Li, Dafa
2016-05-01
The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.
Thermoelectric Effects under Adiabatic Conditions
Directory of Open Access Journals (Sweden)
George Levy
2013-10-01
Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.
Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition
Institute of Scientific and Technical Information of China (English)
QIAN Shang-Wu; GU Zhi-Yu
2005-01-01
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the generaltime-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.
Sufficient Condition for Validity of Quantum Adiabatic Theorem
Institute of Scientific and Technical Information of China (English)
TAO Yong
2012-01-01
In this paper, we attempt to give a sufficient condition of guaranteeing the validity of the proof of the quantum adiabatic theorem. The new sufficient condition can clearly remove the inconsistency and the counterexample of the quantum adiabatic theorem pointed out by Marzlin and Sanders [Phys. Rev. Lett. 93 （2004） 160408].
A Solved Model to Show Insufficiency of Quantitative Adiabatic Condition
Institute of Scientific and Technical Information of China (English)
LIU Long-Jiang; LIU Yu-Zhen; TONG Dian-Min
2009-01-01
The adiabatic theorem is a useful tool in processing quantum systems slowly evolving,but its practical application depends on the quantitative condition expressed by Hamiltonian's eigenvalues and eigenstates,which is usually taken as a sufficient condition.Recently,the sumciency of the condition was questioned,and several counterex amples have been reported.Here we present a new solved model to show the insufficiency of the traditional quantitative adiabatic condition.
Global adiabaticity and non-Gaussianity consistency condition
Romano, Antonio Enea; Sasaki, Misao
2016-01-01
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, $R_c$, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of $R_c$ holds only after the perturbation has reached the adiabatic limit where the constant mode of $R_c$ dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, $\\delta P_{nad}\\equiv\\delta P-c_w^2\\delta\\rho$ where $c_w^2=\\dot P/\\dot\\rho$, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of $R_c$ on super-horizon scales. In this paper, we consider models that satisfies $\\d...
Global adiabaticity and non-Gaussianity consistency condition
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-10-01
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad ≡ δP - cw2 δρ where cw2 = P ˙ / ρ ˙ , usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad = 0 on all scales, which we call global adiabaticity (GA), which is guaranteed if cw2 = cs2 , where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR) inflation in which cw2 = cs2 = 1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2 = cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.
Global adiabaticity and non-Gaussianity consistency condition
Directory of Open Access Journals (Sweden)
Antonio Enea Romano
2016-10-01
Full Text Available In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad≡δP−cw2δρ where cw2=P˙/ρ˙, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad=0 on all scales, which we call global adiabaticity (GA, which is guaranteed if cw2=cs2, where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR inflation in which cw2=cs2=1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2=cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.
General background conditions for K-bounce and adiabaticity
Romano, Antonio Enea
2016-01-01
We study the background conditions for a bounce in a single scalar field model with a generalized kinetic term $K(X)$. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter $H$ changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for $K(X)$ and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic $K$, and the other on a $K$ which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces. In models where the bounce occurs when the potential is not constant, large non adiabatic perturbations are produced, which can in turn source the growth of anisotropies. In the region where these models have a constant potential they became adiabatic on any scale and because of thi...
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Analysis of interference in attosecond transient absorption in adiabatic condition
Dong, Wenpu; Wang, Xiaowei; Zhao, Zengxiu
2015-01-01
We simulate the transient absorption of attosecond pulses of infrared laser-dressed atoms by considering a three-level system with the adiabatic approximation. We study the delay-dependent interference features in the transient absorption spectra of helium atoms from the perspective of the coherent interaction processes between the attosecond pulse and the quasi-harmonics, and find that many features of the interference fringes in the absorption spectra of the attosecond pulse can be attributed to the coherence phase difference. And the modulation signals of laser-induced sidebands of the dark state is found related to the dark state with population modulated by the dressing field.
Adiabatic evolution of 1D shape resonances: an artificial interface conditions approach
Faraj, Ali; Nier, Francis
2010-01-01
Artificial interface conditions parametrized by a complex number $\\theta_{0}$ are introduced for 1D-Schr{\\"o}dinger operators. When this complex parameter equals the parameter $\\theta\\in i\\R$ of the complex deformation which unveils the shape resonances, the Hamiltonian becomes dissipative. This makes possible an adiabatic theory for the time evolution of resonant states for arbitrarily large time scales. The effect of the artificial interface conditions on the important stationary quantities involved in quantum transport models is also checked to be as small as wanted, in the polynomial scale $(h^N)_{N\\in \\N}$ as $h\\to 0$, according to $\\theta_{0}$.
Geleyn, Jean-François
2014-01-01
Adiabatic lapse rates $\\Gamma_{ns}$ and $\\Gamma_{sw}$ are derived in Marquet and Geleyn (2013) for non-saturated ($\\Gamma_{ns}$) or saturated ($\\Gamma_{sw}$) parcel of moist-air. They are computed in terms of the vertical derivative of the moist-air entropy potential temperature $\\theta_s$ defined in Marquet (2011). The saturated value $\\Gamma_{sw}$ is rewritten in this note so that a more compact formulation is obtained. The new formulation for $\\Gamma_{sw}$ is expressed in term of a weighting factor $C$. This factor may represent the proportion of an air parcel being in saturated conditions.
Dark energy with non-adiabatic sound speed: initial conditions and detectability
Energy Technology Data Exchange (ETDEWEB)
Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche ' ' Enrico Fermi' ' , Piazza del Viminale 1, I-00184, Rome (Italy); Lesgourgues, Julien, E-mail: ballesteros@pd.infn.it, E-mail: julien.lesgourgues@cern.ch [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland)
2010-10-01
Assuming that the universe contains a dark energy fluid with a constant linear equation of state and a constant sound speed, we study the prospects of detecting dark energy perturbations using CMB data from Planck, cross-correlated with galaxy distribution maps from a survey like LSST. We update previous estimates by carrying a full exploration of the mock data likelihood for key fiducial models. We find that it will only be possible to exclude values of the sound speed very close to zero, while Planck data alone is not powerful enough for achieving any detection, even with lensing extraction. We also discuss the issue of initial conditions for dark energy perturbations in the radiation and matter epochs, generalizing the usual adiabatic conditions to include the sound speed effect. However, for most purposes, the existence of attractor solutions renders the perturbation evolution nearly independent of these initial conditions.
Cosmological Simulations with Scale-Free Initial Conditions; 1, Adiabatic Hydrodynamics
Owen, J M; Evrard, A E; Hernquist, L E; Katz, N; Weinberg, David H.; Evrard, August E.; Hernquist, Lars; Katz, Neal
1997-01-01
We analyze hierarchical structure formation based on scale-free initial conditions in an Einstein-de Sitter universe, including a baryonic component. We present three independent, smoothed particle hydrodynamics (SPH) simulations, performed with two different SPH codes (TreeSPH and P3MSPH) at two resolutions. Each simulation is based upon identical initial conditions, which consist of Gaussian distributed initial density fluctuations that have an n=-1 power spectrum. The baryonic material is modeled as an ideal gas subject only to shock heating and adiabatic heating and cooling. The evolution is expected to be self-similar in time, and under certain restrictions we identify the expected scalings for many properties of the distribution of collapsed objects in all three realizations. The distributions of dark matter masses, baryon masses, and mass and emission weighted temperatures scale quite reliably. However, the density estimates in the central regions of these structures are determined by the degree of num...
Non-adiabatic radiative collapse of a relativistic star under different initial conditions
Indian Academy of Sciences (India)
Ranjan Sharma; Ramesh Tikekar
2012-09-01
We examine the role of space-time geometry in the non-adiabatic collapse of a star dissipating energy in the form of radial heat flow, studying its evolution under different initial conditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with inhomogeneous imperfect fluid under anisotropic pressure. Both the configurations are spherically symmetric. However, in the latter case, the physical space = constant of the configurations endowed with spheroidal or pseudospheroidal geometry is assumed to be inhomogeneous. It is observed that as long as the collapse is shear-free, its evolution depends only on the mass and size of the star at the onset of collapse.
Coïsson, M.; Barrera, G.; Celegato, F.; Martino, L.; Vinai, F.; Martino, P.; Ferraro, G.; Tiberto, P.
2016-10-01
An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained.
Flow regimes of adiabatic gas-liquid two-phase under rolling conditions
Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui
2013-07-01
Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.
Paranjape, Sidharth; Ritchey, Susan N; Garimella, S V
2012-01-01
Electrical impedance of a two-phase mixture is a function of void fraction and phase distribution. The difference in the specific electrical conductance and permittivity of the two phases is exploited to measure electrical impedance for obtaining void fraction and flow regime characteristics. An electrical impedance meter is constructed for the measurement of void fraction in microchannel two-phase flow. The experiments are conducted in air–water two-phase flow under adiabatic conditions. A t...
Harman Measurements for Thermoelectric Materials and Modules under Non-Adiabatic Conditions
Roh, Im-Jun; Lee, Yun Goo; Kang, Min-Su; Lee, Jae-Uk; Baek, Seung-Hyub; Kim, Seong Keun; Ju, Byeong-Kwon; Hyun, Dow-Bin; Kim, Jin-Sang; Kwon, Beomjin
2016-12-01
Accuracy of the Harman measurement largely depends on the heat transfer between the sample and its surroundings, so-called parasitic thermal effects (PTEs). Similar to the material evaluations, measuring thermoelectric modules (TEMs) is also affected by the PTEs especially when measuring under atmospheric condition. Here, we study the correction methods for the Harman measurements with systematically varied samples (both bulk materials and TEMs) at various conditions. Among several PTEs, the heat transfer via electric wires is critical. Thus, we estimate the thermal conductance of the electric wires, and correct the measured properties for a certain sample shape and measuring temperature. The PTEs are responsible for the underestimation of the TEM properties especially under atmospheric conditions (10–35%). This study will be useful to accurately characterize the thermoelectric properties of materials and modules.
Andreozzi, R; Canterino, M; Caprio, V; Di Somma, I; Sanchirico, R
2006-12-01
Runaway phenomena and thermal explosions can originate during the nitration of salicylic acid by means of a nitric acid/acetic acid mixture when the thermal control is lost, mainly as a result of the formation and thermal decomposition of picric acid. The prediction of the behaviour of this system is thus of great importance in view of possible industrial applications and the need to avoid the occurrence of unwanted dangerous events. During a previous investigation a model was developed to simulate its behaviour when the starting concentration of the substrate is too low, thus, preventing the precipitation of poor soluble intermediates. In this work this model is extended to deal with more concentrated systems even in case of a solid phase separating during the process. To this purpose the previously assessed dependence of the solubility of 3-nitro and 5-nitrosalicylic acids upon temperature and nitric acid concentration is included in the model. It is assumed that when 3-nitro and 5-nitrosalicylic acids are partially suspended in the reacting medium a kinetic regime of "dissolution with reaction" is established; that is, the redissolution of these species is a fast process compared to the successive nitration to give dinitroderivatives. Good results are obtained in the comparison of the experimental data with those calculated both in isoperibolic and adiabatic conditions when the revised model is used.
Directory of Open Access Journals (Sweden)
Koci X.
2006-11-01
Full Text Available Dans un article antérieur [1], un dispositif expérimental permettant l'étude en milieu poreux des déplacements par fluides chauds, en conditions isothermes, a été présenté, ainsi que les résultats obtenus. Ce mode d'écoulement, qui ne fait pas intervenir A previous paper [1] described an experimental device designed for the study of multiphase displacements by hot fluids in porous media under isothermal conditions together with the results obtained. This type of flow, which does not take into account the progress of temperature fronts, is not representative of what actually happens in the field when a thermal enhanced oil recovery method is applied. In fact in this case, flows may be considered as quasiadiabatic. To gain a better understanding of the phenomena induced by such adiabatic displacements, new equipment was designed to reproduce conditions close to those in the field. Various experiments were modeled with a simulator developed at Institut Français du Pétrole (IFP, using results obtained under isothermal conditions (for instance, relative permeability curves. There is good agreement between experiments and computation. These experimental results were then compared to those obtained under isothermal conditions. Some hypotheses are put forward to explain the differences observed between the two types of flows. Experiments were carried out in unconsolidated cores made of packed sand. This sand mainly consisted of silica (over 99 weight %. Grain size was between 60 and 100 microns; the corresponding permeability was about 4. 10 to the power of (-12 m². The fluids consisted of distilled water and Albelf C-68 oil. New equipment was designed because of problems related to heat losses. For slow displacement rates at high temperatures, a small heat loss results in a decrease in temperature and therefore in steam condensation. Use of nonmetallic parts for the core-holder strongly reduces heat losses radially and longitudinally so
Energy Technology Data Exchange (ETDEWEB)
Martínez-Mesa, Aliezer [Departmento de Física Teórica, Universidad de la Habana, San Lázaro y L, La Habana 10400 (Cuba); Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany)
2015-05-21
Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.
Directory of Open Access Journals (Sweden)
George Levy
2015-12-01
Full Text Available This comment by the author discusses paragraph 3.3. Adiabatic Phenomena—An Analogy of the published article [1]. The paragraph draws an incorrect analogy between Maxwellian gases such as found in the atmosphere, and non-Maxwellian gases embodied, for example, by electrical carriers in thermoelectric materials. As reported by the author in more recent articles, Maxwellian gases do not produce spontaneous temperature gradients in the presence of a force field. However, non-Maxwellian gases, such as Fermions or Bosons, can produce such gradients.
Straasø, Lasse A; Shankar, Ravi; Tan, Kong Ooi; Hellwagner, Johannes; Meier, Beat H; Hansen, Michael Ryan; Nielsen, Niels Chr; Vosegaard, Thomas; Ernst, Matthias; Nielsen, Anders B
2016-07-21
The homonuclear radio-frequency driven recoupling (RFDR) experiment is commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological samples due to its ease of implementation, stability towards fluctuations/missetting of radio-frequency (rf) field strength, and in general low rf requirements. A theoretical operator-based Floquet description is presented to appreciate the effect of having a temporal displacement of the π-pulses in the RFDR experiment. From this description, we demonstrate improved transfer efficiency for the RFDR experiment by generating an adiabatic passage through the zero-quantum recoupling condition. We have compared the performances of RFDR and the improved sequence to mediate efficient (13)CO to (13)Cα polarization transfer for uniformly (13)C,(15)N-labeled glycine and for the fibril forming peptide SNNFGAILSS (one-letter amino acid codes) uniformly (13)C,(15)N-labeled at the FGAIL residues. Using numerically optimized sweeps, we get experimental gains of approximately 20% for glycine where numerical simulations predict an improvement of 25% relative to the standard implementation. For the fibril forming peptide, using the same sweep parameters as found for glycine, we have gains in the order of 10%-20% depending on the spectral regions of interest.
Isothermal and Adiabatic Measurements.
McNairy, William W.
1996-01-01
Describes the working of the Adiabatic Gas Law Apparatus, a useful tool for measuring the pressure, temperature, and volume of a variety of gases undergoing compressions and expansions. Describes the adaptation of this apparatus to perform isothermal measurements and discusses the theory behind the adiabatic and isothermal processes. (JRH)
Adiabatic turbocompound diesel engine
Energy Technology Data Exchange (ETDEWEB)
Kamo, R.; Bryzik, W.
1984-02-01
The research and development of an adiabatic turbocompound engine have shown that the concept is feasible. The ability to meet the performance and sociability goals of the future power plants has been demonstrated. Low brake specific fuel consumption, low smoke and particulates, better NO /SUB x/ -BSFC trade-off, excellent multifuel capability, white smoke suppression, and potentially lower maintenance and greater reliability and durability are some of the attributes. The absence of the water cooling system adds to its attractiveness because of lower installed weight, cost, and reduction in parasitic losses. The operating environment of an adiabatic engine is shown as the basis for analysis and designing of adiabatic components. The types of material which can satisfy the needs of an adiabatic engine are presented. These materials include high temperature metals, high performance ceramics, and glass ceramics. The use of a turbocompound system to utilize the increased exhaust energy of an adiabatic engine is covered. A minimum fuel consumption of 0.285 lb/bhp-hr was achieved at 200 psi BMEP. Although the technical feasibility and viability of an adiabatic engine was demonstrated, the adiabatic diesel engine has problems which must be solved before it becomes a commercially viable product. These problem areas where more work is required are discussed.
Quantum adiabatic machine learning
Pudenz, Kristen L
2011-01-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.
Oreshkov, Ognyan; Calsamiglia, John
2010-07-30
We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.
Lobe, Elisabeth; Stollenwerk, Tobias; Tröltzsch, Anke
2015-01-01
In the recent years, the field of adiabatic quantum computing has gained importance due to the advances in the realisation of such machines, especially by the company D-Wave Systems. These machines are suited to solve discrete optimisation problems which are typically very hard to solve on a classical computer. Due to the quantum nature of the device it is assumed that there is a substantial speedup compared to classical HPC facilities. We explain the basic principles of adiabatic ...
Adiabatic quantum computation along quasienergies
Tanaka, Atushi
2009-01-01
The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy is recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [Tanaka and Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of...
Haifler, Jakub; Kotková, Jana
2016-04-01
-clinopyroxene rocks from North Bohemia are UHP-UHT rocks which were extensively overprinted under HP granulite-facies conditions during rapid exhumation along a near-adiabatic P-T path. The UHT peak and UHT-HT exhumation distinguish this area from the other UHP terrains worldwide. We demonstrate that Ti-in-zircon thermometry can provide robust temperature estimates in the rocks exhumed at HT, where the UHP-UHT mineral assemblage has not been preserved. In addition, the calculated UHP-UHT conditions are similar to those determined for the associated garnet peridotites, providing evidence for juxtaposition of these crustal and mantle rocks during deep Variscan subduction.
Exact invariants and adiabatic invariants of the singular Lagrange system
Institute of Scientific and Technical Information of China (English)
陈向炜; 李彦敏
2003-01-01
Based on the theory of symmetries and conserved quantities of the singular Lagrange system,the perturbations to the symmetries and adiabatic invariants of the singular Lagrange systems are discussed.Firstly,the concept of higher-order adiabatic invariants of the singular Lagrange system is proposed.Then,the conditions for the existence of the exact invariants and adiabatic invariants are proved,and their forms are given.Finally,an example is presented to illustrate these results.
Correlated mixtures of adiabatic and isocurvature cosmological perturbations
Langlois, D; Langlois, David; Riazuelo, Alain
2000-01-01
We examine the consequences of the existence of correlated mixtures of adiabatic and isocurvature perturbations on the CMB and large scale structure. In particular, we consider the four types of ``elementary'' totally correlated hybrid initial conditions, where only one of the four matter species (photons, baryons, neutrinos, CDM) deviates from adiabaticity. We then study the height and position of the acoustic peaks with respect to the large angular scale plateau as a function of the isocurvature to adiabatic ratio.
Teleportation of an Unknown Atomic State via Adiabatic Passage
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.
Biamonte, J D; Whitfield, J D; Fitzsimons, J; Aspuru-Guzik, A
2010-01-01
In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be error resistant, easily controllable, and built using existing technology. Moving away from gate-model and projective measurement based implementations of quantum computing may offer a less resource-intensive, and consequently a more feasible solution. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-body interaction terms, using sparse Hamiltonians with at most three-body interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes...
Semiconductor adiabatic qubits
Energy Technology Data Exchange (ETDEWEB)
Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib
2016-12-27
A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.
Fast forward to the classical adiabatic invariant
Jarzynski, Christopher; Patra, Ayoti; Subaşı, Yiğit
2016-01-01
We show how the classical action, an adiabatic invariant, can be preserved under non-adiabatic conditions. Specifically, for a time-dependent Hamiltonian $H = p^2/2m + U(q,t)$ in one degree of freedom, and for an arbitrary choice of action $I_0$, we construct a "fast-forward" potential energy function $V_{\\rm FF}(q,t)$ that, when added to $H$, guides all trajectories with initial action $I_0$ to end with the same value of action. We use this result to construct a local dynamical invariant $J(q,p,t)$ whose value remains constant along these trajectories. We illustrate our results with numerical simulations. Finally, we sketch how our classical results may be used to design approximate quantum shortcuts to adiabaticity.
Rapid adiabatic passage without level crossing
Rangelov, A A; Shore, B W
2009-01-01
We present a method for achieving complete population transfer in a two-state quantum system via adiabatic time evolution in which, contrary to conventional rapid adiabatic passage produced by chirped pulses, there occurs no crossing of diabatic energy curves: there is no sign change of the detuning. Instead, we use structured pulses, in which, in addition to satisfying conditions for adiabatic evolution, there occurs a sign change of the Rabi frequency when the detuning is zero. We present simulations that offer simple geometrical interpretation of the two-dimensional motion of the Bloch vector for this system, illustrating how both complete population inversion and complete population return occur for different choices of structured pulses.
Amendt, Peter; Wilks, Scott
2012-01-01
The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient and difference in average ionization states . Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated plasma thermodiffusion coefficient is derived, and charge-state diffusion in a single-species plasma is also predicted.
Nonresonance adiabatic photon trap
Popov, S S; Burdakov, A V; Ushkova, M Yu
2016-01-01
Concept of high efficiency photon storage based on adiabatic confinement between concave mirrors is presented and experimentally investigated. The approach is insensitive to typical for Fabri-Perot cells requirements on quality of accumulated radiation, tolerance of resonator elements and their stability. Experiments have been carried out with the trap, which consists from opposed concave cylindrical mirrors and conjugated with them spherical mirrors. In result, high efficiency for accumulation of radiation with large angular spread and spectrum width has been confirmed. As radiation source a commercial fiber laser has been used.
Directory of Open Access Journals (Sweden)
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
Adiabatic paths and pseudoholomorphic curves
Institute of Scientific and Technical Information of China (English)
Armen; G.; Sergeev
2005-01-01
We consider the (2+1)-dimensional Abelian Higgs model, governed by the Ginzburg-Landau action functional and describe the adiabatic limit construction for this model. Then we switch to the 4-dimensional case and Show that the Taubes correspondence may be considered as a (2+2)-dimensional analogue of the adiabatic limit construction.
Geometry of the Adiabatic Theorem
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Pinski, Sebastian D
2011-01-01
Adiabatic Quantum Computing (AQC) is a relatively new subject in the world of quantum computing, let alone Physics. Inspiration for this project has come from recent controversy around D-Wave Systems in British Columbia, Canada, who claim to have built a working AQC which is now commercially available and hope to be distributing a 1024 qubit chip by the end of 2008. Their 16 qubit chip was demonstrated online for the Supercomputing 2007 conference within which a few small problems were solved; although the explanations that journalists and critics received were minimal and very little was divulged in the question and answer session. This 'unconvincing' demonstration has caused physicists and computer scientists to hit back at D-Wave. The aim of this project is to give an introduction to the historic advances in classical and quantum computing and to explore the methods of AQC. Through numerical simulations an algorithm for the Max Independent Set problem is empirically obtained.
EXACT AND ADIABATIC INVARIANTS OF FIRST-ORDER LAGRANGE SYSTEMS
Institute of Scientific and Technical Information of China (English)
陈向炜; 尚玫; 梅凤翔
2001-01-01
A system of first-order differential equations is expressed in the form of first-order Lagrange equations. Based on the theory of symmetries and conserved quantities of first-order Lagrange systems, the perturbation to the symmetries and adiabatic invariants of first-order Lagrange systems are discussed. Firstly, the concept of higher-order adiabatic invariants of the first-order Lagrange system is proposed. Then, conditions for the existence of the exact and adiabatic invariants are proved, and their forms are given. Finally, an example is presented to illustrate these results.
Preparation of Entangled States of Three Particles by Adiabatic Passage
Institute of Scientific and Technical Information of China (English)
郭建友
2002-01-01
We propose a novel technique for the creation of entangled states of three particles, based upon an adiabatic passage induced by a suitably crafted time-dependent external field. We derive the corresponding adiabatic and bare conditions for the preparation of entangled states. We obtain the time evolutions of the energy of the system and the populations involving the initial state and target entangled state.
Dependence of adiabatic population transfer on pulse profile
Indian Academy of Sciences (India)
S Dasgupta; T kushwaha; D Goswami
2006-06-01
Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends simultaneously on pulse profile as well as the frequency modulation under non-resonant conditions.
Performance analysis of adiabatic engine
Energy Technology Data Exchange (ETDEWEB)
Sudhakar, V.
1984-01-01
As the development of the adiabatic diesel engine continues with a goal of 65% reduction in net in-cylinder heat transfer over a cooled engine, several uncooled engines with intermediate levels of reduced heat transfer were studied. Some aspects and results of the adiabatic diesel engine cycle simulation are discussed. Performance test data and simulation results are compared for a conventionally cooled and uncooled Cummins NH-450 turbocompound engines. Exhaust emissions were also measured and compared.
Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids
Energy Technology Data Exchange (ETDEWEB)
Natividad, Eva [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Sede Campus Rio Ebro, Maria de Luna, 3, 50018 Zaragoza (Spain); Castro, Miguel [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Sede Campus Rio Ebro, Maria de Luna, 3, 50018 Zaragoza (Spain)], E-mail: mcastro@unizar.es; Mediano, Arturo [Grupo de Electronica de Potencia y Microelectronica (GEPM), Instituto de Investigacion en Ingenieria de Aragon (Universidad de Zaragoza), Maria de Luna, 3, 50018 Zaragoza (Spain)
2009-05-15
The measurement of temperature variations in adiabatic conditions allows the determination of the specific absorption rate of magnetic nanoparticles and ferrofluids from the correct incremental expression, SAR=(1/m{sub MNP})C({delta}T/{delta}t). However, when measurements take place in non-adiabatic conditions, one must approximate this expression by SAR{approx}C{beta}/m{sub MNP}, where {beta} is the initial slope of the temperature vs. time curve during alternating field application. The errors arising from the use of this approximation were estimated through several experiments with different isolating conditions, temperature sensors and sample-sensor contacts. It is concluded that small to appreciable errors can appear, which are difficult to infer or control.
Non-adiabatic primordial fluctuations
Energy Technology Data Exchange (ETDEWEB)
Noller, Johannes; Magueijo, Joao, E-mail: johannes.noller08@imperial.ac.uk [Theoretical Physics Group, Imperial College, London SW7 2BZ (United Kingdom)
2011-05-21
We consider general mixtures of isocurvature and adiabatic cosmological perturbations. With a minimal assumption set consisting of the linearized Einstein equations and a primordial perfect fluid we derive the second-order action and its curvature variables. We also allow for varying equation of state and speed of sound profiles. The derivation is therefore carried out at the same level of generality that has been achieved for adiabatic modes before. As a result we find a new conserved super-horizon quantity and relate it to the adiabatically conserved curvature perturbation. Finally we demonstrate how the formalism can be applied by considering a Chaplygin gas-like primordial matter model, finding two scale-invariant solutions for structure formation.
Adiabatic theory for the bipolaron
Energy Technology Data Exchange (ETDEWEB)
Lakhno, V.D. (Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino Moscow Region, 142292 (Russian Federation))
1995-02-01
A translation-invariant adiabatic theory is constructed for the bipolaron. It is shown that motions in the bipolaron are divided: the relative electron coordinates describe fast electron oscillations in the induced polarization well and the center of mass coordinates represent slow electron movement followed by polarization. Nonlinear differential bipolaron equations are derived which are asymptotically exact in the adiabatic limit. Particlelike solutions of these equations correspond to the bipolaron bound state. The exact solution yields the value of the ion critical parameter [eta]=0.31 for which the bipolaron state is stable, where [eta]=[epsilon][sub [infinity
Analysis of Adiabatic Batch Reactor
Directory of Open Access Journals (Sweden)
Erald Gjonaj
2016-05-01
Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the nonholonomic system in terms of quasi-coordinates under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the forms of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
Institute of Scientific and Technical Information of China (English)
CHEN Xiang-Wei; WANG Ming-Quan; WANG Xin-Min
2005-01-01
Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic dynamical system of relative motion are studied. The perturbation to symmetries for the nonholonomic dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
Lie symmetries, perturbation to symmetries and adiabatic invariants of Poincaré equation
Institute of Scientific and Technical Information of China (English)
Chen Xiang-Wei; Liu Cui-Mei; Li Yan-Min
2006-01-01
Based on the invariance of differential equations under infinitesimal transformations,Lie symmetry,laws of conservations,perturbation to the symmetries and adiabatic invariants of Poincaré equations are presented.The concepts of Lie symmetry and higher order adiabatic invariants of Poincaré equations are proposed.The conditions for existence of the exact invariants and adiabatic invariants are proved,and their forms are also given.In addition,an example is presented to illustrate these results.
Exact invariants and adiabatic invariants of dynamical system of relative motion
Institute of Scientific and Technical Information of China (English)
Chen Xiang-Wei; Wang Xin-Min; Wang Ming-Quan
2004-01-01
Based on the theory of symmetries and conserved quantities, the exact inwriants and adiabatic inwriants of a dynamical system of relative motion are studied. The perturbation to symmetries for the dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
Elementary examples of adiabatic invariance
Energy Technology Data Exchange (ETDEWEB)
Crawford, F.S. (Physics Department, University of California, Berkeley, CA (USA) Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 (USA))
1990-04-01
Simple classical one-dimensional systems subject to adiabatic (gradual) perturbations are examined. The first examples are well known: the adiabatic invariance of the product {ital E}{tau} of energy {ital E} and period {tau} for the simple pendulum and for the simple harmonic oscillator. Next, the adiabatic invariants of the vertical bouncer are found---a ball bouncing elastically from the floor of a rising elevator having slowly varying velocity and acceleration. These examples lead to consideration of adiabatic invariance for one-dimensional systems with potentials of the form {ital V}={ital ax}{sup {ital n}}, with {ital a}={ital a}({ital t}) slowly varying in time. Then, the horizontal bouncer is considered---a mass sliding on a smooth floor, bouncing back and forth between two impenetrable walls, one of which is slowly moving. This example is generalized to a particle in a bound state of a general potential with one slowly moving turning point.'' Finally, circular motion of a charged particle in a magnetic field slowly varying in time under three different configurations is considered: (a) a free particle in a uniform field; (b) a free particle in a nonuniform betatron'' field; and (c) a particle constrained to a circular orbit in a uniform field.
A Many Particle Adiabatic Invariant
DEFF Research Database (Denmark)
Hjorth, Poul G.
1999-01-01
For a system of N charged particles moving in a homogeneous, sufficiently strong magnetic field, a many-particle adiabatic invariant constrains the collisional exchange of energy between the degrees of freedom perpendicular to and parallel to the magnetic field. A description of the phenomenon...
Digital Waveguide Adiabatic Passage Part 1: Theory
Vaitkus, Jesse A; Greentree, Andrew D
2016-01-01
Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.
Adiabatic Wankel type rotary engine
Kamo, R.; Badgley, P.; Doup, D.
1988-01-01
This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.
Theory of Adiabatic Fountain Resonance
Williams, Gary A.
2017-01-01
The theory of "Adiabatic Fountain Resonance" with superfluid ^4{He} is clarified. In this geometry a film region between two silicon wafers bonded at their outer edge opens up to a central region with a free surface. We find that the resonance in this system is not a Helmholtz resonance as claimed by Gasparini et al., but in fact is a fourth sound resonance. We postulate that it occurs at relatively low frequency because the thin silicon wafers flex appreciably from the pressure oscillations of the sound wave.
Kimura, Jun-Ichi; Kawabata, Hiroshi
2014-06-01
numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.
On the topology of adiabatic passage
Yatsenko, L P; Jauslin, H R
2002-01-01
We examine the topology of eigenenergy surfaces characterizing the population transfer processes based on adiabatic passage. We show that this topology is the essential feature for the analysis of the population transfers and the prediction of its final result. We reinterpret diverse known processes, such as stimulated Raman adiabatic passage (STIRAP), frequency-chirped adiabatic passage and Stark-chirped rapid adiabatic passage (SCRAP). Moreover, using this picture, we display new related possibilities of transfer. In particular, we show that we can selectively control the level which will be populated in STIRAP process in Lambda or V systems by the choice of the peak amplitudes or the pulse sequence.
Parametric Erosion Investigation: Propellant Adiabatic Flame Temperature
Directory of Open Access Journals (Sweden)
P. J. Conroy
2002-01-01
Full Text Available The influence of quasi-independent parameters and their potential influence on erosion in guns have been investigated. Specifically, the effects of flame temperature and the effect of assuming that the Lewis number (ratio of mass-to-heat transport to the surface, Le = 1, has been examined. The adiabatic flame temperature for a propellant was reduced by the addition of a diluent from a high temperature of 3843 K (similar to that of M9 down to 3004 K, which is near the value for M30A1 propellant. Mass fractions of critical species at the surface with and without the assumption of Le = 1 are presented, demonstrating that certain species preferentially reach the surface providing varied conditions for the surface reactions. The results for gun tube bore surface regression qualitatively agree with previous studies and with current experimental data.
Conformal Symmetries of Adiabatic Modes in Cosmology
Hinterbichler, Kurt; Khoury, Justin
2012-01-01
We remark on the existence of non-linearly realized conformal symmetries for scalar adiabatic perturbations in cosmology. These conformal symmetries are present for any cosmological background, beyond any slow-roll or quasi-de Sitter approximation. The dilatation transformation shifts the curvature perturbation by a constant, and corresponds to the well-known symmetry under spatial rescaling. We argue that the scalar sector is also invariant under special conformal transformations, which shift the curvature perturbation by a term linear in the spatial coordinates. We discuss whether these conformal symmetries can be extended to include tensor perturbations. Tensor modes introduce their own set of non-linearly realized symmetries. We identify an infinite set of large gauge transformations which maintain the transverse, traceless gauge condition, while shifting the tensor mode non-trivially.
Sliding seal materials for adiabatic engines
Lankford, J.
1985-01-01
The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.
New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
Acevedo, Oscar L.; Rodriguez, Ferney J.; Quiroga, Luis; Johnson, Neil F.; Rey, Ana M.
2014-05-01
We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.
Solitary shock waves and adiabatic phase transition in lipid interfaces and nerves.
Shrivastava, Shamit; Kang, Kevin Heeyong; Schneider, Matthias F
2015-01-01
This study shows that the stability of solitary waves excited in a lipid monolayer near a phase transition requires positive curvature of the adiabats, a known necessary condition in shock compression science. It is further shown that the condition results in a threshold for excitation, saturation of the wave's amplitude, and the splitting of the wave at the phase boundaries. Splitting in particular confirms that a hydrated lipid interface can undergo condensation on adiabatic heating, thus showing retrograde behavior. Finally, using the theoretical insights and state dependence of conduction velocity in nerves, the curvature of the adiabatic state diagram is shown to be closely tied to the thermodynamic blockage of nerve pulse propagation.
Rapid adiabatic passage in quantum dots: Influence of scattering and dephasing
DEFF Research Database (Denmark)
Schuh, K.; Jahnke, F.; Lorke, Michael
2011-01-01
Theoretical investigations for the realization of population inversion of semiconductor quantum dot ground-state transitions by means of adiabatic passage with chirped optical pulses are presented. While the inversion due to Rabi oscillations depends sensitively on the resonance condition...
Cummins/Tacom advanced adiabatic engine
Energy Technology Data Exchange (ETDEWEB)
Kamo, R.; Bryzik, W.
1984-01-01
Cummins Engine Company, Inc. and the U.S. Army have been jointly developing an adiabatic turbocompound engine during the last nine years. Although progress in the early years was slow, recent developments in the field of advanced ceramics have made it possible to make steady progress. It is now possible to reconsider the temperature limitation imposed on current heat engines and its subsequent influence on higher engine efficiency when using an exhaust energy utilization system. This paper presents an adiabatic turbocompound diesel engine concept in which high-performance ceramics are used in its design. The adiabatic turbocompound engine will enable higher operating temperatures, reduced heat loss, and higher exhaust energy recovery, resulting in higher thermal engine efficiency. This paper indicates that the careful selection of ceramics in engine design is essential. Adiabatic engine materials requirements are defined and the possible ceramic materials which will satisfy these requirements are identified. Examples in design considerations of engine components are illustrated. In addition to these important points, the use of ceramic coatings in the design of engine components. The first generation adiabatic engine with ceramic coatings is described. The advanced adiabatic engine with minimum friction features utilizaing ceramics is also presented. The advanced ceramic turbocharger turbine rotor as well as the oilless ceramic bearing design is described. Finally, the current status of the advanced adiabatic engine program culminating in the AA750 V-8 adiabatic engine is presented.
(Hybrid) Baryons Quantum Numbers and Adiabatic Potentials
Page, P R
1999-01-01
We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and indicate the flavour, spin, chirality and J^P of (hybrid) baryons. The adiabatic potential is calculated as a function of the quark positions.
Adiabatic Rearrangement of Hollow PV Towers
Directory of Open Access Journals (Sweden)
Eric A Hendricks
2010-10-01
Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane
Quantum Computation by Adiabatic Evolution
Farhi, E; Gutmann, S; Sipser, M; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Sipser, Michael
2000-01-01
We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system evolves to the desired final ground state, the evolution time must be big enough. The time required depends on the minimum energy difference between the two lowest states of the interpolating Hamiltonian. We are unable to estimate this gap in general. We give some special symmetric cases of the satisfiability problem where the symmetry allows us to estimate the gap and we show that, in these cases, our algorithm runs in polynomial time.
On a Nonlinear Model in Adiabatic Evolutions
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
Polarization-transfer methods in solid-state magic-angle-spinning NMR: adiabatic CN pulse sequences.
Verel, René; Meier, Beat H
2004-06-21
An adiabatic double-quantum polarization-transfer experiment is described. It can be characterized as an adiabatic variant of the POST-C7 experiment. A continuous variation of the phase increment between pulses leads to the introduction of a fictitious Zeeman field that allows for an adiabatic passage through the recoupling condition. This results in a chemical-shift-offset-compensated adiabatic experiment, which leads to an efficient and broadbanded polarization transfer or to a double-quantum excitation. Similar variations of other C- or R-type experiments can be envisioned.
Partial evolution based local adiabatic quantum search
Institute of Scientific and Technical Information of China (English)
Sun Jie; Lu Song-Feng; Liu Fang; Yang Li-Ping
2012-01-01
Recently,Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution,which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one.Later,they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database.In the present paper,following the idea of Roland and Cerf [Roland J and Cerf N J 2002Phys.Rev.A 65 042308],if within the small symmetric evolution interval defined by Zhang et al.,a local adiabatic evolution is performed instead of the original “global” one,this “new” algorithm exhibits slightly better performance,although they are progressively equivalent with M increasing.In addition,the proof of the optimality for this partial evolution based local adiabatic search when M =1 is also presented.Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search,which are found to have the same phenomenon above,are also discussed.
Adiabatic theorems for generators of contracting evolutions
Avron, J E; Graf, G M; Grech, P
2011-01-01
We develop an adiabatic theory for generators of contracting evolution on Banach spaces. This provides a uniform framework for a host of adiabatic theorems ranging from unitary quantum evolutions through quantum evolutions of open systems generated by Lindbladians all the way to classically driven stochastic systems. In all these cases the adiabatic evolution approximates, to lowest order, the natural notion of parallel transport in the manifold of instantaneous stationary states. The dynamics in the manifold of instantaneous stationary states and transversal to it have distinct characteristics: The former is irreversible and the latter is transient in a sense that we explain. Both the gapped and gapless cases are considered. Some applications are discussed.
Digital Waveguide Adiabatic Passage Part 2: Experiment
Ng, Vincent; Chaboyer, Zachary J; Nguyen, Thach; Dawes, Judith M; Withford, Michael J; Greentree, Andrew D; Steel, M J
2016-01-01
Using a femtosecond laser writing technique, we fabricate and characterise three-waveguide digital adiabatic passage devices, with the central waveguide digitised into five discrete waveguidelets. Strongly asymmetric behaviour was observed, devices operated with high fidelity in the counter-intuitive scheme while strongly suppressing transmission in the intuitive. The low differential loss of the digital adiabatic passage designs potentially offers additional functionality for adiabatic passage based devices. These devices operate with a high contrast ($>\\!90\\%$) over a 60~nm bandwidth, centered at $\\sim 823$~nm.
Directory of Open Access Journals (Sweden)
P. Savoini
2005-12-01
Full Text Available Test particle simulations are performed in order to analyze in detail the dynamics of transmitted electrons through a supercritical, strictly perpendicular, collisionless shock. In addition to adiabatic particles, two distinct nonadiabatic populations are observed surprisingly: (i first, an over-adiabatic population characterized by an increase in the gyrating velocity higher than that expected from the conservation of the magnetic moment µ, and (ii second, an under-adiabatic population characterized by a decrease in this velocity. Results show that both nonadiabatic populations have their pitch angle more aligned along the magnetic field than the adiabatic one at the time these hit the shock front. The formation of "under" and "over-adiabatic" particles strongly depends on their local injection conditions through the large amplitude cross-shock potential present within the shock front. A simplified theoretical model validates these results and points out the important role of the electric field as seen by the electrons. A classification shows that both nonadiabatic electrons are issued from the core part of the upstream distributionÊ function. In contrast, suprathermal and tail electrons only contribute to the adiabatic population; nevertheless, the core part of the upstream distribution contributes at a lower percentage to the adiabatic electrons. Under-adiabatic electrons are characterized by small injection angles θ_{inj}≤90°, whereas "over-adiabatic" particles have high injection angles θ_{inj}>90° (where θ_{inj} is the angle between the local gyrating velocity vector and the shock normal.
Adiabatic Quantum Search in Open Systems.
Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D
2016-10-07
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Adiabatic hydrodynamics: The eightfold way to dissipation
Haehl, Felix M; Rangamani, Mukund
2015-01-01
We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...
Adiabatic quantum gates and Boolean functions
Energy Technology Data Exchange (ETDEWEB)
Andrecut, M; Ali, M K [Department of Physics, University of Lethbridge, Lethbridge, AB, T1K 3M4 (Canada)
2004-06-25
We discuss the logical implementation of quantum gates and Boolean functions in the framework of quantum adiabatic method, which uses the language of ground states, spectral gaps and Hamiltonians instead of the standard unitary transformation language. (letter to the editor)
Adiabatic Quantum Search in Open Systems
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
On some issues of gravitationally induced adiabatic particle productions
Pan, Supriya; Pramanik, Souvik
2016-01-01
In this work, we investigate the current accelerating universe driven by the gravitationally induced adiabatic matter creation process. To elaborate the underlying cognitive content, here we consider three models of adiabatic particle creation and constrain the model parameters by fitting the models with the Union 2.1 data set using $\\chi^2$ minimization technique. The models are analyzed by two geometrical and model independent tests, viz., cosmography and $Om$-diagnostic, which are widely used to distinguish the cosmological models from $\\Lambda$CDM. We also compared present values of those model independent parameters with that of the flat $\\Lambda$CDM model. Finally, the validity of the generalized second law of thermodynamics and the condition of thermodynamic equilibrium for the particle production models have been tested.
Some characteristics of the atmosphere during an adiabatic process
Institute of Scientific and Technical Information of China (English)
GAO Li; LI Jianping; REN Hongli
2006-01-01
Some important characteristics of the atmosphere during an adiabatic process are investigated, which include the invariability of atmospheric entropy range and local surface potential temperature, the conservation of the atmospheric mass intervened between any isentropic surface and the ground, and the isentropic surface intersecting with the ground. The analysis shows that the atmospheric reference state (ARS) for investigation on available potential energy (APE) should be defined objectively as the state which could be approached from the existing atmosphere by adiabatic adjustment, and be related to initial atmospheric state before adjustment. For the initial atmosphere state at any time, its corresponding ARS is different from the one at another time. Based on the above-mentioned conclusions,the reference state proposed by Lorenz cannot be obtained physically, so a new conception, the conditional minimum total potential energy, is put forward in order to objectively investigate atmospheric APE.
Faster computation of adiabatic EMRIs using resonances
Grossman, Rebecca; Perez-Giz, Gabe
2011-01-01
Motivated by the prohibitive computational cost of producing adiabatic extreme mass ratio inspirals, we explain how a judicious use of resonant orbits can dramatically expedite both that calculation and the generation of snapshot gravitational waves from geodesic sources. In the course of our argument, we clarify the resolution of a lingering debate on the appropriate adiabatic averaging prescription in favor of torus averaging over time averaging.
Quantum Adiabatic Evolution Algorithms versus Simulated Annealing
Farhi, E; Gutmann, S; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam
2002-01-01
We explain why quantum adiabatic evolution and simulated annealing perform similarly in certain examples of searching for the minimum of a cost function of n bits. In these examples each bit is treated symmetrically so the cost function depends only on the Hamming weight of the n bits. We also give two examples, closely related to these, where the similarity breaks down in that the quantum adiabatic algorithm succeeds in polynomial time whereas simulated annealing requires exponential time.
Hierarchical theory of quantum adiabatic evolution
Zhang, Qi; Gong, Jiangbin; Wu, Biao
2014-12-01
Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau-Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory.
Thermal reservoir sizing for adiabatic compressed air energy storage
Energy Technology Data Exchange (ETDEWEB)
Kere, Amelie; Goetz, Vincent; Py, Xavier; Olives, Regis; Sadiki, Najim [Perpignan Univ. (France). PROMES CNRS UPR 8521; Mercier-Allart, Eric [EDF R et D, Chatou (France)
2012-07-01
Despite the operation of the two existing industrial facilities to McIntosh (Alabama), and for more than thirty years, Huntorf (Germany), electricity storage in the form of compressed air in underground cavern (CAES) has not seen the development that was expected in the 80s. The efficiency of this form of storage was with the first generation CAES, less than 50%. The evolving context technique can significantly alter this situation. The new generation so-called Adiabatic CAES (A-CAES) is to retrieve the heat produced by the compression via thermal storage, thus eliminating the necessity of gas to burn and would allow consideration efficiency overall energy of the order of 70%. To date, there is no existing installation of A-CAES. Many studies describe the principal and the general working mode of storage systems by adiabatic compression of air. So, efficiencies of different configurations of adiabatic compression process were analyzed. The aim of this paper is to simulate and analyze the performances of a thermal storage reservoir integrated in the system and adapted to the working conditions of a CAES.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Adiabatic Shear Mechanisms for the Hard Cutting Process
Institute of Scientific and Technical Information of China (English)
YUE Caixu; WANG Bo; LIU Xianli; FENG Huize; CAI Chunbin
2015-01-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remalns some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high straln domaln caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
Assessment of total efficiency in adiabatic engines
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
Institute of Scientific and Technical Information of China (English)
李军; 孙礼杰; 张亮
2011-01-01
The circulation chill - down of a cryogenic rocket engine is affected by many factors. Theoretical analysis and experiments research were carried out for the study of the influence of the recirculation pipe adiabatic condition on the chill - down effect. The significant data and conclusions obatained can lead help for the design of the chill - down system.%低温液体火箭发动机循环预冷受多因素影响,针对液氧煤油发动机自然循环系统回流管绝热条件对预冷效果的影响进行理论分析和试验研究,得到了有意义的数据和结论,对后续型号自然循环预冷系统设计提供了依据.
On criterion of modal adiabaticity
Institute of Scientific and Technical Information of China (English)
WANG; Ning(
2001-01-01
［1］Pierce, A. D., Extension of the method of normal modes to sound propagation in an almost-stratified medium, J. Acoust.Soc. Am., 1965, 37: 19－27.［2］Wang, D. Z. , Shang, E. C., Underwater Acoustics (in Chinese), Beijing: Science Press, 1981.［3］Zhang Renhe, Li Fenghua, Beam-displacement rya-mode theory of sound propagation in shallow water, Science in China, Ser.A, 1999, 42(7): 739－749.［4］Zhou Jixun, Zhang Xuezhen, Rogers P., Resonance interaction of sound waves with internal solitons in coastal zone, J.Acoust. Soc. Am., 1991, 90: 2042－2054.［5］Shang, E. C., Wang, Y. Y., The impact of mesoscale oceanic structure on global-scale acoustic propagation, in Theoretical and Computational Acoustics (ed. Ding Lee et al. ), Singapore: World Scientific Publishing Co. , 1996, 409－431.［6］Milder, D. M., Ray and wave invariants for SOFAR channel propagation, J. Acoust. Soc. Am., 1969, 46: 1259－1263.［7］Nag l, A., Milder, D. M., Adiabatic mode theory of underwater sound propagation in a range-dependent environment, J.Acoust. Soc. Am., 1978, 63: 739－749.［8］Brekhovskikh, L. M., Waves in Layered Media, 2nd ed., New York: Academic Press Inc., 1973.［9］Brekhovskikh, L. M., Lysanov, Yu., Fundamental of Ocean Acoustics, Ch. 7, Sec. 7.2, Berlin: Springer-Verlag, 1982.［10］Evans, R. B., A coupled mode solution for acoustic propagation in a wave-guide with stepwise depth variations of a penerable bottom, J. Acoust. Soc. A.m., 1983, 74: 188－195.［11］Jensen, F. B., Kuperman, W. A., Porter, M. B. et al., Computational Ocean Acoustics, New York: Springer-Verlag,1992.［12］Wang Ning, Inverse scattering problem for the coupled second order ODE, Journal of The Physical Society of Japan, 1995, 64(12): 4907－4915.
Nonadiabatic exchange dynamics during adiabatic frequency sweeps.
Barbara, Thomas M
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.
Adiabatic optimization versus diffusion Monte Carlo methods
Jarret, Michael; Jordan, Stephen P.; Lackey, Brad
2016-10-01
Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k -SAT at k =2 ,3 ,4 .
Energy efficiency of adiabatic superconductor logic
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-01-01
Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2.
Complexity of the Quantum Adiabatic Algorithm
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Mukaida, Kyohei; Nakayama, Kazunori
2015-01-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.
Adiabatic Quantum Computation: Coherent Control Back Action
Goswami, Debabrata
2013-01-01
Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments. PMID:23788822
Markovian quantum master equation beyond adiabatic regime
Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo
2017-01-01
By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.
Startup of an industrial adiabatic tubular reactor
Verwijs, J.W.; Berg, van den H.; Westerterp, K.R.
1992-01-01
The dynamic behaviour of an adiabatic tubular plant reactor during the startup is demonstrated, together with the impact of a feed-pump failure of one of the reactants. A dynamic model of the reactor system is presented, and the system response is calculated as a function of experimentally-determine
Semi adiabatic theory of seasonal Markov processes
Energy Technology Data Exchange (ETDEWEB)
Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.
Quantum Pumping and Adiabatic Transport in Nanostructures
Wakker, G.M.M.
2011-01-01
This thesis consists of a theoretical exploration of quantum transport phenomena and quantum dynamics in nanostructures. Specifically, we investigate adiabatic quantum pumping of charge in several novel types of nanostructures involving open quantum dots or graphene. For a bilayer of graphene we fin
Improving the positive feedback adiabatic logic familiy
Directory of Open Access Journals (Sweden)
J. Fischer
2004-01-01
Full Text Available Positive Feedback Adiabatic Logic (PFAL shows the lowest energy dissipation among adiabatic logic families based on cross-coupled transistors, due to the reduction of both adiabatic and non-adiabatic losses. The dissipation primarily depends on the resistance of the charging path, which consists of a single p-channel MOSFET during the recovery phase. In this paper, a new logic family called Improved PFAL (IPFAL is proposed, where all n- and pchannel devices are swapped so that the charge can be recovered through an n-channel MOSFET. This allows to decrease the resistance of the charging path up to a factor of 2, and it enables a significant reduction of the energy dissipation. Simulations based on a 0.13µm CMOS process confirm the improvements in terms of power consumption over a large frequency range. However, the same simple design rule, which enables in PFAL an additional reduction of the dissipation by optimal transistor sizing, does not apply to IPFAL. Therefore, the influence of several sources of dissipation for a generic IPFAL gate is illustrated and discussed, in order to lower the power consumption and achieve better performance.
Adiabatic limits,vanishing theorems and the noncommutative residue
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper,we compute the adiabatic limit of the scalar curvature and prove several vanishing theorems by taking adiabatic limits.As an application,we give a Kastler-Kalau-Walze type theorem for foliations.
Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate
Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael
2016-05-01
A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.
Fixed-point adiabatic quantum search
Dalzell, Alexander M.; Yoder, Theodore J.; Chuang, Isaac L.
2017-01-01
Fixed-point quantum search algorithms succeed at finding one of M target items among N total items even when the run time of the algorithm is longer than necessary. While the famous Grover's algorithm can search quadratically faster than a classical computer, it lacks the fixed-point property—the fraction of target items must be known precisely to know when to terminate the algorithm. Recently, Yoder, Low, and Chuang [Phys. Rev. Lett. 113, 210501 (2014), 10.1103/PhysRevLett.113.210501] gave an optimal gate-model search algorithm with the fixed-point property. Previously, it had been discovered by Roland and Cerf [Phys. Rev. A 65, 042308 (2002), 10.1103/PhysRevA.65.042308] that an adiabatic quantum algorithm, operating by continuously varying a Hamiltonian, can reproduce the quadratic speedup of gate-model Grover search. We ask, can an adiabatic algorithm also reproduce the fixed-point property? We show that the answer depends on what interpolation schedule is used, so as in the gate model, there are both fixed-point and non-fixed-point versions of adiabatic search, only some of which attain the quadratic quantum speedup. Guided by geometric intuition on the Bloch sphere, we rigorously justify our claims with an explicit upper bound on the error in the adiabatic approximation. We also show that the fixed-point adiabatic search algorithm can be simulated in the gate model with neither loss of the quadratic Grover speedup nor of the fixed-point property. Finally, we discuss natural uses of fixed-point algorithms such as preparation of a relatively prime state and oblivious amplitude amplification.
Hojman Exact Invariants and Adiabatic Invariants of Hamilton System
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The perturbation to Lie symmetry and adiabatic invariants are studied. Based on the concept of higherorder adiabatic invariants of mechanical systems with action of a small perturbation, the perturbation to Lie symmetry is studied, and Hojman adiabatic invariants of Hamilton system are obtained. An example is given to illustrate the application of the results.
Quantum-Classical Correspondence of Shortcuts to Adiabaticity
Okuyama, Manaka; Takahashi, Kazutaka
2017-04-01
We formulate the theory of shortcuts to adiabaticity in classical mechanics. For a reference Hamiltonian, the counterdiabatic term is constructed from the dispersionless Korteweg-de Vries (KdV) hierarchy. Then the adiabatic theorem holds exactly for an arbitrary choice of time-dependent parameters. We use the Hamilton-Jacobi theory to define the generalized action. The action is independent of the history of the parameters and is directly related to the adiabatic invariant. The dispersionless KdV hierarchy is obtained from the classical limit of the KdV hierarchy for the quantum shortcuts to adiabaticity. This correspondence suggests some relation between the quantum and classical adiabatic theorems.
Non-adiabatic perturbations in multi-component perfect fluids
Energy Technology Data Exchange (ETDEWEB)
Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-08-08
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.
Interpolation approach to Hamiltonian-varying quantum systems and the adiabatic theorem
Energy Technology Data Exchange (ETDEWEB)
Pan, Yu; James, Matthew R. [Australian National University, Research School of Engineering, Canberra (Australia); Miao, Zibo [The University of Melbourne, Department of Electrical and Electronic Engineering, Melbourne (Australia); Amini, Nina H. [CNRS, Laboratoire des Signaux et Systemes (L2S) Supelec, Gif-Sur-Yvette (France); Ugrinovskii, Valery [University of New South Wales at ADFA, School of Engineering and Information Technology, Canberra (Australia)
2015-12-15
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure resembles the excitation energy or excess work performed in thermodynamics, which can be taken as the error of adiabatic approximation. We prove that under certain conditions, this error can be estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not linearly proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example in which the applicability of the adiabatic theorem is questionable. (orig.)
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-08-01
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.
Comment on ``Adiabatic theory for the bipolaron''
Smondyrev, M. A.; Devreese, J. T.
1996-05-01
Comments are given on the application of the Bogoliubov-Tyablikov approach to the bipolaron problem in a recent paper by Lakhno [Phys. Rev. B 51, 3512 (1995)]. This author believes that his model (1) is the translation-invariant adiabatic theory of bipolarons and (2) gives asymptotically exact solutions in the adiabatic limit while the other approaches are considered as either phenomenological or variational in nature. Numerical results by Lakhno are in contradiction with all other papers published on the subject because his model leads to much lower energies. Thus, the author concludes that bipolarons ``are more stable than was considered before.'' We prove that both the analytical and the numerical results presented by Lakhno are wrong.
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Ehrenfest's adiabatic hypothesis in Bohr's quantum theory
Pérez, Enric
2015-01-01
It is widely known that Paul Ehrenfest formulated and applied his adiabatic hypothesis in the early 1910s. Niels Bohr, in his first attempt to construct a quantum theory in 1916, used it for fundamental purposes in a paper which eventually did not reach the press. He decided not to publish it after having received the new results by Sommerfeld in Munich. Two years later, Bohr published "On the quantum theory of line-spectra." There, the adiabatic hypothesis played an important role, although it appeared with another name: the principle of mechanical transformability. In the subsequent variations of his theory, Bohr never suppressed this principle completely. We discuss the role of Ehrenfest's principle in the works of Bohr, paying special attention to its relation to the correspondence principle. We will also consider how Ehrenfest faced Bohr's uses of his more celebrated contribution to quantum theory, as well as his own participation in the spreading of Bohr's ideas.
Adiabatic quantum simulation of quantum chemistry.
Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-10-13
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Adiabatic Quantum Optimization for Associative Memory Recall
Directory of Open Access Journals (Sweden)
Hadayat eSeddiqi
2014-12-01
Full Text Available Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO. Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Limitations of some simple adiabatic quantum algorithms
Ioannou, L M; Ioannou, Lawrence M.; Mosca, Michele
2007-01-01
Let $H(t)=(1-t/T)H_0 + (t/T)H_1$, $t\\in [0,T]$, be the Hamiltonian governing an adiabatic quantum algorithm, where $H_0$ is diagonal in the Hadamard basis and $H_1$ is diagonal in the computational basis. We prove that $H_0$ and $H_1$ must each have at least two large mutually-orthogonal eigenspaces if the algorithm's running time is to be subexponential in the number of qubits. We also reproduce the optimality proof of Farhi and Gutmann's search algorithm in the context of this adiabatic scheme; because we only consider initial Hamiltonians that are diagonal in the Hadamard basis, our result is slightly stronger than the original.
Finding cliques by quantum adiabatic evolution
Childs, A M; Goldstone, J; Gutmann, S; Childs, Andrew M.; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam
2002-01-01
Quantum adiabatic evolution provides a general technique for the solution of combinatorial search problems on quantum computers. We present the results of a numerical study of a particular application of quantum adiabatic evolution, the problem of finding the largest clique in a random graph. An n-vertex random graph has each edge included with probability 1/2, and a clique is a completely connected subgraph. There is no known classical algorithm that finds the largest clique in a random graph with high probability and runs in a time polynomial in n. For the small graphs we are able to investigate (n <= 18), the quantum algorithm appears to require only a quadratic run time.
Nanowire Plasmon Excitation by Adiabatic Mode Transformation
Verhagen, Ewold; Spasenović, Marko; Polman, Albert; Kuipers, L. (Kobus)
2009-05-01
We show with both experiment and calculation that highly confined surface plasmon polaritons can be efficiently excited on metallic nanowires through the process of mode transformation. One specific mode in a metallic waveguide is identified that adiabatically transforms to the confined nanowire mode as the waveguide width is reduced. Phase- and polarization-sensitive near-field investigation reveals the characteristic antisymmetric polarization nature of the mode and explains the coupling mechanism.
Performance Limits of Nanoelectromechanical Switches (NEMS-Based Adiabatic Logic Circuits
Directory of Open Access Journals (Sweden)
Samer Houri
2013-12-01
Full Text Available This paper qualitatively explores the performance limits, i.e., energy vs. frequency, of adiabatic logic circuits based on nanoelectromechanical (NEM switches. It is shown that the contact resistance and the electro-mechanical switching behavior of the NEM switches dictate the performance of such circuits. Simplified analytical expressions are derived based on a 1-dimensional reduced order model (ROM of the switch; the results given by this simplified model are compared to classical CMOS-based, and sub-threshold CMOS-based adiabatic logic circuits. NEMS-based circuits and CMOS-based circuits show different optimum operating conditions, depending on the device parameters and circuit operating frequency.
Scattering cluster wave functions on the lattice using the adiabatic projection method
Rokash, Alexander; Elhatisari, Serdar; Lee, Dean; Epelbaum, Evgeny; Krebs, Hermann
2015-01-01
The adiabatic projection method is a general framework for studying scattering and reactions on the lattice. It provides a low-energy effective theory for clusters which becomes exact in the limit of large Euclidean projection time. Previous studies have used the adiabatic projection method to extract scattering phase shifts from finite periodic-box energy levels using L\\"uschers method. In this paper we demonstrate that scattering observables can be computed directly from asymptotic cluster wave functions. For a variety of examples in one and three spatial dimensions, we extract elastic phase shifts from asymptotic cluster standing waves corresponding to spherical wall boundary conditions. We find that this approach of extracting scattering wave functions from the adiabatic Hamiltonian to be less sensitive to small stochastic and systematic errors as compared with using periodic-box energy levels.
Diffusion of the adiabatic invariant for modulated symplectic maps
Energy Technology Data Exchange (ETDEWEB)
Bazzani, A.; Brini, F.; Turchetti, G. [University of Bologna, INFN sezione di Bologna via Irnerio n.46, I-40126 Bologna (Italy)
1997-02-01
We consider the diffusion of the orbits due to a slow modulation of a parameter in an almost integrable symplectic map. This phenomenon (modulational diffusion) is relevant for the stability of the betatronic motion when the ripples are present in the feeding currents of the magnets. In the limit of a slow periodic modulation when the theory of Neishtadt applies, the diffusion takes place in the region swept by a nonlinear resonance and a random walk is defined in the space of the adiabatic invariant. The effect of the boundaries is reproduced by introducing an absorbing boundary condition (dynamical aperture) or a reflecting boundary condition. The analytical result for the action distribution function reproduces very well the numerical distribution function both when the diffusion takes place in a bounded region and when the orbits reach the dynamical aperture. {copyright} {ital 1997 American Institute of Physics.}
Non-adiabatic effects in near-adiabatic mixed-field orientation and alignment
Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod
2016-11-01
We present a theoretical study of the impact of a pair of moderate electric fields tilted an angle with respect to one another on a molecule. As a prototype, we consider a molecule with large rotational constant (with corresponding small rotational period) and moderate dipole moment. Within rigid-rotor approximation, the time-dependent Schrodinger equation is solved using fourth-order Runge-Kutta method. We have analysed that lower rotational states are significantly influenced by variation in pulse durations, the tilt angle between the fields and also on the electric field strengths. We also suggest a control scheme of how the rotational dynamics, orientation and alignment of a molecule can be enhanced by a combination of near-adiabatic pulses in comparision to non-adiabatic or adiabatic pulses.
Adiabatic Regularization for Gauge Field and the Conformal Anomaly
Chu, Chong-Sun
2016-01-01
We construct and provide the adiabatic regularization method for a $U(1)$ gauge field in a conformally flat spacetime by quantizing in the canonical formalism the gauge fixed $U(1)$ theory with mass terms for the gauge fields and the ghost fields. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using WKB-type solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduces the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for gauge field allows one to study the renormalization of the de-Sitter space maximal superconformal Yang-Mills theory using the adiabatic regularization method.
Bond selective chemistry beyond the adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Butler, L.J. [Univ. of Chicago, IL (United States)
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Adiabatic passage in the presence of noise
Noel, T; Kurz, N; Shu, G; Wright, J; Blinov, B B
2011-01-01
We report on an experimental investigation of rapid adiabatic passage (RAP) in a trapped barium ion system. RAP is implemented on the transition from the $6S_{1/2}$ ground state to the metastable $5D_{5/2}$ level by applying a laser at 1.76 $\\mu$m. We focus on the interplay of laser frequency noise and laser power in shaping the effectiveness of RAP, which is commonly assumed to be a robust tool for high efficiency population transfer. However, we note that reaching high state transfer fidelity requires a combination of small laser linewidth and large Rabi frequency.
Shortcuts to adiabaticity for quantum annealing
Takahashi, Kazutaka
2017-01-01
We study the Ising Hamiltonian with a transverse field term to simulate the quantum annealing. Using shortcuts to adiabaticity, we design the time dependence of the Hamiltonian. The dynamical invariant is obtained by the mean-field ansatz, and the Hamiltonian is designed by the inverse engineering. We show that the time dependence of physical quantities such as the magnetization is independent of the speed of the Hamiltonian variation in the infinite-range model. We also show that rotating transverse magnetic fields are useful to achieve the ideal time evolution.
On adiabatic perturbations in the ekpyrotic scenario
Linde, A.; Mukhanov, V.; Vikman, A.
2010-02-01
In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.
On adiabatic perturbations in the ekpyrotic scenario
Linde, A; Vikman, A
2009-01-01
In a recent paper arXiv:0910.2230, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in arXiv:0910.2230 are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.
Adiabatic Wave-Particle Interaction Revisited
Dewar, R L; 10.1585/pfr.4.001
2009-01-01
In this paper we calculate and visualize the dynamics of an ensemble of electrons trapping in an electrostatic wave of slowly increasing amplitude, illustrating that, despite disordering of particles in angle during the trapping transition as they pass close to X-points, there is still an adiabatic invariant for the great majority of particles that allows the long-time distribution function to be predicted. Possible application of this approach to recent work on the nonlinear frequency shift of a driven wave is briefly discussed.
Adiabatic quantum algorithm for search engine ranking
Garnerone, Silvano; Lidar, Daniel A
2011-01-01
We propose an adiabatic quantum algorithm to evaluate the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this quantum algorithm outputs any component of the PageRank vector-and thus the ranking of the corresponding webpage-in a time which scales polylogarithmically in the number of webpages. This would constitute an exponential speed-up with respect to all known classical algorithms designed to evaluate the PageRank.
Quantum Adiabatic Evolution Algorithms with Different Paths
Farhi, E; Gutmann, S; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam
2002-01-01
In quantum adiabatic evolution algorithms, the quantum computer follows the ground state of a slowly varying Hamiltonian. The ground state of the initial Hamiltonian is easy to construct; the ground state of the final Hamiltonian encodes the solution of the computational problem. These algorithms have generally been studied in the case where the "straight line" path from initial to final Hamiltonian is taken. But there is no reason not to try paths involving terms that are not linear combinations of the initial and final Hamiltonians. We give several proposals for randomly generating new paths. Using one of these proposals, we convert an algorithmic failure into a success.
Generalized Ramsey numbers through adiabatic quantum optimization
Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank
2016-09-01
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r( G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8, most of which were previously unknown.
Adiabatic quantum computation and quantum phase transitions
Latorre, J I; Latorre, Jose Ignacio; Orus, Roman
2003-01-01
We analyze the ground state entanglement in a quantum adiabatic evolution algorithm designed to solve the NP-complete Exact Cover problem. The entropy of entanglement seems to obey linear and universal scaling at the point where the mass gap becomes small, suggesting that the system passes near a quantum phase transition. Such a large scaling of entanglement suggests that the effective connectivity of the system diverges as the number of qubits goes to infinity and that this algorithm cannot be efficiently simulated by classical means. On the other hand, entanglement in Grover's algorithm is bounded by a constant.
Generating shortcuts to adiabaticity in quantum and classical dynamics
Jarzynski, Christopher
2013-01-01
Transitionless quantum driving achieves adiabatic evolution in a hurry, using a counter-diabatic Hamiltonian to stifle non-adiabatic transitions. Here this strategy is cast in terms of a generator of adiabatic transport, leading to a classical analogue: dissipationless classical driving. For the single-particle piston, this approach yields simple and exact expressions for both the classical and quantal counter-diabatic terms. These results are further generalized to even-power-law potentials in one degree of freedom.
A quantum search algorithm based on partial adiabatic evolution
Institute of Scientific and Technical Information of China (English)
Zhang Ying-Yu; Hu He-Ping; Lu Song-Feng
2011-01-01
This paper presents and implements a specified partial adiabatic search algorithm on a quantum circuit. It studies the minimum energy gap between the first excited state and the ground state of the system Hamiltonian and it finds that, in the case of M=1, the algorithm has the same performance as the local adiabatic algorithm. However, the algorithm evolves globally only within a small interval, which implies that it keeps the advantages of global adiabatic algorithms without losing the speedup of the local adiabatic search algorithm.
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators (ADRs) in space applications, it is desirable to have very light weight, small diameter, high current density...
Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry.
Liu, Lijun; Wei, Chunyang; Guo, Yuyan; Rogers, William J; Sam Mannan, M
2009-03-15
Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified.
Quantum Adiabatic Algorithms and Large Spin Tunnelling
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
The genesis of adiabatic shear bands
Landau, P.; Osovski, S.; Venkert, A.; Gärtnerová, V.; Rittel, D.
2016-11-01
Adiabatic shear banding (ASB) is a unique dynamic failure mechanism that results in an unpredicted catastrophic failure due to a concentrated shear deformation mode. It is universally considered as a material or structural instability and as such, ASB is hardly controllable or predictable to some extent. ASB is modeled on the premise of stability analyses. The leading paradigm is that a competition between strain (rate) hardening and thermal softening determines the onset of the failure. It was recently shown that microstructural softening transformations, such as dynamic recrystallization, are responsible for adiabatic shear failure. These are dictated by the stored energy of cold work, so that energy considerations can be used to macroscopically model the failure mechanism. The initial mechanisms that lead to final failure are still unknown, as well as the ASB formation mechanism(s). Most of all - is ASB an abrupt instability or rather a gradual transition as would be dictated by microstructural evolutions? This paper reports thorough microstructural characterizations that clearly show the gradual character of the phenomenon, best described as a nucleation and growth failure mechanism, and not as an abrupt instability as previously thought. These observations are coupled to a simple numerical model that illustrates them.
Adiabat-shaping in indirect drive inertial confinement fusion
Energy Technology Data Exchange (ETDEWEB)
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others
2015-05-15
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders
2010-01-01
The thermodynamics of the magnetocaloric effect implies constraints on the allowed variation in the adiabatic temperature change for a magnetocaloric material. An inequality for the derivative of the adiabatic temperature change with respect to temperature is derived for both first- and second...
High Fidelity Adiabatic Quantum Computation via Dynamical Decoupling
Quiroz, Gregory
2012-01-01
We introduce high-order dynamical decoupling strategies for open system adiabatic quantum computation. Our numerical results demonstrate that a judicious choice of high-order dynamical decoupling method, in conjunction with an encoding which allows computation to proceed alongside decoupling, can dramatically enhance the fidelity of adiabatic quantum computation in spite of decoherence.
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size.
Entropy in adiabatic regions of convection simulations
Tanner, Joel D; Demarque, Pierre
2016-01-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this paper we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of og g and log T_{eff} which holds potential for calibrating stellar models in a simple and more general manner.
Adiabatic scaling relations of galaxy clusters
Ascasibar, Y; Yepes, G; Müller, V; Gottlöber, S
2006-01-01
The aim of the present work is to show that, contrary to popular belief, galaxy clusters are **not** expected to be self-similar, even when the only energy sources available are gravity and shock-wave heating. In particular, we investigate the scaling relations between mass, luminosity and temperature of galaxy groups and clusters in the absence of radiative processes. Theoretical expectations are derived from a polytropic model of the intracluster medium and compared with the results of high-resolution adiabatic gasdynamical simulations. It is shown that, in addition to the well-known relation between the mass and concentration of the dark matter halo, the effective polytropic index of the gas also varies systematically with cluster mass, and therefore neither the dark matter nor the gas profiles are exactly self-similar. It is remarkable, though, that the effects of concentration and polytropic index tend to cancel each other, leading to scaling relations whose logarithmic slopes roughly match the predictio...
Multiplicity features of adiabatic autothermal reactors
Energy Technology Data Exchange (ETDEWEB)
Lovo, M.; Balakotaiah, V. (Houston Univ., TX (United States). Dept. of Chemical Engineering)
1992-01-01
In this paper singularity theory, large activation energy asymptotic, and numerical methods are used to present a comprehensive study of the steady-state multiplicity features of three classical adiabatic autothermal reactor models: tubular reactor with internal heat exchange, tubular reactor with external heat exchange, and the CSTR with external heat exchange. Specifically, the authors derive the exact uniqueness-multiplicity boundary, determine typical cross-sections of the bifurcation set, and classify the different types of bifurcation diagrams of conversion vs. residence time. Asymptotic (limiting) models are used to determine analytical expressions for the uniqueness boundary and the ignition and extinction points. The analytical results are used to present simple, explicit and accurate expressions defining the boundary of the region of autothermal operation in the physical parameter space.
Adiabatic perturbations in coupled scalar field cosmologies
Beyer, Joschka
2014-01-01
We present a comprehensive and gauge invariant treatment of perturbations around cosmological scaling solutions for two canonical scalar fields coupled through a common potential in the early universe, in the presence of neutrinos, photons and baryons, but excluding cold dark matter. This setup is relevant for analyzing cosmic perturbations in scalar field models of dark matter with a coupling to a quintessence field. We put strong restrictions on the shape of the common potential and adopt a matrix-eigensystem approach to determine the dominant perturbations modes in such models. Similar to recent results in scenarios where standard cold dark matter couples to quintessence, we show that the stability of the adiabatic perturbation mode can be an issue for this class of scalar field dark matter models, but only for specific choices of the common potential. For an exponential coupling potential, a rather common shape arising naturally in many instances, this problem can be avoided. We explicitly calculate the d...
Adiabatic density-functional perturbation theory
Gonze, Xavier
1995-08-01
The treatment of adiabatic perturbations within density-functional theory is examined, at arbitrary order of the perturbation expansion. Due to the extremal property of the energy functional, standard variation-perturbation theorems can be used. The different methods (Sternheimer equation, extremal principle, Green's function, and sum over state) for obtaining the perturbation expansion of the wave functions are presented. The invariance of the Hilbert space of occupied wave functions with respect to a unitary transformation leads to the definition of a ``parallel-transport-gauge'' and a ``diagonal-gauge'' perturbation expansion. Then, the general expressions are specialized for the second, third, and fourth derivative of the energy, with an example of application of the method up to third order.
Investigating the Performance of an Adiabatic Quantum Optimization Processor
Rose, Geordie; Dickson, Neil G; Hamze, Firas; Amin, M H S; Drew-Brook, Marshall; Chudak, Fabian A; Bunyk, Paul I; Macready, William G
2010-01-01
We calculate median adiabatic times (in seconds) of a specific superconducting adiabatic quantum processor for an NP-hard Ising spin glass instance class with up to N=128 binary variables. To do so, we ran high performance Quantum Monte Carlo simulations on a large-scale Internet-based computing platform. We compare the median adiabatic times with the median running times of two classical solvers and find that, for problems with up to 128 variables, the adiabatic times for the simulated processor architecture are about 4 and 6 orders of magnitude shorter than the two classical solvers' times. This performance difference shows that, even in the potential absence of a scaling advantage, adiabatic quantum optimization may outperform classical solvers.
Adiabatic logic future trend and system level perspective
Teichmann, Philip
2012-01-01
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the p...
An Integrated Development Environment for Adiabatic Quantum Programming
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL; McCaskey, Alex [ORNL; Bennink, Ryan S [ORNL; Billings, Jay Jay [ORNL; D' Azevedo, Eduardo [ORNL; Sullivan, Blair D [ORNL; Klymko, Christine F [ORNL; Seddiqi, Hadayat [ORNL
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.
How detrimental is decoherence in adiabatic quantum computation?
Albash, Tameem
2015-01-01
Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time-scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit $T_2$ time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary canc...
Shortcuts to adiabaticity in cutting a spin chain
Ren, Feng-Hua; Wang, Zhao-Ming; Gu, Yong-Jian
2017-01-01
"Shortcuts to adiabaticity" represents a strategy for accelerating a quantum adiabatic process, is useful for preparing or manipulating a quantum state. In this paper, we investigate the adiabaticity in the dynamics of an XY spin chain. During the process of cutting one long chain into two short chains, a "shortcut" can be obtained by applying a sequence of external pulses. The fidelity which measures the adiabaticity can be dramatically enhanced by increasing the pulse strength or pulse duration time. This reliability can be kept for different types of pulses, such as random pulse time interval or random strength. The free choice of the pulse can be explained by the adiabatic representation of the Hamiltonian, and it shows that the control effects are determined by the integral of the control function in the time domain.
Hollenberg, Sebastian
2011-01-01
The standard wave function approach for the treatment of neutrino oscillations fails in situations where quantum ensembles at a finite temperature with or without an interacting background plasma are encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to both adiabatic and non-adiabatic two-flavor oscillations in neutrino ensembles with finite temperature and generic (e.g. matter) potentials. Neglecting effects of ensemble decoherence for now we study the evolution of a neutrino ensemble governed by the associated Quantum Kinetic Equations, which apply to systems with finite temperature. The Quantum Kinetic Equations are solved formally using the Magnus expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g. the interaction picture) reveals suitable parameters to characterize the physics of the underlying system (e.g. an effective oscillation length). It is understood that this method also provides a promising starting point for...
On the General Class of Models of Adiabatic Evolution
Sun, Jie; Lu, Songfeng; Liu, Fang
2016-10-01
The general class of models of adiabatic evolution was proposed to speed up the usual adiabatic computation in the case of quantum search problem. It was shown [8] that, by temporarily increasing the ground state energy of a time-dependent Hamiltonian to a suitable quantity, the quantum computation can perform the calculation in time complexity O(1). But it is also known that if the overlap between the initial and final states of the system is zero, then the computation based on the generalized models of adiabatic evolution can break down completely. In this paper, we find another severe limitation for this class of adiabatic evolution-based algorithms, which should be taken into account in applications. That is, it is still possible that this kind of evolution designed to deal with the quantum search problem fails completely if the interpolating paths in the system Hamiltonian are chosen inappropriately, while the usual adiabatic evolutions can do the same job relatively effectively. This implies that it is not always recommendable to use nonlinear paths in adiabatic computation. On the contrary, the usual simple adiabatic evolution may be sufficient for effective use.
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
Adiabatic control of atomic dressed states for transport and sensing
Cooper, N. R.; Rey, A. M.
2015-08-01
We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices. Focusing on the limit of weak tunnel-coupling between nearest-neighbor lattice sites, we explain how adiabatic variation of optical dressing allows control of atomic motion between lattice sites: allowing adiabatic particle transport in a direction that depends on the internal state, and force measurements via spectroscopic preparation and readout. For uniformly filled bands these systems display topologically quantized particle transport. An implementation of the dressing scheme using optical transitions in alkaline-earth atoms is discussed as well as its favorable features for precise force sensing.
Adiabatic Quantum Algorithm for Search Engine Ranking
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Design of the PIXIE Adiabatic Demagnetization Refrigerators
Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael
2012-01-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Topological States and Adiabatic Pumping in Quasicrystals
Kraus, Yaakov; Lahini, Yoav; Ringel, Zohar; Verbin, Mor; Zilberberg, Oded
2012-02-01
We find a connection between quasicrystals and topological matter, namely that quasicrystals exhibit non-trivial topological phases attributed to dimensions higher than their own [1]. Quasicrystals are materials which are neither ordered nor disordered, i.e. they exhibit only long-range order [2]. This long-range order is usually expressed as a projection from a higher dimensional ordered system. Recently, the unrelated discovery of Topological Insulators [3] defined a new type of materials classified by their topology. We show theoretically and experimentally using photonic lattices, that one-dimensional quasicrystals exhibit topologically-protected boundary states equivalent to the edge states of the two-dimensional Integer Quantum Hall Effect. We harness this property to adiabatically pump light across the quasicrystal, and generalize our results to higher dimensional systems. Hence, quasicrystals offer a new platform for the study of topological phases while their topology may better explain their surface properties.[4pt] [1] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, arXiv:1109.5983 (2011).[0pt] [2] C. Janot, Quasicrystals (Clarendon, Oxford, 1994), 2nd ed.[0pt] [3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P; Skalski, J
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "Imaginary Water Flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations...
Adiabatic rotation, quantum search, and preparation of superposition states
Siu, M. Stewart
2007-06-01
We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied “straight line” adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev’s toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm.
Adiabatic shear bands localization in materials undergoing deformations
Ryabov, P. N.; Kudryashov, N. A.; Muratov, R. V.
2017-01-01
We consider the adiabatic shear banding phenomenon in composite materials undergoing the high speed shear deformations. The mathematical model of adiabatic shear banding in thermo-visco-plastic material is given. New two step numerical algorithm which is based on the Courant-Isaacson-Rees scheme that allows one to simulate fully localized plastic flow from initial stage of localization is proposed. To test this numerical algorithm we use three benchmark problems. The testing results show the accuracy and efficiency of proposed algorithm. The features of adiabatic shear bands formation in composites are studied. The existence of characteristic depth of localization in composites is shown. Influence of initial temperature distribution on the processes of adiabatic shear bands formation in composites is considered.
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators(ADR's) for space it is desirable to have very light weight, small diameter, high current density superconducting wires...
Low-power adiabatic 9T static random access memory
Directory of Open Access Journals (Sweden)
Yasuhiro Takahashi
2014-06-01
Full Text Available In this paper, the authors propose a novel static random access memory (SRAM that employs the adiabatic logic principle. To reduce energy dissipation, the proposed adiabatic SRAM is driven by two trapezoidal-wave pulses. The cell structure of the proposed SRAM has two high-value resistors based on a p-type metal-oxide semiconductor transistor, a cross-coupled n-type metal-oxide semiconductor (NMOS pair and an NMOS switch to reduce the short-circuit current. The inclusion of a transmission-gate controlled by a write word line signal allows the proposed circuit to operate as an adiabatic SRAM during data writing. Simulation results show that the energy dissipation of the proposed SRAM is lower than that of a conventional adiabatic SRAM.
Adiabaticity and diabaticity in strong-field ionization
Karamatskou, Antonia; Santra, Robin
2013-01-01
If the photon energy is much less than the electron binding energy, ionization of an atom by a strong optical field is often described in terms of electron tunneling through the potential barrier resulting from the superposition of the atomic potential and the potential associated with the instantaneous electric component of the optical field. In the strict tunneling regime, the electron response to the optical field is said to be adiabatic, and nonadiabatic effects are assumed to be negligible. Here, we investigate to what degree this terminology is consistent with a language based on the so-called adiabatic representation. This representation is commonly used in various fields of physics. For electronically bound states, the adiabatic representation yields discrete potential energy curves that are connected by nonadiabatic transitions. When applying the adiabatic representation to optical strong-field ionization, a conceptual challenge is that the eigenstates of the instantaneous Hamiltonian form a continuu...
Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.
Gosset, David; Terhal, Barbara M; Vershynina, Anna
2015-04-10
We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.
Adiabatic invariants of the extended KdV equation
Karczewska, Anna; Infeld, Eryk; Rowlands, George
2015-01-01
When the Euler equations for shallow water are taken to the next order, beyond KdV, $\\eta^2$ is no longer an invariant. (It would seem that $\\eta$ is the only one.) However, two adiabatic invariants akin to $\\eta^2$ can be found. Here we present and test them. When the KdV expansion parameters are zero, $\\eta^2$ is recovered from both adiabatic invariants.
Adiabatic CMB perturbations in pre-big bang string cosmology
Enqvist, Kari; Enqvist, Kari; Sloth, Martin S.
2002-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations in the axion field can give rise to a nearly flat spectrum of adiabatic perturbations with a spectral tilt $\\Delta n$ in the range $-0.1 \\lesssim \\Delta n \\lesssim 0.3$.
Adiabatic CMB perturbations in pre-big bang string cosmology
DEFF Research Database (Denmark)
Enqvist, Kari; Sloth, Martin Snoager
2001-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...... in the axion field can give rise to a nearly flat spectrum of adiabatic perturbations with a spectral tilt $\\Delta n$ in the range $-0.1 \\lesssim \\Delta n \\lesssim 1$....
ENTROPY-VORTEX WAVES IN NON-ADIABATIC FLOWS
Energy Technology Data Exchange (ETDEWEB)
Ibáñez S, Miguel H., E-mail: mhibanez@yahoo.com [Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Autónoma del Caribe, Barranquilla (Colombia)
2016-02-20
The Ertel theorem on the vorticity along the flow of adiabatic fluids is generalized for non-adiabatic flows. Several limiting cases are analyzed and the results are applied to flows behind different hydrodynamics fronts, particularly to thermal fronts (heat and cooling fronts). An important conclusion of the present analysis is that vorticity is inherent in the condensation’s (or hot spots) formation by thermal instabilities in plasma flows. Implications for several astrophysical plasmas are outlined.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition
Alavi, Saman; Ripmeester, J. A.
2010-04-01
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier
Directory of Open Access Journals (Sweden)
Reem Ahmed
2014-01-01
Full Text Available Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER. It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5 at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.
Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.
Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri
2014-01-01
Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.
Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems
Institute of Scientific and Technical Information of China (English)
ZHANG Ming-Jiang; FANG Jian-Hui; LU Kai; PANG Ting; LIN Peng
2009-01-01
Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained.
Adiabatic Effectiveness and Heat Transfer Coefficient on a Film-Cooled Rotating Blade
Garg, Vijay K.
1997-01-01
three-dimensional Navier-Stokes code has been used to compute the adiabatic effectiveness and heat transfer coefficient on a rotating film-cooled turbine blade. The blade chosen is the United Technologies Research Center(UTRC) rotor with five film-cooling rows containing 83 holes, including three rows on the shower head with 49 holes, covering about 86% of the blade span. The mainstream is akin to that under real engine conditions with stagnation temperature 1900 K and stagnation pressure 3 MPa. The blade speed is taken to be 5200 rpm. The adiabatic effectiveness is higher for a rotating blade as compared to that for a stationary blade. Also, the direction of coolant injection from the shower-head holes considerably affects the effectiveness and heat transfer coefficient values on both the pressure and suction surfaces. In all cases the heat transfer coefficient and adiabatic effectiveness are highly three-dimensional in the vicinity of holes but tend to become two-dimensional far downstream.
Directory of Open Access Journals (Sweden)
M. Venkatesulu
1996-01-01
Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.
Institute of Scientific and Technical Information of China (English)
WANG Xue-bin
2008-01-01
The coexistent phenomenon of deformed and transformed adiabatic shear bands(ASBs) of ductile metal was analyzed using the JOHNSON-COOK model and gradient-dependent plasticity(GDP). The effects of melting point, density, heat capacity and work to heat conversion factor were investigated. Higher work to heat conversion factor, lower density, lower heat capacity and higher melting point lead to wider transformed ASB and higher local plastic shear deformation between deformed and transformed ASBs. Higher work to heat conversion factor, lower density, lower heat capacity and lower melting point cause higher local plastic shear deformation in the deformed ASB. Three reasons for the scatter in experimental data on the ASB width were pointed out and the advantages of the work were discussed. If the transformed ASB width is used to back-calculate the internal length parameter in the GDP, undoubtedly, the parameter will be extremely underestimated.
LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views
Anacleto, Joaquim; Pereira, Mário G.
2009-05-01
The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.
Physics on the adiabatically changed Finslerian manifold and cosmology
Lipovka, Anton A
2016-01-01
In present paper we confirm our previous result [4] that Planck constant is adiabatic invariant of electromagnetic field propagating on the adiabatically changed Finslerian manifold. Direct calculation from cosmological parameters gives value h=6x10(-27) (erg s). We also confirm that Planck constant (and hence other fundamental constants which depend on h) is varied on time due to changing of geometry. As an example the variation of the fine structure constant is calculated. Its relative variation ((da/dt)/a) consist 1.0x10(-18) (1/s). We show that on the Finsler manifold characterized by adiabatically changed geometry, classical free electromagnetic field is quantized geometrically, from the properties of the manifold in such manner that adiabatic invariant of field is ET=6x10(-27)=h. Electrodynamic equations on the Finslerian manifold are suggested. It is stressed that quantization naturally appears from these equations and is provoked by adiabatically changed geometry of manifold. We consider in details tw...
Interplay between electric and magnetic effect in adiabatic polaritonic systems
Alabastri, Alessandro
2013-01-01
We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Sasaki, Misao
2015-01-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid $\\delta P_{nad}$, another is for a general matter field $\\delta P_{c,nad}$, and the last one is valid only on superhorizon scales. The first two definitions coincide if $c_s^2=c_w^2$ where $c_s$ is the propagation speed of the perturbation, while $c_w^2=\\dot P/\\dot\\rho$. Assuming the adiabaticity in the general sense, $\\delta P_{c,nad}=0$, we derive a relation between the lapse function in the comoving slicing $A_c$ and $\\delta P_{nad}$ valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as $c_s\
Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation
Aharonov, D; Kempe, J; Landau, Z; Lloyd, S; Regev, O; Aharonov, Dorit; Dam, Wim van; Kempe, Julia; Landau, Zeph; Lloyd, Seth; Regev, Oded
2004-01-01
Adiabatic quantum computation has recently attracted attention in the physics and computer science communities, but its computational power has been unknown. We settle this question and describe an efficient adiabatic simulation of any given quantum algorithm, which implies that the adiabatic computation model and the conventional quantum circuit model are polynomially equivalent. Our result can be extended to the physically realistic setting of particles arranged on a two-dimensional grid with nearest neighbor interactions. The equivalence between the models provides a new vantage point from which to tackle the central issues in quantum computation, namely designing new quantum algorithms and constructing fault tolerant quantum computers. In particular, by translating the main open questions in quantum algorithms to the language of spectral gaps of sparse matrices, the result makes quantum algorithmic questions accessible to a wider scientific audience, acquainted with mathematical physics, expander theory a...
Analysis and Simulation of Adiabatic Bend Transitions in Optical Fibers
Institute of Scientific and Technical Information of China (English)
YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng
2009-01-01
A low-loss criterion for bend transitions in optical fibers is proposed. An optical fiber can be tightly bent with low loss to be adiabatic for the fundamental mode, provided that an approximate upper bound on the rate of change of bend curvature for a given bend curvature is satisfied. Two typical adiabatic bend transition paths, the optimum profile and linear profile, are analyzed and studied numerically. A realizable adiabatic transition with an Archimedean spiral profile is introduced for low bend loss in tightly bent optical fibers. Design of the transitions is based on modeling of the propagation and coupling characteristics of the core and cladding modes,which clearly illustrate the physical processes involved.
Semiclassical approximations for adiabatic slow-fast systems
Teufel, Stefan
2012-01-01
In this letter we give a systematic derivation and justification of the semiclassical model for the slow degrees of freedom in adiabatic slow-fast systems first found by Littlejohn and Flynn [5]. The classical Hamiltonian obtains a correction due to the variation of the adiabatic subspaces and the symplectic form is modified by the curvature of the Berry connection. We show that this classical system can be used to approximate quantum mechanical expectations and the time-evolution of operators also in sub-leading order in the combined adiabatic and semiclassical limit. In solid state physics the corresponding semiclassical description of Bloch electrons has led to substantial progress during the recent years, see [1]. Here, as an illustration, we show how to compute the Piezo-current arising from a slow deformation of a crystal in the presence of a constant magnetic field.
Adiabatic hyperspherical approach to large-scale nuclear dynamics
Suzuki, Yasuyuki
2015-01-01
We formulate a fully microscopic approach to large-scale nuclear dynamics using a hyperradius as a collective coordinate. An adiabatic potential is defined by taking account of all possible configurations at a fixed hyperradius, and its hyperradius dependence plays a key role in governing the global nuclear motion. In order to go to larger systems beyond few-body systems, we suggest basis functions of a microscopic multicluster model, propose a method for calculating matrix elements of an adiabatic Hamiltonian with use of Fourier transforms, and test its effectiveness.
Nanoscale resolution for fluorescence microscopy via adiabatic passage
Rubio, Juan Luis; Ahufinger, Verònica; Mompart, Jordi
2015-01-01
We propose the use of the subwavelength localization via adiabatic passage technique for fluorescence microscopy with nanoscale resolution in the far field. This technique uses a {\\Lambda}-type medium coherently coupled to two laser pulses: the pump, with a node in its spatial profile, and the Stokes. The population of the {\\Lambda} system is adiabatically transferred from one ground state to the other except at the node position, yielding a narrow population peak. This coherent localization allows fluorescence imaging with nanometer lateral resolution. We derive an analytical expression to asses the resolution and perform a comparison with the coherent population trapping and the stimulated-emission-depletion techniques.
Microstructure evolution mechanism in adiabatic shear band in TA2
Institute of Scientific and Technical Information of China (English)
杨扬; 熊俊; 杨续跃
2004-01-01
The micro structure evolution mechanism in adiabatic shear band in commercial pure titanium (TA2) at high strain rates(γ≈105 - 106/s) were studied. The nanosized recrystallized grains (about 50 nm in diameter) within the center of adiabatic shear band (ASB) were observed by means of transmission electronic microscope (TEM). A Rotational Dynamic Recrystallization (RDR) mechanism can explain the microstructure evolution (i. e. nanosized grains were formed within 5 - 10μs) in ASB. Kinetics calculations indicate that the recrystallized small grains are formed during the deformation and don't undergo significant growth by grain boundary migration after deformation.
How to Make the Quantum Adiabatic Algorithm Fail
Farhi, E; Gutmann, S; Nagaj, D; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Nagaj, Daniel
2005-01-01
The quantum adiabatic algorithm is a Hamiltonian based quantum algorithm designed to find the minimum of a classical cost function whose domain has size N. We show that poor choices for the Hamiltonian can guarantee that the algorithm will not find the minimum if the run time grows more slowly than square root of N. These poor choices are nonlocal and wash out any structure in the cost function to be minimized and the best that can be hoped for is Grover speedup. These failures tell us what not to do when designing quantum adiabatic algorithms.
Population transfer of a NaH molecule via stimulated Raman adiabatic passage
Zai, Jing-Bo; Zhan, Wei-Shen; Wang, Shuo; Dang, Hai-Ping; Han, Xiao
2016-09-01
The population transfer of a NaH molecule from the ground state {{X}1}{Σ+} to the target state {{A}1}{Σ+} via stimulated Raman adiabatic passage (STIRAP) is investigated. The results show that the intensity, delay time and detuning have a significant effect on population transfer. A large population transfer is observed with increased pump and Stokes intensity, especially when the pump and Stokes intensity match. Population transfer also depends on the delay time between the pump laser pulse and the Stokes laser pulse. The detuning of the two pulses influences the population transfer. Efficient population transfer can be realized under the resonant or two-photon resonant condition.
One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Ma Song-She; Chen Mei-Feng; Jiang Xia-Ping
2011-01-01
A scheme is proposed for generating a three-dimensional entangled state for two atoms trapped in a cavity by one step via adiabatic passage.In the scheme,the two atoms are always in ground states and the field mode of the cavity excited is negligible under a certain condition.Therefore,the scheme is very robust against decoherence.Furthermore,it needs neither the exact control of all parameters nor the accurate control of the interaction time.It is shown that qutrit entanglement can be generated with a high fidelity.
DEFF Research Database (Denmark)
von Moos, Lars; Bahl, Christian R.H.; Nielsen, Kaspar Kirstein
2014-01-01
We quantify the effect of hysteresis on the performance of the magnetocaloric first order material Gd5Si2Ge2 undergoing an ideal active magnetic regenerator (AMR) cycle. The material is carefully characterized through magnetometry (VSM) and calorimetry (DSC) in order to enable an accurate model...... description of the phase transition at varying magnetic fields and temperatures. Using detailed experimental property data, a Preisach type model is used to describe the thermal hysteresis effects and simulate the material under realistic working conditions. We find that the adiabatic temperature change...... is limited by a significant fraction of the thermal hysteresis....
An explicit model for the adiabatic evolution of quantum observables driven by 1D shape resonances
Faraj, A; Nier, F
2010-01-01
This paper is concerned with a linearized version of the transport problem where the Schr\\"{o}dinger-Poisson operator is replaced by a non-autonomous Hamiltonian, slowly varying in time. We consider an explicitly solvable model where a semiclassical island is described by a flat potential barrier, while a time dependent 'delta' interaction is used as a model for a single quantum well. Introducing, in addition to the complex deformation, a further modification formed by artificial interface conditions, we give a reduced equation for the adiabatic evolution of the sheet density of charges accumulating around the interaction point.
Adiabatic frequency conversion with a sign flip in the coupling
Hristova, H. S.; Rangelov, A. A.; Montemezzani, G.; Vitanov, N. V.
2016-09-01
Adiabatic frequency conversion is a method recently developed in nonlinear optics [H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008), 10.1103/PhysRevA.78.063821], using ideas from the technique of rapid adiabatic passage (RAP) via a level crossing in quantum physics. In this method, the coupling coefficients are constant and the phase mismatch is chirped adiabatically. In this work, we propose another method for adiabatic frequency conversion, in which the phase mismatch is constant and the coupling is a pulse-shaped function with a sign flip (i.e., a phase step of π ) at its maximum. Compared to the RAP method, our technique has comparable efficiency but it is simpler to implement for it only needs two bulk crystals with opposite χ(2 ) nonlinearity. Moreover, because our technique requires constant nonzero frequency mismatch and has zero conversion efficiency on exact frequency matching, it can be used as a frequency filter.
On Models of Nonlinear Evolution Paths in Adiabatic Quantum Algorithms
Institute of Scientific and Technical Information of China (English)
SUN Jie; LU Song-Feng; Samuel L.Braunstein
2013-01-01
In this paper,we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimensional projector Hamiltonians on the corresponding ground state.If the overlap between the initial state and final state of the quantum system is not equal to zero,both of these models can provide a constant time speedup over the usual adiabatic algorithms by increasing some another corresponding "complexity".But when the initial state has a zero overlap with the solution state in the problem,the second model leads to an infinite time complexity of the algorithm for whatever interpolating functions being applied while the first one can still provide a constant running time.However,inspired by a related reference,a variant of the first model can be constructed which also fails for the problem when the overlap is exactly equal to zero if we want to make up the "intrinsic" fault of the second model — an increase in energy.Two concrete theorems are given to serve as explanations why neither of these two models can improve the usual adiabatic evolution algorithms for the phenomenon above.These just tell us what should be noted when using certain nonlinear evolution paths in adiabatic quantum algorithms for some special kind of problems.
A Kinetic Study of the Adiabatic Polymerization of Acrylamide.
Thomson, R. A. M.
1986-01-01
Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)
Flat FRW Cosmologies with Adiabatic Matter Creation Kinematic tests
Lima, J A S
1999-01-01
Some observational consequences of a cosmological scenario driven by adiabatic matter creation are investigated. Exact expressions for the lookback time, age of the universe, luminosity distance, angular diameter, and galaxy number counts redshift relations are derived and their meaning discussed in detail. The expressions of the conventional FRW models are significantly modified and provide a powerful method to limit the parameters of the models.
Digitized adiabatic quantum computing with a superconducting circuit
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Perturbation to Noether Symmetries and Adiabatic Invariants for Birkhoffian Systems
Directory of Open Access Journals (Sweden)
Yi Zhang
2015-01-01
Full Text Available Based on El-Nabulsi dynamical model for a non-conservative system, the problem of perturbation to Noether symmetries and adiabatic invariants of a Birkhoffian system under the action of a small disturbance is proposed and studied. Firstly, the El-Nabulsi-Pfaff variational problem from extended exponentially fractional integral is presented and the El-Nabulsi-Birkhoff equations are established. Secondly, the definitions and the criterions criteria of the Noether symmetric transformations and quasisymmetric transformations of the Birkhoffian system are given, and the Noether theorems of the system are established, which reveal the inner relationship between the Noether symmetries and the conserved quantities. Thirdly, the perturbation of Noether symmetries under a small disturbance is studied, and corresponding adiabatic invariants are obtained. As special cases, the deductions in nonconservative Hamiltonian system and nonconservative Lagrangian system and standard Birkhoffian system are given. At the end of the paper, the case known as Hojman-Urrutia problem is discussed to investigate the Noether symmetries and the adiabatic invariants, the perturbation to Noether symmetries and the adiabatic invariants under El-Nabulsi dynamical model.
Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited
Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.
2012-01-01
The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…
High beta lasing in micropillar cavities with adiabatic layer design
DEFF Research Database (Denmark)
Lermer, M.; Gregersen, Niels; Lorke, M.;
2013-01-01
We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...
Appearance of gauge fields and forces beyond the adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Gosselin, Pierre [Institut Fourier, UMR 5582 CNRS-UJF, UFR de Mathematiques, Universite Grenoble I, BP74, 38402 Saint Martin d' Heres, Cedex (France); Mohrbach, Herve, E-mail: mohrbach@univ-metz.f [Laboratoire de Physique Moleculaire et des Collisions, ICPMB-FR CNRS 2843, Universite Paul Verlaine-Metz, 57078 Metz Cedex 3 (France)
2010-09-03
We investigate the origin of quantum geometric phases, gauge fields and forces beyond the adiabatic regime. In particular, we extend the notions of geometric magnetic and electric forces discovered in studies of the Born-Oppenheimer approximation to arbitrary quantum systems described by matrix-valued quantum Hamiltonians. The results are illustrated by several physical relevant examples.
Dark Energy and Dark Matter from an additional adiabatic fluid
Dunsby, Peter K S; Reverberi, Lorenzo
2016-01-01
The Dark Sector is described by an additional barotropic fluid which evolves adiabatically during the universe's history and whose adiabatic exponent $\\gamma$ is derived from the standard definitions of specific heats. Although in general $\\gamma$ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with $\\gamma = $ constant in a FLRW universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like non-relativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both Dark Energy and Dark Matter, at least at the level of the background cosmology. The $\\Lambda$CDM model is included in this family of theories when $\\gamma = 0$. We fit our model to SNIa, $H(z)$ and BAO data, discussing the model selection criteria. The implications for the early-universe and the growth of small per...
Dark energy and dark matter from an additional adiabatic fluid
Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo
2016-10-01
The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Adiabatic and diabatic aerosol transport to the Jungfraujoch
Energy Technology Data Exchange (ETDEWEB)
Lugauer, M.; Baltensperger, U.; Furger, M.; Jost, D.T.; Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-09-01
Synoptic scale vertical motion, here detected by the geopotential height of the 500 hPa surface, mainly accounts for the aerosol transport to the Jungfraujoch in winter. In summer, diabatic convection provides the dominant vertical transport mechanism. Nevertheless, synoptic scale adiabatic motion still determines whether diabatic convection can develop. (author) 2 figs., 2 refs.
Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps.
Wi, Sungsool; Gan, Zhehong; Schurko, Robert; Frydman, Lucio
2015-02-14
Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ((13)C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ((1)H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB1 (s) were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed.
Institute of Scientific and Technical Information of China (English)
ZHANG Ming-Jiang; FANG Jian-Hui; LU Kai
2009-01-01
Based on the concept of adiabatic invariant, the perturbation to Noether-Mei symmetry and adiabatic invariants for nonholonomic mechanical systems in phase space are studied. The definition of the perturbation to Noether-Mei symmetry for the system is presented, and the criterion of the perturbation to Noether-Mei symmetry is given. Meanwhile, the Noether adiabatic invariants and the Mei adiabatic invariants for the perturbed system are obtained.
Perturbation and Adiabatic Invariants of Mei Symmetry for Nonholonomic Mechanical Systems
Institute of Scientific and Technical Information of China (English)
DING Ning; FANG Jian-Hui; WANG Peng
2007-01-01
Based on the concept of adiabatic invariant,the perturbation and adiabatic invariants of the Mei symmetry for nonholonomic mechanical systems are studied.The exact invariants of the Mei symmetry for the system without perturbation are given,The perturbation to the Mei symmetry is discussed and the adiabatic invariants of the Mei symmetry for the perturbed system are obtained.
Perturbation to Lie Symmetry and Lutzky Adiabatic Invariants for Lagrange Systems
Institute of Scientific and Technical Information of China (English)
REN Ji-Rong; DING Ning; LI Ran; FANG Jian-Hui; DUAN Yi-Shi; WANG Peng; ZHANG Xiao-Ni
2008-01-01
Based on the concept of adiabatic invariant, perturbation to Lie symmetry and Lutzky adiabatic invariants for Lagrange systems are studied by using different methods from those of previous works. Exact invariants induced from Lie symmetry of the system without perturbation are given. Perturbation to Lie symmetry is discussed and Lutzky adiabatic invariants of the system subject to perturbation are obtained.
Makarov, V. A.; Petnikova, V. M.
2017-02-01
For a nonintegrable system of two coupled nonlinear Schrödinger equations the adiabatic approximation is extended for long time interaction. The method enables analytical description of the modulation of a cnoidal wave by Akhmediev breather in an isotropic nonlinear gyrotropic medium with Kerr nonlinearity and second-order group-velocity dispersion. The conditions which must be fulfilled for stable propagation of the obtained solution with amplitude and frequency modulation are determined.
New empirical correlations for sizing adiabatic capillary tubes in refrigeration systems
Shodiya, S.; Aahar, A. A.; Henry, N.; Darus, A. N.
2012-06-01
This paper presents new empirical correlations that have been developed for sizing adiabatic capillary tubes used in small vapor compression refrigeration and air-conditioning systems. A numerical model which is based on the basic equations of conservation of mass, momentum and energy was developed. Colebrook's formulation was used to determine the single phase friction factor. The two-phase viscosity models - Cicchitti et al., Dukler et al. and McAdam et al. were used based on the recommendation from literature to determine the two-phase viscosity factor. The developed numerical model was validated using the experimental data from literature. The numerical model was used to study the effects of relevant parameters on capillary tube length and the results showed that the length of capillary tube increase with increase in condensing temperature, subcooling, and inner diameter of tube but decrease with increase in surface roughness and mass flow rate. Thereafter, empirical correlation of the capillary tube length with the five dependent variables was presented. The empirical models are validated using experimental data from literature. Different from the previous studies, the empirical models have a large set of refrigerants and wide operating conditions. The developed correlation can be used as an effective tool for sizing adiabatic capillary tube with system models working with alternative refrigerants.
Adiabatic theory of solitons fed by dispersive waves
Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
2016-09-01
We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.
Stellar oscillations. II The non-adiabatic case
Samadi, R; Sonoi, T
2015-01-01
A leap forward has been performed due to the space-borne missions, MOST, CoRoT and Kepler. They provided a wealth of observational data, and more precisely oscillation spectra, which have been (and are still) exploited to infer the internal structure of stars. While an adiabatic approach is often sufficient to get information on the stellar equilibrium structures it is not sufficient to get a full understanding of the physics of the oscillation. Indeed, it does not permit one to answer some fundamental questions about the oscillations, such as: What are the physical mechanisms responsible for the pulsations inside stars? What determines the amplitudes? To what extent the adiabatic approximation is valid? All these questions can only be addressed by considering the energy exchanges between the oscillations and the surrounding medium. This lecture therefore aims at considering the energetical aspects of stellar pulsations with particular emphasis on the driving and damping mechanisms. To this end, the full non-...
Improved Refrigerant Characteristics Flow Predictions in Adiabatic Capillary Tube
Directory of Open Access Journals (Sweden)
Shodiya Sulaimon
2012-07-01
Full Text Available This study presents improved refrigerant characteristics flow predictions using homogenous flow model in adiabatic capillary tube, used in small vapor compression refrigeration system. The model is based on fundamental equations of mass, momentum and energy. In order to improve the flow predictions, the inception of vaporization in the capillary tube is determined by evaluating initial vapor quality using enthalpy equation of refrigerant at saturation point and the inlet entrance effect of the capillary tube is also accounted for. Comparing this model with experimental data from open literature showed a reasonable agreement. Further comparison of this new model with earlier model of Bansal showed that the present model could be use to improve the performance predictions of refrigerant flow in adiabatic capillary tube.
Multidimensional Study of High-Adiabat OMEGA Cryogenic Experiments
Collins, T. J. B.; Betti, R.; Bose, A.; Christopherson, A. R.; Knauer, J. P.; Marozas, J. A.; Maximov, A. V.; Mora, A.; Radha, P. B.; Shang, W.; Shvydky, A.; Stoeckl, C.; Woo, K. M.; Varchas, G.
2016-10-01
Despite recent advances in modeling laser direct-drive inertial confinement fusion (ICF) experiments, there remains a predictability gap. This is particularly shown by the shortfall in hot-spot pressures inferred from OMEGA cryogenic implosions. To address this, a series of high-adiabat, cryogenic implosions were performed on OMEGA. These shots were performed with and without single-beam smoothing by spectral dispersion, at low and high drive intensities. These shots represent a regime where good agreement with simulation is expected because of the high adiabat. Multidimensional simulations of these shots will be presented with an emphasis on comparison with experimental indicators of departure from spherical symmetry (``1-D-ness''). The roles of short- and long-wavelength perturbations are considered. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
DESIGN OF TERNARY COUNTER BASED ON ADIABATIC DOMINO CIRCUIT
Institute of Scientific and Technical Information of China (English)
Yang Qiankun; Wang Pengjun; Zheng Xuesong
2013-01-01
By researching the ternary counter and low power circuit design method,a novel design of low power ternary Domino counter on switch-level is proposed.Firstly,the switch-level structure expression of ternary loop operation circuit with enable pin is derived according to the switch-signal theory,and the one bit ternary counter is obtained combining the ternary adiabatic Domino literal operation circuit and buffer.Then the switch-level structure expression of enable signal circuit is derived,and the four bits ternary counter is obtained by cascade connection.Finally,the circuit is simulated by Spice tool and the output waveforms transform in proper order indicating that the logic function is correct.The energy consumption of the four bits ternary adiabatic Domino counter is 63％ less than the conventional Domino counterpart.
Crack propagation of Ti alloy via adiabatic shear bands
Energy Technology Data Exchange (ETDEWEB)
Mendoza, I., E-mail: ivanmendozabravo@gmail.com [Instituto Tecnológico de Veracruz (Mexico); Villalobos, D. [Instituto Tecnológico de Veracruz (Mexico); Alexandrov, B.T. [The Ohio State University (United States)
2015-10-01
This study was focused on the characterization of the origin and mechanism of crack propagation as a result of hot induction bending of Ti alloy. Plates of Ti–6Al–4V alloy with 12.5 mm of thickness were submitted to hot induction bending below the beta transus temperature. Optical and scanning electron microscopy analysis showed crack formation in the tensile zone. Microstructural evidence showed that cracks propagate through the adiabatic shear bands by Dimple-Void mechanism. However, voids formation before shear banding also occurred. In both mechanisms adiabatic shear bands are formed via dynamic recrystallization where the alpha–beta interphase works as stress concentrator promoting the formation of dimples and voids.
Particle creation and non-adiabatic transitions in quantum cosmology
Massar, S
1998-01-01
The aim of this paper is to compute transitions amplitudes in quantum cosmology, and in particular pair creation amplitudes and radiative transitions. To this end, we apply a double adiabatic development to the solutions of the Wheeler-DeWitt equation restricted to mini-superspace wherein gravity is described by the scale factor $a$. The first development consists in working with instantaneous eigenstates, in $a$, of the matter Hamiltonian. The second development is applied to the gravitational part of the wave function and generalizes the usual WKB approximation. We then obtain an exact equation which replaces the Wheeler-DeWitt equation and determines the evolution, i.e. the dependence in $a$, of the coefficients of this double expansion. When working in the gravitational adiabatic approximation, the simplified equation delivers the unitary evolution of transition amplitudes occurring among instantaneous eigenstates. Upon abandoning this approximation, one finds that there is an additional coupling among ma...
Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Berweger, Samuel; Atkin, Joanna M.; Olmon, Robert L.; Raschke, Markus Bernd
2010-12-16
True nanoscale optical spectroscopy requires the efficient delivery of light for a spatially nanoconfined excitation. We utilize adiabatic plasmon focusing to concentrate an optical field into the apex of a scanning probe tip of {approx}10 nm in radius. The conical tips with the ability for two-stage optical mode matching of the surface plasmon polariton (SPP) grating-coupling and the adiabatic propagating SPP conversion into a localized SPP at the tip apex represent a special optical antenna concept for far-field transduction into nanoscale excitation. The resulting high nanofocusing efficiency and the spatial separation of the plasmonic grating coupling element on the tip shaft from the near-field apex probe region allows for true background-free nanospectroscopy. As an application, we demonstrate tip-enhanced Raman spectroscopy (TERS) of surface molecules with enhanced contrast and its extension into the near-IR with 800 nm excitation.
Linear response of galactic halos to adiabatic gravitational perturbations
Murali, C; Murali, Chigurupati; Tremaine, Scott
1997-01-01
We determine the response of a self-similar isothermal stellar system to small adiabatic gravitational perturbations. For odd spherical harmonics, the response is identical to the response of the analogous isothermal fluid system. For even spherical harmonics, the response can be regarded as an infinite series of wavetrains in $\\log r$, implying alternating compression and rarefaction in equal logarithmic radius intervals. Partly because of the oscillatory nature of the solutions, tidal fields from external sources are not strongly amplified by an intervening isothermal stellar system, except at radii can even screen the external tidal field in a manner analogous to Debye screening. As Weinberg has pointed out, individual resonances in a stellar system can strongly amplify external tidal fields over a limited radial range, but we cannot address this possibility because we examine only adiabatic perturbations. We also discuss the application of our method to the halo response caused by the slow growth of an em...
Confinement loss in adiabatic photonic crystal fiber tapers
Kuhlmey, Boris T.; Nguyen, Hong C.; Steel, M. J.; Eggleton, Benjamin J.
2006-09-01
We numerically study confinement loss in photonic crystal fiber (PCF) tapers and compare our results with previously published experimental data. Agreement between theory and experiment requires taking into account hole shrinkage during the tapering process, which we measure by using a noninvasive technique. We show that losses are fully explained within the adiabatic approximation and that they are closely linked to the existence of a fundamental core-mode cutoff. This cutoff is equivalent to the core-mode cutoff in depressed-cladding fibers, so that losses in PCF tapers can be obtained semiquantitatively from an equivalent depressed-cladding fiber model. Finally, we discuss the definition of adiabaticity in this open boundary problem.
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan-Yu; Biedermann, Grant W.; Deutsch, Ivan H.
2015-01-01
We study a scheme for implementing a controlled-Z (cz) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly excited Rydberg atoms when the blockade is imperfect. For reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a cz gate in <10 μ s with error probability on the order of 10-3.
Adiabatic Evolution in XXX Spin Chain is Fast
Korepin, V
2004-01-01
Adiabatic theorem of quantum mechanics was used by E. Farhi, J. Goldstone, S. Gutmann and M. Sipser to design quantum algorithms of a new kind. A quantum computer evolves slowly enough, so that it remains in its instantaneous ground state, which tells the solution. We consider XXX Heisenberg spin chain. We rotate magnetic field and change its magnitude. The ground state evolves from a ferromagnetic one into a nontrivial ground state of XXX anti-ferromagnet. This adiabatic evolution goes very gently. Because of SU(2) symmetry and integrability only one mode get exited. We prove that the time of the evolution scales as a square root of number of qubits. This is faster then other known examples.
Quantum state preparation in semiconductor dots by adiabatic rapid passage
Wu, Yanwen; Piper, I.M.; Ediger, M.; Brereton, P.; Schmidgall, E. R.; Hugues, M.; Hopkinson, M.; Phillips, R.T.
2010-01-01
Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We d...
Adiabatic Shear Bands in Simple and Dipolar Viscoplastic Materials
1991-08-01
shear banding, especially from a materials point oi *iew Experimental studies dealing with adiabatic .hear Danding mciude those of Zener and Hollomon...and especially in the region surrounding the center of the block, alters. The nonhomogeneity of the deformation near the corners is now evident...describe ehe work-hardening of the material and accounts approxi- mately for the history of ehe deformation. The rate of evolucion of 4> is assumed
High-Fidelity Entangled Bell States via Shortcuts to Adiabaticity
Paul, Koushik
2016-01-01
We present a couple of protocols based on shortcut to adiabaticity techniques for rapid generation of robust entangled Bell states in a system of two two-state systems. Our protocols rely on the so-called transitionless quantum driving (TQD) algorithm and Lewis-Riesenfeld invariant (LRI) method. Both TQD and LRI methods result in high fidelity in population transfer.Our study shows that it is possible to prepare an entangled state in infinitely short time without losing robustness and efficiency.
Adiabatic pipelining: a key to ternary computing with quantum dots.
Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I
2008-12-10
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
Characterization of Adiabatic Noise in Charge-Based Coherent Nanodevices
D'Arrigo, A.; Falci, G.; Mastellone, A.; Paladino, E.
2008-10-01
Low-frequency noise, often with 1/f spectrum, has been recognized as the main mechanism of decoherence in present-day solid state coherent nanodevices. The responsible degrees of freedom are almost static during the coherent time evolution of the device leading to effects analogous to inhomogeneous broadening in NMR. Here we present a characterization of the effects of adiabatic noise exploiting the tunability of nanodevices.
Adiabatic trapping in coupled kinetic Alfven-acoustic waves
Energy Technology Data Exchange (ETDEWEB)
Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)
2013-03-15
In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.
Adiabatic Compression Sensitivity of AF-M315E
2015-07-01
is pressurized to specific driving pressures into an accumulator tank above a rapid-opening valve. This valve is placed directly above the burst disc...this mission. Of particular interest is the sensitivity of the propellant at elevated temperatures and the resulting system peak pressures and...dynamic response characteristics. For this study, an adiabatic compression U-tube apparatus was used to determine the driving pressure threshold levels
Mapping the region of instability for adiabatic continuation method
GUTIÉRREZHERNANDEZ, JUAN PABLO; Fontalvo Alzate, Javier; Gómez García, Miguel Ángel
2011-01-01
The pioneer schematic ideas of Kimura and Levenspiel (Ind. Eng. Chem. Proc. Des. Dev., 16 (1977) 145 – 148) have been developed to find numerically the region of instability for adiabatic packed bed reactors. Three different cases of special industrial interest and complexity are presented. The highly exothermic gas-phase reactions: ammonia synthesis, methanol production from syn-gas, and SO₂ oxidation. Equations were parameterized and solved according to a continuation homotopy numerical met...
Hypercomputability of quantum adiabatic processes: Fact versus Prejudices
Kieu, T D
2005-01-01
We give an overview of a quantum adiabatic algorithm for Hilbert's tenth problem, including some discussions on its fundamental aspects and the emphasis on the probabilistic correctness of its findings. For the purpose of illustration, the numerical simulation results of some simple Diophantine equations are presented. We also discuss some prejudicial misunderstandings as well as some plausible difficulties faced by the algorithm in its physical implementation.
Excitation energies along a range-separated adiabatic connection
Energy Technology Data Exchange (ETDEWEB)
Rebolini, Elisa, E-mail: rebolini@lct.jussieu.fr; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr; Savin, Andreas, E-mail: savin@lct.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Teale, Andrew M. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Helgaker, Trygve [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway)
2014-07-28
We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for the He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.
A field theory characterization of interacting adiabatic particles in cosmology
Arteaga, Daniel
2008-01-01
We explore the adiabatic particle excitations of an interacting field in a cosmological background. By following the time-evolution of the quantum state corresponding to the particle excitation, we show how the basic properties characterizing the particle propagation can be recovered from the two-point propagators. As an application, we study the background-induced dissipative effects on the propagation of a two-level atom in an expanding universe.
A field theory characterization of interacting adiabatic particles in cosmology
Energy Technology Data Exchange (ETDEWEB)
Arteaga, Daniel [Departament de Fisica Fonamental and Institut de Ciencies del Cosmos, Facultat de Fisica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)], E-mail: darteaga@ub.edu
2008-08-07
We explore the adiabatic particle excitations of an interacting field in a cosmological background. By following the time evolution of the quantum state corresponding to the particle excitation, we show how the basic properties characterizing the particle propagation can be recovered from the two-point propagators. As an application, we study the background-induced dissipative effects on the propagation of a two-level atom in an expanding universe.
Adiabatic embedment of nanomechanical resonators in photonic microring cavities
Xiong, Chi; Li, Mo; Rooks, Michael; Tang, Hong X
2014-01-01
We report a circuit cavity optomechanical system in which a nanomechanical resonator is adiabatically embedded inside an optical ring resonator with ultralow transition loss. The nanomechanical device forms part of the top layer of a horizontal silicon slot ring resonator, which enables dispersive coupling to the dielectric substrate via a tapered nanogap. Our measurements show nearly uncompromised optical quality factors (Q) after the release of the mechanical beam.
Stimulated Raman adiabatic passage in physics, chemistry and beyond
Nikolay V. Vitanov; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas
2016-01-01
The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 (Gaubatz \\emph{et al.}, J. Chem. Phys. \\textbf{92}, 5363, 1990). Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry and beyond. This article reviews the many applications of STIRAP emphasizing the ...
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
Joyee Ghosh; R Ghosh; Deepak Kumar
2011-10-01
A three-level atom in a conﬁguration trapped in an optical cavity forms a basic unit in a number of proposed protocols for quantum information processing. This system allows for efﬁcient storage of cavity photons into long-lived atomic excitations, and their retrieval with high ﬁdelity, in an adiabatic transfer process through the ‘dark state’ by a slow variation of the control laser intensity. We study the full quantum mechanics of this transfer process with a view to examine the non-adiabatic effects arising from inevitable excitations of the system to states involving the upper level of , which is radiative. We ﬁnd that the ﬁdelity of storage is better, the stronger the control ﬁeld and the slower the rate of its switching off. On the contrary, unlike the adiabatic notion, retrieval is better with faster rates of switching on of an optimal control ﬁeld. Also, for retrieval, the behaviour with dissipation is non-monotonic. These results lend themselves to experimental tests. Our exact computations, when applied to slow variations of the control intensity for strong atom–photon couplings, are in very good agreement with Berry’s superadiabatic transfer results without dissipation.
Non-adiabatic oscillations of compact stars in general relativity
Gualtieri, L; Miniutti, G
2004-01-01
We have developed a formalism to study non-adiabatic, non-radial oscillations of compact stars in the frequency domain including the effects of thermal diffusion in a general relativistic framework. When a general equation of state depending on temperature is used, the perturbations of the fluid result in heat flux which is coupled with the spacetime geometry through the Einstein field equations. Our results show that the frequency of the first pressure (p) and gravity (g) oscillation modes is significantly affected by thermal diffusion, while that of the fundamental (f) mode is basically unaltered due to the global nature of that oscillation. The damping time of the oscillations is generally much smaller than in the adiabatic case (more than two orders of magnitude for the p- and g-modes) reflecting the effect of thermal dissipation. Both the isothermal and adiabatic limits are recovered in our treatment and we study in more detail the intermediate regime. Our formalism finds its natural astrophysical applic...
Steam bottoming cycle for an adiabatic diesel engine
Energy Technology Data Exchange (ETDEWEB)
Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.
1984-03-01
A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.
Adiabatic invariants for the regular region of the Dicke model
Bastarrachea-Magnani, M. A.; Relaño, A.; Lerma-Hernández, S.; López-del-Carpio, B.; Chávez-Carlos, J.; Hirsch, J. G.
2017-04-01
Adiabatic invariants for the non-integrable Dicke model are introduced. They are shown to provide approximate second integrals of motion in the energy region where the system exhibits a regular dynamics. This low-energy region, present for any set of values of the Hamiltonian parameters is described both with a semiclassical and a full quantum analysis in a broad region of the parameter space. Peres lattices in this region exhibit that many observables vary smoothly with energy, along distinct lines which beg for a formal description. It is demonstrated how the adiabatic invariants provide a rationale to their presence in many cases. They are built employing the Born–Oppenheimer approximation, valid when a fast system is coupled to a much slower one. As the Dicke model has one bosonic and one fermionic degree of freedom, two versions of the approximation are used, depending on which one is the faster. In both cases a noticeably accord with exact numerical results is obtained. The employment of the adiabatic invariants provides a simple and clear theoretical framework to study the physical phenomenology associated to these regimes, far beyond the energies where a quadratic approximation around the minimal energy configuration can be used.
Numerical study of polaron problem in the adiabatic limit
Marsiglio, Frank; Li, Zhou; Blois, Cindy; Baillie, Devin
2010-03-01
We study the polaron problem in a one dimensional chain and on a two dimensional square lattice. The models we have used are the Holstein model and the Su-Schrieffer-Heeger (SSH) model. By a variational procedure based on the Lanczos method, we are able to examine the polaron problem in the limit when the mass of the ion is very large, i.e. close to the adiabatic limit. It is known that for the Holstein model there is no phase transition [1] for any nonzero phonon energy. It is also known that for the one dimensional Holstein or SSH model there will be long range order [2] (e.g. dimerization) in the adiabatic limit at half-filling. It is then interesting to study the long range order on a two dimensional square lattice in and away from the adiabatic limit. Moreover, recent progress for the single polaron near an impurity (disorder) [3] make it an interesting problem for studying bond length disorder which can change the hopping energy in a specific direction in the Holstein model. Reference: [1] H. Lowen, Phys.Rev.B 37, 8661 (1988) [2] J.E.Hirsch and E. Frandkin, Phys. Rev. Lett. 49, 402 (1982) [3]A.S.Mishchenko et.al Phys.Rev.B 79(2009) 180301(R)
Quantum Adiabatic Algorithms, Small Gaps, and Different Paths
Farhi, Edward; Gosset, David; Gutmann, Sam; Meyer, Harvey B; Shor, Peter
2011-01-01
We construct a set of instances of 3SAT which are not solved efficiently using the simplest quantum adiabatic algorithm. These instances are obtained by picking random clauses all consistent with two disparate planted solutions and then penalizing one of them with a single additional clause. We argue that by randomly modifying the beginning Hamiltonian, one obtains (with substantial probability) an adiabatic path that removes this difficulty. This suggests that the quantum adiabatic algorithm should in general be run on each instance with many different random paths leading to the problem Hamiltonian. We do not know whether this trick will help for a random instance of 3SAT (as opposed to an instance from the particular set we consider), especially if the instance has an exponential number of disparate assignments that violate few clauses. We use a continuous imaginary time Quantum Monte Carlo algorithm in a novel way to numerically investigate the ground state as well as the first excited state of our system...
Wang, Li; Tu, Tao; Gong, Bo; Zhou, Cheng; Guo, Guang-Can
2016-01-07
High fidelity universal gates for quantum bits form an essential ingredient of quantum information processing. In particular, geometric gates have attracted attention because they have a higher intrinsic resistance to certain errors. However, their realization remains a challenge because of the need for complicated quantum control on a multi-level structure as well as meeting the adiabatic condition within a short decoherence time. Here, we demonstrate non-adiabatic quantum operations for a two-level system by applying a well-controlled geometric Landau-Zener-Stückelberg interferometry. By characterizing the gate quality, we also investigate the operation in the presence of realistic dephasing. Furthermore, the result provides an essential model suitable for understanding an interplay of geometric phase and Landau-Zener-Stückelberg process which are well explored separately.
Energy Technology Data Exchange (ETDEWEB)
MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; Clark, D. S.; Haan, S. W.; Jones, O. S.; Landen, O. L.; Milovich, J. L.; Robey, H. F.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-08-15
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratio of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.
Chluba, Jens
2014-01-01
In the expanding Universe, the average temperature of the cosmic microwave background (CMB) is expected to depend like TCMB (1+z) on redshift z. Adiabatic photon production (or destruction) or deviations from isotropy and homogeneity could modify this scaling and several observational tests have been carried out in response. Here, we explain why `adiabatic' conditions are extremely difficult to establish in the redshift range targeted by these tests. Thus, instead of leading to a simple rescaling of the CMB temperature, a spectral distortion should be produced, which can be constrained using COBE/FIRAS. For scenarios with late photon production, tests of the temperature-redshift relation (TRR) should therefore be reinterpreted as weak spectral distortion limits, directly probing the energy dependence of the photon production process. For inhomogeneous cosmologies, a y-type distortion is produced, but this type of distortion can be created in several ways. Here, we briefly discuss possible effects that may hel...
Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; a Beccara, Silvio; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; Alfè, Dario
2013-01-28
In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C(60) collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C(60) impact on the Si surface is in good agreement with our experimental findings.
Vaidya, B; Bodo, G; Massaglia, S
2015-01-01
An Equation of State (\\textit{EoS}) closes the set of fluid equations. Although an ideal EoS with a constant \\textit{adiabatic index} $\\Gamma$ is the preferred choice due to its simplistic implementation, many astrophysical fluid simulations may benefit from a more sophisticated treatment that can account for diverse chemical processes. Here, we first review the basic thermodynamic principles of a gas mixture in terms of its thermal and caloric EoS by including effects like ionization, dissociation as well as temperature dependent degrees of freedom such as molecular vibrations and rotations. The formulation is revisited in the context of plasmas that are either in equilibrium conditions (local thermodynamic- or collisional excitation- equilibria) or described by non-equilibrium chemistry coupled to optically thin radiative cooling. We then present a numerical implementation of thermally ideal gases obeying a more general caloric EoS with non-constant adiabatic index in Godunov-type numerical schemes.We discu...
Large-Strain Time-Temperature Equivalence and Adiabatic Heating of Polyethylene
Energy Technology Data Exchange (ETDEWEB)
Furmanski, Jevan [Los Alamos National Laboratory; Brown, Eric [Los Alamos National Laboratory; Cady, Carl M. [Los Alamos National Laboratory
2012-06-06
Time-temperature equivalence is a well-known phenomenon in time-dependent material response, where rapid events at a moderate temperature are indistinguishable from some occurring at modest rates but elevated temperatures. However, there is as-yet little elucidation of how well this equivalence holds for substantial plastic strains. In this work, we demonstrate time-temperature equivalence over a large range in a previously studied high-density polyethylene formulation (HDPE). At strain-rates exceeding 0.1/s, adiabatic heating confounds the comparison of nominally isothermal material response, apparently violating time-temperature equivalence. Strain-rate jumps can be employed to access the instantaneous true strain rate without heating. Adiabatic heating effects were isolated by comparing a locus of isothermal instantaneous flow stress measurements from strain-rate jumps up to 1/s with the predicted equivalent states at 0.01/s and 0.001/s in compression. Excellent agreement between the isothermal jump condition locus and the quasi-static tests was observed up to 50% strain, yielding one effective isothermal plastic response for each material for a given time-temperature equivalent state. These results imply that time-temperature equivalence can be effectively used to predict the deformation response of polymers during extreme mechanical events (large strain and high strain-rate) from measurements taken at reduced temperatures and nominal strain-rates in the laboratory.
A Theory of Self-Resonance After Inflation, Part 1: Adiabatic and Isocurvature Goldstone Modes
Hertzberg, Mark P; Spitzer, William G; Becerra, Juana C; Li, Lanqing
2014-01-01
We develop a theory of self-resonance after inflation. We study a large class of models involving multiple scalar fields with an internal symmetry. For illustration, we often specialize to dimension 4 potentials, but we derive results for general potentials. This is the first part of a two part series of papers. Here in Part 1 we especially focus on the behavior of long wavelengths modes, which are found to govern most of the important physics. Since the inflaton background spontaneously breaks the time translation symmetry and the internal symmetry, we obtain Goldstone modes; these are the adiabatic and isocurvature modes. We find general conditions on the potential for when a large instability band exists for these modes at long wavelengths. For the adiabatic mode, this is determined by a sound speed derived from the time averaged potential. While for the isocurvature mode, this is determined by a speed derived from a time averaged auxiliary potential. Interestingly, we find that this instability band usual...
Three-Body Coulomb Functions in the Hyperspherical Adiabatic Expansion Method
Garrido, E.; Kievsky, A.; Viviani, M.
2016-10-01
In this work we describe a numerical method devised to compute continuum three-body wave functions. The method is implemented using the hyperspherical adiabatic expansion for the three-body wave function imposing a box boundary condition. The continuum energy spectrum results discretized and, for specific quantum number values, all the possible incoming and outgoing channels are simultaneously computed. For a given energy, the hyperradial continuum functions form a matrix whose ij-term refers to specific incoming and outgoing channels. When applied to three-body systems interacting only through the Coulomb potential, this method provides the adiabatic representation of the regular three-body Coulomb wave function. The computation of the irregular Coulomb wave function representation is also discussed. These regular and irregular Coulomb functions can be used to extract the {S} -matrix for those reactions where, together with some short-range potential, the Coulomb interaction is also present. The method is illustrated in the case of the 3→ 3 process of three alpha particles.
Applications of Adiabatic Approximation to One- and Two-electron Phenomena in Strong Laser Fields
Bondar, Denys
2010-01-01
The adiabatic approximation is a natural approach for the description of phenomena induced by low frequency laser radiation because the ratio of the laser frequency to the characteristic frequency of an atom or a molecule is a small parameter. Since the main aim of this work is the study of ionization phenomena, the version of the adiabatic approximation that can account for the transition from a bound state to the continuum must be employed. Despite much work in this topic, a universally accepted adiabatic approach of bound-free transitions is lacking. Hence, based on Savichev's modified adiabatic approximation [Sov. Phys. JETP 73, 803 (1991)], we first of all derive the most convenient form of the adiabatic approximation for the problems at hand. Connections of the obtained result with the quasiclassical approximation and other previous investigations are discussed. Then, such an adiabatic approximation is applied to single-electron ionization and non-sequential double ionization of atoms in a strong low fr...
Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-ion Transport
An, Shuoming; del Campo, Adolfo; Kim, Kihwan
2016-01-01
Adiabatic dynamics plays an essential role in quantum technologies. By driving a quantum system slowly, the quantum evolution can be engineered with suppressed excitation. Yet, environmentally-induced decoherence limits the implementation of adiabatic protocols. Shortcuts to adiabaticity (STA) have the potential to revolutionize quantum technologies by speeding up the time evolution while mimicking adiabatic dynamics. These nonadiabatic protocols can be engineered by means an auxiliary control field is used to tailor excitations. Here we present the first experimental realization of counterdiabatic driving in a continuous variable system, implementing a shortcut to the adiabatic transport of a trapped ion, in which nonadiabatic transitions are suppressed during all stages of the process. The resulting dynamics is equivalent to a "fast-motion video" of the adiabatic trajectory. We experimentally demonstrate the enhanced robustness of the protocol with respect to alternative approaches based on classical local ...
Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space
An, Shuoming; Lv, Dingshun; Del Campo, Adolfo; Kim, Kihwan
2016-09-01
The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in phase space. The resulting dynamics is equivalent to a `fast-motion video' of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Adiabatic quantum computation and quantum annealing theory and practice
McGeoch, Catherine C
2014-01-01
Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'''' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a nov
Plasma heating via adiabatic magnetic compression-expansion cycle
Avinash, K.; Sengupta, M.; Ganesh, R.
2016-06-01
Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.
Non-adiabatic study of the Kepler subgiant KIC 6442183
Directory of Open Access Journals (Sweden)
Grosjean M.
2015-01-01
Full Text Available Thanks to the precision of Kepler observations, [3] were able to measure the linewidth and amplitude of individual modes (including mixed modes in several subgiant power spectra. We perform a forward modelling of a Kepler subgiant based on surface properties and observed frequencies. Non-adiabatic computations including a time- dependent treatment of convection give the lifetimes of radial and non-radial modes. Next, combining the lifetimes and inertias with a stochastic excitation model gives the amplitudes of the modes. We can now directly compare theoretical and observed linewidths and amplitudes of mixed-modes to obtain new constraints on our theoretical models.
Adiabatic Passage of Collective Excitations in Atomic Ensembles
Institute of Scientific and Technical Information of China (English)
LIYong; MIAOYuan-Xiu; SUNChang-Pu
2004-01-01
We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Rmann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.
Adiabatic Passage of Collective Excitations in Atomic Ensembles
Institute of Scientific and Technical Information of China (English)
LI Yong; MIAO Yuan-Xiu; SUN Chang-Pu
2004-01-01
We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Ramann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.
Fast CNOT gate via shortcuts to adiabatic passage
Wang, Zhe; Xia, Yan; Chen, Ye-Hong; Song, Jie
2016-10-01
Based on the shortcuts to adiabatic passage, we propose a scheme for directly implementing a controlled-not (CNOT) gate in a cavity quantum electrodynamics system. Moreover, we generalize the scheme to realize a CNOT gate in two separate cavities connected by an optical fiber. The strictly numerical simulation shows that the schemes are fast and insensitive to the decoherence caused by atomic spontaneous emission and photon leakage. In addition, the schemes can provide a theoretical basis for the manipulation of the multiqubit quantum gates in distant nodes of a quantum network.
Adiabatic transport of qubits around a black hole
Viennot, David
2016-01-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.
1988-01-01
in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...... constant-temperature or constant-magnetic-field quenches into the antiferromagnetic phase is found at late times to obey the classical Allen-Cahn growth law. The qualitative features of isentropic quenches and the nonequilibrium ordering phenomena during controlled heating treatments at constant rate...
Power comparison of CMOS and adiabatic full adder circuit
Reddy, Sunil Gavaskar; 10.5121/vlsic.2011.2306
2011-01-01
Full adders are important components in applications such as digital signal processors (DSP) architectures and microprocessors. Apart from the basic addition adders also used in performing useful operations such as subtraction, multiplication, division, address calculation, etc. In most of these systems the adder lies in the critical path that determines the overall performance of the system. In this paper conventional complementary metal oxide semiconductor (CMOS) and adiabatic adder circuits are analyzed in terms of power and transistor count using 0.18UM technology.
Diabatic Versus Adiabatic Calculation of Torsion-Vibration Interactions
Hougen, Jon T.
2013-06-01
The introductory part of this talk will deal briefly with two historical topics: (i) use of the words adiabatic, nonadiabatic, and diabatic in thermodynamics and quantum mechanics, and (ii) application of diabatic and adiabatic ideas to vibrational energy level calculations for a pair of diatomic-molecule potential energy curves exhibiting an avoided crossing. The main part of the talk will be devoted to recent work with Li-Hong Xu and Ron Lees on how ab initio projected frequency calculations for small-amplitude vibrations along the large-amplitude internal rotation path in methanol can best be used to help guide experimental assignments and fits in the IR vibrational spectrum. The three CH stretching vibrations for CH_{3}OH can conveniently be represented as coefficients multiplying three different types of basis vibrations, i.e., as coefficients of: (i) the local mode C-H_i bond displacements δr_{i} for hydrogens H_{1}, H_{2} and H_{3} of the methyl top, (ii) symmetrized linear combinations of the three δr_{i} of species A_{1} oplus E in the permutation-inversion group G_{6} = C_{3v} appropriate for methanol, or (iii) symmetrized linear combinations of the three δr_{i} of species 2A_{1} oplus A_{2} in the permutation-inversion group G_{6}. In this talk, we will focus on diabatic and adiabatic computations for the A_{1} oplus E basis vibrations of case (ii) above. We will briefly explain how Jahn-Teller-like and Renner-Teller-like torsion-vibration interaction terms occurring in the potential energy expression in the diabatic calculation become torsion-vibration Coriolis interaction terms occurring in the kinetic energy expression of the adiabatic calculations, and also show how, for algebraically solvable parameter choices, the same energy levels are obtained from either calculation. A final conclusion as to which approach is computationally superior for the numerical data given in a quantum chemistry output file has not yet been arrived at.
Adiabatic regularization of power spectra in nonminimally coupled chaotic inflation
Alinea, Allan L.
2016-10-01
We investigate the effect of adiabatic regularization on both the tensor- and scalar-perturbation power spectra in nonminimally coupled chaotic inflation. Similar to that of the minimally coupled general single-field inflation, we find that the subtraction term is suppressed by an exponentially decaying factor involving the number of e -folds. By following the subtraction term long enough beyond horizon crossing, the regularized power spectrum tends to the ``bare'' power spectrum. This study justifies the use of the unregularized (``bare'') power spectrum in standard calculations.
Nonlinear effects generation in non-adiabatically tapered fibres
Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier
2015-12-01
Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.
ADELE adiabatic compressed air energy storage. Status and perspectives
Energy Technology Data Exchange (ETDEWEB)
Freund, Sebastian [General Electric Deutschland Holding GmbH, Garching (Germany). GE Global Research Renewable Energy Systems Lab.; Marquardt, Roland; Moser, Peter [RWE Power AG, Essen (Germany). Research and Development Innovative Power Plant Technology
2013-06-01
This paper gives an overview about compressed air energy storage (CAES) technology and a summary of the ADELE programme, a multi-year R and D programme undertaken by a consortium led by RWE Power to develop adiabatic (A) CAES technology and commercialise the first plant. The ACAES technology is to utilise waste heat developing upon compression in order to increase the entire efficiency. The ADELE-ING project is to provide the basis for making the decision on the construction of a 85 MW prototype. (orig.)
Adiabatic regularisation of power spectra in nonminimally coupled chaotic inflation
Alinea, Allan L
2016-01-01
We investigate the effect of adiabatic regularisation on both the tensor- and scalar-perturbation power spectra in \\textit{nonminimally} coupled chaotic inflation. Similar to that of the \\textit{minimally} coupled general single-field inflation, we find that the subtraction term is suppressed by an exponentially decaying factor involving the number of $ e $-folds. By following the subtraction term long enough beyond horizon crossing, the regularised power spectrum tends to the "bare" power spectrum. This study justifies the use of the unregularised ("bare") power spectrum in standard calculations.
Metallization of Nanofilms in Strong Adiabatic Electric Fields
Durach, Maxim; Rusina, Anastasia; Kling, Matthias F.; Stockman, Mark I.
2010-08-01
We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). This is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1V/Å and pulse durations ranging from ˜1fs to ˜10ns for a film thickness of 3-10 nm.
From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity
Okuyama, Manaka; Takahashi, Kazutaka
2016-08-01
Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.
Stimulated Raman adiabatic passage analogues in classical physics
Energy Technology Data Exchange (ETDEWEB)
Rangelov, A A [University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Vitanov, N V [Department of Physics, Sofia University, James Bourchier 5 blvd., 1164 Sofia (Bulgaria); Shore, B W [618 Escondido Cir., Livermore, CA (United States)
2009-03-14
Stimulated Raman adiabatic passage (STIRAP) is a well-established technique for producing coherent population transfer in a three-state quantum system. We here exploit the resemblance between the Schroedinger equation for such a quantum system and the Newton equation of motion for a classical system undergoing torque to discuss several classical analogues of STIRAP, notably the motion of a moving charged particle subject to the Lorentz force of a quasistatic magnetic field, the orientation of a magnetic moment in a slowly varying magnetic field and the Coriolis effect. Like STIRAP, these phenomena occur for counterintuitive motion of the torque and are robustly insensitive to small changes in the interaction properties.
Adiabatic heavy-ion fusion potentials for fusion at deep sub-barrier energies
Indian Academy of Sciences (India)
S V S Sastry; S Kailas; A K Mohanty; A Saxena
2005-01-01
The recently reported unusual behaviour of fusion cross-sections at extreme sub-barrier energies has been examined. The adiabatic limit of fusion barriers has been determined from experimental data using the barrier penetration model. These adiabatic barriers are consistent with the adiabatic fusion barriers derived from the modified Wilzynska–Wilzynski prescription. The fusion barrier systematics has been obtained for a wide range of heavy-ion systems.
Institute of Scientific and Technical Information of China (English)
WANG Yu-Sheng; ZHANG Xiao-Ni; YUAN Bao-He; FANG Jian-Hui; YANG Guo-Hong; LIN Peng; PANG Ting
2008-01-01
Based on the concept of higher-order adiabatic invariants of mechanical system with action of a small perturbation, the perturbation to Lie symmetry and generalized Hojman adiabatic invariants for the relativistic Hamilton system are studied. Perturbation to Lie symmetry is discussed under general infinitesimal transformation of groups in which time is variable. The form and the criterion of generalized Hojman adiabatic invariants for this system are obtained. Finally, an example is given to illustrate the results.
Perturbation to Lie Symmetry and Adiabatic Invariants for General Holonomic Mechanical Systems
Institute of Scientific and Technical Information of China (English)
DING Ning; FANG Jian-Hui; WANG Peng; ZHANG Xiao-Ni
2007-01-01
Based on the concept of adiabatic invariant, the perturbation to the Lie symmetry and adiabatic invariants for general holonomic mechanical systems are studied. The exact invariants induced directly from the Lie symmetry of the system without perturbation are given. The perturbation to the Lie symmetry is discussed and the adiabatic invariants that have the different form from that in [Act. Phys. Sin. 55 (2006) 3236 (in Chinese)] of the perturbed system, are obtained.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-01-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.
Adiabatic invariants of generalized Lutzky type for disturbed holonomic nonconservative systems
Institute of Scientific and Technical Information of China (English)
Luo Shao-Kai; Cai Jian-Le; Jia Li-Qun
2008-01-01
Based on the definition of higher-order adiabatic invariants of a mechanical system,a new type of adiabatic invariants,i.e.generalized Lutzky adiabatic invariants,of a disturbed holonomic nonconservative mechanical system are obtained by investigating the perturbation of Lie symmetries for a holonomic nonconservative mechanical system with the action of small disturbance.The adiabatic invaxiants and the exact invariants of the Lutzky type of some special cases,for example,the Lie point symmetrical transformations,the special Lie symmetrical transformations,and the Lagrange system,are given.And an example is given to illustrate the application of the method and results.
A new type of adiabatic invariants for nonconservative systems of generalized classical mechanics
Institute of Scientific and Technical Information of China (English)
Zhang Yi
2006-01-01
The perturbations to symmetries and adiabatic invariants for nonconservative systems of generalized classical mechanics are studied. The exact invariant in the form of Hojman from a particular Lie symmetry for an undisturbed system of generalized mechanics is given. Based on the concept of high-order adiabatic invariant in generalized mechanics, the perturbation to Lie symmetry for the system under the action of small disturbance is investigated, and a new adiabatic invariant for the nonconservative system of generalized classical mechanics is obtained, which can be called the Hojman adiabatic invariant. An example is also given to illustrate the application of the results.
Generation of tree-type three-dimensional entangled states via adiabatic passage
Song, Chong; Su, Shi-Lei; Wu, Jin-Lei; Wang, Dong-Yang; Ji, Xin; Zhang, Shou
2016-06-01
We propose a scheme for generating a type of novel tree-type three-dimensional entangled state. In the scheme, an atom and two Bose-Einstein condensates (BECs) are individually trapped in three spatially separated optical cavities which are connected by two optical fibers. Because the system evolves along the dark state via adiabatic passage, the populations of the intermediate excited states of the atom and BECs are so negligible that the influence of atomic spontaneous radiation on the fidelity is restrained. In addition, because of the certain limit condition used, the cavity decay and fiber loss are efficiently suppressed. This novel three-dimensional entangled state is likely to have applications for improving quantum communication security.
Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7).
Xu, Kangzhen; Song, Jirong; Zhao, Fengqi; Ma, Haixia; Gao, Hongxu; Chang, Chunran; Ren, Yinghui; Hu, Rongzu
2008-10-30
[H(2)N=C(NH(2))(2)](+)(FOX-7)(-)-G(FOX-7) was prepared by mixing FOX-7 and guanidinium chloride solution in potassium hydroxide solution. Its thermal decomposition was studied under the non-isothermal conditions with DSC and TG/DTG methods. The apparent activation energy (E) and pre-exponential constant (A) of the two exothermic decomposition stages were obtained by Kissinger's method and Ozawa's method, respectively. The critical temperature of thermal explosion (T(b)) was obtained as 201.72 degrees C. The specific heat capacity of G(FOX-7) was determined with Micro-DSC method and theoretical calculation method and the standard molar specific heat capacity is 282.025 J mol(-1) K(-1) at 298.15 K. Adiabatic time-to-explosion of G(FOX-7) was also calculated to be a certain value between 13.95 and 15.66 s.
Simulation of Quasi-Adiabatic Beam Capture into Acceleration at the Nuclotron
Volkov, V I; Issinsky, I B; Kovalenko, A D
2003-01-01
The routine RF system being used at the Nuclotron allows one to inject the beam at ramping magnetic field with following acceleration at constant amplitude of accelerating voltage. At these conditions at least a half of the particles circulating in the vacuum chamber after injection is not captured in longitudinal acceptance. At the same time vacuum chamber sizes permit to extend the momentum spread of the beam enough to make gymnastic with it inside the stable zone of longitudinal phase space on the flat magnetic field at injection. A quasi-adiabatic capture was considered for increasing the Nuclotron beam intensity. Simulation of such a kind of process with subsequent acceleration was performed. It was shown that in this case it is possible to capture and accelerate up to 100 % of the injected beam.
DEFF Research Database (Denmark)
Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond
2009-01-01
We report an implementation of adiabatic time-dependent density functional theory based on the 4-component relativistic Dirac-Coulomb Hamiltonian and a closed-shell reference. The implementation includes noncollinear spin magnetization and full derivatives of functionals, including hybrid...... into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...... generalized gradient approximation (GGA) functionals. We avoid reducing the generalized eigenvalue problem to half the dimension involving the square of excitation energies since this may introduce spurious roots and also squares the matrix condition number. Rather we impose structure in terms of hermiticity...
Dissipative advective accretion disc solutions with variable adiabatic index around black holes
Kumar, Rajiv
2014-01-01
We investigated accretion onto black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multi-species fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 0.001-12 \\% of Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high viscosity parameters, high accretion rates, as well as, for wide range of comp...
Fowler-Nordheim emission modified by laser pulses in the adiabatic regime
Rokhlenko, Alexander
2016-01-01
We investigate enhanced field emission due to a continuous or pulsed oscillating field added to a constant electric field $E$ at the emitter surface. When the frequency of oscillation, field strength, and property of the emitter material satisfy the Keldysh condition $\\gamma<1/2$ one can use the adiabatic approximation for treating the oscillating field, i.e. consider the tunneling through the instantaneous Fowler-Nordheim barrier created by both fields. Due to the great sensitivity of the emission to the field strength the average tunneling current can be much larger than the current produced by only the constant field. We carry out the computations for arbitrary strong constant electric fields, beyond the commonly used Fowler-Nordheim approximation which exhibit in particular an important property of the wave function inside the potential barrier where it is found to be monotonically decreasing without oscillations.
Khoury, Justin
2009-01-01
The universe can be made flat and smooth by undergoing a phase of ultra-slow (ekpyrotic) contraction with equation of state w >> 1, a condition that is achievable with a single, canonical scalar field and conventional general relativity. It has been argued, though, that another goal, generating scale-invariant density perturbations, requires at least two scalar fields and a two-step process that first produces entropy fluctuations and then converts them to curvature perturbations. In this paper, we exploit a loophole in the argument and introduce an ekpyrotic model based on a single, canonical scalar field that utilizes a purely "adiabatic mechanism" to generate nearly scale-invariant curvature fluctuations. The curvature perturbation tends to a constant at long wavelengths, indicating that the background evolution is a dynamical attractor. The resulting spectrum is slightly red with distinctive non-gaussian fluctuations.
The 0.1K bolometers cooled by adiabatic demagnetization
Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.
1983-01-01
The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.
Breakdown of the adiabatic Born-Oppenheimer approximation in graphene
Pisana, Simone; Lazzeri, Michele; Casiraghi, Cinzia; Novoselov, Kostya S.; Geim, A. K.; Ferrari, Andrea C.; Mauri, Francesco
2007-03-01
The adiabatic Born-Oppenheimer approximation (ABO) has been the standard ansatz to describe the interaction between electrons and nuclei since the early days of quantum mechanics. ABO assumes that the lighter electrons adjust adiabatically to the motion of the heavier nuclei, remaining at any time in their instantaneous ground state. ABO is well justified when the energy gap between ground and excited electronic states is larger than the energy scale of the nuclear motion. In metals, the gap is zero and phenomena beyond ABO (such as phonon-mediated superconductivity or phonon-induced renormalization of the electronic properties) occur. The use of ABO to describe lattice motion in metals is, therefore, questionable. In spite of this, ABO has proved effective for the accurate determination of chemical reactions, molecular dynamics and phonon frequencies in a wide range of metallic systems. Here, we show that ABO fails in graphene. Graphene, recently discovered in the free state, is a zero-bandgap semiconductor that becomes a metal if the Fermi energy is tuned applying a gate voltage, Vg. This induces a stiffening of the Raman G peak that cannot be described within ABO.
Adiabatic Compression of Compact Tori for Current Drive and Heating
Woodruff, Simon; McNab, Angus; Miller, Kenneth; Ziemba, Tim
2008-11-01
Several critical issues stand in the development path for compact tori. An important one is the production of strong magnetic fields, (or large flux amplifications) by use of a low current source. The Pulsed Build-up Experiment is a Phase II SBIR project in which we aim to show a new means for generating strong magnetic fields from a low current source, namely, the repetitive injection of helicity-bearing plasma that also undergoes an acceleration and compression. In the Phase I SBIR, advanced computations were benchmarked against analytic theory and run to determine the best means for the acceleration and compression of a compact torus plasma. The study included detailed simulations of magnetic reconnection. In Phase II, an experiment has been designed and is being built to produce strong magnetic fields in a spheromak by the repetitive injection of magnetic helicity from a low current coaxial plasma source. The plasma will be accelerated and compressed in a similar manner to a traveling wave adiabatic compression scheme that was previously applied to a mirror plasma [1]. [1] P. M. Bellan Scalings for a Traveling Mirror Adiabatic Magnetic Compressor Rev. Sci. Instrum. 53(8) 1214 (1982) Work supported by DOE Grant No. DE-FG02-06ER84449.
Shortcut to adiabaticity for an anisotropic unitary Fermi gas
Deng, Shujin; Yu, Qianli; Wu, Haibin
2016-01-01
Coherent control of complex quantum systems is a fundamental requirement in quantum information processing and engineering. Recently developed notion of shortcut to adiabaticity (STA) has spawned intriguing prospects. So far, the most experimental investigations of STA are implemented in the ideal thermal gas or the weakly interacting ultracold Bose gases. Here we report the first demonstration of a many-body STA in a 3D anisotropically trapped unitary Fermi gas. A new dynamical scaling law is demonstrated on such a strongly interacting quantum gas. By simply engineering the frequency aspect ratio of a harmonic trap, the dynamics of the gas can be manipulated and the many-body state can be transferred adiabatically from one stationary state to another one in short time scale without the excitation. The universal scaling both for non-interacting and unitary Fermi gas is also verified. This could be very important for future many-body quantum engineering and the exploration of the fundamental law of the thermod...
Directory of Open Access Journals (Sweden)
Rajinder Pal
2016-03-01
Full Text Available Entropy generation, and hence exergy destruction, in adiabatic flow of unstable and surfactant-stabilized emulsions was investigated experimentally in different diameter pipes. Four types of emulsion systems are investigated covering a broad range of the dispersed-phase concentration: (a unstable oil-in-water (O/W emulsions without surfactant; (b surfactant-stabilized O/W emulsions; (c unstable water-in-oil (W/O emulsions without surfactant; and (d surfactant-stabilized W/O emulsions. The entropy generation rate per unit pipe length is affected by the type of the emulsion as well as its stability. Unstable emulsions without any surfactant present at the interface generate less entropy in the turbulent regime as compared with the surfactant-stabilized emulsions of the same viscosity and density. The effect of surfactant is particularly severe in the case of W/O emulsions. In the turbulent regime, the rate of entropy generation in unstable W/O emulsions is much lower in comparison with that observed in the stable W/O emulsions. A significant delay in the transition from laminar to turbulent regime is also observed in the case of unstable W/O emulsion. Finally, the analysis and simulation results are presented on non-adiabatic pipeline flow of emulsions.
A model study of assisted adiabatic transfer of population in the presence of collisional dephasing
Energy Technology Data Exchange (ETDEWEB)
Masuda, Shumpei, E-mail: shumpei.masuda@aalto.fi [QCD Labs, Department of Applied Physics, Aalto University, Aalto 00076 (Finland); Rice, Stuart A., E-mail: s-rice@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)
2015-06-28
Previous studies have demonstrated that when experimental conditions generate non-adiabatic dynamics that prevents highly efficient population transfer between states of an isolated system by stimulated Raman adiabatic passage (STIRAP), the addition of an auxiliary counter-diabatic field (CDF) can restore most or all of that efficiency. This paper examines whether that strategy is also successful in a non-isolated system in which the energies of the states fluctuate, e.g., when a solute is subject to collisions with solvent. We study population transfer in two model systems: (i) the three-state system used by Demirplak and Rice [J. Chem. Phys. 116, 8028 (2002)] and (ii) a four-state system, derived from the simulation studies of Demirplak and Rice [J. Chem. Phys. 125, 194517 (2006)], that mimics HCl in liquid Ar. Simulation studies of the vibrational manifold of HCl in dense fluid Ar show that the collision induced vibrational energy level fluctuations have asymmetric distributions. Representations of these asymmetric energy level fluctuation distributions are used in both models (i) and (ii). We identify three sources of degradation of the efficiency of STIRAP generated selective population transfer in model (ii): too small pulse areas of the laser fields, unwanted interference arising from use of strong fields, and the vibrational detuning. For both models (i) and (ii), our examination of the efficiency of STIRAP + CDF population transfer under the influence of the asymmetric distribution of the vibrational energy fluctuations shows that there is a range of field strengths and pulse durations under which STIRAP + CDF control of population transfer has greater efficiency than does STIRAP generated population transfer.
Properties of a two stage adiabatic demagnetization refrigerator
Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.
2015-12-01
Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.
A Random Matrix Model of Adiabatic Quantum Computing
Mitchell, D R; Lue, W; Williams, C P; Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2004-01-01
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of Random Matrix Theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances, i.e., those having a critical ratio of clauses to variables, the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathemat...
Optical waveguide device with an adiabatically-varying width
Watts; Michael R. , Nielson; Gregory N.
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
Adiabatic approximation for the Rabi model with broken inversion symmetry
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2017-01-01
We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.
Cosmological consequences of an adiabatic matter creation process
Nunes, Rafael C
2016-01-01
In this paper we investigate the cosmological consequences of a continuous matter creation associated with the production of particles by the gravitational field acting on the quantum vacuum. To illustrate this, three phenomenological models are considered. An equivalent scalar field description is presented for each models. The effects on the cosmic microwave background power spectrum are analyzed for the first time in the context of adiabatic matter creation cosmology. Further, we introduce a model independent treatment, $Om$, which depends only on the Hubble expansion rate and the cosmological redshift to distinguish any cosmological model from $\\Lambda$CDM by providing a null test for the cosmological constant, meaning that, for any two redshifts $z_1$, $z_2$, $Om (z)$ is same, i.e. $Om (z_1)- Om (z_2)= 0$. Also, this diagnostic can differentiate between several cosmological models by indicating their quintessential/ phantom behavior without knowing the accurate value of the matter density, and the presen...
Adiabatic quantum pump in a zigzag graphene nanoribbon junction
Institute of Scientific and Technical Information of China (English)
张林
2015-01-01
The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p–n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device.
Adiabatic Dynamics of Edge Waves in Photonic Graphene
Ablowitz, M J; Ma, Y -P
2014-01-01
The propagation of localized edge modes in photonic honeycomb lattices, formed from an array of adiabatically varying periodic helical waveguides, is considered. Asymptotic analysis leads to an explicit description of the underlying dynamics. Depending on parameters, edge states can exist over an entire period or only part of a period; in the latter case an edge mode can effectively disintegrate and scatter into the bulk. In the presence of nonlinearity, a `time'-dependent one-dimensional nonlinear Schr\\"odinger (NLS) equation describes the envelope dynamics of edge modes. When the average of the `time varying' coefficients yields a focusing NLS equation, soliton propagation is exhibited. For both linear and nonlinear systems, certain long lived traveling modes with minimal backscattering are found; they exhibit properties of topologically protected states.
Influence of coherent adiabatic excitation on femtosecond transient signals
Conde, A Peralta; Longarte, A
2016-01-01
The transient signals derived from femtosecond pump-probe experiments are analyzed in terms of the coherent evolution of the energy levels perturbed by the excitation pulse. The model system is treated as the sum of independent two-level subsystems that evolve adiabatically or are permanently excited, depending on the detuning from the central wavelength of the excitation laser. This approach will allow us to explain numerically and analytically the convergence between the coherent and incoherent (rate equations) treatments for complex multi-level systems. It will be also shown that the parameter that determines the validity of the incoherent treatment is the distribution of states outside and inside the laser bandwidth, rather than the density of states as it is commonly accepted.
Adiabatic pumping of Chern-Simons axion coupling.
Taherinejad, Maryam; Vanderbilt, David
2015-03-06
We study the adiabatic pumping of the Chern-Simons axion (CSA) coupling along a parametric loop characterized by a nonzero second Chern number C^{(2)} from the viewpoint of the hybrid Wannier representation, in which the Wannier charge centers are visualized as sheets defined over a projected 2D Brillouin zone. We derive a new formula for the CSA coupling, expressing it as an integral involving Berry curvatures and potentials defined on the Wannier charge center sheets. We show that a loop characterized by a nonzero C^{(2)} requires a series of sheet-touching events at which 2π quanta of Berry curvature are passed from sheet to sheet, in such a way that e^{2}/h units of CSA coupling are pumped by a lattice vector by the end of the cycle. We illustrate these behaviors via explicit calculations on a model tight-binding Hamiltonian and discuss their implications.
Duality in adiabatic level crossing Quantum coherence and complete reflection
Fujikawa, K; Fujikawa, Kazuo; Suzuki, Hiroshi
1997-01-01
A field dependent su(2) gauge transformation connects between the adiabatic and diabatic pictures in the (Landau-Zener-Stueckelberg) level crossing problem. It is pointed out that weak and strong level crossing interactions are interchanged under this transformation, and thus realizing a naive strong and weak duality. A reliable perturbation theory is thus formulated in the both limits of weak and strong interactions. Main characteristics of the level crossing phenomena such as the Landau-Zener formula including its numerical coefficient are well-described by simple perturbation theory without referring to Stokes phenomena. We also show that quantum coherence in a double well potential is generally suppressed by the effect of level crossing, which is analogous to the effect of Ohmic dissipation on quantum coherence.
Diabatic and Adiabatic Collective Motion in a Model Pairing System
Nakatsukasa, T; Nakatsukasa, Takashi; Walet, Niels R.
1998-01-01
Large amplitude collective motion is investigated for a model pairing Hamiltonian containing an avoided level crossing. A classical theory of collective motion for the adiabatic limit is applied utilising either a time-dependent mean-field theory or a direct parametrisation of the time-dependent Schrödinger equation. A modified local harmonic equation is formulated to take account of the Nambu-Goldstone mode. It turns out that in some cases the system selects a diabatic path. Requantizing the collective Hamiltonian, a reasonable agreement with an exact calculation for the low-lying levels are obtained for both weak and strong pairing force. This improves on results of the conventional Born-Oppenheimer approximation.
Reversibility and Adiabatic Computation Trading Time and Space for Energy
Li, Maozhen; Li, Ming; Vitanyi, Paul
1996-01-01
Future miniaturization and mobilization of computing devices requires energy parsimonious `adiabatic' computation. This is contingent on logical reversibility of computation. An example is the idea of quantum computations which are reversible except for the irreversible observation steps. We propose to study quantitatively the exchange of computational resources like time and space for irreversibility in computations. Reversible simulations of irreversible computations are memory intensive. Such (polynomial time) simulations are analysed here in terms of `reversible' pebble games. We show that Bennett's pebbling strategy uses least additional space for the greatest number of simulated steps. We derive a trade-off for storage space versus irreversible erasure. Next we consider reversible computation itself. An alternative proof is provided for the precise expression of the ultimate irreversibility cost of an otherwise reversible computation without restrictions on time and space use. A time-irreversibility tra...
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Directory of Open Access Journals (Sweden)
Antonio Enea Romano
2016-04-01
We then consider an example in which cw=cs, where δPnad=δPc,nad=0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense is not always enough to ensure the conservation of Rc or ζ.
Effect of Poisson noise on adiabatic quantum control
Kiely, A.; Muga, J. G.; Ruschhaupt, A.
2017-01-01
We present a detailed derivation of the master equation describing a general time-dependent quantum system with classical Poisson white noise and outline its various properties. We discuss the limiting cases of Poisson white noise and provide approximations for the different noise strength regimes. We show that using the eigenstates of the noise superoperator as a basis can be a useful way of expressing the master equation. Using this, we simulate various settings to illustrate different effects of Poisson noise. In particular, we show a dip in the fidelity as a function of noise strength where high fidelity can occur in the strong-noise regime for some cases. We also investigate recent claims [J. Jing et al., Phys. Rev. A 89, 032110 (2014), 10.1103/PhysRevA.89.032110] that this type of noise may improve rather than destroy adiabaticity.
Differential geometric treewidth estimation in adiabatic quantum computation
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-10-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Wigner phase space distribution via classical adiabatic switching
Energy Technology Data Exchange (ETDEWEB)
Bose, Amartya [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Makri, Nancy [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, Illinois 61801 (United States)
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
DEFF Research Database (Denmark)
Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl;
1999-01-01
adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...
Kimura, Jun-Ichi; Kawabata, Hiroshi
2015-01-01
present a new numerical trace element mass balance model for adiabatic melting of a pyroxenite-bearing peridotite for estimating mantle potential temperature, depth of melting column, and pyroxenite fraction in the source mantle for a primary ocean basalt/picrite. The Ocean Basalt Simulator version 1 (OBS1) uses a thermodynamic model of adiabatic melting of a pyroxenite-bearing peridotite with experimentally/thermodynamically parameterized liquidus-solidus intervals and source mineralogy. OBS1 can be used to calculate a sequence of adiabatic melting with two melting models, including (1) melting of peridotite and pyroxenite sources with simple mixing of their fractional melts (melt-melt mixing model), and (2) pyroxenite melting, melt metasomatism in the host peridotite, and melting of the metasomatized peridotite (source-metasomatism model). OBS1 can be used to explore (1) the fractions of peridotite and pyroxenite, (2) mantle potential temperature, (3) pressure of termination of melting, (4) degree of melting, and (5) residual mode of the sources. In order to constrain these parameters, the model calculates a mass balance for 26 incompatible trace elements in the sources and in the generated basalt/picrite. OBS1 is coded in an Excel spreadsheet and runs with VBA macros. Using OBS1, we examine the source compositions and conditions of the mid-oceanic ridge basalts, Loihi-Koolau basalts in the Hawaiian hot spot, and Jurassic Shatsky Rise and Mikabu oceanic plateau basalts and picrites. The OBS1 model shows the physical conditions, chemical mass balance, and amount of pyroxenite in the source peridotite, which are keys to global mantle recycling.
Omiste, J J; Schmelcher, P; González-Férez, R; Holmegaard, L; Nielsen, J H; Stapelfeldt, H; Küpper, J
2011-01-01
We present a theoretical study of recent laser-alignment and mixed-field-orientation experiments of asymmetric top molecules. In these experiments, pendular states were created using linearly polarized strong ac electric fields from pulsed lasers in combination with weak electrostatic fields. We compare the outcome of our calculations with experimental results obtained for the prototypical large molecule benzonitrile (C$_7$H$_5$N) [J.L. Hansen et al, Phys. Rev. A, 83, 023406 (2011)] and explore the directional properties of the molecular ensemble for several field configurations, i.e., for various field strengths and angles between ac and dc fields. For perpendicular fields one obtains pure alignment, which is well reproduced by the simulations. For tilted fields, we show that a fully adiabatic description of the process does not reproduce the experimentally observed orientation, and it is mandatory to use a diabatic model for population transfer between rotational states. We develop such a model and compare ...
Energy-Efficient and Secure S-Box circuit using Symmetric Pass Gate Adiabatic Logic
Energy Technology Data Exchange (ETDEWEB)
Kumar, Dinesh [University of Kentucky, Lexington; Thapliyal, Himanshu [ORNL; Mohammad, Azhar [University of Kentucky, Lexington; Singh, Vijay [University of Kentucky, Lexington; Perumalla, Kalyan S [ORNL
2016-01-01
Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs. Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.
Recent developments in trapping and manipulation of atoms with adiabatic potentials
Garraway, Barry M.; Perrin, Hélène
2016-09-01
A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.
Mitra, Avik; Ghosh, Arindam; Das, Ranabir; Patel, Apoorva; Kumar, Anil
2005-12-01
Quantum adiabatic algorithm is a method of solving computational problems by evolving the ground state of a slowly varying Hamiltonian. The technique uses evolution of the ground state of a slowly varying Hamiltonian to reach the required output state. In some cases, such as the adiabatic versions of Grover's search algorithm and Deutsch-Jozsa algorithm, applying the global adiabatic evolution yields a complexity similar to their classical algorithms. However, using the local adiabatic evolution, the algorithms given by J. Roland and N.J. Cerf for Grover's search [J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A 65 (2002) 042308] and by Saurya Das, Randy Kobes, and Gabor Kunstatter for the Deutsch-Jozsa algorithm [S. Das, R. Kobes, G. Kunstatter, Adiabatic quantum computation and Deutsh's algorithm, Phys. Rev. A 65 (2002) 062301], yield a complexity of order N (where N=2(n) and n is the number of qubits). In this paper, we report the experimental implementation of these local adiabatic evolution algorithms on a 2-qubit quantum information processor, by Nuclear Magnetic Resonance.
Avron, Joseph
2016-01-01
We derive the relativistically exact Eikonal equation for ring interferometers undergoing adiabatic deformations. The leading term in the adiabatic expansion of the phase shift is independent of the refraction index $n$ and is given by a line integral generalizing results going back to Sagnac to all orders in $\\beta$. The next term in the adiabaticity is of lower order in $\\beta$ and may be as important as the first in nonrelativistic cases. This term is proportional to $n^2$ and has the form of a double integral. It generalizes previous results to fibers with chromatic dispersion and puts Sagnac and Fizeau interferometers under a single umbrella.
Adiabatic Floquet Picture for Hydrogen Atom in an Intense Laser Field
Wang, Yujun; Esry, B D
2010-01-01
We develop an adiabatic Floquet picture in the length gauge to describe the dynamics of a hydrogen atom in an intense laser field. In this picture, we discuss the roles played by frequency and intensity in terms of adiabatic potentials and the couplings between them, which gives a physical and intuitive picture for quantum systems exposed to a laser field. For simplicity, analyze hydrogen and give the adiabatic potential curves as well as some physical quantities that can be readily calculated for the ground state. Both linearly and circularly polarized laser fields are discussed.
Institute of Scientific and Technical Information of China (English)
ZHANG Ming-Jiang; FANG Jian-Hui; LU Kai; ZHANG Ke-Jun; LI Yan
2009-01-01
The perturbation to Noether symmetry and Noether adiabatic invariants of general discrete holonomic systems are studied.First,the discrete Noether exact invariant induced directly from the Noether symmetry of the system without perturbation is given.Secondly,the concept of discrete high-order adiabatic invariant is presented,the criterion of the perturbation to Noether symmetry is established,and the discrete Noether adiabatic invariant induced directly from the perturbation to Noether symmetry is obtained.Lastly,an example is discussed to illustrate the application of the results.
Directory of Open Access Journals (Sweden)
Peter Keefe
2004-03-01
Full Text Available Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of traditional formulations of the Second Law, evidenced by attainment of a final process temperature below that which would result from an adiabatic magneto-caloric process applied to bulk dimensioned specimens.
Adiabatic Demagnetisation Refrigerators for Future Sub-Millimetre Space Missions
Hepburn, I. D.; Davenport, I.; Smith, A.
1995-10-01
Space worthy refrigeration capable of providing a 100 mK and below heat load sink for bolometric detectors will be required for the next generation of sub-millimetre space missions. Adiabatic demagnetisation refrigeration (ADR), being a gravity independent laboratory method for obtaining such temperatures, is a favourable technique for utilisation in space. We show that by considering a 3 salt pill refrigerator rather than the classic single salt pill design the space prohibitive laboratory ADR properties of high magnetic field (6 Tesla) and alow temperature hold time and short recycle time. The additional salt pills, composed of Gadolinium Gallium Garnet (GGG) provide intermediate cooling stages, enabling operation from a 4 K environment provided by a single 4 K mechanical cooler, thereby providing consumable free operation. Such ADRs could operate with fields as low as 1 Tesla allowing the use of high temperature, mechanically cooled superconducting magnets and so effectively remove the risk of quenching. We discuss the possibility of increasing the hold time from 3 hours, for the model presented, to between 40 and 80 hours, plus reducing the number of salt pills to two, through the use of a more efficient Garnet. We believe the technical advances necessitated by the envisaged ADRs are minimal and conclude that such ADRs offer a long orbital life time, consumable free, high efficiency means of milli-Kelvin cooling, requiring relatively little laboratory development.
Development of a semi-adiabatic isoperibol solution calorimeter
Energy Technology Data Exchange (ETDEWEB)
Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K., E-mail: asivan@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India)
2014-12-15
A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.
Thermodynamic and spectral properties of adiabatic Peierls chains
Weber, Manuel; Assaad, Fakher F.; Hohenadler, Martin
2016-10-01
We present exact numerical results for the effects of thermal fluctuations on the experimentally relevant thermodynamic and spectral properties of Peierls chains. To this end, a combination of classical Monte Carlo sampling and exact diagonalization is used to study adiabatic half-filled Holstein and Su-Schrieffer-Heeger models. The classical nature of the lattice displacements in combination with parallel tempering permit simulations on large system sizes and a direct calculation of spectral functions in the frequency domain. Most notably, the long-range order and the associated Peierls gap give rise to a distinct low-temperature peak in the specific heat. The closing of the gap and suppression of order by thermal fluctuations involves in-gap excitations in the form of soliton-antisoliton pairs and is also reflected in the dynamic density and bond structure factors as well as in the optical conductivity. We compare our data to the widely used mean-field approximation and highlight relations to symmetry-protected topological phases and disorder problems.
Random Matrix Approach to Quantum Adiabatic Evolution Algorithms
Boulatov, Alexei; Smelyanskiy, Vadier N.
2004-01-01
We analyze the power of quantum adiabatic evolution algorithms (Q-QA) for solving random NP-hard optimization problems within a theoretical framework based on the random matrix theory (RMT). We present two types of the driven RMT models. In the first model, the driving Hamiltonian is represented by Brownian motion in the matrix space. We use the Brownian motion model to obtain a description of multiple avoided crossing phenomena. We show that the failure mechanism of the QAA is due to the interaction of the ground state with the "cloud" formed by all the excited states, confirming that in the driven RMT models. the Landau-Zener mechanism of dissipation is not important. We show that the QAEA has a finite probability of success in a certain range of parameters. implying the polynomial complexity of the algorithm. The second model corresponds to the standard QAEA with the problem Hamiltonian taken from the Gaussian Unitary RMT ensemble (GUE). We show that the level dynamics in this model can be mapped onto the dynamics in the Brownian motion model. However, the driven RMT model always leads to the exponential complexity of the algorithm due to the presence of the long-range intertemporal correlations of the eigenvalues. Our results indicate that the weakness of effective transitions is the leading effect that can make the Markovian type QAEA successful.
Hot-electron nanoscopy using adiabatic compression of surface plasmons
Giugni, Andrea
2013-10-20
Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.
Stimulated Raman adiabatic passage in physics, chemistry, and beyond
Vitanov, Nikolay V.; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas
2017-01-01
The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 by Gaubatz et al.. Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry, and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2001, the time when the last major review on the topic was written (Vitanov, Fleischhauer et al.). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multilevel systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, semiconductor quantum dots and wells), and even some applications in classical physics (including waveguide optics, polarization optics, frequency conversion, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, precision experiments, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, population transfer with x-ray pulses, etc.).
Nickel Bubble Expansion in Type Ia Supernovae: Adiabatic Solutions
Wang, C Y
2006-01-01
We examine the expansion properties of the Nickel bubble in SNe Ia due to the radioactive heating from the 56Ni->56Co->56Fe decay sequence, under adiabatic, spherically symmetric approximation. We consider an exponentially -declining medium for the ejecta substrate, allowing for the density gradient as expected in a Type Ia supernova. The heating gives rise to an inflated Ni bubble, which induces a forward shock that compresses the outer ambient gas into a shell. As the heating saturates, the flow tends toward a freely-expanding state with the structure frozen into the ejecta. The thickness of the shell takes up ~ 100 in a narrow region limited by numerical resolution. The structure of the shell can be approximately described by a self-similar solution determined by its expansion rate and ambient density gradient. Compared to the case using a uniform-density medium, the density contrast of the inferred ejecta clumps is enhanced, while the interaction of the clumps with the remnant is deferred to a more advanc...
Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.
Cisneros, L O; Rogers, W J; Mannan, M S
2001-03-19
Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC). Among the data provided are onset temperatures, reaction order, activation energies, pressures of noncondensable products, thermal stability at 100 degrees C, and the effect of HA storage time. Discussed also are the catalytic effects of carbon steel, stainless steel, stainless steel with silica coating, inconel, titanium, and titanium with silica coating on the reaction self-heat rates and onset temperatures. In borosilicate glass cells, HA was relatively stable at temperatures up to 133 degrees C, where the HA decomposition self-heat rate reached 0.05 degrees C/min. The added stabilizers appeared to reduce HA decomposition rates in glass cells and at ambient temperatures. The tested metals and metal surfaces coated with silica acted as catalysts to lower the onset temperatures and increase the self-heat rates.
Development of a semi-adiabatic isoperibol solution calorimeter.
Venkata Krishnan, R; Jogeswararao, G; Parthasarathy, R; Premalatha, S; Prabhakar Rao, J; Gunasekaran, G; Ananthasivan, K
2014-12-01
A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.
Progress in the Development of a Continuous Adiabatic Demagnetization Refrigerator
Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Tuttle, James; Krebs, Carolyn A. (Technical Monitor)
2002-01-01
We report on recent progress in the development of a continuous adiabatic demagnetization refrigerator (CADR). Continuous operation avoids the constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, allowing us to achieve an order of magnitude larger cooling power per unit mass. Our current design goal is 10 micro W of cooling at 50 mK using a 6-10 K heat sink. The estimated mass is less than 10 kg, including magnetic shielding of each stage. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long mission life and reduced complexity and cost. We have assembled a three-stage CADR and have demonstrated continuous cooling using a superfluid helium bath as the heat sink. The temperature stability is 8 micro K rms or better over the entire cycle, and the cooling power is 2.5 micro W at 60 mK rising to 10 micro W at 100 mK.
Adiabatic calorimetry (RSST and VSP) tests with sodium acetate
Energy Technology Data Exchange (ETDEWEB)
Kirch, N.W.
1993-09-01
As requested in the subject reference, adiabatic calorimetry (RSST and VSP) tests have been performed with sodium acetate covering TOC concentrations from 3 to 7% with the following results: Exothermic activity noted around 200{degrees}C. Propagating reaction initiated at about 300{degrees}C. Required TOC concentration for propagation estimated at about 6 w% (dry mixture) or about 20 w% sodium acetate. Heat of reaction estimated to be 3.7 MJ per kg of sodium acetate (based on VSP test with 3 w% TOC and using a dry mixture specific heat of 1000 J kg{sup {minus}1} K{sup {minus}1}). Based upon the above results we estimate that a moisture content in excess of 14 w% would prevent a propagating reaction of a stoichiometric mixture of fuel and oxidizer ({approximately} 38 w% sodium acetate and {approximately}62 w% sodium nitrate). Assuming that the fuel can be treated as sodium acetate equivalent, and considering that the moisture content in the organic containing waste generally is believed to be in excess of 14 w%, it follows that the possibility of propagating reactions in the Hanford waste tanks can be ruled out.
Calculating excitation energies by extrapolation along adiabatic connections
Rebolini, Elisa; Teale, Andrew M; Helgaker, Trygve; Savin, Andreas
2015-01-01
In this paper, an alternative method to range-separated linear-response time-dependent density-functional theory and perturbation theory is proposed to improve the estimation of the energies of a physical system from the energies of a partially interacting system. Starting from the analysis of the Taylor expansion of the energies of the partially interacting system around the physical system, we use an extrapolation scheme to improve the estimation of the energies of the physical system at an intermediate point of the range-separated or linear adiabatic connection where either the electron--electron interaction is scaled or only the long-range part of the Coulomb interaction is included. The extrapolation scheme is first applied to the range-separated energies of the helium and beryllium atoms and of the hydrogen molecule at its equilibrium and stretched geometries. It improves significantly the convergence rate of the energies toward their exact limit with respect to the range-separation parameter. The range...
Non-adiabatic holonomy operators in classical and quantum completely integrable systems
Giachetta, G; Sardanashvily, G
2002-01-01
Given a completely integrable system, we associate to any connection on its invariant tori fibred over a parameter manifold the classical and quantum holonomy operator (generalized Berry's phase factor), without any adiabatic approximation.
Time-resolved photoelectron spectroscopy of non-adiabatic dynamics in polyatomic molecules
Stolow, Albert
2015-01-01
This review article discusses advances in the use of time-resolved photoelectron spectroscopy for the study of non-adiabatic processes in molecules. A theoretical treatment of the experiments is presented together with a number of experimental examples.
Institute of Scientific and Technical Information of China (English)
WANG Peng
2011-01-01
Perturbation to Noether symmetry of discrete mechanico-electrical systems on an uniform lattice is investigated.First, Noether theorem of a system is presented. Secondly, the criterion of perturbation to Noether symmetry of the system is given. Based on the definition of adiabatic invariants, Noether adiabatic invariants of the system are obtained. Finally, An example is given to support these results.%@@ Perturbation to Noether symmetry of discrete mechanico-electrical systems on an uniform lattice is investigated.First, Noether theorem of a system is presented.Secondly , the criterion of perturbation to Noether symmetry of the system is given.Based on the definition of adiabatic invariants, Noether adiabatic invariants of the system are obtained .Finally, An example is given to support these results.
DESIGN OF TWO-PHASE SINUSOIDAL POWER CLOCK AND CLOCKED TRANSMISSION GATE ADIABATIC LOGIC CIRCUIT
Institute of Scientific and Technical Information of China (English)
Wang Pengjun; Yu Junjun
2007-01-01
First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks-Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure.Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25 μm CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL)and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.
Adiabatic Heavy Ion Fusion Potentials for Fusion at Deep Sub-barrier Energies
Sastry, S V S; Mohanty, A K; Saxena, A
2003-01-01
The fusion cross sections from well above barrier to extreme sub-barrier energies have been analysed using the energy (E) and angular momentum (L) dependent barrier penetration model ({\\small{ELDBPM}}). From this analysis, the adiabatic limits of fusion barriers have been determined for a wide range of heavy ion systems. The empirical prescription of Wilzynska and Wilzynski has been used with modified radius parameter and surface tension coefficient values consistent with the parameterization of the nuclear masses. The adiabatic fusion barriers calculated from this prescription are in good agreement with the adiabatic barriers deduced from {\\small{ELDBPM}} fits to fusion data. The nuclear potential diffuseness is larger at adiabatic limit, resulting in a lower $\\hbar\\omega$ leading to increase of "logarithmic slope" observed at energies well below the barrier. The effective fusion barrier radius and curvature values are anomalously smaller than the predictions of known empirical prescriptions. A detailed comp...
Directory of Open Access Journals (Sweden)
Barban C.
2013-03-01
Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.
A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics
Gingold, H.
1991-01-01
A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.
Wu, Jin-Lei; Song, Chong; Xu, Jing; Yu, Lin; Ji, Xin; Zhang, Shou
2016-09-01
An efficient scheme is proposed for generating n-qubit Greenberger-Horne-Zeilinger states of n superconducting qubits separated by (n-1) coplanar waveguide resonators capacitively via adiabatic passage with the help of quantum Zeno dynamics in one step. In the scheme, it is not necessary to precisely control the time of the whole operation and the Rabi frequencies of classical fields because of the introduction of adiabatic passage. The numerical simulations for three-qubit Greenberger-Horne-Zeilinger state show that the scheme is insensitive to the dissipation of the resonators and the energy relaxation of the superconducting qubits. The three-qubit Greenberger-Horne-Zeilinger state can be deterministically generated with comparatively high fidelity in the current experimental conditions, though the scheme is somewhat sensitive to the dephasing of superconducting qubits.
Adiabatic Low-Pass J Filters for Artifact Suppression in Heteronuclear NMR
DEFF Research Database (Denmark)
Meier, Sebastian; Benie, Andrew J; Duus, Jens Øllgaard
2009-01-01
NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts.......NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts....
Area and entropy spectra of black holes via an adiabatic invariant
Institute of Scientific and Technical Information of China (English)
Liu Cheng-Zhou
2012-01-01
By considering and using an adiabatic invariant for black holes,the area and entropy spectra of static sphericallysymmetric black holes are investigated.Without using quasi-normal modes of black holes,equally-spaced area and entropy spectra are derived by only utilizing the adiabatic invariant.The spectra for non-charged and charged black holes are calculated,respectively.All these results are consistent with the original Bekenstein spectra.
Adiabatic approximation of time-dependent density matrix functional response theory.
Pernal, Katarzyna; Giesbertz, Klaas; Gritsenko, Oleg; Baerends, Evert Jan
2007-12-07
Time-dependent density matrix functional theory can be formulated in terms of coupled-perturbed response equations, in which a coupling matrix K(omega) features, analogous to the well-known time-dependent density functional theory (TDDFT) case. An adiabatic approximation is needed to solve these equations, but the adiabatic approximation is much more critical since there is not a good "zero order" as in TDDFT, in which the virtual-occupied Kohn-Sham orbital energy differences serve this purpose. We discuss a simple approximation proposed earlier which uses only results from static calculations, called the static approximation (SA), and show that it is deficient, since it leads to zero response of the natural orbital occupation numbers. This leads to wrong behavior in the omega-->0 limit. An improved adiabatic approximation (AA) is formulated. The two-electron system affords a derivation of exact coupled-perturbed equations for the density matrix response, permitting analytical comparison of the adiabatic approximation with the exact equations. For the two-electron system also, the exact density matrix functional (2-matrix in terms of 1-matrix) is known, enabling testing of the static and adiabatic approximations unobscured by approximations in the functional. The two-electron HeH(+) molecule shows that at the equilibrium distance, SA consistently underestimates the frequency-dependent polarizability alpha(omega), the adiabatic TDDFT overestimates alpha(omega), while AA improves upon SA and, indeed, AA produces the correct alpha(0). For stretched HeH(+), adiabatic density matrix functional theory corrects the too low first excitation energy and overpolarization of adiabatic TDDFT methods and exhibits excellent agreement with high-quality CCSD ("exact") results over a large omega range.
Hubac, Ivan; Babinec, Peter; Polasek, Martin; Urban, Jan; Mach, Pavel; Masik, Jozef; Leszczynski, Jerzy
1998-01-01
The coupling of electronic and vibrational motion is studied by two canonical transformations namely normal coordinate transformation and momentum transformation on molecular Hamiltonian. It is shown that by these transformations we can pass from crude approximation to adiabatic approximation and then to non-adiabatic (diabatic) Hamiltonian. This leads to renormalized fermions and renormalized diabatic phonons. Simple calculations on $H_{2}$, $HD$, and $D_{2}$ systems are performed and compar...
Quantum state engineering in a cavity by Stark chirped rapid adiabatic passage
Amniat-Talab, M; Guérin, S
2006-01-01
We propose a robust scheme to generate single-photon Fock states and atom-photon and atom-atom entanglement in atom-cavity systems. We also present a scheme for quantum networking between two cavity nodes using an atomic channel. The mechanism is based on Stark-chirped rapid adiabatic passage (SCRAP) and half-SCRAP processes in a microwave cavity. The engineering of these states depends on the design of the adiabatic dynamics through the static and dynamic Stark shifts.
Chluba, J.
2014-09-01
In the expanding Universe, the average temperature of the cosmic microwave background (CMB) is expected to depend like TCMB ∝ (1 + z) on redshift z. Adiabatic photon production (or destruction) or deviations from isotropy and homogeneity could modify this scaling and several observational tests have been carried out in response. Here, we explain why `adiabatic' conditions are extremely difficult to establish in the redshift range targeted by these tests. Thus, instead of leading to a simple rescaling of the CMB temperature, a spectral distortion should be produced, which can be constrained using COBE/FIRAS. For scenarios with late photon production, tests of the temperature-redshift relation (TRR) should therefore be reinterpreted as weak spectral distortion limits, directly probing the energy dependence of the photon production process. For inhomogeneous cosmologies, an average y-type distortion is produced, but this type of distortion can be created in several other ways. Here, we briefly discuss possible effects that may help disentangling different contributions to the distortion signal, finding this to be very challenging. We furthermore argue that tests of the TRR using the Sunyaev-Zeldovich effect have limited applicability and that for non-gravitational changes to the TRR, the CMB anisotropy spectrum should exhibit an additional y-type dependence.
Preparation of W class states of multiparticle by adiabatic passage%多粒子W态的绝热制备
Institute of Scientific and Technical Information of China (English)
吴晓东; 费振乐; 郭建友
2006-01-01
We describe a novel technique for preparing the multiparticle W class states, which are based on adiabatic passage induced a suitably crafted time-dependent external field. We have derived the interaction Hamiltonian, and the adiabatic and diabatic evolution conditions of driving the system of n-spin-1/2 particles from initial unentangled state to the W class state. In addition, we show the diagram of the energies evolution and the populations of target state of transferring the system of three spin-1/2 particles from initial unentangled state to target entangled state of W-type.%通过利用时间依赖的外磁场,提出了绝热制备多粒子W态的新方法.同时给出了驱动n个自旋1/2粒子从未纠缠态到W态的相互作用哈密顿量以及绝热和非绝热演化条件,展示了能量和靶态布据随时间的演化图.
Energy Technology Data Exchange (ETDEWEB)
Wei, Q., E-mail: qwei@uncc.edu [Department of Mechanical Engineering, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001 (United States); Kecskes, L.J. [WMRD US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD 21005 (United States); Ramesh, K.T. [Department of Mechanical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)
2013-08-20
In this work, we have investigated the effect of low-temperature rolling on the mechanical properties of commercial purity tungsten, particularly the high strain rate (dynamic) behavior of the cold-rolled samples vis-à-vis the as-received coarse-grained material. After rolling, the material was tested under both quasi-static and dynamic (Kolsky bar) uniaxial compression loading conditions. We have found that low-temperature rolling both improves the ductility and the strength of commercial purity tungsten. The rolled tungsten exhibits elastic-nearly perfectly plastic behavior under quasi-static loading, and a strong flow softening tendency with a precipitous stress drop under dynamic loading. Both in situ high speed movie snapshots and post-mortem examination of the dynamic samples suggest that the precipitous stress drop was caused by adiabatic shear banding in the cold-rolled material. The greatly enhanced susceptibility to adiabatic shear banding in the cold-rolled tungsten can either be explained semi-quantitatively based on a mechanistic model or from the rolling texture that leads to geometric softening under dynamic loading.
Unified Dark Fluid with Constant Adiabatic Sound Speed: Including Entropic Perturbations
Xu, Lixin
2012-01-01
In this paper, we continue to study a unified dark fluid model with a constant adiabatic sound speed but with the entropic perturbations. When the entropic perturbations are included, an effective sound speed, which reduces to the adiabatic sound speed when the entropic perturbations are zero, has to be specified as an additional free model parameter. Due to the relations between the adiabatic sound speed and equations of state (EoS) $c^2_{s,ad}(a)=w(a)-d\\ln(1+w(a))/3 d\\ln a$, the equation of state can be determined up to an integration constant in principle when an adiabatic sound speed is given. Then there are two degrees of freedom to describe the linear perturbations for a fluid. Its micro-scale properties are characterized by its EoS or adiabatic sound speed and an effective sound speed. We take the effective sound speed and adiabatic sound speed as free model parameters and then use the currently available cosmic observational data sets, which include type Ia supernova Union 2.1, baryon acoustic oscilla...
Commercial concepts for adiabatic compressed air energy storage
Energy Technology Data Exchange (ETDEWEB)
Freund, Sebastian [General Electric Global Research, Garching (Germany); Schainker, Robert [Electric Power Research Institute, Palo Alto, CA (United States); Moreau, Robert [General Electric Oil and Gas, Florence (Italy)
2012-07-01
Adiabatic compressed air energy storage (ACAES) systems offer the potential for efficient large-scale energy storage, almost approaching values typical for pumped hydro. In an ACAES plant, the heat of compression is stored and utilized during the expansion of the air instead of firing natural gas like in commercial CAES. However, no ACAES plants have been commercialized due to challenges with respect to the cost and the heat storage technology. In this study, conducted by EPRI, GE Global Research and GE Oil and Gas, several concepts for ACAES plants are analyzed and their efficiency, complexity and technical risk compared. The components selected for the plants are available either off-the-shelf or near-commercial within a short development time and without the high costs associated with developing a new generation of large custom-made compressors and turbines. The most promising concept for near-term commercialization and low costs turns out to be a two-stage, low-temperature ACAES system. A regenerative (solid) and a recuperative (liquid) thermal storage system have been designed and analyzed for this concept, with the result that the liquid-recuperative system offers a much lower cost and comparable performance. Performance and cost targets for the concepts are 100 MW output per plant for 6 h with a round-trip efficiency above 60% and a capital cost of about $1000/kW. Selections of the turbomachinery for the compression and expansion train from General Electric Oil and Gas are presented for several plant options along with their expansion power range (25..100 MW), round-trip efficiency (66%..70%) and preliminary capital cost estimates (1100..1200 $/kW).
Classical molecular dynamics simulation of electronically non-adiabatic processes.
Miller, William H; Cotton, Stephen J
2016-12-22
Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).
Towards robust dynamical decoupling and high fidelity adiabatic quantum computation
Quiroz, Gregory
Quantum computation (QC) relies on the ability to implement high-fidelity quantum gate operations and successfully preserve quantum state coherence. One of the most challenging obstacles for reliable QC is overcoming the inevitable interaction between a quantum system and its environment. Unwanted interactions result in decoherence processes that cause quantum states to deviate from a desired evolution, consequently leading to computational errors and loss of coherence. Dynamical decoupling (DD) is one such method, which seeks to attenuate the effects of decoherence by applying strong and expeditious control pulses solely to the system. Provided the pulses are applied over a time duration sufficiently shorter than the correlation time associated with the environment dynamics, DD effectively averages out undesirable interactions and preserves quantum states with a low probability of error, or fidelity loss. In this study various aspects of this approach are studied from sequence construction to applications of DD to protecting QC. First, a comprehensive examination of the error suppression properties of a near-optimal DD approach is given to understand the relationship between error suppression capabilities and the number of required DD control pulses in the case of ideal, instantaneous pulses. While such considerations are instructive for examining DD efficiency, i.e., performance vs the number of control pulses, high-fidelity DD in realizable systems is difficult to achieve due to intrinsic pulse imperfections which further contribute to decoherence. As a second consideration, it is shown how one can overcome this hurdle and achieve robustness and recover high-fidelity DD in the presence of faulty control pulses using Genetic Algorithm optimization and sequence symmetrization. Thirdly, to illustrate the implementation of DD in conjunction with QC, the utilization of DD and quantum error correction codes (QECCs) as a protection method for adiabatic quantum
Thermal Behavior, Specific Heat Capacity and Adiabatic Time-to-explosion of GDN
Institute of Scientific and Technical Information of China (English)
YANG Xing-kun; XU Kang-zhen; ZHAO Feng-qi; YANG Xin; WANG Han; SONG Ji-rong; WANG Yao-yu
2009-01-01
A new compound, [(NH2)2C=NH2]+N(NO2)2-(GDN), was prepared by mixing ammonium dinitramide (ADN) and guanidine hydrochloride in water. The thermal behavior of GDN was studied under the non-isothermal conditions with DSC and TG/DTG methods. The apparent activation energy(E) and pre-exponential constant(A) of the exothermic decomposition stage of GDN were 118.75 kJ/mol and 1010.86 s-1, respectively. The critical temperature of the thermal explosion(Tb) of GDN was 164.09 ℃. The specific heat capacity of GDN was determined with the Micro-DSC method and the theoretical calculation method, and the standard molar specific heat capacity was 234.76J·mol-1·K-1 at 298.15K.The adiabatic time-to-explosion of GDN was also calculated to be a certain value between 404.80 and 454.95 s.
Interaction theory of hypersonic laminar near-wake flow behind an adiabatic circular cylinder
Hinman, W. Schuyler; Johansen, C. T.
2016-11-01
The separation and shock wave formation on the aft-body of a hypersonic adiabatic circular cylinder were studied numerically using the open source software OpenFOAM. The simulations of laminar flow were performed over a range of Reynolds numbers (8× 10^3 free-stream Mach number of 5.9. Off-body viscous forces were isolated by controlling the wall boundary condition. It was observed that the off-body viscous forces play a dominant role compared to the boundary layer in displacement of the interaction onset in response to a change in Reynolds number. A modified free-interaction equation and correlation parameter has been presented which accounts for wall curvature effects on the interaction. The free-interaction equation was manipulated to isolate the contribution of the viscous-inviscid interaction to the overall pressure rise and shock formation. Using these equations coupled with high-quality simulation data, the underlying mechanisms resulting in Reynolds number dependence of the lip-shock formation were investigated. A constant value for the interaction parameter representing the part of the pressure rise due to viscous-inviscid interaction has been observed at separation over a wide range of Reynolds numbers. The effect of curvature has been shown to be the primary contributor to the Reynolds number dependence of the free-interaction mechanism at separation. The observations in this work have been discussed here to create a thorough analysis of the Reynolds number-dependent nature of the lip-shock.
RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine. Final report
Energy Technology Data Exchange (ETDEWEB)
DiNanno, L.R.; DiBella, F.A.; Koplow, M.D.
1983-12-01
A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air-cooled condenser-regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged (TC) diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound (TCPD) diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy-duty trnsport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene (PFB) and 40 mole percent hexafluorobenzene (HFB). Included in these 1983 work efforts was the thermal stability testing of the RC-1 organic fluid in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900/sup 0/F. This report describes the work performed for one of the multiple contracts awarded under the Department of Energy's Heavy-Duty Transport Technology Program.
Directory of Open Access Journals (Sweden)
Fuping Yuan
2014-12-01
Full Text Available A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative density ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.
Vidal, M; Wong, W; Rogers, W J; Mannan, M S
2006-03-17
The lower flammability limit (LFL) of a fuel is the minimum composition in air over which a flame can propagate. Calculated adiabatic flame temperatures (CAFT) are a powerful tool to estimate the LFL of gas mixtures. Different CAFT values are used for the estimation of LFL. SuperChems is used by industry to perform flammability calculations under different initial conditions which depends on the selection of a threshold temperature. In this work, the CAFT at the LFL is suggested for mixtures of fuel-air and fuel-air-diluents. These CAFT can be used as the threshold values in SuperChems to calculate the LFL. This paper discusses an approach to evaluate the LFL in the presence of diluents such as N2 and CO2 by an algebraic method and by the application of SuperChems using CAFT as the basis of the calculations. The CAFT for different paraffinic and unsaturated hydrocarbons are presented as well as an average value per family of chemicals.
Baeck, Kyoung Koo; An, Heesun
2017-02-01
A very simple equation, Fij A p p=[(∂2(Via-Vja ) /∂Q2 ) /(Via-Vja ) ] 1 /2/2 , giving a reliable magnitude of non-adiabatic coupling terms (NACTs, Fij's) based on adiabatic potential energies only (Via and Vja) was discovered, and its reliability was tested for several prototypes of same-symmetry interstate crossings in LiF, C2, NH3Cl, and C6H5SH molecules. Our theoretical derivation starts from the analysis of the relationship between the Lorentzian dependence of NACTs along a diabatization coordinate and the well-established linear vibronic coupling scheme. This analysis results in a very simple equation, α =2 κ /Δc , enabling the evaluation of the Lorentz function α parameter in terms of the coupling constant κ and the energy gap Δc (Δc=|Via-Vja| Q c ) between adiabatic states at the crossing point QC. Subsequently, it was shown that QC corresponds to the point where Fij A p p exhibit maximum values if we set the coupling parameter as κ =[(Via-Vja ) ṡ(∂2(Via-Vja ) /∂Q2 ) ] Qc1 /2 /2 . Finally, we conjectured that this relation could give reasonable values of NACTs not only at the crossing point but also at other geometries near QC. In this final approximation, the pre-defined crossing point QC is not required. The results of our test demonstrate that the approximation works much better than initially expected. The present new method does not depend on the selection of an ab initio method for adiabatic electronic states but is currently limited to local non-adiabatic regions where only two electronic states are dominantly involved within a nuclear degree of freedom.
Samadi, R; Dupret, M -A; Ludwig, H -G; Baudin, F; Caffau, E; Goupil, M -J; Barban, C
2012-01-01
A growing number of solar-like oscillations has been detected in red-giant stars thanks to CoRoT and Kepler space-crafts. The seismic data gathered by CoRoT on red-giant stars allow us to test mode driving theory in different physical conditions than main-sequence stars. Using a set of 3D hydrodynamical models representative of the upper layers of sub- and red-giant stars, we compute the acoustic modes energy supply rate (Pmax). Assuming adiabatic pulsations and using global stellar models where the surface stratification comes from the 3D hydrodynamical models, mode amplitude is computed in terms of surface velocity. The latter is then converted into intensity fluctuations using either a simplified adiabatic scaling relation or a non-adiabatic one. Given L and M (the luminosity and mass respectively), the energy supply rate Pmax is found to scale as (L/M)^(2.6) for both main-sequence and red-giant stars, extending previous results by Samadi et al. (2007). The theoretical amplitudes in velocity under-estimate...
Institute of Scientific and Technical Information of China (English)
谭志诚; 张际标; 孟霜鹤; 李莉
1999-01-01
An automatic adiabatic calorimeter for measuring heat capacities in the temperature range 70—580 K, equipped with a small sample cell of 7.4 cm~3 in the internal volume has been developed. In order to obtain a good adiabatic condition of the calorimeter at high temperature, the calorimeter was surrounded in sequence by two adiabatic shields, three radiation shields and an auxiliary temperature-controlled sheath. The main body of the cell made of copper and the lid made of brass are silver-soldered and the cell is sealed with a copper screw cap. A sealing gasket made of Pb-Sn alloy is put between the cap and the lid to ensure a high vacuum sealing of the cell in the whole experimental temperature range. All the leads are insulated and fixed with W30-11 varnish, thus a good electric insulation is obtained at high temperature. All the experimental data, including those for energy and temperature are collected and processed automatically with a personal computer using a predetermined program. To verify the
Numerical simulation of adiabatic shear in blunt nose projectile plugging target*%平头弹冲塞靶板的绝热剪切数值模拟
Institute of Scientific and Technical Information of China (English)
蒋东; 李永池
2011-01-01
Experiments have shown that during the formation of adiabatic shear, because of highly localized deformation, the heat generated by plastic work causes localized high temperatures, and sometimes the process may be accompanied by the phenomenon of dynamic re-crystallization. Based on this phenomenon, numerical simulations are performed to simulate a Arne tool-steel blunt nose projectile plugging a Weldox 460 thin target, using the finite element method. The adiabatic shear failure criterion is based on the hypothesis that material inside the shear band region undergoes a dynamic re-crystallization process. Numerical simulation reveals the adiabatic shear generation and propagation process. The temperature distribution shows that the adiabatic shear bands can provide physical conditions for a dynamic recrystallization process.%针对绝热剪切形成时由于变形高度局域化,塑性功产生的热导致局部高温,有时会伴随动态再结晶(DRX)的现象,采用一种考虑动态再结晶过程的绝热剪切破坏准则,利用有限元方法模拟了Arne工具钢平头弹冲塞Weldox 460 E钢靶板的实验.数值模拟揭示了剪切带产生、传播的过程,温度分布情况表明在绝热剪切带中具备动态再结晶形成的物理条件.
Adiabatic density surface, neutral density surface, potential density surface, and mixing path
Institute of Scientific and Technical Information of China (English)
HUANG Rui-xin
2014-01-01
In this paper, adiabatic density surface, neutral density surface and potential density surface are compared. The adiabatic density surface is defined as the surface on which a water parcellcan move adiabatically, without changing its potential temperature and salinity. For a water parcelltaken at a given station and pressure level, the corresponding adiabatic density surface can be determined through simple calculations. This family of surface is neutrally buoyant in the world ocean, and different from other surfaces that are not truly neutrally buoyant. In order to explore mixing path in the ocean, a mixing ratio m is introduced, which is defined as the portion of potential temperature and salinity of a water parcellthat has exchanged with the environment during a segment of migration in the ocean. Two extreme situations of mixing path in the ocean are m=0 (no mixing), which is represented by the adiabatic density curve, and m=1, where the original information is completely lost through mixing. The latter is represented by the neutral density curve. The reality lies in between, namely, 0
Analysis of magnetically immersed electron guns with non-adiabatic fields
Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Raparia, Deepak; Ritter, John
2016-11-01
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.
Adiabatic limit in Abelian Higgs model with application to Seiberg-Witten equations
Sergeev, A.
2017-03-01
In this paper we deal with the (2 + 1)-dimensional Higgs model governed by the Ginzburg-Landau Lagrangian. The static solutions of this model, called otherwise vortices, are described by the theorem of Taubes. This theorem gives, in particular, an explicit description of the moduli space of vortices (with respect to gauge transforms). However, much less is known about the moduli space of dynamical solutions. A description of slowly moving solutions may be given in terms of the adiabatic limit. In this limit the dynamical Ginzburg-Landau equations reduce to the adiabatic equation coinciding with the Euler equation for geodesics on the moduli space of vortices with respect to the Riemannian metric (called T-metric) determined by the kinetic energy of the model. A similar adiabatic limit procedure can be used to describe approximately solutions of the Seiberg-Witten equations on 4-dimensional symplectic manifolds. In this case the geodesics of T-metric are replaced by the pseudoholomorphic curves while the solutions of Seiberg-Witten equations reduce to the families of vortices defined in the normal planes to the limiting pseudoholomorphic curve. Such families should satisfy a nonlinear ∂-equation which can be considered as a complex analogue of the adiabatic equation. Respectively, the arising pseudoholomorphic curves may be considered as complex analogues of adiabatic geodesics in (2 + 1)-dimensional case. In this sense the Seiberg-Witten model may be treated as a (2 + 1)-dimensional analogue of the (2 + 1)-dimensional Abelian Higgs model2.
Bang-Bang shortcut to adiabaticity in trapped ion quantum simulators
Yoshimura, Bryce; Balasubramanian, Shankar; Han, Shuyang; Freericks, James
2016-05-01
An experimental simulation can prepare a nontrivial ground state via an adiabatic process, however due to experimental constraints this process becomes more and more difficult as the number of ions increase. Instead, we model the bang-bang optimization protocol as a shortcut to adiabaticity in the ground-state preparation of an ion-trap-based quantum simulator. This well known technique in the quantum control community is simple to implement and can be applied without prior knowledge of the Hamiltonian. We apply the bang-bang optimization protocol to the transverse-field Ising model as simulated in a linear Paul trap. We compare our results to a transverse magnetic field that exponential decays and the locally adiabatic approach. The bang-bang protocol produces a significantly higher ground-state probability than the exponential ramp. Although the bang-bang protocol produces a somewhat lower ground-state probability than the locally adiabatic approach, the implementation of the bang-bang protocol is far more simple than the locally adiabatic approach. NSF PHY-1314295.
Sharma, Prateek; Quataert, Eliot
2010-01-01
Observations of the cores of nearby galaxy clusters show H$\\alpha$ and molecular emission line filaments. We argue that these are the result of {\\em local} thermal instability in a {\\em globally} stable galaxy cluster core. We present local, high resolution, two-dimensional magnetohydrodynamic simulations of thermal instability for conditions appropriate to the intracluster medium (ICM); the simulations include thermal conduction along magnetic field lines and adiabatic cosmic rays. Thermal conduction suppresses thermal instability along magnetic field lines on scales smaller than the Field length ($\\gtrsim$10 kpc for the hot, diffuse ICM). We show that the Field length in the cold medium must be resolved both along and perpendicular to the magnetic field in order to obtain numerically converged results. Because of negligible conduction perpendicular to the magnetic field, thermal instability leads to fine scale structure in the perpendicular direction. Filaments of cold gas along magnetic field lines are thu...
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
Goto, Hayato
2016-02-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Avron, Joseph; Kenneth, Oded
2016-12-01
We derive the relativistically exact eikonal equation for ring interferometers undergoing deformation. For ring interferometers that undergo slow deformation we describe the two leading terms in the adiabatic expansion of the phase shift. The leading term is independent of the refraction index n and is given by a line integral generalizing results going back to Sagnac for nondeforming interferometers to all orders in β =|v |/c . In the nonrelativistic limit this term is O (β ) . The next term in the adiabaticity has the form of a double integral, it is of order β0 and depends on the refractive index n . It accounts for nonreciprocity due to changing circumstances in the fiber. The adiabatic correction is often comparable to the Sagnac term. In particular, this is the case in Fizeau's interferometer. Besides providing a mathematical framework that puts all ring interferometers under a single umbrella, our results strengthen earlier results and generalize them to fibers with chromatic dispersion.
Schmidt, Slawa; Engelke, Pascal; Piglosiewicz, Björn; Esmann, Martin; Becker, Simon F; Yoo, Kyungwan; Park, Namkyoo; Lienau, Christoph; Groß, Petra
2013-11-01
We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.
Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem.
Wang, Hefeng; Wu, Lian-Ao
2016-02-29
An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions.
Analysis of adiabatic trapping for quasi-integrable area-preserving maps
Bazzani, A; Giovannozzi, M; Hernalsteens, C
2014-01-01
Trapping phenomena involving non-linear resonances have been considered in the past in the framework of adiabatic theory. Several results are known for continuous-time dynamical systems generated by Hamiltonian flows in which the combined effect of non-linear resonances and slow time-variation of some system parameters is considered. The focus of this paper is on discrete-time dynamical systems generated by two-dimensional symplectic maps. The possibility of extending the results of neo-adiabatic theory to quasi-integrable area-preserving maps is discussed. Scaling laws are derived, which describe the adiabatic transport as a function of the system parameters using a probabilistic point of view. These laws can be particularly relevant for physical applications. The outcome of extensive numerical simulations showing the excellent agreement with the analytical estimates and scaling laws is presented and discussed in detail.
Changes in the adiabatic invariant and streamline chaos in confined incompressible Stokes flow
Vainshtein, D. L.; Vasiliev, A. A.; Neishtadt, A. I.
1996-03-01
The steady incompressible flow in a unit sphere introduced by Bajer and Moffatt [J. Fluid Mech. 212, 337 (1990)] is discussed. The velocity field of this flow differs by a small perturbation from an integrable field whose streamlines are almost all closed. The unperturbed flow has two stationary saddle points (poles of the sphere) and a two-dimensional separatrix passing through them. The entire interior of the unit sphere becomes the domain of streamline chaos for an arbitrarily small perturbation. This phenomenon is explained by the nonconservation of a certain adiabatic invariant that undergoes a jump when a streamline crosses a small neighborhood of the separatrix of the unperturbed flow. An asymptotic formula is obtained for the jump in the adiabatic invariant. The accumulation of such jumps in the course of repeated crossings of the separatrix results in the complete breaking of adiabatic invariance and streamline chaos.
Solving the transport without transit quantum paradox of the spatial adiabatic passage technique
Benseny, Albert; Oriols, Xavier; Mompart, Jordi
2011-01-01
We discuss and solve the transport without transit quantum paradox recently introduced in the context of the adiabatic transport of a single particle or a Bose--Einstein condensate between the two extreme traps of a triple-well potential. To this aim, we address the corresponding quantum dynamics in terms of Bohmian trajectories and show that transport always implies transit through the middle well, in full agreement with the quantum continuity equation. This adiabatic quantum transport presents a very counterintuitive effect: by slowing down the total time duration of the transport process, ultra-high Bohmian velocities are achieved such that, in the limit of perfect adiabaticity, relativistic corrections are needed to properly address the transfer process while avoiding superluminal matter wave propagation.
Adiabatic following criterion, estimation of the nonadiabatic excitation fraction and quantum jumps
Shakhmuratov, R N
2003-01-01
An accurate theory describing adiabatic following of the dark, nonabsorbing state in the three-level system is developed. An analytical solution for the wave function of the particle experiencing Raman excitation is found as an expansion in terms of the time varying nonadiabatic perturbation parameter. The solution can be presented as a sum of adiabatic and nonadiabatic parts. Both are estimated quantitatively. It is shown that the limiting value to which the amplitude of the nonadiabatic part tends is equal to the Fourier component of the nonadiabatic perturbation parameter taken at the Rabi frequency of the Raman excitation. The time scale of the variation of both parts is found. While the adiabatic part of the solution varies slowly and follows the change of the nonadiabatic perturbation parameter, the nonadiabatic part appears almost instantly, revealing a jumpwise transition between the dark and bright states. This jump happens when the nonadiabatic perturbation parameter takes its maximum value.
Non-adiabatic holonomic quantum computation in linear system-bath coupling.
Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang
2016-02-05
Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of (N - 2)/N. The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities.
Adiabatic mixed-field orientation of ground-state-selected carbonyl sulfide molecules
Kienitz, Jens S; Mullins, Terry; Długołęcki, Karol; González-Férez, Rosario; Küpper, Jochen
2016-01-01
We experimentally demonstrated strong adiabatic mixed-field orientation of carbonyl sulfide molecules (OCS) in their absolute ground state of $\\text{N}_{\\text{up}}/\\text{N}_{\\text{tot}}=0.882$. OCS was oriented in combined non-resonant laser and static electric fields inside a two-plate velocity map imaging spectrometer. The transition from non-adiabatic to adiabatic orientation for the rotational ground state was studied by varying the applied laser and static electric field. Above static electric field strengths of 10~kV/cm and laser intensities of $10^{11} \\text{W/cm}^2$ the observed degree of orientation reached a plateau. These results are in good agreement with computational solutions of the time-dependent Schr\\"odinger equation.
Optimal control of the power adiabatic stroke of an optomechanical heat engine
Bathaee, M.; Bahrampour, A. R.
2016-08-01
We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014), 10.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained.
Performance of layered DT implosions with adiabat-shaped drives on NIF
Smalyuk, V. A.; Robey, H. F.; Milovich, J.; Bachmann, B.; Baker, K.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Doeppner, T.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; MacGowan, B. J.; Macphee, A. G.
2015-11-01
Layered DT implosions with adiabat-shaped drives were performed to study the physics of performance degradation due to instability growth and convergence. Both 3-shock and 4-shock adiabat-shaped designs were developed and demonstrated significantly reduced ablation-front instability growth. These new drives with DT fuel adiabat ~ 2.1 and ~ 1.6 respectively, were used in layered DT implosions showing significant improvements in performance compared to implosions during the National Ignition Campaign. Comparison of measured and simulated data will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Adiabatic asymmetric scattering of atoms in the field of a standing wave
Hakobyan, M V; Ishkhanyan, A M
2015-01-01
A model of the asymmetric coherent scattering process (caused by initial atomic wave-packet splitting in the momentum space) taking place at the large detuning and adiabatic course of interaction for an effective two-state system interacting with a standing wave of laser radiation is discussed. We show that the same form of initial wave-packet splitting may lead to different, in general, diffraction patterns for opposite, adiabatic and resonant, regimes of the standing-wave scattering. We show that the scattering of the Gaussian wave packet in the adiabatic case presents refraction (a limiting form of the asymmetric scattering) in contrast to the bi-refringence (the limiting case of the high-order narrowed scattering) occurring in the resonant scattering.
The best of both Reps—Diabatized Gaussians on adiabatic surfaces
Meek, Garrett A.; Levine, Benjamin G.
2016-11-01
When simulating nonadiabatic molecular dynamics, choosing an electronic representation requires consideration of well-known trade-offs. The uniqueness and spatially local couplings of the adiabatic representation come at the expense of an electronic wave function that changes discontinuously with nuclear motion and associated singularities in the nonadiabatic coupling matrix elements. The quasi-diabatic representation offers a smoothly varying wave function and finite couplings, but identification of a globally well-behaved quasi-diabatic representation is a system-specific challenge. In this work, we introduce the diabatized Gaussians on adiabatic surfaces (DGAS) approximation, a variant of the ab initio multiple spawning (AIMS) method that preserves the advantages of both electronic representations while avoiding their respective pitfalls. The DGAS wave function is expanded in a basis of vibronic functions that are continuous in both electronic and nuclear coordinates, but potentially discontinuous in time. Because the time-dependent Schrödinger equation contains only first-order derivatives with respect to time, singularities in the second-derivative nonadiabatic coupling terms (i.e., diagonal Born-Oppenheimer correction; DBOC) at conical intersections are rigorously absent, though singular time-derivative couplings remain. Interpolation of the electronic wave function allows the accurate prediction of population transfer probabilities even in the presence of the remaining singularities. We compare DGAS calculations of the dynamics of photoexcited ethene to AIMS calculations performed in the adiabatic representation, including the DBOC. The 28 fs excited state lifetime observed in DGAS simulations is considerably shorter than the 50 fs lifetime observed in the adiabatic simulations. The slower decay in the adiabatic representation is attributable to the large, repulsive DBOC in the neighborhood of conical intersections. These repulsive DBOC terms are artifacts
Adiabatic Improved Efficient Charge Recovery Logic for Low Power CMOS Logic
Directory of Open Access Journals (Sweden)
Prof. Mukesh Tiwar
2012-08-01
Full Text Available Power dissipation becoming a limiting factor in VLSI circuits and systems. Due to relatively high complexity of VLSI systems used in various applications, the power dissipation in CMOS inverter, arises from its switching activity, which is mainly influenced by the supply voltage and effective capacitance. The low-power requirements of present electronic systems have challenged the scientific research towards the study of technological, architectural and circuital solutions that allow a reduction of the energy dissipated by an electronic circuit. One of the main causes of energy dissipation in CMOS circuits is due to the charging and discharging of the node capacitances of the circuits, present both as a load and as parasitic. Such part of the total power dissipated by a circuit is called dynamic power. In order to reduce the dynamic power, an alternative approach to the traditional techniques of power consumption reduction, named adiabatic switching technique is use. Adiabatic switching is an approach to low-power digital circuits that differs fundamentally from other practical low-power techniques. The term adiabatic comes from thermodynamics, used to describe a process in which there is no exchange of heat with the environment. When adiabatic switching is used, the signal energies stored on circuit capacitances may be recycled instead of dissipated as heat. The adiabatic switching technique can achieve very low power dissipation, but at the expense of circuit complexity. Adiabatic logic offers a way to reuse the energy stored in the load capacitors rather than the traditional way of discharging the load capacitors to the ground and wasting this energy. Power reduction is achieved by recovering the energy in the recover phase of the supply clock.
Protecting and accelerating adiabatic passage with time-delayed pulse sequences
Sampedro, Pablo; Sola, Ignacio R
2016-01-01
Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na$_2$ we show that: i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness.
How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?
Yarman, T.; L. Kholmetskii, A.
2011-10-01
We continue to analyse the known law of adiabatic transformation for an ideal gas PV5/3 = Constant, where P is the pressure and V is the volume, and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al. 2010 Int. J. Phys. Sci. 5 1524). We explicitly determine the constant for the general parallelepiped geometry of a container. We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation. Physical implications of the results obtained are discussed.
How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?
Institute of Scientific and Technical Information of China (English)
T. Yarman; A. L. Kholmetskii
2011-01-01
We continue to analyse the known law of adiabatic transformation for an ideal gas PV5/3 =Constant,where P is the pressure and V is the volume,and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al.2010 Int.J.Phys.Sci.5 1524).We explicitly determine the constant for the general parallelepiped geometry of a container.We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation.Physical implications of the results obtained are discussed.
Entropy Spectrum of Black Holes of Heterotic String Theory via Adiabatic Invariance
Institute of Scientific and Technical Information of China (English)
Alexis Larra？ aga; Luis Cabarique; Manuel Londo？ o
2012-01-01
Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.
Energy Technology Data Exchange (ETDEWEB)
Olazabal-Loume, M.; Hallo, L. [Bordeaux-1 Univ., CELIA UMR 5107, 33 - Talence (France)
2006-06-15
This study deals with the hydrodynamic stability of a planar target in the context of inertial confinement fusion direct drive. Recently, different schemes have been proposed in order to reduce ablative Rayleigh-Taylor growth. They are based on the target adiabatic shaping in the ablation zone. In this work, we consider an adiabatic shaping scheme by relaxation: a prepulse is followed by a relaxation period where the laser is turned off. A numerical study is performed with a perturbation code dedicated to the linear stability analysis. The simulations show stabilizing effects of the relaxation scheme on the linear Rayleigh-Taylor growth rate. Influence of the picket parameters is also discussed. (authors)
Potential Energy Surface in Hartree-Fock Theory:Adiabatic or Configuration-Constrained?
Institute of Scientific and Technical Information of China (English)
GUO Lu; Sakata Fumihiko; ZHAO En-Guang
2004-01-01
Validity of adiabatic assumption is discussed within the constrained Hartree-Fock theory for self-conjugate nucleus 72Kr. It is shown that the adiabatic assumption does not provide a correct description for the nature of nucleus when a configuration change is involved. The excited Hartree-Fock states and the continuously-connected constrained Hartree-Fock states are given for the first time by applying the configuration dictated constrained Hartree-Fock theory with Gogny force. The importance of self-consistency between the mean-field and the single particle wave functions is emphasized even when a small number of nucleons are involved in the configuration change.
Localization and adiabatic pumping in a generalized Aubry-André-Harper model
Liu, Fangli; Ghosh, Somnath; Chong, Y. D.
2015-01-01
A generalization of the Aubry-André-Harper (AAH) model is developed, containing a tunable phase shift between on-site and off-diagonal modulations. A localization transition can be induced by varying just this phase, keeping all other model parameters constant. The complete localization phase diagram is obtained. Unlike the original AAH model, the generalized model can exhibit a transition between topologically trivial band structures and topologically nontrivial band structures containing protected boundary states. These boundary states can be pumped across the system by adiabatic variations in the phase shift parameter. The model can also be used to demonstrate the phenomenon of adiabatic pumping breakdown due to localization.
Directory of Open Access Journals (Sweden)
Caitlin eBatey
2015-09-01
Full Text Available Adiabatic methods are potentially important for quantum information protocols because of their robustness against many sources of technical and fundamental noise. They are particularly useful for quantum transport, and in some cases elementary quantum gates. Here we explore the extension of a particular protocol, dark state adiabatic passage, where a spin state is transported across a branched network of initialised spins, comprising one `input' spin, and multiple leaf spins. We find that maximal entanglement is generated in systems of spin-half particles, or where the system is limited to one excitation.
DEFF Research Database (Denmark)
Gammelmark, Søren; Eckardt, André
2013-01-01
We theoretically study the adiabatic preparation of an antiferromagnetic phase in a mixed Mott insulator of two bosonic atom species in a one-dimensional optical lattice. In such a system one can engineer a tunable parabolic inhomogeneity by controlling the difference of the trapping potentials...... felt by the two species. Using numerical simulations we predict that a finite parabolic potential can assist the adiabatic preparation of the antiferromagnet. The optimal strength of the parabolic inhomogeneity depends sensitively on the number imbalance between the two species. We also find...
Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats
Pain, J C
2007-01-01
Rankine-Hugoniot shock adiabats are calculated in the pressure range 1 Mbar-10 Gbar with two atomic-structure models: the atom in a spherical cell and the atom in a jellium of charges. These quantum self-consistent-field models include shell effects, which have a strong impact on pressure and shock velocity along the shock adiabat. Comparisons with experimental data are presented and quantum effects are interpreted in terms of electronic specific heat. A simple analytical estimate for the maximum compression is proposed, depending on initial density, atomic weight and atomic number.
Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic Traps.
Cui, Yang-Yang; Chen, Xi; Muga, J G
2016-05-19
The expansion of a harmonic potential that holds a quantum particle may be realized without any final particle excitation but much faster than adiabatically via "shortcuts to adiabaticity" (STA). While ideally the process time can be reduced to zero, practical limitations and constraints impose minimal finite times for the externally controlled time-dependent frequency protocols. We examine the role of different time-averaged energies (total, kinetic, potential, nonadiabatic) and of the instantaneous power in characterizing or selecting different protocols. Specifically, we prove a virial theorem for STA processes, set minimal energies (or times) for given times (or energies), and discuss their realizability by means of Dirac impulses or otherwise.
Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise
Bellomo, B.; Compagno, G.; D'Arrigo, A.; Falci, G.; Lo Franco, R.; Paladino, E.
2010-06-01
We study entanglement degradation of two noninteracting qubits subject to independent baths with broadband spectra typical of solid-state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low-frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high-frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility of implementing on-chip local and entangling operations is briefly discussed.
Entanglement degradation in the solid state: interplay of adiabatic and quantum noise
Bellomo, B; D'Arrigo, A; Falci, G; Franco, R Lo; Paladino, E
2010-01-01
We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.
Peng, Weng Kung; Takeda, Kazuyuki
2007-10-01
In this work, we propose a new and efficient heteronuclear cross polarization scheme, in which adiabatic frequency sweeps from far off-resonance toward on-resonance are applied simultaneously on both the source and target spins. This technique, which we call as Simultaneous ADIabatic Spin-locking Cross Polarization (SADIS CP), is capable of efficiently locking both the source and target spins with moderate power even in the presence of large spectral distribution and fast relaxation. It is shown that by keeping the time-dependent Hartmann-Hahn mismatch minimal throughout the mixing period, polarization transfer can be accelerated. Experiments are demonstrated in a powder sample of L-alanine.
Non-adiabatic rotational excitation of dipolar molecule under the influence of delayed pulses
Indian Academy of Sciences (India)
Urvashi Arya; Brijender Dahiya; Vinod Prasad
2013-09-01
We suggest a control scheme for choosing populations of molecular rotational states by wave packet interference. The rotational wave packets of LiCl molecule excited non-adiabatically by half cycle pulse (HCP) is controlled using the second ultrashort HCP. By adjusting the time delay between the two laser pulses, constructive or destructive interference among these wave packets enables the population to be enhanced or repressed for the specific rotational state. The role played by the field strength and the pulse duration is also calculated numerically. We have used fourth order Runge-Kutta method to study non-adiabatic rotational excitation (NAREX) dynamics.
The Non-Adiabatic Pressure Perturbation and Non-Canonical Kinetic Terms in Multifield Inflation
van de Bruck, C
2012-01-01
The evolution of the non-adiabatic pressure perturbation during inflation driven by two scalar fields is studied numerically for three different types of models. In the first model, the fields have standard kinetic terms. The other two models considered feature non-canonical kinetic terms; the first containing two fields which are coupled via their kinetic terms, and the second where one field has the standard kinetic term with the other field being a DBI field. We find that the evolution and the final amplitude of the non-adiabatic pressure perturbation depends strongly on the kinetic terms.
Multichannel Scattering Problem with Non-trivial Asymptotic Non-adiabatic Coupling
Yakovlev, S L; Elander, N; Belyaev, A K
2016-01-01
The multichannel scattering problem in an adiabatic representation is considered. The non-adiabatic coupling matrix is assumed to have a non-trivial constant asymptotic behavior at large internuclear separations. The asymptotic solutions at large internuclear distances are constructed. It is shown that these solutions up to the first order of perturbation theory are identical to the asymptotic solutions of the re-projection approach, which was proposed earlier as a remedy for the electron translation problem in the context of the Born-Oppenheimer treatment.
A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem
Farhi, E; Gutmann, S; Lapan, J; Lundgren, A; Preda, D; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Lapan, Joshua; Lundgren, Andrew; Preda, Daniel
2001-01-01
A quantum system will stay near its instantaneous ground state if the Hamiltonian that governs its evolution varies slowly enough. This quantum adiabatic behavior is the basis of a new class of algorithms for quantum computing. We test one such algorithm by applying it to randomly generated, hard, instances of an NP-complete problem. For the small examples that we can simulate, the quantum adiabatic algorithm works well, and provides evidence that quantum computers (if large ones can be built) may be able to outperform ordinary computers on hard sets of instances of NP-complete problems.
Institute of Scientific and Technical Information of China (English)
PANG Ting; FANG Zian-Hui; ZHANG Ming-Jiang; LIN Peng; LU Kai
2009-01-01
By introducing the coordination function f, the generalized Mei conserved quantities for the nonholonomic systems in terms of quasi-coordinates are given. Then based on the concept of adiabatic invariant, the per-turbation to Mei symmetry and the generalized Mei adiabatic invariants for nonholonomic systems in terms of quasi-coordinates are studied.
Saline Cavern Adiabatic Compressed Air Energy Storage Using Sand as Heat Storage Material
Directory of Open Access Journals (Sweden)
Martin Haemmerle
2017-03-01
Full Text Available Adiabatic compressed air energy storage systems offer large energy storage capacities and power outputs beyond 100MWel. Salt production in Austria produces large caverns which are able to hold pressure up to 100 bar, thus providing low cost pressurized air storage reservoirs for adiabatic compressed air energy storage plants. In this paper the results of a feasibility study is presented, which was financed by the Austrian Research Promotion Agency, with the objective to determine the adiabatic compressed air energy storage potential of Austria’s salt caverns. The study contains designs of realisable plants with capacities between 10 and 50 MWel, applying a high temperature energy storage system currently developed at the Institute for Energy Systems and Thermodynamics in Vienna. It could be shown that the overall storage potential of Austria’s salt caverns exceeds a total of 4GWhel in the year 2030 and, assuming an adequate performance of the heat exchanger, that a 10MWel adiabatic compressed air energy storage plant in Upper Austria is currently feasible using state of the art thermal turbomachinery which is able to provide a compressor discharge temperature of 400 °C.
Energy Technology Data Exchange (ETDEWEB)
Doroshkevich, A.G.; Zel' dovich, Y.B.; Syunyaev, R.A.
1978-09-01
The evolution of adiabatic and nonisentropic density perturbations during the hydrogen recombination era in the universe and the temperature fluctuations of the microwave background radiation generated at that period have been calculated numerically. The results support the principal estimates and conclusions given in a 1970 analysis of the problem.
Merk, Daniel; Ansmann, Albert; Deneke, Hartwig; Pospichal, Bernhard; Seifert, Patric
2013-04-01
The first indirect aerosol effect or Twomey effect predicts a higher cloud albedo as reponse to increased aerosol load. Satellites provide a unique global coverage with high temporal and spatial resolution to investigate the climate relevance of this effect and quantify its magnitude. Different studies show that a higher aerosol concentration does not necessarily lead to higher cloud albedo if the geometrical cloud thickness is lowered. To validate the Twomey effect accurate retrievals of both cloud droplet number concentration and geometrical extent are necessary. Satellite retrievals of these quantities require an assumption about the vertical cloud profile as it can not be inferred directly from satellites. A common assumption for Stratocumulus clouds is the adiabatic cloud model that assumes a linear increasing liquid water content and constant cloud droplet number concentration with height. Due to entrainment of dry air the vertical cloud profile may be sub-adiabatic or show even a more complex vertical behaviour. To validate the robustness of satellite estimates of cloud geometrical thickness and cloud droplet number concentration, and the resulting metrics for the Twomey effect, we address the question how closley the assumption of an adiabatic or sub-adiabatic profile represents real clouds over Europe. For this purpose we compare micro- and macro-physical properties from geostationary satellite measurements of Meteosat SEVIRI with ground measurements at the Tropos Institute (Leipzig, Germany). The site provides a detailed characterization of atmospheric state through microwave radiometer, millimeter radar and lidar instruments as well as aerosol optical thickness measurements from an AERONET station.
Institute of Scientific and Technical Information of China (English)
王学滨
2004-01-01
A method for calculation of temperature distribution in adiabatic shear band is proposed in terms of gradient-dependent plasticity where the characteristic length describes the interactions and interplaying among microstructures. First, the increment of the plastic shear strain distribution in adiabatic shear band is obtained based on gradient-dependent plasticity. Then, the plastic work distribution is derived according to the current flow shear stress and the obtained increment of plastic shear strain distribution. In the light of the well-known assumption that 90% of plastic work is converted into the heat resulting in increase in temperature in adiabatic shear band, the increment of the temperature distribution is presented. Next, the average temperature increment in the shear band is calculated to compute the change in flow shear stress due to the thermal softening effect. After the actual flow shear stress considering the thermal softening effect is obtained according to the Johnson-Cook constitutive relation, the increment of the plastic shear strain distribution, the plastic work and the temperature in the next time step are recalculated until the total time is consumed. Summing the temperature distribution leads to rise in the total temperature distribution. The present calculated maximum temperature in adiabatic shear band in titanium agrees with the experimental observations. Moreover, the temperature profiles for different flow shear stresses are qualitatively consistent with experimental and numerical results. Effects of some related parameters on the temperature distribution are also predicted.
The adiabatic approximation solutions of cylindrical and spherical dust ion-acoustic solitary waves
Institute of Scientific and Technical Information of China (English)
吕克璞; 豆福全; 孙建安; 段文山; 石玉仁
2005-01-01
By using the equivalent particle theory, the adiabatic approximation solutions of the Korteweg-de Vries type equation (including KdV equation, cylindrical KdV equation and spherical KdV equation) in dust ion-acoustic solitary waves were obtained. The method can be extended to other nonlinear evolution equations.
Gas phase adiabatic electron affinities of cyclopenta-fused polycyclic aromatic hydrocarbons
Todorov, P.D.; Koper, C.; van Lenthe, J.H.; Jenneskens, L.W.
2008-01-01
The B3LYP/DZP++ adiabatic electron affinity (AEA) of nine (non)-alternant polycyclic aromatic hydrocarbons are reported and discussed. Calculations became feasible for molecules this size by projecting out the near-linearly dependent part of the one-electron basis. Non-alternant PAH consisting of an
Prediction of mean flow data for adiabatic 2-D compressible turbulent boundary layers
Motallebi, F.
1997-01-01
This book presents a method for the prediction of mean flow data (i.e. skin friction, velocity profile and shape parameter) for adiabatic two-dimensional compressible turbulent boundary layers at zero pressure gradient. The transformed law of the wall, law of the lake, the van Driest model for the c
Adiabatic theorem for non-hermitian time-dependent open systems
Fleischer, A; Fleischer, Avner; Moiseyev, Nimrod
2005-01-01
In the conventional quantum mechanics (i.e., hermitian QM) the adia- batic theorem for systems subjected to time periodic fields holds only for bound systems and not for open ones (where ionization and dissociation take place) [D. W. Hone, R. Ketzmerik, and W. Kohn, Phys. Rev. A 56, 4045 (1997)]. Here with the help of the (t,t') formalism combined with the complex scaling method we derive an adiabatic theorem for open systems and provide an analytical criteria for the validity of the adiabatic limit. The use of the complex scaling transformation plays a key role in our derivation. As a numerical example we apply the adiabatic theorem we derived to a 1D model Hamiltonian of Xe atom which interacts with strong, monochromatic sine-square laser pulses. We show that the gener- ation of odd-order harmonics and the absence of hyper-Raman lines, even when the pulses are extremely short, can be explained with the help of the adiabatic theorem we derived.
Pumped shot noise in adiabatically modulated graphene-based double-barrier structures
Zhu, Rui; Lai, Maoli
2011-11-01
Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.
Measurements of the Effect of Adiabat on Shell Decompression in Direct-Drive Implosions on OMEGA
Michel, D. T.; Hu, S. X.; Radha, P. B.; Davis, A. K.; Craxton, R. S.; Glebov, V. Yu.; Goncharov, V. N.; Igumenshchev, I. V.; Stoeckl, C.; Froula, D. H.
2016-10-01
Measurements of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. The maximum in-flight shell thickness was obtained using a novel technique where the outer and inner surfaces of the shell were simultaneously measured using self-emission images of the imploding target. When reducing the shell's adiabat from α = 6 to α = 4.5 , the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1.8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two-dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint. Additional information on the evolution of the density profile was obtained using x-ray radiography. The backlighter was created with six of the 60 OMEGA laser beams, with the pointings and energies of other beams adjusted to maintain a uniform implosion. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Resonant 90 degree shifter generator for 4-phase trapezoidal adiabatic logic
Directory of Open Access Journals (Sweden)
A. Bargagli-Stoffi
2003-01-01
Full Text Available Many adiabatic logic families make use of multi phase trapezoidal or sinusoidal power clocks to recover the energy stored in the load capacitances. A key aspect for the evaluation of the performance of adiabatic logic is then the study of a system that includes the power clock generator. A four-phase trapezoidal power clock generator, according to the requirements of the most promising architectures, namely the ECRL and PFAL, has been designed and simulated. The proposed circuit, realized with a double-well 0.25 µm CMOS technology and external inductors, is a resonant generator designed to oscillate at a frequency of 7 MHz, which is within the optimum frequency range for adiabatic circuits realized with this CMOS technology. The generator has been simulated with the equivalent load of fifty 1-bit adders and the operating behavior of a 4-bit adder has been evaluated. The key aspects of a generator for adiabatic logic are its power consumption and the phase relationships between its output signals. The proposed generator has a conversion efficiency higher than 80%, and it is robust with respect to variations of technology parameters. The four power supplies exhibit the correct relationship of phase also in the presence of no equally distributed loads.
Implementing a Universal Quantum Cloning Machine via Adiabatic Evolution in Ion-Trap System
Institute of Scientific and Technical Information of China (English)
YI Xiao-Jie; YANG Rong-Can; NIE Yi-You; LI Hong-Cai; ZHOU Nan-Run; LIN Xiu; HUANG Yi-Bing; HUANG Zhi-Ping; HONG Zhi-Hui; XIE Hong; LI Song-Song
2008-01-01
A scheme for the realization of a universal quantum cloning machine is proposed in this paper. The present protocol does not need the vibrational mode to act as the memory and it is robust against small changes of experimental parameters due to adiabatic passages. Furthermore, the scheme may be realized based on current technology.
TIME-DEPENDENT LANDAU SYSTEM AND NON-ADIABATIC BERRY PHASE IN TWO DIMENSIONS
Institute of Scientific and Technical Information of China (English)
Jing Hui; Wu Jian-sheng
2000-01-01
By applying the time-independent unitary transformation, thetime-dependent Landau system is transformed into a product of atime-independent Landau system's Hamiltonian and a factor only dependingon time, which can be solved exactly. Both the invariant operator andthe eigenstate are obtained. In the periodical time-dependent case, thenon-adiabatic Berry's phase is also presented.
Adiabatic low-pass J filters for artifact suppression in heteronuclear NMR.
Meier, Sebastian; Benie, Andrew J; Duus, Jens Ø; Sørensen, Ole W
2009-04-14
NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts (see picture).
Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves
DEFF Research Database (Denmark)
Søndergaard, Thomas; Novikov, Sergey M.; Stær, Tobias Holmgaard;
2012-01-01
-defined geometry by using ultra-sharp convex metal grooves via adiabatic nanofocusing of gap surface plasmon modes excited by scattering off subwavelength-sized wedges. We demonstrate experimentally that two-dimensional arrays of sharp convex grooves in gold ensure efficient (>87%) broadband (450-850 nm...
Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat
Energy Technology Data Exchange (ETDEWEB)
Melvin, J.; Lim, H.; Rana, V.; Glimm, J. [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600 (United States); Cheng, B.; Sharp, D. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-02-15
We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.
Directory of Open Access Journals (Sweden)
Salem M. Osta-Omar
2016-11-01
Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.
Experimental adiabatic vortex ratchet effect in Nb films with asymmetric pinning trap
Indian Academy of Sciences (India)
J E Villegas; N O nunez; M P Gonzalez; E M Gonalez; J L Vicent
2006-01-01
Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC driven forces.
Nonadiabatic corrections to a quantum dot quantum computer working in adiabatic limit
Indian Academy of Sciences (India)
M Ávila
2014-07-01
The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the nonadiabatic corrections to an adiabatic quantum computer are merely theoretical considerations. By the above reason, we consider the particular case of a quantum-dot-confined electron spin qubit working adiabatically in the nanoscale regime (e.g., in the MeV range of energies) and include nonadiabatic corrections in it. If the decoherence times of a quantum dot computer are ∼100 ns [J M Kikkawa and D D Awschalom, Phys. Rev. Lett. 80, 4313 (1998)] then the predicted number of one qubit gate (primitive) operations of the Loss–DiVincenzo quantum computer in such an interval of time must be > 1010. However, if the quantum-dot-confined electron spin qubit is very excited (i.e., the semiclassical limit) the number of operations of such a computer would be approximately the same as that of a classical computer. Our results suggest that for an adiabatic quantum computer to operate successfully within the decoherence times, it is necessary to take into account nonadiabatic corrections.
Adiabatic superconducting cells for ultra-low-power artificial neural networks
Directory of Open Access Journals (Sweden)
Andrey E. Schegolev
2016-10-01
Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
Adiabatic superconducting cells for ultra-low-power artificial neural networks.
Schegolev, Andrey E; Klenov, Nikolay V; Soloviev, Igor I; Tereshonok, Maxim V
2016-01-01
We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
Dipolar Rydberg-atom gas prepared by adiabatic passage through an avoided crossing
Wang, Limei; Zhang, Linjie; Li, Changyong; Yang, Yonggang; Zhao, Jianming; Raithel, Georg; Jia, Suotang
2015-01-01
The passage of cold cesium 49S$_{1/2}$ Rydberg atoms through an electric-field-induced multi-level avoided crossing with nearby hydrogen-like Rydberg levels is employed to prepare a cold, dipolar Rydberg atom gas. When the electric field is ramped through the avoided crossing on time scales on the order of 100~ns or slower, the 49S$_{1/2}$ population adiabatically transitions into high-\\emph{l} Rydberg Stark states. The adiabatic state transformation results in a cold gas of Rydberg atoms with large electric dipole moments. After a waiting time of about $1~\\mu$s and at sufficient atom density, the adiabatically transformed highly dipolar atoms become undetectable, enabling us to discern adiabatic from diabatic passage behavior through the avoided crossing. We attribute the state-selectivity to $m$-mixing collisions between the dipolar atoms. The data interpretation is supported by numerical simulations of the passage dynamics and of binary $m$-mixing collisions.
Invariant Hermitian Operator and Density Operator for the Adiabatically Time-Dependent System
Institute of Scientific and Technical Information of China (English)
YAN Feng-Li; YANG Lin-Guang
2001-01-01
The density operator is approximately expressed as a function of the invariant Hermitian operator for the adiabatically time-dependent system. Using this method, the calculation of the density operator for the Heisenberg spin system in a weakly time-dependent magnetic field is exemplified. By virtue of the density operator, we obtain equilibrium.``
Vibrational dynamics of the bifluoride ion. II. Adiabatic separation and proton dynamics
Epa, V. C.; Thorson, W. R.
1990-01-01
Vibrational dynamics of the bifluoride ion FHF-, which exhibits strongly anharmonic and nonseparable vibrations, is studied using the extended ab initio model potential surface described in the first paper of this series. Adiabatic separation of the proton motion from the F-F (ν1) motion forms a zero-order basis for description, although strong coupling of adiabatic states by the ν1 motion is important in higher vibrational levels and must be considered to understand the spectrum. The adiabatic protonic eigenstates at F-F separations R from 3.75 to 6.40 a.u. have been determined using the self-consistent field approximation in prolate spheroidal coordinates to provide a basis set for configuration interaction expansion of the exact eigenstates. 78 SCF eigenstates (21 σg, 21 σu, 21 πu, and 15 πg) were computed by ``exact'' numerical solution of the SCF equations. The adiabatic CI eigenstates are shown to be converged in energy to better than 1.0 cm-1 for the ground state of each symmetry type and usually better than 10 cm-1 for the lowest three to five states, and pass critical tests of accuracy such as the Hellmann-Feynman theorem. The resulting CI potential energy curves closely resemble corresponding SCF energy curves and justify the concept of mode separation even in this very anharmonic system. The adiabatic CI potential energy curves explain most aspects of the dynamics relevant to the IR and Raman spectra of FHF- (e.g., in KHF2), and calculations of ν1 dynamics within the adiabatic approximation suffice to assign most of the observed IR spectrum of KHF2(s) (to about 6000 cm-1). States corresponding qualitatively to modal overtone and combination levels such as 3ν2 and (ν2+2ν3) however exhibit avoided crossings in the neighborhood of the equilibrium configuration and ``Fermi resonance'' involving interactions of two or more such adiabatic states via the ν1 motion must be treated by close-coupling to predict both frequencies and intensities in the
Ghaderi, Nima
2016-03-01
Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ˜0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.
Ghaderi, Nima
2016-03-28
Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ∼0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.
Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state
Energy Technology Data Exchange (ETDEWEB)
Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl
2016-05-15
Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis
Institute of Scientific and Technical Information of China (English)
Xia Li-Li; Li Yuan-Cheng
2007-01-01
This paper studies the perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. It gives the exact invariants introduced by the Lie symmetries of the nonholonomic controllable mechanical system with non-Chetaev type constraints without perturbation. Based on the definition of high-order adiabatic invariants of mechanical system, the perturbation of Lie symmetries for nonholonomic controllable mechanical system with non-Chetaev type constraints with the action of small disturbances is investigated, and a new type of adiabatic invariant of system axe obtained. In the end of this paper, an example is given to illustrate the application of the results.
Flow regime development analysis in adiabatic upward two-phase flow in a vertical annulus
Energy Technology Data Exchange (ETDEWEB)
Julia, J. Enrique [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I, Campus de Riu Sec, Castellon 12071 (Spain); Ozar, Basar [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Jeong, Jae-Jun [Korea Atomic Energy Research Institute, 150 Dukjin, Yuseong, Daejeon 305-353 (Korea, Republic of); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, Mamoru, E-mail: ishii@purdue.ed [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)
2011-02-15
In this work radial and axial flow regime development in adiabatic upward air-water two-phase flow in a vertical annulus has been investigated. Local flow regimes have been identified using conductivity probes and neural networks techniques. The inner and outer diameters of the annulus are 19.1 mm and 38.1 mm, respectively. The equivalent hydraulic diameter of the flow channel, D{sub H}, is 19.0 mm and the total length is 4.37 m. The flow regime map includes 1080 local flow regimes identifications in 72 flow conditions within a range of 0.01 m/s <
Cotton, Stephen J.; Miller, William H.
2016-10-01
Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM) classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very good description of electronically non-adiabatic processes within a standard classical molecular dynamics framework for a number of benchmark problems. This paper explores application of the SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states, showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and then devises a new SQC windowing scheme to deal with it. Application of this new SQC model to a variety of realistic benchmark systems shows that the new model not only treats the weak coupling case extremely well, but it is also seen to describe the "normal" regime (of electronic transition probabilities ≳ 0.1) even more accurately than the previous "standard" model.
Directory of Open Access Journals (Sweden)
Bai Ziyang
2014-01-01
Full Text Available Adiabatic fixed-bed reactor has proven commercially successful in large scale production of catalytic dehydration of methanol to dimethyl ether. A one dimensional pseudo-homogeneous model of an industrial reactor of dimethyl ether synthesis has been established. To verify the proposed model, the simulation results have been compared to available data from an industrial reactor. A good agreement has been found between them. The distribution of the catalyst bed temperature and concentration of each component was obtained under conditions of inlet temperature 260°C, reaction pressure 1.2MPa and gaseous hourly space velocity 950.7 h-1. With inlet catalyst bed temperature 240-280°C, operating pressure 0.6-1.8MPa and gaseous hourly space velocity 831.8-1069.5 h-1, the influence of these reaction conditions on temperature distribution of the reactor catalytic bed, outlet methanol conversion and the dimethyl ether yield were calculated. The results show that, with the rise of inlet temperature (240-280°C and operating pressure (0.6-1.8MPa, the outlet conversion of methanol, the hot spot temperature and the DME yield increased. The increase of gaseous hourly space velocity (831.8-1069.5 h-1 leads to a decrease in the hot spot temperature of catalytic bed and the outlet conversion of methanol. But the DME yield rise initially and then descend.
Elhatisari, Serdar; Lee, Dean
2014-12-01
We present lattice Monte Carlo calculations of fermion-dimer scattering in the limit of zero-range interactions using the adiabatic projection method. The adiabatic projection method uses a set of initial cluster states and Euclidean time projection to give a systematically improvable description of the low-lying scattering cluster states in a finite volume. We use Lüscher's finite-volume relations to determine the s -wave, p -wave, and d -wave phase shifts. For comparison, we also compute exact lattice results using Lanczos iteration and continuum results using the Skorniakov-Ter-Martirosian equation. For our Monte Carlo calculations we use a new lattice algorithm called impurity lattice Monte Carlo. This algorithm can be viewed as a hybrid technique which incorporates elements of both worldline and auxiliary-field Monte Carlo simulations.
Adiabatic Isometric Mapping Algorithm for Embedding 2-Surfaces in Euclidean 3-Space
Ray, Shannon; Alsing, Paul M; Yau, Shing-Tung
2015-01-01
Alexandrov proved that any simplicial complex homeomorphic to a sphere with strictly non-negative Gaussian curvature at each vertex can be isometrically embedded uniquely in $\\mathbb{R}^3$ as a convex polyhedron. Due to the nonconstructive nature of his proof, there have yet to be any algorithms, that we know of, that realizes the Alexandrov embedding in polynomial time. Following his proof, we developed the adiabatic isometric mapping (AIM) algorithm. AIM uses a guided adiabatic pull-back procedure to produce "smooth" embeddings. Tests of AIM applied to two different polyhedral metrics suggests that its run time is sub cubic with respect to the number of vertices. Although Alexandrov's theorem specifically addresses the embedding of convex polyhedral metrics, we tested AIM on a broader class of polyhedral metrics that included regions of negative Gaussian curvature. One test was on a surface just outside the ergosphere of a Kerr black hole.
Adiabatic isometric mapping algorithm for embedding 2-surfaces in Euclidean 3-space
Ray, Shannon; Miller, Warner A.; Alsing, Paul M.; Yau, Shing-Tung
2015-12-01
Alexandrov proved that any simplicial complex homeomorphic to a sphere with strictly non-negative Gaussian curvature at each vertex can be isometrically embedded uniquely in {{{R}}}3 as a convex polyhedron. Due to the nonconstructive nature of his proof, there have yet to be any algorithms, that we know of, that realizes the Alexandrov embedding in polynomial time. Following his proof, we developed the adiabatic isometric mapping (AIM) algorithm. AIM uses a guided adiabatic pull-back procedure on a given polyhedral metric to produce an embedding that approximates the unique Alexandrov polyhedron. Tests of AIM applied to two different polyhedral metrics suggests that its run time is sub cubic with respect to the number of vertices. Although Alexandrov’s theorem specifically addresses the embedding of convex polyhedral metrics, we tested AIM on a broader class of polyhedral metrics that included regions of negative Gaussian curvature. One test was on a surface just outside the ergosphere of a Kerr black hole.
Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages
Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.
2010-09-01
In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.113601 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.
Fermion-Dimer Scattering using Impurity Lattice Monte Carlo and the Adiabatic Projection Method
Elhatisari, Serdar
2014-01-01
We present lattice Monte Carlo calculations of fermion-dimer scattering in the limit of zero-range interactions using the adiabatic projection method. The adiabatic projection method uses a set of initial cluster states and Euclidean time projection to give a systematically improvable description of the low-lying scattering cluster states in a finite volume. We use L\\"uscher's finite-volume relations to determine the $s$-wave, $p$-wave, and $d$-wave phase shifts. For comparison, we also compute exact lattice results using Lanczos iteration and continuum results using the Skorniakov-Ter-Martirosian equation. For our Monte Carlo calculations we use a new lattice algorithm called impurity lattice Monte Carlo. This algorithm can be viewed as a hybrid technique which incorporates elements of both worldline and auxiliary-field Monte Carlo simulations.
Heavy-ion-acoustic solitary and shock waves in an adiabatic multi-ion plasma
Energy Technology Data Exchange (ETDEWEB)
Hossen, M.A.; Rahman, M.M.; Mamun, A.A., E-mail: armanplasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Hossen, M.R. [Department of Natural Sciences, Daffodil International University, Dhanmondi, Dhaka (Bangladesh)
2015-08-15
The standard reductive perturbation method has been employed to derive the Korteweg-deVries (K-dV) and Burgers (BG) equations to investigate the basic properties of heavy-ion-acoustic (HIA) waves in a plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The HIA solitary and shock structures are found to exist with either positive or negative potential. It is found that the effects of adiabaticity of inertial heavy ions, nonthermality of electrons, and number densities of plasma components significantly modify the basic properties of the HIA solitary and shock waves. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments. (author)
Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.
Zamstein, Noa; Tannor, David J
2012-12-14
We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.
Generation of entangled states and error protection from adiabatic avoided level crossings
Bell, N F; Volkas, R R; Wong, Y Y Y; Bell, Nicole F.; Volkas, Raymond R.; Wong, Yvonne Y. Y.
2002-01-01
We consider the environment-affected dynamics of $N$ self-interacting particles living in one-dimensional double wells. Two topics are dealt with. First, we consider the production of entangled states of two-level systems. We show that by adiabatically varying the well biases we may dynamically generate maximally entangled states, starting from initially unentangled product states. Entanglement degradation due to a common type of environmental influence is then computed by solving a master equation. However, we also demonstrate that entanglement production is unaffected if the system-environment coupling is of the type that induces ``motional narrowing''. As our second but related topic, we construct a different master equation that seamlessly merges error protection/detection dynamics for quantum information with the environmental couplings responsible for producing the errors in the first place. Adiabatic avoided crossing schemes are used in both topics.
The Quantum-Classical Crossover in the Adiabatic Response of Chaotic Systems
Ausländer, O M; Auslaender, Ophir M.; Fishman, Shmuel
1999-01-01
The autocorrelation function of the force acting on a slow classical system, resulting from interaction with a fast quantum system is calculated following Berry-Robbins and Jarzynski within the leading order correction to the adiabatic approximation. The time integral of the autocorrelation function is proportional to the rate of dissipation. The fast quantum system is assumed to be chaotic in the classical limit for each configuration of the slow system. An analytic formula is obtained for the finite time integral of the correlation function, in the framework of random matrix theory (RMT), for a specific dependence on the adiabatically varying parameter. Extension to a wider class of RMT models is discussed. For the Gaussian unitary and symplectic ensembles for long times the time integral of the correlation function vanishes or falls off as a Gaussian with a characteristic time that is proportional to the Heisenberg time, depending on the details of the model. The fall off is inversely proportional to time ...
Sharma, P; Quataert, E; Parrish, I J
2009-01-01
Using a linear stability analysis and two and three-dimensional nonlinear simulations, we study the physics of buoyancy instabilities in a combined thermal and relativistic (cosmic ray) plasma, motivated by the application to clusters of galaxies. We argue that cosmic ray diffusion is likely to be slow compared to the buoyancy time on large length scales, so that cosmic rays are effectively adiabatic. If the cosmic ray pressure $p_{cr}$ is $\\gtrsim 25 %$ of the thermal pressure, and the cosmic ray entropy ($p_{\\rm cr}/\\rho^{4/3}$; $\\rho$ is the thermal plasma density) decreases outwards, cosmic rays drive an adiabatic convective instability analogous to Schwarzschild convection in stars. Global simulations of galaxy cluster cores show that this instability saturates by reducing the cosmic ray entropy gradient and driving efficient convection and turbulent mixing. At larger radii in cluster cores, the thermal plasma is unstable to the heat flux-driven buoyancy instability (HBI), a convective instability genera...
Adiabatic nanofocusing: Spectroscopy, transport and imaging investigation of the nano world
Giugni, Andrea
2014-11-01
Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.
Central charge from adiabatic transport of cusp singularities in the quantum Hall effect
Can, Tankut
2016-01-01
We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.
Energy Technology Data Exchange (ETDEWEB)
Reiche, S.; Rosenzweig, J.B.; Anderson, S.; Frigola, P.; Hogan, M.; Murokh, A.; Pellegrini, C.; Serafini, L.; Travish, G.; Tremaine, A. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095-1547 (United States)
1997-09-01
The measurement of the transverse phase-space map, or transport matrix, of a relativistic electron in a high-gradient, radio-frequency linear accelerator (rf linac) at the UCLA photoinjector is reported. This matrix, which indicates the effects of acceleration (adiabatic damping), first-order transient focusing, and ponderomotive second-order focusing, is measured as a function of both rf field amplitude and phase in the linac. The elements of the matrix, determined by observation of centroid motion at a set of downstream diagnostics due to deflections induced by a set of upstream steering magnets, compare well with previously developed analytical theory [J. Rosenzweig and L. Serafini, Phys. Rev. E {bold 49}, 1599 (1994)]. The determinant of the matrix is obtained, yielding a direct confirmation of trace space adiabatic damping. Implications of these results on beam optics at moderate energy in high-gradient linear accelerators such as rf photoinjectors are discussed. {copyright} {ital 1997} {ital The American Physical Society}
Xiong, Xiao; Guo, Xiang; Tang, Hong X; Ren, Xi-Feng; Guo, Guang-Can
2016-01-01
We propose to use the integrated aluminum nitride waveguide with engineered width variation to achieve optical frequency conversion based on $\\chi^{(2)}$ nonlinear effect on a photonic chip. We show that in an adiabatically tapered waveguide, the frequency conversion has a much broader bandwidth and the efficiency within the bandwidth is almost constant, which is favorable for short pulses. We demonstrate both analytically and numerically an "area law" for the frequency conversion, i.e. the product of bandwidth and efficiency is conserved as long as peak conversion efficiency does not saturate. The adiabatic structure shows higher saturation thresholds in pump power or interaction length, outperforming the conventional uniform waveguide design. With our approach, high-efficiency and wavefront-keeping conversion for short pulses is possible on a photonic chip, which will surely find applications for scalable on-chip information processing.
Adiabatic electronic flux density: a Born-Oppenheimer Broken Symmetry ansatz
Pohl, Vincent
2016-01-01
The Born-Oppenheimer approximation leads to the counterintuitive result of a vanishing electronic flux density upon vibrational dynamics in the electronic ground state. To circumvent this long known issue, we propose using pairwise anti-symmetrically translated vibronic densities to generate a symmetric electronic density that can be forced to satisfy the continuity equation approximately. The so-called Born-Oppenheimer broken symmetry ansatz yields all components of the flux density simultaneously while requiring only knowledge about the nuclear quantum dynamics on the electronic adiabatic ground state potential energy surface. The underlying minimization procedure is transparent and computationally inexpensive, and the solution can be computed from the standard output of any quantum chemistry program. Taylor series expansion reveals that the implicit electron dynamics originates from non-adiabatic coupling to the explicit Born-Oppenheimer nuclear dynamics. The new approach is applied to the ${\\rm H}_2^+$ mo...
A multi-dimensional, adiabatic, hydrodynamics code for studying tidal excitation
Broderick, A E; Broderick, Avery E.; Rathore, Yasser
2004-01-01
We have developed a parallel, simple, and fast hydrodynamics code for multi-dimensional, self-gravitating, adiabatic flows. Our primary motivation is the study of the non-linear evolution of white dwarf oscillations excited via tidal resonances, typically over hundreds of stellar dynamical times. Consequently, we require long term stability, low diffusivity, and high algorithmic efficiency. An explicit, Eulerian, finite-difference scheme on a regular Cartesian grid fulfills these requirements. It provides uniform resolution throughout the flow, as well as simplifying the computation of the self-gravitational potential, which is done via spectral methods. In this paper, we describe the numerical scheme and present the results of some diagnostic problems. We also demonstrate the stability of a cold white dwarf in three dimensions over hundreds of dynamical times. Finally, we compare the results of the numerical scheme to the linear theory of adiabatic oscillations, finding numerical quality factors on the order...
Non-adiabatic elimination of auxiliary modes in continuous quantum measurements
Yang, Huan; Chen, Yanbei
2011-01-01
When measuring a complex quantum system, we are often interested in only a few degrees of freedom-the plant, while the rest of them are collected as auxiliary modes-the bath. The bath can have finite memory (non-Markovian), and simply ignoring its dynamics, i.e., adiabatically eliminating it, is inadequate to predict the true quantum behavior of the plant. We generalize the technique introduced by Strunz et. al. [Phys. Rev. Lett 82, 1801 (1999)], and develop a formalism that allows us to eliminate the bath non-adiabatically in continuous quantum measurements, and derive a non-Markovian stochastic master equation for the plant alone. We apply this formalism to two interesting examples in cavity QED: (i) a two-level atom (a qubit) coupled to a cavity and (ii) linear optomechanical interaction, both of which can be exactly solved.
Semiclassical analysis of the electron-nuclear coupling in electronic non-adiabatic processes
Agostini, Federica; Gross, E K U
2015-01-01
In the context of the exact factorization of the electron-nuclear wave function, the coupling between electrons and nuclei beyond the adiabatic regime is encoded (i) in the time-dependent vector and scalar potentials and (ii) in the electron-nuclear coupling operator. The former appear in the Schroedinger-like equation that drives the evolution of the nuclear degrees of freedom, whereas the latter is responsible for inducing non-adiabatic effects in the electronic evolution equation. As we have devoted previous studies to the analysis of the vector and scalar potentials, in this paper we focus on the properties of the electron-nuclear coupling operator, with the aim of describing a numerical procedure to approximate it within a semiclassical treatment of the nuclear dynamics.
First-order derivative couplings between excited states from adiabatic TDDFT response theory.
Ou, Qi; Bellchambers, Gregory D; Furche, Filipp; Subotnik, Joseph E
2015-02-14
We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.
Adiabatic approximation for a two-level atom in a light beam
Aftalion, Amandine
2011-01-01
Following the recent experimental realization of synthetic gauge magnetic forces, Jean Dalibard adressed the question whether the adiabatic ansatz could be math- ematically justified for a model of an atom in 2 internal states, shun by a quasi resonant laser beam. In this paper, we derive rigorously the asymptotic model guessed by the physicists, and show that this asymptotic analysis contains the in- formation about the presence of vortices. Surprisingly the main difficulties do not come from the nonlinear part but from the linear Hamiltonian. More precisely, the analysis of the nonlinear minimization problem and its asymptotic reduction to simpler ones, relies on an accurate partition of low and high frequencies (or mo- menta). This requires to reconsider carefully previous mathematical works about the adiabatic limit. Although the estimates are not sharp, this asymptotic analysis provides a good insight about the validity of the asymptotic picture, with respect to the size of the many parameters initially ...
Adiabatic continuity and broken symmetry in many-electron systems: A variational perspective
Energy Technology Data Exchange (ETDEWEB)
Baeriswyl, D. [Departement de Physique, Universite de Fribourg, Chemin du Musee 3, 1700 Fribourg (Switzerland)
2011-08-26
Variational wave functions are very useful for describing the panoply of ground states found in interacting many-electron systems. Some particular trial states are ''adiabatically'' linked to a reference state, from which they borrow the essential properties. A prominent example is the Gutzwiller ansatz, where one starts with the filled Fermi sea. A simple soluble example, the anisotropic XY chain, illustrates the adiabatic continuity of this class of wave functions. To describe symmetry breaking, one has to modify the reference state accordingly. Alternatively, a quantum phase transition can be described by a pair of variational wave functions, starting at weak and strong coupling, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Jafri, Haider Hasan; Singh, Thounaojam Umeshkanta; Ramaswamy, Ramakrishna
2012-09-01
We study the robustness of dynamical phenomena in adiabatically driven nonlinear mappings with skew-product structure. Deviations from true orbits are observed when computations are performed with inadequate numerical precision for monotone, periodic, or quasiperiodic driving. The effect of slow modulation is to "freeze" orbits in long intervals of purely contracting or purely expanding dynamics in the phase space. When computations are carried out with low precision, numerical errors build up phantom instabilities which ultimately force trajectories to depart from the true motion. Thus, the dynamics observed with finite precision computation shows sensitivity to numerical precision: the minimum accuracy required to obtain "true" trajectories is proportional to an internal timescale that can be defined for the adiabatic system.
Non-adiabatic dynamics close to conical intersections and the surface hopping perspective
Directory of Open Access Journals (Sweden)
João Pedro eMalhado
2014-11-01
Full Text Available Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photo physics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dynamics of the nuclei are treated classically. Within this classical nuclear motion framework, the main aspects of the surface hopping methodology in the conical intersection context are presented. The emerging picture from this treatment is that of electronic transitions around conical intersections dominated by the interplay of the nuclear velocity and the derivative non-adiabatic coupling vector field.
Energy Technology Data Exchange (ETDEWEB)
Chen, Jingwei [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wei, L.F., E-mail: weilianfu@gmail.com [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China)
2015-10-23
Highlights: • A specific SCRAP technique is proposed to realize quantum gates in the circuit QED. • These quantum gates are insensitive to the durations of the applied pluses. • The implemented quantum gates are robustness against the operational imperfections. - Abstract: We show that a set of universal quantum gates could be implemented robustly in a circuit QED system by using Stark-chirped rapid adiabatic passage (SCRAP) technique. Under the adiabatic limit we find that the population transfers could be deterministically passaged from one selected quantum states to the others, and thus the desired quantum gates can be implemented. The proposed SCRAP-based gates are insensitive to the details of the operations and thus relax the designs of the applied pulses, operational imperfections, and the decoherence of the system.
Penetration of a resonant magnetic perturbation in an adiabatically rippled plasma slab
Dewar, Robert L; Bhattacharjee, Amitava; Yoshida, Zensho
2016-01-01
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, \\emph{multi-region relaxed magnetohydrodynamics} (MRxMHD) is summarized, with special attention to the appropriate definition of relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm--Kulsrud--Taylor (HKT) rippled-boundary slab model. In MRxMHD a linear Grad--Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking conservation of magnetic helicity in the two regions separated by the current sheet. At low ripple amplitude "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude these islands disappear and the rotational transform develops a discontinui...
Pinna, D.; Ryan, C. A.; Ohki, T.; Kent, A. D.
2016-05-01
We show that a slowly decaying current pulse can lead to nearly deterministic precessional switching in the presence of noise. We consider a biaxial macrospin, with an easy axis in-plane and a hard axis out-of-plane, typical of thin film nanomagnets patterned into asymmetric shapes. Out-of-plane precessional magnetization orbits are excited with a current pulse with a component of spin polarization normal to the film plane. By numerically integrating the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation we show that thermal noise leads to strong dephasing of the magnetization orbits. However, an adiabatically decreasing pulse amplitude overwhelmingly leads to magnetization reversal, with a final state dependent on the pulse polarity. We develop an analytic model to explain this phenomena and to determine the pulse decay time necessary for adiabatic magnetization relaxation and thus deterministic magnetization switching.
Fully quantum non-adiabatic dynamics in electronic-nuclear coherent state basis
Humeniuk, Alexander
2016-01-01
Direct dynamics methods using Gaussian wavepackets have to rely only on local properties, such as gradients and hessians at the center of the wavepacket, so as to be compatible with the usual quantum chemistry methods. Matrix elements of the potential energy surfaces between wavepackets therefore usually have to be approximated. It is shown, that if a modified form of valence bond theory is used instead of the usual MO-based theories, the matrix elements can be obtained exactly. This is so because the molecular Hamiltonian only contains the Coulomb potential, for which matrix elements between different basis functions (consisting of Gaussian nuclear and electronic orbitals) are all well-known. In valence bond theory the self-consistent field calculation can be avoided so that the matrix elements are analytical functions of the nuclear coordinates. A method for simulating non-adiabatic quantum dynamics is sketched, where coherent state trajectories are propagated "on the fly" on adiabatic potential energy surf...
Exchange-correlation functionals via local interpolation along the adiabatic connection
Vuckovic, Stefan; Savin, Andreas; Teale, Andrew M; Gori-Giorgi, Paola
2016-01-01
The construction of density-functional approximations is explored by modeling the adiabatic connection em locally, using energy densities defined in terms of the electrostatic potential of the exchange-correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of range of local interpolation models against accurate exchange-correlation energy densities. The importance of the strictly-correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approache...
Pulse-driven near-resonant quantum adiabatic dynamics: lifting of quasi-degeneracy
Yatsenko, L P; Jauslin, H R
2003-01-01
We study the quantum dynamics of a two-level system driven by a pulse that starts near-resonant for small amplitudes, yielding nonadiabatic evolution, and induces an adiabatic evolution for larger amplitudes. This problem is analyzed in terms of lifting of degeneracy for rising amplitudes. It is solved exactly for the case of linear and exponential rising. Approximate solutions are given in the case of power law rising. This allows us to determine approximative formulas for the lineshape of resonant excitation by various forms of pulses such as truncated trig-pulses. We also analyze and explain the various superpositions of states that can be obtained by the Half Stark Chirped Rapid Adiabatic Passage (Half-SCRAP) process.
Performance of indirectly driven capsule implosions on NIF using adiabat-shaping
Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatarik, R.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Kerbel, G. D.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; Marinak, M. M.; MacGowan, B. J.; MacPhee, A. G.; Pak, A.; Patel, M.; Patel, P. K.; Perkins, L. J.; Sayre, D. B.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Weber, C. R.; Widmayer, C. C.; Yeamans, C.; Giraldez, E.; Hoover, D.; Nikroo, A.; Hohenberger, M.; Gatu Johnson, M.
2016-05-01
A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth & fuel adiabat, separately and controllably. Two principal conclusions are drawn from this study: 1) It is shown that an increase in laser picket energy reduces ablation-front instability growth in low-foot implosions resulting in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. 2.) It is shown that a decrease in laser trough power reduces the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with no reduction in neutron yield. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.
Measurements of Reduced Hydrodynamic Instability Growth in Adiabat Shaped Implosions at the NIF
Casey, Daniel; Macphee, Andrew; Milovich, Jose; Smalyuk, Vladimir; Clark, Dan; Robey, Harry; Peterson, Luc; Baker, Kevin; Weber, Chris
2015-11-01
Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Radiographic measurements of ablation front perturbation growth were performed using adiabat-shaped drives which are shown to have lower ablation front growth than the low foot drive. This is partly due to faster Richtmyer-Meshkov (RM) oscillations during the shock transit phase of the implosion moving the node in the growth factor spectrum to lower mode numbers reducing the peak growth amplitude. This is demonstrated experimentally by a reversal of the perturbation phase at higher mode numbers (120-160). These results show that the ablation front growth and fuel adiabat can be controlled somewhat-independently and are providing insight into new, more stable, ignition designs. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
Quasi-classical theory of electronic flux density in electronically adiabatic molecular processes.
Diestler, D J
2012-11-26
The standard Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (EFD). A previously proposed "coupled-channels" theory permits the extraction of the EFD from the BO wave function for one-electron diatomic systems, but attempts at generalization to many-electron polyatomic systems are frustrated by technical barriers. An alternative "quasi-classical" approach, which eliminates the explicit quantum dynamics of the electrons within a classical framework, yet retains the quantum character of the nuclear motion, appears capable of yielding EFDs for arbitrarily complex systems. Quasi-classical formulas for the EFD in simple systems agree with corresponding coupled-channels formulas. Results of the application of the new quasi-classical formula for the EFD to a model triatomic system indicate the potential of the quasi-classical scheme to elucidate the dynamical role of electrons in electronically adiabatic processes in more complex multiparticle systems.
Ultrafast hydrogen migration in acetylene cation driven by non-adiabatic effects.
Madjet, Mohamed El-Amine; Li, Zheng; Vendrell, Oriol
2013-03-07
Non-adiabatic dynamics of the acetylene cation is investigated using mixed quantum-classical dynamics based on trajectory surface hopping. To describe the non-adiabatic effects, two surface hopping methods are used, namely, Tully's fewest switches and Landau-Zener surface hopping. Similarities and differences between the results based on those two methods are discussed. We find that the photoionization of acetylene into the first excited state A(2)Σg(+) drives the molecule from the linear structure to a trans-bent structure. Through a conical intersection the acetylene cation can relax back to either the ground state of acetylene or vinylidene. We conclude that hydrogen migration always takes place after non-radiative electronic relaxation to the ground state of the monocation. Based on the analysis of correlation functions we identify coherent oscillations between acetylene and vinylidene with a period of about 70 fs after the electronic relaxation.
Spectral-gap analysis for efficient tunneling in quantum adiabatic optimization
Brady, Lucas T.; van Dam, Wim
2016-09-01
We investigate the efficiency of quantum adiabatic optimization when overcoming potential barriers to get from a local to a global minimum. Specifically we look at n qubit systems with symmetric cost functions f :{0,1 } n→R , where the ground state must tunnel through a potential barrier of width nα and height nβ. By the quantum adiabatic theorem the time delay sufficient to ensure tunneling grows quadratically with the inverse spectral gap during this tunneling process. We analyze barrier sizes with 1 /2 ≤α +β and α folklore result by Goldstone from 2002, which used large spin and instanton methods. Parts of our result also refine recent results by Kong and Crosson [arXiv:1511.06991] and Jiang et al. [arXiv:1603.01293] about the exponential gap scaling.
Rhim, W. K.; Burum, D. P.; Elleman, D. D.
1977-01-01
Adiabatic demagnetization (ADRF) can be achieved in a dipolar coupled nuclear spin system in solids by applying a string of short RF pulses and gradually modulating the pulse amplitudes or pulse angles. This letter reports an adiabatic inverse polarization effect in solids and a rotary spin echo phenomenon observed in liquids when the pulse angle is gradually changed across integral multiples of pi during a string of RF pulses. The RF pulse sequence used is illustrated along with the NMR signal from a CaF2 single crystal as observed between the RF pulses and the rotary spin echo signal observed in liquid C6F6 for n = 2. The observed effects are explained qualitatively on the basis of average Hamiltonian theory.
2015-11-23
experience making cryogenic equipment and is at the forefront of adiabatic demagnetiza- tion cooling technology. This ADR system was delivered at the end of...Precision Devices with vacuum jackets removed, installed in Plourde research lab at Syracuse University. cuse Physics machine shop to install the system...successful initial benchmarking tests of the performance of the new refrigera- tor, the Plourde group worked to add electrical feedthroughs and experimental
Active quantum walks: a framework for quantum walks with adiabatic quantum evolution
Wu, Nan; Song, Fangmin; Li, Xiangdong
2016-05-01
We study a new methodology for quantum walk based algorithms. Different from the passive quantum walk, in which a walker is guided by a quantum walk procedure, the new framework that we developed allows the walker to move by an adiabatic procedure of quantum evolution, as an active way. The use of this active quantum walk is helpful to develop new quantum walk based searching and optimization algorithms.
Adiabatic Joule Heating of Copper from 4 K to the Melting Temperature
Guillet, Alain; Delamarre, Fabrice
2015-01-01
Considering a copper wire heated by Joule effect and the variation of its resistivity and specific heat with temperature, we established numerical and analytical solutions (between 293 and 1356 K for the latter) for the evolution of its temperature over time. The Temperature vs. Time evolution follows a Lambertian function. The calculations are based on the assumption of adiabatic heating and uniform current distribution within the wire. We demonstrate that at very low temperature the heating...
Institute of Scientific and Technical Information of China (English)
Zhou Yan-Wei; Ye Cun-Yun
2005-01-01
Two approaches of achieving population transfer and coherence are investigated for the three-level A system in the adiabatic limit. The effects of the laser pulse sequence on the population transfer efficiency and coherence are studied.Coherent control of quantum state and population is studied by numerical simulation based on self-consistent set of density matrix equations. It can be seen that the counterintuitive pulse sequence is more efficient in population transfer and coherence than the intuitive one.
Adiabatic momentum space treatment of a spin-orbit coupled BEC
Wang, Su-Ju; Greene, Chris
2013-05-01
By dressing the atomic spin states with Raman laser fields, experimentalists can create spin-orbit coupled Bose-Einstein condensates (BECs) by tuning controllable parameters in an ultracold atomic system. In the presence of spin-orbit coupling, we study the spin dynamics of a harmonically-trapped spinor BEC that can be driven by non-adiabatic Landau-Zener transitions occurring at avoided crossings between the bands.
Switching management by adiabatic passage in two periodically modulated nonlinear waveguides
Luo, Xiaobing; Yu, Xiaoguang
2016-01-01
We theoretically investigate light propagation in two periodically modulated nonlinear waveguides with certain propagation constant detuning between two guides. By slowly varying the amplitude of modulation, we can steer the light to the desired output waveguide when equal amounts of lights are launched into each waveguide. We also reveal that the light propagation dynamics depends sensitively on the detuning between two guides. Our findings can be explained qualitatively by means of adiabatic navigation of the extended nonlinear Floquet states.
Energy Technology Data Exchange (ETDEWEB)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States)
2016-01-28
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H{sup d}, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H{sup d} individually provides a starting point (seed) from which convergence of the full H{sup d} construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4{sup 1}A states of phenol and the 1,2{sup 1}A states of NH{sub 3}, states which are coupled by conical intersections.
Error suppression and error correction in adiabatic quantum computation I: techniques and challenges
Young, Kevin C.; Sarovar, Mohan; Blume-Kohout, Robin
2013-01-01
Adiabatic quantum computation (AQC) is known to possess some intrinsic robustness, though it is likely that some form of error correction will be necessary for large scale computations. Error handling routines developed for circuit-model quantum computation do not transfer easily to the AQC model since these routines typically require high-quality quantum gates, a resource not generally allowed in AQC. There are two main techniques known to suppress errors during an AQC implementation: energy...
Unification and limitations of error suppression techniques for adiabatic quantum computing
Young, Kevin C.; Sarovar, Mohan
2012-01-01
While adiabatic quantum computation (AQC) possesses some intrinsic robustness to noise, it is expected that a form of error control will be necessary for large scale computations. Error control ideas developed for circuit-model quantum computation do not transfer easily to the AQC model and to date there have been two main proposals to suppress errors during an AQC implementation: energy gap protection and dynamical decoupling. Here we show that these two methods are fundamentally related and...
2002-01-01
Collective two-color photoassociation of a freely-interacting 87Rb Bose-Einstein condensate is theoretically examined, focusing on stimulated Raman adiabatic passage (STIRAP) from an atomic to a stable molecular condensate. In particular, Drummond et al. [Phys. Rev. A 65, 063619 (2002); cond-mat/0110578] have predicted that particle-particle interactions can limit the efficiency of collective atom-molecule STIRAP, and that optimizing the laser parameters can partially overcome this limitation...
Institute of Scientific and Technical Information of China (English)
Xiao－BoWu; Zeng－YuanGuo
1996-01-01
A full solution of two-dimensional Navier-Stokes and energy equation was conducted numerically to analyze the natural convection of the horizontal strip with an adiabatic substrate.The main features of such convection are:(i) the leading and trailing edge effect,(ii) the non-boundary layer effect,and (iii)the side edge effect .The results are compared with the boundary layer theory and exprimental data.
Generalization of Weber's adiabatic bond charge model to amorphous group IV semiconductors
Winer, K.; Wooten, F.
1984-11-01
The generalization of Weber's adiabatic bond charge model to amorphous group IV semiconductors is described. Methods of relaxing the coordinates to their equilibrium configuration and of calculating the dynamical matrix for the phonon spectra are given. Particular emphasis is given to the optimization of the Coulomb subroutines required in this model. Estimates of computation time are included for the calculation of equilibrium configuration on a Cray computer.
Adiabatic rapid passage two-photon excitation of a Rydberg atom
Kuznetsova, Elena; Malinovskaya, Svetlana A
2015-01-01
We considered the two-photon adiabatic rapid passage excitation of a single atom from the ground to a Rydberg state. Three schemes were analyzed: both pump and Stokes fields chirped and pulsed, only the pump field is chirped, and only the pump field is pulsed and chirped while the Stokes field is continuous wave (CW). In all three cases high transfer efficiencies $>99\\%$ were achieved for the experimentally realizable Rabi frequencies and the pulse durations of the fields.
Chen, Hsing-Ta; Cohen, Guy; Reichman, David R.
2017-02-01
In this second paper of a two part series, we present extensive benchmark results for two different inchworm Monte Carlo expansions for the spin-boson model. Our results are compared to previously developed numerically exact approaches for this problem. A detailed discussion of convergence and error propagation is presented. Our results and analysis allow for an understanding of the benefits and drawbacks of inchworm Monte Carlo compared to other approaches for exact real-time non-adiabatic quantum dynamics.
Chen, Hsing-Ta; Reichman, David R
2016-01-01
In this second paper of a two part series, we present extensive benchmark results for two different inchworm Monte Carlo expansions for the spin-boson model. Our results are compared to previously developed numerically exact approaches for this problem. A detailed discussion of convergence and error propagation is presented. Our results and analysis allow for an understanding of the benefits and drawbacks of inchworm Monte Carlo compared to other approaches for exact real-time non-adiabatic quantum dynamics.
Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter
Energy Technology Data Exchange (ETDEWEB)
Jhu, Can-Yong [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Wang, Yih-Wen, E-mail: g9410825@yuntech.edu.tw [Department of Occupational Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, 79-9, Sha-Luen-Hu, Xi-Zhou-Li, Houlong, Miaoli 35664, Taiwan, ROC (China); Shu, Chi-Min [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Chang, Jian-Chuang; Wu, Hung-Chun [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Rm. 222, Bldg. 77, 2F, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan, ROC (China)
2011-08-15
Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO{sub 2}) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO{sub 2} cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2 V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T{sub 0}), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T{sub max}) and pressure (P{sub max}). The T{sub max} and P{sub max} of the charged Li-ion battery during the runaway reaction reach 903.0 {sup o}C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO{sub 2} batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.
Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter.
Jhu, Can-Yong; Wang, Yih-Wen; Shu, Chi-Min; Chang, Jian-Chuang; Wu, Hung-Chun
2011-08-15
Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO(2)) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO(2) cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T(0)), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T(max)) and pressure (P(max)). The T(max) and P(max) of the charged Li-ion battery during the runaway reaction reach 903.0°C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO(2) batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.
Socci, Luciano; Sorianello, Vito; Romagnoli, Marco
2015-07-27
Adiabatic polarization splitter-rotators are investigated exploiting continuous symmetry breaking thereby achieving significant device size and losses reduction in a single mask fabrication process for both SOI channel and ridge waveguides. A crosstalk lower than -25 dB is expected over 300nm bandwidth, making the device suitable for full grid CWDM and diplexer/triplexer FTTH applications at 1310, 1490 and 1550nm.
Reduced adiabatic hyperspherical basis in the Coulomb three-body bound state problem
Energy Technology Data Exchange (ETDEWEB)
Abramov, D.I. [Sankt Peterburgskij Univ., St. Petersburg (Russian Federation); Gusev, V.V. [Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Ponomarev, L.I. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation)
1996-10-01
A new version of the adiabatic hyperspherical approach (AHSA) is suggested which has significant advantages for the calculation of three-body states with total angular momentum J > 0. The binding energies of all bound states of mesic molecules with normal parity are calculated by the suggested method. Comparison with results of variational calculations and the fast convergence of the method confirm its high efficiency. (orig.). 13 refs.
Witzel, Wayne M.; Montaño, Inès; Muller, Richard P.; Carroll, Malcolm S.
2015-08-01
We present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009), 10.1103/PhysRevA.80.032314], we require a robust operating point (sweet spot) in control space where the qubits interact with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. This system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Putting this all together, we present a robust universal gate set for quantum computation.
Non-Adiabatic Dynamics around a Conical Intersection with Surface-Hopping Coupled Coherent States
Humeniuk, Alexander
2016-01-01
An extension of the CCS-method [Chem. Phys. 2004, 304, p. 103-120] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schr\\"{o}dinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully's fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronic wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both intereference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution i...
Leclerc, Arnaud; Viennot, David; Killingbeck, John P; 10.1063/1.3673320
2012-01-01
The Constrained Adiabatic Trajectory Method (CATM) is reexamined as an integrator for the Schr\\"odinger equation. An initial discussion places the CATM in the context of the different integrators used in the literature for time-independent or explicitly time-dependent Hamiltonians. The emphasis is put on adiabatic processes and within this adiabatic framework the interdependence between the CATM, the wave operator, the Floquet and the (t,t') theories is presented in detail. Two points are then more particularly analysed and illustrated by a numerical calculation describing the $H_2^+$ ion submitted to a laser pulse. The first point is the ability of the CATM to dilate the Hamiltonian spectrum and thus to make the perturbative treatment of the equations defining the wave function possible, possibly by using a Krylov subspace approach as a complement. The second point is the ability of the CATM to handle extremely complex time-dependencies, such as those which appear when interaction representations are used to...
Leclerc, A.; Jolicard, G.; Viennot, D.; Killingbeck, J. P.
2012-01-01
The constrained adiabatic trajectory method (CATM) is reexamined as an integrator for the Schrödinger equation. An initial discussion places the CATM in the context of the different integrators used in the literature for time-independent or explicitly time-dependent Hamiltonians. The emphasis is put on adiabatic processes and within this adiabatic framework the interdependence between the CATM, the wave operator, the Floquet, and the (t, t') theories is presented in detail. Two points are then more particularly analyzed and illustrated by a numerical calculation describing the H_2^+ ion submitted to a laser pulse. The first point is the ability of the CATM to dilate the Hamiltonian spectrum and thus to make the perturbative treatment of the equations defining the wave function possible, possibly by using a Krylov subspace approach as a complement. The second point is the ability of the CATM to handle extremely complex time-dependencies, such as those which appear when interaction representations are used to integrate the system.
Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag
Directory of Open Access Journals (Sweden)
S. Shaaban
2012-01-01
Full Text Available Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.
Oh, Yun-Tak; Higashi, Yoichi; Chan, Ching-Kit; Han, Jung Hoon
2016-08-01
The Lang-Firsov Hamiltonian, a well-known solvable model of interacting fermion-boson system with sideband features in the fermion spectral weight, is generalized to have the time-dependent fermion-boson coupling constant. We show how to derive the two-time Green's function for the time-dependent problem in the adiabatic limit, defined as the slow temporal variation of the coupling over the characteristic oscillator period. The idea we use in deriving the Green's function is akin to the use of instantaneous basis states in solving the adiabatic evolution problem in quantum mechanics. With such "adiabatic Green's function" at hand we analyze the transient behavior of the spectral weight as the coupling is gradually tuned to zero. Time-dependent generalization of a related model, the spin-boson Hamiltonian, is analyzed in the same way. In both cases the sidebands arising from the fermion-boson coupling can be seen to gradually lose their spectral weights over time. Connections of our solution to the two-dimensional Dirac electrons coupled to quantized photons are discussed.
Lei, Jinzhi; Yvinec, Romain; Zhuge, Changjing
2012-01-01
This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription. We prove that an adiabatic reduction can be performed in a stochastic slow/fast system with a jump Markov process. In the gene expression model, the production of mRNA (the fast variable) is assumed to follow a compound Poisson process (the phenomena called bursting in molecular biology) and the production of protein (the slow variable) is linear as a function of mRNA. When the dynamics of mRNA is assumed to be faster than the protein dynamics (due to a mRNA degradation rate larger than for the protein) we prove that, with the appropriate scaling, the bursting phenomena can be transmitted to the slow variable. We show that the reduced equation is either a stochastic differential equation with a jump Markov process or a deterministic ordinary differential equation depending on the scaling that is appropriate. These results are significant because adiabatic reduction techniques seem to have not been de...
Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn.
Jang, Dongjin; Gruner, Thomas; Steppke, Alexander; Mitsumoto, Keisuke; Geibel, Christoph; Brando, Manuel
2015-10-23
Adiabatic demagnetization is currently gaining strong interest in searching for alternatives to (3)He-based refrigeration techniques for achieving temperatures below 2 K. The main reasons for that are the recent shortage and high price of the rare helium isotope (3)He. Here we report the discovery of a large magnetocaloric effect in the intermetallic compound YbPt2Sn, which allows adiabatic demagnetization cooling from 2 K down to 0.2 K. We demonstrate this with a home-made refrigerator. Other materials, for example, paramagnetic salts, are commonly used for the same purpose but none of them is metallic, a severe limitation for low-temperature applications. YbPt2Sn is a good metal with an extremely rare weak magnetic coupling between the Yb atoms, which prevents them from ordering above 0.25 K, leaving enough entropy free for use in adiabatic demagnetization cooling. The large volumetric entropy capacity of YbPt2Sn guarantees also a good cooling power.
A non-adiabatic approach to entanglement distribution over long distances
Razavi, M; Razavi, Mohsen; Shapiro, Jeffrey H.
2006-01-01
Entanglement distribution between trapped-atom quantum memories, viz. single atoms in optical cavities, is addressed. In most scenarios, the rate of entanglement distribution depends on the efficiency with which the state of traveling single photons can be transferred to trapped atoms. This loading efficiency is analytically studied for two-level, $V$-level, $\\Lambda$-level, and double-$\\Lambda$-level atomic configurations by means of a system-reservoir approach. An off-resonant non-adiabatic approach to loading $\\Lambda$-level trapped-atom memories is proposed, and the ensuing trade-offs between the atom-light coupling rate and input photon bandwidth for achieving a high loading probability are identified. The non-adiabatic approach allows a broad class of optical sources to be used, and in some cases it provides a higher system throughput than what can be achieved by adiabatic loading mechanisms. The analysis is extended to the case of two double-$\\Lambda$ trapped-atom memories illuminated by a polarization...
Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity
Directory of Open Access Journals (Sweden)
Mathieu Beau
2016-04-01
Full Text Available The finite-time operation of a quantum heat engine that uses a single particle as a working medium generally increases the output power at the expense of inducing friction that lowers the cycle efficiency. We propose to scale up a quantum heat engine utilizing a many-particle working medium in combination with the use of shortcuts to adiabaticity to boost the nonadiabatic performance by eliminating quantum friction and reducing the cycle time. To this end, we first analyze the finite-time thermodynamics of a quantum Otto cycle implemented with a quantum fluid confined in a time-dependent harmonic trap. We show that nonadiabatic effects can be controlled and tailored to match the adiabatic performance using a variety of shortcuts to adiabaticity. As a result, the nonadiabatic dynamics of the scaled-up many-particle quantum heat engine exhibits no friction, and the cycle can be run at maximum efficiency with a tunable output power. We demonstrate our results with a working medium consisting of particles with inverse-square pairwise interactions that includes non-interacting and hard-core bosons as limiting cases.