of HF acid and Buffered HF) which results in low-loss adiabatic tapered fiber. A spectrum analysis monitoring in addition to a microscopy system was used to verify the etching progress. Tapers with losses less than 0.4 dB in air and 4.5 dB in water are demonstrated. A biconical fiber taper fabricated using this method was used to excite the WGMs on a microsphere surface in aquatic environment.
Equilibrium quality and mass flux distributions in an adiabatic three-subchannel test section
International Nuclear Information System (INIS)
Yadigaroglu, G.; Maganas, A.
1993-01-01
An experiment was designed to measure the fully-developed quality and mass flux distributions in an adiabatic three-subchannel test section. The three subchannels had the geometrical characteristics of the corner, side, and interior subchannels of a BWR-5 rod bundle. Data collected with Refrigerant-144 at pressures ranging from 7 to 14 bar, simulating operation with water in the range 55 to 103 bar are reported. The average mass flux and quality in the test section were in the ranges 1300 to 1750 kg/m s and -0.03 to 0.25, respectively. The data are analyzed and presented in various forms
Adiabatic wall temperature and heat transfer coefficient influenced by separated supersonic flow
Directory of Open Access Journals (Sweden)
Leontiev Alexander
2017-01-01
Full Text Available Investigations of supersonic air flow around plane surface behind a rib perpendicular to the flow direction are performed. Research was carried out for free stream Mach number 2.25 and turbulent flow regime - Rex>2·107. Rib height was varied in range from 2 to 8 mm while boundary layer thickness at the nozzle exit section was about 6 mm. As a result adiabatic wall temperature and heat transfer coefficient are obtained for flow around plane surface behind a rib incontrast with the flow around plane surface without any disturbances.
International Nuclear Information System (INIS)
Novelli, Anna; Belzig, Wolfgang; Nitzan, Abraham
2015-01-01
The time evolution and the asymptotic outcome of a Landau–Zener–Stueckelberg–Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non-adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength. (paper)
Multi-objective optimization of Stirling engine using non-ideal adiabatic method
International Nuclear Information System (INIS)
Toghyani, Somayeh; Kasaeian, Alibakhsh; Ahmadi, Mohammad H.
2014-01-01
Highlights: • A multi-objective optimization is carried out for a Stirling engine. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. • The results are compared with the previous works for checking the model improvement. • A proper improvement is observed using TOPSIS when comparing with the others. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great numbers of studies are conducted on Stirling engines and non-ideal adiabatic method is one of them. In the present study, the efficiency and the power loss due to pressure drop into the heat exchangers are optimized for a Stirling system using non-ideal adiabatic analysis and the second-version Non-dominated Sorting Genetic Algorithm. The optimized answers are chosen from the results using three decision-making methods. The applied methods were compared at last and the best results were obtained for the technique for order preference by similarity to ideal solution decision making method
Comment on "Nonlinear adiabatic passage from fermion atoms to boson molecules"
Itin, A P; Watanabe, S
2006-01-01
Dynamics of an adiabatic sweep through a Feshbach resonance in a quantum gas of fermionic atoms was considered recently in I.Tikhonenkov, E.Pazy {\\it et al}, Phys. Rev. {\\bf A 73}, 043605 (2006). In the mean-field limit, the system is reduced to a classical nonlinear Hamiltonian system with a slowly changing parameter. Analysis of the latter system was done incorrectly; the main results of the commented paper are inconsistent. Here we present accurate study of the mean-field dynamics of the model based on the rigorous separatrix crossing theory. In particular, for the dependence of the remaining atomic fraction $\\Gamma$ on the sweep rate $\\alpha$ the abovementioned Refs. predict the power-law $\\Gamma \\sim \\alpha^{1/3}$ (in the case where the initial fraction of molecules is larger than the quantum fluctuations). Instead, $\\Gamma$ is related to a quasi-random jump of an adiabatic invariant which can be calculated using a general method of the separatrix crossing theory and asymptotically $\\sim\\alpha$ .
On the adiabatic walking of plasma waves in a pulsar magnetosphere
International Nuclear Information System (INIS)
Melikidze, George I.; Gil, Janusz; Mitra, Dipanjan
2014-01-01
The pulsar radio emission is generated in the near magnetosphere of the neutron star, and it must propagate through the rest of it to emerge into the interstellar medium. An important issue is whether this propagation affects the planes of polarization of the generated radiation. Observationally, there is sufficient evidence that the emerging radiation is polarized parallel or perpendicular to the magnetic field line planes that should be associated with the ordinary (O) and extraordinary (X) plasma modes, respectively, excited by some radiative process. This strongly suggests that the excited X and O modes are not affected by the so-called adiabatic walking that causes a slow rotation of polarization vectors. In this paper, we demonstrate that the conditions for adiabatic walking are not fulfilled within the soliton model of pulsar radio emission, in which the coherent curvature radiation occurs at frequencies much lower than the characteristic plasma frequency, The X mode propagates freely and observationally represents the primary polarization mode. The O mode has difficulty escaping from the pulsar plasma; however, it is sporadically observed as a weaker secondary polarization mode. We discuss a possible scenario under which the O mode can also escape from the plasma and reach an observer.
Universal fault-tolerant adiabatic quantum computing with quantum dots or donors
Landahl, Andrew
I will present a conceptual design for an adiabatic quantum computer that can achieve arbitrarily accurate universal fault-tolerant quantum computations with a constant energy gap and nearest-neighbor interactions. This machine can run any quantum algorithm known today or discovered in the future, in principle. The key theoretical idea is adiabatic deformation of degenerate ground spaces formed by topological quantum error-correcting codes. An open problem with the design is making the four-body interactions and measurements it uses more technologically accessible. I will present some partial solutions, including one in which interactions between quantum dots or donors in a two-dimensional array can emulate the desired interactions in second-order perturbation theory. I will conclude with some open problems, including the challenge of reformulating Kitaev's gadget perturbation theory technique so that it preserves fault tolerance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Approximations to the non-adiabatic particle response in toroidal geometry
International Nuclear Information System (INIS)
Schep, T.J.; Braams, B.J.
1981-08-01
The non-adiabatic part of the particle response to low-frequency electromagnetic modes with long parallel wavelengths is discussed. Analytic approximations to the kernels of the integrals that relate the amplitudes of the perturbed potentials to the non-adiabatic part of the perturbed density in an axisymmetric toroidal configuration are presented and the results are compared with numerical calculations. It is shown that both in the plane slab and in toroidal geometry the kernel contains a logarithmic singularity. This singularity is associated with particles with vanishing parallel velocity so that, in toroidal geometry, it is related with the behaviour of trapped particles near their turning points. In contrast to the plane slab, in toroidal geometry this logarithmic singularity is mainly real and associated with non-resonant particles. Apart from this logarithmic term, the kernel contains a complex regular part arising from resonant as well as from non-resonant particles. The analytic approximations that will be presented make the dispersion relation of drift-type modes in toroidal geometry amenable to analytic as well as to simpler numerical calculation of the growth rate and of the spatial mode structure
Dissipation in adiabatic quantum computers: lessons from an exactly solvable model
Keck, Maximilian; Montangero, Simone; Santoro, Giuseppe E.; Fazio, Rosario; Rossini, Davide
2017-11-01
We introduce and study the adiabatic dynamics of free-fermion models subject to a local Lindblad bath and in the presence of a time-dependent Hamiltonian. The merit of these models is that they can be solved exactly, and will help us to study the interplay between nonadiabatic transitions and dissipation in many-body quantum systems. After the adiabatic evolution, we evaluate the excess energy (the average value of the Hamiltonian) as a measure of the deviation from reaching the final target ground state. We compute the excess energy in a variety of different situations, where the nature of the bath and the Hamiltonian is modified. We find robust evidence of the fact that an optimal working time for the quantum annealing protocol emerges as a result of the competition between the nonadiabatic effects and the dissipative processes. We compare these results with the matrix-product-operator simulations of an Ising system and show that the phenomenology we found also applies for this more realistic case.
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Non-adiabatic effects in elementary reaction processes at metal surfaces
Alducin, M.; Díez Muiño, R.; Juaristi, J. I.
2017-12-01
Great success has been achieved in the modeling of gas-surface elementary processes by the use of the Born-Oppenheimer approximation. However, in metal surfaces low energy electronic excitations are generated even by thermal and hyperthermal molecules due to the absence of band gaps in the electronic structure. This shows the importance of performing dynamical simulations that incorporate non-adiabatic effects to analyze in which way they affect most common gas-surface reactions. Here we review recent theoretical developments in this problem and their application to the study of the effect of electronic excitations in the adsorption and relaxation of atoms and molecules in metal surfaces, in scattering processes, and also in recombinative processes between impinging atoms and adsorbates at the surface. All these studies serve us to establish what properties of the gas-surface interaction favor the excitation of low-energy electron-hole pairs. A general observation is that the nature of these excitations usually requires long lasting interactions at the surface in order to observe deviations from the adiabatic behaviour. We also provide the basis of the local density friction approximation (LDFA) that have been used in all these studies, and show how it has been employed to perform ab initio molecular dynamics with electronic friction (AIMDEF). As a final remark, we will shortly review on recent applications of the LDFA to successfully simulate desorption processes induced by intense femtosecond laser pulses.
Gate Leakage Reduction by Clocked Power Supply of Adiabatic Logic Circuits
Directory of Open Access Journals (Sweden)
Ph. Teichmann
2005-01-01
Full Text Available Losses due to gate-leakage-currents become more dominant in new technologies as gate leakage currents increase exponentially with decreasing gate oxide thickness. The most promising Adiabatic Logic (AL families use a clocked power supply with four states. Hence, the full VDD voltage drops over an AL gate only for a quarter of the clock cycle, causing a full gate leakage only for a quarter of the clock period. The rising and falling ramps of the clocked power supply lead to an additional energy consumption by gate leakage. This energy is smaller than the fraction caused by the constant VDD drop, because the gate leakage exponentially depends on the voltage across the oxide. To obtain smaller energy consumption, Improved Adiabatic Logic (IAL has been introduced. IAL swaps all n- and p-channel transistors. The logic blocks are built of p-channel devices which show gate tunneling currents significantly smaller than in n-channel devices. Using IAL instead of conventional AL allows an additional reduction of the energy consumption caused by gate leakage. Simulations based on a 90nm CMOS process show a lowering in gate leakage energy consumption for AL by a factor of 1.5 compared to static CMOS. For IAL the factor is up to 4. The achievable reduction varies depending on the considered AL family and the complexity of the gate.
The RNA folding problem: a variational problem within an adiabatic approximation.
Fernández, A; Niel, B; Burastero, T
1998-08-24
Biopolymer folding is an expeditious process taking place within timescales incommensurably shorter than ergodic times. Furthermore, its robustness suggests that the process must depend on a relatively coarse level of resolution of conformation space. To account for these features while focusing on the RNA context, we derive a variational principle formulated within an adiabatic approximation obtained by integrating out fast-relaxing molecular motions. Folding pathways are generated by means of a stochastic process which begets a least effort principle reflecting a stepwise minimization of the conformational entropy cost for each folding event with concurrent maximization of the base pairing. This economy of the process is found to have kinetic consequences if we treat base-pairing contact patterns (BPPs) adiabatically, that is, as quasi-equilibrium states: the probability distribution of overall folding timespans associated to the process resolved at the BPP level is maximized at the brachistochrone or overall least-time pathway for functionally-competent RNAs. In turn, this pathway is shown to yield all the phylogenetically-conserved structural features of the active conformation within biologically-relevant timescales.
Bevilacqua, G.; Schaller, G.; Brandes, T.; Renzoni, F.
2013-07-01
We consider the problem of the implementation of stimulated Raman adiabatic passage (STIRAP) processes in degenerate systems, with a view to be able to steer the system wave function from an arbitrary initial superposition to an arbitrary target superposition. We examine the case of an N-level atomic system consisting of N-1 ground states coupled to a common excited state by laser pulses. We analyze the general case of initial and final superpositions belonging to the same manifold of states, and we cover also the case in which they are nonorthogonal. We demonstrate that for a given initial and target superposition, it is always possible to choose the laser pulses so that in a transformed basis the system is reduced to an effective three-level Λ system, and standard STIRAP processes can be implemented. Our treatment leads to a simple strategy, with minimal computational complexity, which allows us to determine the laser-pulse shape required for the wanted adiabatic steering.
Directory of Open Access Journals (Sweden)
Hossein Safaei
2017-07-01
Full Text Available We present analyses of three families of compressed air energy storage (CAES systems: conventional CAES, in which the heat released during air compression is not stored and natural gas is combusted to provide heat during discharge; adiabatic CAES, in which the compression heat is stored; and CAES in which the compression heat is used to assist water electrolysis for hydrogen storage. The latter two methods involve no fossil fuel combustion. We modeled both a low-temperature and a high-temperature electrolysis process for hydrogen production. Adiabatic CAES (A-CAES with physical storage of heat is the most efficient option with an exergy efficiency of 69.5% for energy storage. The exergy efficiency of the conventional CAES system is estimated to be 54.3%. Both high-temperature and low-temperature electrolysis CAES systems result in similar exergy efficiencies (35.6% and 34.2%, partly due to low efficiency of the electrolyzer cell. CAES with high-temperature electrolysis has the highest energy storage density (7.9 kWh per m3 of air storage volume, followed by A-CAES (5.2 kWh/m3. Conventional CAES and CAES with low-temperature electrolysis have similar energy densities of 3.1 kWh/m3.
Iwata, Yusaku; Koseki, Hiroshi
2008-11-15
An automatic pressure tracking adiabatic calorimeter (APTAC) had been employed to obtain the thermokinetic and the vapor pressure data during runaway reactions. The APTAC is an adiabatic calorimeter with a large-scale sample mass and low thermal inertia, and is an extremely useful tool for assessing thermal hazards of reactive chemicals. The data obtained by the APTAC are important information for the design of the safe industrial process. The thermodynamics parameters and the gas production were discussed on the basis of the experimental data of various concentrations and weights of di-tert-butyl peroxide (DTBP)/toluene solution for the purpose of investigating the properties of the APTAC data. The thermal decomposition of DTBP was studied on the basis of the temperature data and the pressure data obtained by the APTAC. The activation energy and the frequency factor of DTBP are nearly constant and the same as the literature values in the concentrations between 20 and 60 wt.%. The pressure rise due to gas production is important data for designing the relief vent of a reactor. The time history of the gas production was investigated with various weights and concentrations. The total gas production index, which had the vapor pressure correction, was 1.0 in the decomposition of DTBP.
International Nuclear Information System (INIS)
Iwata, Yusaku; Koseki, Hiroshi
2008-01-01
An automatic pressure tracking adiabatic calorimeter (APTAC) had been employed to obtain the thermokinetic and the vapor pressure data during runaway reactions. The APTAC is an adiabatic calorimeter with a large-scale sample mass and low thermal inertia, and is an extremely useful tool for assessing thermal hazards of reactive chemicals. The data obtained by the APTAC are important information for the design of the safe industrial process. The thermodynamics parameters and the gas production were discussed on the basis of the experimental data of various concentrations and weights of di-tert-butyl peroxide (DTBP)/toluene solution for the purpose of investigating the properties of the APTAC data. The thermal decomposition of DTBP was studied on the basis of the temperature data and the pressure data obtained by the APTAC. The activation energy and the frequency factor of DTBP are nearly constant and the same as the literature values in the concentrations between 20 and 60 wt.%. The pressure rise due to gas production is important data for designing the relief vent of a reactor. The time history of the gas production was investigated with various weights and concentrations. The total gas production index, which had the vapor pressure correction, was 1.0 in the decomposition of DTBP
Froment, P; Delbar, T; Ryckewaert, G; Tilquin, I; Vervier, J
2002-01-01
The Transmutation by Adiabatic Resonance Crossing (TARC) technique has been proposed by Rubbia (Resonance enhanced neutron captures for element activation and waste transmutation, CERN-LHC/97-0040EET, 1997; TARC collaboration, Neutron-driven nuclear transmutation by adiabatic resonance crossing, CERN-SL-99-036EET, 1999; Abanades et al., Nucl. Instr. and Meth. A 487 (2002) 577) for element activation and waste transmutation. We investigate the possibility to use this technique for the industrial production of **9**9Mo and **1**2**5Xe by resonance neutron capture in **9**8Mo and **1**2**4Xe, respectively. Their daughters, i.e. **9**9**mTc and **1**2**5I, are widely used in medical applications. The high neutron flux needed is produced by bombarding a thick Be target with 65 or 75 MeV proton beam (few microamperes). This target is placed at the centre of a large cubic lead assembly (1.6 m side, purity: 99.999%). The neutrons are progressively slowed down by elastic scattering on lead, and their energies "scan" t...
The effects of finite mass, adiabaticity, and isothermality in nonlinear plasma wave studies
Hellberg, Manfred A.; Verheest, Frank; Mace, Richard L.
2018-03-01
The propagation of arbitrary amplitude ion-acoustic solitons is investigated in a plasma containing cool adiabatic positive ions and hot electrons or negative ions. The latter can be described by polytropic pressure-density relations, both with or without the retention of inertial effects. For analytical tractability, the resulting Sagdeev pseudopotential needs to be expressed in terms of the hot negative species density, rather than the electrostatic potential. The inclusion of inertia is found to have no qualitative effect, but yields quantitative differences that vary monotonically with the mass ratio and the polytropic index. This result contrasts with results for analogous problems involving three species, where it was found that inertia could yield significant qualitative differences. Attention is also drawn to the fact that in the literature there are numerous papers in which species are assumed to behave adiabatically, where the isothermal assumption would be more appropriate. Such an assumption leads to quantitative errors and, in some instances, even qualitative gaps for "reverse polarity" solitons.
Nonlinear charge and energy dynamics of an adiabatically driven interacting quantum dot
Romero, Javier I.; Roura-Bas, Pablo; Aligia, Armando A.; Arrachea, Liliana
2017-06-01
We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically driven interacting quantum dot in contact with a reservoir for arbitrary amplitudes of the driving potential. We study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of the frozen problem. At T =0 , we evaluate the dynamic response functions with the numerical renormalization group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous Joule law characterized by a universal Büttiker resistance quantum R0=h /(2 e2) for each spin channel. We show that this law holds in the noninteracting as well as in the interacting system and also when the system is spin polarized. In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin polarization leads to a nontrivial energy exchange between electrons with different spin components.
Rotational excitation of H2O by para-H2 from an adiabatically reduced dimensional potential.
Scribano, Yohann; Faure, Alexandre; Lauvergnat, David
2012-03-07
Cross sections and rate coefficients for low lying rotational transitions in H(2)O colliding with para-hydrogen pH(2) are computed using an adiabatic approximation which reduces the dimensional dynamics from a 5D to a 3D problem. Calculations have been performed at the close-coupling level using the recent potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)]. A good agreement is found between the reduced adiabatic calculations and the 5D exact calculations, with an impressive time saving and memory gain. This adiabatic reduction of dimensionality seems very promising for scattering studies involving the excitation of a heavy target molecule by a light molecular projectile. © 2012 American Institute of Physics
International Nuclear Information System (INIS)
Konrat, Robert; Tollinger, Martin
1999-01-01
A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented
Directory of Open Access Journals (Sweden)
Jeong Ryeol Choi
2015-01-01
Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.
International Nuclear Information System (INIS)
Cohen, J.S.; Struensee, M.C.
1991-01-01
The improved adiabatic representation is used in calculations of elastic and isotopic-exchange cross sections for asymmetric collisions of pμ, dμ, and tμ with bare p, d, and t nuclei and with H, D, and T atoms. This formulation dissociates properly, correcting a well-known deficiency of the standard adiabatic method for muonic-atom collisions, and includes some effects at zeroth order that are normally considered nonadiabatic. The electronic screening is calculated directly and precisely within the improved adiabatic description; it is found to be about 30% smaller in magnitude than the previously used value at large internuclear distances and to deviate considerably from the asymptotic form at small distances. The reactance matrices, needed for calculations of molecular-target effects, are given in tables
International Nuclear Information System (INIS)
Armour, E.A.G.; Beker, C.A.; Farina, J.E.G.
1981-01-01
P-wave phaseshifts for positron-hydrogen elastic scattering are calculated using a new adiabatic approximation in which the length of the radius vector from the proton to the positron is fixed but its direction is allowed to vary. This adiabatic approximation makes possible the full inclusion in the calculation of virtual states in which angular momentum is transferred to the target H atom. The results obtained agree qualitatively with the highly accurate results of Bhatia and co-workers (Phys. Rev.; A9:219 (1974)) and are much closer to them than the results obtained using the usual adiabatic approximation in which the radius vector from the proton to the positron is fixed. (author)
Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lèpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division
2000-01-01
The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (from 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3x3.3x3 m3 lead volume and neutron capture rates on long-lived fission fragements 99Tc and 129I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation.
Ravi, M. U.; Reddy, C. P.; Ravindranath, K.
2013-04-01
In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance
The exact forces on classical nuclei in non-adiabatic charge transfer
International Nuclear Information System (INIS)
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Gross, E. K. U.; Maitra, Neepa T.
2015-01-01
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect
Energy and entropy analysis of closed adiabatic expansion based trilateral cycles
International Nuclear Information System (INIS)
Garcia, Ramon Ferreiro; Carril, Jose Carbia; Gomez, Javier Romero; Gomez, Manuel Romero
2016-01-01
Highlights: • The adiabatic expansion based TC surpass Carnot factor at low temperatures. • The fact of surpassing Carnot factor doesn’t violate the 2nd law. • An entropy analysis is applied to verify the fulfilment of the second law. • Correction of the exergy transfer associated with heat transferred to a cycle. - Abstract: A vast amount of heat energy is available at low cost within the range of medium and low temperatures. Existing thermal cycles cannot make efficient use of such available low grade heat because they are mainly based on conventional organic Rankine cycles which are limited by Carnot constraints. However, recent developments related to the performance of thermal cycles composed of closed processes have led to the exceeding of the Carnot factor. Consequently, once the viability of closed process based thermal cycles that surpass the Carnot factor operating at low and medium temperatures is globally accepted, research work will aim at looking into the consequences that lead from surpassing the Carnot factor while fulfilling the 2nd law, its impact on the 2nd law efficiency definition as well as the impact on the exergy transfer from thermal power sources to any heat consumer, including thermal cycles. The methodology used to meet the proposed objectives involves the analysis of energy and entropy on trilateral closed process based thermal cycles. Thus, such energy and entropy analysis is carried out upon non-condensing mode trilateral thermal cycles (TCs) characterised by the conversion of low grade heat into mechanical work undergoing closed adiabatic path functions: isochoric heat absorption, adiabatic heat to mechanical work conversion and isobaric heat rejection. Firstly, cycle energy analysis is performed to determine the range of some relevant cycle parameters, such as the operating temperatures and their associated pressures, entropies, internal energies and specific volumes. In this way, the ranges of temperatures within which
Following Gibbs states adiabatically: the energy landscape of mean field glassy systems
Energy Technology Data Exchange (ETDEWEB)
Zdeborova, Lenka [Los Alamos National Laboratory; Krzakala, Florent [ESPCI
2009-01-01
We introduce a generalization of the cavity, or Bethe-Peierls, method that allows to follow Gibbs states when an external parameter, e.g. the temperature, is adiabatically changed. This allows to obtain new quantitative results on the static and dynamic behavior of mean field disordered systems such as models of glassy and amorphous materials or random constraint satisfaction problems. As a first application, we discuss the residual energy after a very slow annealing, the behavior of out-of-equilibrium states, and demonstrate the presence of temperature chaos in equilibrium. We also explore the energy landscape, and identify a new transition from an computationally easier canyons-dominated region to a harder valleys-dominated one.
Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage
Chadwick, Helen; Hundt, P. Morten; van Reijzen, Maarten E.; Yoder, Bruce L.; Beck, Rainer D.
2014-01-01
Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.
International Nuclear Information System (INIS)
Juhl, B.; Treumann, R.A.
1980-01-01
Observation of the adiabatic behaviour of energetic particle pitch-angle distributions in the magnetosphere (Lyons, 1977, and others) in the past indicated the development of pronounced minima or drift-loss cones on the pitch-angle distributions centred at α approx.= 90 0 in connection with storm-time changes in magnetospheric convection and magnetic field. Using a model of a drift-modified loss-cone distribution (MLCD) of the butterfly type, the linear stability of electromagnetic whistler or ion-cyclotron waves propagating parallel to the magnetic field has been investigated. The instability is shown to be quenched at high frequencies ω 0 are identified as generating electromagnetic cyclotron waves near the marginally stable frequency ωsub(m). It is concluded that the absence of electromagnetic VLF and ELF noise during times when MLCD develops is the result of the shift of the unstable spectrum to low frequencies. (orig.)
Modeling the adiabatic creation of ultracold polar 23Na40K molecules
Seeßelberg, Frauke; Buchheim, Nikolaus; Lu, Zhen-Kai; Schneider, Tobias; Luo, Xin-Yu; Tiemann, Eberhard; Bloch, Immanuel; Gohle, Christoph
2018-01-01
In this work we model and realize stimulated Raman adiabatic passage (STIRAP) in the diatomic 23Na40K molecule from weakly bound Feshbach molecules to the rovibronic ground state via the |vd=5 ,J =Ω =1 〉 excited state in the d3Π electronic potential. We demonstrate how to set up a quantitative model for polar molecule production by taking into account the rich internal structure of the molecules and the coupling laser phase noise. We find excellent agreement between the model predictions and the experiment, demonstrating the applicability of the model in the search for an ideal STIRAP transfer path. In total we produce 5000 fermionic ground-state molecules. The typical phase-space density of the sample is 0.03 and induced dipole moments of up to 0.54 D can be observed.
Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands
Mathai, C. V.; Walls, W. L.; Broersma, S.
1977-01-01
An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.
Tzanov, Alexandar T; Cuendet, Michel A; Tuckerman, Mark E
2014-06-19
The quality of classical biomolecular simulations is inevitably limited by two problems: the accuracy of the force field used and the comprehensiveness of configuration space sampling. In this work we tackle the sampling problem by carrying out driven adiabatic free energy dynamics to obtain converged free energy surfaces of dipeptides in the gas phase and in solution using selected dihedral angles as collective variables. To calculate populations of conformational macrostates observed in experiment, we introduce a fuzzy clustering algorithm in collective-variable space, which delineates macrostates without prior definition of arbitrary boundaries. With this approach, we calculate the conformational preferences of small peptides with six biomolecular force fields chosen from among the most recent and widely used. We assess the accuracy of each force field against recently published Raman or IR-UV spectroscopy measurements of conformer populations for the dipeptides in solution or in the gas phase.
Adiabatic perturbations in pre-big bang models: Matching conditions and scale invariance
International Nuclear Information System (INIS)
Durrer, Ruth; Vernizzi, Filippo
2002-01-01
At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to a slightly modified version of the pre-big bang model. We discuss cosmological perturbations in these models. In particular we address the issue of matching the perturbations from a collapsing to an expanding phase. We show that, under certain physically motivated and quite generic assumptions on the high energy corrections, one obtains n=0 for the spectrum of scalar perturbations in the original pre-big bang model (with a vanishing potential). With the same assumptions, when an exponential potential for the dilaton is included, a scale invariant spectrum (n=1) of adiabatic scalar perturbations is produced under very generic matching conditions, both in a modified pre-big bang and ekpyrotic scenario. We also derive the resulting spectrum for arbitrary power law scale factors matched to a radiation-dominated era
Khorshidi, Abdollah; Pazirandeh, Ali; Tenreiro, Claudio; Kadi, Yacine
2014-01-01
In this study, the transmutation adiabatic resonance crossing (TARC) concept was estimated in Mo-99 radioisotope production via radiative capture reaction in two designs. The TARC method was composed of moderating neutrons in lead or a composition of lead and water. Additionally, the target was surrounded by a moderator assembly and a graphite reflector district. Produced neutrons were investigated by (p,xn) interactions with 30 MeV and 300 mu A proton beam on tungsten, beryllium, and tantalum targets. The Mo-99 production yield was related to the moderator property, cross section, and sample positioning inside the distinct region of neutron storage as must be proper to achieve gains. Gathered thermal flux of neutrons can contribute to molybdenum isotope production. Moreover, the sample positioning to gain higher production yield was dependent on a greater flux in the length of thermal neutrons and region materials inside the moderator or reflector. When the sample radial distance from Be was 38 cm inside the...
Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization
Energy Technology Data Exchange (ETDEWEB)
Imam, Neena [ORNL; Humble, Travis S. [ORNL; McCaskey, Alex [ORNL; Schrock, Jonathan [ORNL; Hamilton, Kathleen E. [ORNL
2017-09-01
A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recall accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.
Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He
Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.
2018-02-01
The collision dynamics of optically centrifuged CO2 with Ar and He are reported here. The optical centrifuge produces an ensemble of CO2 molecules in high rotational states (with J ˜ 220) with oriented angular momentum. Polarization-dependent high-resolution transient IR absorption spectroscopy was used to measure the relaxation dynamics in the presence of Ar or He by probing the CO2 J = 76 and 100 states with Er o t=2306 and 3979 cm-1, respectively. The data show that He relaxes the CO2 super rotors more quickly than Ar. Doppler-broadened line profiles show that He collisions induce substantially larger rotation-to-translation energy transfer. CO2 super rotors have greater orientational anisotropy with He collisions and the anisotropy from the He collisions persists longer than with Ar. Super rotor relaxation dynamics are discussed in terms of mass effects related to classical gyroscope physics and collisional rotational adiabaticity.
Solving the Ternary Quantum-Dot Cellular Automata Logic Gate Problem by Means of Adiabatic Switching
Pecar, Primoz; Mraz, Miha; Zimic, Nikolaj; Janez, Miha; Lebar Bajec, Iztok
2008-06-01
Quantum-dot cellular automata (QCA) are one of the most promising alternative platforms of the future. Recent years have witnessed the development of basic logic structures as well as more complex processing structures, however most in the realm of binary logic. On the grounds that future platforms should not disregard the advantages of multi-valued logic, Lebar Bajec et al. were the first to show that quantum-dot cellular automata can be used for the implementation of ternary logic as well. In their study the ternary AND and OR logic functions proved to be the most troublesome primitive to implement. This research presents a revised solution that is based on adiabatic switching.
Directory of Open Access Journals (Sweden)
López-Castillo A.
1998-01-01
Full Text Available Full quantum charge transfer study of the process B3+ + He -> B2+ + He+ has been investigated in the collision energy range 1-102 eV using an ab-initio interaction potential. A new method to solve the Schrödinger equation in an adiabatic basis was used, where the radial and rotational coupling were taken into account, and the importance of the coupling between states of different symmetry was discussed. Moreover, by using the well known Landau-Zener model, it was concluded that the two state model cannot be applied for the present system, and this might indicate that such a model should be applied carefully for other systems when a charge transfer process is considered. Finally, the quantum total cross sections were compared with the previous published work of Gargaud and co-workers and a fair agreement was achieved.
Directory of Open Access Journals (Sweden)
A. Franchi
2009-01-01
Full Text Available The multiturn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by nonlinear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.
Manipulation of ultracold atoms in dressed adiabatic radio-frequency potentials
DEFF Research Database (Denmark)
Lesanovsky, Igor; Hofferberth, S.; Schmiedmayer, Jörg
2006-01-01
We explore properties of atoms whose magnetic hyperfine sublevels are coupled by an external magnetic radio frequency (rf) field. We perform a thorough theoretical analysis of this driven system and present a number of systematic approximations which eventually give rise to dressed adiabatic radio...... frequency potentials. The predictions of this analytical investigation are compared to numerically exact results obtained by a wave packet propagation. We outline the versatility and flexibility of this class of potentials and demonstrate their potential use to build atom optical elements such as double...... wells, interferometers, and ringtraps. Moreover, we perform simulations of interference experiments carried out in rf induced double-well potentials. We discuss how the nature of the atom-field coupling mechanism gives rise to a decrease of the interference contrast....
Modified x-ray polymer refractive cross lens with adiabatic contraction and its realization
International Nuclear Information System (INIS)
Nazmov, V; Mohr, J; Greving, I; Ogurreck, M; Wilde, F
2015-01-01
A refractive x-ray lens with reduced focal length, due to continuous reduction in the designed aperture over the length of the lens, is presented. The lens elements have refractive parabolic sidewalls like geometrical prisms, with a varying cross section over the length of the lens, in accordance with the x-ray propagation law. The focusing effect occurs directly in the lens due to the fact that the initial x-ray beam is directed toward the focal point, and due to the phase retardation caused by the refractive properties of the sidewall surfaces. An array of such adiabatic lens elements with different optical parameters, arranged in a number of rows, represented by polymer microstructures, has been produced using x-ray lithography. Preliminary testing of the lenses has resulted in a focal spot of 67 nm at a photon energy of 18.6 keV. (paper)
Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air-Steam for Partial Oxidation
Directory of Open Access Journals (Sweden)
Catalina Rodriguez
2011-01-01
Full Text Available Colombian coffee industry produces about 0.6 million tons of husk (CH per year which could serve as feedstock for thermal gasification to produce gaseous and liquid fuels. The current paper deals with: (i CH adiabatic gasification modeling using air-steam blends for partial oxidation and (ii experimental thermogravimetric analysis to determine the CH activation energy (E. The Chemical Equilibrium with Applications Program (CEA, developed by NASA, was used to estimate the effect of equivalence ratio (ER and steam to fuel ratio (S : F on equilibrium temperature and gas composition of ~150 species. Also, an atom balance model was developed for comparison purposes. The results showed that increased ER and (S : F ratios produce mixtures that are rich in H2 and CO2 but poor in CO. The value for the activation energy was estimated to be 221 kJ/kmol.
Optimum conditions for producing Cs2 molecular condensates by stimulated Raman adiabatic passage
International Nuclear Information System (INIS)
Feng Zhifang; Li Weidong; Wang Lirong; Xiao Liantuan; Jia Suotang
2009-01-01
The optimum conditions for producing Cs 2 molecular condensates from Cs atomic condensates with high transfer efficiency by stimulated Raman adiabatic passage are presented. Under the extended 'two-photon' resonance condition, including the two-photon process, the mean-field correction, and the tunneling coupling between two upper excited molecular levels, a high and stable conversion efficiency is realized. The high conversion efficiency could be achieved by following two methods under experimentally less demanding conditions (relatively small effective Rabi frequency for pump laser pulse). One is adjusting the detuning difference between two laser pulses for same effective Rabi frequencies with up to 87.2% transfer efficiency. Another one is adjusting the effective Rabi frequency, the detuning of dump laser for given effective Rabi frequency, and the detuning of pump laser with up to 80.7% transfer efficiency.
Critical stability of almost adiabatic convection in a rapidly rotating thick spherical shell
Energy Technology Data Exchange (ETDEWEB)
Starchenko, S. V., E-mail: sstarchenko@mail.ru [Russian Academy of Sciences, Institute of Terrestrial Magnetism, the Ionosphere, and Radiowave Propagation (Russian Federation); Kotelnikova, M. S. [Lavrentyev Institute of Hydrodynamics (Russian Federation)
2013-02-15
In this work, the convection equations in the almost adiabatic approximation is studied for which the choice of physical parameters is primarily based on possible applications to the hydrodynamics of the deep interiors of the Earth and planets and moons of the terrestrial group. The initial system of partial differential equations (PDEs) was simplified to a single second-order ordinary differential equation for the pressure or vertical velocity component to investigate the linear stability of convection. The critical frequencies, modified Rayleigh numbers, and distributions of convection are obtained at various possible Prandtl numbers and in different thick fluid shells. An analytical WKB-type solution was obtained for the case when the inner radius of the shell is much smaller than the outer radius and convective sources are concentrated along the inner boundary.
Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal
Duttagupta, S.; Fukami, S.; Zhang, C.; Sato, H.; Yamanouchi, M.; Matsukura, F.; Ohno, H.
2016-04-01
The dynamics of elastic interfaces is a general field of interest in statistical physics, where magnetic domain wall has served as a prototypical example. Domain wall `creep’ under the action of sub-threshold driving forces with thermal activation is known to be described by a scaling law with a certain universality class, which represents the mechanism of the interaction of domain walls with the applied forces over the disorder of the system. Here we show different universality classes depending on the driving forces, magnetic field or spin-polarized current, in a metallic system, which have hitherto been seen only in a magnetic semiconductor. We reveal that an adiabatic spin-transfer torque plays a major role in determining the universality class of current-induced creep, which does not depend on the intricacies of material disorder. Our results shed light on the physics of the creep motion of domain walls and other elastic systems.
Adjustment of Adiabatic Transition Magnetic Field of Solenoid-Induced Helicla Wiggler
Tsunawaki, Y
2005-01-01
We have been constructed a solenoid-induced helical wiggler for a compact free electron maser operated in a usual small laboratory which does not have electric source capacity available enough. It consists of two staggered-iron arrays inserted perpendicularly to each other in a solenoid electromagnet. In order to lead/extract an electron beam into/from the wiggler, adiabatic transition (AT) field is necessary at both ends of the wiggler. In this work the AT field was produced by setting staggered-nickel plates with different thickness in the five periods. The thickness of each nickel plate was decided by the field analysis using the MAGTZ computational code based on a magnetic moment method. Exact thickness was, however, found by the precise measurement of the field distribution with the greatest circumspection to obtain a homogeneous increment of the AT field. The change of AT field distribution was studied by referring to an equivalent electric circuit of the wiggler.
Berman, G P; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I
2003-01-01
We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of th...
Equilibrium quality and mass flux distributions in an adiabatic three-subchannel test section
International Nuclear Information System (INIS)
Yadigaroglu, G.; Maganas, A.
1995-01-01
An experiment was designed to measure the fully developed quality and mass flux distributions in an adiabatic three-subchannel test section. The three subchannels had the geometrical characteristics of the corner, side, and interior subchannels of a boiling water reactor (BWR-5) rod bundle. Data collected with Refrigerant-114 at pressures ranging from 7 to 14 bars, simulating operation with water in the range 55 to 103 bars are reported. The average mass flux and quality in the test section were in the ranges 1,300 to 1,750 kg/m 2 · s and -0.03 to 0.25, respectively. The data are analyzed and presented in various forms
Heat and mass transfer at adiabatic evaporation of binary zeotropic solutions
Makarov, M. S.; Makarova, S. N.
2016-01-01
Results of numerical simulation of heat and mass transfer in a laminar flow of three-component gas at adiabatic evaporation of binary solutions from a flat plate are presented. The studies were carried out for the perfect solution of ethanol/methanol and zeotrope solutions of water/acetone, benzene/acetone, and ethanol/acetone. The liquid-vapor equilibrium is described by the Raoult law for the ideal solution and Carlson-Colburn model for real solutions. The effect of gas temperature and liquid composition on the heat and diffusion flows, and temperature of vapor-gas mixture at the interface is analyzed. The formula for calculating the temperature of the evaporation surface for the binary liquid mixtures using the similarity of heat and mass transfer was proposed. Data of numerical simulations are in a good agreement with the results of calculations based on the proposed dependence for all examined liquid mixtures in the considered range of temperatures and pressures.
Adiabatic Siberian snake turn-on and acceleration through depolarizing resonances
International Nuclear Information System (INIS)
Koulsha, A.V.; Anferov, V.A.; Baiod, R.
1993-01-01
The authors plan to install in the IUCF Cooler Ring a rampable partial (30%) Siberian snake to test if the spin polarization is preserved during adiabatic turn-on. They also plan to use this ramped snake to accelerate polarized protons to 370 MeV while passing through two depolarizing resonances. The Siberian snake will consist of two small rampable warm solenoids placed symmetrically on either side of the exciting cold 2 T·m solenoid which would run dc at about 0.5 T·m. Ramping each warm magnet from about -0.25T·m to + 0.25 T·m. Recent experiments showed that turning on the snake in 100 msec at 370 MeV causes no serious beam loss
Hydrodynamics of adiabatic inverted annular flow: an experimental study. [PWR; BWR
Energy Technology Data Exchange (ETDEWEB)
De Jarlais, G.; Ishii, M.
1983-01-01
For low-quality film boiling in tubes or rod bundles, the flow pattern may consist of a liquid jet-like core surrounded by a vapor annulus, i.e., inverted annular flow. The stability, shape, and break-up mechanisms of this liquid core must be understood in order to model correctly this regime and to develop appropriate interfacial transfer correlations. This paper reports on a study in which inverted annular flow was simulated in an adiabatic system. Turbulent water jets, issuing downward from long-aspect nozzles were enclosed within cocurrent gas annuli. Jet-core diameter and velocity, and gas-annulus diameter, velocity, and species were varied, yielding liquid Reynolds numbers up to 33,000, void fractions from 0.29 to 0.95, and relative velocities from near zero to over 80 m/s. Jet-core break-up lengths and secondarily, core break-up mechanisms, were observed visually, using strobe lighting.
Hydrodynamic stability of inverted annular flow in an adiabatic simulation. [PWR; BWR
Energy Technology Data Exchange (ETDEWEB)
De Jarlais, G.; Ishii, M.; Linehan, J.
1983-01-01
In experiments, inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from long aspect nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed-core droplet sizes were recorded at approximately 750 data points. Inverted annular flow was observed to develop into inverted slug flow at low relative velocities, and into dispersed droplet flow at high relative velocities. For both of the above transitions from inverted annular flow, a correlation for core jet length was developed by extending work done on free liquid jets to include this new, coaxial, jet disintegration phenomenon. The result, showing length dependence upon diameter, jet Reynolds number, jet Weber number, void fraction, and gas Weber number, correlates the data well, especially at moderate-to-large relative velocities.
Radial plasma profile and neutron yield in an adiabatic trap with fast atom injection
International Nuclear Information System (INIS)
Panov, D.A.
1988-01-01
Radial profiles of ion densities depending on two dimensionless parameters, which values are determined by the trap, plasma and injected beam parameters are found in dimensionless units for a plasma generated by fast atom injection in an adiabatic trap. The calculated profiles are used for determining the neutron yield. Simple approximated dimensional relations permitting to estimate quickly neutron yield, required injection power, flux of charge exchange atoms on the wall around the plasma in a wide energy range of injected atoms, trap field modulud, injection angle, trap radius and length are determined. The energetic efficiency of neutron production is estimated and it is shown that it grows with the injection energy. 7 refs.; 7 figs
Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
Arrachea, Liliana; von Oppen, Felix
2015-11-01
The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics.
Reprint of : Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
Arrachea, Liliana; von Oppen, Felix
2016-08-01
The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics.
International Nuclear Information System (INIS)
Berman, G P; Borgonovi, F; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I
2003-01-01
We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of the peaks is correlated with the direction of the average spin (being along or opposite to the direction of the effective magnetic field). This generates two possible outcomes of a single-spin measurement, similar to the Stern-Gerlach effect. We demonstrate that the generation of the second peak can be significantly suppressed by turning on adiabatically the amplitude of the rf magnetic field. We also show that MRFM CAI can be used both for detecting a signal from a single spin, and for measuring the single-spin state by measuring the phase of the cantilever driving oscillations
Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?
Directory of Open Access Journals (Sweden)
H. J. Fahr
2007-01-01
Full Text Available We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.
Helmueller, Shawn C; Poe, Donald P; Kaczmarski, Krzysztof
2018-02-02
An approach to conducting SFC separations under pseudo-adiabatic condition utilizing a dual-zone column heater is described. The heater allows for efficient separations at low pressures above the critical temperature by imposing a temperature profile along the column wall that closely matches that for isenthalpic expansion of the fluid inside the column. As a result, the efficiency loss associated with the formation of radial temperature gradients in this difficult region can be largely avoided in packed analytical scale columns. For elution of n-octadecylbenzene at 60 °C with 5% methanol modifier and a flow rate of 3 mL/min, a 250 × 4.6-mm column packed with 5-micron Kinetex C18 particles began to lose efficiency (8% decrease in the number of theoretical plates) at outlet pressures below 142 bar in a traditional forced air oven. The corresponding outlet pressure for onset of excess efficiency loss was decreased to 121 bar when the column was operated in a commercial HPLC column heater, and to 104 bar in the new dual-zone heater operated in adiabatic mode, with corresponding increases in the retention factor for n-octadecylbenzene from 2.9 to 6.8 and 14, respectively. This approach allows for increased retention and efficient separations of otherwise weakly retained analytes. Applications are described for rapid SFC separation of an alkylbenzene mixture using a pressure ramp, and isobaric separation of a cannabinoid mixture. Copyright © 2018 Elsevier B.V. All rights reserved.
Adiabatic perturbation theory for atoms and molecules in the low-frequency regime
Martiskainen, Hanna; Moiseyev, Nimrod
2017-12-01
There is an increasing interest in the photoinduced dynamics in the low frequency, ω, regime. The multiphoton absorptions by molecules in strong laser fields depend on the polarization of the laser and on the molecular structure. The unique properties of the interaction of atoms and molecules with lasers in the low-frequency regime imply new concepts and directions in strong-field light-matter interactions. Here we represent a perturbational approach for the calculations of the quasi-energy spectrum in the low-frequency regime, which avoids the construction of the Floquet operator with extremely large number of Floquet channels. The zero-order Hamiltonian in our perturbational approach is the adiabatic Hamiltonian where the atoms/molecules are exposed to a dc electric field rather than to ac-field. This is in the spirit of the first step in the Corkum three-step model. The second-order perturbation correction terms are obtained when i ℏ ω ∂/∂ τ serves as a perturbation and τ is a dimensionless variable. The second-order adiabatic perturbation scheme is found to be an excellent approach for calculating the ac-field Floquet solutions in our test case studies of a simple one-dimensional time-periodic model Hamiltonian. It is straightforward to implement the perturbation approach presented here for calculating atomic and molecular energy shifts (positions) due to the interaction with low-frequency ac-fields using high-level electronic structure methods. This is enabled since standard quantum chemistry packages allow the calculations of atomic and molecular energy shifts due to the interaction with dc-fields. In addition to the shift of the energy positions, the energy widths (inverse lifetimes) can be obtained at the same level of theory. These energy shifts are functions of the laser parameters (low frequency, intensity, and polarization).
Partridge, Daniel; Morales, Ricardo; Stier, Philip
2015-04-01
Many previous studies have compared droplet activation parameterisations against adiabatic parcel models (e.g. Ghan et al., 2001). However, these have often involved comparisons for a limited number of parameter combinations based upon certain aerosol regimes. Recent studies (Morales et al., 2014) have used wider ranges when evaluating their parameterisations, however, no study has explored the full possible multi-dimensional parameter space that would be experienced by droplet activations within a global climate model (GCM). It is important to be able to efficiently highlight regions of the entire multi-dimensional parameter space in which we can expect the largest discrepancy between parameterisation and cloud parcel models in order to ascertain which regions simulated by a GCM can be expected to be a less accurate representation of the process of cloud droplet activation. This study provides a new, efficient, inverse modelling framework for comparing droplet activation parameterisations to more complex cloud parcel models. To achieve this we couple a Markov Chain Monte Carlo algorithm (Partridge et al., 2012) to two independent adiabatic cloud parcel models and four droplet activation parameterisations. This framework is computationally faster than employing a brute force Monte Carlo simulation, and allows us to transparently highlight which parameterisation provides the closest representation across all aerosol physiochemical and meteorological environments. The parameterisations are demonstrated to perform well for a large proportion of possible parameter combinations, however, for certain key parameters; most notably the vertical velocity and accumulation mode aerosol concentration, large discrepancies are highlighted. These discrepancies correspond for parameter combinations that result in very high/low simulated values of maximum supersaturation. By identifying parameter interactions or regimes within the multi-dimensional parameter space we hope to guide
Energy Technology Data Exchange (ETDEWEB)
Nelson, Tammie Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tretiak, Sergei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-06
Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atoms in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.
Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?
Directory of Open Access Journals (Sweden)
H. J. Fahr
2008-01-01
Full Text Available We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.
Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.
2012-01-01
This study focuses on second-year university students' explanations and reasoning related to adiabatic compression of an ideal gas. The phenomenon was new to the students, but it was one which they should have been capable of explaining using their previous upper secondary school knowledge. The students' explanations and reasoning were…
Loverude, Michael E.; Kautz, Christian H.; Heron, Paula R. L.
2002-01-01
Reports on an investigation of student understanding of the first law of thermodynamics. Involves students from a first-year university physics course and a second-year thermal physics course. Focuses on the ability of students to relate the first law to the adiabatic physics course. Discusses implications for thermal physics and mechanics…
Bailey, Nicholas P; Bøhling, Lasse; Veldhorst, Arno A; Schrøder, Thomas B; Dyre, Jeppe C
2013-11-14
We derive exact results for the rate of change of thermodynamic quantities, in particular, the configurational specific heat at constant volume, CV, along configurational adiabats (curves of constant excess entropy Sex). Such curves are designated isomorphs for so-called Roskilde liquids, in view of the invariance of various structural and dynamical quantities along them. The slope of the isomorphs in a double logarithmic representation of the density-temperature phase diagram, γ, can be interpreted as one third of an effective inverse power-law potential exponent. We show that in liquids where γ increases (decreases) with density, the contours of CV have smaller (larger) slope than configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctuation formula for the slope of the CV-contours is derived. The theoretical results are supported with data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The sign of dγ∕dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of a dynamical quantity, the self-diffusion coefficient, along adiabats and CV-contours, finding it more invariant along adiabats.
Determination of adiabatic temperature change in MnFe(P,Ge) compounds with pulse-field method
Trung, N.T.; Klaasse, J.C.P.; Tegus, O.; Cam Thanh, D.T.; Buschow, K.H.J.; Brück, E.
2009-01-01
Fast magnetic measurements performed by means of a 20 T pulse-field magnet provide a good approach for directly monitoring the magnetocaloric effect of the MnFe(P,Ge) compounds. Based on the comparison of magnetization curves obtained either in an adiabatic or isothermal process, we propose that the
Adiabatic potential-energy curves of long-range Rydberg molecules: Two-electron R -matrix approach
Czech Academy of Sciences Publication Activity Database
Tarana, Michal; Čurík, Roman
2016-01-01
Roč. 93, č. 1 (2016), 012515 ISSN 0556-2791 R&D Projects: GA ČR(CZ) GP14-15989P Institutional support: RVO:61388955 Keywords : adiabatic-potential-energy curves * Rydberg molecules * theoretical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry
Gonen, S.
2014-01-01
The present study was carried out with 46 teacher candidates taking the course of "Thermodynamics" in the Department of Physics Teaching. The purpose of the study was to determine the difficulties that teacher candidates experienced in explaining the heat, work and internal energy relationships in the processes of adiabatic compression…
DEFF Research Database (Denmark)
Bochenkova, Anastasia; Andersen, Lars Henrik
2013-01-01
The anionic wild-type Green Fluorescent Protein (GFP) chromophore defines the entire class of naturally occurring chromophores, which are based on the oxydized tyrosine side chain. The GFP chromophore exhibits an enriched photoinduced non-adiabatic dynamics in the multiple excited-state decay cha...
Baranowski, M.; Woźniak-Braszak, A.; Jurga, K.
2016-01-01
The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2 MHz and 28.411 MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins 1H are polarized in the magnetic field B0 while fluorine spins 19F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal.
Adiabatic excitation for31P MR spectroscopy in the human heart at 7 T: A feasibility study.
Valkovič, Ladislav; Clarke, William T; Purvis, Lucian A B; Schaller, Benoit; Robson, Matthew D; Rodgers, Christopher T
2017-11-01
Phosphorus magnetic resonance spectroscopy ( 31 P-MRS) provides a unique tool for assessing cardiac energy metabolism, often quantified using the phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio. Surface coils are typically used for excitation for 31 P-MRS, but they create an inhomogeneous excitation field across the myocardium, producing undesirable, spatially varying partial saturation. Therefore, we implemented adiabatic excitation in a 3D chemical shift imaging (CSI) sequence for cardiac 31 P-MRS at 7 Tesla (T). We optimized an adiabatic half passage pulse with bandwidth sufficient to excite PCr and γ-ATP together. In addition, the CSI sequence was modified to allow interleaved excitation of PCr and γ-ATP, then 2,3-DPG, to enable PCr/ATP determination with blood correction. Nine volunteers were scanned at 2 transmit voltages to confirm that measured PCr/ATP was independent of B1+ (i.e. over the adiabatic threshold). Six septal voxels were evaluated for each volunteer. Phantom experiments showed that adiabatic excitation can be reached at the depth of the heart using our pulse. The mean evaluated cardiac PCr/ATP ratio from all 9 volunteers corrected for blood signal was 2.14 ± 0.16. Comparing the two acquisitions with different voltages resulted in a minimal mean difference of -0.005. Adiabatic excitation is possible in the human heart at 7 T, and gives consistent PCr/ATP ratios. Magn Reson Med 78:1667-1673, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Fatouh, M.
2007-01-01
In this paper, a theoretical model is developed to predict the refrigerant flow characteristics in adiabatic capillary tubes using propane/n-butane/iso-butane mixtures as working fluids in a domestic refrigerator. This model is based on the mass, energy and momentum conservation equations for a homogeneous refrigerant flow under different inlet conditions, such as subcooled, saturated and two phase flow. The effects of the inlet pressure (8-16 bar), inlet vapor quality (0.001-15%), inlet subcooling degree (1-15 o C), mass flow rate (1-5 kg/h), propane mass fraction (0.5-0.7), capillary tube inner diameter (0.6-1.0 mm) and the tube surface roughness on the capillary tube length are predicted. The results showed that the present model predicts data that are very close to the available experimental data in the literature with an average error of 2.65%. The pressure of the hydrocarbon mixture (HCM) decreases, while its vapor quality, specific volume and Mach number increase along the capillary tube. Also, the results indicated that the capillary tube length is largely dependent on the capillary tube diameter. Other parameters such as mass flow rate, inlet pressure, subcooling degree (or quality) and relative roughness influence the capillary tube length in that order. The capillary tube length as a function of the significant parameters is presented in equation form. Also, capillary tube selection charts either to predict the mass flow rates of propane/n-butane/iso-butane mixtures through adiabatic capillary tubes or to select the capillary tube size according to the required applications are developed. The comparison between R12, R134a and the hydrocarbon mixture (HCM) of propane/n-butane/iso-butane indicated that for a given mass flow rate, the pressure drop per unit length is about 4.13, 5.0 and 12.0 bar/m for R12, R134a and HCM, respectively. The ratios of the average mass flow rate of the HCM with a propane mass fraction of 0.6 to those of R12 and R134a are about
Coherent state mapping ring polymer molecular dynamics for non-adiabatic quantum propagations
Chowdhury, Sutirtha N.; Huo, Pengfei
2017-12-01
We introduce the coherent-state mapping ring polymer molecular dynamics (CS-RPMD), a new method that accurately describes electronic non-adiabatic dynamics with explicit nuclear quantization. This new approach is derived by using coherent-state mapping representation for the electronic degrees of freedom (DOF) and the ring-polymer path-integral representation for the nuclear DOF. The CS-RPMD Hamiltonian does not contain any inter-bead coupling term in the state-dependent potential and correctly describes electronic Rabi oscillations. A classical equation of motion is used to sample initial configurations and propagate the trajectories from the CS-RPMD Hamiltonian. At the time equivalent to zero, the quantum Boltzmann distribution (QBD) is recovered by reweighting the sampled distribution with an additional phase factor. In a special limit that there is one bead for mapping variables and multiple beads for nuclei, CS-RPMD satisfies detailed balance and preserves an approximate QBD. Numerical tests of this method with a two-state model system show very good agreement with exact quantum results over a broad range of electronic couplings.
Adiabatic sweep pulses for earth's field NMR with a surface coil
Conradi, Mark S.; Altobelli, Stephen A.; Sowko, Nicholas J.; Conradi, Susan H.; Fukushima, Eiichi
2018-03-01
Adiabatic NMR sweep pulses are described for inversion and excitation in very low magnetic fields B0 and with broad distribution of excitation field amplitude B1. Two aspects distinguish the low field case: (1) when B1 is comparable to or greater than B0, the rotating field approximation fails and (2) inversion sweeps cannot extend to values well below the Larmor frequency because they would approach or pass through zero frequency. Three approaches to inversion are described. The first is a conventional tangent frequency sweep down to the Larmor frequency, a 180° phase shift, and a sweep back up to the starting frequency. The other two are combined frequency and amplitude sweeps covering a narrower frequency range; one is a symmetric sweep from above to below the Larmor frequency and the other uses a smooth decrease of B1 immediately before and after the 180° phase shift. These two AM/FM sweeps show excellent inversion efficiencies over a wide range of B1, a factor of 30 or more. We also demonstrate an excitation sweep that works well in the presence of the same wide range of B1. We show that the primary effect of the counter-rotating field (i.e., at low B0) is that the magnetization suffers large, periodic deviations from where it would be at large B0. Thus, successful sweep pulses must avoid any sharp features in the amplitude, phase, or frequency.
Hollenberg, Sebastian; Päs, Heinrich
2012-01-01
The standard wave function approach for the treatment of neutrino oscillations fails in situations where quantum ensembles at a finite temperature with or without an interacting background plasma are encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to both adiabatic and nonadiabatic two-flavor oscillations in neutrino ensembles with finite temperature and generic (e.g., matter) potentials. Neglecting effects of ensemble decoherence for now, we study the evolution of a neutrino ensemble governed by the associated quantum kinetic equations, which apply to systems with finite temperature. The quantum kinetic equations are solved formally using the Magnus expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g., the interaction picture) reveals suitable parameters to characterize the physics of the underlying system (e.g., an effective oscillation length). It is understood that this method also provides a promising starting point for the treatment of the more general case in which decoherence is taken into account.
Directory of Open Access Journals (Sweden)
B. Cárdenas
2017-06-01
Full Text Available Compressed air energy storage is an energy storage technology with strong potential to play a significant role in balancing energy on transmission networks, owing to its use of mature technologies and low cost per unit of storage capacity. Adiabatic compressed air energy storage (A-CAES systems typically compress air from ambient temperature in the charge phase and expand the air back to ambient temperature in the discharge phase. This papers explores the use of an innovative operating scheme for an A-CAES system aimed at lowering the total cost of the system for a given exergy storage capacity. The configuration proposed considers preheating of the air before compression which increases the fraction of the total exergy that is stored in the form of high-grade heat in comparison to existing designs in which the main exergy storage medium is the compressed air itself. Storing a high fraction of the total exergy as heat allows reducing the capacity of costly pressure stores in the system and replacing it with cheaper thermal energy stores. Additionally, a configuration that integrates a system based on the aforementioned concept with solar thermal power or low-medium grade waste heat is introduced and thoroughly discussed.
Hamiltonian term for a uniform dc electric field under the adiabatic approximation
Siu, Zhuo Bin; Jalil, Mansoor B. A.; Tan, Seng Ghee
2018-02-01
In this work, we show that the disorder-free Kubo formula for the nonequilibrium value of an observable due to a dc electric field, represented by Exx ̂ in the Hamiltonian, can be interpreted as the standard time-independent theory response of the observable due to a time- and position-independent perturbation HMF. We derive the explicit expression for HMF and show that it originates from the adiabatic approximation to expression for HMF is generalized beyond the real spin degree of freedom to include other spinlike discrete degrees of freedom (e.g., valley and pseudospin). By direct comparison between Kubo formula and the time-independent perturbation theory, as well as the Sundaram-Niu wave-packet formalism, we show that HMF reproduces the effect of the E field, i.e., Exx ̂ , up to the first order. This replacement suggests the emergence of a spin current term that is not captured by the standard Kubo formula spin current calculation. We illustrate this via the exemplary spin current for the heavy-hole spin-3/2 Luttinger system.
Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor
International Nuclear Information System (INIS)
Saadi, Y.; Maamache, M.
2012-01-01
We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. -- Highlights: ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.
Density and adiabatic compressibility of the immiscible molten AgBr+LiCl mixture
Energy Technology Data Exchange (ETDEWEB)
Stepanov, Victor P. [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry; Ural Federal Univ., Yekaterinburg (Russian Federation); Kulik, Nina P. [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry
2017-07-01
The adiabatic compressibility, β, of the immiscible liquid mixture 0.52 LiCl+0.48 AgBr (the top of the miscibility gap) was experimentally investigated in the temperature range from the melting point to the critical mixing temperature using the sound velocity values, u, measured by the pulse method, and the density quantities, ρ, which were determined using the hydrostatic weight procedure based on the relationship β = u{sup -2}ρ{sup -1}. It is shown that the coefficients of the temperature dependencies for the compressibility and density of the upper and lower equilibrium phases have opposite signs because of the superposition of the intensity of the thermal motion of the ions and the change in the composition of the phases. The differences, Δβ and Δρ, in the magnitudes of the compressibility and density for the equilibrium phases decrease with temperature elevation. The temperature dependencies of the compressibility and density difference are described using the empirical equations Δβ ∼ (T{sub c}-T){sup 0.438} and Δρ ∼ (T{sub c}-T){sup 0.439}.
A microstructural investigation of adiabatic shear bands in an interstitial free steel
Energy Technology Data Exchange (ETDEWEB)
Lins, J.F.C. [Programa de Pos-graduacao em Engenharia Metalurgica, Escola de Engenharia Industrial Metalurgica de Volta Redonda, Universidade Federal Fluminense, Volta Redonda 27255-125 (Brazil)], E-mail: jfclins@metal.eeimvr.uff.br; Sandim, H.R.Z. [Departamento de Engenharia de Materiais, Escola de Engenharia de Lorena, Universidade de Sao Paulo, Lorena 12600-970 (Brazil); Kestenbach, H.-J. [Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos, Sao Carlos 13565-905 (Brazil); Raabe, D. [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Strasse 1, Duesseldorf 40237 (Germany); Vecchio, K.S. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411 (United States)
2007-05-25
We report the microstructural characterization of induced adiabatic shear bands (ASB) in a hot-rolled interstitial free (IF) steel deformed at high strain rates (>2.8 x 10{sup 4} s{sup -1}) in a split Hopkinson bar under controlled conditions at -50 and 25 deg. C. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) were used to reveal the degree of subdivision within ASB and neighboring grains. Deformation twins were found in adjacent grains suggesting that twinning occurs before the flow associated to shear banding. Progressive subgrain misorientation (PriSM) recrystallization is a plausible mechanism to explain the development of a new structure consisting of weakly textured ultrafine grains (0.1-0.5 {mu}m) within the ASB. Recrystallization is proposed to occur by the formation and mechanical rotation of subgrains during deformation, coupled with boundary refinement via diffusion during shear band cooling. The presence of elongated subgrains and grains perfectly aligned within regions resembling a former lamellar structure within bands supports the occurrence of such a mechanism.
Quantum-classical dynamics of scattering processes in adiabatic and diabatic representations
International Nuclear Information System (INIS)
Puzari, Panchanan; Sarkar, Biplab; Adhikari, Satrajit
2004-01-01
We demonstrate the workability of a TDDVR based [J. Chem. Phys. 118, 5302 (2003)], novel quantum-classical approach, for simulating scattering processes on a quasi-Jahn-Teller model [J. Chem. Phys. 105, 9141 (1996)] surface. The formulation introduces a set of DVR grid points defined by the Hermite part of the basis set in each dimension and allows the movement of grid points around the central trajectory. With enough trajectories (grid points), the method converges to the exact quantum formulation whereas with only one grid point, we recover the conventional molecular dynamics approach. The time-dependent Schroedinger equation and classical equations of motion are solved self-consistently and electronic transitions are allowed anywhere in the configuration space among any number of coupled states. Quantum-classical calculations are performed on diabatic surfaces (two and three) to reveal the effects of symmetry on inelastic and reactive state-to-state transition probabilities, along with calculations on an adiabatic surface with ordinary Born-Oppenheimer approximation. Excellent agreement between TDDVR and DVR results is obtained in both the representations
Asymptotic analysis of stationary adiabatic premixed flames in porous inert media
Energy Technology Data Exchange (ETDEWEB)
Pereira, Fernando M.; Oliveira, Amir A.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Fachini, Fernando F. [Instituto Nacional de Pesquisas Espaciais, 12630-000 Cachoeira Paulista, SP (Brazil)
2009-01-15
The structure of adiabatic premixed flames within porous inert media is investigated using the asymptotic expansion method. For this, the flame structure is divided into three characteristic length scales. The two innermost length scales, the gas-phase diffusion length scale and the reaction length scale, are the same scales defined in the classical premixed flame structure analysis. The outermost length scale, the solid-phase diffusion length scale, is related to the heat conduction in the porous matrix. The differences among these three characteristic length-scales result in large temperature differences between the phases and justify the application of asymptotic expansions to determine an approximate (analytical) solution. Since the main focus of this work is the examination of the processes in the outer and the first inner regions, the simplest kinetic mechanism of one global step is adopted to represent the fuel and oxygen consumption. Then, the description of the reaction zone is obtained using the large activation energy asymptotic method. The description of the problem of the order of the gas-phase length scale is obtained using the boundary layer expansion. This work evaluates the influence of the equivalence ratio, the ratio of the solid to the gas thermal conductivities, the porosity of the medium and the fuel Lewis number on such flames. A parameter that universalizes the flame properties is then identified and discussed. (author)
Asymptotic analysis of stationary adiabatic premixed flames in porous inert media
Energy Technology Data Exchange (ETDEWEB)
Pereira, Fernando M.; Oliveira, Amir A.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Fachini, Fernando F. [Instituto Nacional de Pesquisas Espaciais, 12630-000 Cachoeira Paulista, SP (Brazil)
2008-11-15
The structure of adiabatic premixed flames within porous inert media is investigated using the asymptotic expansion method. For this, the flame structure is divided into three characteristic length scales. The two innermost length scales, the gas-phase diffusion length scale and the reaction length scale, are the same scales defined in the classical premixed flame structure analysis. The outermost length scale, the solid-phase diffusion length scale, is related to the heat conduction in the porous matrix. The differences among these three characteristic length-scales result in large temperature differences between the phases and justify the application of asymptotic expansions to determine an approximate (analytical) solution. Since the main focus of this work is the examination of the processes in the outer and the first inner regions, the simplest kinetic mechanism of one global step is adopted to represent the fuel and oxygen consumption. Then, the description of the reaction zone is obtained using the large activation energy asymptotic method. The description of the problem of the order of the gas-phase length scale is obtained using the boundary layer expansion. This work evaluates the influence of the equivalence ratio, the ratio of the solid to the gas thermal conductivities, the porosity of the medium and the fuel Lewis number on such flames. A parameter that universalizes the flame properties is then identified and discussed. (author)
Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms
Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor
2017-12-01
Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.
Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion
International Nuclear Information System (INIS)
Nash, Thomas J.
2000-01-01
The magnetic implosion of a high-Z quasi-spherical shell filled with DT fuel by the 20-MA Z accelerator can heat the fuel to near-ignition temperature. The attainable implosion velocity on Z, 13-cm/micros, is fast enough that thermal losses from the fuel to the shell are small. The high-Z shell traps radiation losses from the fuel, and the fuel reaches a high enough density to reabsorb the trapped radiation. The implosion is then nearly adiabatic. In this case the temperature of the fuel increases as the square of the convergence. The initial temperature of the fuel is set by the heating of an ion acoustic wave to be about 200-eV after a convergence of 4. To reach the ignition temperature of 5-keV an additional convergence of 5 is required. The implosion dynamics of the quasi-spherical implosion is modeled with the 2-D radiation hydrodynamic code LASNEX. LASNEX shows an 8-mm diameter quasi-spherical tungsten shell on Z driving 6-atmospheres of DT fuel nearly to ignition at 3.5-keV with a convergence of 20. The convergence is limited by mass flow along the surface of the quasi-spherical shell. With a convergence of 20 the final spot size is 400-microm in diameter
Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola
2017-10-31
A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor
Energy Technology Data Exchange (ETDEWEB)
Saadi, Y., E-mail: S_yahiadz@yahoo.fr [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria); Maamache, M. [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria)
2012-03-19
We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. -- Highlights: ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.
International Nuclear Information System (INIS)
Zabotin, N.A.; Nasel'skii, P.D.
1985-01-01
Primordial carriers of missing mass in the universe, such as finite-mass neutrinos, heavy (m/sub L/> or approx. =1 GeV) neutral leptons, or black holes, may have contributed to the evolution of pregalactic adiabatic irregularities during the cosmological era of hydrogen recombination. Equations previously derived by the authors are applied to a three-component (baryons, radiation, heavy but weakly interacting particles) model medium; dissipative effects are analyzed numerically, and the plasma velocity field is calculated at the epoch of decoupling. In a model with three massive-neutrino species (ν/sub e/, ν/sub μ/, ν/sub tau/) of equal mass (roughly-equal30 eV) and thermodynamic number density, the perturbations in the plasma density when the redshift zroughly-equal10 3 would amount to 0.1% at most. If instead the gravitating-particle background consists of stable heavy leptons or primordial black holes, the maximum density contrast will be an order of magnitude lower. The gravitation of any density fluctuations in the ordinary collisional matter during the recombination and post-recombination eras will serve to modulate the amplitude of the small-scale part of the spectrum of inhomogeneities occurring in a background of massive neutrinos
Mokdad, S; Georgin, E; Hermier, Y; Sparasci, F; Himbert, M
2012-07-01
Progress in the knowledge of the water saturation curve is required to improve the accuracy of the calibrations in humidity. In order to achieve this objective, the LNE-CETIAT and the LNE-CNAM have jointly built a facility dedicated to the measurement of the saturation vapor pressure and temperature of pure water. The principle is based on a static measurement of the pressure and the temperature of pure water in a closed, temperature-controlled thermostat, conceived like a quasi-adiabatic calorimeter. A copper cell containing pure water is placed inside a temperature-controlled copper shield, which is mounted in a vacuum-tight stainless steel vessel immersed in a thermostated bath. The temperature of the cell is measured with capsule-type standard platinum resistance thermometers, calibrated with uncertainties below the millikelvin. The vapor pressure is measured by calibrated pressure sensors connected to the cell through a pressure tube whose temperature is monitored at several points. The pressure gauges are installed in a thermostatic apparatus ensuring high stability of the pressure measurement and avoiding any condensation in the tubes. Thanks to the employment of several technical solutions, the thermal contribution to the overall uncertainty budget is reduced, and the remaining major part is mainly due to pressure measurements. This paper presents a full description of this facility and the preliminary results obtained for its characterization.
Radial acceleration of ions during adiabatic expansion of a multicomponent cylindrical plasma
Kovalev, V. F.; Bochkarev, S. G.; Bychenkov, V. Yu.
2017-12-01
The methods of modern group analysis allow an analytic solution of the Cauchy problem to be constructed for the system of kinetic equations for a fully ionised electron – ion plasma, describing the acceleration of ions during the adiabatic expansion of a cylindrical plasma. Time and spatial dependences of the distribution functions of particles are obtained and their integral characteristics, such as density, average velocity, temperature, and energy spectrum, are found. The formation of the energy spectrum of accelerated ions, asymptotically repeating the spatial distribution of their density, and the cooling of electrons in the process of ion acceleration are analytically described. Particular attention is paid to the investigation of the influence of the heavy ionic component on the dynamics of the light component. The features of ion acceleration in the case of a two-temperature electron distribution function that describes the presence of hot and cold electron components are studied, which corresponds to the typical conditions of the experiment on plasma heating by intense laser radiation.
An experimental study of two-phase natural circulation in an adiabatic flow loop
International Nuclear Information System (INIS)
Tan, M.J.; Lambert, G.A.; Ishii, Mamoru.
1988-01-01
An experimental investigation was conducted to study the two-phase flow aspect of the phenomena of interruption and resumption of natural circulation, two-phase flow patterns and pattern transitions in the hot legs of B and W light water reactor systems. The test facility was a scaled adiabatic loop designed in accordance with the scaling criteria developed by Kocamustafaogullari and Ishii. The diameter and the height of the hot leg were 10 cm and 5.5 m, respectively; the working fluid pair was nitrogen-water. The effects of the thermal center in the steam generators, friction loss in the cold leg, and configuration of the inlet to the hot leg on the flow conditions in the hot leg were investigated by varying the water level in a gas separator, controlling the size of opening of a friction loss control valve, and using two inlet geometries. Methods for estimating the distribution parameter and the average drift velocity are proposed so that they may be used in the application of one-dimensional drift-flux model to the analysis of the interruption and resumption of natural circulation in a similar geometry. 7 refs., 17 figs., 4 tabs
Morishita, Toru; Tolstikhin, Oleg I.
2017-11-01
We present a comprehensive treatise on the derivation of the factorization formula describing strong-field photoelectron momentum distributions near the outermost backward rescattering caustic within the adiabatic theory and its validation by calculations. The formula derived holds for ionization by linearly polarized laser pulses of sufficiently low frequency and becomes exact as the frequency tends to zero for a fixed pulse amplitude. The convergence of the results obtained from the formula to accurate photoelectron momentum distributions obtained by solving the time-dependent Schrödinger equation is demonstrated. The formula is shown to work quantitatively in both tunneling and over-the-barrier regimes of ionization for finite-range potentials as well as potentials with a Coulomb tail. This paves the way for future applications of the present theory in strong-field physics. In particular, the explicit analytical form of the returning photoelectron wave packet given here enables one to extract differential cross sections for elastic scattering of a photoelectron on the parent ion from experimental photoelectron momentum distributions.
Wasekar, Nitin P.; Haridoss, Prathap; Sundararajan, G.
2018-02-01
The primary objective of the present study is to investigate the influence of nanocrystalline grain size on the solid particle erosion behavior of nickel. For the above purpose, 450- μm-thick nanocrystalline Ni coatings having the average grain sizes of 21, 42, 70, and 195 nm were obtained using pulsed electrodeposition (PED). All these samples along with bulk annealed Ni samples (43 μm grain size) were subjected to solid particle erosion using SiO2 particles as an erodent at a constant impact velocity of 45 m/s and two impact angles (30 and 90 deg). Erosion results indicate that bulk Ni and PED Ni coatings of grain sizes 195 and 70 nm exhibit the same erosion rate, while PED Ni coatings of 42 and 21 nm grain size exhibit marginally higher erosion rates with a clear trend of increasing erosion rate with decreasing grain size. It was also observed that the higher erosion rates exhibited by 21- and 42-nm-grain size PED Ni samples were associated with the formation of adiabatic shear bands (ASBs) originating from the eroded surface and propagating into the eroded sample. The experimental observations have been understood on the basis of a transition from a localization model for erosion for coarse-grained Ni (> 70 nm) to an ASB-induced erosion model for grain sizes less than 70 nm.
Flow regimes of adiabatic gas-liquid two-phase under rolling conditions
Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui
2013-07-01
Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.
De Grandi, C.; Polkovnikov, A.
Dynamics in closed systems recently attracted a lot of theoretical interest largely following experimental developments in cold atom systems (see e.g., [1] for a review). Several spectacular experiments already explored different aspects of non-equilibrium dynamics in interacting many-particle systems [2-8]. Recent theoretical works in this context focused on various topics, for instance: connection of dynamics and thermodynamics [9-11 M. Rigol, unpublished], dynamics following a sudden quench in low dimensional systems [11-23, L. Mathey and A. Polkovnikov, unpublished; A. Iucci and M.A. Cazalilla,unpublished], adiabatic dynamics near quantum critical points [24-37, D. Chowdhury et al., unpublished; K. Sengupta and D. Sen, unpublished; A.P. Itin and P. Törmä, unpublished; F. Pollmann et al., unpublished] and others. Though there is still very limited understanding of the generic aspects of non-equilibrium quantum dynamics, it has been recognized that such issues as integrability, dimensionality, universality (near critical points) can be explored to understand the non-equilibrium behavior of many-particle systems in various specific situations.
Applications of the adiabatic-expansion method to selected problems in atomic and molecular physics
International Nuclear Information System (INIS)
Georgian, T.
1986-01-01
Rydberg states of atoms and molecules are of immense importance today in basic spectroscopic and collisional studies of long-range interactions, including investigations of fundamental problems concerning quantum electrodynamics; in the study of strong external field effects on atomic and molecular systems, with particular emphasis being placed on transitions to chaos in the regime where the external field strength becomes comparable to the Coulomb field strength; and in the development of ultra short-wavelength lasers and frequency up-converters. This listing could obviously be extended, and serves only to exemplify the breadth of those research areas concerned with the nature of Rydberg states. In order to provide effective designs of ultra short-wavelength lasers, example, one must understand the interaction between Rydberg states and valence states, since the latter can provide efficient nonradiative de-excitation pathways. At present, however, Rydberg states and valence states are treated by disparate theoretical schemes, namely, the quantum defect method (QDM) and the quantum chemistry method (QCM), respectively. In order to study Rydberg/valence mixing, both types of states must be described within the same theoretical ansatz. A novel theoretical treatment is presented, based on an electronic adiabatic separation which unifies the QDM with QCM
Second law analysis of water flow through smooth microtubes under adiabatic conditions
Energy Technology Data Exchange (ETDEWEB)
Parlak, Nezaket; Guer, Mesut; Ari, Vedat; Kuecuek, Hasan; Engin, Tahsin [The University of Sakarya, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, 54187 Sakarya (Turkey)
2011-01-15
In the study, a second law analysis for a steady-laminar flow of water in adiabatic microtubes has been conducted. Smooth microtubes with the diameters between 50 and 150 {mu}m made of fused silica were used in the experiments. Considerable temperature rises due to viscous dissipation and relatively high pressure losses of flow were observed in experiments. To identify irreversibility of flow, rate of entropy generation from the experiments have been determined in the laminar flow range of Re = 20-2200. The second law of thermodynamics was applied to predict the entropy generation. The results of model taken from the literature, proposed to predict the temperature rise caused by viscous heating, correspond well with the experimental data. The second law analysis results showed that the flow characteristics in the smooth microtubes distinguish substantially from the conventional theory for flow in the larger tubes with respect to viscous heating/dissipation (temperature rise of flow) total entropy generation rate and lost work. (author)
Tkatchenko, Alexandre; Ambrosetti, Alberto; DiStasio, Robert A.
2013-02-01
Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on ad hoc assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuation-dissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula upon invoking the random-phase approximation (RPA) or the full-potential approximation. Moreover, for a system of quantum harmonic oscillators coupled through a dipole-dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFD-RPA correlation energy. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula, we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy.
Discrete Bose-Einstein systems in a box with low adiabatic invariant
International Nuclear Information System (INIS)
Vlad, V.I.; Ionescu-Pallas, N.
2002-03-01
The Bose-Einstein energy spectrum of a quantum gas, confined in a (cubic) box, is discrete and strongly dependent on the box geometry and temperature, for low product of the atomic mass number, A at and the adiabatic invariant, TV 2/3 , i.e. on γ=A at TV 2/3 . Even within the approximation of noninteracting particles in the gas, the calculation of the thermodynamic properties of Bose-Einstein systems turns out to be a difficult mathematical problem. It is solved in the textbooks and most papers by approximating the sums by integrals. The present study compares the total number of particles and the total energy obtained by summing up the exact contributions of the eigenvalues and their weights, for defined values of γ, to the results of the approximate integrals. Then, the passage from sums to integrals is done in a more rigorous manner and better analytical approximations are found. The corrected thermodynamic functions depend on γ. The critical temperature is corrected also in order to describe more accurately the discrete Bose-Einstein systems and their onset of the phase transition. (author)
Directory of Open Access Journals (Sweden)
Dong Xinlong
2015-01-01
Full Text Available The adiabatic shear bands (ASB of the tubular metal specimens expanded explosively have been studied by many researchers in the recent years. The onset and evolutions of the multiple shear failure of metal cylinder under explosive loadings are affected by many factors such as the characteristics of the impulsive loadings, the dynamic behavior of the materials, etc. In this work, we investigate the failure and fragmentation of 45# steel cylinder shell driven by the JOB9003 explosive. Experimental and FEM numerical simulation investigations are made for cylinder modeled shell. The results show that for the perfect homogeneous FEM model, the failure mechanism of cylinder shell is differs from that of the experiments, in which the spalling originates is oriented by high intensity of rarefaction wave. Through numerical experiments, it was found that distributed geometrical defects of cylinder shell affect the fragmentation process and mechanism, in which the strain localization controlled by the defects and shear bands initiate on the inter-surface of the cylinder shell.
Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch
Kaldewey, Timo; Kuhlmann, Andreas V.; Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D.; Warburton, Richard J.
2018-02-01
The diffraction limit prevents a conventional optical microscope from imaging at the nanoscale. However, nanoscale imaging of molecules is possible by exploiting an intensity-dependent molecular switch1-3. This switch is translated into a microscopy scheme, stimulated emission depletion microscopy4-7. Variants on this scheme exist3,8-13, yet all exploit an incoherent response to the lasers. We present a scheme that relies on a coherent response to a laser. Quantum control of a two-level system proceeds via rapid adiabatic passage, an ideal molecular switch. We implement this scheme on an ensemble of quantum dots. Each quantum dot results in a bright spot in the image with extent down to 30 nm (λ/31). There is no significant loss of intensity with respect to confocal microscopy, resulting in a factor of 10 improvement in emitter position determination. The experiments establish rapid adiabatic passage as a versatile tool in the super-resolution toolbox.
International Nuclear Information System (INIS)
Ohlsson, D.
1978-08-01
Previous stability theories concerning electrostatic current and magnetic curvature driven modes in cold plasma mantle boundary layers are generalized. In particular the commonly used adiabatic approximation is relaxed. In the general theory presented important new effects associated with heat conduction, ionization and ohmic heating are found. In combination with viscosity and resistivity these effects introduce additional stabilizing as well as destabilizing effects. Furthermore the present theory typically predicts similar stability properties as the adiabatic theory in the limit |d(1nT)/d(1nn)| >1 the general theory predicts less favourable stability properties. One may speculate that these conclusions also apply to more general types of electrostatic modes associated with density and temperature gradients in cold plasma mantel boundary layers. (author)
Study of doubly excited states of H- and He in the coupled-channel hypersperical adiabatic approach
International Nuclear Information System (INIS)
Abrashkevich, A.G.; Abrashkevich, D.G.; Vinitskij, S.I.; Kaschiev, M.S.; Puzynin, I.V.
1989-01-01
Doubly excited states (DES) of H - and He are investigated within the coupled-channel hyperspherical adiabatic (HSA) approach. Influence of the angular and radial electron correlations on the rate of convergence of the values of the potential curves and matrix elements of radial coupling is studied numerically. The scheme based on molecular classification of the HSA basis states is used for the classification of DES. The results of the multichannel calculations of 1 S e and 1 P 0 DES of H - and He below the second threshold are presented. The obtained results are compared with other calculations and experiment. The region of applicability of the adiabatic approximation is discussed. 75 refs.; 10 tabs
DEFF Research Database (Denmark)
Denisov, S.; Flach, S.; Ovchinnikov, A. A.
2002-01-01
We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response is em...... is employed to explain the effect. We consider a case of a particle in a periodic potential as an example and discuss the relevant symmetry breakings and the mechanisms of rectification of the current in such a system.......We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response...
Mortensen, Henrik Lund; Sørensen, Jens Jakob W. H.; Mølmer, Klaus; Sherson, Jacob Friis
2018-02-01
We propose an efficient strategy to find optimal control functions for state-to-state quantum control problems. Our procedure first chooses an input state trajectory, that can realize the desired transformation by adiabatic variation of the system Hamiltonian. The shortcut-to-adiabaticity formalism then provides a control Hamiltonian that realizes the reference trajectory exactly but on a finite time scale. As the final state is achieved with certainty, we define a cost functional that incorporates the resource requirements and a perturbative expression for robustness. We optimize this functional by systematically varying the reference trajectory. We demonstrate the method by application to population transfer in a laser driven three-level Λ-system, where we find solutions that are fast and robust against perturbations while maintaining a low peak laser power.
High-Q AlAs/GaAs adiabatic micropillar cavities with submicron diameters for cQED experiments
DEFF Research Database (Denmark)
Lermer, M.; Gregersen, Niels; Dunzer, F.
microcavity design [1, 2]. To overcome the trade-off between high Q and low Vmode, we designed and implemented a novel adiabatic AlAs/GaAs cavity design (MC1) with 3 taper segments (Fig. 1 (a)) as it was suggested by Zhang et al. for SiO2/TiO2 micropillar cavities [3]. Comparative measurements of the Q factor...