Laminar burning velocities and flame instabilities of butanol isomers-air mixtures
Energy Technology Data Exchange (ETDEWEB)
Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)
2010-12-15
Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect
Trushina, Veronika; Osipov, Aleksandr
2015-01-01
A mathematical method for modeling the adiabatic burning temperature depending on the molecular fuel structure is considered. The method was tested on experimental data in comparison with other methods.
Loiko, Yurii; Menchon-Enrich, Ricard; Birkl, Gerhard; Mompart, Jordi
2014-01-01
We introduce here a coherent technique to inject, extract, and velocity filter neutral atoms in a ring trap coupled via tunneling to two additional waveguides. By adiabatically following the transverse spatial dark state, the proposed technique allows for an efficient and robust velocity dependent atomic population transfer between the ring and the input/output waveguides. We have derived explicit conditions for the spatial adiabatic passage that depend on the atomic velocity along the input waveguide as well as on the initial population distribution among the transverse vibrational states. The validity of our proposal has been checked by numerical integration of the corresponding two dimensional Schr\\"odinger equation with state-of-the-art parameter values for $^{87}$Rb atoms and an optical dipole ring trap.
Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen
Kido, Hiroyuki; Nakahara, Masaya; Hashimoto, Jun; Barat, Dilmurat
In order to clarify the turbulent burning velocity of multi-component fuel mixtures, both lean and rich two-component fuel mixtures, in which methane, propane and hydrogen were used as fuels, were prepared while maintaining the laminar burning velocity approximately constant. A distinct difference in the measured turbulent burning velocity at the same turbulence intensity is observed for two-component fuel mixtures having different addition rates of fuel, even the laminar burning velocities are approximately the same. The burning velocities of lean mixtures change almost constantly as the rate of addition changes, whereas the burning velocities of the rich mixtures show no such tendency. This trend can be explained qualitatively based on the mean local burning velocity, which is estimated by taking into account the preferential diffusion effect for each fuel component. In addition, a model of turbulent burning velocity proposed for single-component fuel mixtures may be applied to two-component fuel mixtures by considering the estimated mean local burning velocity of each fuel.
The Role of Molecule Clustering by Hydrogen Bond in Hydrous Ethanol on Laminar Burning Velocity
Directory of Open Access Journals (Sweden)
I Made Suarta
2016-01-01
Full Text Available The role of hydrogen bond molecule clustering in laminar burning velocities was observed. The water in hydrous ethanol can change the interaction between water-ethanol molecules. A certain amount of water can become oxygenated which increases the burning velocity. The hydrogen bond interaction pattern of ethanol and water molecules was modeled. Based on the molecular model, azeotropic behavior emerges from ethanol-water hydrogen bond, which is at a 95.1%v composition. The interaction with water molecule causes the ethanol molecule to be clustered with centered oxygenated compound. So, it supplies extra oxygen and provides intermolecular empty spaces that are easily infiltrated by the air. In the azeotropic composition, the molecular bond chain is the shortest, so hypothetically the burning velocity is anticipated to increase. The laminar burning velocity of ethanol fuel was tested in a cylindrical explosion bomb in lean, stoichiometric, and rich mixtures. The experimental result showed that the maximum burning velocity occurred at hydrous ethanol of 95.5%v composition. This discrepancy is the result of the addition of energy from 7.7% free ethanol molecules that are not clustered. At the rich mixture, the burning velocity of this composition is higher than that of anhydrous ethanol.
Measurements of the laminar burning velocity of hydrogen-air premixed flames
Energy Technology Data Exchange (ETDEWEB)
Pareja, Jhon; Burbano, Hugo J. [Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108 Bloque 20, 447 Medellin (Colombia); Ogami, Yasuhiro [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)
2010-02-15
Experimental and numerical studies on laminar burning velocities of hydrogen-air mixtures were performed at standard pressure and room temperature varying the equivalence ratio from 0.8 to 3.0. The flames were generated using a contoured slot-type nozzle burner (4 mm x 10 mm). Measurements of laminar burning velocity were conducted using particle tracking velocimetry (PTV) combined with Schlieren photography. This technique provides the information of instantaneous local burning velocities in the whole region of the flame front, and laminar burning velocities were determined using the mean value of local burning velocities in the region of non-stretch. Additionally, average laminar burning velocities were determined using the angle method and compared with the data obtained with the PTV method. Numerical calculations were also conducted using detailed reaction mechanisms and transport properties. The experimental results from the PTV method are in good agreement with the numerical results at every equivalence ratio of the range of study. Differences between the results obtained with the angle method and those with the PTV method are reasonably small when the effects of flame stretch and curvature are reduced by using a contoured slot-type nozzle. (author)
Coronary Flow Velocity Reserve in Burn Injury: A Prospective Clinical Cohort Study.
Caliskan, Mustafa; Turk, Emin; Karagulle, Erdal; Ciftci, Ozgur; Oguz, Hakan; Kostek, Osman; Moray, Gokhan; Haberal, Mehmet
2016-01-01
The authors sought to evaluate coronary microvascular function and left ventricular diastolic dysfunction using transthoracic Doppler echocardiography in burn patients. In this study, 32 adult burn patients with partial or full-thickness scald burns that were hospitalized and treated were included. The control group was matched for age and sex and was composed of otherwise healthy volunteers. Transthoracic Doppler echocardiography examinations and simultaneous laboratory tests for cardiac evaluation were performed on the sixth month after burn injury as well as with the control group. High-sensitivity C-reactive protein levels were significantly higher in the burn patients than in controls (5.17 ± 3.86 vs 2.42 ± 1.78; P = .001). Lateral isovolumic relaxation time was significantly higher in the burn injury group than in the control group (92.7 ± 15.7 vs 85.5 ± 8.3; P = .03). Baseline coronary diastolic peak flow velocity of the left anterior descending artery was similar in both groups. However, hyperemic diastolic peak flow velocity and coronary flow velocity reserve (2.26 ± 0.48 vs 2.94 ± 0.47; P < .001) were significantly lower in the burn injury group than in the control group. Coronary flow velocity reserve was significantly and inversely correlated with high-sensitivity C-reactive protein, burn ratio, creatinine, and mitral A-wave max velocity. At the sixth month of treatment, burn patients had high-sensitivity C-reactive protein levels during this period, suggesting that inflammation still exists. In addition, subclinical coronary microvascular and left ventricular diastolic dysfunction can occur in burn patients without traditional cardiovascular risk factors. However, these results must be supported by additional studies.
Bradley, Derek
2013-01-01
The implosion technique has been used to extend measurements of turbulent burning velocities over greater ranges of fuels and pressures. Measurements have been made up to 3.5 MPa and at strain rate Markstein numbers as low as 23. The implosion technique, with spark ignition at two opposite wall positions within a fan-stirred spherical bomb is capable of measuring turbulent burning velocities, at higher pressures than is possible with central ignition. Pressure records and schlieren high speed photography define the rate of burning and the smoothed area of the flame front. The first aim of the study was to extend the previous measurements with ethanol and propane-air, with further measurements over wider ranges of fuels and equivalence ratios with mixtures of hydrogen, methane, 10% hydrogen-90% methane, toluene, and i-octane, with air. The second aim was to study further the low turbulence regime in which turbulent burning co-exists with laminar flame instabilities. Correlations are presented of turbulent burning velocity normalised by the effective rms turbulent velocity acting on the flame front, ut=u0k , with the Karlovitz stretch factor, K, for different strain rate Markstein numbers, a decrease in which increases ut=u0k . Experimental correlations are presented for the present measurements, combined with previous ones. Different burning regimes are also identified, extending from that of mixed turbulence/laminar instability at low values of K to that at high values of K, in which ut=u0k is gradually reduced due to increasing localised flame extinctions. © 2012 The Combustion Institute.
Mannaa, Ossama
2015-06-01
The development and validation of a new gasoline surrogate using laminar flame speed as a target parameter is presented. Laminar burning velocities were measured using a constant-volume spherical vessel with ignition at the center of the vessel. Tested fuels included iso-octane, n-heptane, toluene, various mixtures of primary reference fuels (PRFs) and toluene reference fuels (TRFs) and three gasoline fuels of 70, 85 and 95 RON (FACE J, C and F) at the initial temperature of 358K and pressures up to 0.6MPa in the equivalence ratio ranging from 0.8 to 1.6. Normalized laminar burning velocity data were mapped into a tri-component mixture space at different experimental conditions to allocate different gasoline surrogates for different gasoline fuels, having RON of 70, 85 and 95. The surrogates of TRF-70-4 (17.94% iso-C8H18 +42.06% n-C7H16 +40% C7H8), TRF-85-1 (77.4% iso-C8H18 +17.6% n-C7H16 +5% C7H8), and TRF-95-1 (88.47% iso-C8H18 +6.53% n-C7H16 +5% C7H8) of RON 70, 85 and 95, respectively, are shown to successfully emulate the burning rate characteristics of the gasoline fuels associated with these RONs under the various experimental conditions investigated. An empirical correlation was derived to obtain laminar burning velocities at pressures that are experimentally unattainable as high as 3.0MPa. Laminar burning velocities were comparable to the simulated values for lean and stoichiometric flames but they were relatively higher than the simulated values for rich flames. A flame instability assessment was conducted by determining Markstein length, critical Pecklet number, and critical Karlovitz number at the onset of flame instability.
Directory of Open Access Journals (Sweden)
Willyanto Anggono
2014-01-01
Full Text Available Biogas is the natural byproduct of the decomposition of vegetation or animal manure, of which there are almost in exhaustable supplies in the world, and which does not contribute CO2 or other greenhouse gases to global warming or climate change. Biogas contains 66.4% flammable gas (CH4 and 33.6% inhibitors (CO2 and N2. This study focuses on the effects of inhibitors on biogas laminar burning velocity and flammability limits in spark ignited premix combustion. Spherically expanding laminar premixed flames, freely propagating from spark ignition sources in initially quiescent biogas–air mixtures, are continuously recorded by a high-speed digital camera. Initially, all the experiments in this paper were performed using inhibitorless biogas (biogas without inhibitors at room temperature, at reduced pressure (0.5 atm and at various equivalence ratios (ϕ from the lower flammable limit to the upper flammable limit. The results are compared with those from biogas (containing inhibitors flames at reduced pressure, inhibitorless biogas flames at atmospheric pressure (1 atm, and biogas flames at atmospheric pressure to emphasize the effect of inhibitors on biogas laminar burning velocity and flammability limits. Compared to an inhibitorless biogas-air mixtures, in the biogas-air mixtures, the presence of inhibitors cause a reduction in the laminar burning velocity and the flammable limits become narrower.
Energy Technology Data Exchange (ETDEWEB)
Jabbour, T.
2004-05-15
After the Montreal and Kyoto Protocols, the choice of refrigerants has dramatically changed, and an increased interest has been shown in flammable refrigerants as alternative to the phased-out refrigerants. The current flammability classifications do not address adequately the flammability hazard, and better assessment should be provided. The burning velocity is shown to be an appropriate parameter related to flammability hazard and can be used as an additional criterion for flammability classification of refrigerants. The burning velocity is related to the parameters of combustion initiation and the main consequences of flammability hazard. Furthermore, minimum ignition energy, radiation heat flux from fires and overpressure generation from explosions are strongly dependent on the burning velocity. The derived formulations demonstrate that the burning velocity is a main parameter to be considered in the flammability classification. The vertical tube method is used to measure the burning velocity with a very well-defined measurement procedure. Burning velocities are measured for 6 pure refrigerants and 3 refrigerant blends. The results show that the burning velocity allows to differentiate flammability levels and show three burning velocity classes: a first class bounded by a maximum burning velocity of 10 cm/s, a second class with a maximum burning velocity between 10 and 30 cm/s, a third class with maximum burning velocities above 30 cm/s. The maximum burning velocity is taken as additional criterion to the lower flammability limit and heat of combustion in the flammability classification of refrigerants. (author)
Kol, Jacob
1985-01-01
The energy released by metals burning in steam has several important applications including torpedo propulsion, nuclear reactor safety, underwater vehicles, underwater ordnance, etc. For investigation of shaped charge performance, velocities and decelerations of the burning particles are important parameters that can be used for aerodynamic drag studies as well as for studies of different burning mechanisms. Wires of various metals were exploded in a steam atmosphere. The metals investig...
Directory of Open Access Journals (Sweden)
Yousif Alaeldeen Altag
2016-01-01
Full Text Available In the present work, experimental investigation on laminar combustion of iso-butane-air mixtures was conducted in constant volume explosion vessel. The experiments were conducted at wide range of equivalence ratios ranging between Ф = 0.6 and 1.4 and atmospheric pressure of 0.1 MPa and ambient temperature of 303K. Using spherically expanding flame method, flame parameters including stretched, unstretched flame propagation speeds, laminar burning velocities and Markstein length were calculated. For laminar burning velocities the method of error bars of 95% confidence level was applied. In addition, values of Markstein lengths were measured in wide range of equivalence ratios to study the influence of stretch rate on flame instability and burning velocity. It was found that the stretched flame speed and laminar burning velocities increased with equivalence ratios and the peak value was obtained at equivalence ratio of Ф = 1.1. The Markstein length decreased with the increases in equivalence ratios, which indicates that the diffusion thermal flame instability increased at high equivalence ratios in richer mixture side. However, the total deviations in the laminar burning velocities have discrepancies of 1.2-2.9% for all investigated mixtures.
Thermal Structure and Burning Velocity of Flames in Non-volatile Fuel Suspensions
Soo, Michael J; Goroshin, Samuel; Frost, David L; Bergthorson, Jeffrey M
2016-01-01
Flame propagation through a non-volatile solid-fuel suspension is studied using a simplified, time-dependent numerical model that considers the influence of both diffusional and kinetic rates on the particle combustion process. It is assumed that particles react via a single-step, first-order Arrhenius surface reaction with an oxidizer delivered to the particle surface through gas diffusion. Unlike the majority of models previously developed for flames in suspensions, no external parameters are imposed, such as particle ignition temperature, combustion time, or the assumption of either kinetic- or diffusion-limited particle combustion regimes. Instead, it is demonstrated that these parameters are characteristic values of the flame propagation problem that must be solved together with the burning velocity, and that the a priori imposition of these parameters from single-particle combustion data may result in erroneous predictions. It is also shown that both diffusive and kinetic reaction regimes can alternate ...
Energy Technology Data Exchange (ETDEWEB)
Krause, U. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany). Labor 4.12 - Staubbraende, Staubexplosionen
1995-09-01
At the Federal Institute for Materials Research and Testing (BAM) research work is carried out, which preceeds the preparation of technical standards for explosion protection and prevention. Part of this work is dedicated to find dust explosion characteristic parameters, which - in distinction to those parameters in use now - can be measured under well-defined conditions of the flow field, preferably under excluding the influence of turbulent transport processes. By this a dominating influence of materials parameters is achieved. One out of such parameters could promisingly be the laminar burning velocity of a dust/air mixture. The present paper describes investigations on the influence of the dust concentration and the flow velocity on the laminar burning velocity. The substances considered were lycopodium powder, cornstarch and wheat flour. For all substances the laminar burning velocity showed a significant dependence from the dust concentration, from the chemical properties of the material and from the flow velocity. The highest values for the laminar burning velocity were obtained for lycopodium powder, while wheat flour reached the lowest values. (orig.). With 5 figs., 4 tabs. [Deutsch] Im Rahmen der an der Bundesanstalt fuer Materialforschung und -pruefung (BAM) betriebenen praenormativen Forschung fuer den Staubexplosionsschutz wird unter anderem nach Kenngroessen fuer den Explosionsablauf gesucht, die im Unterschied zu den bislang ueblichen Kenngroessen unter definierten Stroemungsbedingungen - moeglichst unter Ausschluss turbulenter Transportvorgaenge - zustande kommen, und so die stoffspezifischen Eigenschaften einer Substanz staerker hervortreten lassen. Eine solche Kenngroesse koennte die laminare Verbrennungsgeschwindigkeit eines Staub/Luft-Gemisches sein. Die vorliegende Arbeit beschreibt Untersuchungen in zwei Rohrversuchsstaenden zum Einfluss der Staubkonzentration und der Stroemungsgeschwindigkeit auf die laminare Verbrennungsgeschwindigkeit. Fuer
Rich methane/air flames: Burning velocities, extinction limits, and flammability limit
Energy Technology Data Exchange (ETDEWEB)
Bui-Pham, M.N.; Miller, J.A.
1994-12-31
A theoretical investigation has been conducted to establish a reliable chemical kinetic mechanism that can determine the extinction limit of opposed-flow, strained, rich premixed methane-air flames. In the process of developing this kinetic representation for rich methane-air flames, we found that the heat of formation of {sup 1}CH{sub 2}=102.5 kcal/mole, which is 1 kcal/mole higher than the currently available thermochemical data, gives the best agreement with experimental data on burning velocities for equivalence ratios between 0.5 and 1.7. Employing this value for {Delta}H{sub f{sup 1}CH{sub 2}} in our calculations, the extinction stretch rate, K{sub ex}, was found to be K{sub ex}=2250 sec {sup {minus}1} for {phi}=1.0, K{sub ex}=2000 sec{sup {minus}1} for {phi}=1.1, and K{sub ex}=1400 sec{sup {minus}1} for {phi}=1.2. These results agree better with experiments than those using a lower heat of formation of singlet methylene. In comparison with previous calculations made by Kee et al., our predictions are basically the same except that our extinction stretch rate is slightly higher at {phi}=1.0 and that our location of the maximum extinction stretch rate is closer to that found in experiments. In addition, we establish the rich flammability limit using two different criteria to be approximately between {phi}=1.61 and {phi}=1.68, which agrees very well with an experimental value of {phi}=1.67.
Energy Technology Data Exchange (ETDEWEB)
Jun, Jin Yong; Lee, Byeong Jun; Song, Dong Joo [Yeungnam University, Gyeongsan (Korea, Republic of)
2016-05-15
Combustion characteristics of a mixture of nano- and micron-sized aluminum powder in ice were experimentally studied. Round barshaped bare strand was casted with a frozen mixture of aluminum and water and then electrically ignited in the air or argon environment. Propagating flame was recorded using a camcorder with an optical filter. Burning rate, defined as the slope in the graph of average flame position movement versus time, was also evaluated. The burning velocity peaked at equivalence ratio of 0.8. Flame propagation velocity increased with a pressure exponent of 0.61 for = 0.8 and pressure range of 0.1-0.8 MPa. For nano/micro-mixture at = 0.8, flame propagation was not feasible if the mass fraction of micron-sized particles in fuel is higher than 0.5.
Institute of Scientific and Technical Information of China (English)
HU ErJiang; HUANG ZuoHua; HE JiaJia; JIN Chun; MIAO HaiYan; WANG XiBin
2009-01-01
The laminar burning velocities and Markstein lengths of the hydrogen-air-diluent mixtures were meas-ured at different equivalence ratios (0.4-1.5), different diluents (N2, CO2 and 15%CO2+85%N2) and di-lution ratios (0, 0.05, 0.10 and 0.15) by using the outwardly expanding flame. The influences of flame stretch rate on the flame propagation characteristics were analyzed. The results show that both the laminar burning velocities and the Markstein lengths of the hydrogen-air-diluent mixtures decrease with the increase of dilution ratio. The decrease in Markstein lengths means that adding diluents into the hydrogen-air mixtures will decrease the diffusional-thermal instability of the flame front. For a specified dilution ratio, the laminar burning velocities give their maximum values at an equivalence ratio of 1.8. The Markstein lengths increase with the increase of the equivalence ratio monotonously regardless of the diluents. The study shows that CO2 as the diluent has a greater impact on the laminar flame speed and the flame front stability than N2 as the diluent.
Anggono, W.; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, S.; Hamidi, N.; Hayakawa, A.
2016-03-01
Biogas is an alternative energy source that is sustainable and renewable containing more than 50% CH4 and its biggest impurity or inhibitor is CO2. Demands for replacing fossil fuels require an improved fundamental understanding of its combustion processes. Flammability limits and laminar burning velocities are important characteristics in these processes. Thus, this research focused on the effects of CO2 on biogas flammability limits and laminar burning velocities in spark ignited premixed combustion. Biogas was burned in a spark ignited spherical combustion bomb. Spherically expanding laminar premixed flames, freely propagating from spark ignition in initial, were continuously recorded by a high-speed digital camera. The combustion bomb was filled with biogas-air mixtures at various pressures, CO2 levels and equivalence ratios (ϕ) at ambient temperature. The results were also compared to those of the previous study into inhibitorless biogas (methane) at various pressures and equivalence ratios (ϕ). Either the flammable areas become narrower with increased percentages of carbon dioxide or the pressure become lower. In biogas with 50% CO2 content, there was no biogas flame propagation for any equivalence ratio at reduced pressure (0.5 atm). The results show that the laminar burning velocity at the same equivalence ratio declined in respect with the increased level of CO2. The laminar burning velocities were higher at the same equivalence ratio by reducing the initial pressure.
Elementary examples of adiabatic invariance
Energy Technology Data Exchange (ETDEWEB)
Crawford, F.S. (Physics Department, University of California, Berkeley, CA (USA) Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 (USA))
1990-04-01
Simple classical one-dimensional systems subject to adiabatic (gradual) perturbations are examined. The first examples are well known: the adiabatic invariance of the product {ital E}{tau} of energy {ital E} and period {tau} for the simple pendulum and for the simple harmonic oscillator. Next, the adiabatic invariants of the vertical bouncer are found---a ball bouncing elastically from the floor of a rising elevator having slowly varying velocity and acceleration. These examples lead to consideration of adiabatic invariance for one-dimensional systems with potentials of the form {ital V}={ital ax}{sup {ital n}}, with {ital a}={ital a}({ital t}) slowly varying in time. Then, the horizontal bouncer is considered---a mass sliding on a smooth floor, bouncing back and forth between two impenetrable walls, one of which is slowly moving. This example is generalized to a particle in a bound state of a general potential with one slowly moving turning point.'' Finally, circular motion of a charged particle in a magnetic field slowly varying in time under three different configurations is considered: (a) a free particle in a uniform field; (b) a free particle in a nonuniform betatron'' field; and (c) a particle constrained to a circular orbit in a uniform field.
Mannaa, Ossama A.
2016-05-04
Laminar burning velocities of fuels for advanced combustion engines (FACE) C gasoline and of several blends of surrogate toluene reference fuels (TRFs) (n-heptane, iso-octane, and toluene mixtures) of the same research octane number are presented. Effects of ethanol addition on laminar flame speed of FACE-C and its surrogate are addressed. Measurements were conducted using a constant volume spherical combustion vessel in the constant pressure, stable flame regime at an initial temperature of 358 K and initial pressures up to 0.6 MPa with the equivalence ratios ranging from 0.8 to 1.6. Comparable values in the laminar burning velocities were measured for the FACE-C gasoline and the proposed surrogate fuel (17.60% n-heptane + 77.40% iso-octane + 5% toluene) over the range of experimental conditions. Sensitivity of flame propagation to total stretch rate effects and thermo-diffusive instability was quantified by determining Markstein length. Two percentages of an oxygenated fuel of ethanol as an additive, namely, 60 vol% and 85 vol% were investigated. The addition of ethanol to FACE-C and its surrogate TRF-1 (17.60% n-heptane + 77.40% iso-octane + 5% toluene) resulted in a relatively similar increase in the laminar burning velocities. The high-pressure measured values of Markstein length for the studied fuels blended with ethanol showed minimal influence of ethanol addition on the flame’s response to stretch rate and thermo-diffusive instability. © 2016 Taylor & Francis.
Adiabatic turbocompound diesel engine
Energy Technology Data Exchange (ETDEWEB)
Kamo, R.; Bryzik, W.
1984-02-01
The research and development of an adiabatic turbocompound engine have shown that the concept is feasible. The ability to meet the performance and sociability goals of the future power plants has been demonstrated. Low brake specific fuel consumption, low smoke and particulates, better NO /SUB x/ -BSFC trade-off, excellent multifuel capability, white smoke suppression, and potentially lower maintenance and greater reliability and durability are some of the attributes. The absence of the water cooling system adds to its attractiveness because of lower installed weight, cost, and reduction in parasitic losses. The operating environment of an adiabatic engine is shown as the basis for analysis and designing of adiabatic components. The types of material which can satisfy the needs of an adiabatic engine are presented. These materials include high temperature metals, high performance ceramics, and glass ceramics. The use of a turbocompound system to utilize the increased exhaust energy of an adiabatic engine is covered. A minimum fuel consumption of 0.285 lb/bhp-hr was achieved at 200 psi BMEP. Although the technical feasibility and viability of an adiabatic engine was demonstrated, the adiabatic diesel engine has problems which must be solved before it becomes a commercially viable product. These problem areas where more work is required are discussed.
Quantum adiabatic machine learning
Pudenz, Kristen L
2011-01-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.
Oreshkov, Ognyan
2010-01-01
We propose a theory of adiabaticity in quantum Markovian dynamics based on a structural decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of Markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the underlying Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As an application of our theory, we propose a framework for decoherence-assisted computation in noiseless codes under general Markovian noise. We also formulate a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by non-dissipative means.
Directory of Open Access Journals (Sweden)
V. A. Sabel'nikov
2011-01-01
Full Text Available The present study aims at providing a complete picture of the various propagation scenarios that a statistically stationary turbulent premixed flame may possibly undergo. By explicitly splitting the scalar turbulent flux between its gradient and counter-gradient contributions, the scalar governing equation is rewritten as an ordinary differential equation in the phase space. Then, an analysis of the characteristic equations in the vicinity of the reactants and products side is carried out. The domain of existence of the propagation velocity is then determined and positioned over the relevant Bray number range. It is shown in particular that when a counter-gradient transport at the cold leading edge of the flame is dominant, there still exists a possibility of observing a steady regime of propagation. This conclusion is compatible with recent experimental data and observations based on the analysis of direct numerical simulations.
Nonresonance adiabatic photon trap
Popov, S S; Burdakov, A V; Ushkova, M Yu
2016-01-01
Concept of high efficiency photon storage based on adiabatic confinement between concave mirrors is presented and experimentally investigated. The approach is insensitive to typical for Fabri-Perot cells requirements on quality of accumulated radiation, tolerance of resonator elements and their stability. Experiments have been carried out with the trap, which consists from opposed concave cylindrical mirrors and conjugated with them spherical mirrors. In result, high efficiency for accumulation of radiation with large angular spread and spectrum width has been confirmed. As radiation source a commercial fiber laser has been used.
Power spectra in the eikonal approximation with adiabatic and non-adiabatic modes
Bernardeau, Francis; Vernizzi, Filippo
2012-01-01
We use the so-called eikonal approximation, recently introduced in the context of cosmological perturbation theory, to compute power spectra for multi-component fluids. We demonstrate that, at any given order in standard perturbation theory, multi-point power spectra do not depend on the large-scale adiabatic modes. Moreover, we employ perturbation theories to decipher how non-adiabatic modes, such as a relative velocity between two different components, damp the small-scale matter power spectrum, a mechanism recently described in the literature. In particular, we do an explicit calculation at 1-loop order of this effect. While the 1-loop result eventually breaks down, we show how the damping effect can be fully captured by the help of the eikonal approximation. A relative velocity not only induces mode damping but also creates large-scale anisotropic modulations of the matter power spectrum amplitude. We illustrate this for the Local Group environment.
Institute of Scientific and Technical Information of China (English)
张猛; 王金华; 谢永亮; 卫之龙; 金武; 黄佐华
2013-01-01
Instantaneous flame front structure and turbulent burning velocities of CH4/H2/air mixtures were measured using OH-PLIF technique. Various turbulence intensities were generated by perforated plates with different hole di-ameter and opening ratio. Stabilized turbulent premixed flames were obtained at the outlet of the Bunsen burner for long-duration OH-PLIF measurement. 500 single shot images were averaged to obtain turbulent burning velocity by conventional angel method. The effects of hydrogen addition and turbulence intensity on turbulent burning velocity were analyzed and a power law correlation of turbulent burning velocity was obtained. Results show that turbulent burning velocity increases with the increase of turbulence intensity due to the increase of flame front area. Hydrogen addition increases the flame intrinsic instability and leads to the active response of laminar flame to turbulence, resulting in the much wrinkle flame front structure,larger flame front area and subsequently the increased turbulent burning velocity. A correlation between turbulent burning velocity and turbulence intensity was derived in the form of ST/SL∝a(u′/SL)n,andn remained a constant value of 0.35.%利用OH平面激光诱导荧光技术测量CH4/H2/空气预混湍流火焰前锋面结构，得到湍流燃烧速率．采用不同孔径和开孔比的湍流发生板，产生不同湍流强度和尺度下稳定的预混湍流火焰供OH-PLIF测量．利用500张瞬时火焰结构图片得到湍流火焰前锋面的平均位置，运用角度法得到湍流燃烧速率．分析了掺氢比和湍流强度对湍流燃烧速率的影响，并给出了拟合关系式．实验结果表明，湍流燃烧速率随湍流强度的增加而增加，这是由于流场尺度减小引起火焰锋面面积增加．湍流燃烧速率随掺氢比的升高略有增加，这是由于掺氢引起火焰不稳定性增强，导致火焰对湍流流动的响应增强，增强了湍流火焰前锋
Directory of Open Access Journals (Sweden)
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
Geometry of the Adiabatic Theorem
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Performance analysis of adiabatic engine
Energy Technology Data Exchange (ETDEWEB)
Sudhakar, V.
1984-01-01
As the development of the adiabatic diesel engine continues with a goal of 65% reduction in net in-cylinder heat transfer over a cooled engine, several uncooled engines with intermediate levels of reduced heat transfer were studied. Some aspects and results of the adiabatic diesel engine cycle simulation are discussed. Performance test data and simulation results are compared for a conventionally cooled and uncooled Cummins NH-450 turbocompound engines. Exhaust emissions were also measured and compared.
Adiabatic theory for the bipolaron
Energy Technology Data Exchange (ETDEWEB)
Lakhno, V.D. (Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino Moscow Region, 142292 (Russian Federation))
1995-02-01
A translation-invariant adiabatic theory is constructed for the bipolaron. It is shown that motions in the bipolaron are divided: the relative electron coordinates describe fast electron oscillations in the induced polarization well and the center of mass coordinates represent slow electron movement followed by polarization. Nonlinear differential bipolaron equations are derived which are asymptotically exact in the adiabatic limit. Particlelike solutions of these equations correspond to the bipolaron bound state. The exact solution yields the value of the ion critical parameter [eta]=0.31 for which the bipolaron state is stable, where [eta]=[epsilon][sub [infinity
Optimizing adiabaticity in quantum mechanics
MacKenzie, R; Renaud-Desjardins, L
2011-01-01
A condition on the Hamiltonian of a time-dependent quantum mechanical system is derived which, if satisfied, implies optimal adiabaticity (defined below). The condition is expressed in terms of the Hamiltonian and in terms of the evolution operator related to it. Since the latter depends in a complicated way on the Hamiltonian, it is not yet clear how the condition can be used to extract useful information about the optimal Hamiltonian. The condition is tested on an exactly-soluble time-dependent problem (a spin in a magnetic field), where perfectly adiabatic evolution can be easily identified.
Alpha Heating and TN Burn in NIF Experiments
Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Merrill, Frank; Cerjan, Charlie; Batha, Steven
2015-11-01
Sustainable TN burn requires alpha-particle energy deposition in the hot fuel. Recently, we developed an analytic model to estimate the neutron yield generated by the alpha-particle energy deposited in the hot spot, in terms of the measured total neutron yield, the adiabat of the cold fuel and the peak implosion kinetic energy of the pusher. Our alpha heating model has been applied to a number of inertial confinement fusion capsule experiments performed at the National Ignition Facility (NIF). Our model predictions are consistent with the post-shot calibrated code simulations and experimental data. We have also studied the uncertainty and sensitivities of alpha heating on various physics parameters, such as the adiabat of cold fuel, total neutron yield and peak implosion velocity. Our analysis demonstrates that the alpha particle heating was appreciable in only high-foot experiments. Based on our work, we will discuss paths and parameters to reach ignition at NIF (LA-UR-15-25507). This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
Directory of Open Access Journals (Sweden)
Koray Aydemir
2011-07-01
Full Text Available Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The term ‘burn rehabilitation’ incorporates the physical, physiological and social aspects of care. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Burn rehabilitation aims to prevent the possible complications, minimalize joint contractures and deformities, increase range of motion, control hypertrophic scarring, achieve the best possible functional capacity and to regain the patients vocational and recreational activities. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 70-7
Transitionless driving on adiabatic search algorithm
Energy Technology Data Exchange (ETDEWEB)
Oh, Sangchul, E-mail: soh@qf.org.qa [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Kais, Sabre, E-mail: kais@purdue.edu [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Highly stripped ions on hydrogen atoms: the adiabatic approach
International Nuclear Information System (INIS)
The simple Lorentzian form for the adiabatic radial matrix elements which dominate low-energy charge transfer in highly stripped systems is exploited to derive the S matrix for the Asub(Z)sup(Z+) + H(1s) → Asub(Z)sup(Z-1)+ + H+ scattering process. The approximations used are discussed and the results of the theory are compared with measured He2+ + H(1s) → He+ + H+ cross sections. Agreement is satisfactory for low velocities. (author)
Global adiabaticity and non-Gaussianity consistency condition
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-10-01
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad ≡ δP - cw2 δρ where cw2 = P ˙ / ρ ˙ , usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad = 0 on all scales, which we call global adiabaticity (GA), which is guaranteed if cw2 = cs2 , where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR) inflation in which cw2 = cs2 = 1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2 = cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.
Digital Waveguide Adiabatic Passage Part 1: Theory
Vaitkus, Jesse A; Greentree, Andrew D
2016-01-01
Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.
Adiabatic Rearrangement of Hollow PV Towers
Directory of Open Access Journals (Sweden)
Eric A Hendricks
2010-10-01
Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane
Li, Dafa
2016-05-01
The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.
Conditions for super-adiabatic droplet growth after entrainment mixing
Yang, Fan; Shaw, Raymond; Xue, Huiwen
2016-07-01
Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.
Adiabatic theory of solitons fed by dispersive waves
Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
2016-09-01
We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.
Directory of Open Access Journals (Sweden)
Barban C.
2013-03-01
Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.
Explosive helium burning at constant pressures
Hashimoto, M.-A.; Hanawa, T.; Sugimoto, D.
The results of numerical calculations of nucleosynthesis under adiabatic conditions, i.e., when the only heat exchange with the external regions takes place through neutrinos, are reported. Attention is focused on explosive burning associated with shell flashes, assuming that nuclear energy is deposited in a mass element, followed by expansion and density decrease. Consideration is given to three cases, the shell flash near the surface of a degenerate star, to nuclear burning concentrated in a small region of a star, and to the heat energy being deposited in intermediate layers. A reaction network of 181 nuclear species was constructed and the thermodynamic evolution was calculated assuming constant pressure and adiabatic conditions. The final products of the reactions of H-1 to Cu-62 were projected to by O-16, Mg-24, Si-28, S-32, Ca-40, Ti-44, Cr-48, and Fe-52.
On the topology of adiabatic passage
Yatsenko, L P; Jauslin, H R
2002-01-01
We examine the topology of eigenenergy surfaces characterizing the population transfer processes based on adiabatic passage. We show that this topology is the essential feature for the analysis of the population transfers and the prediction of its final result. We reinterpret diverse known processes, such as stimulated Raman adiabatic passage (STIRAP), frequency-chirped adiabatic passage and Stark-chirped rapid adiabatic passage (SCRAP). Moreover, using this picture, we display new related possibilities of transfer. In particular, we show that we can selectively control the level which will be populated in STIRAP process in Lambda or V systems by the choice of the peak amplitudes or the pulse sequence.
... OralHealth > Topics > Burning Mouth Syndrome > Burning Mouth Syndrome Burning Mouth Syndrome Main Content Key Points Symptoms Diagnosis Primary and Secondary BMS Treatment Helpful Tips Key Points Burning mouth syndrome is burning pain in the mouth that may ...
Cummins/Tacom advanced adiabatic engine
Energy Technology Data Exchange (ETDEWEB)
Kamo, R.; Bryzik, W.
1984-01-01
Cummins Engine Company, Inc. and the U.S. Army have been jointly developing an adiabatic turbocompound engine during the last nine years. Although progress in the early years was slow, recent developments in the field of advanced ceramics have made it possible to make steady progress. It is now possible to reconsider the temperature limitation imposed on current heat engines and its subsequent influence on higher engine efficiency when using an exhaust energy utilization system. This paper presents an adiabatic turbocompound diesel engine concept in which high-performance ceramics are used in its design. The adiabatic turbocompound engine will enable higher operating temperatures, reduced heat loss, and higher exhaust energy recovery, resulting in higher thermal engine efficiency. This paper indicates that the careful selection of ceramics in engine design is essential. Adiabatic engine materials requirements are defined and the possible ceramic materials which will satisfy these requirements are identified. Examples in design considerations of engine components are illustrated. In addition to these important points, the use of ceramic coatings in the design of engine components. The first generation adiabatic engine with ceramic coatings is described. The advanced adiabatic engine with minimum friction features utilizaing ceramics is also presented. The advanced ceramic turbocharger turbine rotor as well as the oilless ceramic bearing design is described. Finally, the current status of the advanced adiabatic engine program culminating in the AA750 V-8 adiabatic engine is presented.
Shortcut to adiabatic gate teleportation
Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.
2016-01-01
We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.
Adiabatic quantum optimization with qudits
Amin, M H S; Smith, Peter
2011-01-01
Most realistic solid state devices considered as qubits are not true two-state systems but multi-level systems. They can approximately be considered as qubits only if the energy separation of the upper energy levels from the lowest two is very large. If this condition is not met, the upper states may affect the evolution and therefore cannot be neglected. Here, we consider devices with double-well potential as basic logical elements, and study the effect of higher energy levels, beyond the lowest two, on adiabatic quantum optimization. We show that the extra levels can be modeled by adding additional (ancilla) qubits coupled to the original (logical) qubits. The presence of these levels is shown to have no effect on the final ground state. We also study their influence on the minimum gap for a set of 8-qubit spin glass instances.
On a Nonlinear Model in Adiabatic Evolutions
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
Prediction of mean flow data for adiabatic 2-D compressible turbulent boundary layers
Motallebi, F.
1997-01-01
This book presents a method for the prediction of mean flow data (i.e. skin friction, velocity profile and shape parameter) for adiabatic two-dimensional compressible turbulent boundary layers at zero pressure gradient. The transformed law of the wall, law of the lake, the van Driest model for the c
Partial evolution based local adiabatic quantum search
Institute of Scientific and Technical Information of China (English)
Sun Jie; Lu Song-Feng; Liu Fang; Yang Li-Ping
2012-01-01
Recently,Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution,which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one.Later,they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database.In the present paper,following the idea of Roland and Cerf [Roland J and Cerf N J 2002Phys.Rev.A 65 042308],if within the small symmetric evolution interval defined by Zhang et al.,a local adiabatic evolution is performed instead of the original “global” one,this “new” algorithm exhibits slightly better performance,although they are progressively equivalent with M increasing.In addition,the proof of the optimality for this partial evolution based local adiabatic search when M =1 is also presented.Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search,which are found to have the same phenomenon above,are also discussed.
Free Convective Unsteady MHD Flow of Newtonian Fluid in a Channel with Adiabatic
Directory of Open Access Journals (Sweden)
Dr.G.Prabhakararao
2014-07-01
Full Text Available In this paper, we investigated an unsteady free convection MHD flow of an incompressible viscous electrically conducting fluid under the action of transverse uniform magnetic field between two heated vertical plates by keeping one plate is adiabatic. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by using perturbation technique. The effects of various physical parameters on the velocity and temperature fields are discussed in detail with the help of graphs.
Digital Waveguide Adiabatic Passage Part 2: Experiment
Ng, Vincent; Chaboyer, Zachary J; Nguyen, Thach; Dawes, Judith M; Withford, Michael J; Greentree, Andrew D; Steel, M J
2016-01-01
Using a femtosecond laser writing technique, we fabricate and characterise three-waveguide digital adiabatic passage devices, with the central waveguide digitised into five discrete waveguidelets. Strongly asymmetric behaviour was observed, devices operated with high fidelity in the counter-intuitive scheme while strongly suppressing transmission in the intuitive. The low differential loss of the digital adiabatic passage designs potentially offers additional functionality for adiabatic passage based devices. These devices operate with a high contrast ($>\\!90\\%$) over a 60~nm bandwidth, centered at $\\sim 823$~nm.
Thermoelectric Effects under Adiabatic Conditions
Directory of Open Access Journals (Sweden)
George Levy
2013-10-01
Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.
Adiabatic hydrodynamics: The eightfold way to dissipation
Haehl, Felix M; Rangamani, Mukund
2015-01-01
We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...
Adiabatic Invariance of Oscillons/I-balls
Kawasaki, Masahiro; Takeda, Naoyuki
2015-01-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or $I$-balls. We prove the adiabatic invariance of the oscillons/$I$-balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/$I$-balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/$I$-balls are only quasi-stable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the $I$-balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/$I$-balls is due to the adiabatic invariance.
Adiabatic Quantum Search in Open Systems
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats
Pain, J C
2007-01-01
Rankine-Hugoniot shock adiabats are calculated in the pressure range 1 Mbar-10 Gbar with two atomic-structure models: the atom in a spherical cell and the atom in a jellium of charges. These quantum self-consistent-field models include shell effects, which have a strong impact on pressure and shock velocity along the shock adiabat. Comparisons with experimental data are presented and quantum effects are interpreted in terms of electronic specific heat. A simple analytical estimate for the maximum compression is proposed, depending on initial density, atomic weight and atomic number.
Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility
Mostafazadeh, Ali
2014-01-01
arXiv:1401.4315v3 [quant-ph] 27 Feb 2014 Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility Ali Mostafazadeh∗ Department of Mathematics, Ko¸c University, 34450 Sarıyer, Istanbul, Turkey Abstract The transfer matrix of a possibly complex and energy-dependent scattering potential can be identified with the S-matrix of a two-level time-dependent non-Hermitian Hamiltonian H( ). We show that the application of the adiabatic approximation ...
Adiabatic description of nonspherical quantum dot models
Energy Technology Data Exchange (ETDEWEB)
Gusev, A. A., E-mail: gooseff@jinr.ru; Chuluunbaatar, O.; Vinitsky, S. I. [Joint Institute for Nuclear Research (Russian Federation); Dvoyan, K. G.; Kazaryan, E. M.; Sarkisyan, H. A. [Russian-Armenian (Slavonic) University (Armenia); Derbov, V. L.; Klombotskaya, A. S.; Serov, V. V. [Saratov State University (Russian Federation)
2012-10-15
Within the effective mass approximation an adiabatic description of spheroidal and dumbbell quantum dot models in the regime of strong dimensional quantization is presented using the expansion of the wave function in appropriate sets of single-parameter basis functions. The comparison is given and the peculiarities are considered for spectral and optical characteristics of the models with axially symmetric confining potentials depending on their geometric size, making use of the complete sets of exact and adiabatic quantum numbers in appropriate analytic approximations.
Adiabatic Connection for Strictly-Correlated Electrons
Liu, Zhenfei; Burke, Kieron
2009-01-01
Modern density functional theory (DFT) calculations employ the Kohn-Sham (KS) system of non-interacting electrons as a reference, with all complications buried in the exchange-correlation energy (Exc). The adiabatic connection formula gives an exact expression for Exc. We consider DFT calculations that instead employ a reference of strictly-correlated electrons. We define a "decorrelation energy" that relates this reference to the real system, and derive the corresponding adiabatic connection...
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei; Nakayama,Kazunori
2015-01-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is us...
Hierarchical theory of quantum adiabatic evolution
Zhang, Qi; Gong, Jiangbin; Wu, Biao
2014-12-01
Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau-Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory.
Erosive burning of solid propellants
King, Merrill K.
1993-01-01
Presented here is a review of the experimental and modeling work concerning erosive burning of solid propellants (augmentation of burning rate by flow of product gases across a burning surface). A brief introduction describes the motor design problems caused by this phenomenon, particularly for low port/throat area ratio motors and nozzleless motors. Various experimental techniques for measuring crossflow sensitivity of solid propellant burning rates are described, with the conclusion that accurate simulation of the flow, including upstream flow development, in actual motors is important since the degree of erosive burning depends not only on local mean crossflow velocity and propellant nature, but also upon this upstream development. In the modeling area, a brief review of simplified models and correlating equations is presented, followed by a description of more complex numerical analysis models. Both composite and double-base propellant models are reviewed. A second generation composite model is shown to give good agreement with data obtained in a series of tests in which composite propellant composition and heterogeneity (particle size distribution) were systematically varied. Finally, the use of numerical models for the development of erosive burning correlations is described, and a brief discussion of scaling is presented.
An Integrated Programming and Development Environment for Adiabatic Quantum Optimization
Humble, Travis S.; McCaskey, Alex J.; Bennink, Ryan S.; Billings, Jay J.; D'Azevedo, Ed F.; Sullivan, Blair D.; Klymko, Christine F.; Seddiqi, Hadayat
2013-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for adiabatic quantum optimization called JADE tha...
Adiabatic mixed-field orientation of ground-state-selected carbonyl sulfide molecules
Kienitz, Jens S; Mullins, Terry; Długołęcki, Karol; González-Férez, Rosario; Küpper, Jochen
2016-01-01
We experimentally demonstrated strong adiabatic mixed-field orientation of carbonyl sulfide molecules (OCS) in their absolute ground state of $\\text{N}_{\\text{up}}/\\text{N}_{\\text{tot}}=0.882$. OCS was oriented in combined non-resonant laser and static electric fields inside a two-plate velocity map imaging spectrometer. The transition from non-adiabatic to adiabatic orientation for the rotational ground state was studied by varying the applied laser and static electric field. Above static electric field strengths of 10~kV/cm and laser intensities of $10^{11} \\text{W/cm}^2$ the observed degree of orientation reached a plateau. These results are in good agreement with computational solutions of the time-dependent Schr\\"odinger equation.
Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.
1989-01-01
A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.
Assessment of total efficiency in adiabatic engines
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
On criterion of modal adiabaticity
Institute of Scientific and Technical Information of China (English)
WANG; Ning(
2001-01-01
［1］Pierce, A. D., Extension of the method of normal modes to sound propagation in an almost-stratified medium, J. Acoust.Soc. Am., 1965, 37: 19－27.［2］Wang, D. Z. , Shang, E. C., Underwater Acoustics (in Chinese), Beijing: Science Press, 1981.［3］Zhang Renhe, Li Fenghua, Beam-displacement rya-mode theory of sound propagation in shallow water, Science in China, Ser.A, 1999, 42(7): 739－749.［4］Zhou Jixun, Zhang Xuezhen, Rogers P., Resonance interaction of sound waves with internal solitons in coastal zone, J.Acoust. Soc. Am., 1991, 90: 2042－2054.［5］Shang, E. C., Wang, Y. Y., The impact of mesoscale oceanic structure on global-scale acoustic propagation, in Theoretical and Computational Acoustics (ed. Ding Lee et al. ), Singapore: World Scientific Publishing Co. , 1996, 409－431.［6］Milder, D. M., Ray and wave invariants for SOFAR channel propagation, J. Acoust. Soc. Am., 1969, 46: 1259－1263.［7］Nag l, A., Milder, D. M., Adiabatic mode theory of underwater sound propagation in a range-dependent environment, J.Acoust. Soc. Am., 1978, 63: 739－749.［8］Brekhovskikh, L. M., Waves in Layered Media, 2nd ed., New York: Academic Press Inc., 1973.［9］Brekhovskikh, L. M., Lysanov, Yu., Fundamental of Ocean Acoustics, Ch. 7, Sec. 7.2, Berlin: Springer-Verlag, 1982.［10］Evans, R. B., A coupled mode solution for acoustic propagation in a wave-guide with stepwise depth variations of a penerable bottom, J. Acoust. Soc. A.m., 1983, 74: 188－195.［11］Jensen, F. B., Kuperman, W. A., Porter, M. B. et al., Computational Ocean Acoustics, New York: Springer-Verlag,1992.［12］Wang Ning, Inverse scattering problem for the coupled second order ODE, Journal of The Physical Society of Japan, 1995, 64(12): 4907－4915.
Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat
Energy Technology Data Exchange (ETDEWEB)
Melvin, J.; Lim, H.; Rana, V.; Glimm, J. [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600 (United States); Cheng, B.; Sharp, D. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-02-15
We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.
Adiabatic cooling of a single trapped ion
Poulsen, Gregers
2012-01-01
We present experimental results on adiabatic cooling of a single 40Ca+ ion in a linear radiofrequency trap. After a period of laser cooling, the secular frequency along the rf-field-free axis is adiabatically lowered by nearly a factor of eight from 583 kHz to 75 kHz. For an ion originally Doppler laser cooled to a temperature of 0.65 +/- 0.03 mK, a temperature of 87 +/- 7 \\mu K is measured after the adiabatic expansion. Applying the same adiabatic cooling procedure to a single sideband cooled ion in the ground state (P0 = 0.978 +/- 0.002) resulted in a final ground state occupation of 0.947 +/- 0.005. Both results are in excellent agreement with an essentially fully adiabatic behavior. The results have a wide range of perspectives within such diverse fields as ion based quantum information science, high resolution molecular ion spectroscopy and ion chemistry at ultra-low temperatures.
Experimental study on the adiabatic shear bands
International Nuclear Information System (INIS)
Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test
Adiabatic Quantum Computing for Random Satisfiability Problems
Hogg, T
2003-01-01
The discrete formulation of adiabatic quantum computing is compared with other search methods, classical and quantum, for random satisfiability (SAT) problems. With the number of steps growing only as the cube of the number of variables, the adiabatic method gives solution probabilities close to one for problem sizes feasible to evaluate. However, for these sizes the minimum energy gaps are fairly large, so may not reflect asymptotic behavior where costs are dominated by tiny gaps. Moreover, the resulting search costs are much higher than other methods, but can be reduced by using fewer steps. Variants of the quantum algorithm that do not match the adiabatic limit give lower costs, on average, and slower growth than the conventional GSAT heuristic method.
Energy efficiency of adiabatic superconductor logic
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-01-01
Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2.
Ramsey numbers and adiabatic quantum computing
Gaitan, Frank; Clark, Lane
2011-01-01
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,n\\geq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(m,n)$. We show how the computation of $R(m,n)$ can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctl...
Staying adiabatic with unknown energy gap
Nehrkorn, J; Ekert, A; Smerzi, A; Fazio, R; Calarco, T
2011-01-01
We introduce an algorithm to perform an optimal adiabatic evolution that operates without an apriori knowledge of the system spectrum. By probing the system gap locally, the algorithm maximizes the evolution speed, thus minimizing the total evolution time. We test the algorithm on the Landau-Zener transition and then apply it on the quantum adiabatic computation of 3-SAT: The result is compatible with an exponential speed-up for up to twenty qubits with respect to classical algorithms. We finally study a possible algorithm improvement by combining it with the quantum Zeno effect.
Complexity of the Quantum Adiabatic Algorithm
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
Adiabatic Flame Temperature for Combustion of Methane
Directory of Open Access Journals (Sweden)
Rebeca Pupo
2011-01-01
Full Text Available This project calculated the adiabatic flame temperature of a combustion reaction of pure methane and oxygen, assuming that all of the heat liberated by the combustion reaction goes into heating the resulting mixture. Mole fractions of methane to oxygen were computed from 0.05 to 0.95, in increments of 0.05, and then an integral was computed was computed with respect to temperature using the moles of product produced or leftover moles of reactants from the starting mole fraction times the specific heat of each respective gas. The highest adiabatic flame temperature evaluated, occurred at a mole fraction of 0.35.
Maghsoudi, Hemmat; Aghamohammadzadeh, Naser; Khalili, Nasim
2008-01-01
CONTEXT AND AIMS: Diabetic burn patients comprise a significant population in burn centers. The purpose of this study was to determine the demographic characteristics of diabetic burn patients. MATERIALS AND METHODS: Prospective data were collected on 94 diabetic burn patients between March 20, 2000 and March 20, 2006. Of 3062 burns patients, 94 (3.1%) had diabetes; these patients were compared with 2968 nondiabetic patients with burns. Statistical analysis was performed using the statistical...
Energy velocity and group velocity
Institute of Scientific and Technical Information of China (English)
陈宇
1995-01-01
A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.
Burning Mouth Syndrome and "Burning Mouth Syndrome".
Rifkind, Jacob Bernard
2016-03-01
Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome. PMID:27209717
Semi adiabatic theory of seasonal Markov processes
Energy Technology Data Exchange (ETDEWEB)
Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.
Quantum Pumping and Adiabatic Transport in Nanostructures
Wakker, G.M.M.
2011-01-01
This thesis consists of a theoretical exploration of quantum transport phenomena and quantum dynamics in nanostructures. Specifically, we investigate adiabatic quantum pumping of charge in several novel types of nanostructures involving open quantum dots or graphene. For a bilayer of graphene we fin
Adiabatic transition probability for a tangential crossing
Watanabe, Takuya
2006-01-01
We consider a time-dependent Schrödinger equation whose Hamiltonian is a $2\\times 2$ real symmetric matrix. We study, using an exact WKB method, the adiabatic limit of the transition probability in the case where several complex eigenvalue crossing points accumulate to one real point.
Improving the positive feedback adiabatic logic familiy
Directory of Open Access Journals (Sweden)
J. Fischer
2004-01-01
Full Text Available Positive Feedback Adiabatic Logic (PFAL shows the lowest energy dissipation among adiabatic logic families based on cross-coupled transistors, due to the reduction of both adiabatic and non-adiabatic losses. The dissipation primarily depends on the resistance of the charging path, which consists of a single p-channel MOSFET during the recovery phase. In this paper, a new logic family called Improved PFAL (IPFAL is proposed, where all n- and pchannel devices are swapped so that the charge can be recovered through an n-channel MOSFET. This allows to decrease the resistance of the charging path up to a factor of 2, and it enables a significant reduction of the energy dissipation. Simulations based on a 0.13µm CMOS process confirm the improvements in terms of power consumption over a large frequency range. However, the same simple design rule, which enables in PFAL an additional reduction of the dissipation by optimal transistor sizing, does not apply to IPFAL. Therefore, the influence of several sources of dissipation for a generic IPFAL gate is illustrated and discussed, in order to lower the power consumption and achieve better performance.
Recent adiabaticity results from orbit calculations
International Nuclear Information System (INIS)
There has been much activity recently in an attempt to find a straightforward method of predicting the limits of adiabatic behavior in high-beta magnetic-mirror configurations. The particle-orbit code TIBRO was used to obtain numerical results on nonadiabatic behavior with which the predictions of theoretical expressions can be compared. These results are summarized. (MOW)
Timescales for adiabatic photodissociation dynamics from the {tilde A} state of ammonia
Chatterley, Adam S.; Roberts, Gareth M.; Stavros, Vasilios G.
2013-07-01
Photodissociation dynamics after excitation of the {tilde A} state ν'2 = 4 (umbrella) level of ammonia are investigated using ultrafast time-resolved velocity map ion imaging (TR-VMI). These studies extend upon previous TR-VMI measurements [K. L. Wells, G. Perriam, and V. G. Stavros, J. Chem. Phys. 130, 074308 (2009)], 10.1063/1.3072763, which reported the appearance timescales for ground state NH_2 {(tilde X)} + H photoproducts, born from non-adiabatic passage through an {tilde X/tilde A} state conical intersection (CI) at elongated H-NH2 bond distances. In particular, the present work sheds new light on the formation timescales for electronically excited NH_2 {(tilde A)} + H species, generated from NH3 parent molecules that avoid the CI and dissociate adiabatically. The results reveal a step-wise dynamical picture for the production of NH_2 {(tilde A)} + H products, where nascent dissociative flux can become temporarily trapped/impeded around the upper cone of the CI on the {tilde A} state potential energy surface (PES), while on course towards the adiabatic dissociation asymptote - this behavior contrasts the concerted mechanism previously observed for non-adiabatic dissociation into H-atoms associated with ro-vibrationally "cold" NH_2 {(tilde X)}. Initially, non-planar NH3 molecules (species which have the capacity to yield adiabatic photoproducts) are found to evolve out of the vertical Franck-Condon excitation region and towards the CI region of the {tilde A} state PES with a time-constant of 113 ± 46 fs. Subsequently, transient population encircling the CI then progresses to finally form NH_2 {(tilde A)} + H photoproducts from the CI region of the tildeA state PES with a slower time-constant of 415 ± 25 fs. Non-adiabatic dissociation into ro-vibrationally "hot" NH_2 {(tilde X)} radicals together with H-atoms is also evidenced to occur via a qualitatively similar process.
Timescales for adiabatic photodissociation dynamics from the Ã state of ammonia.
Chatterley, Adam S; Roberts, Gareth M; Stavros, Vasilios G
2013-07-21
Photodissociation dynamics after excitation of the Ã state ν'2 = 4 (umbrella) level of ammonia are investigated using ultrafast time-resolved velocity map ion imaging (TR-VMI). These studies extend upon previous TR-VMI measurements [K. L. Wells, G. Perriam, and V. G. Stavros, J. Chem. Phys. 130, 074308 (2009)], which reported the appearance timescales for ground state NH2(X̃)+H photoproducts, born from non-adiabatic passage through an X̃/Ã state conical intersection (CI) at elongated H-NH2 bond distances. In particular, the present work sheds new light on the formation timescales for electronically excited NH2(Ã)+H species, generated from NH3 parent molecules that avoid the CI and dissociate adiabatically. The results reveal a step-wise dynamical picture for the production of NH2(Ã)+H products, where nascent dissociative flux can become temporarily trapped∕impeded around the upper cone of the CI on the Ã state potential energy surface (PES), while on course towards the adiabatic dissociation asymptote - this behavior contrasts the concerted mechanism previously observed for non-adiabatic dissociation into H-atoms associated with ro-vibrationally "cold" NH2(X̃). Initially, non-planar NH3 molecules (species which have the capacity to yield adiabatic photoproducts) are found to evolve out of the vertical Franck-Condon excitation region and towards the CI region of the Ã state PES with a time-constant of 113 ± 46 fs. Subsequently, transient population encircling the CI then progresses to finally form NH2(Ã)+H photoproducts from the CI region of the Ã state PES with a slower time-constant of 415 ± 25 fs. Non-adiabatic dissociation into ro-vibrationally "hot" NH2(X̃) radicals together with H-atoms is also evidenced to occur via a qualitatively similar process. PMID:23883038
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-01
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.
Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate
Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael
2016-05-01
A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.
The dynamic instability of adiabatic blast waves
Ryu, Dongsu; Vishniac, Ethan T.
1991-01-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
Burn Injuries: Burn Depth, Physiopathology and Type of Burns
Kemalettin Koltka
2011-01-01
A significant burn injury is a serious and mortal event. The most important threat to life is hypovolemic shock with complex pathophysiologic mechanisms. Burn depth is classified as first, second, or third degree. Local inflammatory response results a vasodilatation and an increase in vascular permeability. A burn injury is a three dimensional ischemic wound. Zone of coagulation is the zone with maximum damage. Zone of stasis consists of damaged but viable tissues, the tissue is salvageable. ...
Nikola Vlacic
2010-01-01
In this project, we investigated if it is feasible for a single staged rocket with constant thrust to attain escape velocity. We derived an equation for the velocity and position of a single staged rocket that launches vertically. From this equation, we determined if an ideal model of a rocket is able to reach escape velocity.
Perturbation to Mei symmetry and adiabatic invariants for Hamilton systems
Institute of Scientific and Technical Information of China (English)
Ding Ning; Fang Jian-Hui
2008-01-01
Based on the concept of adiabatic invariant,this paper studies the perturbation to Mei symmetry and adiabatic invariants for Hamilton systems.The exact invaxiants of Mei symmetry for the system without perturbation are given.The perturbation to Mei symmetry is discussed and the adiabatic invariants induced from the perturbation to Mei symmetry of the system are obtained.
DEFF Research Database (Denmark)
van Gelderen, Laurens; Malmquist, Linus Mattias Valdemar; Jomaas, Grunde
2015-01-01
In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame he...
Burn Injuries: Burn Depth, Physiopathology and Type of Burns
Directory of Open Access Journals (Sweden)
Kemalettin Koltka
2011-07-01
Full Text Available A significant burn injury is a serious and mortal event. The most important threat to life is hypovolemic shock with complex pathophysiologic mechanisms. Burn depth is classified as first, second, or third degree. Local inflammatory response results a vasodilatation and an increase in vascular permeability. A burn injury is a three dimensional ischemic wound. Zone of coagulation is the zone with maximum damage. Zone of stasis consists of damaged but viable tissues, the tissue is salvageable. In zone of hyperemia tissue perfusion is increased. At the beginning, cardiac output falls and systemic vascular resistance increases; cardiac performance improves as hypovolemia is corrected with fluid resuscitation. While cardiac output increases systemic vascular resistance falls below normal values and a hypermetabolic state develops. Pulmonary vascular resistance increases immediately after thermal injury and this is more prolonged. To avoid secondary pulmonary complications, the smallest resuscitation volume of fluids that maintains adequate tissue perfusion should be given. Changes parallel to the cardiovascular response develop in other organ systems. The reasons of burn injury can be thermal, electrical, chemical or radiation. It is important to know the exact mechanism of burn injury because of different therapies for a specific cause. In this review information about burn depth, local and systemic responses to burn injury and major causes of burn injury are presented. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl:1-6
Emergency in Burn; Burn in Emergency
Directory of Open Access Journals (Sweden)
Yalcin Bayram
2012-06-01
Full Text Available Physicians who first meet with burned patients are often emergency service employees. When the patient was admitted to emergency service, especially in patients with major burn injury, is a matter should be dealt with strongly. Before sending the patients to a burn center, some interventions could became life saving which should be done as a first line treatment. Herein, review of the literature related to emergency burn treatment was performed and presented to all physicians as a summary guide. In addition, some questions such as how should be physician, who first meet with the burned patient, evaluated the patient, what should be physician paid attention, which principles should be employed for fluid replacement, how should be approached to burn wound are tried to be addressed. [TAF Prev Med Bull 2012; 11(3.000: 365-368
Adiabatic quantum simulation of quantum chemistry.
Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-10-13
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Adiabatic state preparation study of methylene
Energy Technology Data Exchange (ETDEWEB)
Veis, Libor, E-mail: libor.veis@jh-inst.cas.cz; Pittner, Jiří, E-mail: jiri.pittner@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8 (Czech Republic)
2014-06-07
Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.
Adiabatic Quantum Optimization for Associative Memory Recall
Directory of Open Access Journals (Sweden)
Hadayat eSeddiqi
2014-12-01
Full Text Available Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO. Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Quantum adiabatic evolution with energy degeneracy levels
Zhang, Qi
2016-01-01
A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-01
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Optimization of burn referrals
DEFF Research Database (Denmark)
Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne;
2014-01-01
INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmark....... METHODS: We included burn patients referred to the NBC in a three-months period. Patient records were systematically analyzed and compared with the national guidelines for referral of burn injured patients. RESULTS: A total of 97 burn injured patients were transferred for treatment at the NBC and the most...... common reason for referral was partial thickness burn exceeding 3% estimated area of burn (55% of the patients) while facial burns (32%) and inhalational injury (25%) were other common reasons. We found that 29 (30%) of the referrals were considered potentially unnecessary according to the guidelines...
Adiabatic graph-state quantum computation
International Nuclear Information System (INIS)
Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)
A `fast-burning' mechanism for magnetic diffusion
Xiao, Bo; Kan, Ming-xian; Wang, Gang-hua; Zhao, Jian-heng
2016-01-01
Fast-burning mechanism describes the rapid penetration, with a sharp-shaped wave-front, of a strong magnetic field into a conductive metal whose electric resistance poses an abrupt rise at some critical temperature. With its wave-front sweeping over a solid metal, the fast-burning can melt or vaporize the metal very rapidly. This paper derives formulas for the existence conditions and wave-front velocity of a fast-burning.
Non-adiabatic effects in near-adiabatic mixed-field orientation and alignment
Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod
2016-11-01
We present a theoretical study of the impact of a pair of moderate electric fields tilted an angle with respect to one another on a molecule. As a prototype, we consider a molecule with large rotational constant (with corresponding small rotational period) and moderate dipole moment. Within rigid-rotor approximation, the time-dependent Schrodinger equation is solved using fourth-order Runge-Kutta method. We have analysed that lower rotational states are significantly influenced by variation in pulse durations, the tilt angle between the fields and also on the electric field strengths. We also suggest a control scheme of how the rotational dynamics, orientation and alignment of a molecule can be enhanced by a combination of near-adiabatic pulses in comparision to non-adiabatic or adiabatic pulses.
Erosive Burning Study Utilizing Ultrasonic Measurement Techniques
Furfaro, James A.
2003-01-01
A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.
... Issues Listen Español Text Size Email Print Share Treating and Preventing Burns Page Content Article Body Burns ... home, out of children’s reach, and away from heat or ignition sources. Lower the temperature of your ...
... Tap water burns most often occur in the bathroom and tend to be more severe and cover a larger portion of the body than other scald burns. 9 10 11 A survey found that only 8 percent of adults felt ...
Palmieri, Tina L
2016-10-01
Children have unique physiologic, physical, psychological, and social needs compared with adults. Although adhering to the basic tenets of burn resuscitation, resuscitation of the burned child should be modified based on the child's age, physiology, and response to injury. This article outlines the unique characteristics of burned children and describes the fundamental principles of pediatric burn resuscitation in terms of airway, circulatory, neurologic, and cutaneous injury management. PMID:27600126
Non-adiabatic dynamics close to conical intersections and the surface hopping perspective
Directory of Open Access Journals (Sweden)
João Pedro eMalhado
2014-11-01
Full Text Available Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photo physics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dynamics of the nuclei are treated classically. Within this classical nuclear motion framework, the main aspects of the surface hopping methodology in the conical intersection context are presented. The emerging picture from this treatment is that of electronic transitions around conical intersections dominated by the interplay of the nuclear velocity and the derivative non-adiabatic coupling vector field.
... Story" 5 Things to Know About Zika & Pregnancy First Aid: Burns KidsHealth > For Parents > First Aid: Burns Print A A A Text Size Scald ... THIS TOPIC Kitchen: Household Safety Checklist Fireworks Safety First Aid: Sunburn Firesetting Fire Safety Burns Household Safety: Preventing ...
Bond selective chemistry beyond the adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Butler, L.J. [Univ. of Chicago, IL (United States)
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Adiabatic Regularization for Gauge Field and the Conformal Anomaly
Chu, Chong-Sun
2016-01-01
We construct and provide the adiabatic regularization method for a $U(1)$ gauge field in a conformally flat spacetime by quantizing in the canonical formalism the gauge fixed $U(1)$ theory with mass terms for the gauge fields and the ghost fields. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using WKB-type solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduces the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for gauge field allows one to study the renormalization of the de-Sitter space maximal superconformal Yang-Mills theory using the adiabatic regularization method.
Accuracy vs run time in adiabatic quantum search
Rezakhani, A T; Lidar, D A
2010-01-01
Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance, yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm, and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: the error decreases exponentially for short times, then decreases polynomially for longer times. We show that the well known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.
Adiabatic quantum algorithm for search engine ranking
Garnerone, Silvano; Lidar, Daniel A
2011-01-01
We propose an adiabatic quantum algorithm to evaluate the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this quantum algorithm outputs any component of the PageRank vector-and thus the ranking of the corresponding webpage-in a time which scales polylogarithmically in the number of webpages. This would constitute an exponential speed-up with respect to all known classical algorithms designed to evaluate the PageRank.
On adiabatic perturbations in the ekpyrotic scenario
Linde, A.; Mukhanov, V.; Vikman, A.
2010-02-01
In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.
On adiabatic perturbations in the ekpyrotic scenario
Linde, A; Vikman, A
2009-01-01
In a recent paper arXiv:0910.2230, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in arXiv:0910.2230 are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.
Adiabatic chaos in the spin orbit problem
Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio
2008-05-01
We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.
Hypergraph Ramsey Numbers and Adiabatic Quantum Algorithm
Qu, Ri; Bao, Yan-ru
2012-01-01
Gaitan and Clark [Phys. Rev. Lett. 108, 010501 (2012)] have recently presented a quantum algorithm for the computation of the Ramsey numbers R(m, n) using adiabatic quantum evolution. We consider that the two-color Ramsey numbers R(m, n; r) for r-uniform hypergraphs can be computed by using the similar ways in [Phys. Rev. Lett. 108, 010501 (2012)]. In this comment, we show how the computation of R(m, n; r) can be mapped to a combinatorial optimization problem whose solution be found using adi...
Generalized Ramsey numbers through adiabatic quantum optimization
Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank
2016-09-01
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r( G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8, most of which were previously unknown.
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P.; Kowal, M; Skalski, J.
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from ...
Dark Energy and Dark Matter from an additional adiabatic fluid
Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo
2016-01-01
The Dark Sector is described by an additional barotropic fluid which evolves adiabatically during the universe's history and whose adiabatic exponent $\\gamma$ is derived from the standard definitions of specific heats. Although in general $\\gamma$ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with $\\gamma = $ constant in a FLRW universe. The adiabatic fluid acts effectively as the sum of two distinct compone...
A quantum search algorithm based on partial adiabatic evolution
Institute of Scientific and Technical Information of China (English)
Zhang Ying-Yu; Hu He-Ping; Lu Song-Feng
2011-01-01
This paper presents and implements a specified partial adiabatic search algorithm on a quantum circuit. It studies the minimum energy gap between the first excited state and the ground state of the system Hamiltonian and it finds that, in the case of M=1, the algorithm has the same performance as the local adiabatic algorithm. However, the algorithm evolves globally only within a small interval, which implies that it keeps the advantages of global adiabatic algorithms without losing the speedup of the local adiabatic search algorithm.
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators (ADRs) in space applications, it is desirable to have very light weight, small diameter, high current density...
Reactive burn models and ignition & growth concept
Directory of Open Access Journals (Sweden)
Shaw M.S.
2011-01-01
Full Text Available Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature. This leads to the Ignition & Growth concept, introduced by LeeTarver in 1980, as the basis for reactive burn models. A homo- genized burn rate needs to account for three meso-scale physical effects: (i the density of active hot spots or burn centers; (ii the growth of the burn fronts triggered by the burn centers; (iii a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable λ = g(s as a function of a dimensionless reaction length s(t = rbc/ℓbc, rather than by specifying an explicit burn rate. The length scale ℓbc(Ps = [Nbc(Ps]−1/3 is the average distance between burn centers, where Nbc is the number density of burn centers activated by the lead shock. The reaction length rbc(t = ∫t0 D(P(t′dt′ is the distance the burn front propagates from a single burn center, where D(P is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.
Adiabatic cooling of solar wind electrons
Sandbaek, Ornulf; Leer, Egil
1992-01-01
In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.
Latarjet, J
2002-03-01
The painful events associated with the treatment of a severe burn can, because of their long-lasting and repetitive characteristics, be one of the most excruciating experiences in clinical practice. Moreover, burn pain has been shown to be detrimental to burn patients. Although nociception and peripheral hyperalgesia are considered the major causes of burn pain, the study of more hypothetical mechanisms like central hyperalgesia and neuropathic pain may lead to a better understanding of burn pain symptoms and to new therapeutic approaches. Continuous pain and intermittent pain due to therapeutic procedures are two distinct components of burn pain. They have to be evaluated and managed separately. Although continuous pain is by far less severe than intermittent pain, the treatment is, in both cases, essentially pharmacological relying basically on opioids. Because of wide intra- and inter-individual variations, protocols will have to leave large possibilities of adaptation for each case, systematic pain evaluation being mandatory to achieve the best risk/benefit ratio. Surprisingly, the dose of medication decreases only slowly with time, a burn often remaining painful for long periods after healing. Non pharmacological treatments are often useful and sometimes indispensable adjuncts; but their rationale and their feasibility depends entirely on previous optimal pharmacological control of burn pain. Several recent studies show that burn pain management is inadequate in most burn centres.
Addition agents effects on hydrocarbon fuels burning
Larionov, V. M.; Mitrofanov, G. A.; Sakhovskii, A. V.
2016-01-01
Literature review on addition agents effects on hydrocarbon fuels burning has been conducted. The impact results in flame pattern and burning velocity change, energy efficiency increase, environmentally harmful NOx and CO emission reduction and damping of self-oscillations in flow. An assumption about water molecules dissociation phenomenon existing in a number of practical applications and being neglected in most explanations for physical- chemical processes taking place in case of injection of water/steam into combustion zone has been noted. The hypothesis about necessity of water dissociation account has been proposed. It can be useful for low temperature combustion process control and NOx emission reduction.
Plasmas in particle accelerators: adiabatic theories for bunched beams
International Nuclear Information System (INIS)
Three different formalisms for discussing Vlasov's equation for bunched beam problems with anharmonic space charge forces are outlined. These correspond to the use of a drift kinetic equation averaged over random betatron motions; a fluidkinetic adiabatic regime analogous to the theory of Chew, Goldberger, and Low; and an adiabatic hydrodynamic theory
High Fidelity Adiabatic Quantum Computation via Dynamical Decoupling
Quiroz, Gregory
2012-01-01
We introduce high-order dynamical decoupling strategies for open system adiabatic quantum computation. Our numerical results demonstrate that a judicious choice of high-order dynamical decoupling method, in conjunction with an encoding which allows computation to proceed alongside decoupling, can dramatically enhance the fidelity of adiabatic quantum computation in spite of decoherence.
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size. PMID:19113467
Teleportation of an Unknown Atomic State via Adiabatic Passage
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.
Examination of the adiabatic approximation in open systems
International Nuclear Information System (INIS)
We examine the notion of the adiabatic approximation in open systems by applying it to closed systems. Our results shows that the notion is equivalent to the standard adiabatic approximation if the systems are initially in eigenstates, and it leads to a more general expression if the systems are in mixed states
Berrocal, M
1997-01-01
This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group.
Berrocal, M
1997-01-01
This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group. PMID:9212488
Quantum-statistical equation-of-state models of dense plasmas: high-pressure Hugoniot shock adiabats
Pain, Jean-Christophe
2007-01-01
We present a detailed comparison of two self-consistent equation-of-state models which differ from their electronic contribution: the atom in a spherical cell and the atom in a jellium of charges. It is shown that both models are well suited for the calculation of Hugoniot shock adiabats in the high pressure range (1 Mbar-10 Gbar), and that the atom-in-a-jellium model provides a better treatment of pressure ionization. Comparisons with experimental data are also presented. Shell effects on shock adiabats are reviewed in the light of these models. They lead to additional features not only in the variations of pressure versus density, but also in the variations of shock velocity versus particle velocity. Moreover, such effects are found to be responsible for enhancement of the electronic specific heat.
Chaotic jumps in the generalized first adiabatic invariant in current sheets
Brittnacher, M. J.; Whipple, E. C.
1991-01-01
The present study examines how the changes in the generalized first adiabatic invariant J derived from the separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. A method is proposed for determining distribution functions for an ensemble of particles following interaction with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant. Generalized drift velocities are obtained for a 1D tail configuration by using the generalized first invariant. The invariant remained constant except for the discrete changes caused by chaotic scattering as the particles cross the separatrix.
Ameh AEmmanuel
2004-01-01
Perineal burns are not common in childhood but when they occur, they can produce severe complications. Conservative management by open wound care and topical agents is effective in most cases. However, in deep burns and when control of infection proves problematic, diverting colostomy may be necessary to control infection and achieve wound healing and graft take. Burns wound excision and skin grafting may be required in such cases. Contractures of various forms may develop and require plastic...
Multiplicity features of adiabatic autothermal reactors
Energy Technology Data Exchange (ETDEWEB)
Lovo, M.; Balakotaiah, V. (Houston Univ., TX (United States). Dept. of Chemical Engineering)
1992-01-01
In this paper singularity theory, large activation energy asymptotic, and numerical methods are used to present a comprehensive study of the steady-state multiplicity features of three classical adiabatic autothermal reactor models: tubular reactor with internal heat exchange, tubular reactor with external heat exchange, and the CSTR with external heat exchange. Specifically, the authors derive the exact uniqueness-multiplicity boundary, determine typical cross-sections of the bifurcation set, and classify the different types of bifurcation diagrams of conversion vs. residence time. Asymptotic (limiting) models are used to determine analytical expressions for the uniqueness boundary and the ignition and extinction points. The analytical results are used to present simple, explicit and accurate expressions defining the boundary of the region of autothermal operation in the physical parameter space.
Conformal Symmetries of Adiabatic Modes in Cosmology
Hinterbichler, Kurt; Khoury, Justin
2012-01-01
We remark on the existence of non-linearly realized conformal symmetries for scalar adiabatic perturbations in cosmology. These conformal symmetries are present for any cosmological background, beyond any slow-roll or quasi-de Sitter approximation. The dilatation transformation shifts the curvature perturbation by a constant, and corresponds to the well-known symmetry under spatial rescaling. We argue that the scalar sector is also invariant under special conformal transformations, which shift the curvature perturbation by a term linear in the spatial coordinates. We discuss whether these conformal symmetries can be extended to include tensor perturbations. Tensor modes introduce their own set of non-linearly realized symmetries. We identify an infinite set of large gauge transformations which maintain the transverse, traceless gauge condition, while shifting the tensor mode non-trivially.
Adiabatic theory for anisotropic cold molecule collisions
International Nuclear Information System (INIS)
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment 4He(1s2s 3S) + HD(1s2) → 4He(1s2) + HD+(1s) + e− [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings
Adiabatic theory for anisotropic cold molecule collisions.
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122
Adiabatic theory for anisotropic cold molecule collisions
Energy Technology Data Exchange (ETDEWEB)
Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
Number Partitioning via Quantum Adiabatic Computation
Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
Adiabatic Liquid Piston Compressed Air Energy Storage
DEFF Research Database (Denmark)
Petersen, Tage; Elmegaard, Brian; Pedersen, Allan Schrøder
This project investigates the potential of a Compressed Air Energy Storage system (CAES system). CAES systems are used to store mechanical energy in the form of compressed air. The systems use electricity to drive the compressor at times of low electricity demand with the purpose of converting...... the mechanical energy into electricity at times of high electricity demand. Two such systems are currently in operation; one in Germany (Huntorf) and one in the USA (Macintosh, Alabama). In both cases, an underground cavern is used as a pressure vessel for the storage of the compressed air. Both systems...... a turbine when discharging. In this case, the liquid works effectively as a piston compressing the gas in the vessel, hence the name “Adiabatic Liquid Piston Compressed Air Energy Storage” (ALP-CAES). The compression ratio of the gas in the vessel (ratio between maximum and minimum pressure) is relatively...
Parametric Erosion Investigation: Propellant Adiabatic Flame Temperature
Directory of Open Access Journals (Sweden)
P. J. Conroy
2002-01-01
Full Text Available The influence of quasi-independent parameters and their potential influence on erosion in guns have been investigated. Specifically, the effects of flame temperature and the effect of assuming that the Lewis number (ratio of mass-to-heat transport to the surface, Le = 1, has been examined. The adiabatic flame temperature for a propellant was reduced by the addition of a diluent from a high temperature of 3843 K (similar to that of M9 down to 3004 K, which is near the value for M30A1 propellant. Mass fractions of critical species at the surface with and without the assumption of Le = 1 are presented, demonstrating that certain species preferentially reach the surface providing varied conditions for the surface reactions. The results for gun tube bore surface regression qualitatively agree with previous studies and with current experimental data.
An Integrated Development Environment for Adiabatic Quantum Programming
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL; McCaskey, Alex [ORNL; Bennink, Ryan S [ORNL; Billings, Jay Jay [ORNL; D' Azevedo, Eduardo [ORNL; Sullivan, Blair D [ORNL; Klymko, Christine F [ORNL; Seddiqi, Hadayat [ORNL
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.
Adiabatic logic future trend and system level perspective
Teichmann, Philip
2012-01-01
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the p...
How detrimental is decoherence in adiabatic quantum computation?
Albash, Tameem
2015-01-01
Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time-scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit $T_2$ time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary canc...
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Energy Technology Data Exchange (ETDEWEB)
Zamstein, Noa; Tannor, David J. [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
International Nuclear Information System (INIS)
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
International Nuclear Information System (INIS)
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of Λ-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
Marakulin, A. O.; Sazhina, O. S.; Sazhin, M. V.
2012-07-01
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of Λ-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
Energy Technology Data Exchange (ETDEWEB)
Marakulin, A. O., E-mail: marakulin@physics.msu.ru; Sazhina, O. S.; Sazhin, M. V. [Moscow State University (Russian Federation)
2012-07-15
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of {Lambda}-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
Latarjet, J; Choinère, M
1995-08-01
While severe pain is a constant component of the burn injury, inadequate pain management has been shown to be detrimental to burn patients. Pain-generating mechanisms in burns include nociception, primary and secondary hyperalgesia and neuropathy. The clinical studies of burn pain characteristics reveal very clear-cut differences between continuous pain and pain due to therapeutic procedures which have to be treated separately. Some of the main features of burn pain are: (1) its long-lasting course, often exceeding healing time, (2) the repetition of highly nociceptive procedures which can lead to severe psychological disturbances if pain control is inappropriate. Pharmaco-therapy with opioids is the mainstay for analgesia in burned patients, but non-pharmacological techniques may be useful adjuncts. Routine pain evaluation is mandatory for efficient and safe analgesia. Special attention must be given to pain in burned children which remains too often underestimated and undertreated. More educational efforts from physicians and nursing staff are necessary to improve pain management in burned patients.
Holmes, James H
2008-01-01
Burn care, especially for serious burn injuries, represents a considerable challenge for the healthcare system. The American Burn Association has established a number of strategies for the management of burn patients and dedicates its efforts and resources to promoting and supporting burn-related research, education, care, rehabilitation, and prevention, often in collaboration with other organizations. The American Burn Association has recommended that patients with serious burns be referred to a designated burn center, ie, a hospital outfitted with specialized personnel and equipment dedicated to burn care. Burn centers have been operational for over 50 years, but the complexity and costs of providing specialized burn care have given rise to a number of critical administrative and political issues. These include logistical limitations imposed by the uneven national distribution of burn centers and a potential shortage of burn beds, both during everyday conditions and in the event of a mass disaster. Burn surgeon shortages have also been identified, stemming, in part, from a lack of specialized burn care training opportunities. There is currently a lack of quality outcome data to support evidence-based recommendations for burn care, and burn care centers are compromised by problems obtaining reimbursement for the care of uninsured and publicly insured out-of-state burn patients. Initiatives are underway to maintain efficient burn care facilities that are fully funded, easily accessible, and most importantly, provide optimal, evidence-based care on a daily basis, and are well-equipped to handle a surge of patients during a disaster situation.
Directory of Open Access Journals (Sweden)
K A Kamala
2016-01-01
Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.
Robinson, Elliot P; Chhabra, A Bobby
2015-03-01
There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes.
Experimental implementation of an adiabatic quantum optimization algorithm
Steffen, M; Hogg, T; Breyta, G; Chuang, I; Steffen, Matthias; Dam, Wim van; Hogg, Tad; Breyta, Greg; Chuang, Isaac
2003-01-01
We report the realization of a nuclear magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new insight into how quantum resources can be used to solve hard problems. This experiment uses a particularly well suited three quantum bit molecule and was made possible by introducing a technique that encodes general instances of the given optimization problem into an easily applicable Hamiltonian. Our results indicate an optimal run time of the adiabatic algorithm that agrees well with the prediction of a simple decoherence model.
A note on the geometric phase in adiabatic approximation
Tong, D M; Kwek, L C; Oh, C H
2004-01-01
It is widely held that the Berry phase of a quantum system is the geometric phase in adiabatic approximation. However, Pati and Rajagopal recently claimed that the Berry phase vanishes under strict adiabatic evolution. In this note, we reexamine and address this issue. In particular, we show that the use of the adiabatic theorem does not lead to this inconsistency. We also examine the difference between the Berry phase and the exact geometric phase. Here we find that the Berry phase may differ appreciably from the exact geometric phase if the evolution time is large enough.
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
Adiabatic Pair Creation in Heavy Ion and Laser Fields
Pickl, P; Pickl, Peter; Duerr, Detlef
2006-01-01
The planned generation of lasers and heavy ion colliders renews the hope to see electron-positron pair creation in strong classical fields (so called spontaneous pair creation). This adiabatic relativistic effect has however not been described in a unified manner. We discuss here the theory of adiabatic pair creation yielding the momentum distribution of scattered pairs in overcritical fields. Our conclusion about the possibility of adiabatic pair creation is much more positive than earlier predictions for laser fields and most importantly gives priority to optical before X-ray lasers.
Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders
2010-01-01
The thermodynamics of the magnetocaloric effect implies constraints on the allowed variation in the adiabatic temperature change for a magnetocaloric material. An inequality for the derivative of the adiabatic temperature change with respect to temperature is derived for both first- and second......-order materials. For materials with a continuous adiabatic temperature change as a function of temperature, this inequality is shown to hold for all temperatures. However, discontinuous materials may violate the inequality. We compare our results with measured results in the literature and discuss...
Adiabatic control of atomic dressed states for transport and sensing
Cooper, N. R.; Rey, A. M.
2015-08-01
We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices. Focusing on the limit of weak tunnel-coupling between nearest-neighbor lattice sites, we explain how adiabatic variation of optical dressing allows control of atomic motion between lattice sites: allowing adiabatic particle transport in a direction that depends on the internal state, and force measurements via spectroscopic preparation and readout. For uniformly filled bands these systems display topologically quantized particle transport. An implementation of the dressing scheme using optical transitions in alkaline-earth atoms is discussed as well as its favorable features for precise force sensing.
Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models
Directory of Open Access Journals (Sweden)
L. M. Zelenyi
2000-01-01
Full Text Available Thin anisotropic current sheets (CSs are phenomena of the general occurrence in the magnetospheric tail. We develop an analytical theory of the self-consistent thin CSs. General solitions of the Grad-Shafranov equation are obtained in a quasi-adiabatic approximation which neglects the jumps of the sheet adiabatic invariant Iz This is possible if the anisotropy of the initial distribution function is not too strong. The resulting structure of the thin CSs is interpreted as a sum of negative dia- and positive paramagnetic currents flowing near the neutral plane. In the immediate vicinity of the magnetic field reversal region the paramagnetic current arising from the meandering motion of the ions on Speiser orbits dominates. The maximum CS thick-ness is achieved in the case of weak plasma anisotropy and is of the order of the thermal ion gyroradius outside the sheet. A unified picture of thin CS scalings includes both the quasi-adiabatic regimes of weak and strong anisotropies and the nonadiabatic limit of super-strong anisotropy of the source ion distribution. The later limit corresponds to the case of almost field-aligned initial distribution, when the ratio of the drift velocity outside the CS to the thermal ion velocity exceeds the ratio of the magnetic field outside the CS to its value in-side the CS (vD/vT> B0/Bn. In this regime the jumps of Iz, become essential, and the current sheet thickness is approaching to some small but finite value, which depends upon the parameter Bn /B0. Convective electric field increases the effective anisotropy of the source distribution and might produce the essential CS thinning which could have important implications for the sub-storm dynamics.
Moll, Jochen
2016-09-01
This work is based on the experimental observation that the phase and group velocity of the fundamental antisymmetric wave mode in a composite structure with linearly varying thickness changes as it propagates along the nonuniform waveguide (Moll et al., 2015). This adiabatic wave motion leads to systematic damage localization errors of conventional algorithms because a constant wave velocity is assumed in the reconstruction process. This paper presents a generalized beamforming approach for composite structures with nonuniform cross section that eliminates this systematic error. Damage localization results will be presented and discussed in comparison to existing techniques. PMID:27317966
On the persistence of adiabatic shear bands
Directory of Open Access Journals (Sweden)
Bassim M.N.
2012-08-01
Full Text Available It is generally agreed that the initiation and development of adiabatic shear bands (ASBs are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the “scars” due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.
Design of the PIXIE Adiabatic Demagnetization Refrigerators
Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael
2012-01-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Graph isomorphism and adiabatic quantum computing
Gaitan, Frank; Clark, Lane
2014-03-01
In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P; Skalski, J
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "Imaginary Water Flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations...
Topological States and Adiabatic Pumping in Quasicrystals
Kraus, Yaakov; Lahini, Yoav; Ringel, Zohar; Verbin, Mor; Zilberberg, Oded
2012-02-01
We find a connection between quasicrystals and topological matter, namely that quasicrystals exhibit non-trivial topological phases attributed to dimensions higher than their own [1]. Quasicrystals are materials which are neither ordered nor disordered, i.e. they exhibit only long-range order [2]. This long-range order is usually expressed as a projection from a higher dimensional ordered system. Recently, the unrelated discovery of Topological Insulators [3] defined a new type of materials classified by their topology. We show theoretically and experimentally using photonic lattices, that one-dimensional quasicrystals exhibit topologically-protected boundary states equivalent to the edge states of the two-dimensional Integer Quantum Hall Effect. We harness this property to adiabatically pump light across the quasicrystal, and generalize our results to higher dimensional systems. Hence, quasicrystals offer a new platform for the study of topological phases while their topology may better explain their surface properties.[4pt] [1] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, arXiv:1109.5983 (2011).[0pt] [2] C. Janot, Quasicrystals (Clarendon, Oxford, 1994), 2nd ed.[0pt] [3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
Adiabatic hydrodynamic modes in dielectric environment in a random electric field
Stupka, Anton
2016-01-01
Dielectric is considered in the electric field that has equal to zero the first moment and different from zero the second moment of strength in an equilibrium. The equations of ideal hydrodynamics are obtained in such a field for the case of the neglect of dissipative effects. A new variable - the second moment of electric field strength is included in the Euler equation. A temporal equation for this variable is obtained on the basis of Maxwell equations in the hydrodynamic approximation. Adiabatic one-dimensional waves of small amplitude are studied in this system. Proceeding from the theoretical estimation of the intracrystalline field in an ionic crystal the good consent of the obtained numerical values of transversal velocity of this wave with transversal velocity of sound for isotropic crystals of alkali halides is found.
Clinker Burning Kinetics and Mechanism
DEFF Research Database (Denmark)
Telschow, Samira
dimensions, rotation velocity, temperature, gas composition, heat transfer phenomena, etc. These conditions can only be partly simulated in ordinary lab-scale experiments. Thus, the objectives of this project have been to establish test equipment to simulate the industrial clinker burning process......The industrial cement process is subject to several changes in order to reduce the high energy consumption and thereby increase the profitability of cement production. These changes also affect the core of the entire cement producing process: the clinker formation in the rotary kiln. Thus, in order...... to maintain or even improve clinker quality (and output), we need a better understanding of the development of clinker properties inside the kiln to react upon the impact of process changes. Clinker formation in industrial rotary kilns is very complex due to a vast number of interacting parameters: kiln...
Adiabatic rotation, quantum search, and preparation of superposition states
Siu, M. Stewart
2007-06-01
We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied “straight line” adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev’s toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm.
Application of adiabatic calorimetry to metal systems. Final report
International Nuclear Information System (INIS)
Research on the application of adiabatic calorimetry to metal systems is described. Investigations into formation of pearlite in steels, ferromagnetic effects, cold working and annealing, solid solution alloys, pure solid metals, and pure liquid metals, are briefly described
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators(ADR's) for space it is desirable to have very light weight, small diameter, high current density superconducting wires...
AN ADIABATIC APPROACH FOR LOW POWER FULL ADDER DESIGN
Directory of Open Access Journals (Sweden)
Prof. Dinesh Chandra
2011-09-01
Full Text Available Over the past decade, several adiabatic logic styles have been reported. This paper deals with the design of a 1-bit full adder using several adiabatic logic styles, which are derived from static CMOS logic, without a large change. The full adders are designed using 180nm technology parameters provided by predictive technology and simulated using HSPICE. The full adders designed are compared in terms of average power consumption with different values of load capacitance, temperature and input frequency. The different designs of full adder are also compared on the basis of propagation delay exhibit by them. It is found that, full adders designed with adiabatic logic styles tends to consume very low power in comparison to full adder designed with static CMOS logic. Under certain operating conditions, one of adiabatic designs of full adder achieves upto 74% power saving in comparison to the full adder designedwith static CMOS logic.
Prescribed burning plan : Stillwater NWR : de Braga Burn Unit 67
US Fish and Wildlife Service, Department of the Interior — This 1991 Annual Prescribed Burning Plan for Stillwater NWR calls for all 67 acres of the de Braga burn unit to be burned. The objective of this burn is to remove...
Adiabatic instability in coupled dark energy-dark matter models
Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark
2007-01-01
We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, whi...
Hybrid adiabatic potentials in the QCD string model
Kalashnikova, Yu S; Kalashnikova, Yu.S.
2003-01-01
The short- and intermediate-distance behaviour of the hybrid adiabatic potentials is calculated in the framework of the QCD string model. The calculations are performed with the inclusion of Coulomb force. Spin-dependent force and the so-called string correction term are treated as perturbation at the leading potential-type regime. Reasonably good agreement with lattice measurements takes place for adiabatic curves excited with magnetic components of field strength correlators.
Non Adiabatic Centrifugal Compressor Gas Dynamic Performance Definition
Soldatova, Kristina
2014-01-01
Most centrifugal compressors operate in conditions with negligible heat transfer (adiabatic compression). Their plant tests conditions are similar or close to adiabatic conditions. Test regulations establish measures to diminish influence of a heat transfer “compressor body – atmospheric air” to an exit temperature. Therefore a temperature rise in a compressor is used to calculate a work input coefficient and efficiency. Unlike it high pressure centrifugal compressors of gas turbines and supe...
Adiabatic Quantum Programming: Minor Embedding With Hard Faults
Klymko, Christine; Sullivan, Blair D.; Humble, Travis S.
2012-01-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. These methods extend with fabric growth while scaling linearly in time and quadratically in footprint. We also provi...
Adiabatic CMB perturbations in pre-big bang string cosmology
Enqvist, Kari; Enqvist, Kari; Sloth, Martin S.
2002-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations in the axion field can give rise to a nearly flat spectrum of adiabatic perturbations with a spectral tilt $\\Delta n$ in the range $-0.1 \\lesssim \\Delta n \\lesssim 0.3$.
Preparation of Entangled States of Three Particles by Adiabatic Passage
Institute of Scientific and Technical Information of China (English)
郭建友
2002-01-01
We propose a novel technique for the creation of entangled states of three particles, based upon an adiabatic passage induced by a suitably crafted time-dependent external field. We derive the corresponding adiabatic and bare conditions for the preparation of entangled states. We obtain the time evolutions of the energy of the system and the populations involving the initial state and target entangled state.
ENTROPY-VORTEX WAVES IN NON-ADIABATIC FLOWS
Energy Technology Data Exchange (ETDEWEB)
Ibáñez S, Miguel H., E-mail: mhibanez@yahoo.com [Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Autónoma del Caribe, Barranquilla (Colombia)
2016-02-20
The Ertel theorem on the vorticity along the flow of adiabatic fluids is generalized for non-adiabatic flows. Several limiting cases are analyzed and the results are applied to flows behind different hydrodynamics fronts, particularly to thermal fronts (heat and cooling fronts). An important conclusion of the present analysis is that vorticity is inherent in the condensation’s (or hot spots) formation by thermal instabilities in plasma flows. Implications for several astrophysical plasmas are outlined.
Dependence of adiabatic population transfer on pulse profile
Indian Academy of Sciences (India)
S Dasgupta; T kushwaha; D Goswami
2006-06-01
Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends simultaneously on pulse profile as well as the frequency modulation under non-resonant conditions.
Adiabatic invariant value variation under shortwave band subcritical conditions
Svistunov, K. V.; Tinin, M. V.
1985-04-01
The possibility of significant variations of the adiabatic invariant is examined for the propagation of radio waves in an irregular Earth-ionosphere waveguide with a parabolic dependence of permittivity on height. Numerical and analytical results indicate that nonexponential deviations of the adiabatic invariant can occur not only when the characteristic size of horizontal irregularity decreases (e.g., during resonant beam excitation) but also in quasi-critical conditions and for smoothly irregular waveguides.
Gardner, Robert
1997-01-01
Reports on results of a teacher's experiment in book burning as a lesson accompanying the teaching of Ray Bradbury's "Fahrenheit 451." Discusses student reactions and the purpose of or justification for the experimental lesson. (TB)
Institute of Scientific and Technical Information of China (English)
LAN XINZHEN
2010-01-01
@@ As heaping piles of garbage grow in cities and communities across China,a divide has formed over two possible solutions to this smelly problem: Should excessive mounds of trash be burned,or should it be buried?
DEFF Research Database (Denmark)
van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde
2015-01-01
In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....
Schiestl, Clemens; Meuli, Martin; Trop, Marija; Neuhaus, Kathrin
2013-10-01
Small and moderate scalds in toddlers are still the most frequent thermal injuries the pediatric surgeons have to face today. Over the last years, surgical treatment of these patients has changed in many aspects. Due to new dressing materials and new surgical treatment strategies that are particularly suitable for children, today, far better functional and aesthetic long-term results are possible. While small and moderate thermal injuries can be treated in most European pediatric surgical departments, the severely burned child must be transferred to a specialized, ideally pediatric, burn center, where a well-trained multidisciplinary team under the leadership of a (ideally pediatric) burn surgeon cares for these highly demanding patients. In future, tissue engineered full thickness skin analogues will most likely play an important role, in pediatric burn as well as postburn reconstructive surgery.
Institute of Scientific and Technical Information of China (English)
LUO Shao-Kai
2007-01-01
For a Lagrangian system with the action of small disturbance, the Lie symmetrical perturbation and a new type of non-Noether adiabatic invariant are presented in general infinitesimal transformation groups. On the basis of the invariance of disturbed Lagrangian systems under general infinitesimal transformations, the determining equations of Lie symmetries of the system are constructed. Based on the definition of higher-order adiabatic invariants of a mechanical system, a new type of adiabatic invariant, i.e. generalized Lutzky adiabatic invariants, of a disturbed Lagrangian system are obtained by investigating the perturbation of Lie symmetries for a Lagrangian system with the action of small disturbance. Finally, an example is given to illustrate the application of the method and results.
Sudha Jimson; Rajesh, E.; R Jayasri Krupaa; M. Kasthuri
2016-01-01
Burning mouth syndrome is a debilitating medical condition affecting nearly 1.3 million of Americans. Its common features include a burning painful sensation in the mouth, often associated with dysgeusia and xerostomia, despite normal salivation. Classically, symptoms are better in the morning, worsen during the day and typically subside at night. Its etiology is largely multifactorial, and associated medical conditions may include gastrointestinal, urogenital, psychiatric, neurologic and met...
Lahoda, LU; Vogt, PM
2006-01-01
The German-speaking burn specialist, organized in the DAV (Deutsche Arbeitsgemeinschaft für Verbrennungsmedizin) held their yearly meeting in 2004 in Rottach-Egern, Bavaria. Participants from Switzerland, Germany and Austria found a high standing, very well organized and thorough program summoned by the host, Dr. Guido Graf Henckel von Donnersmarck, Munich. The topics consisted of reconstructive surgery, skin substitutes and replacement, advances in burn medicine over the last 10 years and bu...
Energy Technology Data Exchange (ETDEWEB)
Glascoe, E
2008-08-11
It is estimated that PBXN-110 will burn laminarly with a burn function of B = (0.6-1.3)*P{sup 1.0} (B is the burn rate in mm/s and P is pressure in MPa). This paper provides a brief discussion of how this burn behavior was estimated.
Dynamical fluctuations in classical adiabatic processes: General description and their implications
Zhang, Qi; Gong, Jiangbin; Oh, C. H.
2010-01-01
Dynamical fluctuations in classical adiabatic processes are not considered by the conventional classical adiabatic theorem. In this work a general result is derived to describe the intrinsic dynamical fluctuations in classical adiabatic processes. Interesting implications of our general result are discussed via two subtopics, namely, an intriguing adiabatic geometric phase in a dynamical model with an adiabatically moving fixed-point solution, and the possible "pollution" to Hannay's angle or...
Energy Technology Data Exchange (ETDEWEB)
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others
2015-08-15
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
Performance of Indirectly-Driven Capsule Implosions on NIF Using Adiabat-Shaping
Robey, Harry
2015-11-01
Indirectly-driven capsule implosions are being conducted on the National Ignition Facility (NIF). Early experiments conducted during the National Ignition Campaign (NIC) were driven by a laser pulse with a relatively low-power initial foot (``low-foot''), which was designed to keep the deuterium-tritium (DT) fuel on a low adiabat to achieve a high fuel areal density (ρR). These implosions were successful in achieving high ρR, but fell significantly short of the predicted neutron yield. A leading candidate to explain this degraded performance was ablation front instability growth, which can lead to the mixing of ablator material with the DT fuel layer and in extreme cases into the central DT hot spot. A subsequent campaign employing a modified laser pulse with increased power in the foot (``high-foot'') was designed to reduce the adverse effects of ablation front instability growth. These implosions have been very successful, increasing neutron yields by more than an order of magnitude, but at the expense of reduced fuel compression. To bridge these two regimes, a series of implosions have been designed to simultaneously achieve both high stability and high ρR. These implosions employ adiabat-shaping, where the driving laser pulse is high in the initial picket similar to the high-foot to retain the favorable stability properties at the ablation front. The remainder of the foot is similar to that of the low-foot, driving a lower velocity shock into the DT fuel to keep the adiabat low and compression high. This talk will present results and analysis of these implosions and will discuss implications for improved implosion performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Institute of Scientific and Technical Information of China (English)
WANG Xue-bin
2008-01-01
The coexistent phenomenon of deformed and transformed adiabatic shear bands(ASBs) of ductile metal was analyzed using the JOHNSON-COOK model and gradient-dependent plasticity(GDP). The effects of melting point, density, heat capacity and work to heat conversion factor were investigated. Higher work to heat conversion factor, lower density, lower heat capacity and higher melting point lead to wider transformed ASB and higher local plastic shear deformation between deformed and transformed ASBs. Higher work to heat conversion factor, lower density, lower heat capacity and lower melting point cause higher local plastic shear deformation in the deformed ASB. Three reasons for the scatter in experimental data on the ASB width were pointed out and the advantages of the work were discussed. If the transformed ASB width is used to back-calculate the internal length parameter in the GDP, undoubtedly, the parameter will be extremely underestimated.
Physics on the adiabatically changed Finslerian manifold and cosmology
Lipovka, Anton A
2016-01-01
In present paper we confirm our previous result [4] that Planck constant is adiabatic invariant of electromagnetic field propagating on the adiabatically changed Finslerian manifold. Direct calculation from cosmological parameters gives value h=6x10(-27) (erg s). We also confirm that Planck constant (and hence other fundamental constants which depend on h) is varied on time due to changing of geometry. As an example the variation of the fine structure constant is calculated. Its relative variation ((da/dt)/a) consist 1.0x10(-18) (1/s). We show that on the Finsler manifold characterized by adiabatically changed geometry, classical free electromagnetic field is quantized geometrically, from the properties of the manifold in such manner that adiabatic invariant of field is ET=6x10(-27)=h. Electrodynamic equations on the Finslerian manifold are suggested. It is stressed that quantization naturally appears from these equations and is provoked by adiabatically changed geometry of manifold. We consider in details tw...
Global adiabaticity and non-Gaussianity consistency condition
Romano, Antonio Enea; Sasaki, Misao
2016-01-01
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, $R_c$, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of $R_c$ holds only after the perturbation has reached the adiabatic limit where the constant mode of $R_c$ dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, $\\delta P_{nad}\\equiv\\delta P-c_w^2\\delta\\rho$ where $c_w^2=\\dot P/\\dot\\rho$, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of $R_c$ on super-horizon scales. In this paper, we consider models that satisfies $\\d...
Interplay between electric and magnetic effect in adiabatic polaritonic systems
Alabastri, Alessandro
2013-01-01
We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.
Directory of Open Access Journals (Sweden)
Dalal P
2010-10-01
Full Text Available Burn injuries and their subsequent treatment cause one of the most excruciating forms of pain imaginable. The psychological aspects of burn injury have been researched in different parts of the world, producing different outcomes. Studies have shown that greater levels of acute pain are associated with negative long-term psychological effects such as acute stress disorder, depression, suicidal ideation, and post-traumatic stress disorder for as long as 2 years after the initial burn injury. The concept of allostatic load is presented as a potential explanation for the relationship between acute pain and subsequent psychological outcomes. A biopsychosocial model is also presented as a means of obtaining better inpatient pain management and helping to mediate this relationship.
Directory of Open Access Journals (Sweden)
Sudha Jimson
2015-01-01
Full Text Available Burning mouth syndrome (BMS is a complex disorder that is characterized by warm or burning sensation in the oral mucosa without changes on physical examination. It occurs more commonly in middle-aged and elderly women and often affects the tip of the tongue, lateral borders, lips, hard and soft palate. This condition is probably of multi-factorial origin, often idiopathic, and its etiopathogensis is unknown. BMS can be classified into two clinical forms namely primary and secondary BMS. As a result, a multidisciplinary approach is required for better control of the symptoms. In addition, psychotherapy and behavioral feedback may also help eliminate the BMS symptoms.
Yakup Çil; Hamza Yıldız; Özlem Karabudak Abuaf
2012-01-01
Low-voltage fountainheads such as car, tractor or motorcycle batteries are predisposed to produce large currents. Any metal object that comes into contact with these batteries may result in short-circuit. This may result in rapid and excessive heating of metal object and an electrothermal burn. Herein we presented a motorcycle driver who was 28-year-old man with electrothermal ring burn which was caused by metal chain that was used as a ring. (Turk J Dermatol 2012; 6: 106-7)
Directory of Open Access Journals (Sweden)
Yakup Çil
2012-09-01
Full Text Available Low-voltage fountainheads such as car, tractor or motorcycle batteries are predisposed to produce large currents. Any metal object that comes into contact with these batteries may result in short-circuit. This may result in rapid and excessive heating of metal object and an electrothermal burn. Herein we presented a motorcycle driver who was 28-year-old man with electrothermal ring burn which was caused by metal chain that was used as a ring. (Turk J Dermatol 2012; 6: 106-7
DEFF Research Database (Denmark)
Calum, Henrik; Høiby, Niels; Moser, Claus
2014-01-01
Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...
Characterization of adiabatic shear bands in AM60B magnesium alloy under ballistic impact
International Nuclear Information System (INIS)
Adiabatic shear bands in Mg alloy under ballistic impact at a velocity of 0.5 km.s-1 were characterized by means of optical microscope, scanning electron microscope, transmission electron microscope and indenter technique. The results show that adiabatic shear bands were formed around the impacted crater, and the deformed and transformed bands were distinguished by etching colors in metallographic observation. TEM observation shows that the deformed bands were composed of the elongated grains and high density dislocations, while the transformed bands composed of the ultrafine and equiaxed grains were confirmed. In initial stage, the severe localized plastic deformation led to the formation of elongated grains in the deformed bands. With localized strain increasing, the severe localized deformation assisted with the plastic temperature rising led to the severe deformation grains evolved into the ultrafine and equiaxed grains, while the deformed bands were developed into transformed bands. The formation of the ultrafine and equiaxed grains in the transformed bands should be attributed to the twinning-induced rotational dynamic recrystallization mechanism. High microhardness in the bands was obtained because of the strain hardening, grain refining and content concentration. - Research Highlights: → Deformed and transformed bands are found in Mg alloy under ballistic impact. → The microstructures in the deformed and transformed bands are characterized. → The evolution process of the microstructure in the bands is discussed.
Integrated polarization rotator/converter by stimulated Raman adiabatic passage.
Xiong, Xiao; Zou, Chang-Ling; Ren, Xi-Feng; Guo, Guang-Can
2013-07-15
We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs. PMID:23938558
Semiclassical approximations for adiabatic slow-fast systems
Teufel, Stefan
2012-01-01
In this letter we give a systematic derivation and justification of the semiclassical model for the slow degrees of freedom in adiabatic slow-fast systems first found by Littlejohn and Flynn [5]. The classical Hamiltonian obtains a correction due to the variation of the adiabatic subspaces and the symplectic form is modified by the curvature of the Berry connection. We show that this classical system can be used to approximate quantum mechanical expectations and the time-evolution of operators also in sub-leading order in the combined adiabatic and semiclassical limit. In solid state physics the corresponding semiclassical description of Bloch electrons has led to substantial progress during the recent years, see [1]. Here, as an illustration, we show how to compute the Piezo-current arising from a slow deformation of a crystal in the presence of a constant magnetic field.
Analysis and Simulation of Adiabatic Bend Transitions in Optical Fibers
Institute of Scientific and Technical Information of China (English)
YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng
2009-01-01
A low-loss criterion for bend transitions in optical fibers is proposed. An optical fiber can be tightly bent with low loss to be adiabatic for the fundamental mode, provided that an approximate upper bound on the rate of change of bend curvature for a given bend curvature is satisfied. Two typical adiabatic bend transition paths, the optimum profile and linear profile, are analyzed and studied numerically. A realizable adiabatic transition with an Archimedean spiral profile is introduced for low bend loss in tightly bent optical fibers. Design of the transitions is based on modeling of the propagation and coupling characteristics of the core and cladding modes,which clearly illustrate the physical processes involved.
Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation
Aharonov, D; Kempe, J; Landau, Z; Lloyd, S; Regev, O; Aharonov, Dorit; Dam, Wim van; Kempe, Julia; Landau, Zeph; Lloyd, Seth; Regev, Oded
2004-01-01
Adiabatic quantum computation has recently attracted attention in the physics and computer science communities, but its computational power has been unknown. We settle this question and describe an efficient adiabatic simulation of any given quantum algorithm, which implies that the adiabatic computation model and the conventional quantum circuit model are polynomially equivalent. Our result can be extended to the physically realistic setting of particles arranged on a two-dimensional grid with nearest neighbor interactions. The equivalence between the models provides a new vantage point from which to tackle the central issues in quantum computation, namely designing new quantum algorithms and constructing fault tolerant quantum computers. In particular, by translating the main open questions in quantum algorithms to the language of spectral gaps of sparse matrices, the result makes quantum algorithmic questions accessible to a wider scientific audience, acquainted with mathematical physics, expander theory a...
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Sasaki, Misao
2015-01-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid $\\delta P_{nad}$, another is for a general matter field $\\delta P_{c,nad}$, and the last one is valid only on superhorizon scales. The first two definitions coincide if $c_s^2=c_w^2$ where $c_s$ is the propagation speed of the perturbation, while $c_w^2=\\dot P/\\dot\\rho$. Assuming the adiabaticity in the general sense, $\\delta P_{c,nad}=0$, we derive a relation between the lapse function in the comoving slicing $A_c$ and $\\delta P_{nad}$ valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as $c_s\
Burn Safety Awareness on Playgrounds: Thermal Burns from Playground Equipment
... Safety Awareness on Playgrounds Thermal Burns from Playground Equipment The U.S. Consumer Product Safety Commission CPSC wants ... of the risk of thermal burns from playground equipment. You may remember the metal slides of your ...
Management of acute burns and burn shock resuscitation.
Faldmo, L; Kravitz, M
1993-05-01
Initial management of minor and moderate, uncomplicated burn injury focuses on wound management and patient comfort. Initial management of patients with major burn injury requires airway support, fluid resuscitation for burn shock, treatment for associated trauma and preexisting medical conditions, management of adynamic ileus, and initial wound treatment. Fluid resuscitation, based on assessment of the extent and depth of burn injury, requires administration of intravenous fluids using resuscitation formula guidelines for the initial 24 hours after injury. Inhalation injury complicates flame burns and increases morbidity and mortality. Electrical injury places patients at risk for cardiac arrest, metabolic acidosis, and myoglobinuria. Circumferential full-thickness burns to extremities compromise circulation and require escharotomy or fasciotomy. Circumferential torso burns compromise air exchange and cardiac return. Loss of skin function places patients at risk for hypothermia, fluid and electrolyte imbalances, and systemic sepsis. The first 24 hours after burn injury require aggressive medical management to assure survival and minimize complications. PMID:8489882
Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots
Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro
2016-08-01
In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.
Adiabatic theory of ionization of atoms by intense laser pulses
International Nuclear Information System (INIS)
As a first step towards the adiabatic theory of ionization of atoms by intense laser pulses, here we consider the simplest one-dimensional zero-range potential model. The asymptotic solution to the time-dependent Schroedinger equation in the adiabatic regime is obtained and the photoelectron spectrum is calculated. The factorization formula for the photoelectron spectrum in the back-rescattering region, first suggested by Morishita et al. [Phys. Rev. Lett. 100, 013903 (2008)] on the basis of ab initio calculations, is derived analytically.
Microstructure evolution mechanism in adiabatic shear band in TA2
Institute of Scientific and Technical Information of China (English)
杨扬; 熊俊; 杨续跃
2004-01-01
The micro structure evolution mechanism in adiabatic shear band in commercial pure titanium (TA2) at high strain rates(γ≈105 - 106/s) were studied. The nanosized recrystallized grains (about 50 nm in diameter) within the center of adiabatic shear band (ASB) were observed by means of transmission electronic microscope (TEM). A Rotational Dynamic Recrystallization (RDR) mechanism can explain the microstructure evolution (i. e. nanosized grains were formed within 5 - 10μs) in ASB. Kinetics calculations indicate that the recrystallized small grains are formed during the deformation and don't undergo significant growth by grain boundary migration after deformation.
Non-adiabatic pumping through interacting quantum dots
Cavaliere, Fabio; Governale, Michele; König, Jürgen
2009-01-01
We study non-adiabatic two-parameter charge and spin pumping through a single-level quantum dot with Coulomb interaction. For the limit of weak tunnel coupling and in the regime of pumping frequencies up to the tunneling rates, $\\Omega \\lesssim \\Gamma/\\hbar$, we perform an exact resummation of contributions of all orders in the pumping frequency. As striking non-adiabatic signatures, we find frequency-dependent phase shifts in the charge and spin currents, which allow for an effective single-...
Nanoscale resolution for fluorescence microscopy via adiabatic passage
Rubio, Juan Luis; Ahufinger, Verònica; Mompart, Jordi
2015-01-01
We propose the use of the subwavelength localization via adiabatic passage technique for fluorescence microscopy with nanoscale resolution in the far field. This technique uses a {\\Lambda}-type medium coherently coupled to two laser pulses: the pump, with a node in its spatial profile, and the Stokes. The population of the {\\Lambda} system is adiabatically transferred from one ground state to the other except at the node position, yielding a narrow population peak. This coherent localization allows fluorescence imaging with nanometer lateral resolution. We derive an analytical expression to asses the resolution and perform a comparison with the coherent population trapping and the stimulated-emission-depletion techniques.
An assessment of burn care professionals' attitudes to major burn.
LENUS (Irish Health Repository)
Murphy, A D
2008-06-01
The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.
Institute of Scientific and Technical Information of China (English)
1996-01-01
Objective Endotoxin as the inciting agentof cytokines and other mediators, whose highlevel expression correlates with the septicshock and MOF, has been the one of leadingcauses of death in ICU. Methods For treatingsepsis and MOF caused by endotoxin, the anti-lipid A of LPS antibody was used. 19 burned
Back Bay Wilderness burning support
US Fish and Wildlife Service, Department of the Interior — This document is a memorandum concerning prescribed burns between members of the Bureau of Sport Fisheries and Wildlife. It states that burning should be supported...
Critical stability of almost adiabatic convection in a rapidly rotating thick spherical shell
International Nuclear Information System (INIS)
In this work, the convection equations in the almost adiabatic approximation is studied for which the choice of physical parameters is primarily based on possible applications to the hydrodynamics of the deep interiors of the Earth and planets and moons of the terrestrial group. The initial system of partial differential equations (PDEs) was simplified to a single second-order ordinary differential equation for the pressure or vertical velocity component to investigate the linear stability of convection. The critical frequencies, modified Rayleigh numbers, and distributions of convection are obtained at various possible Prandtl numbers and in different thick fluid shells. An analytical WKB-type solution was obtained for the case when the inner radius of the shell is much smaller than the outer radius and convective sources are concentrated along the inner boundary.
Kimura, Jun-Ichi; Kawabata, Hiroshi
2014-06-01
numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.
Systemic Responses to Burn Injury
ÇAKIR, Barış; YEĞEN, Berrak Ç.
2004-01-01
The major causes of death in burn patients include multiple organ failure and infection. It is important for the clinician to understand the pathophysiology of burn injury and the effects it will have on the pharmacokinetics of a drug. The local and systemic inflammatory response to thermal injury is extremely complex, resulting in both local burn tissue damage and deleterious systemic effects on all other organ systems distant from the burn area itself. Thermal injury initiates systemic infl...
Friction Burns: Epidemiology and Prevention
Agrawal, A; Raibagkar, S.C.; Vora, H.J.
2008-01-01
This epidemiological study deals with 60 patients with friction burns between January 2004 and January 2006. The age group most affected was that between 21 and 30 years, with male predominance. Road traffic accidents were the commonest cause of friction burns (56 patients), and the lower limb was the most frequently affected part of the body. Patient management was performed according to the degree of the burn injury. It is suggested that most friction burn injuries are neglected on admissio...
2010-07-01
..., agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... for general open burning, agricultural burning, and forestry and silvicultural burning. (a) Beginning... obtain approval of a permit under § 49.134 Rule for forestry and silvicultural burning permits....
Burn epidemiology and cost of medication in paediatric burn patients.
Koç, Zeliha; Sağlam, Zeynep
2012-09-01
Burns are common injuries that cause problems to societies throughout the world. In order to reduce the cost of burn treatment in children, it is extremely important to determine the burn epidemiology and the cost of medicines used in burn treatment. The present study used a retrospective design, with data collected from medical records of 140 paediatric patients admitted to a burn centre between 1 January 2009 and 31 December 2009. Medical records were examined to determine burn epidemiology, medication administered, dosage, and duration of use. Descriptive statistical analysis was completed for all variables; chi-square was used to examine the relationship between certain variables. It was found that 62.7% of paediatric burns occur in the kitchen, with 70.7% involving boiling water; 55.7% of cases resulted in third-degree burns, 19.3% required grafting, and mean duration of hospital stay was 27.5 ± 1.2 days. Medication costs varied between $1.38 US dollars (USD) and $14,159.09, total drug cost was $46,148.03 and average cost per patient was $329.63. In this study, the medication cost for burn patients was found to be relatively high, with antibiotics comprising the vast majority of medication expenditure. Most paediatric burns are preventable, so it is vital to educate families about potential household hazards that can be addressed to reduce the risk of a burn. Programmes are also recommended to reduce costs and the inappropriate prescribing of medication.
Adiabatic CMB perturbations in pre-big bang string cosmology
DEFF Research Database (Denmark)
Enqvist, Kari; Sloth, Martin Snoager
2001-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...
Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited
Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.
2012-01-01
The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…
High beta lasing in micropillar cavities with adiabatic layer design
DEFF Research Database (Denmark)
Lermer, M.; Gregersen, Niels; Lorke, M.;
2013-01-01
We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216
Adiabatic frequency conversion with a sign flip in the coupling
Hristova, H. S.; Rangelov, A. A.; Montemezzani, G.; Vitanov, N. V.
2016-09-01
Adiabatic frequency conversion is a method recently developed in nonlinear optics [H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008), 10.1103/PhysRevA.78.063821], using ideas from the technique of rapid adiabatic passage (RAP) via a level crossing in quantum physics. In this method, the coupling coefficients are constant and the phase mismatch is chirped adiabatically. In this work, we propose another method for adiabatic frequency conversion, in which the phase mismatch is constant and the coupling is a pulse-shaped function with a sign flip (i.e., a phase step of π ) at its maximum. Compared to the RAP method, our technique has comparable efficiency but it is simpler to implement for it only needs two bulk crystals with opposite χ(2 ) nonlinearity. Moreover, because our technique requires constant nonzero frequency mismatch and has zero conversion efficiency on exact frequency matching, it can be used as a frequency filter.
Digitized adiabatic quantum computing with a superconducting circuit
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
A Quantum Adiabatic Algorithm for Factorization and Its Experimental Implementation
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-01-01
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in an NMR quantum information processor and experimentally factorize the number 21. Numerical simulations indicate that the running time grows only quadratically with the number of qubits.
When an Adiabatic Irreversible Expansion or Compression Becomes Reversible
Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.
2009-01-01
This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…
Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition
Institute of Scientific and Technical Information of China (English)
QIAN Shang-Wu; GU Zhi-Yu
2005-01-01
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the generaltime-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.
Flat FRW Cosmologies with Adiabatic Matter Creation Kinematic tests
Lima, J A S
1999-01-01
Some observational consequences of a cosmological scenario driven by adiabatic matter creation are investigated. Exact expressions for the lookback time, age of the universe, luminosity distance, angular diameter, and galaxy number counts redshift relations are derived and their meaning discussed in detail. The expressions of the conventional FRW models are significantly modified and provide a powerful method to limit the parameters of the models.
A Kinetic Study of the Adiabatic Polymerization of Acrylamide.
Thomson, R. A. M.
1986-01-01
Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)
Adiabatic and diabatic aerosol transport to the Jungfraujoch
Energy Technology Data Exchange (ETDEWEB)
Lugauer, M.; Baltensperger, U.; Furger, M.; Jost, D.T.; Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-09-01
Synoptic scale vertical motion, here detected by the geopotential height of the 500 hPa surface, mainly accounts for the aerosol transport to the Jungfraujoch in winter. In summer, diabatic convection provides the dominant vertical transport mechanism. Nevertheless, synoptic scale adiabatic motion still determines whether diabatic convection can develop. (author) 2 figs., 2 refs.
Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition
International Nuclear Information System (INIS)
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the general time-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.
Dark Energy and Dark Matter from an additional adiabatic fluid
Dunsby, Peter K S; Reverberi, Lorenzo
2016-01-01
The Dark Sector is described by an additional barotropic fluid which evolves adiabatically during the universe's history and whose adiabatic exponent $\\gamma$ is derived from the standard definitions of specific heats. Although in general $\\gamma$ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with $\\gamma = $ constant in a FLRW universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like non-relativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both Dark Energy and Dark Matter, at least at the level of the background cosmology. The $\\Lambda$CDM model is included in this family of theories when $\\gamma = 0$. We fit our model to SNIa, $H(z)$ and BAO data, discussing the model selection criteria. The implications for the early-universe and the growth of small per...
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-08
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Reactive burn models and ignition & growth concept
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph S [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory
2010-01-01
Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.
Burn Teams and Burn Centers: The Importance of a Comprehensive Team Approach to Burn Care
Al-Mousawi, Ahmed M.; Mecott-Rivera, Gabriel A.; Jeschke, Marc G.; Herndon, David N
2009-01-01
Advances in burn care have been colossal, but while extra work is needed, it is clear that the organized effort of burn teams can continue making improvements in survival rates and quality of life possible for patients. Burn patients are unique, representing the most severe model of trauma,33 and hence this necessitates treatment in the best facilities available for that endeavor. Burn centers have developed to meet these intricate needs but can only function productively and most efficiently...
[Chemical and electrical burns].
Sanchez, Raymond
2002-12-15
Chemical burns are less frequent in routine practice, but could be very serious owing to the complexity and severity of their actions. Influx of casualty after a civil disaster (industrial explosion) or military (war or terrorism) is possible. The action of these agents could be prolonged and deep. In addition to the skin, respiratory lesions and general intoxication could be observed. The urgent local treatment rely essentially on prolonged washing. Prevention and adequate emergency care could limit the serious consequences of these accidents. Accidents (thermal burns or electrisations) due to high or low voltage electricity are frequent. The severity is linked with the affected skin but especially with internal lesions, muscular, neurological or cardiac lesions. All cases of electrisation need hospital care. Locally, the lesions are often deep with difficult surgical repairs and often require amputation. Aesthetic and functional sequela are therefore frequent. Secondary complications could appear several months after the accident: cataract, dysesthesia and hypotonia. PMID:12621941
Bélanger, Richard E; Marcotte, Marie-Eve; Bégin, François
2013-01-01
A case involving a five-month-old girl brought to the emergency department with burns over her abdomen is described. The child was reported to have spilled two small bottles of beauty nail adhesive on her clothes while her mother was preparing dinner. After undressing the infant, the mother discovered several lesions on the child’s abdomen and quickly sought medical attention. Given the unusual circumstances of the presentation, the child was hospitalized for both treatment and supervision. The beauty nail adhesive contained cyanoacrylate. In addition to its well-appreciated adhesive capacity, cyanoacrylate, in the presence of cotton or other tissues, is known to produce an exothermic reaction that may cause burns. Cyanoacrylate-based products, due to their possible adverse effects, should be kept away from children as advised. Odd injuries should always raise concerns about the possibility of inflicted injury. PMID:24421671
Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S
2016-01-01
Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.
DEFF Research Database (Denmark)
Xygalatas, Dimitris
The Anastenaria are Orthodox Christians in Northern Greece who observe a unique annual ritual cycle focused on two festivals, dedicated to Saint Constantine and Saint Helen. The festivals involve processions, music, dancing, animal sacrifices, and culminate in an electrifying fire-walking ritual....... Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context of the...... Greek fire-walking rituals. As a cognitive ethnography, the book aims to identify the social, psychological and neurobiological factors which may be involved and to explore the role of emotional and physiological arousal in the performance of such ritual. A study of participation, experience and meaning...
Richard E. Bélanger; Marcotte, Marie-Eve; Bégin, François
2013-01-01
A case involving a five-month-old girl brought to the emergency department with burns over her abdomen is described. The child was reported to have spilled two small bottles of beauty nail adhesive on her clothes while her mother was preparing dinner. After undressing the infant, the mother discovered several lesions on the child’s abdomen and quickly sought medical attention. Given the unusual circumstances of the presentation, the child was hospitalized for both treatment and supervision. T...
Characteristics of horizontal two-phase helium flow at low mass velocities
International Nuclear Information System (INIS)
Two-phase helium flows experimental and theoretical exploration results, including data on flow regimes, pressure drop, and void fraction, are presented. The circular, annular, and slot channels are examined. All the considered data are for low mass velocities and near-adiabatic conditions
Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion
International Nuclear Information System (INIS)
The combustion of ultra-lean fuel/air mixtures provides an efficient way to convert the chemical energy of hydrocarbons and low-calorific fuels into useful power. Matrix-stabilized porous medium combustion is an advanced technique in which a solid porous medium within the combustion chamber conducts heat from the hot gaseous products in the upstream direction to preheat incoming reactants. This heat recirculation extends the standard flammability limits, allowing the burning of ultra-lean and low-calorific fuel mixtures and resulting a combustion temperature higher than the thermodynamic equilibrium temperature of the mixture (i.e., super-adiabatic combustion). The heat generated by this combustion process can be converted into electricity with thermoelectric generators, which is the goal of this study. The design of a porous media burner coupled with a thermoelectric generator and its testing are presented. The combustion zone media was a highly-porous alumina matrix interposed between upstream and downstream honeycomb structures with pore sizes smaller than the flame quenching distance, preventing the flame from propagating outside of the central section. Experimental results include temperature distributions inside the combustion chamber and across a thermoelectric generator; along with associated current, voltage and power output values. Measurements were obtained for a catalytically inert Al2O3 medium and a SiC coated medium, which was tested for the ability to catalyze the super-adiabatic combustion. The combustion efficiency was obtained for stoichiometric and ultra-lean (near the lean flammability limit) mixtures of CH4 and air. - Highlights: • Design of a porous burner coupled with a thermoelectric module. • Super-adiabatic combustion in a highly-porous ceramic matrix was investigated. • Both alumina and silicon carbide ceramic surfaces were used as porous media. • Catalytic properties of Al2O3 and SiC ceramic surfaces were studied
Makoto Kohga; Tomoki Naya; Kayoko Okamoto
2012-01-01
Ammonium-nitrate-(AN-) based composite propellants prepared with a hydroxyl-terminated polybutadiene (HTPB)/polytetrahydrofuran (PTHF) blend binder have unique thermal decomposition characteristics. In this study, the burning characteristics of AN/HTPB/PTHF propellants are investigated. The specific impulse and adiabatic flame temperature of an AN-based propellant theoretically increases with an increase in the proportion of PTHF in the HTPB/PTHF blend. With an AN/HTPB propellant, a solid res...
Velocity anticipation in the optimal velocity model
Institute of Scientific and Technical Information of China (English)
DONG Li-yun; WENG Xu-dan; LI Qing-ding
2009-01-01
In this paper,the velocity anticipation in the optimal velocity model (OVM) is investigated.The driver adjusts the velocity of his vehicle by the desired headway,which depends on both instantaneous headway and relative velocity.The effect of relative velocity is measured by a sensitivity function.A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data.It is shown that inclusion of velocity anticipation enhances the stability of traffic flow.Numerical simulations show a good agreement with empirical data.This model provides a better description of real traffic,including the acceleration process from standing states and the deceleration process approaching a stopped car.
Directory of Open Access Journals (Sweden)
Makoto Kohga
2012-01-01
Full Text Available Ammonium-nitrate-(AN- based composite propellants prepared with a hydroxyl-terminated polybutadiene (HTPB/polytetrahydrofuran (PTHF blend binder have unique thermal decomposition characteristics. In this study, the burning characteristics of AN/HTPB/PTHF propellants are investigated. The specific impulse and adiabatic flame temperature of an AN-based propellant theoretically increases with an increase in the proportion of PTHF in the HTPB/PTHF blend. With an AN/HTPB propellant, a solid residue is left on the burning surface of the propellant, and the shape of this residue is similar to that of the propellant. On the other hand, an AN/HTPB/PTHF propellant does not leave a solid residue. The burning rates of the AN/HTPB/PTHF propellant are not markedly different from those of the AN/HTPB propellant because some of the liquefied HTPB/PTHF binder cover the burning surface and impede decomposition and combustion. The burning rates of an AN/HTPB/PTHF propellant with a burning catalyst are higher than those of an AN/HTPB propellant supplemented with a catalyst. The beneficial effect of the blend binder on the burning characteristics is clarified upon the addition of a catalyst. The catalyst suppresses the negative influence of the liquefied binder that covers the burning surface. Thus, HTPB/PTHF blend binders are useful in improving the performance of AN-based propellants.
The hair color-highlighting burn: a unique burn injury.
Peters, W
2000-01-01
A unique, preventable, 2.8 x 3.7-cm, full-thickness scalp burn resulted after a woman underwent a professional color-highlighting procedure at a hair salon. The burn appeared to result from scalp contact with aluminum foil that had been overheated by a hair dryer during the procedure. The wound required debridement and skin grafting and 3 subsequent serial excisions to eliminate the resulting area of burn scar alopecia. The preventive aspects of this injury are discussed.
Acoustic emission strand burning technique for motor burning rate prediction
Christensen, W. N.
1978-01-01
An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.
Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy
Institute of Scientific and Technical Information of China (English)
ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui
2004-01-01
Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.
Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy
Institute of Scientific and Technical Information of China (English)
ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui
2004-01-01
Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.
Pore Velocity Estimation Uncertainties
Devary, J. L.; Doctor, P. G.
1982-08-01
Geostatistical data analysis techniques were used to stochastically model the spatial variability of groundwater pore velocity in a potential waste repository site. Kriging algorithms were applied to Hanford Reservation data to estimate hydraulic conductivities, hydraulic head gradients, and pore velocities. A first-order Taylor series expansion for pore velocity was used to statistically combine hydraulic conductivity, hydraulic head gradient, and effective porosity surfaces and uncertainties to characterize the pore velocity uncertainty. Use of these techniques permits the estimation of pore velocity uncertainties when pore velocity measurements do not exist. Large pore velocity estimation uncertainties were found to be located in the region where the hydraulic head gradient relative uncertainty was maximal.
Non-adiabatic dynamics of molecules in optical cavities
Energy Technology Data Exchange (ETDEWEB)
Kowalewski, Markus, E-mail: mkowalew@uci.edu; Bennett, Kochise; Mukamel, Shaul, E-mail: smukamel@uci.edu [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)
2016-02-07
Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.
Crack propagation of Ti alloy via adiabatic shear bands
International Nuclear Information System (INIS)
This study was focused on the characterization of the origin and mechanism of crack propagation as a result of hot induction bending of Ti alloy. Plates of Ti–6Al–4V alloy with 12.5 mm of thickness were submitted to hot induction bending below the beta transus temperature. Optical and scanning electron microscopy analysis showed crack formation in the tensile zone. Microstructural evidence showed that cracks propagate through the adiabatic shear bands by Dimple-Void mechanism. However, voids formation before shear banding also occurred. In both mechanisms adiabatic shear bands are formed via dynamic recrystallization where the alpha–beta interphase works as stress concentrator promoting the formation of dimples and voids
On some issues of gravitationally induced adiabatic particle productions
Pan, Supriya; Pramanik, Souvik
2016-01-01
In this work, we investigate the current accelerating universe driven by the gravitationally induced adiabatic matter creation process. To elaborate the underlying cognitive content, here we consider three models of adiabatic particle creation and constrain the model parameters by fitting the models with the Union 2.1 data set using $\\chi^2$ minimization technique. The models are analyzed by two geometrical and model independent tests, viz., cosmography and $Om$-diagnostic, which are widely used to distinguish the cosmological models from $\\Lambda$CDM. We also compared present values of those model independent parameters with that of the flat $\\Lambda$CDM model. Finally, the validity of the generalized second law of thermodynamics and the condition of thermodynamic equilibrium for the particle production models have been tested.
Steam bottoming cycle for an adiabatic diesel engine
Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.
1984-01-01
Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.
Adiabatic compression of elongated field-reversed configurations
International Nuclear Information System (INIS)
The simplest model of plasma dynamics is the adiabatic model. In this model the plasma is assumed to be in MHD equilibrium at each instant of time. The equilibria are connected by the requirement that they all have the same entropy per unit flux, i.e., the equilibria form a sequence generated by adiabatic changes. The standard way of computing such a sequence of equilibria was developed by Grad, but its practical use requires a fairly complicated code. It would be helpful if approximately the same results could be gotten either with a much simpler code or by analytical techniques. A one-dimensional equilibrium code is described and its results are checked against a two-dimensional equilibrium. An even simpler analytic calculation is then presented
Excitation energies along a range-separated adiabatic connection
Rebolini, Elisa; Teale, Andrew M; Helgaker, Trygve; Savin, Andreas
2014-01-01
We present a study of the variation of total energies and excitationenergies along a range-separated adiabatic connection. This connectionlinks the non-interacting Kohn-Sham electronic system to the physicalinteracting system by progressively switching on theelectron-electron interactions whilst simultaneously adjusting aone-electron effective potential so as to keep the ground-statedensity constant. The interactions are introduced in arange-dependent manner, first introducing predominantly long-range,and then all-range, interactions as the physical system is approached,as opposed to the conventional adiabatic connection where theinteractions are introduced by globally scaling the standard Coulomb interaction.Reference data are reported for the He and Be atoms and the H2molecule, obtained by calculating the short-range effective potentialat the full configuration-interaction level using Lieb'sLegendre-transform approach. As the strength of the electron-electroninteractions increases, the excitation energies, ...
Improved Refrigerant Characteristics Flow Predictions in Adiabatic Capillary Tube
Directory of Open Access Journals (Sweden)
Shodiya Sulaimon
2012-07-01
Full Text Available This study presents improved refrigerant characteristics flow predictions using homogenous flow model in adiabatic capillary tube, used in small vapor compression refrigeration system. The model is based on fundamental equations of mass, momentum and energy. In order to improve the flow predictions, the inception of vaporization in the capillary tube is determined by evaluating initial vapor quality using enthalpy equation of refrigerant at saturation point and the inlet entrance effect of the capillary tube is also accounted for. Comparing this model with experimental data from open literature showed a reasonable agreement. Further comparison of this new model with earlier model of Bansal showed that the present model could be use to improve the performance predictions of refrigerant flow in adiabatic capillary tube.
Adiabatic far-field sub-diffraction imaging
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-08-01
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale.
DESIGN OF TERNARY COUNTER BASED ON ADIABATIC DOMINO CIRCUIT
Institute of Scientific and Technical Information of China (English)
Yang Qiankun; Wang Pengjun; Zheng Xuesong
2013-01-01
By researching the ternary counter and low power circuit design method,a novel design of low power ternary Domino counter on switch-level is proposed.Firstly,the switch-level structure expression of ternary loop operation circuit with enable pin is derived according to the switch-signal theory,and the one bit ternary counter is obtained combining the ternary adiabatic Domino literal operation circuit and buffer.Then the switch-level structure expression of enable signal circuit is derived,and the four bits ternary counter is obtained by cascade connection.Finally,the circuit is simulated by Spice tool and the output waveforms transform in proper order indicating that the logic function is correct.The energy consumption of the four bits ternary adiabatic Domino counter is 63％ less than the conventional Domino counterpart.
Crack propagation of Ti alloy via adiabatic shear bands
Energy Technology Data Exchange (ETDEWEB)
Mendoza, I., E-mail: ivanmendozabravo@gmail.com [Instituto Tecnológico de Veracruz (Mexico); Villalobos, D. [Instituto Tecnológico de Veracruz (Mexico); Alexandrov, B.T. [The Ohio State University (United States)
2015-10-01
This study was focused on the characterization of the origin and mechanism of crack propagation as a result of hot induction bending of Ti alloy. Plates of Ti–6Al–4V alloy with 12.5 mm of thickness were submitted to hot induction bending below the beta transus temperature. Optical and scanning electron microscopy analysis showed crack formation in the tensile zone. Microstructural evidence showed that cracks propagate through the adiabatic shear bands by Dimple-Void mechanism. However, voids formation before shear banding also occurred. In both mechanisms adiabatic shear bands are formed via dynamic recrystallization where the alpha–beta interphase works as stress concentrator promoting the formation of dimples and voids.
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan-Yu; Biedermann, Grant W.; Deutsch, Ivan H.
2015-01-01
We study a scheme for implementing a controlled-Z (cz) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly excited Rydberg atoms when the blockade is imperfect. For reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a cz gate in <10 μ s with error probability on the order of 10-3.
[The organization of burn care].
Latarjet, Jacques
2002-12-15
In 2002, the organisation of burn care is confronted to a great deficiency in burn epidemiological datas. The main mechanisms of hospitalized burns are somehow wellknown in industrialized countries: about 60% scalds and 30% flame burns; as well as the place of occurrence (60% at home, and 20% at work), and the risk groups (3 times more important for the age group 0-4 years old). The incidence of burns needing medical care (all levels) (250/100,000 inh/yr) or hospitalization (15-20/100,000 inh/yr) is much more uncertain. The statistics of Diagnosis Related Groups (DRG), for hospitalized patients will allow in France very shortly to know more about the most rational ways of dispatching and treating them. They already show that only 30% of hospitalized burned patients are treated in specialized facilities.
International Nuclear Information System (INIS)
Research of the fusion plasma thermal instability and its control is reviewed. General models of the thermonuclear plasma are developed. Techniques of stability analysis commonly employed in burn control research are discussed. Methods for controlling the plasma against the thermal instability are reviewed. Emphasis is placed on applications to tokamak confinement concepts. Additional research which extends the results of previous research is suggested. Issues specific to the development of control strategies for mid-term engineering test reactors are identified and addressed. 100 refs., 24 figs., 10 tabs
Complicated Burn Resuscitation.
Harrington, David T
2016-10-01
More than 4 decades after the creation of the Brooke and Parkland formulas, burn practitioners still argue about which formula is the best. So it is no surprise that there is no consensus about how to resuscitate a thermally injured patient with a significant comorbidity such as heart failure or cirrhosis or how to resuscitate a patient after an electrical or inhalation injury or a patient whose resuscitation is complicated by renal failure. All of these scenarios share a common theme in that the standard rule book does not apply. All will require highly individualized resuscitations. PMID:27600129
Hypercomputability of quantum adiabatic processes: Fact versus Prejudices
Kieu, T D
2005-01-01
We give an overview of a quantum adiabatic algorithm for Hilbert's tenth problem, including some discussions on its fundamental aspects and the emphasis on the probabilistic correctness of its findings. For the purpose of illustration, the numerical simulation results of some simple Diophantine equations are presented. We also discuss some prejudicial misunderstandings as well as some plausible difficulties faced by the algorithm in its physical implementation.
High-Fidelity Entangled Bell States via Shortcuts to Adiabaticity
Paul, Koushik
2016-01-01
We present a couple of protocols based on shortcut to adiabaticity techniques for rapid generation of robust entangled Bell states in a system of two two-state systems. Our protocols rely on the so-called transitionless quantum driving (TQD) algorithm and Lewis-Riesenfeld invariant (LRI) method. Both TQD and LRI methods result in high fidelity in population transfer.Our study shows that it is possible to prepare an entangled state in infinitely short time without losing robustness and efficiency.
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-04-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
Geometry of adiabatic Hamiltonians for two-level quantum systems
International Nuclear Information System (INIS)
We present the formulation of the problem of the coherent dynamics of quantum mechanical two-level systems in the adiabatic region in terms of the differential geometry of plane curves. We show that there is a natural plane curve corresponding to the Hamiltonian of the system for which the geometrical quantities have a simple physical interpretation. In particular, the curvature of the curve has the role of the nonadiabatic coupling. (paper)
Single-parameter adiabatic charge pumping in carbon nanotube resonators
Perroni, C. A.; Nocera, A.; Cataudella, V.
2013-01-01
Single-parameter adiabatic charge pumping, induced by a nearby radio-frequency antenna, is achieved in suspended carbon nanotubes close to the mechanical resonance. The charge pumping is due to an important dynamic adjustment of the oscillating motion to the antenna signal and it is different from the mechanism active in the two-parameter pumping. Finally, the second harmonic oscillator response shows an interesting relationship with the first harmonic that should be experimentally observed.
Quantum pumping with adiabatically modulated barriers in graphene
Zhu, Rui; Chen, Huiming
2009-01-01
We study the adiabatic quantum pumping characteristics in the graphene modulated by two oscillating gate potentials out of phase. The angular and energy dependence of the pumped current is presented. The direction of the pumped current can be reversed when a high barrier demonstrates stronger transparency than a low one, which results from the Klein paradox. The underlying physics of the pumping process is illuminated.
Adiabatic trapping in coupled kinetic Alfven-acoustic waves
Energy Technology Data Exchange (ETDEWEB)
Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)
2013-03-15
In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.
Linear response of galactic halos to adiabatic gravitational perturbations
Murali, Chigurupati; Tremaine, Scott
1997-01-01
We determine the response of a self-similar isothermal stellar system to small adiabatic gravitational perturbations. For odd spherical harmonics, the response is identical to the response of the analogous isothermal fluid system. For even spherical harmonics, the response can be regarded as an infinite series of wavetrains in $\\log r$, implying alternating compression and rarefaction in equal logarithmic radius intervals. Partly because of the oscillatory nature of the solutions, tidal field...
Genital burns and vaginal delivery.
Pant, R; Manandhar, V; Wittgenstein, F; Fortney, J A; Fukushima, C
1995-07-01
Obstetric complications may result from burn scarring in the genital area. Women in developing countries typically squat around cooking fires, and burns are common. This recent case in Nepal describes obstructed labor in a young woman whose genital area had extensive scarring from a cooking fire injury. Proper antenatal assessment by health care providers can reduce the risk to mothers and infants of the consequences of a birth canal damaged or obstructed by burn scarring.
Prognosis and treatment of burns.
Mann, R; Heimbach, D
1996-01-01
Survival rates for burn patients in general have improved markedly over the past several decades. The development of topical antibiotic therapy for burn wounds, the institution of the practice of early excision and grafting, and major advances in intensive care management have all contributed to this success. In this review we address these 3 important advances in the modern treatment of burn injuries and provide a brief historical overview of these accomplishments and others, emphasizing spe...
Momčilović Dragan
2002-01-01
Introduction Understanding of fluid shifts and recognition of the importance of early and appropriate fluid replacement therapy have significantly reduced mortality in the early post burn period. After the bum patient successfully passes the resuscitation period, the burn wound represents the greatest threat to survival. History Since the dawn of civilization, man has been trying to find an agent which would help burn wounds heal, and at the same time, not harm general condition of the injure...
Animal Models in Burn Research
Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G
2014-01-01
Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the...
[Epidemiology of burns in France].
Latarjet, Jacques; Ravat, François
2012-01-01
As with most traumas, the epidemiology of the "burn" health-event has long been neglected by public health doctors and rarely considered by burns specialists. There were therefore few verified data and many approximations and preconceived ideas. The gathering of information recently undertaken in France enables the reliability of the data to be improved and the diagnostic and demographic elements relating to hospitalised patients with burns to be established.
Adiabatic shear mechanisms for the hard cutting process
Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin
2015-05-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
Adiabatic Shear Mechanisms for the Hard Cutting Process
Institute of Scientific and Technical Information of China (English)
YUE Caixu; WANG Bo; LIU Xianli; FENG Huize; CAI Chunbin
2015-01-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remalns some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high straln domaln caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
Irreconcilable difference between quantum walks and adiabatic quantum computing
Wong, Thomas G.; Meyer, David A.
2016-06-01
Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
International Nuclear Information System (INIS)
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems
Numerical study of polaron problem in the adiabatic limit
Marsiglio, Frank; Li, Zhou; Blois, Cindy; Baillie, Devin
2010-03-01
We study the polaron problem in a one dimensional chain and on a two dimensional square lattice. The models we have used are the Holstein model and the Su-Schrieffer-Heeger (SSH) model. By a variational procedure based on the Lanczos method, we are able to examine the polaron problem in the limit when the mass of the ion is very large, i.e. close to the adiabatic limit. It is known that for the Holstein model there is no phase transition [1] for any nonzero phonon energy. It is also known that for the one dimensional Holstein or SSH model there will be long range order [2] (e.g. dimerization) in the adiabatic limit at half-filling. It is then interesting to study the long range order on a two dimensional square lattice in and away from the adiabatic limit. Moreover, recent progress for the single polaron near an impurity (disorder) [3] make it an interesting problem for studying bond length disorder which can change the hopping energy in a specific direction in the Holstein model. Reference: [1] H. Lowen, Phys.Rev.B 37, 8661 (1988) [2] J.E.Hirsch and E. Frandkin, Phys. Rev. Lett. 49, 402 (1982) [3]A.S.Mishchenko et.al Phys.Rev.B 79(2009) 180301(R)
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Steam bottoming cycle for an adiabatic diesel engine
Energy Technology Data Exchange (ETDEWEB)
Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.
1984-03-01
A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.
NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.
Mitra, Avik; Mahesh, T S; Kumar, Anil
2008-03-28
NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR. PMID:18376911
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
Joyee Ghosh; R Ghosh; Deepak Kumar
2011-10-01
A three-level atom in a conﬁguration trapped in an optical cavity forms a basic unit in a number of proposed protocols for quantum information processing. This system allows for efﬁcient storage of cavity photons into long-lived atomic excitations, and their retrieval with high ﬁdelity, in an adiabatic transfer process through the ‘dark state’ by a slow variation of the control laser intensity. We study the full quantum mechanics of this transfer process with a view to examine the non-adiabatic effects arising from inevitable excitations of the system to states involving the upper level of , which is radiative. We ﬁnd that the ﬁdelity of storage is better, the stronger the control ﬁeld and the slower the rate of its switching off. On the contrary, unlike the adiabatic notion, retrieval is better with faster rates of switching on of an optimal control ﬁeld. Also, for retrieval, the behaviour with dissipation is non-monotonic. These results lend themselves to experimental tests. Our exact computations, when applied to slow variations of the control intensity for strong atom–photon couplings, are in very good agreement with Berry’s superadiabatic transfer results without dissipation.
Vitamin C in Burn Resuscitation.
Rizzo, Julie A; Rowan, Matthew P; Driscoll, Ian R; Chung, Kevin K; Friedman, Bruce C
2016-10-01
The inflammatory state after burn injury is characterized by an increase in capillary permeability that results in protein and fluid leakage into the interstitial space, increasing resuscitative requirements. Although the mechanisms underlying increased capillary permeability are complex, damage from reactive oxygen species plays a major role and has been successfully attenuated with antioxidant therapy in several disease processes. However, the utility of antioxidants in burn treatment remains unclear. Vitamin C is a promising antioxidant candidate that has been examined in burn resuscitation studies and shows efficacy in reducing the fluid requirements in the acute phase after burn injury. PMID:27600125
Nutrition Support in Burn Patients
Directory of Open Access Journals (Sweden)
Cem Aydoğan
2012-08-01
Full Text Available Severe burn trauma causes serious metabolic derangements. Increased metabolic rate which is apart of a pathophysiologic characteristic of burn trauma results in protein-energy malnutrition. This situation causes impaired wound healing, muscle and fat tissue’s breakdown, growth retardation in children and infections. Nutrition support is vital in the treatment strategies of burn victims to prevent high mortal and disabling complications in this devastating trauma. Our aim in this study is to review management of nutrition in burn victims. (Journal of the Turkish Society Intensive Care 2012; 10: 74-83
Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?
Directory of Open Access Journals (Sweden)
H. J. Fahr
2008-01-01
Full Text Available We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.
How to manage burns in primary care.
Waitzman, A. A.; Neligan, P. C.
1993-01-01
Burns are common injuries; more than 200,000 occur in Canada annually. Nearly all burn injuries can be managed on on outpatient basis. Appropriate treatment depends on burn depth, extent, and location. Special types of burns, such as chemical, tar, and electrical injuries, need specific management strategies. Prevention through education is important to reduce the incidence of burns.
Oral Rehydration Therapy in Burn Patients
2014-04-24
Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface
Bad advice; bad burn: a new problem in burn prevention.
Deans, L; Slater, H; Goldfarb, I W
1990-01-01
Deep partial-thickness burns had been inflicted on the perineal area of an infant who was recently treated in our Burn Center. The burns were a result of advice to the patient's mother by a pediatrician. The doctor told her to use a hair dryer to prevent diaper rash. We surveyed pediatricians, well-baby clinics, and pediatric nurse practitioners in our area and found that approximately half of them advised the use of hair dryers to treat or prevent diaper rash. We tested four widely available hand-held hair dryers to determine potential for inflicting burn injury. All of the dryers are capable of delivering air heated to at least 53 degrees C after 2 minutes of use. We believe that warnings against the use of hair dryers for perineal hygiene should be included in burn prevention programs.
Samadi, R; Dupret, M -A; Ludwig, H -G; Baudin, F; Caffau, E; Goupil, M -J; Barban, C
2012-01-01
A growing number of solar-like oscillations has been detected in red-giant stars thanks to CoRoT and Kepler space-crafts. The seismic data gathered by CoRoT on red-giant stars allow us to test mode driving theory in different physical conditions than main-sequence stars. Using a set of 3D hydrodynamical models representative of the upper layers of sub- and red-giant stars, we compute the acoustic modes energy supply rate (Pmax). Assuming adiabatic pulsations and using global stellar models where the surface stratification comes from the 3D hydrodynamical models, mode amplitude is computed in terms of surface velocity. The latter is then converted into intensity fluctuations using either a simplified adiabatic scaling relation or a non-adiabatic one. Given L and M (the luminosity and mass respectively), the energy supply rate Pmax is found to scale as (L/M)^(2.6) for both main-sequence and red-giant stars, extending previous results by Samadi et al. (2007). The theoretical amplitudes in velocity under-estimate...
Wanted： Clean Coal Burning Technology
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
China is intent on developing clean coal burning technology, an objective it can achieve through installing desulfurization facilities at coal-burning power plants that will control SO2 emissions and environmental pollution. According to kuo Yi, deputy director general of the Department of Science and Technology of the State Environmental Protection Agency, China is a major coal-buming country:
International Nuclear Information System (INIS)
Emission of soot particles and other air pollution indoors constitutes a considerable health hazard for a major part of the population in many developing countries, one of them being China. In these countries problems relating to poverty are the most important risk factors, undernourishment being the dominating reason. Number four on the list of the most serious health hazards is indoor air pollution caused by burning of coal and biomass in the households. Very high levels of soot particles occur indoors because of incomplete combustion in old-fashioned stoves and by use of low quality fuel such as sticks and twigs and straw and other waste from agriculture. This leads to an increase in a series of acute and chronic respiratory diseases, including lung cancer. It has been pointed out in recent years that emissions due to incomplete combustion of coal and biomass can contribute considerably to climate changes
Evers, Lars H; Bhavsar, Dhaval; Mailänder, Peter
2010-09-01
Burn injury is a complex traumatic event with various local and systemic effects, affecting several organ systems beyond the skin. The pathophysiology of the burn patient shows the full spectrum of the complexity of inflammatory response reactions. In the acute phase, inflammation mechanism may have negative effects because of capillary leak, the propagation of inhalation injury and the development of multiple organ failure. Attempts to mediate these processes remain a central subject of burn care research. Conversely, inflammation is a necessary prologue and component in the later-stage processes of wound healing. In this review, we are attempting to present the current science of burn wound pathophysiology and wound healing. We also describe the evolution of innovative strategies for burn management.
Fires and Burns Involving Home Medical Oxygen
... nfpa.org Fires and Burns Involving Home Medical Oxygen The air is normally 21% oxygen. Oxygen is not flammable, but fire needs it to burn. ¾ When more oxygen is present, any fire that starts will burn ...
Heat capacity and sound velocities of low dimensional Fermi gases
Salas, P.; Solis, M. A.
2014-03-01
We report the heat capacity ratio and sound velocities for an interactionless Fermi gas immersed in periodic structures such as penetrable multilayers or multitubes created by one (planes) or two perpendicular (tubes) external Dirac comb potentials. The isobaric specific heat of the fermion gas presents the dimensional crossover previously observed in the isochoric specific heat - from 3D to 2D or to 1D -. The quotient between the two quantities has a prominent bump related to the confinement, and as the temperature increases, it goes towards the monoatomic classical gas value 5/3. We present the isothermal and the adiabatic sound velocities of the fermion gas which show anomalous behavior at temperatures below TF due to the dimensionality of the system, while at higher temperatures again we recover the behavior of a classical Fermi gas. Furthermore, as the temperature goes to zero the sound velocity has a finite value, as expected.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Applications of Adiabatic Approximation to One- and Two-electron Phenomena in Strong Laser Fields
Bondar, Denys
2010-01-01
The adiabatic approximation is a natural approach for the description of phenomena induced by low frequency laser radiation because the ratio of the laser frequency to the characteristic frequency of an atom or a molecule is a small parameter. Since the main aim of this work is the study of ionization phenomena, the version of the adiabatic approximation that can account for the transition from a bound state to the continuum must be employed. Despite much work in this topic, a universally accepted adiabatic approach of bound-free transitions is lacking. Hence, based on Savichev's modified adiabatic approximation [Sov. Phys. JETP 73, 803 (1991)], we first of all derive the most convenient form of the adiabatic approximation for the problems at hand. Connections of the obtained result with the quasiclassical approximation and other previous investigations are discussed. Then, such an adiabatic approximation is applied to single-electron ionization and non-sequential double ionization of atoms in a strong low fr...
Double adiabatic theory of collisionless geodesic acoustic modes in tokamaks
Hassam, A B
2011-01-01
Collisionless geodesic acoustic modes in tokamaks being supersonic for large "safety factor" q, the CGL (G. Chew, M. Goldberger, F. Low, 1956)1 double-adiabatic fluid closure is applied to formulate a theory for these modes. The basic linear normal mode is obtained. External means to drive these modes at resonance, as has been proposed earlier, are explored. The external drivers considered include external magnetic forces to effect flux surface displacements, as well as non-axisymmetric ion heating. Finally, the damping of these modes from collisional magnetic pumping is investigated using a model set of CGL collision-corrected equations.
Nonlinear effects generation in non-adiabatically tapered fibres
Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier
2015-12-01
Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.
Adiabatic regularisation of power spectra in nonminimally coupled chaotic inflation
Alinea, Allan L
2016-01-01
We investigate the effect of adiabatic regularisation on both the tensor- and scalar-perturbation power spectra in \\textit{nonminimally} coupled chaotic inflation. Similar to that of the \\textit{minimally} coupled general single-field inflation, we find that the subtraction term is suppressed by an exponentially decaying factor involving the number of $ e $-folds. By following the subtraction term long enough beyond horizon crossing, the regularised power spectrum tends to the "bare" power spectrum. This study justifies the use of the unregularised ("bare") power spectrum in standard calculations.
Adiabatic regularization of power spectra in nonminimally coupled chaotic inflation
Alinea, Allan L.
2016-10-01
We investigate the effect of adiabatic regularization on both the tensor- and scalar-perturbation power spectra in nonminimally coupled chaotic inflation. Similar to that of the minimally coupled general single-field inflation, we find that the subtraction term is suppressed by an exponentially decaying factor involving the number of e -folds. By following the subtraction term long enough beyond horizon crossing, the regularized power spectrum tends to the ``bare'' power spectrum. This study justifies the use of the unregularized (``bare'') power spectrum in standard calculations.
Stimulated Raman adiabatic passage analogues in classical physics
Energy Technology Data Exchange (ETDEWEB)
Rangelov, A A [University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Vitanov, N V [Department of Physics, Sofia University, James Bourchier 5 blvd., 1164 Sofia (Bulgaria); Shore, B W [618 Escondido Cir., Livermore, CA (United States)
2009-03-14
Stimulated Raman adiabatic passage (STIRAP) is a well-established technique for producing coherent population transfer in a three-state quantum system. We here exploit the resemblance between the Schroedinger equation for such a quantum system and the Newton equation of motion for a classical system undergoing torque to discuss several classical analogues of STIRAP, notably the motion of a moving charged particle subject to the Lorentz force of a quasistatic magnetic field, the orientation of a magnetic moment in a slowly varying magnetic field and the Coriolis effect. Like STIRAP, these phenomena occur for counterintuitive motion of the torque and are robustly insensitive to small changes in the interaction properties.
Analysis of interference in attosecond transient absorption in adiabatic condition
Dong, Wenpu; Wang, Xiaowei; Zhao, Zengxiu
2015-01-01
We simulate the transient absorption of attosecond pulses of infrared laser-dressed atoms by considering a three-level system with the adiabatic approximation. We study the delay-dependent interference features in the transient absorption spectra of helium atoms from the perspective of the coherent interaction processes between the attosecond pulse and the quasi-harmonics, and find that many features of the interference fringes in the absorption spectra of the attosecond pulse can be attributed to the coherence phase difference. And the modulation signals of laser-induced sidebands of the dark state is found related to the dark state with population modulated by the dressing field.
Simulation on refrigerant flow in adiabatic capillary tube
Institute of Scientific and Technical Information of China (English)
Meixia WANG; Cunfang LIU; Qiangtai ZHOU
2008-01-01
This paper proposes a new mathematical model to calculate flow characteristics of the adiabatic capillary tube, which is aimed at solving problems existing in some earlier models. The Stocker's model was modified with consideration of various effects due to sub-cooling, area concentration, and rolling diameter. The new model can be used not only for R22, but also for its substitutes such as R410A and R407C. A comparison of simulation results of the modified model with those in literature showed that the errors are within 10%. The flow charac-teristics are finally analyzed.
Relativistic blast waves in two dimensions. I - The adiabatic case
Shapiro, P. R.
1979-01-01
Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.
From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity
Okuyama, Manaka; Takahashi, Kazutaka
2016-08-01
Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.
Non-adiabatic study of the Kepler subgiant KIC 6442183
Directory of Open Access Journals (Sweden)
Grosjean M.
2015-01-01
Full Text Available Thanks to the precision of Kepler observations, [3] were able to measure the linewidth and amplitude of individual modes (including mixed modes in several subgiant power spectra. We perform a forward modelling of a Kepler subgiant based on surface properties and observed frequencies. Non-adiabatic computations including a time- dependent treatment of convection give the lifetimes of radial and non-radial modes. Next, combining the lifetimes and inertias with a stochastic excitation model gives the amplitudes of the modes. We can now directly compare theoretical and observed linewidths and amplitudes of mixed-modes to obtain new constraints on our theoretical models.
Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.
1988-01-01
in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...... constant-temperature or constant-magnetic-field quenches into the antiferromagnetic phase is found at late times to obey the classical Allen-Cahn growth law. The qualitative features of isentropic quenches and the nonequilibrium ordering phenomena during controlled heating treatments at constant rate...
Fast CNOT gate via shortcuts to adiabatic passage
Wang, Zhe; Xia, Yan; Chen, Ye-Hong; Song, Jie
2016-10-01
Based on the shortcuts to adiabatic passage, we propose a scheme for directly implementing a controlled-not (CNOT) gate in a cavity quantum electrodynamics system. Moreover, we generalize the scheme to realize a CNOT gate in two separate cavities connected by an optical fiber. The strictly numerical simulation shows that the schemes are fast and insensitive to the decoherence caused by atomic spontaneous emission and photon leakage. In addition, the schemes can provide a theoretical basis for the manipulation of the multiqubit quantum gates in distant nodes of a quantum network.
Modeling of the Adiabatic and Isothermal Methanation Process
Porubova, Jekaterina; Bazbauers, Gatis; Markova, Darja
2011-01-01
Increased use of biomass offers one of the ways to reduce anthropogenic impact on the environment. Using various biomass conversion processes, it is possible to obtain different types of fuels: • solid, e.g. bio-carbon; • liquid, e.g. biodiesel and ethanol; • gaseous, e.g. biomethane. Biomethane can be used in the transport and energy sector, and the total methane production efficiency can reach 65%. By modeling adiabatic and isothermal methanation processes, the most effective one from the methane production point of view is defined. Influence of the process parameters on the overall efficiency of the methane production is determined.
Landau-Zener Transitions in an Adiabatic Quantum Computer
Johansson, J; Amin, M. H. S.; Berkley, A. J.; Bunyk, P.; Choi, V.; Harris, R.; Johnson, M. W.; Lanting, T. M.; Lloyd, Seth; ROSE, G
2008-01-01
We report an experimental measurement of Landau-Zener transitions on an individual flux qubit within a multi-qubit superconducting chip designed for adiabatic quantum computation. The method used isolates a single qubit, tunes its tunneling amplitude Delta into the limit where Delta is much less than both the temperature T and the decoherence-induced energy level broadening, and forces it to undergo a Landau-Zener transition. We find that the behavior of the qubit agrees to a high degree of a...
ADELE adiabatic compressed air energy storage. Status and perspectives
Energy Technology Data Exchange (ETDEWEB)
Freund, Sebastian [General Electric Deutschland Holding GmbH, Garching (Germany). GE Global Research Renewable Energy Systems Lab.; Marquardt, Roland; Moser, Peter [RWE Power AG, Essen (Germany). Research and Development Innovative Power Plant Technology
2013-06-01
This paper gives an overview about compressed air energy storage (CAES) technology and a summary of the ADELE programme, a multi-year R and D programme undertaken by a consortium led by RWE Power to develop adiabatic (A) CAES technology and commercialise the first plant. The ACAES technology is to utilise waste heat developing upon compression in order to increase the entire efficiency. The ADELE-ING project is to provide the basis for making the decision on the construction of a 85 MW prototype. (orig.)
Adiabatic transport of qubits around a black hole
Viennot, David
2016-01-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
Adiabatic quantum computation and quantum annealing theory and practice
McGeoch, Catherine C
2014-01-01
Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'''' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a nov
Plasma heating via adiabatic magnetic compression-expansion cycle
Avinash, K.; Sengupta, M.; Ganesh, R.
2016-06-01
Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.
DEFF Research Database (Denmark)
2000-01-01
Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...... estimator automatically compensates for the axial velocity, when determining the transverse velocity by using fourth order moments rather than second order moments. The estimation is optimized by using a lag different from one in the estimation process, and noise artifacts are reduced by using averaging...... of RF samples. Further, compensation for the axial velocity can be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce spatial velocity dispersion....
Perturbation to Lie symmetry and another type of Hojman adiabatic invariants for Birkhoffian systems
Institute of Scientific and Technical Information of China (English)
Ding Ning; Fang Jian-Hui; Chen Xiang-Xia
2008-01-01
The perturbation to Lie symmetry and another type of Hojman adiabatic invariants induced from the perturbation to Lie symmetry for Birkhoffian systems are studied. The exact invariants of Lie symmetry for the system without perturbation are given. Based on the concept of adiabatic invariant, the perturbation to Lie symmetry is discussed and another new type of Hojman adiabatic invariants that have the different form from that in [Acta Phys. Sin. 55 3833] for the perturbed system are obtained.
Adiabatic heavy-ion fusion potentials for fusion at deep sub-barrier energies
Indian Academy of Sciences (India)
S V S Sastry; S Kailas; A K Mohanty; A Saxena
2005-01-01
The recently reported unusual behaviour of fusion cross-sections at extreme sub-barrier energies has been examined. The adiabatic limit of fusion barriers has been determined from experimental data using the barrier penetration model. These adiabatic barriers are consistent with the adiabatic fusion barriers derived from the modified Wilzynska–Wilzynski prescription. The fusion barrier systematics has been obtained for a wide range of heavy-ion systems.
Quantum pumping in closed systems, adiabatic transport, and the Kubo formula
Cohen, Doron
2003-01-01
Quantum pumping in closed systems is considered. We explain that the Kubo formula contains all the physically relevant ingredients for the calculation of the pumped charge ($Q$) within the framework of linear response theory. The relation to the common formulations of adiabatic transport and ``geometric magnetism" is clarified. We distinguish between adiabatic and dissipative contributions to $Q$. On the one hand we observe that adiabatic pumping does not have to be quantized. On the other ha...
Directory of Open Access Journals (Sweden)
Momčilović Dragan
2002-01-01
Full Text Available Introduction Understanding of fluid shifts and recognition of the importance of early and appropriate fluid replacement therapy have significantly reduced mortality in the early post burn period. After the bum patient successfully passes the resuscitation period, the burn wound represents the greatest threat to survival. History Since the dawn of civilization, man has been trying to find an agent which would help burn wounds heal, and at the same time, not harm general condition of the injured. It was not until the XX century, after the discovery of antibiotics, when this condition was fulfilled. In 1968, combining silver and sulfadiazine, fox made silver-sulfadiazine, which is a 1% hydro-soluble cream and a superior agent in topical treatment of burns today. Current topical agents None of the topical antimicrobial agents available today, alone or combined, have the characteristics of ideal prophylactic agents, but they eliminate colonization of burn wound, and invasive infections are infrequent. With an excellent spectrum of activity, low toxicity, and ease of application with minimal pain, silver-sulfadiazine is still the most frequently used topical agent. Conclusion The incidence of invasive infections and overall mortality have been significantly reduced after introduction of topical burn wound antimicrobial agents into practice. In most burn patients the drug of choice for prophylaxis is silver sulfadiazine. Other agents may be useful in certain clinical situations.
Sedation and Analgesia in Burn
Directory of Open Access Journals (Sweden)
Özkan Akıncı
2011-07-01
Full Text Available Burn injury is one of the most serious injuries that mankind may face. In addition to serious inflammation, excessive fluid loss, presence of hemodynamic instability due to intercurrent factors such as debridements, infections and organ failure, very different levels and intensities of pain, psychological problems such as traumatic stress disorder, depression, delirium at different levels that occur in patient with severe burn are the factors which make it difficult to provide the patient comfort. In addition to a mild to moderate level of baseline permanent pain in burn patients, which is due to tissue damage, there is procedural pain as well, which occurs by treatments such as grafting and dressings, that are severe, short-term burst style 'breakthrough' pain. Movement and tactile stimuli are also seen in burn injury as an effect to sensitize the peripheral and central nervous system. Even though many burn centers have established protocols to struggle with the pain, studies show that pain relief still inadequate in burn patients. Therefore, the treatment of burn pain and the prevention of possible emergence of future psychiatric problems suc as post-traumatic stress disorder, the sedative and anxiolytic agents should be used as a recommendation according to the needs and hemodynamic status of individual patient. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 26-30
Rehabilitation of the burn patient
Directory of Open Access Journals (Sweden)
Procter Fiona
2010-10-01
Full Text Available Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ′Burns Rehabilitation′ incorporates the physical, psychological and social aspects of care and it is common for burn patients to experience difficulties in one or all of these areas following a burn injury. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. The aims of burn rehabilitation are to minimise the adverse effects caused by the injury in terms of maintaining range of movement, minimising contracture development and impact of scarring, maximising functional ability, maximising psychological wellbeing, maximising social integration
Wójcik, P.; Zegrodnik, M.; Rzeszotarski, B.; Adamowski, J.
2016-09-01
The tunneling conductance through the half-metal/conical magnet/superconductor (HM/CM/SC) junctions is investigated with the use of the Bogoliubov-de Gennes equations in the framework of Blonder-Tinkham-Klapwijk formalism. Due to the spin band separation in the HM, the conductance in the subgap region is mainly determined by the anomalous Andreev reflection, the probability of which strongly depends on the spin transmission in the CM layer. We show that the spins of electrons injected from the HM can be transmitted through the CM to the SC either adiabatically or non-adiabatically depending on the period of the spatial modulation of the exchange field. We find that the conductance in the subgap region oscillates as a function of the CM layer thickness wherein the oscillations transform from the irregular pattern in the non-adiabatic regime to the regular one in the adiabatic regime. For both adiabatic and non-adiabatic transport regimes the conductance is studied over a broad range of parameters determining the spiral magnetization in the CM. We find that in the non-adiabatic regime, the decrease of the exchange field amplitude in the CM leads to the emergence of the conductance peak for the particular CM thickness in agreement with recent experiments.
Burns treatment in ancient times.
Pećanac, Marija; Janjić, Zlata; Komarcević, Aleksandar; Pajić, Milos; Dobanovacki, Dusanka; Misković, Sanja Skeledzija
2013-01-01
Discovery of fire at the dawn of prehistoric time brought not only the benefits to human beings offering the light and heat, but also misfortune due to burns; and that was the beginning of burns treatment. Egyptian doctors made medicines from plants, animal products and minerals, which they combined with magic and religious procedures. The earliest records described burns dressings with milk from mothers of male babies. Goddess Isis was called upon to help. Some remedies and procedures proved so successful that their application continued for centuries. The Edwin Smith papyrus (1500 BC) mentioned the treatment of burns with honey and grease. Ebers Papyrus (1500 BC) contains descriptions of application of mud, excrement, oil and plant extracts. They also used honey, Aloe and tannic acid to heal burns. Ancient Egyptians did not know about microorganisms but they knew that honey, moldy bread and copper salts could prevent infections from dirt in burns healing. Thyme, opium and belladona were used for pain relief. In the 4th century BC, Hippocrates recorded that Greek and Roman doctors used rendered pig fat, resin and bitumen to treat burns. Mixture of honey and bran, or lotion of wine and myrrh were used by Celsus. Honey was also known in Ayurveda (Indian medicine) time. Ayurvedic records Characa and Sushruta included honey in their dressing aids to purify sores and promote the healing. Burn treatment in Chinese medicine was traditional. It was a compilation of philosophy, knowledge and herbal medicine. The successful treatment of burns started in recent time and it has been made possible by better knowledge of the pathophysiology of thermal injuries and their consequences, medical technology advances and improved surgical techniques. PMID:23888738
Burns treatment in ancient times.
Pećanac, Marija; Janjić, Zlata; Komarcević, Aleksandar; Pajić, Milos; Dobanovacki, Dusanka; Misković, Sanja Skeledzija
2013-01-01
Discovery of fire at the dawn of prehistoric time brought not only the benefits to human beings offering the light and heat, but also misfortune due to burns; and that was the beginning of burns treatment. Egyptian doctors made medicines from plants, animal products and minerals, which they combined with magic and religious procedures. The earliest records described burns dressings with milk from mothers of male babies. Goddess Isis was called upon to help. Some remedies and procedures proved so successful that their application continued for centuries. The Edwin Smith papyrus (1500 BC) mentioned the treatment of burns with honey and grease. Ebers Papyrus (1500 BC) contains descriptions of application of mud, excrement, oil and plant extracts. They also used honey, Aloe and tannic acid to heal burns. Ancient Egyptians did not know about microorganisms but they knew that honey, moldy bread and copper salts could prevent infections from dirt in burns healing. Thyme, opium and belladona were used for pain relief. In the 4th century BC, Hippocrates recorded that Greek and Roman doctors used rendered pig fat, resin and bitumen to treat burns. Mixture of honey and bran, or lotion of wine and myrrh were used by Celsus. Honey was also known in Ayurveda (Indian medicine) time. Ayurvedic records Characa and Sushruta included honey in their dressing aids to purify sores and promote the healing. Burn treatment in Chinese medicine was traditional. It was a compilation of philosophy, knowledge and herbal medicine. The successful treatment of burns started in recent time and it has been made possible by better knowledge of the pathophysiology of thermal injuries and their consequences, medical technology advances and improved surgical techniques.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere.
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-01-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov-Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031
Hair bleaching and skin burning.
Forster, K; Lingitz, R; Prattes, G; Schneider, G; Sutter, S; Schintler, M; Trop, M
2012-12-31
Hairdressing-related burns are preventable and therefore each case is one too many. We report a unique case of a 16-yr-old girl who suffered full-thickness chemical and thermal burns to the nape of her neck and superficial burns to the occiput after her hair had been dyed blond and placed under a dryer to accelerate the highlighting procedure. The wound on the nape of the neck required surgical debridement and skin grafting. The grafted area resulted in subsequent scar formation.
[Reconstruction of facial burn sequelae].
Foyatier, J L; Comparin, J P; Boulos, J P; Bichet, J C; Jacquin, F
2001-06-01
The deep burns of the face can lead to horrible scars functionally and aesthetically. Treatment of these scars need several surgical interventions frequently and during many years. In our region we deal with this type of wounds as team work, multidisciplinary approach carrying out many process starting by emergency treatment of acute burns till the social rehabilitation. The expansion technique was great help in improving the shape of scars, by using the expanding skin as full thickness grafts. Reconstruction of the anatomical units and application of aesthetic techniques (like rhinoplasty, lifting, tattooing and autologous fat injections) participate equally in improving the quality of results. Many examples of treatments of burns scars are shown.
Protocolized Resuscitation of Burn Patients.
Cancio, Leopoldo C; Salinas, Jose; Kramer, George C
2016-10-01
Fluid resuscitation of burn patients is commonly initiated using modified Brooke or Parkland formula. The fluid infusion rate is titrated up or down hourly to maintain adequate urine output and other endpoints. Over-resuscitation leads to morbid complications. Adherence to paper-based protocols, flow sheets, and clinical practice guidelines is associated with decreased fluid resuscitation volumes and complications. Computerized tools assist providers. Although completely autonomous closed-loop control of resuscitation has been demonstrated in animal models of burn shock, the major advantages of open-loop and decision-support systems are identifying trends, enhancing situational awareness, and encouraging burn team communication. PMID:27600131
Stimulated Raman Adiabatic Passage (STIRAP) Among Degenerate-Level Manifolds
Kis, Z; Shore, B W; Vitanov, N V; Kis, Zsolt; Karpati, Attila; Shore, Bruce W.; Vitanov, Nikolay V.
2004-01-01
We examine the conditions needed to accomplish stimulated Raman adiabatic passage (STIRAP) when the three levels (g, e and f) are degenerate, with arbitrary couplings contributing to the pump-pulse interaction (g - e) and to the Stokes-pulse interaction (e-f). We show that in general a sufficient condition for complete population removal from the g set of degenerate states for arbitrary, pure or mixed, initial state is that the degeneracies should not decrease along the sequence g, e and f. We show that when this condition holds it is possible to achieve the degenerate counterpart of conventional STIRAP, whereby adiabatic passage produces complete population transfer. Indeed, the system is equivalent to a set of independent three-state systems, in each of which a STIRAP procedure can be implemented. We describe a scheme of unitary transformations that produces this result. We also examine the cases when this degeneracy constraint does not hold, and show what can be accomplished in those cases. For example, fo...
Adiabatic creation of coherent superposition states via multiple intermediate states
Karpati, A
2003-01-01
We consider an adiabatic population transfer process that resembles the well established stimulated Raman adiabatic passage (STIRAP). In our system, the states have nonzero angular momentums $J$, therefore, the coupling laser fields induce transitions among the magnetic sublevels of the states. In particular, we discuss the possibility of creating coherent superposition states in a system with coupling pattern $J=0\\Leftrightarrow J=1$ and $J=1\\Leftrightarrow J=2$. Initially, the system is in the J=0 state. We show that by two delayed, overlapping laser pulses it is possible to create any final superposition state of the magnetic sublevels $|2,-2>$, $|2,0>$, $|2,+2>$. Moreover, we find that the relative phases of the applied pulses influence not only the phases of the final superposition state but the probability amplitudes as well. We show that if we fix the shape and the time-delay between the pulses, the final state space can be entirely covered by varying the polarizations and relative phases of the two pu...
General background conditions for K-bounce and adiabaticity
Romano, Antonio Enea
2016-01-01
We study the background conditions for a bounce in a single scalar field model with a generalized kinetic term $K(X)$. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter $H$ changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for $K(X)$ and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic $K$, and the other on a $K$ which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces. In models where the bounce occurs when the potential is not constant, large non adiabatic perturbations are produced, which can in turn source the growth of anisotropies. In the region where these models have a constant potential they became adiabatic on any scale and because of thi...
The 0.1K bolometers cooled by adiabatic demagnetization
Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.
1983-01-01
The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.
Shortcut to adiabaticity for an anisotropic unitary Fermi gas
Deng, Shujin; Yu, Qianli; Wu, Haibin
2016-01-01
Coherent control of complex quantum systems is a fundamental requirement in quantum information processing and engineering. Recently developed notion of shortcut to adiabaticity (STA) has spawned intriguing prospects. So far, the most experimental investigations of STA are implemented in the ideal thermal gas or the weakly interacting ultracold Bose gases. Here we report the first demonstration of a many-body STA in a 3D anisotropically trapped unitary Fermi gas. A new dynamical scaling law is demonstrated on such a strongly interacting quantum gas. By simply engineering the frequency aspect ratio of a harmonic trap, the dynamics of the gas can be manipulated and the many-body state can be transferred adiabatically from one stationary state to another one in short time scale without the excitation. The universal scaling both for non-interacting and unitary Fermi gas is also verified. This could be very important for future many-body quantum engineering and the exploration of the fundamental law of the thermod...
Primeval adiabatic perturbations: constraints from the mass distribution
International Nuclear Information System (INIS)
The autocorrelation function of the mass distribution after decoupling of matter and radiation is computed under the assumption of linear primeval adiabatic perturbations using a new numerical method, and the results are compared to what is inferred from the present galaxy distribution. The computations are based on a Friedmann-Lemaitre model with Λ = 0 containing radiation, zero-mass neutrinos, hydrogen, and helium. The primeval power spectrum of density fluctuations is taken to approximate a power law k/sup v/. If the density parameter is Ω0 = 2q0< or approx. =0.1; or, if ν< or approx. =2, then the coherence length of the residual mass distribution is too large: when the amplitude is adjusted to make the first generation of objects form at z< or approx. =2, there are unacceptably large fluctuations in the mass distribution now on scales approx.12 to 40 Mpc. If ν = 3 to 4, this problem is avoided, but to prevent diverging curvature fluctuations the power law k/sup v/ must be truncated at a rather large comoving wavelength, lambda/sub x/approx.1 Mpc. The parameters thus are tightly limited, but it appears that one still can find a consistent scenario for the development of galaxies out of linear primeval adiabatic perturbations
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
International Nuclear Information System (INIS)
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Schedule path optimization for adiabatic quantum computing and optimization
International Nuclear Information System (INIS)
Adiabatic quantum computing and optimization have garnered much attention recently as possible models for achieving a quantum advantage over classical approaches to optimization and other special purpose computations. Both techniques are probabilistic in nature and the minimum gap between the ground state and first excited state of the system during evolution is a major factor in determining the success probability. In this work we investigate a strategy for increasing the minimum gap and success probability by introducing intermediate Hamiltonians that modify the evolution path between initial and final Hamiltonians. We focus on an optimization problem relevant to recent hardware implementations and present numerical evidence for the existence of a purely local intermediate Hamiltonian that achieve the optimum performance in terms of pushing the minimum gap to one of the end points of the evolution. As a part of this study we develop a convex optimization formulation of the search for optimal adiabatic schedules that makes this computation more tractable, and which may be of independent interest. We further study the effectiveness of random intermediate Hamiltonians on the minimum gap and success probability, and empirically find that random Hamiltonians have a significant probability of increasing the success probability, but only by a modest amount. (paper)
2010-07-01
..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... Reservation, Oregon § 49.11021 Permits for general open burning, agricultural burning, and forestry and..., 2007, a person must apply for and obtain approval of a permit under § 49.134 Rule for forestry...
Phoenix Society for Burn Survivors
... Learn More For First Responders & Medical Professionals Phoenix Society is the leader in connecting the burn recovery ... It can be a... Continue Reading The Phoenix Society, Inc. 1835 RW Berends Dr. SW Grand Rapids, ...
Prescott, P R
1990-11-01
Three children with burn injuries caused by home hair dryers are described. In one patient the injury was believed to be accidental, and in the other two cases the injuries were deliberately caused by a caretaker. The lack of prior experience with hair dryer burns initially led to suspicion of other causes. The characteristics of each case aided in the final determination of accidental vs nonaccidental injury. These cases prompted testing of home hair dryers to determine their heat output. At the highest heat settings, the dryers rapidly generated temperatures in excess of 110 degrees C. After the dryers were turned off, the protective grills maintained sufficient temperatures to cause full-thickness burns for up to 2 minutes. These cases and the results of testing demonstrate that hair dryers must be added to the list of known causes of accidental and nonaccidental burns in children.
Burns, hypertrophic scar and galactorrhea
Directory of Open Access Journals (Sweden)
Hamid Karimi
2013-07-01
Full Text Available An 18-year old woman was admitted to Motahari Burn Center suffering from 30% burns. Treatment modalities were carried out for the patient and she was discharged after 20 days. Three to four months later she developed hypertrophic scar on her chest and upper limbs .At the same time she developed galactorrhea in both breasts and had a disturbed menstrual cycle four months post-burn. On investigation, we found hyperprolactinemia and no other reasons for the high level of prolactin were detected. She received treatment for both the hypertrophic scar and the severe itching she was experiencing. After seven months, her prolactin level had decreased but had not returned to the normal level. It seems that refractory hypertrophic scar is related to the high level of prolactin in burns patients.
Diagnosing Implosion Velocity and Ablator Dynamics at NIF
Grim, Gary; Hayes, Anna; Jungman, Jerry; Wilson, Doug; Wilhelmy, Jerry; Bradley, Paul; Rundberg, Bob; Cerjan, Charlie
2009-10-01
An enhanced understanding of the environment in a burning NIF capsule is of interest to both astrophysics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. During the burn,the NIF capsule ablator is moving relative to the 14.1 MeV dt neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The ``point-design'' capsule at the NIF will be based on a ^9Be ablator, and the ^9Be(n,p)^9Li reaction has an energy threshold of 14.2 MeV, making it the ideal probe. As discussed in detail below, differences in the ablator velocity lead to significant differences in the rate of ^9Li production. We present techniques for measuring this ^9Li implosion velocity diagnostic at the NIF. The same experimental techniques, measuring neutron reactions on the ablator material, will allow us to determine other important dynamical quantities, such as the areal density and approximate thickness of the ablator at peak burn.
Angular velocity discrimination
Kaiser, Mary K.
1990-01-01
Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.
Orhan Çizmeci; Samet Vasfi Kuvat
2011-01-01
Wound care in one of the most important prognostic factors in burn victims. Open wound carries risks for infection due to hypothermia, protein and fluid losses. In addition, unhealed wounds are the major risk factors for acute-subacute or chronic complications in burn patients. Although no exact algorithm exists for open wound treatment, early escarectomy or debridement together with grafting is the best option. Ointments together with topical epithelizing agents without dressings are generea...
Flow regimes of adiabatic gas-liquid two-phase under rolling conditions
Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui
2013-07-01
Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.
Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion
Energy Technology Data Exchange (ETDEWEB)
NASH,THOMAS J.
2000-11-01
The magnetic implosion of a high-Z quasi-spherical shell filled with DT fuel by the 20-MA Z accelerator can heat the fuel to near-ignition temperature. The attainable implosion velocity on Z, 13-cm/{micro}s, is fast enough that thermal losses from the fuel to the shell are small. The high-Z shell traps radiation losses from the fuel, and the fuel reaches a high enough density to reabsorb the trapped radiation. The implosion is then nearly adiabatic. In this case the temperature of the fuel increases as the square of the convergence. The initial temperature of the fuel is set by the heating of an ion acoustic wave to be about 200-eV after a convergence of 4. To reach the ignition temperature of 5-keV an additional convergence of 5 is required. The implosion dynamics of the quasi-spherical implosion is modeled with the 2-D radiation hydrodynamic code LASNEX. LASNEX shows an 8-mm diameter quasi-spherical tungsten shell on Z driving 6-atmospheres of DT fuel nearly to ignition at 3.5-keV with a convergence of 20. The convergence is limited by mass flow along the surface of the quasi-spherical shell. With a convergence of 20 the final spot size is 400-{micro}m in diameter.
About measuring velocity dispersions
Fellhauer, M.
A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.
DIFFERENTIATING PERIMORTEM AND POSTMORTEM BURNING
Directory of Open Access Journals (Sweden)
Brahmaji Master
2015-01-01
Full Text Available One of the most challenging cases in forensic medicine is ascertaining the cause of death of burnt bodies under suspicious circumstances. The key questions that arise at the time of investigation include: 1 Was the person alive or dead prior to fire accident? Did the victim die because of burn? If death was not related to burns, could burns play a role in causing death? Were the burns sustained accidentally, did the person commit suicide or was the person murdered? Are the circumstances suggesting an attempt to conceal crime? How was the fire started? How was the victim identified? In case of mass fatalities, who died first? Postmortem burning of corpses is supposed to be one of the ways to hide a crime. Differentiating the actual cause of death in burn patients is therefore important. Medical examiners usually focus on the defining the changes that occur in tissues while forensic anthropologists deal with the changes related to the bone with or without any the influence of other tissues. Under the circumstances of fire, differentiating the perimortem trauma from that of postmortem cause of bone fractures is vital in determining the cause and motive of death
Burn treatment in the elderly.
Keck, M; Lumenta, D B; Andel, H; Kamolz, L P; Frey, M
2009-12-01
The population of elderly patients is expected to rise continuously over the next decades due to global demographic changes. The elderly seem to be most vulnerable to burns and their management remains undoubtedly a challenge. A clear age margin for elderly patients is not yet defined, but most studies adhere to the inclusion of patients 65 years and above, but the general condition and social situation must be taken into account. The understanding of the physiological basis of aging and its related pathophysiological changes has only marginally influenced treatment and decision making in elderly burn patients. When looking at treatment regimens currently applied in elderly burn patients, the discussion of standards in intensive care as well as surgical strategies is ongoing. However, trends towards a moderate, non-aggressive resuscitation approach and careful inclusion of key parameters like physiological age, pre-burn functional status and premorbid conditions, seem to be useful guidelines for interdisciplinary treatment decisions. Once ordered for surgical treatment, the amount of body surface area operated in one session should be adapted to the general status of the patient. Even if older burn victims have a reported higher mortality rate than younger patients, improved therapeutic options have contributed to a reduced mortality rate even in the elderly over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive rehabilitation program. This review will give an overview of the current literature and will draw attention to specific topics related to this important subpopulation of burn patients.
Directory of Open Access Journals (Sweden)
Rajinder Pal
2016-03-01
Full Text Available Entropy generation, and hence exergy destruction, in adiabatic flow of unstable and surfactant-stabilized emulsions was investigated experimentally in different diameter pipes. Four types of emulsion systems are investigated covering a broad range of the dispersed-phase concentration: (a unstable oil-in-water (O/W emulsions without surfactant; (b surfactant-stabilized O/W emulsions; (c unstable water-in-oil (W/O emulsions without surfactant; and (d surfactant-stabilized W/O emulsions. The entropy generation rate per unit pipe length is affected by the type of the emulsion as well as its stability. Unstable emulsions without any surfactant present at the interface generate less entropy in the turbulent regime as compared with the surfactant-stabilized emulsions of the same viscosity and density. The effect of surfactant is particularly severe in the case of W/O emulsions. In the turbulent regime, the rate of entropy generation in unstable W/O emulsions is much lower in comparison with that observed in the stable W/O emulsions. A significant delay in the transition from laminar to turbulent regime is also observed in the case of unstable W/O emulsion. Finally, the analysis and simulation results are presented on non-adiabatic pipeline flow of emulsions.
Using electric fields for pulse compression and group velocity control
Li, Qian; Thuresson, Axel; Rippe, Lars; Kröll, Stefan
2016-01-01
In this article, we experimentally demonstrate a new way of controlling the group velocity of an optical pulse by using a combination of spectral hole burning, slow light effect and linear Stark effect in a rare-earth-ion-doped crystal. The group velocity can be changed continuously by a factor of 20 without significant pulse distortion or absorption of the pulse energy. With a similar technique, an optical pulse can also be compressed in time. Theoretical simulations were developed to simulate the group velocity control and the pulse compression processes. The group velocity as well as the pulse reshaping are solely controlled by external voltages which makes it promising in quantum information and quantum communication processes. It is also proposed that the group velocity can be changed even more in an Er doped crystal while at the same time having a transmission band matching the telecommunication wavelength.
Low and high velocity clouds produced by young stellar clusters
Rodríguez-Gónzalez, A; Canto, J
2009-01-01
Intermediate and high velocity HI clouds rain onto the plane of our Galaxy. They are observed at heights of between 500 and 1500 pc, falling onto the Galactic plane at velocities from 50 to 140 km s$^{-1}$. To explain the origin of these clouds, we present a galactic fountain model, driven by the wind from a super stellar cluster (SSC). We solve the equations for a steady, radiative de Laval nozzle flow. We consider two effects not considered previously in astrophysical nozzle flow models: cooling functions for different metallicities, and the direct action of the galactic gravitational field on the gas flowing along the nozzle. For an adiabatic nozzle flow, the gravity acting directly on the gas within the nozzle "stalls" the nozzle flow for initial wind velocities lower than the escape velocity from the Galaxy. For the same wind velocity, a radiative nozzle flow stalls at lower altitudes above the galactic plane. We find that SSC winds with velocities of $v_w=500 - 800$ km s$^{-1}$ produce nozzles stall at ...
Assessment of Several Moist Adiabatic Processes Associated with Convective Energy Calculation
Institute of Scientific and Technical Information of China (English)
李耀东; 高守亭; 刘健文
2004-01-01
Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudoadiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parameters, which are closely related to the moist adiabatic process and which reflect the gravitational effects of condensed liquid water, are reintroduced or defined, including MCAPE [Modified-CAPE (convective available potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modified-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does affect the calculated results of CAPE and the gravitational effects of condensed liquid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidification of liquid water in the reversible adiabatic process.
On the adiabatic stability of solitons and the matching of conservation laws
Lochak, Pierre
1984-08-01
We derive a series of identities which generalize and simplify the results obtained for adiabatically modulated solitons in the case of perturbed specific integrable equations. It stresses the importance of the variational properties of the solitons, which make an adiabatic theorem plausible. A precise conjecture is made and its validity discussed from different points of view.
Wakker, Bart P.; Woerden, Hugo van; Oswalt, Terry D.; Gilmore, Gerard
2013-01-01
The high-velocity clouds (HVCs) are gaseous objects that do not partake in differential galactic rotation, but instead have anomalous velocities. They trace energetic processes on the interface between the interstellar material in the Galactic disk and intergalactic space. Three different processes
Energy Technology Data Exchange (ETDEWEB)
Milovich, J. L., E-mail: milovich1@llnl.gov; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-12-15
Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm{sup 2}, but with significantly lower total neutron yields (between 1.5 × 10{sup 14} and 5.5 × 10{sup 14}) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the “high-foot” experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3–10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm{sup 2}. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.
Milovich, J. L.; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R.
2015-12-01
Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm2, but with significantly lower total neutron yields (between 1.5 × 1014 and 5.5 × 1014) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the "high-foot" experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3-10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm2. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.
Transverse Spectral Velocity Estimation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2014-01-01
A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex...... array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile...... flow using the Womersly–Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer...
Burn Patient Expectations from Nurses
Directory of Open Access Journals (Sweden)
Sibel Yilmaz sahin
2014-02-01
Full Text Available AIM: Burn is a kind of painful trauma that requires a long period of treatment and also changes patients body image. For this reason, nursing care of burn patients is very important. In this study in order to provide qualified care to the burned patients, patient and #8217;s expectations from nurses were aimed to be established. METHODS: Patients and #8217; expectations were evaluated on 101 patients with burn in Ministry of Health Ankara Numune Education and Research Hospital Burn Service and Gulhane Military Medical Academy Education and Research Hospital Burn Center. A questionnaire which was developed by the researchers was used for collecting data. The questions on the questionnaire were classified into four groups to evaluate the patients and #8217; expectations about communication, information, care and discharge. Data was evaluated by using SPSS 12 package software. RESULTS: In this study, 48.5% of patients were at 18-28 age group, 79.2% were male and 51.5% of patients were employed. Almost all of patients expect nurses to give them confidence (98% and to give them information about latest developments with the disease. Patients prior expectation from nurses about care was to do their treatments regularly (100% and to take the necessary precautions in order to prevent infection (100%. 97% of patient expect nurses to give them information about the drugs, materials and equipment that they are going to use while discharge. CONCLUSION: As a result we found that burn patient expectations from nurses about communication, information, care and discharge were high. [TAF Prev Med Bull 2014; 13(1.000: 37-46
From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity.
Okuyama, Manaka; Takahashi, Kazutaka
2016-08-12
Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic XY spin chains from the Toda equations are studied in detail. PMID:27563938
Optical waveguide device with an adiabatically-varying width
Watts; Michael R. , Nielson; Gregory N.
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
Cosmological consequences of an adiabatic matter creation process
Nunes, Rafael C
2016-01-01
In this paper we investigate the cosmological consequences of a continuous matter creation associated with the production of particles by the gravitational field acting on the quantum vacuum. To illustrate this, three phenomenological models are considered. An equivalent scalar field description is presented for each models. The effects on the cosmic microwave background power spectrum are analyzed for the first time in the context of adiabatic matter creation cosmology. Further, we introduce a model independent treatment, $Om$, which depends only on the Hubble expansion rate and the cosmological redshift to distinguish any cosmological model from $\\Lambda$CDM by providing a null test for the cosmological constant, meaning that, for any two redshifts $z_1$, $z_2$, $Om (z)$ is same, i.e. $Om (z_1)- Om (z_2)= 0$. Also, this diagnostic can differentiate between several cosmological models by indicating their quintessential/ phantom behavior without knowing the accurate value of the matter density, and the presen...
Adiabatic quantum-flux-parametron cell library adopting minimalist design
Energy Technology Data Exchange (ETDEWEB)
Takeuchi, Naoki, E-mail: takeuchi-naoki-kx@ynu.jp [Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Yamanashi, Yuki; Yoshikawa, Nobuyuki [Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Department of Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)
2015-05-07
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
Nucleon-deuteron scattering using the adiabatic projection method
Elhatisari, Serdar; Lee, Dean; Meißner, Ulf-G.; Rupak, Gautam
2016-06-01
In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the method for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-particle scattering on the lattice. Then we benchmark the accuracy and efficiency of the numerical methods by applying these to calculate fermion-dimer scattering in lattice effective field theory with and without a long-range Coulomb potential. The fermion-dimer calculations correspond to neutron-deuteron and proton-deuteron scattering in the spin-quartet channel at leading order in the pionless effective field theory.
Differential geometric treewidth estimation in adiabatic quantum computation
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-07-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Controlled Rapid Adiabatic Passage in a V-Type System
Song, Yunheung; Lee, Han-Gyeol; Jo, Hanlae; Ahn, Jaewook
2016-05-01
In chirped rapid adiabatic passage (RAP), chirp sign determines the final state to which the complete population transfer (CPT) occurs in a three-level V-type system. In this study, we show that laser intensity can be alternatively used as a control means in RAP, when the laser pulse is chirped and of a spectral hole resonant to one of the excited states. We verified such excitation selectivity in the experiment performed as-shaped femtosecond laser pulses interacting with the lowest three levels (5S, 5 P1/2, and 5 P3/2) of atomic rubidium. The successful demonstration implies that this intensity-dependent RAP in conjunction with laser beam profile programming may allow excitation selectivity for atoms or ions arranged in space.
Classical Simulation of Quantum Adiabatic Algorithms using Mathematica on GPUs
Díaz-Pier, Sandra; Gómez-Muñoz, José Luis
2011-01-01
In this paper we present a simulation environment enhanced with parallel processing which can be used on personal computers, based on a high-level user interface developed on Mathematica\\copyright which is connected to C++ code in order to make our platform capable of communicating with a Graphics Processing Unit. We introduce the reader to the behavior of our proposal by simulating a quantum adiabatic algorithm designed for solving hard instances of the 3-SAT problem. We show that our simulator is capable of significantly increasing the number of qubits that can be simulated using classical hardware. Finally, we present a review of currently available classical simulators of quantum systems together with some justifications, based on our willingness to further understand processing properties of Nature, for devoting resources to building more powerful simulators.
Nucleon-deuteron scattering using the adiabatic projection method
Elhatisari, Serdar; Meißner, Ulf-G; Rupak, Gautam
2016-01-01
In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the methods for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-particle scattering on the lattice. Then we benchmark the accuracy and efficiency of the numerical methods by applying these to calculate fermion-dimer scattering in lattice effective field theory with and without a long-range Coulomb potential. The fermion-dimer calculations correspond to neutron-deuteron and proton-deuteron scattering in the spin-quartet channel at leading order in pionless effective field theory.
Influence of coherent adiabatic excitation on femtosecond transient signals
Conde, A Peralta; Longarte, A
2016-01-01
The transient signals derived from femtosecond pump-probe experiments are analyzed in terms of the coherent evolution of the energy levels perturbed by the excitation pulse. The model system is treated as the sum of independent two-level subsystems that evolve adiabatically or are permanently excited, depending on the detuning from the central wavelength of the excitation laser. This approach will allow us to explain numerically and analytically the convergence between the coherent and incoherent (rate equations) treatments for complex multi-level systems. It will be also shown that the parameter that determines the validity of the incoherent treatment is the distribution of states outside and inside the laser bandwidth, rather than the density of states as it is commonly accepted.
Properties of a two stage adiabatic demagnetization refrigerator
Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.
2015-12-01
Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.
Some properties of adiabatic blast waves in preexisting cavities
Cox, D. P.; Franco, J.
1981-01-01
Cox and Anderson (1982) have conducted an investigation regarding an adiabatic blast wave in a region of uniform density and finite external pressure. In connection with an application of the results of the investigation to a study of interstellar blast waves in the very hot, low-density matrix, it was found that it would be desirable to examine situations with a positive radial density gradient in the ambient medium. Information concerning such situations is needed to learn about the behavior of blast waves occurring within preexisting, presumably supernova-induced cavities in the interstellar mass distribution. The present investigation is concerned with the first steps of a study conducted to obtain the required information. A review is conducted of Sedov's (1959) similarity solutions for the dynamical structure of any explosion in a medium with negligible pressure and power law density dependence on radius.
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Directory of Open Access Journals (Sweden)
Antonio Enea Romano
2016-04-01
We then consider an example in which cw=cs, where δPnad=δPc,nad=0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense is not always enough to ensure the conservation of Rc or ζ.
Adiabatic quantum-flux-parametron cell library adopting minimalist design
International Nuclear Information System (INIS)
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits
Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry.
Liu, Lijun; Wei, Chunyang; Guo, Yuyan; Rogers, William J; Sam Mannan, M
2009-03-15
Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified.
Adiabatic Floquet model for the optical response in femtosecond filaments
Hofmann, Michael
2016-01-01
The standard model of femtosecond filamentation is based on phenomenological assumptions which suggest that the ionization-induced carriers can be treated as free according to the Drude model, while the nonlinear response of the bound carriers follows the all-optical Kerr effect. Here, we demonstrate that the additional plasma generated at a multiphoton resonance dominates the saturation of the nonlinear refractive index. Since resonances are not captured by the standard model, we propose a modification of the latter in which ionization enhancements can be accounted for by an ionization rate obtained from non-Hermitian Floquet theory. In the adiabatic regime of long pulse envelopes, this augmented standard model is in excellent agreement with direct quantum mechanical simulations. Since our proposal maintains the structure of the standard model, it can be easily incorporated into existing codes of filament simulation.
Role of rotational temperature in adiabatic molecular alignment
DEFF Research Database (Denmark)
Kumarappan, Vinod; Bisgaard, Christer Z; Viftrup, Simon;
2006-01-01
One-dimensional alignment of molecules in the adiabatic limit, where the pulse duration greatly exceeds the molecular rotational periods, is studied experimentally. Four different asymmetric top molecules (iodobenzene, p-diiodobenzene, 3,4-dibromothiophene, and 4,4(')-dibromobiphenyl), rotationally...... cooled through a high pressure supersonic pulsed valve, are aligned by a 9-ns-long pulse. Their orientations are measured through Coulomb explosion, induced by a 130-fs-long pulse, and by recording the direction of the recoiling ions. The paper focuses on the crucial role of the initial rotational...... temperature for the degree of alignment. In particular, we show that at molecular temperatures in the 1 K range very strong alignment is obtained already at intensities of a few times 10(11) W/cm(2) for all four molecules. At the highest intensities (similar to 10(12) W/cm(2)) the molecules can tolerate...
Adiabatic quantum pump in a zigzag graphene nanoribbon junction
Institute of Scientific and Technical Information of China (English)
张林
2015-01-01
The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p–n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device.
Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Hoover, W.G.
1980-05-28
Although Hamiltonians of various kinds have previously been used to derive Green-Kubo relations for the transport coefficients, the particular choice described is uniquely related to thermodynamics. This nonequilibrium Hamiltonian formulation of fluid flow provides pedagogically simple routes to nonequilibrium fluxes and distribution functions, to theoretical understanding of long-time effects, and to new numerical methods for simulating systems far from equilibrium. The same methods are now being applied to solid-phase problems. At the relatively high frequencies used in the viscous fluid calculations described, solids typically behave elastically. Lower frequencies lead to the formation of dislocations and other defects, making it possible to study plastic flow. A property of the nonequilibrium equations of motion which might be profitably explored is their effective irreversibility. Because only a few particles are necessary to generate irreversible behavior, simulations using adiabatic deformations of the kind described here could perhaps elucidate the instability in the equations of motion responsible for irreversibility.
Reversibility and Adiabatic Computation Trading Time and Space for Energy
Li, Maozhen; Li, Ming; Vitanyi, Paul
1996-01-01
Future miniaturization and mobilization of computing devices requires energy parsimonious `adiabatic' computation. This is contingent on logical reversibility of computation. An example is the idea of quantum computations which are reversible except for the irreversible observation steps. We propose to study quantitatively the exchange of computational resources like time and space for irreversibility in computations. Reversible simulations of irreversible computations are memory intensive. Such (polynomial time) simulations are analysed here in terms of `reversible' pebble games. We show that Bennett's pebbling strategy uses least additional space for the greatest number of simulated steps. We derive a trade-off for storage space versus irreversible erasure. Next we consider reversible computation itself. An alternative proof is provided for the precise expression of the ultimate irreversibility cost of an otherwise reversible computation without restrictions on time and space use. A time-irreversibility tra...
A Random Matrix Model of Adiabatic Quantum Computing
Mitchell, D R; Lue, W; Williams, C P; Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2004-01-01
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of Random Matrix Theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances, i.e., those having a critical ratio of clauses to variables, the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathemat...
Differential geometric treewidth estimation in adiabatic quantum computation
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-10-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Adiabatic Dynamics of Edge Waves in Photonic Graphene
Ablowitz, M J; Ma, Y -P
2014-01-01
The propagation of localized edge modes in photonic honeycomb lattices, formed from an array of adiabatically varying periodic helical waveguides, is considered. Asymptotic analysis leads to an explicit description of the underlying dynamics. Depending on parameters, edge states can exist over an entire period or only part of a period; in the latter case an edge mode can effectively disintegrate and scatter into the bulk. In the presence of nonlinearity, a `time'-dependent one-dimensional nonlinear Schr\\"odinger (NLS) equation describes the envelope dynamics of edge modes. When the average of the `time varying' coefficients yields a focusing NLS equation, soliton propagation is exhibited. For both linear and nonlinear systems, certain long lived traveling modes with minimal backscattering are found; they exhibit properties of topologically protected states.
Institute of Scientific and Technical Information of China (English)
LUO Shao-Kai
2007-01-01
For a nonholonomic mechanics system with the action of small disturbance, the Lie symmetrical perturbation and adiabatic invariants of generalized Hojman type are studied under general infinitesimal transformations of groups in which the generalized coordinates and time are variable. On the basis of the invariance of disturbed nonholonomic dynamical equations under general infinitesimal transformations, the determining equations, the constrained restriction equations and the additional restriction equations of Lie symmetries of the system are constructed, which only depend on the variables t, qs and qs. Based on the definition of higher-order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for a nonholonomic system with the action of small disturbance is investigated, and the Lie symmetrical adiabatic invariants, the weakly Lie symmetrical adiabatic invariants and the strongly Lie symmetrical adiabatic invariants of generalized Hojman type of disturbed nonholonomic systems are obtained. An example is given to illustrate applications of the results.
On the observability and asymmetry of adiabatic state flips generated by exceptional points
Energy Technology Data Exchange (ETDEWEB)
Uzdin, Raam; Moiseyev, Nimrod [Physics Department and Minerva Center for Nonlinear Physics of Complex Systems, Technion-Israel Institute of Technology (Israel); Mailybaev, Alexei, E-mail: raam@technion.ac.il [Institute of Mechanics, Lomonosov Moscow State University (Russian Federation)
2011-10-28
In open quantum systems where the effective Hamiltonian is not Hermitian, it is known that the adiabatic (or instantaneous) basis can be multivalued: by adiabatically transporting an eigenstate along a closed loop in the parameter space of the Hamiltonian, it is possible to end up in an eigenstate different from the initial eigenstate. This 'adiabatic flip' effect is an outcome of the appearance of a degeneracy known as an 'exceptional point' inside the loop. We show that contrary to what is expected of the transport properties of the eigenstate basis, the interplay between gain/loss and non-adiabatic couplings imposes fundamental limitations on the observability of this adiabatic flip effect. (paper)
Correlated adiabatic and isocurvature CMB fluctuations in the wake of WMAP
Valiviita, J; Valiviita, Jussi; Muhonen, Vesa
2003-01-01
In the general correlated models, in addition to the usual adiabatic component with a spectral index n_ad1 there is another adiabatic component with a spectral index n_ad2 generated by the entropy perturbation during inflation. We extend the analysis of a correlated mixture of adiabatic and isocurvature CMB fluctuations of the WMAP group, who set the two adiabatic spectral indices equal. Allowing n_ad1 and n_ad2 to vary independently we find that the WMAP data favor models where the two adiabatic components have opposite spectral tilts. Using the WMAP data only, the 2-sigma upper bound for the isocurvature fraction f_iso of the initial power spectrum at k_0=0.05 Mpc^{-1} increases somewhat, e.g., from 0.76 of n_ad2 = n_ad1 models to 0.84 with a prior n_iso < 1.84 for the isocurvature spectral index.
Stimulated Raman adiabatic passage in a three-level superconducting circuit
Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.
2016-02-01
The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering--enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic-adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level.
New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
Acevedo, Oscar L.; Rodriguez, Ferney J.; Quiroga, Luis; Johnson, Neil F.; Rey, Ana M.
2014-05-01
We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.
Wigner phase space distribution via classical adiabatic switching
Energy Technology Data Exchange (ETDEWEB)
Bose, Amartya [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Makri, Nancy [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, Illinois 61801 (United States)
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
Observational tests of non-adiabatic Chaplygin gas
Energy Technology Data Exchange (ETDEWEB)
Carneiro, S.; Pigozzo, C., E-mail: saulo.carneiro@pq.cnpq.br, E-mail: cpigozzo@ufba.br [Instituto de Física, Universidade Federal da Bahia, Campus de Ondina, Salvador, BA 40210-340 (Brazil)
2014-10-01
In a previous paper [1] it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter ω = -1. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter α. The joint analysis best fit gives α ≈ - 0.5, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The ΛCDM model, equivalent to α = 0, stands outside the 3σ confidence interval.
Directory of Open Access Journals (Sweden)
Bai Ziyang
2014-01-01
Full Text Available Adiabatic fixed-bed reactor has proven commercially successful in large scale production of catalytic dehydration of methanol to dimethyl ether. A one dimensional pseudo-homogeneous model of an industrial reactor of dimethyl ether synthesis has been established. To verify the proposed model, the simulation results have been compared to available data from an industrial reactor. A good agreement has been found between them. The distribution of the catalyst bed temperature and concentration of each component was obtained under conditions of inlet temperature 260°C, reaction pressure 1.2MPa and gaseous hourly space velocity 950.7 h-1. With inlet catalyst bed temperature 240-280°C, operating pressure 0.6-1.8MPa and gaseous hourly space velocity 831.8-1069.5 h-1, the influence of these reaction conditions on temperature distribution of the reactor catalytic bed, outlet methanol conversion and the dimethyl ether yield were calculated. The results show that, with the rise of inlet temperature (240-280°C and operating pressure (0.6-1.8MPa, the outlet conversion of methanol, the hot spot temperature and the DME yield increased. The increase of gaseous hourly space velocity (831.8-1069.5 h-1 leads to a decrease in the hot spot temperature of catalytic bed and the outlet conversion of methanol. But the DME yield rise initially and then descend.
DEFF Research Database (Denmark)
Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl;
1999-01-01
adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...
Burning mouth syndrome: Current concepts.
Nasri-Heir, Cibele; Zagury, Julyana Gomes; Thomas, Davis; Ananthan, Sowmya
2015-01-01
Burning mouth syndrome (BMS) is a chronic pain condition. It has been described by the International Headache Society as "an intra-oral burning or dysesthetic sensation, recurring daily for more than 2 h/day for more than 3 months, without clinically evident causative lesions." BMS is frequently seen in women in the peri-menopausal and menopausal age group in an average female/male ratio of 7:1. The site most commonly affected is the anterior two-thirds of the tongue. The patient may also report taste alterations and oral dryness along with the burning. The etiopathogenesis is complex and is not well-comprehended. The more accepted theories point toward a neuropathic etiology, but the gustatory system has also been implicated in this condition. BMS is frequently mismanaged, partly because it is not well-known among healthcare providers. Diagnosis of BMS is made after other local and systemic causes of burning have been ruled out as then; the oral burning is the disease itself. The management of BMS still remains a challenge. Benzodiazepines have been used in clinical practice as the first-line medication in the pharmacological management of BMS. Nonpharmacological management includes cognitive behavioral therapy and complementary and alternative medicine (CAM). The aim of this review is to familiarize healthcare providers with the diagnosis, pathogenesis, and general characteristics of primary BMS while updating them with the current treatment options to better manage this group of patients. PMID:26929531
EXTRACORPOREAL SHOCKWAVE THERAPY FOR POST BURN CARPAL TUNNEL SYNDROME
Directory of Open Access Journals (Sweden)
Hesham Galal Mahran
2015-04-01
Full Text Available Background: Carpal tunnel syndrome is considered the most common compression neuropathy of the upper extremity. It may lead to work disability and functional impairment. Burns are associated with swelling and eschar which forms a tight band constricting the circulation distally. Purpose: To investigate the effect of shockwave therapy on the carpal tunnel syndrome post burn. Subjects: Thirty male and female patients selected with manifestation of carpal tunnel syndrome post burn evaluated by electromyography, patients were divided randomly into two equal groups (A & B; group (A received shockwave therapy plus traditional physical therapy, while group (B received only traditional physical therapy (heating and stretching; Shock wave therapy protocol was two sessions per week for 12 weeks. Traditional physiotherapy was applied for both groups, 20 min for session 3times per week for 12 weeks. Evaluation: Electro diagnostic evaluation was done before treatment, one and three months post treatment. Results: There were improvement and significant increase in motor and sensory conduction velocities in shockwave group compared to those in the control group (p<0.05, also there were improvement and significant decrease in motor and sensory latencies in shockwave group compared to those in control group (p<0.05. Conclusion: Extracorporeal shockwave therapy provided a non-invasive, satisfied treatment option for carpal tunnel syndrome post burn.
Epidemiology of severe burn injuries in a Tertiary Burn Centre in Tehran, Iran
Mohammadi-Barzelighi, H.; Alaghehbandan, R.; Motevallian, A.; Alinejad, F.; Soleimanzadeh-Moghadam, S.; Sattari, M.; A R Lari
2011-01-01
The aim of the study was to examine the epidemiological characteristics of hospitalized burn patients in a tertiary burn centre in Tehran, Iran. A hospital-based cross-sectional study of all hospitalized patients with burn injuries was conducted in Motahari Burn and Reconstruction Center in Tehran from August to December 2010. Medical records of all hospitalized burn patients were reviewed and pertinent information was captured. A total of 135 patients with severe burns requiring hospitalizat...
Salim, S.; Gould, A.
2000-12-01
Full-Sky Astrometric Mapping Explorer (FAME) belongs to a new generation of astrometry satellites and will probe the surrounding space some 20 times deeper than its predecessor Hipparcos. As a result we will acquire precise knowledge of 5 out of 6 components of phase-space for millions of stars. The remaining coordinate, radial velocity, will remain unknown. In this study, we look at how the knowledge of radial velocity affects the determination of the structure of the Galaxy, and its gravitational potential. We therefore propose a radial velocity survey of FAME stars, and discuss its feasibility and technical requirements.
Diagnosing implosion velocity and ablator dynamics at NIF (u)
Energy Technology Data Exchange (ETDEWEB)
Hayes, Anna [Los Alamos National Laboratory; Grim, Gary [Los Alamos National Laboratory; Jungnam, Jerry [Los Alamos National Laboratory; Bradley, Paul [Los Alamos National Laboratory; Rundberg, Bob [Los Alamos National Laboratory; Wilhelmy, Jerry [Los Alamos National Laboratory; Wilson, Doug [Los Alamos National Laboratory
2009-07-09
An enhanced understanding of the unique physics probed in a burning NIP capsule is important for both nuclear weapons physics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. The current set of diagnostics for the NIF experiments includes reaction history (a time resolved measure of the d + t burn), neutron time-of-flight and spectrometry and spatial imaging of the neutron production and scattering. Although valuable, this abbreviated set of diagnostics cannot determine key dynamical properties of the implosion, such as implosion velocity (v{sub impl}) and ablator thickness. To surpass the present limits of {approx} 10{sup 15} d+t reactions, it will be necessary to increase significantly the implosion energy delivered to the DT fuel by finely tuning the balance between the remaining (imploding) ablator mass and velocity. If too much mass remains, the implosion velocity will be too slow, and the subsecpwnt PdV work will not be sufficient to overcome cooling via conduction and radiation. If too little mass remains, hydrodynamic instabilities will occur, resulting in unpredictable and degraded performance. Detailed calculations suggest the ablator must reach an implosion velocity of 3-4 x 10{sup 7} cm/sec and an areal density of {rho}{Delta}R {approx}200 mg/cm{sup 2} in order to achieve ignition. The authors present a new scheme to measure these important quantities using neutron reactions on the ablator material. During the burn, the ablator is moving relative to the 14.1 MeV d+t neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The 'point-design' capsule at the NIF will be based on a {sup 9}Be ablator, and the {sup 9}Be(n,p){sup 9}Li reaction has an energy threshold of 14.2 MeV, making it
International Nuclear Information System (INIS)
Incinerated, transformed into fuel or a gas, waste is a versatile source of energy. It is as once a problem and a resource that is increasingly the focus of green policies. According to the 2009 World Waste Survey, between 3.4 and 4 billion tons of waste are produced each year worldwide. Leading the pack is China, with 300 million tons produced in 2005, followed closely by the United States, with 238 million tons. But the United States wins the per capita count with 760 kg of waste produced per year per inhabitant; Australia comes in second. In Europe, 500 kg of waste is produced per capita per year for a total of 2 billion tons generated annually, and a growth rate of 10% in ten years' time. Between 2/3 and 3/4 of these waste materials are sorted, and a portion of them is recycled. The rest is either carted away to a dumping ground, or incinerated. But this waste is primarily domestic, and still contains energy, energy that can be recovered. The added bonus is two-fold: an additional source of energy is created by transforming waste, called waste-to- wheel or waste-to-energy (WTE), and the decomposition of organic waste does not give off GHGs. Two ways are known today to transform wastes into energy: the thermal process, where heat is extracted from the waste (and sometimes converted into electricity), and the non-thermal process, which comprises collecting energy in a chemical form (biogas, biofuel). Both technologies depend on the type of waste to be treated: plastic materials, household refuse, fermentable elements, sludge residue from sewage treatment plants, agricultural waste, forestry industry waste, etc. The thermal process is by far the most widely employed. 74% of waste is incinerated in Japan, and around 30 to 55% in most European countries. The second process does not burn waste and is better suited to wet and organic matter, i.e., to waste that contains quantities of biomass: fermentable waste, sludge, agricultural waste and the gas given off at
[Ergotherapy of severely burned patients].
Nickerl, U; Resag, I
1995-04-01
Occupational therapy for severely burned patients includes individual exercise programmes, activities of daily living (ADL), assessment of the need for technical aids, splinting and pressure bandages, as well as psychological and social support. There are different focal points in the three stages of treatment. In the burn-care unit (first stage), if necessary, the patient is provided with splints. At this time the first contact is made. In the burn-care ward (second stage), the occupational therapy is focused on individual exercise programmes, dynamic splinting, ADL, and preparation for discharge from hospital. In the outpatient department (third stage), the aims of occupational therapy are: providing the patients with pressure bandages, checking of splints, assessment of the need for technical aids and special support if the patients have difficulties at home and work. PMID:7761866
BACTERIOLOGICAL STUDY OF BURNS INFECTION
Directory of Open Access Journals (Sweden)
Shareen
2015-10-01
Full Text Available A burn is a wound in which there is coagulative necrosis of the tissue, majority of which are caused by heat. Burn injury is a major public health problem in many areas of the world. Burns predispose to infection by damaging the protective barrier function of the skin, thus facilitating the entry of pa thogenic microorganisms and by inducing systemic immunosuppression . (1 OBJECTIVE : The present study was therefore undertaken to isolate and identify the aerobic bacterial flora in burn patients and its antibiotic susceptibility pattern. MATERIAL & METHODS : A total of 100 patients admitted with different degree of burns were studied. Wound swabs were taken with aseptic precautions by dry sterile cotton swab sticks. These swabs were transported to the microbiology laboratory and the isolates were identified based on standard microbiological methods. Antibiotic susceptibility testing was done by Kirby Bauer’s disc diffusion method. RESULT : A total of 127 bacterial pathogens were isolated from 100 patients. Of these, 69% were monomicrobial in nature and 28% wer e polymicrobial. The most frequent cause of infection was found to be Staphylococcus aureus (39.4%, followed by Pseudomonas aeruginosa (14.2%, Klebsiella pneumonia (13.4%, E.coli (8.7% and Acinetobacter species (7.9%.Out of the total Staphylococcus au reus isolates, 19 were Methicillin sensitive and 31 were Methicillin resistant (MRSA. All the MRSA strains were 100% sensitive to Vancomycin and Linezolid. The Pseudomonas aeruginosa isolates were most sensitive to Amikacin (9 4.4%, Fluroquinolones (61.1% . CONCLUSION : Staphylococcus aureus and Pseudomonas aeruginosa were major causes of infection in burn wounds. Therefore it is necessary to implement urgent measures for restriction of nosocomial infections, sensible limitation on the use of antimicrobial agents, strict disinfection and hygiene.
Superluminal Recession Velocities
Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.
2000-01-01
Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.
1988-01-01
A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.
The critical ionization velocity
International Nuclear Information System (INIS)
The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)
Investigation of Slipstream Velocity
Crowley, J W , Jr
1925-01-01
These experiments were made at the request of the Bureau of Aeronautics, Navy Department, to investigate the velocity of the air in the slipstream in horizontal and climbing flight to determine the form of expression giving the slipstream velocity in terms of the airspeed of the airplane. The method used consisted in flying the airplane both on a level course and in climb at full throttle and measuring the slipstream velocity at seven points in the slipstream for the whole speed range of the airplane in both conditions. In general the results show that for both condition, horizontal and climbing flights, the slipstream velocity v subscript 3 and airspeed v can be represented by straight lines and consequently the equations are of the form: v subscript s = mv+b where m and b are constant. (author)
Flow regime development analysis in adiabatic upward two-phase flow in a vertical annulus
Energy Technology Data Exchange (ETDEWEB)
Julia, J. Enrique [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I, Campus de Riu Sec, Castellon 12071 (Spain); Ozar, Basar [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Jeong, Jae-Jun [Korea Atomic Energy Research Institute, 150 Dukjin, Yuseong, Daejeon 305-353 (Korea, Republic of); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, Mamoru, E-mail: ishii@purdue.ed [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)
2011-02-15
In this work radial and axial flow regime development in adiabatic upward air-water two-phase flow in a vertical annulus has been investigated. Local flow regimes have been identified using conductivity probes and neural networks techniques. The inner and outer diameters of the annulus are 19.1 mm and 38.1 mm, respectively. The equivalent hydraulic diameter of the flow channel, D{sub H}, is 19.0 mm and the total length is 4.37 m. The flow regime map includes 1080 local flow regimes identifications in 72 flow conditions within a range of 0.01 m/s <
Future Therapies in Burn Resuscitation.
Hodgman, Erica I; Subramanian, Madhu; Arnoldo, Brett D; Phelan, Herb A; Wolf, Steven E
2016-10-01
Since the 1940s, the resuscitation of burn patients has evolved with dramatic improvements in mortality. The most significant achievement remains the creation and adoption of formulae to calculate estimated fluid requirements to guide resuscitation. Modalities to attenuate the hypermetabolic phase of injury include pharmacologic agents, early enteral nutrition, and the aggressive approach of early excision of large injuries. Recent investigations into the genomic response to severe burns and the application of computer-based decision support tools will likely guide future resuscitation, with the goal of further reducing mortality and morbidity, and improving functional and quality of life outcomes. PMID:27600132
Demographics of pediatric burns in Vellore, India.
Light, Timothy D; Latenser, Barbara A; Heinle, Jackie A; Stolpen, Margaret S; Quinn, Keely A; Ravindran, Vinitha; Chacko, Jacob
2009-01-01
The American Burn Association, Children's Burn Foundation, and Christian Medical College in Vellore, India have partnered together to improve pediatric burn care in Southern India. We report the demographics and outcomes of burns in this center, and create a benchmark to measure the effect of the partnership. A comparison to the National Burn Repository is made to allow for generalization and assessment to other burn centers, and to control for known confounders such as burn size, age, and mechanism. Charts from the pediatric burn center in Vellore, India were retrospectively reviewed and compared with data in the American Burn Association National Burn Registry (NBR) for patients younger than 16 years. One hundred nineteen pediatric patients with burns were admitted from January 2004 through April 2007. Average age was 3.8 years; average total body surface area burn was 24%: 64% scald, 30% flame, 6% electric. Annual death rate was 10%, with average fatal total body surface area burn was 40%. Average lengths of stay for survivors was 15 days. Delay of presentation was common (45% of all patients). Thirty-five of 119 patients received operations (29%). Flame burn patients were older (6.1 years vs 2.6 years), larger (30 vs 21%), had a higher fatality rate (19.4 vs 7.7%), and more of them were female (55 vs 47%) compared with scald burn patients. Electric burn patients were oldest (8.3 years) and all male. When compared with data in the NBR, average burn size was larger in Vellore (24 vs 9%). The mortality rate was higher in Vellore (10.1 vs 0.5%). The average mortal burn size in Vellore was smaller (40 vs 51%). Electric burns were more common in Vellore (6.0 vs 1.6%). Contact burns were almost nonexistent in Vellore (0.9 vs 13.1%). The differences in pediatric burn care from developing health care systems to burn centers in the US are manifold. Nonpresentation of smaller cases, and incomplete data in the NBR explain many of the differences. However, burns at this
Fluorescence Measurement of Burned Skin Tissues
de Pedro, Hector Michael; Chang, Chuan-I.; Nguyen, Hue; Malko, Anton; Zarnani, Faranak; Glosser, Robert; Maas, D.; Idris, A.
2011-03-01
Early removal of affected tissues from burn patients can significantly increase the success of their recovery, since burns continue to spread and damage surrounding tissues after hours of injury. The rationale behind this procedure is that burns trigger the body's immune system to overreact, causing additional damage. Therefore it is important to locate and identify the burn (area and thickness) so that it can be removed as quickly as possible. Our project explores the use of autofluorescence as a tool to identify the burned tissues from healthy ones. Here we present that our fluorescence results show differences between burned and normal skin in both its spectra and lifetime.
Global burned area and biomass burning emissions from small fires
Randerson, J.T; Chen, Y.; Werf, van der G.R.; Rogers, B.M.; Morton, D.C.
2012-01-01
[1] In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires ofte
Van Essen, H.
2004-01-01
This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to th...
Energy-Efficient and Secure S-Box circuit using Symmetric Pass Gate Adiabatic Logic
Energy Technology Data Exchange (ETDEWEB)
Kumar, Dinesh [University of Kentucky, Lexington; Mohammad, Azhar [University of Kentucky, Lexington; Singh, Vijay [University of Kentucky, Lexington; Perumalla, Kalyan S [ORNL
2016-01-01
Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs. Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.
Recent developments in trapping and manipulation of atoms with adiabatic potentials
Garraway, Barry M.; Perrin, Hélène
2016-09-01
A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.
The Bali burn disaster: implications and lessons learned.
Kennedy, Peter J; Haertsch, Peter A; Maitz, Peter K
2005-01-01
In October 2002, a terrorist attack on a nightclub in Bali resulted in an explosion and fire, causing the deaths of more than 200 people, including 88 Australian citizens. After first aid and primary care, the injured were repatriated to Darwin for triage and continued treatment and were then disseminated to various burn units throughout Australia. At the Repatriation General Hospital Concord Sydney, we received 12 patients with burns and a variety of blast injuries. Their treatment was complicated by infection with multiresistant organisms that were previously unseen in our unit and the presence of complex shrapnel wounds. There were no deaths and, with two exceptions, all patients were discharged within 6 weeks. This incident had profound effects on our unit, particularly related to the management of high-velocity shrapnel injuries, serious ongoing septic complications, and the psychological effects on both patients and staff, all of which are detailed and discussed. PMID:15756113
International Nuclear Information System (INIS)
Absract: In view of the world-wide problem of energy sustainability and greenhouse gas production (carbon dioxide), it is timely to review the issues involved in generating heat and power from all fuels and especially new (to the UK) solid fuels, including high moisture fuels such as wood, SRF, oil shale, tar sands and brown coal, which will become major international fuels as oil and gas become depleted. The combustion properties of some of these materials are significantly different from traditional coal, oil and gas fuels, however the technology proposed herein is also applicable to these conventional fuels. This paper presents some innovative combustion system options and the associated technical factors that must be considered for their implementation. For clarity of understanding, the novel concepts will be largely presented in terms of a currently developing solid fuel market; biomass wood chips. One of the most important characteristics of many solid fuels to be used in the future (including oil shale and brown coal) is their high moisture content of up to 60%. This could be removed by utilising low grade waste heat that is widely available in industry to dry the fuel and thus reduce transport costs. Burning such dried wood for power generation also increases the energy available from combustion and thus acts as a thermal transformer by upgrading the low grade heat to heat available at combustion temperatures. The alternative approach presented here is to recover the latent heat by condensing the extrinsic moisture and the water formed during combustion. For atmospheric combustion, the temperature of the condensed combustion products is below the dew point at about 55-65 oC and is only suitable for recovery in an efficient district heating system. However, in order to generate power from the latent heat, the condensation temperature must be increased to the level where the heat can be used in the thermodynamic power cycle. This can be achieved by increasing
Epidemiology of U.K. military burns.
Foster, Mark Anthony; Moledina, Jamil; Jeffery, Steve L A
2011-01-01
The authors review the etiology of U.K. military burns in light of increasing hybrid warfare. Analysis of the nature of these injured personnel will provide commanders with the evidence to plan for on-going and future operations. Case notes of all U.K. Armed Forces burn injured patients who were evacuated to the Royal Centre for Defence Medicine were reviewed. Demographics, burn severity, pattern, and mortality details were included. There were 134 U.K. military personnel with burns requiring return to the United Kingdom during 2001-2007. The median age was 27 (20-62) years. Overall, 60% of burns seen were "accidental." Burning waste, misuse or disrespect of fuel, and scalds were the most prevalent noncombat burns. Areas commonly burned were the face, legs, and hands. During 2006-2007 in the two major conflicts, more than 59% (n = 36) of the burned patients evacuated to the United Kingdom were injured during combat. Burns sustained in combat represent 5.8% of all combat casualties and were commonly associated with other injuries. Improvised explosive device, minestrike, and rocket-propelled grenade were common causes. The mean TBSA affected for both groups was 5% (1-70). The majority of combat burn injuries have been small in size. Greater provision of flame retardant equipment and clothing may reduce the extent and number of combat burns in the future. The numbers of noncombat burns are being reduced by good military discipline. PMID:21422938
To Burn or not to Burn: Making the Burning of Chocolate Hills of Bohol, Philippines Carbon Neutral
Nathaniel T. Bantayan; Margaret M Calderon; Flocencia B. Pulhin; Canesio D. Predo; Rose Ann C. Baruga
2013-01-01
This study was conducted to evaluate the current management regime of burning vis-à-vis burning with carbon offsets for the Chocolate Hills Natural Monument (CHNM) in Bohol, Philippines. The current scheme of burning to maintain the grass-covered (tree-less) and brown hills to sustain tourist arrivals is seen as environmentally unsound and inconsistent with existing environmental laws. The study estimated the carbon loss from burning and compared the carbon loss value with the tourism income ...
Gong, Yuan-Hao; Li, Zhi-Yong; Yu, Jin-Zhong; Yu, Yu-De
2016-09-01
Not Available Supported by the National High-Technology Research and Development Program of China under Grant Nos 2015AA016904 and 2013AA014402, the National Basic Research Program of China under Grant No 2011CB301701, and the National Natural Science Foundation of China under Grant No 61275065.
Institute of Scientific and Technical Information of China (English)
XIA Li-Li; LI Yuan-Cheng; ZHAO Xian-Lin
2008-01-01
The perturbation of symmetries and Mei adiabatic invariants of nonholonomic systems with servocon-straints are studied. The exact invariants in the form of Mei conserved quantities introduced by the Mei symmetry of nonholonomic systems with servoconstraints without perturbations are given. Based on the definition of higher-order adiabatic invariants of mechanical systems, the perturbation of Mei symmetries for nonholonomic systems with servocon-straints under the action of small disturbance is investigated, and Mei adiabatic invatiants of the system are obtained. An example is given to illustrate the application of the results.
Avron, Joseph
2016-01-01
We derive the relativistically exact Eikonal equation for ring interferometers undergoing adiabatic deformations. The leading term in the adiabatic expansion of the phase shift is independent of the refraction index $n$ and is given by a line integral generalizing results going back to Sagnac to all orders in $\\beta$. The next term in the adiabaticity is of lower order in $\\beta$ and may be as important as the first in nonrelativistic cases. This term is proportional to $n^2$ and has the form of a double integral. It generalizes previous results to fibers with chromatic dispersion and puts Sagnac and Fizeau interferometers under a single umbrella.
Burning mouth syndrome and menopause
Directory of Open Access Journals (Sweden)
Parveen Dahiya
2013-01-01
Full Text Available Menopause is a physiological process typically occurring in the fifth decade of life. One of the most annoying oral symptoms in this age group is the burning mouth syndrome (BMS, which may be defined as an intraoral burning sensation occurring in the absence of identifiable oral lesion or laboratory findings. Pain in burning mouth syndrome may be described as burning, tender, tingling, hot, scalding, and numb sensation in the oral mucosa. Multiple oral sites may be involved, but the anterior two-third part and the tip of tongue are most commonly affected site. There is no definite etiology for BMS other than the precipitating causative factors, and it is still considered idiopathic. Various treatment options like use of benzodiazepine, anti-depressants, analgesics, capsaicin, alpha lipoic acids, and cognitive behavioral therapy are found to be effective, but definite treatment is still unknown. The present article discusses some of the recent concepts of etiopathogenesis of BMS as well as the role of pharmacotherapeutic management in this disorder.
Burning mouth syndrome: Present perspective
Directory of Open Access Journals (Sweden)
Ramesh Parajuli
2015-07-01
Full Text Available Introduction: Burning mouth syndrome is characterized by chronic oral pain or burning sensation affecting the oral mucosa in the absence of obvious visible mucosal lesions. Patient presenting with the burning mouth sensation or pain is frequently encountered in clinical practice which poses a challenge to the treating clinician. Its exact etiology remains unknown which probably has multifactorial origin. It often affects middle or old age women and it may be accompanied by xerostomia and altered taste. Objective: To review the current concepts regarding etiopathogenesis, diagnosis and management of this disorder. Methods and methodology: A literature review was conducted on PubMed/Medline and Google scholar about the burning mouth syndrome and the representative articles were selected and reviewed. Conclusion: There is no universal consensus regarding diagnosis, etiology and treatment of BMS. BMS is a diagnosis of exclusion which probably has multifactorial origin. Various pharmacological and non pharmacological treatments are available but it is difficult to achieve curative treatment so reassurance is of great importance while treating the patients. Combination of cognitive behavioral therapy, alpha lipoic acid and/or clonazepam has shown promising results.
Antibiotics and the burn patient.
Ravat, François; Le-Floch, Ronan; Vinsonneau, Christophe; Ainaud, Pierre; Bertin-Maghit, Marc; Carsin, Hervé; Perro, Gérard
2011-02-01
Infection is a major problem in burn care and especially when it is due to bacteria with hospital-acquired multi-resistance to antibiotics. Moreover, when these bacteria are Gram-negative organisms, the most effective molecules are 20 years old and there is little hope of any new product available even in the distant future. Therefore, it is obvious that currently available antibiotics should not be misused. With this aim in mind, the following review was conducted by a group of experts from the French Society for Burn Injuries (SFETB). It examined key points addressing the management of antibiotics for burn patients: when to use or not, time of onset, bactericidia, combination, adaptation, de-escalation, treatment duration and regimen based on pharmacokinetic and pharmacodynamic characteristics of these compounds. The authors also considered antibioprophylaxis and some other key points such as: infection diagnosis criteria, bacterial inoculae and local treatment. French guidelines for the use of antibiotics in burn patients have been designed up from this work. PMID:20510518
A review of hydrofluoric acid burn management.
McKee, Daniel; Thoma, Achilleas; Bailey, Kristy; Fish, Joel
2014-01-01
Hydrofluoric acid (HF) causes a unique chemical burn. Much of the current treatment knowledge of HF burns is derived from case reports, small case series, animal studies and anecdotal evidence. The management can be challenging because clinical presentation and severity of these burns vary widely. Plastic surgeons managing burn patients must have a basic understanding of the pathophysiology, the range of severity in presentation and the current treatment options available for HF burns. The present article reviews the current understanding of the pathophysiology and systemic effects associated with severe HF burns. Furthermore, it distinguishes between minor and life-threatening HF burns and describes several of the basic techniques that are available to treat patients with HF burns.
A review of hydrofluoric acid burn management.
McKee, Daniel; Thoma, Achilleas; Bailey, Kristy; Fish, Joel
2014-01-01
Hydrofluoric acid (HF) causes a unique chemical burn. Much of the current treatment knowledge of HF burns is derived from case reports, small case series, animal studies and anecdotal evidence. The management can be challenging because clinical presentation and severity of these burns vary widely. Plastic surgeons managing burn patients must have a basic understanding of the pathophysiology, the range of severity in presentation and the current treatment options available for HF burns. The present article reviews the current understanding of the pathophysiology and systemic effects associated with severe HF burns. Furthermore, it distinguishes between minor and life-threatening HF burns and describes several of the basic techniques that are available to treat patients with HF burns. PMID:25114621
Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.
1996-05-01
We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.
Directory of Open Access Journals (Sweden)
Yan-jie Ni
2016-04-01
Full Text Available A 30 mm electrothermal-chemical (ETC gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.
Institute of Scientific and Technical Information of China (English)
Yan-jie NI; Yong JIN; Gang WAN; Chun-xia YANG; Hai-yuan LI; Bao-ming LI
2016-01-01
A 30 mm electrothermal-chemical (ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR) of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt) is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley’s modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt) and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.
Hot-electron nanoscopy using adiabatic compression of surface plasmons
Giugni, Andrea
2013-10-20
Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.
Cosmological consequences of an adiabatic matter creation process
Nunes, Rafael C.; Pan, Supriya
2016-06-01
In this paper, we investigate the cosmological consequences of a continuous matter creation associated with the production of particles by the gravitational field acting on the quantum vacuum. To illustrate this, three phenomenological models are considered. An equivalent scalar field description is presented for each models. The effects on the cosmic microwave background power spectrum are analysed for the first time in the context of adiabatic matter creation cosmology. Further, we introduce a model independent treatment, Om, which depends only on the Hubble expansion rate and the cosmological redshift to distinguish any cosmological model from Λ cold dark matter by providing a null test for the cosmological constant, meaning that, for any two redshifts z1, z2, Om(z) is same, i.e. Om(z1) - Om(z2) = 0. Also, this diagnostic can differentiate between several cosmological models by indicating their quintessential/phantom behaviour without knowing the accurate value of the matter density, and the present value of the Hubble parameter. For our models, we find that particle production rate is inversely proportional to Om. Finally, the validity of the generalized second law of thermodynamics bounded by the apparent horizon has been examined.
Adiabatic photo-steering theory in topological insulators
International Nuclear Information System (INIS)
Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane–Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed. (focus issue review)
Mass Modeling of Disk Galaxies: Constraints and Adiabatic Contraction
Dutton, A A; Carignan, C; De Jong, R; Dutton, Aaron A.; Courteau, Stephane; Carignan, Claude; Jong, Roelof de
2003-01-01
We present a comprehensive mass modeling technique for disk galaxies with resolved rotation curves. Our models allow for a stellar disk of variable thickness and mass-to-light ratio, a gaseous disk, halo profiles with a range of inner density profile slopes (-ALPHA), oblate halos, adiabatic contraction of the halo, and fixed minimum rotation curve error values. We test our technique with data from the literature consisting of high quality HI and Halpha rotation curves for galaxies with available photometry. These galaxies consist of dwarf, low surface brightness (LSB), and high surface brightness (HSB) galaxies. We apply constraints on the disk, and halo parameters in an attempt to break the degeneracies that exist between the disk and halo and between the halo parameters themselves. With our full set of constraints we find that ALPHA=0 halos provide the best fits for 6 out of 7 galaxies; in agreement with the literature; the exception, NGC 2403 an HSB galaxy, is best fit with ALPHA~1, though ALPHA=0 still pr...
Nickel Bubble Expansion in Type Ia Supernovae: Adiabatic Solutions
Wang, C Y
2006-01-01
We examine the expansion properties of the Nickel bubble in SNe Ia due to the radioactive heating from the 56Ni->56Co->56Fe decay sequence, under adiabatic, spherically symmetric approximation. We consider an exponentially -declining medium for the ejecta substrate, allowing for the density gradient as expected in a Type Ia supernova. The heating gives rise to an inflated Ni bubble, which induces a forward shock that compresses the outer ambient gas into a shell. As the heating saturates, the flow tends toward a freely-expanding state with the structure frozen into the ejecta. The thickness of the shell takes up ~ 100 in a narrow region limited by numerical resolution. The structure of the shell can be approximately described by a self-similar solution determined by its expansion rate and ambient density gradient. Compared to the case using a uniform-density medium, the density contrast of the inferred ejecta clumps is enhanced, while the interaction of the clumps with the remnant is deferred to a more advanc...
Progress in the Development of a Continuous Adiabatic Demagnetization Refrigerator
Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Tuttle, James; Krebs, Carolyn A. (Technical Monitor)
2002-01-01
We report on recent progress in the development of a continuous adiabatic demagnetization refrigerator (CADR). Continuous operation avoids the constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, allowing us to achieve an order of magnitude larger cooling power per unit mass. Our current design goal is 10 micro W of cooling at 50 mK using a 6-10 K heat sink. The estimated mass is less than 10 kg, including magnetic shielding of each stage. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long mission life and reduced complexity and cost. We have assembled a three-stage CADR and have demonstrated continuous cooling using a superfluid helium bath as the heat sink. The temperature stability is 8 micro K rms or better over the entire cycle, and the cooling power is 2.5 micro W at 60 mK rising to 10 micro W at 100 mK.
Adiabatic quantum pump in a zigzag graphene nanoribbon junction
Zhang, Lin
2015-11-01
The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p-n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device. Project supported by the National Natural Science Foundation of China (Grant No. 110704033), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010416), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140005).
Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.
Cisneros, L O; Rogers, W J; Mannan, M S
2001-03-19
Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC). Among the data provided are onset temperatures, reaction order, activation energies, pressures of noncondensable products, thermal stability at 100 degrees C, and the effect of HA storage time. Discussed also are the catalytic effects of carbon steel, stainless steel, stainless steel with silica coating, inconel, titanium, and titanium with silica coating on the reaction self-heat rates and onset temperatures. In borosilicate glass cells, HA was relatively stable at temperatures up to 133 degrees C, where the HA decomposition self-heat rate reached 0.05 degrees C/min. The added stabilizers appeared to reduce HA decomposition rates in glass cells and at ambient temperatures. The tested metals and metal surfaces coated with silica acted as catalysts to lower the onset temperatures and increase the self-heat rates.
Adiabatic-demagnetization-cooled bolometer system for millimeter continuum astronomy
International Nuclear Information System (INIS)
An adiabatic-demagnetization-cooled bolometer system was constructed for the detection of astronomical one-millimeter wavelength continuum radiation. By employing chromium potassium sulfate as a refrigeration agent, bolometers were cooled to temperatures below 0.1 K. The bolometers were composed of a gallium-doped germanium thermistor epoxied to a sapphire substrate coated with a bismuth absorbing film. The most-sensitive detector tested had a measured electrical noise equivalent power (NEP) of 7 x 10-17 watts per root-hertz at a chopping frequency of 20 hertz. This value of the NEP is the lowest yet recorded for a bolometer, and represents a major gain in sensitivity. The theory of both the refrigerator and detector operation is presented and is shown to strongly constrain a useful detector system. In the laboratory, a cryogenic hold time of greater than eight hours has been achieved, with temperatures regulation of 0.1 K to within 14 microK. Such regulation is shown necessary to keep the variations in responsivity of the bolometer within 1%. The measured performance of the refrigerator and bolometer are both found to be in good agreement with theoretical predictions. Spacecraft adaptation of this system is briefly discussed. One-millimeter continuum observations of Cygnus A made with a pumped 3He refrigerator detector system are presented
Hamiltonian formalism for general-relativistic adiabatic fluids
International Nuclear Information System (INIS)
We derive the Hamiltonian structures of three theories: non-relativistic, special-relativistic, and general-relativistic adiabatic fluids, each in the Eulerian representation in Riemannian space (or Lorentzian spacetime), all by the same procedure using standard variational principles. The evolution in each case is generated by a Hamiltonian that is equivalent to that obtained from a canonical analysis. For the gravitational variables, the Poisson bracket has the usual canonical symplectic structure. However, for the fluid variables, the three theories all share the same Lie-Poisson bracket, when expressed in the appropriate spaces of physical variables constructed here. This shared Lie-Poisson bracket is associated to the dual of the semidirect-product Lie algebra of vector fields acting on differential forms. An immediate consequence of this shared structure is that each of these theories possesses an infinite family of conservation laws: the so-called ''Casimirs'' that belong to the kernel of the Lie-Poisson bracket. The role of these Casimirs in the study of Lyapunov stability (or dynamic stability) for fluid equilibria is discussed. The relationship of this approach to other approaches in the literature is also discussed. (orig.)
Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.
Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri
2014-01-01
Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.
Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier
Directory of Open Access Journals (Sweden)
Reem Ahmed
2014-01-01
Full Text Available Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER. It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5 at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.
Adiabatic self-trapped states in zigzag nanotubes
Energy Technology Data Exchange (ETDEWEB)
Brizhik, L S [Bogolyubov Institute for Theoretical Physics, 03680 Kyiv (Ukraine); Eremko, A A [Bogolyubov Institute for Theoretical Physics, 03680 Kyiv (Ukraine); Piette, B M A G [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom); Zakrzewski, W J [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)
2007-08-01
We study the polaron (soliton) states of a quasiparticle (electron, hole, exciton) in a quasi-one-dimensional (quasi-1D) model which describes a carbon-type zigzag nanotube structure. In the Hamiltonian of the system we include the electron-phonon interaction that arises from the dependence of both the on-site and the hopping interaction energies on the lattice deformation. We derive, in the adiabatic approximation, the equations for the self-trapped states of a quasiparticle in a zigzag nanotube. We show that the ground state of such a system depends on the strength of the electron-phonon coupling and we find polaron-type solutions with different symmetries. Namely, at a relatively weak coupling a quasiparticle is self-trapped in a quasi-1D polaron state which has an azimuthal symmetry. When the coupling constant exceeds some critical value, the azimuthal symmetry breaks down and the quasiparticle state can be described as a two-dimensional small polaron on the nanotube surface. In the crossover region between the two solutions there is a range of intermediate couplings, in which the two structures, the quasi-1D polaron and the strongly localized 2D polaron, coexist as their energies are very close together. We note that the results of this analytical study are in quantitative agreement with what has recently been observed numerically.
BurnMan: A lower mantle mineral physics toolkit
Cottaar, Sanne
2014-04-01
We present BurnMan, an open-source mineral physics toolbox to determine elastic properties for specified compositions in the lower mantle by solving an Equation of State (EoS). The toolbox, written in Python, can be used to evaluate seismic velocities of new mineral physics data or geodynamic models, and as the forward model in inversions for mantle composition. The user can define the composition from a list of minerals provided for the lower mantle or easily include their own. BurnMan provides choices in methodology, both for the EoS and for the multiphase averaging scheme. The results can be visually or quantitatively compared to observed seismic models. Example user scripts show how to go through these steps. This paper includes several examples realized with BurnMan: First, we benchmark the computations to check for correctness. Second, we exemplify two pitfalls in EoS modeling: using a different EoS than the one used to derive the mineral physical parameters or using an incorrect averaging scheme. Both pitfalls have led to incorrect conclusions on lower mantle composition and temperature in the literature. We further illustrate that fitting elastic velocities separately or jointly leads to different Mg/Si ratios for the lower mantle. However, we find that, within mineral physical uncertainties, a pyrolitic composition can match PREM very well. Finally, we find that uncertainties on specific input parameters result in a considerable amount of variation in both magnitude and gradient of the seismic velocities. © 2014. American Geophysical Union. All Rights Reserved.
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste utilization. 816.87 Section 816.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste utilization. 817.87 Section 817.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...
Use of previously burned skin as random cutaneous local flaps in pediatric burn reconstruction
Barret, JP; Herndon, DN; McCauley, RL
2002-01-01
Reconstruction after post-burn scarring remains a challenge. It is especially true in the severely burned patient, who normally presents with a paucity of donor sites Healed skin from areas that had been burned and skin from grafted areas (termed as previously burned skin) have been occasionally use
A review of hydrofluoric acid burn management
McKee, Daniel; Thoma, Achilleas; Bailey, Kristy; Fish, Joel
2014-01-01
The clinical presentation and severity of hydrofluoric acid burns vary considerably, making management particularly challenging. Given that current knowledge of HF burns is derived from small case series, case reports, animal studies and anecdotal evidence, this narrative review discusses the current understanding of the effects associated with severe hydrofluoric acid burns, describing the mechanism of injury, systemic toxicity and treatment options.
Early Enteral Nutrition for Burn Injury
Mandell, Samuel P.; Gibran, Nicole S.
2014-01-01
Significance: Nutrition has been recognized as a critical component of acute burn care and ultimate wound healing. Debate remains over the appropriate timing of enteral nutrition and the benefit of supplemental trace elements, antioxidants, and immunonutrition for critically ill burn patients. Pharmacotherapy to blunt the metabolic response to burn injury plays a critical role in effective nutritional support.
Titanium tetrachloride burns to the eye.
Chitkara, D K; McNeela, B. J.
1992-01-01
We present eight cases of chemical burns of the eyes from titanium tetrachloride, an acidic corrosive liquid. However it causes severe chemical burns which have a protracted course and features more akin to severe alkali burns. Injuries related to titanium tetrachloride should be treated seriously and accordingly appropriate management is suggested.
Quantitative velocity modulation spectroscopy
Hodges, James N.; McCall, Benjamin J.
2016-05-01
Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.
Fluidic angular velocity sensor
Berdahl, C. M. (Inventor)
1986-01-01
A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.
Schimd, C.; Courtois, H.; Koda, J.
2015-12-01
A huge velocity survey based on the Maunakea Spectroscopic Explorer facility (MSE) is proposed, aiming at investigating the structure and dynamics of the cosmic web over 3π steradians up to ˜1 Gpc and at unprecedented spatial resolution, its relationship with the galaxy formation process, and the bias between galaxies and dark matter during the last three billions years. The cross-correlation of velocity and density fields will further allow the probe any deviation from General Relativity by measuring the the linear-growth rate of cosmic structures at precision competitive with high-redshift spectroscopic redshift surveys.
The Prescribed Velocity Method
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...... description of this momentum flow. The Prescribed Velocity Method is a practical method for the description of an Air Terminal Device which will save grid points close to the opening and ensure the right level of the momentum flow....
Cirrus Crystal Terminal Velocities.
Heymsfield, Andrew J.; Iaquinta, Jean
2000-04-01
Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal
Liebe, Wolfgang
1944-01-01
In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.
Essén, H
2003-01-01
This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.
Adiabatic Low-Pass J Filters for Artifact Suppression in Heteronuclear NMR
DEFF Research Database (Denmark)
Meier, Sebastian; Benie, Andrew J; Duus, Jens Øllgaard;
2009-01-01
NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts....
Muonic molecules as three-body Coulomb problem in adiabatic approximation
International Nuclear Information System (INIS)
The three-body Coulomb problem is treated within the framework of the hyperspherical adiabatic approach. The surface functions are expanded into Faddeev-type components in order to ensure the equivalent representation of all possible two-body contributions. It is shown that this decomposition reduces the numerical effort considerably. The remaining radial equations are solved both in the extreme and the uncoupled adiabatic approximation to determine the binding energies of the systems (dtμ) and (d3Heμ). Whereas the ground state is described very well in the uncoupled adiabatic approximation, the excited states should be treated within the coupled adiabatic approximation to obtain good agreement with variational calculations. (orig.)
Rapid adiabatic passage in quantum dots: Influence of scattering and dephasing
DEFF Research Database (Denmark)
Schuh, K.; Jahnke, F.; Lorke, Michael
2011-01-01
Theoretical investigations for the realization of population inversion of semiconductor quantum dot ground-state transitions by means of adiabatic passage with chirped optical pulses are presented. While the inversion due to Rabi oscillations depends sensitively on the resonance condition...
Adiabatic Heavy Ion Fusion Potentials for Fusion at Deep Sub-barrier Energies
Sastry, S V S; Mohanty, A K; Saxena, A
2003-01-01
The fusion cross sections from well above barrier to extreme sub-barrier energies have been analysed using the energy (E) and angular momentum (L) dependent barrier penetration model ({\\small{ELDBPM}}). From this analysis, the adiabatic limits of fusion barriers have been determined for a wide range of heavy ion systems. The empirical prescription of Wilzynska and Wilzynski has been used with modified radius parameter and surface tension coefficient values consistent with the parameterization of the nuclear masses. The adiabatic fusion barriers calculated from this prescription are in good agreement with the adiabatic barriers deduced from {\\small{ELDBPM}} fits to fusion data. The nuclear potential diffuseness is larger at adiabatic limit, resulting in a lower $\\hbar\\omega$ leading to increase of "logarithmic slope" observed at energies well below the barrier. The effective fusion barrier radius and curvature values are anomalously smaller than the predictions of known empirical prescriptions. A detailed comp...
Institute of Scientific and Technical Information of China (English)
WANG Peng
2011-01-01
Perturbation to Noether symmetry of discrete mechanico-electrical systems on an uniform lattice is investigated.First, Noether theorem of a system is presented. Secondly, the criterion of perturbation to Noether symmetry of the system is given. Based on the definition of adiabatic invariants, Noether adiabatic invariants of the system are obtained. Finally, An example is given to support these results.%@@ Perturbation to Noether symmetry of discrete mechanico-electrical systems on an uniform lattice is investigated.First, Noether theorem of a system is presented.Secondly , the criterion of perturbation to Noether symmetry of the system is given.Based on the definition of adiabatic invariants, Noether adiabatic invariants of the system are obtained .Finally, An example is given to support these results.
DESIGN OF TWO-PHASE SINUSOIDAL POWER CLOCK AND CLOCKED TRANSMISSION GATE ADIABATIC LOGIC CIRCUIT
Institute of Scientific and Technical Information of China (English)
Wang Pengjun; Yu Junjun
2007-01-01
First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks-Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure.Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25 μm CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL)and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.
A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics
Gingold, H.
1991-01-01
A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.
Understanding the stagnation and burn of implosions on NIF
Kilkenny, J. D.; Caggiano, J. A.; Hatarik, R.; Knauer, J. P.; Sayre, D. B.; Spears, B. K.; Weber, S. V.; Yeamans, C. B.; Cerjan, C. J.; Divol, L.; Eckart, M. J.; Glebov, V. Yu; Herrmann, H. W.; Le Pape, S.; Munro, D. H.; Grim, G. P.; Jones, O. S.; Berzak-Hopkins, L.; Gatu-Johnson, M.; Mackinnon, A. J.; Meezan, N. B.; Casey, D. T.; Frenje, J. A.; Mcnaney, J. M.; Petrasso, R.; Rinderknecht, H.; Stoeffl, W.; Zylstra, A. B.
2016-03-01
An improved the set of nuclear diagnostics on NIF measures the properties of the stagnation plasma of implosions, including the drift velocity, areal density (ρr) anisotropy and carbon ρr of the compressed core. Two types of deuterium-tritium (DT) gas filled targets are imploded by shaped x-ray pulses, producing stagnated and burning DT cores of radial convergence (Cr) ∼ 5 or ∼20. Comparison with two-dimensional modeling with inner and outer surface mix shows good agreement with nuclear measurements.
New type of sauna-related burn: conductive contact burn.
Shin, Seung Jun; Yoo, Heon; Park, Myong Chul
2013-01-01
A 70-year-old woman visited a Korean-style hot dry sauna room. The patient had a medical history of hypertension and hyperlipidemia. During the sauna, the patient slept for 30 minutes. During the sleep, the right medial thigh was covered with a fully wet towel. The patient sustained a second-degree burn on the right medial thigh area with multiple bullas. On physical examination, erythema, heating sensation, and swelling around the bullas were noted. The patient was admitted and received intravenous antibiotics for 7 days. A dressing with Silmazine 1% cream (sulfadiazine) was applied twice a day for prevention of local infection. The patient was discharged on day 14 without complication. In this case, the mechanism of the burn was different. Hot air has much thermal energy but is not conducted to the skin directly. A wet towel will have a relatively higher thermal capacity or heat capacity than a dry or damp towel, and the sodden water might be a medium for the conduction of thermal energy. Owing to the global popularity of sauna bathing, it is important to recognize all sources of sauna-related burns.
On the Quantitative Evaluation of Adiabatic Shear Banding Sensitivity of Various Titanium Alloys
Mazeau, C.; Beylat, L.; Longère, P.; Louvigné, P.
1997-01-01
Titanium alloys exhibit attractive ballistic performances due to their low density and their high mechanical properties. They are unfortunately very sensitive to adiabatic shear localization. This study aims to determine an empirical parameter which allows to characterise the sensitivity to the adiabatic shear banding of different grades of titanium alloys. Dynamic punching tests by split Hopkinson pressure bar are performed on disc shaped specimen to obtain shear bands. This article deals wi...
Robust Generation of Four-Mode Entangled States through Adiabatic Passages
Institute of Scientific and Technical Information of China (English)
WU Huai-Zhi; YANG Zhen-Biao; ZHENG Shi-Biao
2007-01-01
We propose a robust scheme to generate four-mode entangled states by using the method of adiabatic passage.Our scheme is more insensitive to certain practical sources of noise, such as randomness in the atom's position, atomic spontaneous emission. In addition, the Rabi frequencies of the classical field and interaction time need not to be accurately adjusted as long as the adiabatic condition is fulfilled. The fidelity for the prepared state is higher than 0.97 under current experimental parameters.
Area and entropy spectra of black holes via an adiabatic invariant
Institute of Scientific and Technical Information of China (English)
Liu Cheng-Zhou
2012-01-01
By considering and using an adiabatic invariant for black holes,the area and entropy spectra of static sphericallysymmetric black holes are investigated.Without using quasi-normal modes of black holes,equally-spaced area and entropy spectra are derived by only utilizing the adiabatic invariant.The spectra for non-charged and charged black holes are calculated,respectively.All these results are consistent with the original Bekenstein spectra.
Quantum state engineering in a cavity by Stark chirped rapid adiabatic passage
Amniat-Talab, M; Guérin, S
2006-01-01
We propose a robust scheme to generate single-photon Fock states and atom-photon and atom-atom entanglement in atom-cavity systems. We also present a scheme for quantum networking between two cavity nodes using an atomic channel. The mechanism is based on Stark-chirped rapid adiabatic passage (SCRAP) and half-SCRAP processes in a microwave cavity. The engineering of these states depends on the design of the adiabatic dynamics through the static and dynamic Stark shifts.
Classification Methods of Skin Burn Images
Directory of Open Access Journals (Sweden)
Sivakumar
2013-03-01
Full Text Available In this paper,methodsto automatically detect and categorize the severity of skin burn imagesusingvariousclassification techniquesare compared andpresented. A database comprisingofskin burn imagesbelonging to patients of diverseethnicity, genderand age areconsidered. First the images arepreprocessed andthen classifiedutilizingthe pattern recognitiontechniques:TemplateMatching(TM,Knearestneighbor classifier (kNN and Support Vector Machine (SVM.The classifier istrained fordifferentskin burn grades using pre-labeled images and optimizedfor the features chosen. This algorithmdeveloped,works as an automatic skin burn wound analyzerandaids in the diagnosisof burn victims
Epidemiology of paediatric burns in Iran
Karimi, H.; Montevalian, A.; Motabar, A.R.; Safari, R.; Parvas, M.S.; Vasigh, M.
2012-01-01
We surveyed the epidemiology of the patients in a tertiary burn care centre (the Motahari Burn Hospital) in Tehran in the 4-yr period 2005-2009. Scalding was the major cause of burn injury for patients under the age of 6, while there were many more flame and electrical burns in late childhood. Males were mainly affected (male to female ratio, 1.7:1). Most burns occurred in the summer, probably due to older children’s increased outdoor activities during school vacations. Most of the injuries t...
Hydrofluoric acid burns of the eye.
McCulley, J P; Whiting, D W; Petitt, M G; Lauber, S E
1983-06-01
A case of hydrofluoric acid (HF) burns of the eye is reported and a review is presented of our investigation into the mechanism of HF toxicity in ocular tissues. A number of therapeutic procedures that have been successful in the treatment of HF skin burns were studied in the rabbit for use in the eye. Immediate single irrigation with water, normal saline or isotonic magnesium chloride solution is the most effective therapy for ocular HF burns. Extrapolation of other skin burn treatments to use in the eye is unacceptable due to the toxicity of these agents in normal eyes and the additive damage caused in burned eyes. PMID:6886845
Burn Resuscitation in the Austere Environment.
Peck, Michael; Jeng, James; Moghazy, Amr
2016-10-01
Intravenous (IV) cannulation and sterile IV salt solutions may not be options in resource-limited settings (RLSs). This article presents recipes for fluid resuscitation in the aftermath of burns occurring in RLSs. Burns of 20% total body surface area (TBSA) can be resuscitated, and burns up to 40% TBSA can most likely be resuscitated, using oral resuscitation solutions (ORSs) with salt supplementation. Without IV therapy, fluid resuscitation for larger burns may only be possible with ORSs. Published global experience is limited, and the magnitude of burn injuries that successfully respond to World Health Organization ORSs is not well-described. PMID:27600127
Pediatric burn rehabilitation: Philosophy and strategies
Directory of Open Access Journals (Sweden)
Shohei Ohgi
2013-09-01
Full Text Available Burn injuries are a huge public health issue for children throughout the world, with the majority occurring in developing countries. Burn injuries can leave a pediatric patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Rehabilitation is an essential and integral part of pediatric burn treatment. The aim of this article was to review the literature on pediatric burn rehabilitation from the Medline, CINAHL, and Web of Science databases. An attempt has been made to present the basic aspects of burn rehabilitation, provide practical information, and discuss the goals and conceptualization of rehabilitation as well as the development of rehabilitation philosophy and strategies.
Management of post burn hand deformities
Directory of Open Access Journals (Sweden)
Sabapathy S
2010-10-01
Full Text Available The hand is ranked among the three most frequent sites of burns scar contracture deformity. One of the major determinants of the quality of life in burns survivors is the functionality of the hands. Burns deformities, although largely preventable, nevertheless do occur when appropriate treatment is not provided in the acute situation or when they are part of a major burns. Reconstructive procedures can greatly improve the function of the hands. Appropriate choice of procedures and timing of surgery followed by supervised physiotherapy can be a boon for a burns survivor.
Adiabatic Coherence Transfer in Magnetic Resonance of Homonuclear Scalar-Coupled Systems
Kurur, N. D.; Bodenhausen, G.
By analogy to heteronuclear systems, it is shown that coherence can be transferred adiabatically in the rotating frame between two selected spins I and S belonging to a homonuclear network of scalar-coupled spins. In contrast to cross polarization with constant radiofrequency field amplitudes, the transfer function obtained with adiabatic methods depends in a monotonic, nonoscillatory manner on the duration of the transfer interval. The efficiency of the transfer does not depend on the magnitude of the scalar coupling constant JIS, although it can be affected by relaxation and by couplings JIR and JSR to further spins R. Three methods are investigated: (i) adiabatic demagnetization of spin I in the rotating frame followed by observation of the resulting J-ordered state, (ii) adiabatic demagnetization of spin I in the rotating frame followed by adiabatic remagnetization of spin S, and (iii) adiabatic transfer where spins I and S are subjected simultaneously to time-dependent spin-locking fields. In all three cases, the optimum shape of the time dependence of the radiofrequency field amplitudes is discussed, with the help of a geometric interpretation of cross polarization.
An Efficient Adiabatic CMOS Circuit Design Approach for Low Power Applications
Directory of Open Access Journals (Sweden)
Ashish Raghuwanshi
2013-09-01
Full Text Available One of the key issues in CMOS circuit design is the large amount of power being dissipated in the circuits. Energy recovering circuitry based on adiabatic principles is a relatively new technique used to implement low power dissipating circuits. By recycling the charge at capacitive nodes in the circuit, adiabatic logic families can achieve very low power dissipation. In this paper we had design and simulate the Inverter, Two-Input Nand gate, Two-Input Nor gate, Two-Input Xor gate, 2:1 Multiplexer on the basis of CMOS Logic and Adiabatic Switching logic using 180nm CMOS technology in Cadence design environment. Two adiabatic families are used in this work, Oneis the Positive Feedback Adiabatic Logic (PFAL and the other is the Efﬁcient Charge Recovery Logic (ECRL Finally, the analysis of the average dynamic power dissipation with respect to the frequency and the load capacitance was done to show the amount of power dissipated by the CMOS, PFAL and ECRL family. The results shows that power saving of adiabatic circuit can reach more than 90% as compare to conventional static CMOS logic
Global biomass burning: Atmospheric, climatic, and biospheric implications
International Nuclear Information System (INIS)
As a significant source of atmospheric gases, biomass burning must be addressed as a major environmental problem. Biomass burning includes burning forests and savanna grasslands for land clearing and conversion, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The editor discusses the history of biomass burning and provides an overview of the individual chapters
Maggs, William Ward
Human beings were responsible for most of 12,000 forest fires in the southeastern United States that burned for 10 days in late October and early November 1987. 910 km2, mostly hardwood forest, were destroyed in the fires, with arson and carelessness as the primary causes, according to the U.S. Department of Agriculture Forest Service.Measured in monetary terms, the toll was more than $40 million in resource and property damage. While the amount of forest burned did not rival the 3390 km2 lost to fires in the western United States last summer, the human impact was severe in the southeast and all along the East Coast. Favorable winds blew smoke from the southern and central Appalachians as far north as New England and as far east as Delaware, and cool fall air close to the ground prevented the smoke from rising, thickening the air in many northeastern cities on November 8 and 9.
Fluconazole Pharmacokinetics in Burn Patients
Boucher, Bradley A.; King, Stephen R.; Wandschneider, Heidi L.; Hickerson, William L.; Hanes, Scott D.; Herring, Vanessa L.; Canada, Todd W.; Hess, Mary M.
1998-01-01
The pharmacokinetics of fluconazole in nine adult patients with severe (30 to 95% total body surface area) burns were studied. There was no significant difference in half-life (t1/2), clearance (CL), or volume of distribution (V) over time in five patients on days 3 and 8 of the study (P > 0.05). Combined parameter estimates (means ± standard deviations) for all nine patients for the two study periods were as follows: t1/2, 24.4 ± 5.8 h; CL, 0.36 ± 0.09 ml/min/kg; and V, 0.72 ± 0.12 liters/kg. These estimates of t1/2 and CL in burn patients were approximately 13% shorter and 30% more rapid, respectively, than the most extreme estimates reported for other populations. PMID:9559811
Sound velocity in shock compressed molybdenum obtained by ab initio molecular dynamics
Lukinov, Tymofiy; Belonoshko, Anatoly; Simak, Sergey
The sound velocity of Mo along the Hugoniot adiabat is calculated from first principles using density-functional theory based molecular dynamics. These data are compared to the sound velocity as measured in recent experiments. The theoretical and experimental Hugoniot and sound velocities are in very good agreement up to pressures of 210 GPa and temperatures of 3700 K on the Hugoniot. However, above that point the experiment and theory diverge. This implies that Mo undergoes a phase transition at about the same point. Considering that the melting point of Mo is likely much higher at that pressure, the related change in the sound velocity in experiment can be ascribed to a solid-solid transition.
Commercial concepts for adiabatic compressed air energy storage
Energy Technology Data Exchange (ETDEWEB)
Freund, Sebastian [General Electric Global Research, Garching (Germany); Schainker, Robert [Electric Power Research Institute, Palo Alto, CA (United States); Moreau, Robert [General Electric Oil and Gas, Florence (Italy)
2012-07-01
Adiabatic compressed air energy storage (ACAES) systems offer the potential for efficient large-scale energy storage, almost approaching values typical for pumped hydro. In an ACAES plant, the heat of compression is stored and utilized during the expansion of the air instead of firing natural gas like in commercial CAES. However, no ACAES plants have been commercialized due to challenges with respect to the cost and the heat storage technology. In this study, conducted by EPRI, GE Global Research and GE Oil and Gas, several concepts for ACAES plants are analyzed and their efficiency, complexity and technical risk compared. The components selected for the plants are available either off-the-shelf or near-commercial within a short development time and without the high costs associated with developing a new generation of large custom-made compressors and turbines. The most promising concept for near-term commercialization and low costs turns out to be a two-stage, low-temperature ACAES system. A regenerative (solid) and a recuperative (liquid) thermal storage system have been designed and analyzed for this concept, with the result that the liquid-recuperative system offers a much lower cost and comparable performance. Performance and cost targets for the concepts are 100 MW output per plant for 6 h with a round-trip efficiency above 60% and a capital cost of about $1000/kW. Selections of the turbomachinery for the compression and expansion train from General Electric Oil and Gas are presented for several plant options along with their expansion power range (25..100 MW), round-trip efficiency (66%..70%) and preliminary capital cost estimates (1100..1200 $/kW).
Polarized Reflectance Measurement of Burned Skin Tissues
de Pedro, Hector Michael; Chang, Chuan-I.; Zarnani, Faranak; Glosser, Robert; Maas, D.; Idris, A.
2011-10-01
In the US, there are over 400,000 burn victims with 3,500 deaths in 2010. Recent evidence suggests that early removal of burn tissues can significantly increase the success of their recovery, since burns continue to spread and damage surrounding tissues after hours of injury. The rationale behind this procedure is that burns trigger the body's immune system to overreact, causing additional damage. Therefore, it is important to distinguish burn areas so that it can be removed. The problem with this is that it is difficult to recognize the margins of the burn area. In our project, we use polarized reflectance as a tool to identify the burned tissues from unburned ones.
[Current treatment strategies for paediatric burns].
Küntscher, M V; Hartmann, B
2006-06-01
Paediatric burns occupy the third place in the severe accident statistics in Germany after traffic injuries and drowning. The paper reviews current treatment concepts of pre-hospital management, fluid resuscitation and surgical therapy in paediatric burned patients. Specific features in the approximation of the total body surface area burn and indications for transfer of paediatric burn victims to specialized units are discussed. The therapy of severe paediatric burns requires an interdisciplinary team consisting of especially skilled plastic or paediatric surgeons,anaesthetists, psychiatrists or psychologists, specifically trained nurses, physiotherapists and social workers. The rehabilitation process starts basically with admission to the burn unit. A tight cooperation between therapists and the relatives of the paediatric burn victim is needed for psychological recovery and reintegration into society.'The adaptation to the suffered trauma resulting in life-long disability and disfigurement is the main task of psychotherapy.
Septicemia: The Principal Killer of Burns Patients
Directory of Open Access Journals (Sweden)
B. R. Sharma
2005-01-01
Full Text Available Burn injury is a major problem in many areas of the world and it has been estimated that 75% of all deaths following burns are related to infection. Burns impair the skins normal barrier function thus allowing microbial colonization of the burn wounds and even with the use of topical antimicrobial agents, contamination is almost unavoidable. It is therefore essential for every burn institution to determine its specific pattern of burn wound microbial colonization, time related changes in predominant flora and antimicrobial resistance profiles. This would allow early management of septic episodes with proper empirical systemic antibiotics before the results of microbiologic culture becomes available, thus improving the overall infection-related morbidity and mortality. We attempted to examine the factors affecting risk of infection; strategies for infection control and prevention in burn victims.
[Burns care following a nuclear incident].
Bargues, L; Donat, N; Jault, P; Leclerc, T
2010-09-30
Radiation injuries are usually caused by radioactive isotopes in industry. Detonations of nuclear reactors, the use of military nuclear weapons, and terrorist attacks represent a risk of mass burn casualties. Ionizing radiation creates thermal burns, acute radiation syndrome with pancytopenia, and a delayed cutaneous syndrome. After a latency period, skin symptoms appear and the depth of tissue damages increase with dose exposure. The usual burn resuscitation protocols have to be applied. Care of these victims also requires assessment of the level of radiation, plus decontamination by an experienced team. In nuclear disasters, the priority is to optimize the available resources and reserve treatment to patients with the highest probability of survival. After localized nuclear injury, assessment of burn depth and surgical techniques of skin coverage are the main difficulties in a burn centre. Training in medical facilities and burn centres is necessary in the preparation for management of the different types of burn injuries. PMID:21991218