WorldWideScience

Sample records for adhesively bonded shell

  1. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2007-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...... stress required to propagate the crack under quasi-static conditions. The fracture mechanical model is theoretically sound and it is accurate and numerically stable. The cohesive zone model has some advantages over the fracture mechanics based model. It is easier to generalise the cohesive zone model...... to take into account effects such as plastic deformation in the adhering shells, and to take into account effects of large local curvatures of the interface crack front. The comparison shows a convergence of the results based on the cohesive zone model towards the results based on a fracture mechanics...

  2. Adhesive bonding of wood materials

    Science.gov (United States)

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  3. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  4. Wood structure and adhesive bond strength

    Science.gov (United States)

    Charles R. Frihart

    2006-01-01

    Much of the literature on the bonding of wood and other lignocellulosic materials has concentrated on traditional adhesion theories. This has led to misconceptions because wood is a porous material on both the macroscopic and microscopic levels. A better understanding of wood bonding can be developed by investigating the theories of adhesion and bond strength, taking...

  5. Bond strength comparison of color change adhesives for orthodontic bonding.

    Science.gov (United States)

    Duers, Michael W; English, Jeryl D; Ontiveros, Joe C; Powers, John M; Bussa, Harry I; Frey, Gary N; Gallerano, Ronald L; Paige, Sebastian Z

    2011-03-01

    This study investigated whether three different color change light-cured orthodontic bonding adhesives have comparable shear bond strengths to a conventional light-cured orthodontic bonding adhesive. The sample of 240 bovine incisors was divided into four groups of 60 each. Each group tested one of four orthodontic bonding adhesives: 3M Unitek Transbond PLUS, Ormco Gréngloo, Ormco Blúgloo, and 3M Unitek Transbond XT (control). The four groups were further divided into two subgroups of 30 with shear bond strength tested at two different times (15 minutes and 24 hours) post-bond. The shear bond strength was measured on a universal testing machine. The data were analyzed by two-way analysis of variance and post-hoc comparisons (Fisher's PLSD) at the 0.05 level of significance. The average shear bond strength was greater at 24 hours than at 15 minutes for Transbond PLUS, Blúgloo, and Transbond XT. For Gréngloo, the average shear bond strength was greater at 15 minutes than at 24 hours. Gréngloo tested at 15 minutes had the highest average shear bond strength. Gréngloo tested at 24 hours had the lowest average shear bond strength. All four orthodontic bonding adhesives demonstrated bond strengths considered to be clinically acceptable for orthodontic purposes.

  6. Bonding Durability of Four Adhesive Systems

    Science.gov (United States)

    Seyed Tabai, Elaheh; Mohammadi Basir, Mahshid

    2015-01-01

    Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS) and microleakage during six months of water storage. Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP), Single Bond (SB), Clearfil-SE bond (CSEB), and All-Bond SE (ABSE). After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (Pself-etch adhesives at the gingival margin or MTBS of CSEB and SB. PMID:27123015

  7. Handbook of adhesive bonded structural repair

    CERN Document Server

    Wegman, Raymond F

    1992-01-01

    Provides repair methods for adhesive bonded and composite structures; identifies suitable materials and equipment for repairs; describes damage evaluation criteria and techniques, and methods of inspection before and after repair.

  8. Enamel Bond Strength of New Universal Adhesive Bonding Agents.

    Science.gov (United States)

    McLean, D E; Meyers, E J; Guillory, V L; Vandewalle, K S

    2015-01-01

    Universal bonding agents have been introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinician's preference. The purpose of this study was to evaluate the shear bond strength (SBS) of composite to enamel using universal adhesives compared to a self-etch adhesive when applied in self-etch and etch-and-rinse modes over time. Extracted human third molars were used to create 120 enamel specimens. The specimens were ground flat and randomly divided into three groups: two universal adhesives and one self-etch adhesive. Each group was then subdivided, with half the specimens bonded in self-etch mode and half in etch-and-rinse mode. The adhesives were applied as per manufacturers' instructions, and composite was bonded using a standardized mold and cured incrementally. The groups were further divided into two subgroups with 10 specimens each. One subgroup was stored for 24 hours and the second for six months in 37°C distilled water and tested in shear. Failure mode was also determined for each specimen. A three-way analysis of variance (ANOVA) found a significant difference between groups based on bonding agent (p0.05). Clearfil SE in etch-and-rinse and self-etch modes had more mixed fractures than either universal adhesive in either mode. Etching enamel significantly increased the SBS of composite to enamel. Clearfil SE had significantly greater bond strength to enamel than either universal adhesive, which were not significantly different from each other.

  9. 49 CFR 587.16 - Adhesive bonding procedure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied to...

  10. Adhesives for orthodontic bracket bonding

    OpenAIRE

    Déborah Daniella Diniz Fonseca; Daene Patrícia Tenório Salvador da Costa; Renata Cimões; Lúcia Carneiro de Souza Beatrice; Ana Cláudia da Silva Araújo

    2010-01-01

    The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified ...

  11. Adhesive bonding to polymer infiltrated ceramic.

    Science.gov (United States)

    Schwenter, Judith; Schmidli, Fredy; Weiger, Roland; Fischer, Jens

    2016-01-01

    Aim of this study was to investigate the mechanism of adhesive bonding to the polymer-infiltrated ceramic VITA Enamic [VE]. Shear bond strength was measured with three resin composite cements: RelyX Unicem 2 Automix, Clearfil SA and Variolink II on polished surfaces of VE and its components silicate ceramic [SC] and polymer [PM] (n=12). Further, the effect of etching VE with 5% HF for 15-240 s and the application of silane coupling agents was analyzed in a screening test (n=6). Shear bond strength measurements were performed after 24 h of water storage at 37°C. Significant bonding to polished substrates could only be achieved on VE and SC when silane coupling agents were used. Etching of VE with 5% HF increased shear bond strength. Following silanization of etched VE, a further increase in shear bond strength could be established. Etching for more than 30 s did not improve shear bond strength.

  12. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  13. Durable wood bonding with epoxy adhesives

    Science.gov (United States)

    Charles R. Frihart

    2003-01-01

    Although wood was one of the earliest materials to be adhesively bonded, the factors that contribute to strong wood bonds are still not well understood. Wood is a very complex substrate in that it is non-uniform in most aspects. On the macro scale, it is a porous structure with different sized and shaped voids for fluid flow. The structural cells contain four different...

  14. Peel resistance of adhesive bonds accurately measured

    Science.gov (United States)

    1965-01-01

    Strength of adhesive bond between layers of laminated material is tested by peel force to the facing with a tensile testing machine. Testing jig has stainless steel rollers which constrain material to move horizontally while maintaining free end of facing at constant 90 deg angle.

  15. Reliability Analysis of Adhesive Bonded Scarf Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik

    2012-01-01

    A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... the FEA model, and a sensitivity analysis on the influence of various geometrical parameters and material properties on the maximum stress is conducted. Because the yield behavior of many polymeric structural adhesives is dependent on both deviatoric and hydrostatic stress components, different ratios...... of the compressive to tensile adhesive yield stresses in the failure criterion are considered. It is shown that the chosen failure criterion, the scarf angle and the load are significant for the assessment of the probability of failure....

  16. Bonding Polycrystalline Zirconia With 10-MDP-containing Adhesives.

    Science.gov (United States)

    Llerena-Icochea, A E; Costa, R M; Borges, Afs; Bombonatti, Jfs; Furuse, A Y

    The objective of this study was to evaluate the influence of adhesives with different 10-MDP concentrations on the shear bond strength of a resin cement to zirconia. Six experimental adhesives were prepared with the following composition: camphorquinone, 1,2-diaminobenzene, butylhydroxytoluene, diphenyliodonium hexafluorophosphate, 2-hydroxyethyl methacrylate triethylene glycol dimethacrylate, ethoxylated bisphenol A glycol dimethacrylate, urethane dimethacrylate, bisphenol A diglycidyl methacrylate, and ethanol. The 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer was added at 0wt%, 3wt%, 6wt%, 9wt%, 12wt%, or 15wt%. Three commercially available adhesives were evaluated: Single Bond Universal, Single Bond 2, and Signum Zirconia Bond. Resin cement cylinders made with RelyX Ultimate were bonded to yttria-stabilized tetragonal zirconia polycrystal with one of the evaluated adhesives and were subjected to the shear bond strength evaluation. Failure modes were analyzed with a stereoscopic loupe. Statistical analyses were performed with one-way analysis of variance and the Tukey's Honestly Significant Difference test (α=0.05). Pearson's was used to correlate the percentage of 10-MDP in the experimental adhesives and shear bond strength. There were significant differences between adhesives (pUniversal. Single Bond 2 showed the lowest values. There were no differences between experimental adhesives. All groups showed adhesives failures. A nonlinear correlation was found between bond strength and percentage of 10-MDP in experimental adhesives (r=0.872). The commercially available adhesives indicated for bonding to zirconia showed the highest bonding values.

  17. Factors that lead to failure with wood adhesive bonds

    Science.gov (United States)

    Charles R. Frihart; James F. Beecher

    2016-01-01

    Understanding what makes a good wood adhesive is difficult since the type of adhesive, wood species, bonding process, and resultant products vary considerably. Wood bonds are subjected to a variety of tests that reflect the different product performance criteria in diverse countries. The most common tests involve some type of moisture resistance; both wood and adhesive...

  18. Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol

    Science.gov (United States)

    Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen

    2006-01-01

    A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...

  19. Bond strengthening in oral bacterial adhesion to salivary conditioning films

    NARCIS (Netherlands)

    van der Mei, Henderina; Rustema-Abbing, Mina; de Vries, Jacob; Busscher, Hendrik

    Transition from reversible to irreversible bacterial adhesion is a highly relevant but poorly understood step in initial biofilm formation. We hypothesize that in oral biofilm formation, irreversible adhesion is caused by bond strengthening due to specific bacterial interactions with salivary

  20. Mechanical behaviour of adhesively bonded polyethylene tapping tees

    OpenAIRE

    Barton, Lewis; Birkett, Martin

    2016-01-01

    The mechanical properties of adhesively bonded MDPE joints were studied. The lap-shear joints were prepared using PE80 polyethylene gas pipe and four adhesive types; two acrylic and two epoxy resins. The key mechanical properties of lap shear strength and impact resistance were investigated as a function of adhesive type and surface preparation technique. Mechanical abrasion of the PE80 surface increased the strength of the bonds from 40 to 460% for the four adhesives, with the best performin...

  1. Defying ageing: An expectation for dentine bonding with universal adhesives?

    Science.gov (United States)

    Zhang, Zheng-yi; Tian, Fu-cong; Niu, Li-na; Ochala, Kirsten; Chen, Chen; Fu, Bai-ping; Wang, Xiao-yan; Pashley, David H; Tay, Franklin R

    2016-02-01

    The present study evaluated the long-term dentine bonding effectiveness of five universal adhesives in etch-and-rinse or self-etch mode after 12 months of water-ageing. The adhesives evaluated included All-Bond Universal, Clearfil Universal Bond, Futurabond U Prime&Bond Elect and Scotchbond Universal. Microtensile bond strength and transmission electron microscopy of the resin-dentine interfaces created in human coronal dentine were examined after 24h or 12 months. Microtensile bond strength were significantly affected by bonding strategy (etch-and-rinse vs self-etch) and ageing (24h vs 12 months). All subgroups showed significantly decreased bond strength after ageing except for Prime&Bond Elect and Scotchbond Universal used in self-etch mode. All five adhesives employed in etch-and-rinse mode exhibited ultrastructural features characteristic of collagen degradation and resin hydrolysis. A previously-unobserved inside-out collagen degradation pattern was identified in hybrid layers created by 10-MDP containing adhesives (All-Bond Universal, Scotchbond Universal and Clearfil Universal Bond) in the etch-and-rinse mode, producing partially degraded collagen fibrils with intact periphery and a hollow core. In the self-etch mode, all adhesives except for Prime&Bond Elect exhibited degradation of the collagen fibrils along the thin hybrid layers. The three 10-MDP containing universal adhesives did not protect surface collagen fibrils from degradation when bonding was performed in the self-etch mode. Despite the adjunctive conclusion that bonds created by universal adhesives in the self-etch bonding mode are more resistant to decline in bond strength when compared with those bonds created using the etch-and-rinse mode, bonds created by universal adhesives are generally incapable of defying ageing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Shear Bond Strengths of Different Adhesive Systems to Biodentine

    OpenAIRE

    Mesut Enes Odabaş; Mehmet Bani; Resmiye Ebru Tirali

    2013-01-01

    The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system) Prime & Bond NT; group 2: (2-step self-etch adhesive system) Clearfil SE Bond; group 3: (1-step self-etch adhesive systems) Clearfil S3 Bond; group 4: contro...

  3. [The application of universal adhesives in dental bonding].

    Science.gov (United States)

    Guo, Jingmei; Lei, Wenlong; Yang, Hongye; Huang, Cui

    2016-03-01

    The bonding restoration has become an important clinical technique for the development of dental bonding technology. Because of its easy operation and the maximum preservation of tooth tissues, bonding repair is widely used in dental restoration. The recent multi-mode universal adhesives have brought new progress in dental bonding restoration. In this article the universal adhesives were reviewed according to its definition, development, improvement, application features and possible problems.

  4. High bonding temperatures greatly improve soy adhesive wet strength

    Science.gov (United States)

    Charles R. Frihart; Thomas Coolidge; Chera Mock; Eder Valle

    2016-01-01

    Soy wood adhesive bond strengths reported in different literature studies are difficult to compare because a variety of temperatures and other conditions have been used for the bonding and testing step. Some reports have indicated bond strengths are sensitive to bonding temperature, but the reason(s) for this has not been intensively investigated. Although these prior...

  5. Shear Bond Strengths of Different Adhesive Systems to Biodentine

    Science.gov (United States)

    Odabaş, Mesut Enes; Bani, Mehmet; Tirali, Resmiye Ebru

    2013-01-01

    The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system) Prime & Bond NT; group 2: (2-step self-etch adhesive system) Clearfil SE Bond; group 3: (1-step self-etch adhesive systems) Clearfil S3 Bond; group 4: control (no adhesive). After the application of adhesive systems, composite resin was applied over Biodentine. This procedure was repeated 24 hours after mixing additional 40 samples, respectively. Shear bond strengths were measured using a universal testing machine, and the data were subjected to 1-way analysis of variance and Scheffé post hoc test. No significant differences were found between all of the adhesive groups at the same time intervals (12 minutes and 24 hours) (P > .05). Among the two time intervals, the lowest value was obtained for group 1 (etch-and-rinse adhesive) at a 12-minute period, and the highest was obtained for group 2 (two-step self-etch adhesive) at a 24-hour period. The placement of composite resin used with self-etch adhesive systems over Biodentine showed better shear bond strength. PMID:24222742

  6. Shear Bond Strengths of Different Adhesive Systems to Biodentine

    Directory of Open Access Journals (Sweden)

    Mesut Enes Odabaş

    2013-01-01

    Full Text Available The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system Prime & Bond NT; group 2: (2-step self-etch adhesive system Clearfil SE Bond; group 3: (1-step self-etch adhesive systems Clearfil S3 Bond; group 4: control (no adhesive. After the application of adhesive systems, composite resin was applied over Biodentine. This procedure was repeated 24 hours after mixing additional 40 samples, respectively. Shear bond strengths were measured using a universal testing machine, and the data were subjected to 1-way analysis of variance and Scheffé post hoc test. No significant differences were found between all of the adhesive groups at the same time intervals (12 minutes and 24 hours (. Among the two time intervals, the lowest value was obtained for group 1 (etch-and-rinse adhesive at a 12-minute period, and the highest was obtained for group 2 (two-step self-etch adhesive at a 24-hour period. The placement of composite resin used with self-etch adhesive systems over Biodentine showed better shear bond strength.

  7. Shear bond strengths of different adhesive systems to biodentine.

    Science.gov (United States)

    Odabaş, Mesut Enes; Bani, Mehmet; Tirali, Resmiye Ebru

    2013-01-01

    The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system) Prime & Bond NT; group 2: (2-step self-etch adhesive system) Clearfil SE Bond; group 3: (1-step self-etch adhesive systems) Clearfil S(3) Bond; group 4: control (no adhesive). After the application of adhesive systems, composite resin was applied over Biodentine. This procedure was repeated 24 hours after mixing additional 40 samples, respectively. Shear bond strengths were measured using a universal testing machine, and the data were subjected to 1-way analysis of variance and Scheffé post hoc test. No significant differences were found between all of the adhesive groups at the same time intervals (12 minutes and 24 hours) (P > .05). Among the two time intervals, the lowest value was obtained for group 1 (etch-and-rinse adhesive) at a 12-minute period, and the highest was obtained for group 2 (two-step self-etch adhesive) at a 24-hour period. The placement of composite resin used with self-etch adhesive systems over Biodentine showed better shear bond strength.

  8. Improved primer for bonding polyurethane adhesives to metals

    Science.gov (United States)

    Constanza, L. J.

    1969-01-01

    Primer ensures effective bonding integrity of polyurethane adhesives on metal surfaces at temperatures ranging from minus 423 degrees to plus 120 degrees F. It provides greater metal surface protection and bond strengths over this temperature range than could be attained with other adhesive systems.

  9. Bond Assembly FOD Zones - A Procedure for Assuring Acceptable Adhesion

    Science.gov (United States)

    Evans, Kurt; Wurth, Laura; Mitchell, Mark

    2009-01-01

    Rocket motor components are primarily assembled by adhesion. a) For example, the RSRM (Reusable Solid Rocket Motor - part of the Space Shuttle Boosters) system contains 10,000 sq ft of bondline area. b) Rocket motors contain a variety of adhesive/substrate bond systems c) Bond system performance requirements also vary. To assemble reliable components, ATK Space Systems and customers invest substantial resources to the study of bond assembly processes. a) Surface and adhesion science; b) Adhesive chemistry; c) Process parameters; d) Contamination effects.

  10. Analysis of Adhesively Bonded Ceramics Using an Asymmetric Wedge Test

    Science.gov (United States)

    2008-12-01

    edges along the lengths of the titanium adherends was cleaned with a small hand-held electric grinding wheel to remove excess adhesive flow. The...energy and bond line durability of titanium bonded to alumina using a structural epoxy film adhesive. This testing scheme limited bending to the more... epoxy adhesive used for the study is estimated to have an initial Gc value ranging from 1000 to 2000 J/m2. A wedge 4 thickness () of 3.18 mm

  11. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    Science.gov (United States)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  12. Influence of dentin pretreatment on bond strength of universal adhesives.

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea

    2017-01-01

    Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Premio BOND, Peak Universal Bond. The adhesive systems were applied following each manufacturer's instructions. The teeth were randomly assigned to three different dentin surface pretreatments: no pretreatment agent (control), 37% phosphoric acid etching, glycine pretreatment. The specimens were placed in a universal testing machine in order to measure and compare bond strength values. Results: The Kruskal-Wallis analysis of variance and the Mann-Whitney test were applied to assess significant differences among the groups. Dentin pretreatments provided different bond strength values for the adhesives tested, while similar values were registered in groups without dentin pretreatment. Conclusions: In the present report, dentin surface pretreatment did not provide significant differences in shear bond strength values of almost all groups. Acid pretreatment lowered bond strength values of Futurabond and Peak Universal Adhesives, whereas glycine pretreatment increased bond strength values of G Praemio Bond adhesive system.

  13. Bonding to glass ionomer cements using resin-based adhesives.

    Science.gov (United States)

    Zhang, Y; Burrow, M F; Palamara, J E A; Thomas, C D L

    2011-01-01

    This study compared the microshear bond strengths (MSBS) of four self-etching adhesives (Adper Scotchbond SE [SSE], Clearfil SE Bond [CSE], Clearfil S3 Bond [CS3] and One Coat 7.0 [OC]) and an etch-and-rinse adhesive (Adper Single Bond Plus [SB]) when bonded to two conventional glass ionomer cements (GICs) (Fuji IX GP EXTRA and Riva Self Cure). The null hypothesis tested was there is no difference in the adhesive ability of an etch-and-rinse adhesive and self-etching adhesives when bonded to GIC for up to 6 months. The GICs were embedded in type III dental stone and wet ground with 1200-grit SiC paper. Twenty specimens were bonded for each adhesive according to manufacturers' instructions with a 1.5-mm bonding diameter. Specimens were stored at 100% humidity for 24 hours, 1 month, or 6 months. Microshear bond strengths were obtained using a crosshead speed of 1 mm/min. The results were calculated and analyzed using analysis of variance (ANOVA) and Tukey HSD test. SB had significantly lower MSBS than the four self-etching adhesives for all storage periods. MSBS at 6 months for SB was significantly lower than at 1 month. There were no significant differences in MSBS among the self-etching adhesives. Cohesive failure within GIC was the most common failure mode observed. SB showed a lower bond strength than the self-etching adhesives when bonded to conventional GICs for all storage periods. This might be a result of the phosphoric acid etching. However, cohesive strength of GIC was a limiting factor for the MSBS outcomes.

  14. Test method to assess interface adhesion in composite bonding

    OpenAIRE

    Teixeira de Freitas, S.; Sinke, J

    2015-01-01

    This paper introduces a new type of peel tests dedicated to composite bonding: Composite Peel Tests. This test is inspired on the standard floating roller peel test widely used for metal bonding. The aim of this study is to investigate the potential of the Composite Peel Test to assess interface adhesion in composite bonded structures. To this end, peel tests were performed with nine different types of adhesives and at two environmental temperatures, room temperature and +80°C. The results we...

  15. Bond durability of contemporary adhesive systems to pulp chamber dentin

    Science.gov (United States)

    Ayar, Muhammet Kerim

    2015-01-01

    Abstract Objective: The purpose of this study was to evaluate long-term bond strengths of dentin adhesive systems, which include one-step self-etch adhesive systems (Optibond All-in-one, Kerr; Adper Prompt L-POP, 3 M ESPE), a three-step etch-and-rinse adhesive (Optibond FL, Kerr) and two-step self-etch adhesive (AdheSE Bond, Ivoclar), applied to pulp chamber dentin surfaces after 12-month water storage by using microtensile bond strength (µTBS) test. Materials and methods: Dentin adhesive systems were applied to unprepared pulp chamber dentin surfaces according to manufacturer’s directions, respectively (n = 5). After applying adhesive systems, composite buildups were done incrementally. Bond strengths to pulp chamber dentin surfaces were determined using µTBS test after water storage for 24 h and 12 month. Kruskal–Wallis analysis and Mann–Whitney U-test for pairwise comparisons were used to determine statistical differences in µTBS between the groups at a significance level of 5%. Results: There were no significant differences in µTBS between storage periods for tested adhesives regardless adhesive class. Conclusion: Bond durability of tested adhesive systems, including one-bottle self-etch adhesives with pulp chamber dentin surfaces, may be considered stable after 12-month water storage. Therefore, one-step self-etch, also called “user-friendly” adhesives may perform and traditional three-step etch-and-rinse adhesives in the long-term when used for bonding to pulp chamber dentin surfaces. PMID:28642905

  16. Neutron imaging inspections of composite honeycomb adhesive bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hungler, P.C., E-mail: paul.hungler@rmc.ca [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, 13 General Crerar Cres, Kingston, Ontario, K7K 7B4 (Canada); Bennett, L.G.I.; Lewis, W.J. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, 13 General Crerar Cres, Kingston, Ontario, K7K 7B4 (Canada); Schulz, M.; Schillinger, B. [FRM-II, Technische Universitaet Muenchen (Germany)

    2011-09-21

    Numerous commercial and military aircraft, including the Canadian Forces CF188 Hornet, use composite honeycomb structures in the design of their flight control surfaces (FCS). These structures provide excellent strength to weight ratios, but are often susceptible to degradation from moisture ingress. Once inside the honeycomb structure moisture causes the structural adhesive bonds to weaken, which can lead to complete failure of the FCS in flight. There are two critical structural adhesive bonds: the node bond and the filet bond. The node bond is integral to the honeycomb portion of the composite core and is located between the honeycomb cells. The filet bond is the adhesive bond located between the skin and the core. In order to asses overall structural degradation and develop repair procedures, it is important to determine the degree of degradation in each type of bond. Neutron radiography and tomography of the adhesive bonds was conducted at the Royal Military College (RMC) and FRM-II. Honeycomb samples were manufactured from FCS with in-service water ingress. The radiographs and tomograms provided important information about the degree of degradation in the core as well as about which adhesive bonds are more susceptible. The information obtained from this study will help to develop repair techniques and assess the flight worthiness of FCS.

  17. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  18. Shear bond strength of two adhesive materials to eroded enamel.

    Science.gov (United States)

    Lenzi, Tathiane; Hesse, Daniela; Guglielmi, Camila; Anacleto, Ketlin; Raggio, Daniela Procida

    2013-07-01

    To evaluate the bond strength of one etch-and-rinse adhesive system and one resin-modified glass ionomer cement to sound and eroded enamel. Forty-eight bovine incisors were embedded in acrylic resin and ground to obtain flat buccal enamel surfaces. Half of the specimens were submitted to erosion challenge with pH-cycling model (3x/cola drink for 7 days) to induce eroded enamel. After that, all specimens were randomly assigned according to adhesive material: etch-andrinse adhesive system (Adper Single Bond 2 - 3M ESPE, USA) or resin-modified glass ionomer cement (Vitro Fil LC - DFL, Brazil). The shear bond testing was performed after 24 hours water storage (0.5 mm/min). Shear bond strength means were analyzed by two-way ANOVA and Tukey post hoc tests (p Bond 2 showed the highest bond strength value to eroded enamel (p 0.05). Bond strength of etch-and-rinse adhesive system increases in eroded enamel, while no difference is verified to resin-modified glass ionomer cement. Adhesive materials may be used in eroded enamel without jeopardizing the bonding quality; however it is preferable to use etch-and-rinse adhesive system.

  19. Adhesion testing of dentin bonding agents: a review.

    Science.gov (United States)

    Pashley, D H; Sano, H; Ciucchi, B; Yoshiyama, M; Carvalho, R M

    1995-03-01

    Adhesion testing of dentin bonding agents was reviewed starting with the adhesion substrate, dentin, the variables involved in etching, priming and bonding, storage variables and testing variables. Several recent reports attempting to standardize many of these variables were discussed. Recent advances in the development of new bonding systems have resulted in bond strengths on the order of 20-30 MPa. At these high bond strengths, most of the bond failure modes have been cohesive in dentin. As this precludes measurement of interfacial bond strength, new testing methods must be developed. One such new method, a microtensile method, was described along with preliminary results that have been obtained. The last decade has produced major advances in dentin bonding. The next decade should prove to be even more exciting.

  20. Dentine bond strength and antimicrobial activity evaluation of adhesive systems.

    Science.gov (United States)

    André, Carolina Bosso; Gomes, Brenda Paula Figueiredo Almeida; Duque, Thais Mageste; Stipp, Rafael Nobrega; Chan, Daniel Chi Ngai; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2015-04-01

    This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30 min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10 min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    OpenAIRE

    IRMAK, Özgür; Özge ÇELIKSÖZ; Begüm YILMAZ; Batu Can YAMAN

    2017-01-01

    Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed stat...

  2. Longevity of Self-etch Dentin Bonding Adhesives Compared to Etch-and-rinse Dentin Bonding Adhesives: A Systematic Review.

    Science.gov (United States)

    Masarwa, Nader; Mohamed, Ahmed; Abou-Rabii, Iyad; Abu Zaghlan, Rawan; Steier, Liviu

    2016-06-01

    A systematic review and meta-analysis were performed to compare longevity of Self-Etch Dentin Bonding Adhesives to Etch-and-Rinse Dentin Bonding Adhesives. The following databases were searched for PubMed, MEDLINE, Web of Science, CINAHL, the Cochrane Library complemented by a manual search of the Journal of Adhesive Dentistry. The MESH keywords used were: "etch and rinse," "total etch," "self-etch," "dentin bonding agent," "bond durability," and "bond degradation." Included were in-vitro experimental studies performed on human dental tissues of sound tooth structure origin. The examined Self-Etch Bonds were of two subtypes; Two Steps and One Step Self-Etch Bonds, while Etch-and-Rinse Bonds were of two subtypes; Two Steps and Three Steps. The included studies measured micro tensile bond strength (μTBs) to evaluate bond strength and possible longevity of both types of dental adhesives at different times. The selected studies depended on water storage as the aging technique. Statistical analysis was performed for outcome measurements compared at 24 h, 3 months, 6 months and 12 months of water storage. After 24 hours (p-value = 0.051), 3 months (p-value = 0.756), 6 months (p-value=0.267), 12 months (p-value=0.785) of water storage self-etch adhesives showed lower μTBs when compared to the etch-and-rinse adhesives, but the comparisons were statistically insignificant. In this study, longevity of Dentin Bonds was related to the measured μTBs. Although Etch-and-Rinse bonds showed higher values at all times, the meta-analysis found no difference in longevity of the two types of bonds at the examined aging times. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Evaluation of High Temperature Adhesive Bonding Processes for Rocket Engine Combustion Chamber Applications

    Science.gov (United States)

    McCray, Daniel; Smith, Jeffrey; Rice, Brian; Blohowiak, Kay; Anderson, Robert; Shin, E. Eugene; McCorkle, Linda; Sutter, James

    2003-01-01

    NASA Glenn Research Center is currently evaluating the possibility of using high- temperature polymer matrix composites to reinforce the combustion chamber of a rocket engine. One potential design utilizes a honeycomb structure composed of a PMR-II- 50/M40J 4HS composite facesheet and titanium honeycomb core to reinforce a stainless steel shell. In order to properly fabricate this structure, adhesive bond PMR-II-50 composite. Proper prebond surface preparation is critical in order to obtain an acceptable adhesive bond. Improperly treated surfaces will exhibit decreased bond strength and durability, especially in metallic bonds where interface are susceptible to degradation due to heat and moisture. Most treatments for titanium and stainless steel alloys require the use of strong chemicals to etch and clean the surface. This processes are difficult to perform due to limited processing facilities as well as safety and environmental risks and they do not consistently yield optimum bond durability. Boeing Phantom Works previously developed sol-gel surface preparations for titanium alloys using a PETI-5 based polyimide adhesive. In support of part of NASA Glenn Research Center, UDRI and Boeing Phantom Works evaluated variations of this high temperature sol-gel surface preparation, primer type, and primer cure conditions on the adhesion performance of titanium and stainless steel using Cytec FM 680-1 polyimide adhesive. It was also found that a modified cure cycle of the FM 680-1 adhesive, i.e., 4 hrs at 370 F in vacuum + post cure, significantly increased the adhesion strength compared to the manufacturer's suggested cure cycle. In addition, the surface preparation of the PMR-II-50 composite was evaluated in terms of surface cleanness and roughness. This presentation will discuss the results of strength and durability testing conducted on titanium, stainless steel, and PMR-II-50 composite adherends to evaluate possible bonding processes.

  4. Influence of dentin pretreatment on bond strength of universal adhesives

    OpenAIRE

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea

    2017-01-01

    Abstract Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Prem...

  5. Biobased adhesives and non-conventional bonding

    Science.gov (United States)

    Charles Frihart

    2010-01-01

    Biobased adhesives fall into several major classes based upon their chemical structures. Starches are used in large volume, especially in the paper products industries, but cellulosics generally do not have the strength and water resistance needed for most wood products. Several authors have covered cellulosics adhesives (Baumann and Conner 2002, Pizzi 2006). However...

  6. Current aspects on bonding effectiveness and stability in adhesive dentistry.

    Science.gov (United States)

    Cardoso, M V; de Almeida Neves, A; Mine, A; Coutinho, E; Van Landuyt, K; De Munck, J; Van Meerbeek, B

    2011-06-01

    Improved dental adhesive technology has extensively influenced modern concepts in restorative dentistry. In light of minimal-invasive dentistry, this new approach promotes a more conservative cavity design, which basically relies on the effectiveness of current enamel-dentine adhesives. Nowadays, the interaction of adhesives with the dental substrate is based on two different strategies, commonly described as an etch-and-rinse and a self-etch approach. In an attempt to simplify the bonding technique, manufacturers have decreased the number of steps necessary for the accomplishment of the bonding procedure. As a consequence, two-step etch-and-rinse and one-step (self-etch) adhesives were introduced and gained rapid popularity in the dental market due to their claimed user-friendliness and lower technique sensitivity. However, many concerns have been raised on the bonding effectiveness of these simplified adhesives, especially in terms of durability, although this tends to be very material dependent. In order to blend all the adhesive components into one single solution, one-step adhesives were made more acidic and hydrophilic. Unfortunately, these properties induce a wide variety of seemingly unrelated problems that may jeopardize the effectiveness and stability of adhesion to the dental substrate. Being more susceptible to water sorption and thus nanoleakage, these adhesives are more prone to bond degradation and tend to fail prematurely as compared to their multi-step counterparts. Incidentally, another factor that may interfere with the bonding effectiveness of adhesives is the technique used for caries removal and cavity preparation. Several tools are on the market today to effectively remove carious tissue, thereby respecting the current trend of minimum intervention. Despite their promising performance, such techniques modify the tooth substrate in different aspects, possibly affecting bonding effectiveness. Altogether, we may conclude that not only the

  7. Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system

    Directory of Open Access Journals (Sweden)

    Bruna Gabrielle da Silva Sutil

    Full Text Available Abstract Objectives: To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Material and Methods: Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8 according to Scotchbond Universal Adhesive (SbU applied in self-etch (SE and etch-and-rinse (ER mode, adhesive temperature (20°C or 37°C and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS. The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%. Results: Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Conclusions: Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin.

  8. Non destructive evaluation of adhesively bonded carbon fiber reinforced composite lap joints with varied bond quality

    Science.gov (United States)

    Vijayakumar, R. L.; Bhat, M. R.; Murthy, C. R. L.

    2012-05-01

    Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

  9. Adhesive fracture mechanics. [stress analysis for bond line interface

    Science.gov (United States)

    Bennett, S. J.; Devries, K. L.; Williams, M. L.

    1974-01-01

    In studies of fracture mechanics the adhesive fracture energy is regarded as a fundamental property of the adhesive system. It is pointed out that the value of the adhesive fracture energy depends on surface preparation, curing conditions, and absorbed monolayers. A test method reported makes use of a disk whose peripheral part is bonded to a substrate material. Pressure is injected into the unbonded central part of the disk. At a certain critical pressure value adhesive failure can be observed. A numerical stress analysis involving arbitrary geometries is conducted.

  10. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  11. Microtensile bond strength and interfacial characterization of 11 contemporary adhesives bonded to bur-cut dentin.

    Science.gov (United States)

    Sarr, Mouhamed; Kane, Abdoul Wakhabe; Vreven, José; Mine, Atsushi; Van Landuyt, Kirsten L; Peumans, Marleen; Lambrechts, Paul; Van Meerbeek, Bart; De Munck, Jan

    2010-01-01

    This study evaluated mechanically and ultra-morphologically 11 different adhesive systems bonded to dentin. The microtensile bond strength (microTBS) of 11 contemporary adhesives, including two three-step etch&rinse, three two-step etch&rinse, two two-step self-etch and four one-step self-etch adhesives to dentin, were measured. The resultant interfacial ultra-structure at dentin was characterized by transmission electron microscopy (TEM). Human third molars had their superficial dentin surface exposed, after which a standardized smear layer was produced using a medium-grit diamond bur. The selected adhesives were applied according to their respective manufacturer's instructions for microTBS measurement after storage in water at 37 degrees C for 24 hours or for TEM interfacial characterization. The microTBS varied from 11.1 to 63.6 MPa; the highest bond strengths were obtained with the three-step etch&rinse adhesives and the lowest with one-step self-etch adhesives. TEM evaluation showed very different interaction patterns, especially for the self-etch adhesives. "Mild" self-etch adhesives demineralized the dentin surface sufficiently to provide micro-mechanical retention, while preserving hydroxyapatite within the hybrid layer to enable additional chemical interaction. When bonded to dentin, the adhesives with simplified application procedures (in particular, one-step self-etch adhesives) still underperform as compared to conventional three-step adhesives. "Mild" two-step self-etch adhesives that provide additional chemical bonding appear to most optimally combine bonding effectiveness with a simplified application protocol.

  12. Bonding of adhesive resin luting agents to metal and amalgam.

    Science.gov (United States)

    Osman, Saad A; McCabe, John F; Walls, Angus W G

    2008-12-01

    The shear bond strength of three adhesives, Panavia 21, Superbond, All Bond C&B Cement, and a dual cure resin (Variolink), to Ni-Cr-Be (Rexillium III), Midigold (Type III gold) and Amalgam (Sybraloy) were determined. Fifteen samples were prepared using 800 grit abrasive papers for Ni-Cr and Midi-Gold, and 100 grit papers for amalgam. Ni-Cr-Be and Midi-Gold samples were sandblasted for 30 s and steam cleaned for 10 s. The adhesives were bonded to the samples using gelatine capsules and were matured for 24 h in water at 37 degrees C. The samples were debonded in shear using an Instron at a cross-head speed of 1 mm/min. The data was analysed using ANOVA and a Tukey test. The bond strength of Superbond to both metal alloys was significantly higher (Pcement had shown to be not significant difference from those of Panavia 21 and Variolink, when bonded to Rexillium and Midi-Gold, respectively. The bond strength of All Bond C&B Cement to amalgam was significantly greater (Padhesives when compared with Rexillium (PPanavia 21>All Bond C&B>Variolink. The nature of substrate to be used for bonding and the adhesive material itself are important factors in bonding which can be achieved between cast metals and prepared teeth with amalgam filling. Superbond should be successful as an adhesive for the attachment of all substrates tested, with the possible exception of amalgam, for which All Bond C&B Cement gives the best result.

  13. Water durability of resin bond to precious metal alloys using adhesive resins containing adhesion promoting monomers.

    Science.gov (United States)

    Kadoma, Yoshinori; Kojima, Katsunori

    2005-12-01

    Adhesive resins for precious metals were prepared by adding an adhesion promoting monomer to MMA-PMMA/TBBO resin. Precious metal alloys bonded by the adhesive resin were thermocycled 0, 1,000, 2,000, or 4,000 times in water between 4 and 60 degrees C, and tensile bond strengths were measured. Debonded metal surfaces after the tensile test were analyzed based on an area of cohesive failure. Three-way ANOVA revealed that all the three parameters--adherend, adhesive monomer, and number of thermal cycles--exhibited a significant influence on bond strength. Bond strength significantly decreased with increasing number of thermal cycles except for resin with 9,10-epithiodecyl 4-vinylbenzoate (EP8VB) to Au alloy. Mean bond strength of adhesive resin with 9,10-epithiodecyl methacrylate (EP8MA), EP8VB, or 3,4-epithiobutyl 2,2-bis(methacryloyloxymethyl)propionate (EP2BMA) exceeded 22 MPa after 4,000 thermal cycles. Analysis of debonded surfaces revealed the applicability of EP8MA, EP8VB, and EP2BMA as an adhesive monomer component of adhesive resin formulations.

  14. Delamination failure of multilaminated adhesively bonded joints at low temperatures

    Science.gov (United States)

    Lee, Chi-Seung; Chun, Min-Sung; Kim, Myung-Hyun; Lee, Jae-Myung

    2011-08-01

    A series of experimental investigations of multilaminated joints adhesively bonded by epoxy/polyurethane (PU) glue were conducted in order to examine the delamination failure characteristics under in-plane shear loading at low temperatures. In order to observe these phenomena, a series of lap-shear tests were carried out at various low temperatures (20 °C, -110 °C and -163 °C) and various adhesion areas (15 mm × 50 mm, 30 mm × 50 mm, 50 mm × 50 mm, 75 mm × 50 mm and 100 mm × 50 mm). The test results were used to investigate the delamination and material characteristics, as well as the material properties, e.g., ultimate shear stress and shear elongation. Furthermore, the dependencies of the characteristics of multilaminated adhesively bonded joints (MABJs) on temperature and adhesion area was analyzed using the stress-strain relationship, and closed form formulas that are functions of the dependent parameters are proposed.

  15. Bonding stability of adhesive systems to eroded dentin

    Directory of Open Access Journals (Sweden)

    Janaina Barros CRUZ

    2015-01-01

    Full Text Available This in vitro study evaluated the immediate and 6 months microshear bond strength (µSBS of different adhesive systems to sound and eroded dentin. Sixty bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated into two groups: sound dentin (immersion in artificial saliva and eroded dentin (erosive challenge following a pH cycling model comprising 4 ×/day Sprite Light® drink for 10 days. Then, specimens were reassigned according to the adhesive system: etch-and-rinse adhesive (Adper Single Bond, two-step self-etch system (Clearfil SE Bond, or one-step self-etch adhesive (Adper Easy One. Polyethylene tubes with an internal diameter of 0.76 mm were placed over pre-treated dentin and filled with resin composite (Z250. Half of the specimens were evaluated by the µSBS test after 24 h, and the other half 6 months later, after water storage at 37°C. Failure mode was evaluated using a stereomicroscope (400×. Data were analyzed by three-way repeated measures analysis of variance and Tukey’s post hoc tests (α = 0.05. After 6 months of water aging, marked reductions in µSBS values were observed, irrespective of the substrate. The µSBS values for eroded dentin were lower than those obtained for sound dentin. No difference in bonding effectiveness was observed among adhesive systems. For all groups, adhesive/mixed failure was observed. In conclusion, eroded dentin compromises the bonding quality of adhesive systems over time.

  16. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  17. Microtensile Bond Strength of Single Bond and Adper Prompt-L-Pop Adhesives to Dentin

    Directory of Open Access Journals (Sweden)

    P. Alizadeh Oskoee

    2008-03-01

    Full Text Available Objective: The aim of this study was to evaluate the microtensile bond strength to sound and caries-affected dentin using Single Bond and Adper Prompt-L-Pop adhesives.Materials and Methods: Sixteen extracted human molars with carious lesions extended halfway through dentin were ground to expose the caries affected and the surrounding normal dentin. The samples were divided into two groups of eight samples each, including Single Bond (two-step etch and rinse and Adper Prompt-L-Pop (one step self-etch. Z-100 (3M was used for composite build-ups. The teeth were then sectioned and prepared for micro tensile bond strength test, at cross head speed of 1.5 mm/min. Data were ana-lyzed by 1- and 2-way ANOVA.Results: Bond strengths of Single Bond and Adper Prompt-L-Pop adhesives to sound den-tin were significantly higher than to the caries-affected one (P<0.001, besides, bond strength of Single Bond to dentin was generally found to be higher than Adper Prompt-L-Pop adhesive (P<0.001.The interaction effect was not significant (P=0.116Conclusion: Bond strength to caries-affected dentin was compromised when one and two step adhesives were used.

  18. Comparison of shear bond strength of stainless steel brackets bonded with three light- cured adhesives

    Directory of Open Access Journals (Sweden)

    Zahra Minaei Basharik

    2015-09-01

    Full Text Available Introduction: The bonding process of the brackets to enamel has been a critical issue in orthodontic research. The purpose of this study was to evaluate the shear bond strength of 3 light-cured adhesives (transbond XT, Z250, light bond. Materials &Methods: In this study sixty extracted human premolars were collected and randomly divided into 3 test groups. All teeth were etched by 37% phosphoric acid. In first group brackets were bonded by Transbond XT adhesive, in group two brackets were bonded by Light bond adhesive and in third group were bonded by filtek Z250 composite. All of them were cured with Ortholux xt for 40 seconds.24 hours after thermocycling, Shear Bond Strength (SBS values of these brackets were recorded using a Universal Testing Machine. Adhesive Remnant Index (ARI scores were determined after the failure of the brackets, using Stereo Microscope the data were analyzed using ANOVA and Chi-square tests. Results: Mean shear bond strength of Transbond XT, light bond and Z250 were 28.9±2.25 MPa, 25.06±1.98 MPa and 26.8±2.57 MPa, respectively. No significant difference was observed in the SBS among the groups and a clinically acceptable SBS was found for the three adhesives. ARI scores were not significantly different between the various groups (P>0.05. Conclusion: This study showed that the Z250 can be used as light bond and transbond xt to bond orthodontic brackets and ARI and SBS scores were not significantly different.

  19. Microshear bond strength of Nano-Bond adhesive containing nanosized aluminum trioxide particles.

    Science.gov (United States)

    Althomali, Yousef Mohammed; Ebrahim, Mohamed Ismail

    2017-01-01

    The present study was conducted to evaluate the effect of nanosized aluminum trioxide (Al 2 O 3 ) particles when added to the Nano-Bond adhesive system and its effect on the microshear bond strength of nanocomposite resin to dentin. A newly developed adhesive (Nano-Bond) and one type of light-cured resin restorative material (nanocomposite resin) were used in this study. The occlusal surfaces of extracted human molar teeth were ground perpendicular to the long axis of each tooth to expose a flat dentin surface. The adhesives were applied to the dentin surfaces according to manufacturers' instructions. The nanocomposite resin was then placed and light cured for 40 s. After immersion in water at 37°C for 24 h, the specimens were subjected to thermocycling before testing, and a microshear bond test was carried out. The recorded bond strengths (MPa) were collected, tabulated, and statistically analyzed. A one-way analysis of variance and Tukey's tests were used to test for significance between the means of the groups; statistical significance was assumed when the P ≤ 0.05. The mean microshear bond strength of the Nano-Bond adhesive system containing nanosized Al 2 O 3 at a concentration of 2% was 23.15 MPa (Group B), which was significantly greater than that of the Nano-Bond adhesive system without additives (15.03 MPa, Group A). These results indicate that nanosized Al 2 O 3 added to the Nano-Bond adhesive system at a concentration of 2% increases the microshear bond strength.

  20. Evaluation of adhesively bonded composites by nondestructive techniques

    Science.gov (United States)

    Malinowski, Paweł H.; Ecault, Romain; Wandowski, Tomasz; Ostachowicz, Wiesław M.

    2017-04-01

    Composite materials are commonly used in many branches of industry. One method to join or repair CFRP parts is by the use adhesive bonding. There is a search of effective methods for pre-bond assessment of bonded parts and post-bond inspection. Research reported here focuses on post-bond inspection of bonded CFRP plates. In this paper we reported results of two methods. We used noncontact ultrasonic testing (UT) technique as reference method. Ultrasonic testing was made in an immersion tank using phased-array probes. The second method was the electromechanical impedance (EMI). A piezoelectric sensors were surface mounted on each of the samples. Due to piezoelectric effect the electrical response of the sensor is related to mechanical response of the structure to which the sensors is bonded to. Measurements were conducted using HIOKI Impedance Analyzer IM3570. In order to perform a detailed study three samples of each kind were tested. There were three reference samples. The samples with modified adhesive bonds had three levels of severity, so there were three samples with each level of modification. The ultrasonic testing was focused on C-scan analysis taking into consideration the amplitude and time of flight (TOF). Two probes were used, one with 5 MHz frequency, second with 10 MHz. The EMI spectra were gathered up to 5 MHz and they were processed with signal processing algorithms in order to extract differences between reference samples and samples with modified bonds. The UT results provided relevant information about the investigated samples, while the EMI showed sensitivity to the level of adhesive bond modification.

  1. Immediate bonding properties of universal adhesives to dentine.

    Science.gov (United States)

    Muñoz, Miguel Angel; Luque, Issis; Hass, Viviane; Reis, Alessandra; Loguercio, Alessandro Dourado; Bombarda, Nara Hellen Campanha

    2013-05-01

    To evaluate the dentine microtensile bond strength (μTBS), nanoleakage (NL), degree of conversion (DC) within the hybrid layer for etch-and-rinse and self-etch strategies of universal simplified adhesive systems. forty caries free extracted third molars were divided into 8 groups for μTBS (n=5), according to the adhesive and etching strategy: Clearfil SE Bond [CSE] and Adper Single Bond 2 [SB], as controls; Peak Universal Adhesive System, self-etch [PkSe] and etch-and-rinse [PkEr]; Scotchbond Universal Adhesive, self-etch [ScSe] and etch-and-rinse [ScEr]; All Bond Universal, self-etch [AlSe] and etch-and-rinse [AlEr]. After restorations were constructed, specimens were stored in water (37°C/24h) and then resin-dentine sticks were prepared (0.8mm(2)). The sticks were tested under tension at 0.5mm/min. Some sticks from each tooth group were used for DC determination by micro-Raman spectroscopy or nanoleakage evaluation (NL). The pH for each solution was evaluated using a pH metre. Data were analyzed with one-way ANOVA and Tukey's test (α=0.05). For μTBS, only PkSe and PkEr were similar to the respective control groups (p>0.05). AlSe showed the lowest μTBS mean (puniversal adhesives was shown to be material-dependent. The results indicate that this new category of universal adhesives used on dentine as either etch-and-rinse or self-etch strategies were inferior as regards at least one of the properties evaluated (μTBS, NL and DC) in comparison with the control adhesives (CSE for self-etch and SB for etch-and-rinse). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Bonding effectiveness of adhesive luting agents to enamel and dentin.

    Science.gov (United States)

    Hikita, K; Van Meerbeek, B; De Munck, J; Ikeda, T; Van Landuyt, K; Maida, T; Lambrechts, P; Peumans, M

    2007-01-01

    The bonding effectiveness of five adhesive luting agents to enamel and dentin using different application procedures was determined using a micro-tensile bond strength protocol (microTBS). Enamel/dentin surfaces of human third molars were flattened using a high-speed diamond bur. Composite resin blocks (Paradigm, 3M ESPE) were luted using either Linkmax (LM; GC), Nexus 2 (NX; Kerr), Panavia F (PN; Kuraray), RelyX Unicem (UN; 3M ESPE) or Variolink II (VL; Ivoclar-Vivadent), strictly following manufacturers' instructions. For some luting agents, modified application procedures were also tested, resulting in four other experimental groups: Prompt L-Pop+RelyX Unicem (PLP+UN; 3M ESPE), Scotchbond Etchant+RelyX Unicem (SE+UN; 3M ESPE), Optibond Solo Plus Activator+Nexus 2 (ACT+NX; Kerr) and K-Etchant gel+Panavia-F (KE+P; Kuraray). The experimental groups were classified according to the adhesive approach in self-adhesive (UN), etch-and-rinse (ACT+NX, NX, KE+P, SE+UN and VL when bonded to enamel) and self-etch adhesive luting agents (LM, PLP+UN, PN and VL when bonded to dentin). The specimens were stored for 24h in distilled water at 37 degrees C prior to microTBS testing. The Kruskal-Wallis test was used to determine pairwise statistical differences (padhesive separately and an insufficiently light-cured luting agent. Following a correct application procedure, the etch-and-rinse, self-etch and self-adhesive luting agents are equally effective in bonding to enamel and dentin. Several factors negatively influenced bond strength such as bonding RelyX Unicem to enamel without prior phosphoric acid etching; no separate light-curing of a light-polymerizable adhesive prior to cementation, use of a light-polymerizing adhesive converted into a dual-polymerizing adhesive, and use of a dual-cure luting agent with a low auto-polymerizable potential.

  3. Adhesive primers for bonding cobalt-chromium alloy to resin.

    Science.gov (United States)

    Yoshida, K; Kamada, K; Atsuta, M

    1999-06-01

    This study evaluated the effect of five adhesive primers on the shear bond strength of a self-curing resin to cobalt-chromium (Co-Cr) alloy. The adhesive primers Acryl Bond (AB, Shofu), Cesead Opaque Primer (COP, Kuraray), Metacolor Opaque Bonding Liner (MOBL, Sun-Medical), Metal PrimerII (MPII, GC) and MR. Bond (MRB, Tokuyama) were used. A brass ring which was placed over the casting alloy disk surface non-primed or primed with each primer was filled with the self-curing MMA-PMMA resin. The specimens were stored in water at 37 degrees C for 24 h and then immersed alternately in water baths at 4 C and 60 degrees C for 1 min each for up to 50000 thermal cycles before shear mode testing at a crosshead speed of 0.5 mm/min. All of the primers examined, except MOBL, improved the shear bond strength between the resin and Co-Cr alloy compared with nonprimed specimens prior to thermal cycling. Regardless of which primer was used, the shear bond strength significantly differed between thermal cycles 0 and 50000. However, after 50000 thermal cycles, the bond strengths of resin to Co-Cr alloy primed with COP or MPII were significantly greater than those of specimens primed with AB, MOBL or MRB and non-primed controls. This study indicated that COP and MPII are effective primers to obtain higher bond strength between resin and Co-Cr alloy.

  4. Development of Design Rules for Adhesive Bonded Joints

    NARCIS (Netherlands)

    Van Straalen, I.J.; Van Tooren, M.J.L.

    2002-01-01

    This article deals with the development of design rules for structural adhesive bonded joints. In daily practice engineers are confronted with the problem to verify the reliability of their designs. This can be done with use of an experimental programme, but for the marine, transport, building and

  5. Development of design rules for adhesive bonded joints

    NARCIS (Netherlands)

    Straalen, IJ.J. van; Tooren, M.J.L. van

    2002-01-01

    This article deals with the development of design rules for structural adhesive bonded joints. In daily practice engineers are confronted with the problem to verify the reliability of their designs. This can be done with use of an experimental programme, but for the marine, transport, building and

  6. Microtensile bond strength between adhesive cements and root canal dentin

    OpenAIRE

    Bouillaguet, Serge; Troesch, Sabra; Wataha, John C.; Krejci, Ivo; Meyer, Jean Marc; Pashley, David H

    2003-01-01

    The hypotheses tested were that the bond strength of adhesive cements to root canal dentin (1) would be reduced as a function of configuration factor, polymerization process and type of luting material and (2) would be lowered near the apex of the tooth.

  7. Interface strength and degradation of adhesively bonded porous aluminum oxides

    NARCIS (Netherlands)

    Abrahami, S.T.; de Kok, John M.M.; Gudla, Visweswara C.; Ambat, Rajan; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    For more than six decades, chromic acid anodizing has been the main step in the surface treatment of aluminum for adhesively bonded aircraft structures. Soon this process, known for producing a readily adherent oxide with an excellent corrosion resistance, will be banned by strict international

  8. Nanoindentation methods for wood-adhesive bond lines

    Science.gov (United States)

    Joseph E. Jakes; Donald S. Stone; Charles R. Frihart

    2008-01-01

    As an adherend, wood is structurally, chemically, and mechanically more complex than metals or plastics, and the largest source of this complexity is wood’s chemical and mechanical inhomogeneities. Understanding and predicting the performance of adhesively bonded wood requires knowledge of the interactions occurring at length scales ranging from the macro down to the...

  9. Two-year water degradation of self-etching adhesives bonded to bur ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; Feilzer, A.J.

    2009-01-01

    To evaluate the effect of water storage on the microshear bond strength to ground enamel of three "all-in-one" self-etch adhesives: Futurabond DC, Clearfil S Tri Bond and Hybrid bond; a self-etching primer; Clearfil SE Bond and an etch-and-rinse adhesive system, Admira Bond. Sixty human molars were

  10. Failure strength prediction for adhesively bonded single lap joints

    Science.gov (United States)

    Rahman, Niat Mahmud

    For adhesively bonded joint, failure strength depends on many factors such as material properties (both adhesive and adherend), specimen geometries, test environments, surface preparation procedures, etc. Failure occurs inside constitutive materials or along joint interfaces. Based on location, adhesively bonded failure mode can be classified as adhesive failure mode, cohesive failure mode and adherend failure mode. Failure mode directly affects the failure strength of joint. For last eight decades, researchers have developed analytical, empirical or semi-empirical methods capable of predicting failure strength for adhesively bonded joints generating either cohesive failure or adherend failure. Applicability of most of the methods is limited to particular cases. In this research, different failure modes for single lap joints (SLJs) were generated experimentally using epoxy based paste adhesive. Based on experimental data and analytical study, simplified failure prediction methods were developed for each failure mode. For adhesive failure mode, it is observed that peel stress distributions concur along interface near crack initiation points. All SLJs for this test endured consistent surface treatments. Geometric parameters of the joints were varied to study their effect on failure strength. Peel stress distributions were calculated using finite analysis (FEA). Based on peel stress distribution near crack initiation point, a failure model is proposed. Numerous analytical, empirical and semi-empirical models are available for predicting failure strengths of SLJs generating cohesive failures. However, most of the methods in the literature failed to capture failure behavior of SLJs having thickness of adhesive layer as variable. Cohesive failure mode was generated experimentally using aluminum as adherend and epoxy adhesive considering thickness of adhesive layers as variable within SLJs. Comparative study was performed among various methods. It was observed that

  11. Adhesively bonded single lap joint of composites

    Directory of Open Access Journals (Sweden)

    Peter Alvarado Prieto

    2013-09-01

    Full Text Available A study of single lap joints of composite materials with and without attachments is presented. Failure of this type of joint is caused by the high peel stress in a perpendicular direction presented in the geometric singularity. It is shown that the joint strength is affected by factors such as surface preparation, the adhesive curing process and cleaning. The two configurations, with and without attachments, are compared. It is shown that the single lap joint with attachment has a higher strength than the joint without attachments when no fillet is left on the geometrical singularity. However, because of the low increase in joint strength and the complexity of manufacturing, the choice of type of joint is left to the manufacturer's judgment.

  12. Effect of adherend recessing on bi-adhesively bonded single-lap ...

    Indian Academy of Sciences (India)

    formed bi-adhesively bonded SLJs. The bondline characteristics of bi-adhesively bonded joints with the effect of adherend recessing have been investigated by examining the distributions of the peel and maximum principle stresses (MPS) at the ...

  13. Cytotoxic effect of a dentin bonding agent: AdheSE

    Directory of Open Access Journals (Sweden)

    Banava S.

    2007-05-01

    Full Text Available Background and Aim: An important requirement for a dentin bonding agent is biological compatibility. Since dentin bonding agents are placed in cavity preparations with subgingival extensions, with direct contact to gingival and mucosal tissues, tissue response to these materials must be investigated. The aim of this study was to examine the cytotoxicity of AdheSE, a self etching adhesive, on human gingival fibroblasts."nMaterials and Methods: In this experimental in vitro study, primary human gingival fibroblasts were exposed to different dilutions of primer & bond of AdheSE (Vivadent, Liechtenstein. The toxicity of the primer was tested in 30 seconds, 300 seconds and 24 hours. The cytotoxicity of the bond was analyzed in uncured mode after 20 seconds, 5 minutes and 24 hours. In cured mode, tested materials were analyzed after 24 and 48 hours. Cytotoxic effects were evaluated using MTT, cell counting and DNA condensation assays. Data were analyzed by two way repeated measure ANOVA with p<0.05 as the level of significance."nResults: MTT Assay revealed that uncured AdheSE Bond was toxic only in 10-1 dilution and the difference with control group was significant (P<0.05. By increasing the time to 300sec. and 24h, dilutions of 10-2 and 10-4 were the most cytotoxic respectively. Cytotoxicity of uncured primer after 30 sec. and 300 sec. began from 10-2 and after 24h began from 10-2 and reached to 10-1. AdheSE in cured mode showed significant difference with control group in 1:2 (P<0.001,1:4 & 1:6 (P<0.01 dilutions. In cell counting assay only the 1:2 dilution was significantly more toxic than control group. Apoptosis (a morphological and biochemical distinct form of cell death that regulates cell turnover comprised in less than 5% of total death in both cured and uncured adhesives."nConclusions: Based on the results of this study, by increasing the exposure time, smaller amounts of bonding could be cytotoxic. Cytotoxicity was related to material

  14. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  15. Comparison of enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives in self-etch mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Hosoya, Yumiko; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-10-01

    To comparatively evaluate universal adhesives and two-step self-etch adhesives for enamel bond fatigue durability in self-etch mode. Three universal adhesives (Clearfil Universal Bond; G-Premio Bond; Scotchbond Universal Adhesive) and three two-step self-etch adhesives (Clearfil SE Bond; Clearfil SE Bond 2; OptiBond XTR) were used. The initial shear bond strength and shear fatigue strength of the adhesive to enamel in self-etch mode were determined. The initial shear bond strengths of the universal adhesives to enamel in self-etch mode was significantly lower than those of two-step self-etch adhesives and initial shear bond strengths were not influenced by type of adhesive in each adhesive category. The shear fatigue strengths of universal adhesives to enamel in self-etch mode were significantly lower than that of Clearfil SE Bond and Clearfil SE Bond 2, but similar to that OptiBond XTR. Unlike two-step self-etch adhesives, the initial shear bond strength and shear fatigue strength of universal adhesives to enamel in self-etch mode was not influenced by the type of adhesive. This laboratory study showed that the enamel bond fatigue durability of universal adhesives was lower than Clearfil SE Bond and Clearfil SE Bond 2, similar to Optibond XTR, and was not influenced by type of adhesive, unlike two-step self-etch adhesives.

  16. Shear bond strength of hydrophilic adhesive systems to enamel.

    Science.gov (United States)

    Hara, A T; Amaral, C M; Pimenta, L A; Sinhoreti, M A

    1999-08-01

    To compare the enamel shear bond strength of four hydrophilic adhesive systems: one multiple-bottle (Scotchbond Multi-Purpose Plus), two one-bottle (Stae, Single Bond) and one self-etching (Etch & Prime). 120 bovine incisor teeth were obtained, embedded in polyester resin, polished to 600 grit to form standardized enamel surfaces, and randomly assigned to four groups (n = 30). Each adhesive system was used on enamel according to the manufacturer's instructions, and resin-based composite (Z100) cylinders with 3 mm diameter and 5 mm height were bonded. Specimens were stored in humid environment for 1 week, and bond strength was determined using a universal testing machine, at a crosshead speed of 0.5 mm/minute. The mean shear bond strength values (MPa +/- SD) were: Single Bond: 24.28 +/- 5.27 (a); Scotchbond Multi-Purpose Plus: 21.18 +/- 4.35 (ab); Stae: 19.56 +/- 4.71 (b); Etch & Prime 3.0: 15.13 +/- 4.92 (c). ANOVA revealed significant difference in means (P bottle systems.

  17. Why do some wood-adhesive bonds respond poorly to accelerated moisture-resistant tests?

    Science.gov (United States)

    Charles R. Frihart; James M. Wescott

    2008-01-01

    The most challenging part of developing acceptable adhesives for wood bonding often is to create a bond that will withstand exposure to wet conditions or wet/dry cycles. Products that pass these tests have been developed empirically, but the aspects that make it difficult for adhesives to pass these tests and systematically ways to develop more durable adhesive bonds...

  18. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives : Focussing on Bonding Glass

    NARCIS (Netherlands)

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap

  19. Shear bond strength of new self-adhesive flowable composite resins.

    Science.gov (United States)

    Wajdowicz, Michael N; Vandewalle, Kraig S; Means, Mark T

    2012-01-01

    Recently, new self-adhesive flowable composite resin systems have been introduced to the market. These new composite resin systems reportedly bond to dentin and enamel without the application of an adhesive bonding agent. The purpose of this study was to evaluate the shear bond strength to enamel of two new self-adhesive flowable composites with and without the use of an etch-and-rinse bonding agent. The new self-adhesive flowable composites had significantly lower bond strengths to enamel compared to a traditional adhesively bonded flowable composite. Both self-adhesive flowable composites had a significant increase in bond strength to enamel with the use of a phosphoric acid-etch and adhesive bonding agent.

  20. Shear bond strength of ceramic and metallic orthodontic brackets bonded with self-etching primer and conventional bonding adhesives.

    Science.gov (United States)

    Arash, Valiollah; Naghipour, Fatemeh; Ravadgar, Mehdi; Karkhah, Ahmad; Barati, Mohammad Saleh

    2017-01-01

    Adult patients typically require high-quality orthodontic treatment for ceramic brackets, but some clinicians remain concerned about the bond strength of these brackets. Therefore, the aim of this study was to determine the shear bond strength and de-bonding characteristics of metallic and ceramic brackets bonded with two types of bonding agents. In an experimental study done in 2013 in Babol, Iran, 120 extracted human maxillary premolar teeth were randomly divided into four groups as follows: HM group: metallic bracket/conventional bonding agent; SM group: metallic bracket/Transbond self-etching primer; HC group: ceramic bracket/conventional bonding agent; SC group: ceramic bracket/Transbond self-etching primer. Twenty-four hours after thermocycling (1000 cycle, 5 °C-55 °C), the shear bond strength values were measured. The amount of resin remaining on the tooth surface (adhesive remnant index: ARI) was determined under a stereomicroscope. Enamel detachment index was evaluated under a scanning electron microscope. To perform statistical analysis, ANOVA, Kruskal-Wallis, and Tukey post-hoc tests were applied. The level of significance was set at p conventional technique. Many samples showed the bracket-adhesive interface failure or failure inside the adhesive.

  1. Adhesive Characterization and Progressive Damage Analysis of Bonded Composite Joints

    Science.gov (United States)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2014-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  2. Bonding performance of universal adhesives in different etching modes.

    Science.gov (United States)

    Wagner, Andrea; Wendler, Michael; Petschelt, Anselm; Belli, Renan; Lohbauer, Ulrich

    2014-07-01

    The aim of this study was to compare the microtensile bond strength (μTBS) and resin penetration into dentine of three universal adhesives (UAs) applied in two different etching modes (i.e. self-etch or etch-and-rinse). The effect of thermocycling on the μTBS was also evaluated. The occlusal third of sound human molars was removed and the exposed surfaces were treated with three UAs (Futurabond Universal, Scotchbond Universal Adhesive and All-Bond Universal) in self-etch or etch-and-rinse mode. Two one-step self-etch adhesives (Futurabond DC and Futurabond M) were applied on additional teeth as reference. After composite build up, the specimens were stored for 24 h in distilled water at 37 °C or thermocycled for 5000 cycles. Composite/dentine beams were prepared (1 mm(2)) and μTBS test was performed. Data was analyzed using three-way ANOVA and Tukey's test (α=0.05). One additional tooth was prepared for each group for evaluation of infiltration ability into dentine by dyeing the adhesives with a fluorochrome (Rhodamine B). After longitudinal sectioning, the generated interfaces were examined under confocal laser scanning microscopy. The addition of an etching step did not significantly affect the μTBS of none of the UAs, when compared to their self-etch application mode. All pre-etched specimens showed considerably longer resin tags and thicker hybrid layers. Thermocycling had no significant effect on the μTBS of the UAs. Application of an etching step prior to UAs improves their dentine penetration, but does not affect their bond strength to dentine after 24h or after thermocycling for 5000 cycles. Similar bond strength values were observed for the UAs regardless of application mode, which makes them reliable for working under different clinical conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Initial and fatigue bond strengths of nanofilled and conventional composite bonding adhesives.

    Science.gov (United States)

    BenGassem, Afnan A; Georgiou, George; Jones, Steven Peter

    2013-06-01

    To compare the initial and fatigue shear bond strengths of a nanofilled adhesive with a conventional light-cured adhesive in an ex vivo laboratory study. Fifty hydroxyapatite discs were prepared by cold pressing. Using a standardized bonding protocol, 100 Victory series upper left central incisor brackets were bonded to discs with Transbond™ Supreme LV nanofilled composite resin and 100 brackets were bonded to discs with Transbond XT. Fifty brackets from each group were subjected to cyclic loading (5000 cycles at 2 Hz) at 50% of the mean bond strength in a Dartec Series HC10 Testing Machine. Initial (unfatigued) and fatigued bond strengths were determined by applying a shear force at the bracket/substrate interface using a custom-made metal jig in an Instron Universal Testing Machine. RESULTS AND STATISTICAL ANALYSIS: One-way analysis of variance showed that Transbond Supreme LV exhibited higher initial mean bond strength than Transbond XT (P = 0·001). No statistically significant difference was found between the fatigue bond strengths of Transbond Supreme LV and Transbond XT (P = 0·323). Two-way analysis of variance demonstrated statistically significant differences when the effect of the composite resin (P = 0·013) and fatigue (P = 0·017) were considered individually. However, when considered in combination there was no statistical significance (P = 0·09). Kaplan-Meier survival analysis showed superior survival of unfatigued brackets with Transbond Supreme LV, but there was no significant difference between the adhesives after fatiguing. The initial bond strength of Transbond Supreme LV was significantly higher than Transbond XT, while the fatigue bond strengths of both resins were comparable. Overall, Transbond Supreme LV demonstrated superior survival under loading than Transbond XT. However, while this was statistically significant for the initial loading, it was not significant after fatiguing. Although these laboratory findings are

  4. Adhesion of hydrogels under water by hydrogen bonding: from molecular interactions to macroscopic adhesion

    Science.gov (United States)

    Creton, Costantino

    2012-02-01

    Hydrogels are an essential part of living organisms and are widely used in biotechnologies, health care and food science. Although swelling properties, cell adhesion on gel surfaces and gel elasticity have attracted much interest, macroscopic adhesion of hydrogels on solid surfaces in aqueous environment is much less well understood. We studied systematically and in aqueous environment, the reversible adhesion by hydrogen bonding of macroscopic model hydrogels of polydimethylacrylamide (PDMA) or of polyacrylamide (PAAm) on solid surfaces functionalized with polyacrylic acid (PAA) polymer brushes. The hydrogels were synthesized by free radical polymerization and the brushes were prepared by grafting polytertbutyl acrylate chains and converting them by pyrolisis into polyacrylic acid. A new adhesion tester based on the flat punch geometry was designed and used to control the contact area, contact time, contact pressure and debonding velocity of the gels from the surface while the samples were fully immersed in water. The adhesion tests were performed at different pH and temperatures and the modulus of the gel and grafting density and molecular weight of the brushes was varied. Macroscopic adhesion results were compared with phase diagrams in dilute solution to detect molecular interactions. While the PDMA/PAA pair behaved very similarly in solution and in macroscopic adhesion tests, the PAAm/PAA pair showed an unexpectedly high adhesion level relatively to its complexation ability in dilute solution. Surprisingly, time dependent experiments showed that the kinetics of H-bond formation and breakup at interfaces was very slow resulting in adhesion energies which were very dependent on contact time up to one hour of contact. At the molecular level, neutron reflectivity showed that the equilibrium brush conformation when in contact with the gels was more extended at pH2 (H-bonds activated) than at pH9 (H-bonds deactivated) and that a certain applied pressure was

  5. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    Science.gov (United States)

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  6. Surface Monitoring of CFRP Structures for Adhesive Bonding

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.

    2017-01-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.

  7. Bracket bond strength comparison between new unfilled experimental self-etching primer adhesive and conventional filled adhesives.

    Science.gov (United States)

    Iijima, Masahiro; Ito, Shuichi; Muguruma, Takeshi; Saito, Takashi; Mizoguchi, Itaru

    2010-11-01

    To determine if a new unfilled experimental self-etching primer (SEP) adhesive system (SBP-40TX + C&B Metabond) that incorporates a methyl methacrylate-based 4-META/TBB (4-methacryloxyethyl trimellitate anhydride tri-n-butyl borane) resin can provide adequate shear bond strength (SBS) when used for bonding orthodontic brackets. Forty-eight human maxillary premolars were randomly divided into three groups of 16 specimens each. Brackets were bonded with three bonding systems. A filled Bis-GMA/TEGDM (triethylene glycol dimethacrylate)-based SEP adhesive system (Transbond Plus) and an unfilled conventional etch-and-rinse adhesive system (C&B Metabond) were used for comparison. The SBS for each sample was examined with a universal testing machine, and the Adhesive Remnant Index score was calculated. Enamel surfaces after conditioning were examined using a scanning electron microscope. Data were compared by one-way analysis of variance and a chi(2) test. The experimental SEP showed a milder etching pattern than Transbond Plus SEP. No statistically significant differences in the mean SBS were found between the specimens bonded with the unfilled experimental SEP adhesive system (10.0 MPa) and the filled SEP adhesive system (8.7 MPa). The unfilled experimental SEP adhesive system showed less residual adhesive than the filled SEP adhesive system. The unfilled experimental SEP adhesive system showed a clinically sufficient SBS that was equivalent to the filled SEP adhesive system.

  8. Ethanol-wet bonding technique may enhance the bonding performance of contemporary etch-and-rinse dental adhesives.

    Science.gov (United States)

    Li, Fang; Liu, Xiao-Yang; Zhang, Ling; Kang, Jun-Jun; Chen, Ji-Hua

    2012-04-01

    To determine whether bonds of contemporary etch-and-rinse adhesives made with ethanol-wet bonding are stronger and more durable than those made with water-wet bonding, and to explore the possible reasons for the bonding results. Flat surfaces of midcoronal dentin were made in extracted human third molars. The dentin surfaces were randomized into 6 groups according to bonding techniques (water- vs ethanol-wet bonding) and dental adhesives [Single Bond 2 (SB), Prime Bond NT (PB), and Gluma Comfort Bond (GB)]. After etching and rinsing, dentin surfaces were either left water-moist or immersed in ethanol. Following adhesive application and composite buildups, the bonded teeth were sectioned into beams for microtensile bond strength evaluation with or without NaOCl challenge. The morphology of the hybrid layer was analyzed with SEM. The wettability of water- vs. ethanol-saturated dentin was evaluated. The concentrations of non-volatile ingredients in the adhesives were compared. Compared to water-wet bonding, ethanol-wet bonding yielded similar (p > 0.05 for PB and GB) or higher (p adhesives), and produced more even hybrid layers. Moreover, ethanol-saturated dentin exhibited a lower contact angle than water-saturated specimens, and the concentrations of non-volatile ingredients of the adhesives decreased in the order of SB > GB > PB. Ethanol-wet bonding could improve the bonding efficacy of contemporary etch-and-rinse adhesives, probably due to the good wettability of ethanol-saturated dentin and the structure of the hybrid layer. Moreover, this positive effect of ethanol-wet bonding might be influenced by the composition of adhesives.

  9. Adhesive bonding of resin cements to cast titanium with adhesive primers

    OpenAIRE

    Di Francescantonio,Marina; Oliveira,Marcelo Tavares de; Daroz,Luiz Gustavo Dias; Henriques, Guilherme Elias Pessanha; Giannini,Marcelo

    2012-01-01

    The purpose of this study was to evaluate the effects of adhesive primer applications on the bond strength of resin cements to cast titanium. Four adhesive primers - Metaltite, Metal Primer II, Alloy Primer and Ceramic Primer - and their respective resin cements - Bistite II DC, Link Max, Panavia F 2.0, RelyX Unicem and RelyX ARC - were tested. Cast plates were prepared from titanium ingots (n=6 specimens/cement) and had their surfaces airborne-particle abraded with Al2O3 (50 μ m). Three...

  10. Comparison between universal adhesives and two-step self-etch adhesives in terms of dentin bond fatigue durability in self-etch mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2017-06-01

    This aim of this study was to compare universal adhesives and two-step self-etch adhesives in terms of dentin bond fatigue durability in self-etch mode. Three universal adhesives - Clearfil Universal, G-Premio Bond, and Scotchbond Universal Adhesive - and three-two-step self-etch adhesives - Clearfil SE Bond, Clearfil SE Bond 2, and OptiBond XTR - were used. The initial shear bond strength and shear fatigue strength of resin composite bonded to adhesive on dentin in self-etch mode were determined. Scanning electron microscopy observations of fracture surfaces after bond strength tests were also made. The initial shear bond strength of universal adhesives was material dependent, unlike that of two-step self-etch adhesives. The shear fatigue strength of Scotchbond Universal Adhesive was not significantly different from that of two-step self-etch adhesives, unlike the other universal adhesives. The shear fatigue strength of universal adhesives differed depending on the type of adhesive, unlike those of two-step self-etch adhesives. The results of this study encourage the continued use of two-step self-etch adhesive over some universal adhesives but suggest that changes to the composition of universal adhesives may lead to a dentin bond fatigue durability similar to that of two-step self-etch adhesives. © 2017 Eur J Oral Sci.

  11. Bond efficacy and interface morphology of self-etching adhesives to ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; El Zohairy, A.A.; Mohsen, M.M.A.; Feilzer, A.J.

    2010-01-01

    Purpose: This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Materials and Methods: Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray)

  12. Influence of application methods of one-step self-etching adhesives on microtensile bond strength

    Directory of Open Access Journals (Sweden)

    Chul-Kyu Choi,

    2011-05-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15, according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond and application methods. The adhesive systems were applied on the dentin as follows: 1 The single coating, 2 The double coating, 3 Manual agitation, 4 Ultrasonic agitation. Following the adhesive application, light-cure composite resin was constructed. The restored teeth were stored in distilled water at room temperature for 24 hours, and prepared 15 specimens per groups. Then microtensile bond strength was measured and the failure mode was examined. Results Manual agitation and ultrasonic agitation of adhesive significantly increased the microtensile bond strength than single coating and double coating did. Double coating of adhesive significantly increased the microtensile bond strength than single coating did and there was no significant difference between the manual agitation and ultrasonic agitation group. There was significant difference in microtensile bonding strength among all adhesives and Clearfil Tri-S Bond showed the highest bond strength. Conclusions In one-step self-etching adhesives, there was significant difference according to application methods and type of adhesives. No matter of the material, the manual or ultrasonic agitation of the adhesive showed significantly higher microtensile bond strength.

  13. Adhesive Bonding of Polymeric Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.D., Boeman, R.G., Paulauskas, F.L.

    1994-11-18

    In 1992, the Oak Ridge National Laboratory (ORNL) began a cooperative research program with the Automotive Composites Consortium (ACC) to develop technologies that would overcome obstacles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures. By reducing the weight of current automobiles, greater fuel economy and reduced emissions can be achieved. The bonding of similar and dissimilar materials was identified as being of primary importance since this enabling technology gives designers the freedom to choose from an expanded menu of low-mass materials for structural component weight reduction. Early in the project`s conception, five key areas were identified as being of primary importance to the automotive industry.

  14. Automotive crashworthiness of adhesively bonded carbon fiber polymer composite structures

    Science.gov (United States)

    Jacob, George Chennakattu

    In passenger vehicles, the ability to absorb impact energy and be survivable for the occupant is called the "crashworthiness" of the structure. The ACC (Automotive Composite Consortium) has been and continues to be very interested in investigating the use of fiber-reinforced composites as crash energy absorbers. It would have been ideal if the composite structure to be used as a crash energy absorber were manufactured as an integral, monolithic component, but limitations in the present day manufacturing technology necessitate the presence of joints in composite structures. While many scientists have investigated the energy absorption characteristics in various fiber reinforced composite materials, there is no literature available on the energy absorption and crushing characteristics of these materials when they are used in a bonded structure. The influence of having a bonded joint within the crush zone of a composite structure has not been adequately characterized in the past. After reviewing the existing literature and based on our own work done in automotive crashworthiness studies it can be concluded that investigating the strain rate dependence of fiber reinforced polymer composites and bonded structures made from them are also very important since the amount of energy they absorb and their performance properties vary with loading rate. The above is the last stage in crashworthiness research, where in one would like to determine how best fiber composite structures can be bonded together in the pursuit of designing the most crashworthy adhesively bonded automotive composite structure. Hence, a comprehensive experimental methodology to analyze and design adhesively bonded automotive composite structures made of carbon fiber polymer composites to sustain axial, off-axis and lateral crash/impact loads is developed and strain rate effects on the crashworthiness of these bonded carbon fiber composite structures are studied. The experimental results from this work are

  15. Adhesive bonding and the use of corrosion resistant primers. [for metal surface preparation

    Science.gov (United States)

    Hockridge, R. R.; Thibault, H. G.

    1972-01-01

    The use of an anti-corrosive primer has been shown to be essential to assure survival of a bonded structure in a hostile environment, particularly if a stress is to be applied to the adhesively bonded joint during the environmental exposure. For example, the Lockheed L-1011 TriStar assembly, after exhaustive evaluation tests specifies use of chromate filled inhibitive polysulfide sealants, and use of corrosion inhibiting adhesive primers prior to structural bonding with film adhesive.

  16. Effect of Storage Time on Bond Strength and Nanoleakage Expression of Universal Adhesives Bonded to Dentin and Etched Enamel.

    Science.gov (United States)

    Makishi, P; André, C B; Ayres, Apa; Martins, A L; Giannini, M

    2016-01-01

    To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, padhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.

  17. Prediction of fracture toughness and durability of adhesively bonded composite joints with undesirable bonding conditions

    Science.gov (United States)

    Musaramthota, Vishal

    Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe

  18. Push-out bond strengths of tooth-colored posts bonded with different adhesive systems.

    Science.gov (United States)

    Perdigão, Jorge; Geraldeli, Saulo; Lee, Ignatius K

    2004-12-01

    To evaluate the effect of luting systems and root region on the push-out bond strengths of a glass fiber-reinforced post and a zirconia post. Thirty-two extracted human anterior teeth (central incisors and canines) were endodontically treated with lateral condensation of gutta percha and AH26 sealer. Teeth were randomly assigned to eight groups (n = 4 per group). Two post systems from the same manufacturer (Cosmopost, a zirconia post; or FRC Postec, a glass fiber-reinforced post) were placed with a luting system (bonding agent and resin luting agent). C-Post was cemented with One-Step and Post Cement Hi-X was used as the light-polymerized adhesive control. ParaPost Fiber White cemented with ParaPost Adhesive and ParaPost Resin Cement was used as an auto-polymerized adhesive control. The roots were sectioned in equal thirds (apical, middle and cervical). A push-out test was performed in each section to measure regional bond strengths in MPa. Means were analyzed with two-way ANOVA and Duncan's post-hoc test (alpha = 0.05). The fiber posts ranked in the highest statistical subset regardless of the luting system: ParaPost Fiber White (self-cure control), FRC Postec bonded with Excite DSC/Variolink II, FRC Postec bonded with Syntac/Variolink II, FRC Postec bonded with Excite DSC/Experimental Self Cure Cement, and C-Post bonded with One Step/Hi-X. The zirconia post Cosmopost ranked in the lowest subsets regardless of the adhesive system used at P < 0.05. Means for the medium region of the root (5.0 +/- 0.8 MPa) were not statistically different from those obtained either in the cervical or in the apical region. Means for the cervical root region (6.2 +/- 0.9 MPa) were statistically higher than those of the apical region (4.5 +/- 1.1 MPa) at P < 0.001.

  19. Light-induced bonding and debonding with supramolecular adhesives.

    Science.gov (United States)

    Heinzmann, Christian; Coulibaly, Souleymane; Roulin, Anita; Fiore, Gina L; Weder, Christoph

    2014-04-09

    Light-responsive supramolecular polymers were applied as reversible adhesives that permit bonding and debonding on demand features. A telechelic poly(ethylene-co-butylene) (PEB) was functionalized with either self-complementary hydrogen-bonding ureidopyrimidinone (UPy) motifs (UPy-PEB-UPy) or 2,6-bis(1'-methylbenzimidazolyl)-pyridine (Mebip) ligands (Mebip-PEB-Mebip), which can coordinate to metal ions (Zn(NTf2)2) and form a metallosupramolecular polymer with the sum formula [Znx(Mebip-PEB-Mebip)](NTf2)2x, with x ≈ 1. In the latter case, light-heat conversion is facilitated by the ultraviolet (UV) light-absorbing metal-ligand motifs, while in the case of UPy-PEB-UPy a UV absorber was added for this purpose. Single lap joints were prepared by sandwiching films of the supramolecular polymers of a thickness of 80-100 μm between two glass, quartz, or stainless steel substrates and bonded by exposure to either UV light (320-390 nm, 900 mW/cm(2)) or heat (80 or 200 °C for UPy-PEB-UPy and the metallopolymer, respectively). UPy-PEB-UPy and [Zn0.8Mebip-PEB-Mebip](NTf2)1.6 displayed a shear strength of 0.9-1.2 and 1.8-2.5 MPa, respectively. When lap joints were placed under load and exposed to light or heat, the samples debonded within seconds. They could be rebonded through exposure to light or heat, and the original adhesive properties were recovered.

  20. Bond durability of self-adhesive composite cements to dentine.

    Science.gov (United States)

    Suyama, Yuji; de Munck, Jan; Cardoso, Marcio Vivan; Yamada, Toshimoto; Van Meerbeek, Bart

    2013-10-01

    Clinically, the most easy-to-use composite cements are the so-called self-adhesive composite cements (SAC's). Hardly any data is however today available on the long-term bonding effectiveness of such luting composites. The purpose of this study was to evaluate the bond durability of different composite cements used to lute feldspathic ceramic blocks onto dentine. Four SAC's (Clearfil SA Cement, Kuraray; G-CEM, GC; SmartCem2, Dentsply; Unicem 3M ESPE), one 'self-etch' (Clearfil Esthetic Cement, Kuraray) and one 'etch-and-rinse' (Variolink ll, Ivoclar-Vivadent) multi-step composite cement were used to lute feldspathic ceramic blocks (Vita Mark II, Vita) onto dentine surfaces. Teeth were distributed randomly in 24 experimental groups according to two different surface-preparation techniques ('SMEAR-COVERED' versus 'SMEAR-FREE') and storage conditions ('IMMEDIATE' versus 'AGED'). Failure patterns were evaluated with a stereomicroscope, and afterwards imaged using Feg-SEM. Two additional specimens were processed for cement-dentine interfacial analysis using TEM. A linear mixed effects statistical model revealed significant differences for the variables 'composite cement', 'surface preparation' and 'ageing'. All self-adhesive composite cements, except Unicem (3M ESPE), did bond less favourably to fractured dentine. TEM revealed an ultra-structurally different interaction of the composite cements with 'SMEAR-COVERED' and 'SMEAR-FREE' dentine. All SAC's suffered most when luted to 'SMEAR-FREE' (fractured) dentine, fortunately of no clinical relevance and most likely due to enhanced water sorption through the open tubules. When luted to 'SMEAR-COVERED' dentine, all SACs appeared equally effective and durable as the 'etch-and-rinse' and 'self-etch' multi-step composite cements. Solely the SAC SmartCem2 (Dentsply) appeared clearly less favourable and consistent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effect of simplified ethanol-wet bonding on microtensile bond strengths of dentin adhesive agents with different solvents

    Directory of Open Access Journals (Sweden)

    Muhammet Kerim Ayar

    2015-09-01

    Conclusion: Simplified ethanol-wet bonding exhibited similar 24-hour bond strength mean values for both ethanol/water-based and acetone-based etch-and-rinse adhesives. Therefore, solvent content may not interfere with bond strength to ethanol-saturated dentin.

  2. Efficacy of microtensile versus microshear bond testing for evaluation of bond strength of dental adhesive systems to enamel

    NARCIS (Netherlands)

    El Zohairy, A.A.; Saber, M.H.; Abdalla, A.I.; Feilzer, A.J.

    2010-01-01

    Objective The aim of the study was to evaluate the efficacy of the microtensile bond test (μTBS) and the microshear bond test (μSBS) in ranking four dental adhesives according to bond strength to enamel and identify the modes of failure involved. Materials and methods Forty-four caries-free human

  3. Microtensile bond strength of different adhesive systems in dentin irradiated with Er:YAG laser

    Science.gov (United States)

    Sierpinsky, L. M. G.; Lima, D. M.; Candido, M. S. M.; Bagnato, V. S.; Porto-Neto, S. T.

    2008-07-01

    The objective this study was to evaluate in vitro the bond strength of two etch-and-rise and one self-etching adhesive system after dentin irradiation with Er:YAG (erbium: yttrium aluminum garnet) laser using microtensile test. The results revealed that the groups treated with laser Er:YAG presented less tensile bond strength, independently to the adhesive system used. The prompt L-pop adhesive presented less microtensile bond strength compared to the other adhesives evaluated. There was no difference between single bond and excite groups. The adhesive failures were predominant in all the experimental groups. The Er:YAG laser influenced negatively bond strength values of adhesive systems tested in dental substrate.

  4. Bonding of adhesives to Er:YAG laser-treated dentin

    OpenAIRE

    Koliniotou-Koumpia, Eugenia; Kouros,Pantelis; Zafiriadis, Lazaros; Koumpia, Effimia; Dionysopoulos, Pavlos; KARAGIANNIS, Vassilis

    2012-01-01

    Objective: The shear bond strength of adhesives applied to dentin was investigated after irradiation with an erbium-doped yttrium aluminum garnet (Er:YAG) laser. Methods: Superficial and deep dentin specimens from human molars were treated either with carbide bur or an Er:YAG laser. Two etch and rinse adhesives (Single Bond and XP Bond) and two self-etch adhesives (Prompt L-Pop and Xeno III) were employed to bond the composite. Shear bond strength (SBS) was determined after storage in water f...

  5. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  6. Shear bond strength of two 2-step etch-and-rinse adhesives when bonding ceramic brackets to bovine enamel.

    Science.gov (United States)

    Godard, Marion; Deuve, Benjamin; Lopez, Isabelle; Hippolyte, Marie-Pascale; Barthélemi, Stéphane

    2017-09-01

    The present study assessed a fracture analysis and compared the shear bond strength (SBS) of two 2-step etch-and-rinse (E&R) adhesives when bonding ceramic orthodontic brackets to bovine enamel. Thirty healthy bovine mandibular incisors were selected and were equally and randomly assigned to 2 experimental groups. Ceramic brackets (FLI Signature Clear®, RMO) were bonded onto bovine enamel using an adhesive system. In group 1 (n=15), the conventional E&R adhesive (OrthoSolo®+Enlight®, Ormco) was used, and in group 2 (n=15), the new E&R adhesive limited to ceramic bracket bonding (FLI ceramic adhesive®: FLI sealant resin®+FLI adhesive paste®, RMO) was used. In order to obtain appropriate enamel surfaces, the vestibular surfaces of mandibular bovine incisors were flat ground. After bonding, all the samples were stored in distilled water at room temperature for 21 days and subsequently tested for SBS, using the Instron® universal testing machine. The Adhesive Remnant Index (ARI) scores were evaluated. Failure modes were assessed using optical microscopy at magnification ×40. A statistic data analysis was performed using the Mann-Whitney U-test (Padhesive interface. A statistically significant difference was found for the ARI scores between the two groups (P=0.00996). Only two fractured brackets, which remained bonded onto the bovine enamel, were reported. Both occurred in group 1. When bonded to ceramic brackets, FLI ceramic adhesive® (RMO) was demonstrated to be very predictable and safe for clinical application in enamel bonding, whereas the results obtained with the conventional adhesive system (OrthoSolo®+Enlight®, Ormco) were less reproducible and revealed slightly excessive shear bond strength values. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  7. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin.

    Science.gov (United States)

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; Moraes, Rafael Ratto de

    2017-01-01

    This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at padhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup.

  8. Adhesively bonded versus non-bonded amalgam restorations for dental caries.

    Science.gov (United States)

    Agnihotry, Anirudha; Fedorowicz, Zbys; Nasser, Mona

    2016-03-08

    Dental caries (tooth decay) is one of the commonest diseases which afflicts mankind, and has been estimated to affect up to 80% of people in high-income countries. Caries adversely affects and progressively destroys the tissues of the tooth, including the dental pulp (nerve), leaving teeth unsightly, weakened and with impaired function. The treatment of lesions of dental caries, which are progressing through dentine and have caused the formation of a cavity, involves the provision of dental restorations (fillings). This review updates the previous version published in 2009. To assess the effects of adhesive bonding on the in-service performance and longevity of dental amalgam restorations. We searched the Cochrane Oral Health Group Trials Register (to 21 January 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 12), MEDLINE via Ovid (1946 to 21 January 2016) and EMBASE via Ovid (1980 to 21 January 2016). We also searched the US National Institutes of Health Trials Registry (http://clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (www.who.int/ictrp/search/en) (both to 21 January 2016) for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised controlled trials comparing adhesively bonded versus traditional non-bonded amalgam restorations in conventional preparations utilising deliberate retention, in adults with permanent molar and premolar teeth suitable for Class I and II amalgam restorations only. Two review authors independently screened papers, extracted trial details and assessed the risk of bias in the included study. One trial with 31 patients who received 113 restorations was included. At two years, 50 out of 53 restorations in the non-bonded group survived, and 55 of 60 bonded restorations survived with five unaccounted for at follow-up. Post-insertion sensitivity was not significantly different

  9. Enamel-resin bond durability of self-etch and etch & rinse adhesives.

    Science.gov (United States)

    Osorio, Raquel; Monticelli, Francesca; Moreira, Mario A G; Osorio, Estrella; Toledano, Manuel

    2009-12-01

    To evaluate the degradation of resin-enamel interfaces bonded with different adhesive systems. Flat enamel surfaces were ground buccally on bovine incisors. Two etch & rinse self-priming adhesives (Single Bond, Prime & Bond NT), three two-step self-etch adhesives (Clearfil SE Bond, Resulcin Aquaprime, NRC/Prime & Bond NT) and two all-in-one adhesives (Etch & Prime 3.0, Adper Prompt-L-Pop) were used for bonding. A hybrid resin composite (Tetric Ceram) was selected for coronal build-up. Bonded specimens were stored in water at 37 degrees C for 24 hours, 6 months and 1 year, respectively, and then sectioned into 1 mm2 beams. Each microtensile stick was loaded in tension until failure (crosshead speed: 0.5 mm/minute). Bond strength data were analyzed with two-way ANOVA and Student Newman Keuls tests (P Etching patterns resulting from phosphoric acid etching and self-etch adhesives application on ground enamel were analyzed under SEM. All adhesives attained similar bond strengths after 24 hours. All-in-one adhesives and Resulcin Aqua Prime recorded a significant reduction in bond strengths after 6 months and 1 year of water aging.

  10. A modified low-temperature wafer bonding method using spot pressing bonding technique and water glass adhesive layer

    Science.gov (United States)

    Xu, Yang; Wang, Shengkai; Wang, Yinghui; Chen, Dapeng

    2018-02-01

    A modified low-temperature wafer bonding method using a spot pressing bonding technique and a water glass adhesive layer is proposed. The electrical properties of the water glass layer has been studied by capacitance–voltage (C–V) and electric current–voltage (I–V) measurements. It is found that the adhesive layer can be regarded as a good insulator in terms of leakage current density. The bonding mechanism and the motion of bubbles during the thermal treatment are investigated. The dominant factor for the bubble motion in the modified bonding process is the gradient of pressure introduced by the spot pressing force. It is proved that the modified method achieves low-temperature adhesive bonding, minimizes the effect of water desorption, and provides good bonding performance.

  11. Bonding durability between acrylic resin adhesives and titanium with surface preparations.

    Science.gov (United States)

    Yanagida, Hiroaki; Minesaki, Yoshito; Matsumura, Kousuke; Tanoue, Naomi; Muraguchi, Koichi; Minami, Hiroyuki

    2017-01-31

    The purpose of the present study was to evaluate the efficacy of pretreatment on the bonding durability between titanium casting and two acrylic adhesives. Cast titanium disk specimens treated with four polymer-metal bonding systems as follow: 1) air-abraded with 50-70 μm alumina, 2) 1)+Alloy Primer, 3) 1)+M.L. Primer and 4) tribochemical silica/silane coating system (Rocatec System). The specimens were bonded with M bond or Super-bond C&B adhesive. The shear bond strengths were determined before and after thermocycling (20,000 cycles). The surface characteristics after polishing, and for the 1) and 4) preparations were determined. The bond strengths for all combinations significantly decreased after thermocycling. The combination of Super-bond C&B adhesive and 2) led to significantly higher bond strength than the other preparations after thermocycling. The maximum height of the profile parameters for the polishing group was lower than other preparations.

  12. Enamel Wetness Effects on Microshear Bond Strength of Different Bonding Agents (Adhesive Systems): An in vitro Comparative Evaluation Study.

    Science.gov (United States)

    Kulkarni, Girish; Mishra, Vinay K

    2016-05-01

    The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no

  13. Effect of adhesive hydrophobicity on microtensile bond strength of low-shrinkage silorane resin to dentin

    Directory of Open Access Journals (Sweden)

    So-Yeun Cho

    2011-07-01

    Full Text Available Objectives The purpose of this study was to evaluate µTBS (microtensile bond strength of current dentin bonding adhesives which have different hydrophobicity with low-shrinkage silorane resin. Materials and Methods Thirty-six human third molars were used. Middle dentin was exposed. The teeth were randomly assigned to nine experimental groups: Silorane self-etch adhesives (SS, SS + phosphoric acid etching (SS + pa, Adper easy bond (AE, AE + Silorane system bonding (AE + SSb, Clearfil SE bond (CSE, CSE + SSb, All-Bond 2 (AB2, AB2 + SSb, All-Bond 3 (AB3. After adhesive's were applied, the clinical crowns were restored with Filtek LS (3M ESPE. The 0.8 mm × 0.8 mm sticks were submitted to a tensile load using a Micro Tensile Tester (Bisco Inc.. Water sorption was measured to estimate hydrophobicity adhesives. Results µTBS of silorane resin to 5 adhesives: SS, 23.2 MPa; CSE, 19.4 MPa; AB3, 30.3 MPa; AB2 and AE, no bond. Additional layering of SSb: CSE + SSb, 26.2 MPa; AB2 + SSb, 33.9 MPa; AE + SSb, no bond. High value of µTBS was related to cohesive failure. SS showed the lowest water sorption. AE showed the highest solubility. Conclusions The hydrophobicity of adhesive increased, and silorane resin bond-strength was also increased. Additional hydrophobic adhesive layer did not increase the bond-strength to silorane resin except AB2 + SSb. All-Bond 3 showed similar µTBS & water sorption with SS. By these facts, we could reach a conclusion that All-Bond 3 is a competitive adhesive which can replace the Silorane adhesive system

  14. Influence of different smear layers on bond durability of self-etch adhesives.

    Science.gov (United States)

    Takamizawa, Toshiki; Barkmeier, Wayne W; Sai, Keiichi; Tsujimoto, Akimasa; Imai, Arisa; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2017-11-13

    The purpose of this study was to determine the influence of different smear layers on enamel and dentin bond durability of various types of self-etch adhesives. Two universal adhesives, Scotchbond Universal (SU) and Prime & Bond elect (PE); a conventional single-step self-etch adhesive, G-ænial Bond (GB); and two two-step self-etch adhesives, Optibond XTR (OX) and Clearfil SE Bond (SE) were used in this study. Shear bond strengths (SBS) and shear fatigue strengths (SFS) to human enamel and dentin were determined with different smear layer conditions. The prepared specimens were divided into three groups. The bonding surfaces were prepared by grinding with either (1) #180, (2) #600, or (3) #4000-SiC papers before making the bonded assemblies. For each group, 15 specimens were prepared for the SBS and 30 specimens for the SFS. The two-step self-etch adhesives showed significantly higher SFS values than the single-step self-etch adhesives, regardless of the smear layer condition or substrate. Although most of the tested adhesives showed no significant differences in enamel SFS values among the smear layer groups, SU, GB, and SE showed significantly lower SFS values in the #180 in dentin groups than the #600 and #4000 groups. The influence of different smear layer conditions on bond durability was adhesive dependent. Furthermore, the smear layers generated on different substrates also influenced the bond quality of the self-etch adhesives. Smear layer conditions of enamel and dentin influence the bond durability of universal adhesives and conventional single and two-step self-etch adhesives. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Effects of endodontic tri-antibiotic paste on bond strengths of dentin adhesives to coronal dentin

    Directory of Open Access Journals (Sweden)

    Parvin Mirzakoucheki

    2015-05-01

    Full Text Available Objectives The aim of this study was to evaluate the effects of tri-antibiotic paste (TAP on microtensile bond strengths (MTBS of dental adhesives to dentin. Materials and Methods Sixty extracted molars had their occlusal surfaces flattened to expose dentin. They were divided into two groups, i.e., control group with no dentin treatment and experimental group with dentin treatment with TAP. After 10 days, specimens were bonded using self-etch (Filtek P90 adhesive or etch-and-rinse (Adper Single Bond Plus adhesives and restored with composite resin. Teeth were sectioned into beams, and the specimens were subjected to MTBS test. Data were analyzed using two-way ANOVA and post hoc Tukey tests. Results There was a statistically significant interaction between dentin treatment and adhesive on MTBS to coronal dentin (p = 0.003. Despite a trend towards worse MTBS being noticed in the experimental groups, TAP application showed no significant effect on MTBS (p = 0.064. Conclusions The etch-and-rinse adhesive Adper Single Bond Plus presented higher mean bond strengths than the self-etch adhesive Filtek P90, irrespective of the group. The superior bond performance for Adper Single Bond when compared to Filtek P90 adhesive was confirmed by a fewer number of adhesive failures. The influence of TAP in bond strength is insignificant.

  16. Post-bleaching application of an antioxidant on dentin bond strength of three dental adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Conclusions: The findings suggest that bond strength of resin to bleached dentin may be affected with the adhesive system. Reduced SBS to bleached dentin can be amended by the use of SA as an antioxidizing agent. However, the amount of reversed bond strength subsequent to applying antioxidant might be related to the kind of dental adhesive.

  17. Shear bond strength of metallic and ceramic brackets using color change adhesives

    Directory of Open Access Journals (Sweden)

    Aisha de Souza Gomes Stumpf

    2013-04-01

    Full Text Available OBJECTIVE: To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. METHODS: Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI. RESULTS: The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. CONCLUSIONS: The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.

  18. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin

    Directory of Open Access Journals (Sweden)

    Maria Paula Jacobucci Botelho

    Full Text Available Abstract Objectives: This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Material and methods: Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5, 20 wt% (AD20, or 35 wt% (AD35 acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. Results: In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Conclusion: Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup.

  19. Improvement of exposure times: effects on adhesive properties and resin-dentin bond strengths of etch-and-rinse adhesives.

    Science.gov (United States)

    Ferreira, Sabrina Queji; Costa, Thays Regina; Klein-Júnior, Celso Afonso; Accorinte, Maria de; Meier, Márcia Margarete; Loguercio, Alessandro Dourado; Reis, Alessandra

    2011-06-01

    This study evaluated the effect of prolonged polymerization times on the microtensile resin-dentin bond strength (μTBS), degree of conversion of adhesive films (DC) and silver nitrate uptake (SNU) for an ethanol/water- (Adper Single Bond 2, [SB]) and an acetone-based (One Step Plus, [OS]) etch-and-rinse adhesive. Thirty caries-free extracted molars were included in this study. The occlusal enamel of all teeth was removed by wet grinding the occlusal enamel on 180-grit SiC paper. Adhesives were applied according to the manufacturer's instructions, but they were light cured for 10, 20 and 40 s at 600 mW/cm2. Bonded sticks (0.6 mm2) were tested in tension (0.5 mm/min). Two bonded sticks from each tooth were immersed in an ammoniacal solution of silver nitrate (24 h), photodeveloped (8 h), and analyzed by SEM. The DC of the adhesives was evaluated under Fourier Transformed Infra-Red spectroscopy (FTIR). Data for each property were analyzed by two-way ANOVA and Tukey's test (α = 0.05). Statistically higher μTBS and DC were observed for SB and OS when both adhesives were light cured for 40 s in comparison with 10 s. For OS, the μTBS in the 20- and 40-s groups did not differ statistically, while for SB it did. Higher prolonged exposure times did not prevent nanoleakage within the hybrid layer for all groups regardless of the adhesive. This study supports the hypothesis that exposure times longer than those recommended can improve the degree of conversion of adhesive films and the immediate resin-dentin bonds. The prolonged curing times (20 and 40 s) for polymerization of simplified adhesives resulted in an increase in the degree of conversion of the adhesive films and resin-dentin bond strengths but did not reduce the nanoleakage within the hybrid layer.

  20. Adhesion strategy and early bond strengths of glass-fiber posts luted into root canals

    Directory of Open Access Journals (Sweden)

    André Luis Faria-e-Silva

    2012-10-01

    Full Text Available This study investigated the effect of coinitiator solutions and self-adhesive resin cement on the early retention of glass-fiber posts. Cylindrical glass-fiber posts were luted into 40 incisor roots with different adhesion strategies (n = 10: SB2, Single Bond 2 + conventional resin cement (RelyX ARC; AP, Scotchbond Multipurpose Plus (SBMP activator + primer + ARC; APC, SBMP activator + primer + catalyst + ARC; and UNI, self-adhesive cement (RelyX Unicem. Pull-out bond strength results at 10 min after cementation showed APC > UNI > SB2 = AP (P < 0.05. The adhesion strategy significantly affected early bonding to root canals.

  1. Adhesion strategy and early bond strengths of glass-fiber posts luted into root canals.

    Science.gov (United States)

    Faria-e-Silva, André Luis; Mendonça, Adriano Augusto Melo; Garcez, Rosa Maria Viana de Bragança; Oliveira, Aline da Silva de; Moreira, Andressa Goicochea; Moraes, Rafael Ratto de

    2012-01-01

    This study investigated the effect of coinitiator solutions and self-adhesive resin cement on the early retention of glass-fiber posts. Cylindrical glass-fiber posts were luted into 40 incisor roots with different adhesion strategies (n = 10): SB2, Single Bond 2 + conventional resin cement (RelyX ARC); AP, Scotchbond Multipurpose Plus (SBMP) activator + primer + ARC; APC, SBMP activator + primer + catalyst + ARC; and UNI, self-adhesive cement (RelyX Unicem). Pull-out bond strength results at 10 min after cementation showed APC > UNI > SB2 = AP (P < 0.05). The adhesion strategy significantly affected early bonding to root canals.

  2. Evaluation of bond strength of self-adhesive cements to dentin with or without application of adhesive systems.

    Science.gov (United States)

    Barcellos, Daphne Câmara; Batista, Graziela Ribeiro; Silva, Melissa Aline; Rangel, Patrícia Maria; Torres, Carlos Rocha; Fava, Marcelo

    2011-06-01

    To evaluate the bond strength of indirect restorations to dentin using self-adhesive cements with and without the application of adhesive systems. Seventy-two bovine incisors were used, in which the buccal surfaces were ground down to expose an area of dentin measuring a minimum of 4 x 4 mm. The indirect resin composite Resilab was used to make 72 blocks, which were cemented onto the dentin surface of the teeth and divided into 4 groups (n = 18): group 1: self-adhesive resin cement BiFix SE, applied according to manufacturer's recommendations; group 2: self-adhesive resin cement RelyX Unicem, used according to manufacturer's recommendations; group 3: etch-and-rinse Solobond M adhesive system + BiFix SE; group 4: etch-and-rinse Single Bond 2 adhesive system + RelyX Unicem. The specimens were sectioned into sticks and subjected to microtensile testing in a universal testing machine (EMIC DL- 200 MF). Data were subjected to one-way ANOVA and Tukey's test (α = 5%). The mean values (± standard deviation) obtained for the groups were: group 1: 15.28 (± 8.17)a, group 2: 14.60 (± 5.21)a, group 3: 39.20 (± 9.98)c, group 4: 27.59 (± 6.57)b. Different letters indicate significant differences (ANOVA; p = 0.0000). The application of adhesive systems before self-adhesive cements significantly increased the bond strength to dentin. In group 2, RelyX Unicem associated with the adhesive system Single Bond 2 showed significantly lower mean tensile bond strengths than group 3 (BiFix SE associated with the etch-and-rinse Solobond M adhesive system).

  3. Polymerization contraction stress in dentin adhesives bonded to dentin and enamel

    NARCIS (Netherlands)

    Hashimoto, M.; de Gee, A.J.; Feilzer, A.J.

    2008-01-01

    Objective In a previous study on of polymerization contraction stress determinations of adhesives bonded to dentin a continuous decline of stress was observed after the adhesives had been light-cured. The decline was ascribed to stress relief caused by diffusion into the adhesive layer of water

  4. Protein Modifiers Generally Provide Limited Improvement in Wood Bond Strength of Soy Flour Adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda Lorenz

    2013-01-01

    Soy flour adhesives using a polyamidoamine-epichlorohydrin (PAE) polymeric coreactant are used increasingly as wood adhesives for interior products. Although these adhesives give good performance, higher bond strength under wet conditions is desirable. Wet strength is important for accelerated tests involving the internal forces generated by the swelling of wood and...

  5. The Transmission of Lamb Waves Across Adhesively Bonded lap Joints to Evaluate Interfacial Adhesive Properties

    Science.gov (United States)

    Siryabe, Emmanuel; Renier, Mathieu; Meziane, Anissa; Castaings, Michel

    The present work attempts to infer mechanical interfacial properties for lap joint like structures, using Lamb wave modes. A pair of air-coupled, ultrasonic transducers is used to generate and detect a desired Lamb mode. The Lamb waves are launched from one plate and propagate towards the other plate, via the joint. Signals are picked up by the receiving transducer, before and past the joint, and post-processed to obtain the experimental transmission coefficient versus frequency. In addition, a two-dimensional Finite Element-based model is developed and used to compare predicted transmission coefficients with experimental results. The FE model simulates the excitation produced by the transmittertakes into account the viscoelastic properties of the adhesive layer and distributions of longitudinal (kL) and shear (kT) springs at both interfaces between the adhesive and the substrates. Temporal responses of the receiving transducer are predicted before and past the joints, as well as the transmission coefficient versus frequency. This paper discusses preliminary results for aluminium substrates. Values for both kLand kTare optimized so that best fit is obtained between numerical and experimental transmission coefficients. These results demonstrate the potential of Lamb waves to infer mechanical properties at interfaces in adhesively bonded joints.

  6. Effect of double-layer application on bond quality of adhesive systems.

    Science.gov (United States)

    Fujiwara, Satoshi; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Imai, Arisa; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Nakatsuka, Toshiyuki; Miyazaki, Masashi

    2018-01-01

    The aim of this study was to determine the effect of double-layer application of universal adhesives on the bond quality and compare to other adhesive systems. Two universal adhesives used were in this study: Scotchbond Universal (SU), [3M ESPE] and Prime & Bond elect (PE), [Dentsply Caulk]. The conventional single-step self-etch adhesives G-ӕnial Bond (GB), [GC Corporation.] and BeautiBond (BB), [Shofu Inc.], and a two-step self-etch adhesive, Optibond XTR (OX), [Kerr Corporation], were used as comparison adhesives. Shear bond strengths (SBS) and shear fatigue strengths (SFS) to human enamel and dentin were measured in single application mode and double application mode. For each test condition, 15 specimens were prepared for SBS testing and 30 specimens for SFS testing. Enamel and dentin SBS of the universal adhesives in the double application mode were significantly higher than those of the single application mode. In addition, the universal adhesives in the double application mode had significantly higher dentin SFS values than those of the single application mode. The two-step self-etch adhesive OX tended to have lower bond strengths in the double application mode, regardless of the test method or adherent substrate. The double application mode is effective in enhancing SBS and SFS of universal adhesives, but not conventional two-step self-etch adhesives. These results suggest that, although the double application mode may enhance the bonding quality of a universal adhesive, it may be counter-productive for two-step self-etch adhesives in clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Microtensile bond strength of etch and rinse versus self-etch adhesive systems.

    Science.gov (United States)

    Hamouda, Ibrahim M; Samra, Nagia R; Badawi, Manal F

    2011-04-01

    The aim of this study was to compare the microtensile bond strength of the etch and rinse adhesive versus one-component or two-component self-etch adhesives. Twelve intact human molar teeth were cleaned and the occlusal enamel of the teeth was removed. The exposed dentin surfaces were polished and rinsed, and the adhesives were applied. A microhybride composite resin was applied to form specimens of 4 mm height and 6 mm diameter. The specimens were sectioned perpendicular to the adhesive interface to produce dentin-resin composite sticks, with an adhesive area of approximately 1.4 mm(2). The sticks were subjected to tensile loading until failure occurred. The debonded areas were examined with a scanning electron microscope to determine the site of failure. The results showed that the microtensile bond strength of the etch and rinse adhesive was higher than that of one-component or two-component self-etch adhesives. The scanning electron microscope examination of the dentin surfaces revealed adhesive and mixed modes of failure. The adhesive mode of failure occurred at the adhesive/dentin interface, while the mixed mode of failure occurred partially in the composite and partially at the adhesive/dentin interface. It was concluded that the etch and rinse adhesive had higher microtensile bond strength when compared to that of the self-etch adhesives. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. The effect of different adhesive system applications on push-out bond strengths of glass fiber posts.

    Science.gov (United States)

    Helvacıoğlu Kıvanç, Bağdagül; Deniz Arısu, Hacer; Uçtaşlı, Mine Betül; Okay, Tufan Can

    2013-08-01

    Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05). Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes.

  9. Effects of Dental Adhesive Cement and Surface Treatment on Bond Strength and Leakage of Zirconium Oxide Ceramics

    National Research Council Canada - National Science Library

    TSUKAKOSHI, Makoto; SHINYA, Akikazu; GOMI, Harunori; LASSILA, Lippo V.J; VALLITTU, Pekka K; SHINYA, Akiyoshi

    2008-01-01

    To evaluate the interactive influence of adhesive materials and surface treatments on bond strength of zirconium oxide ceramics, six types of adhesive resin cements (RelyX ARC (RA), Super-Bond C & B (SB), Linkmax (LM...

  10. Comparative evaluation of tensile bond strengths of total-etch adhesives and self-etch adhesives with single and multiple consecutive applications: An in vitro study

    OpenAIRE

    Mandava, Deepthi; P, Ajitha; Narayanan, L Lakshmi

    2009-01-01

    Aim: This study evaluates the effect of single and multiple consecutive applications of adhesives on the tensile bond strength. The currently available adhesives follow either the total-etch or the self-etch concept. However, in both techniques the uniformity and thickness of the adhesive layer plays a significant role in the development of a good bond. Materials and Methods: Sixty composite-dentin bonded specimens were prepared using a total-etch adhesive (Gluma) and another 60 using a self-...

  11. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    OpenAIRE

    Yazdi, Fatemeh Maleknejad; Moosavi, Horieh; Atai,Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (?SBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% ...

  12. Influence of blood contamination during multimode adhesive application on the microtensile bond strength to dentin.

    Science.gov (United States)

    Kucukyilmaz, E; Celik, E U; Akcay, M; Yasa, B

    2017-12-01

    The present study evaluated the effects of blood contamination performed at different steps of bonding on the microtensile bond strength (μTBS) of multimode adhesives to dentin when using the self-etch approach. Seventy-five molars were randomly assigned to three adhesive groups comprising 25 specimens each: two multimode adhesives [Single Bond Universal (SBU) and All-Bond Universal (ABU)] and a conventional one-step self-etch adhesive [Clearfil S3 Bond Plus (CSBP)]. Each group was subdivided as follows: (1) uncontaminated (control): bonding application/light curing as a positive control; (2) contamination-1 (cont-1): bonding application/light curing/blood contamination/dry as a negative control; (3) contamination-2 (cont-2): bonding application/light curing/blood contamination/rinse/dry; (4) contamination-3 (cont-3): bonding application/blood contamination/dry/bonding re-application/light curing; and (5) contamination-4 (cont-4): bonding application/blood contamination/rinse/dry/bonding re-application/light curing. Dentin specimens were prepared for μTBS testing after the composite resin application. Data were analyzed with two-way ANOVA and post-hoc tests (α = 0.05). μTBS values were similar in cont-3 groups, and ABU/cont-4 and corresponding control groups, but were significantly lower in the other groups than in their control groups (P contamination occurred after light curing. Drying the blood contaminants and reapplying the adhesive may regain the dentin adhesion when contamination occurs before light curing. Alternatively, rinsing and drying contaminants followed by adhesive re-application may be effective depending on adhesive type.

  13. Effectiveness of immediate bonding of etch-and-rinse adhesives to simplified ethanol-saturated dentin.

    Science.gov (United States)

    Guimarães, Leandro Afonso; Almeida, Júlio César Franco; Wang, Linda; D'Alpino, Paulo Henrique Perlatti; Garcia, Fernanda Cristina Pimentel

    2012-01-01

    This study examined the immediate bond strength of etch-and-rinse adhesives to demineralized dentin saturated with either water or absolute ethanol. The research hypothesis was that there would be no difference in bond strength to dentin between water or ethanol wet-bonding techniques. The medium dentin of 20 third molars was exposed (n = 5). The dentin surface was then acid-etched, left moist and randomly assigned to be saturated via either water wet-bonding (WBT) or absolute ethanol wet-bonding (EBT). The specimens were then treated with one of the following etch-and-rinse adhesive systems: a 3-step, water-based system (Adper Scotchbond Multipurpose, or SBMP) or a 2-step, ethanol/water-based system (Adper Single Bond 2, or SB). Resin composite build-ups were then incrementally constructed. After water storage for 24 h at 37°C, the tensile strength of the specimens was tested in a universal testing machine (0.5 mm/min). Data were analyzed by two-way ANOVA and Tukey's test (a = 5%). The failure modes were verified using a stereomicroscope (40'). For both adhesives, no significant difference in bond strength was observed between WBT and EBT (p > 0.05). The highest bond strength was observed for SB, regardless of the bonding technique (p adhesives and bonding techniques was noticed (p = 0.597). There was a predominance of adhesive failures for all tested groups. The EBT and WBT displayed similar immediate bond strength means for both adhesives. The SB adhesive exhibited higher means for all conditions tested. Further investigations are needed to evaluate long-term bonding to dentin mediated by commercial etch-and-rinse adhesives using the EBT approach.

  14. Effectiveness of immediate bonding of etch-and-rinse adhesives to simplified ethanol-saturated dentin

    Directory of Open Access Journals (Sweden)

    Leandro Afonso Guimarães

    2012-04-01

    Full Text Available This study examined the immediate bond strength of etch-and-rinse adhesives to demineralized dentin saturated with either water or absolute ethanol. The research hypothesis was that there would be no difference in bond strength to dentin between water or ethanol wet-bonding techniques. The medium dentin of 20 third molars was exposed (n = 5. The dentin surface was then acid-etched, left moist and randomly assigned to be saturated via either water wet-bonding (WBT or absolute ethanol wet-bonding (EBT. The specimens were then treated with one of the following etch-and-rinse adhesive systems: a 3-step, water-based system (Adper Scotchbond Multipurpose, or SBMP or a 2-step, ethanol/water-based system (Adper Single Bond 2, or SB. Resin composite build-ups were then incrementally constructed. After water storage for 24 h at 37°C, the tensile strength of the specimens was tested in a universal testing machine (0.5 mm/min. Data were analyzed by two-way ANOVA and Tukey's test (a = 5%. The failure modes were verified using a stereomicroscope (40'. For both adhesives, no significant difference in bond strength was observed between WBT and EBT (p > 0.05. The highest bond strength was observed for SB, regardless of the bonding technique (p < 0.05. No significant interaction between adhesives and bonding techniques was noticed (p = 0.597. There was a predominance of adhesive failures for all tested groups. The EBT and WBT displayed similar immediate bond strength means for both adhesives. The SB adhesive exhibited higher means for all conditions tested. Further investigations are needed to evaluate long-term bonding to dentin mediated by commercial etch-and-rinse adhesives using the EBT approach.

  15. Life cycle assessment of bio-based, waterborne PU adhesives for fast industrial bonding processes

    OpenAIRE

    Maga, Daniel; Melchiors, Martin; Henneken, Hartmut; Taden, Andreas

    2017-01-01

    Aqueous PU dispersion adhesives based on high molecular weight, semi-crystalline polyurethane polymers have long demonstrated their outstanding performance and are a well-established bonding technology in several industrial applications. Due to their thermal activation properties and sharp melting area, these adhesives allow for efficient bonding processes with short bond strength build-up times. State-of-the-art is the use of polyester building blocks from fossil raw material resources to sy...

  16. Effect of Curing Direction on Microtensile Bond Strength of Fifth and Sixth Generation Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ali Nadaf

    2012-09-01

    Full Text Available Background and Aims: Composite restorative materials and dental adhesives are usually cured with light sources. The light direction may influence the bond strength of dental adhesives. The aim of this study was to evaluate the effect of light direction on the microtensile bond strength of fifth and sixth generation dental adhesives.Materials and Methods: Prime & Bond NT and Clearfil SE bond were used with different light directions.Sixty human incisor teeth were divided into 4 groups (n=15. In groups A and C, Clearfil SE bond with light curing direction from buccal was used for bonding a composite resin to dentin. In groups B and D, Prime & Bond NT with light curing direction from composite was used. After thermocycling the specimens were subjected to tensile force until debonding occurred and values for microtensile bond strength were recorded. The data were analyzed using two-way ANOVA and Tukey post hoc test.Results: The findings showed that the bond strength of Clearfil SE bond was significantly higher than that of Prime&Bond NT (P<0.001. There was no significant difference between light curing directions (P=0.132.Conclusion: Light curing direction did not have significant effect on the bond strength. Sixth generation adhesives was more successful than fifth generation in terms of bond strength to dentin.

  17. The effect of plasticity to interlaminar fracture toughness of adhesive bond of composite

    Science.gov (United States)

    Pavelko, V.; Lapsa, K.; Pavlovskis, P.

    2017-10-01

    In this paper the effect of plasticity of an adhesive to interlaminar fracture toughness of adhesive bond of thin-walled layered composite is investigated. The characteristics of failure of low toughness adhesive layer were obtained using the double cantilever beam (DCB) sample. The main features of plasticity effect are obtained. The procedure of results use for strength analysis of structure with the plasticity affected adhesive joint is proposed.

  18. Bond durability of universal adhesive to bovine enamel using self-etch mode.

    Science.gov (United States)

    Suzuki, Soshi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Sai, Keiichi; Takimoto, Masayuki; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2017-08-31

    The purpose of this study was to examine the enamel bond durability of universal adhesives in the self-etch mode under 2-year water storage and thermal cycling conditions. Three commercially available universal adhesives and a gold standard two-step self-etch adhesive were used. Ten specimens of bovine enamel were prepared per test group, and shear bond strength (SBS) was measured to determine the bonding durability after thermal cycling (TC) or long-term water storage (WS). The bonded specimens were divided into three groups: (1) specimens subjected to TC, where the bonded specimens were stored in 37 °C distilled water for 24 h before being subjected to 3000, 10,000, 20,000 or 30,000 TC; (2) specimens stored in 37 °C distilled water for 3 months, 6 months, 1 year or 2 year; and (3) specimens stored in 37 °C distilled water for 24 h, serving as a baseline. The two-step self-etch adhesive showed significantly higher SBS than the universal adhesives tested, regardless of the type of degradation method. All universal adhesives showed no significant enamel SBS reductions in TC and WS, when compared to baseline and the other degradation conditions. Compared to the bond strengths obtained with the two-step self-etch adhesive, significantly lower bond strengths were obtained with universal adhesives. However, the enamel bond durability of universal adhesives was relatively stable under both degradation conditions tested. The present data indicate that the enamel bond durability of universal adhesives in the self-etch mode might be sufficient for clinical use.

  19. Development of nanosilica bonded monetite cement from egg shells.

    Science.gov (United States)

    Zhou, Huan; Luchini, Timothy J F; Boroujeni, Nariman Mansouri; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5±1 min. The compressive strength after 24h of incubation was approximately 8.45±1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10±1 min) process by about 2.5 min and improve compressive strength (20.16±4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Oxide film microstructure: the link between surface preparation processes and strength/durability of adhesively bonded aluminum. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsia, K. Jimmy; Pearlstein, Arne J.; Scheeline, Alexander; Shang, Jian Ku

    2000-11-30

    Strength and durability of adhesive bonding of aluminum alloys structures are intrinsically determined by the surface microstructures and interfacial failure micromechanisms. The current project presents a multidisciplinary approach to addressing critical issues controlling the strength and durability of adhesive bonds of aluminum alloys. Three main thrust areas have been pursued: surface treatment technology development to achieve desirable surface microstructures; relationship between surface structure and properties of adhesive bonds; and failure mechanisms of adhesively bonded components.

  1. Shear bond strength of one-step self-etch adhesives: pH influence.

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S(3) Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P adhesive systems showed lower shear bond strength values with significant differences between them (P 0.05). The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin.

  2. Bond strength of composite to astringent-contaminated dentin using self-etching adhesives.

    Science.gov (United States)

    O'Keefe, Kathy L; Pinzon, Lilliam M; Rivera, Babette; Powers, John M

    2005-06-01

    To determine the effects of contamination by ferric sulfate and aluminum chloride astringents on the bond strength of composite bonded to superficial dentin using self-etching adhesives. Freshly extracted human teeth were ground to expose superficial dentin and polished to 600 grit. One of three self-etching adhesive systems and restorative composites were bonded to the specimens, with contamination by one of three astringents and five surface conditions (no contamination, moist dentin control; contaminant, air, adhesive; contaminant, water rinse, air, adhesive; contaminant, water rinse, glycolic acid scrub, rinse, adhesive; contaminant, water rinse, chlorhexadine scrub, rinse, adhesive). Composite was bonded to the surfaces in the shape of an inverted, truncated cone (n = 5, 180 specimens total). Specimens were stored in water at 37 degrees C for 24 hours, then de-bonded in tension with a testing machine at a crosshead speed of 0.5 mm/minute. Tensile bond strengths (MPa) were calculated. Means (SD) were compared using analysis of variance. Significant differences (Fisher's PLSD) were found among all variables. SE and ABF had the highest control values, but were affected most by astringent contamination. Ferric sulfate reduced bond strengths the greatest in most cases, and aluminum chloride putty reduced bond strengths the least. Chlorhexadine rinse was most effective in restoring bond strength values.

  3. Self-etch adhesives for the bonding of orthodontic brackets: faster, stronger, safer?

    Science.gov (United States)

    Lamper, Timea; Ilie, Nicoleta; Huth, Karin C; Rudzki, Ingrid; Wichelhaus, Andrea; Paschos, Ekaterini

    2014-01-01

    This study aimed to evaluate the performance of accelerating procedures for bonding of orthodontic brackets in vitro by comparing different adhesives (etch-and-rinse, self-etch) and polymerization procedures (curing devices, time). The performance was characterized by three parameters: (1) the bond strength achieved, (2) the incidence of enamel damage, and (3) the extent of residual composite on the tooth. Bracket bonding was performed on 500 extracted human teeth after application of either an etch-and-rinse adhesive or a one-step self-etch adhesive. Two different two-component self-etch adhesives (Clearfil SE and Transbond Plus) and two single-component self-etch adhesives (Ideal and iBond) were investigated after using different polymerization procedures (light-emitting diode for 10 or 20 s or plasma arc curing device for 3 or 6 s). The bond strength, incidence of enamel damage, and extent of residual composite on the tooth were measured. Single-component self-etch adhesives gave the lowest bond strengths. No significant difference in bond strength could be detected between the two-component self-etch adhesives and the etch-and-rinse method. There was a 70.3% risk for enamel damage at bond strengths above 12 MPa, but only 5% risk below 12 MPa and no risk below 8.2 MPa. The risk of enamel damage increased by an odds ratio increment of 1.3 for each additional MPa above 8.2 MPa. Single-component self-etch adhesives showed the lowest bond strengths, caused limited enamel damage, and generally left less residual composite on the tooth. The nature of the adhesive greatly influences the resultant bond strength, the risk of enamel damage, and the extent of residual composite on the teeth.

  4. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements.

    Science.gov (United States)

    Fuentes, María-Victoria; Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-02-01

    No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Bond strength values were significantly influenced by the resin cement used (pcement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Bond strength, self-adhesive cement, silane, dentin, indirect composite.

  5. Two methods to simulate intrapulpal pressure: effects upon bonding performance of self-etch adhesives.

    Science.gov (United States)

    Feitosa, V P; Gotti, V B; Grohmann, C V; Abuná, G; Correr-Sobrinho, L; Sinhoreti, M A C; Correr, A B

    2014-09-01

    To evaluate the effects of two methods to simulate physiological pulpal pressure on the dentine bonding performance of two all-in-one adhesives and a two-step self-etch silorane-based adhesive by means of microtensile bond strength (μTBS) and nanoleakage surveys. The self-etch adhesives [G-Bond Plus (GB), Adper Easy Bond (EB) and silorane adhesive (SIL)] were applied to flat deep dentine surfaces from extracted human molars. The restorations were constructed using resin composites Filtek Silorane or Filtek Z350 (3M ESPE). After 24 h using the two methods of simulated pulpal pressure or no pulpal pressure (control groups), the bonded teeth were cut into specimens and submitted to μTBS and silver uptake examination. Results were analysed with two-way anova and Tukey's test (P adhesives. No difference between control and pulpal pressure groups was found for SIL and GB. EB led significant drop (P = 0.002) in bond strength under pulpal pressure. Silver impregnation was increased after both methods of simulated pulpal pressure for all adhesives, and it was similar between the simulated pulpal pressure methods. The innovative method to simulate pulpal pressure behaved similarly to the classic one and could be used as an alternative. The HEMA-free one-step and the two-step self-etch adhesives had acceptable resistance against pulpal pressure, unlike the HEMA-rich adhesive. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. In vitro evaluation of microleakage under orthodontic brackets bonded with different adhesive systems.

    Science.gov (United States)

    Atash, Ramin; Fneiche, Ali; Cetik, Sibel; Bahrami, Babak; Balon-Perin, Alain; Orellana, Maria; Glineur, Régine

    2017-01-01

    Adhesives systems have a drawback when utilized for bonding orthodontic brackets: they shrink during photopolymerization creating microleakage. The aim of this study was to assess the stability of different orthodontic adhesives around brackets and enamel. Sixty noncarious mandibular premolars extracted for orthodontic reasons were randomly divided into six groups of adhesives used for bonding brackets to dental enamel: NeoBond® Light Cure Adhesive Kit, Transbond™ Plus Self-Etching, Victory V-Slot APC PLUS® + Transbond™ MIP, Rely-A-Bond® Kit, Light Cure Orthodontic Adhesive Kit (OptiBond®), and Transbond™ MIP. Following bonding, all teeth underwent 2500 cycles of thermal cycling in baths ranging from 5°C to 55°C before being immersed in 2% methylene blue for 24 h. All samples were examined under a binocular microscope to assess the degree of microleakage at the "bracket-adhesive" and "adhesive-enamel" interfaces in the gingival and occlusal regions of the bracket. A significant difference was found at the "occlusal bracket-adhesive" interface. The highest microleakage values were found in the occlusal region, although no significant. Microleakage was observed in all groups. Group 2 had the highest microleakage values whereas Group 6 had the lowest values.

  7. Comparative evaluation of bond strength of three contemporary self-etch adhesives: An ex vivo study

    Directory of Open Access Journals (Sweden)

    Vineeta Nikhil

    2011-01-01

    Full Text Available Aim: This study evaluated the effect of 2-hydroxymethyl methacrylate (HEMA and the type of solvent on the tensile bond strength of the following three self-etch adhesives: Adper easy one (HEMA-rich adhesive which contained ethanol, G-Bond (HEMA-free adhesive which contained acetone, and Xeno V (HEMA-free adhesive which contained butanol as a solvent. Material and Methods: Intact mandibular molars were mounted in self-cured resin and the occlusal surfaces were ground with # 600 SiC paper. Adhesives were applied on the prepared dentinal surfaces and the resin composite was condensed in the split brass mold (5 × 3 mm placed over the adhesive surface. The specimens were stored in normal saline and placed in incubator at 37°C. After 24 hours, the specimens were tested in tensile mode at a crosshead speed of 1 mm/min. Statistical analysis was done using One way ANOVA and Tukey′s HSD test. Results: The mean bond strengths of Adper easy one, G-Bond, and Xeno V were 12.41 MPa, 10.09 MPa, and 8.67 MPa, respectively. Conclusions: Comparison of contemporary adhesives in this ex vivo study revealed that the ethanol-based HEMA-rich self-etch adhesive is better than HEMA-free self-etch adhesive that contained acetone and butanol as the solvents, when compared in terms of bond strength.

  8. Comparative evaluation of bond strength of three contemporary self-etch adhesives: An ex vivo study.

    Science.gov (United States)

    Nikhil, Vineeta; Singh, Vijay; Chaudhry, Suruchi

    2011-04-01

    This study evaluated the effect of 2-hydroxymethyl methacrylate (HEMA) and the type of solvent on the tensile bond strength of the following three self-etch adhesives: Adper easy one (HEMA-rich adhesive) which contained ethanol, G-Bond (HEMA-free adhesive) which contained acetone, and Xeno V (HEMA-free adhesive) which contained butanol as a solvent. Intact mandibular molars were mounted in self-cured resin and the occlusal surfaces were ground with # 600 SiC paper. Adhesives were applied on the prepared dentinal surfaces and the resin composite was condensed in the split brass mold (5 × 3 mm) placed over the adhesive surface. The specimens were stored in normal saline and placed in incubator at 37°C. After 24 hours, the specimens were tested in tensile mode at a crosshead speed of 1 mm/min. Statistical analysis was done using One way ANOVA and Tukey's HSD test. The mean bond strengths of Adper easy one, G-Bond, and Xeno V were 12.41 MPa, 10.09 MPa, and 8.67 MPa, respectively. Comparison of contemporary adhesives in this ex vivo study revealed that the ethanol-based HEMA-rich self-etch adhesive is better than HEMA-free self-etch adhesive that contained acetone and butanol as the solvents, when compared in terms of bond strength.

  9. Adhesive bonding of wood treated with ACQ and copper azole preservatives

    Science.gov (United States)

    Linda F. Lorenz; Charles Frihart

    2006-01-01

    Treated wood has generally been more difficult to bond than untreated wood for a variety of reasons. Alkaline copper quat (ACQ) and copper azole (CA-B), the most prominent substitutes for chromated copper arsenate (CCA), are difficult to bond consistently. Using a phenol-resorcinol- formaldehyde (PRF) adhesive formulated for bonding to CCA-treated wood, we examined the...

  10. Dentin Bonding Durability of Two-step Self-etch Adhesives with Improved of Degree of Conversion of Adhesive Resins.

    Science.gov (United States)

    Sato, Kento; Hosaka, Keiichi; Takahashi, Masahiro; Ikeda, Masaomi; Tian, Fucong; Komada, Wataru; Nakajima, Masatoshi; Foxton, Richard; Nishitani, Yoshihiro; Pashley, David H; Tagami, Junji

    To evaluate (1) the initial and long-term microtensile bond strengths of two-step self-etch adhesives with different degrees of conversion (DC); (2) the elastic modulus of the respective adhesive resins; (3) the water sorption of the respective adhesive resins. Two two-step self-etch adhesives, Clearfil SE Bond (CSE) and Clearfil SE Bond 2 (CSE2) were used in this study. The DC was determined using ATR/FT-IR with a time-based spectrum analysis. Midcoronal flat dentin surfaces of 24 human molars were prepared with 600-grit SiC paper for microtensile bond strength (µTBS) testing. CSE and CSE2 were applied to the dentin surfaces according to the manufacturer's instructions, followed by composite buildups. The µTBS was measured after water storage for 24 h, 6 months, and 1 year. The elastic modulus (before and after 1 month of water immersion) was determined by the three-point flexural bending test and water sorption values by the water sorption test. CSE2 showed significantly higher DC than CSE. The µTBS of CSE2 was significantly higher than that of CSE in all water storage periods. One-year water storage decreased the µTBS of CSE; however, it did not decrease that of CSE2. Regarding the polymerized adhesive resins, the elastic modulus of CSE2 was significantly higher than that of CSE before and after water immersion (p adhesive resins of two-step self-etch adhesives resists water aging and improves the initial bond strengths and durability of the resin-dentin bond.

  11. Influence of caries infiltrant contamination on shear bond strength of different adhesives to dentin.

    Science.gov (United States)

    Jia, Liuhe; Stawarczyk, Bogna; Schmidlin, Patrick R; Attin, Thomas; Wiegand, Annette

    2013-03-01

    To analyze whether the contamination with a caries infiltrant system impairs the adhesive performance of etch-and-rinse and self-etching adhesives on dentin. Dentin contamination with the caries infiltrant system (Icon, DMG) was simulated by applying either hydrochloric acid (15 % HCl, Icon Etch, 15 s), the resin infiltrant (Icon infiltrant, 4 min), or both prior to the application of the respective adhesives (each group n = 10). In the control groups, the etch-and-rinse adhesive (Optibond FL, Kerr) and the self-etching adhesive (iBOND Self Etch, Hereaus) were applied without former contamination with the infiltrant system. Additionally, the adhesive performance of the resin infiltrant alone was tested. Shear bond strength of a nano-hybrid composite was analyzed after thermocycling (5,000×, 5-55°C) of the specimens and analyzed by ANOVA/Scheffé post hoc tests (p adhesives (Optibond FL: 20.5 ± 3.6, iBOND Self Etch: 17.9 ± 2.6) significantly. Hydrochloric acid contamination increased the number of adhesive failures. The adhesive performance of the caries infiltrant system alone was insufficient. The contamination with the caries infiltrant system impaired the shear bond strength of conventional dental adhesives. Contamination of the caries infiltrant system on dentin should be avoided due to the detrimental effect of hydrochloric acid etching.

  12. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials

    Directory of Open Access Journals (Sweden)

    Janaina Barros Cruz

    2012-08-01

    Full Text Available This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva and eroded dentin (pH cycling model - 3× / cola drink for 7 days. Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix, resin-modified glass ionomer cement (VitremerTM or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250. Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×. Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05. Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001. For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  13. Comparison of enamel bond fatigue durability between universal adhesives and two-step self-etch adhesives: Effect of phosphoric acid pre-etching.

    Science.gov (United States)

    Suda, Shunichi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-11-23

    The effect of phosphoric acid pre-etching on enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives was investigated. Four universal adhesives and three two-step self-etch adhesives were used. The initial shear bond strengths and shear fatigue strengths to enamel with and without phosphoric acid pre-etching using the adhesives were determined. SEM observations were also conducted. Phosphoric acid pre-etching of enamel was found to increase the bond fatigue durability of universal adhesives, but its effect on two-step self-etch adhesives was material-dependent. In addition, some universal adhesives with phosphoric acid preetching showed similar bond fatigue durability to the two-step self-etch adhesives, although the bond fatigue durability of universal adhesives in self-etch mode was lower than that of the two-step self-etch adhesives. Phosphoric acid pre-etching enhances enamel bond fatigue durability of universal adhesives, but the effect of phosphoric acid pre-etching on the bond fatigue durability of two-step self-etch adhesives was material-dependent.

  14. Influence of Etching Mode on Enamel Bond Durability of Universal Adhesive Systems.

    Science.gov (United States)

    Suzuki, T; Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Endo, H; Erickson, R L; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to determine the enamel bond durability of three universal adhesives in different etching modes through fatigue testing. The three universal adhesives used were Scotchbond Universal, Prime&Bond Elect universal dental adhesive, and All-Bond Universal light-cured dental adhesive. A single-step self-etch adhesive, Clearfil S3 Bond Plus was used as a control. The shear bond strength (SBS) and shear fatigue strength (SFS) to human enamel were evaluated in total-etch mode and self-etch mode. A stainless steel metal ring with an internal diameter of 2.4 mm was used to bond the resin composite to the flat-ground (4000-grit) tooth surfaces for determination of both SBS and SFS. For each enamel surface treatment, 15 specimens were prepared for SBS and 30 specimens for SFS. The staircase method for fatigue testing was then used to determine the SFS of the resin composite bonded to the enamel using 10-Hz frequencies for 50,000 cycles or until failure occurred. Scanning electron microscopy was used to observe representative debonded specimen surfaces and the resin-enamel interfaces. A two-way analysis of variance and the Tukey post hoc test were used for analysis of the SBS data, whereas a modified t-test with Bonferroni correction was used for the SFS data. All adhesives in total-etch mode showed significantly higher SBS and SFS values than those in self-etch mode. Although All-Bond Universal in self-etch mode showed a significantly lower SBS value than the other adhesives, there was no significant difference in SFS values among the adhesives in this mode. All adhesives showed higher SFS:SBS ratios in total-etch mode than in self-etch mode. With regard to the adhesive systems used in this study, universal adhesives showed higher enamel bond strengths in total-etch mode. Although the influence of different etching modes on the enamel-bonding performance of universal adhesives was found to be dependent on the adhesive material, total-etch mode

  15. Bonding of universal adhesives to dentine--Old wine in new bottles?

    Science.gov (United States)

    Chen, C; Niu, L-N; Xie, H; Zhang, Z-Y; Zhou, L-Q; Jiao, K; Chen, J-H; Pashley, D H; Tay, F R

    2015-05-01

    Multi-mode universal adhesives offer clinicians the choice of using the etch-and-rinse technique, selective enamel etch technique or self-etch technique to bond to tooth substrates. The present study examined the short-term in vitro performance of five universal adhesives bonded to human coronal dentine. Two hundred non-carious human third molars were assigned to five groups based on the type of the universal adhesives (Prime&Bond Elect, Scotchbond Universal, All-Bond Universal, Clearfil Universal Bond and Futurabond U). Two bonding modes (etch-and-rinse and self-etch) were employed for each adhesive group. Bonded specimens were stored in deionized water for 24h or underwent a 10,000-cycle thermocycling ageing process prior to testing (N=10). Microtensile bond testing (μTBS), transmission electron microscopy (TEM) of resin-dentine interfaces in non-thermocycled specimens and scanning electron microscopy (SEM) of tracer-infused water-rich zones within hybrid layers of thermocycled specimens were performed. Both adhesive type and testing condition (with/without thermocycling) have significant influences on μTBS. The use of each adhesive in either the etch-and-rinse or self-etch application mode did not result in significantly different μTBS to dentine. Hybrid layers created by these adhesives in the etch-and-rinse bonding mode and self-etch bonding mode were ∼5μm and ≤0.5μm thick respectively. Tracer-infused regions could be identified within the resin-dentine interface from all the specimens prepared. The increase in versatility of universal adhesives is not accompanied by technological advances for overcoming the challenges associated with previous generations of adhesives. Therapeutic adhesives with bio-protective and bio-promoting effects are still lacking in commercialized adhesives. Universal adhesives represent manufacturers' attempt to introduce versatility in product design via adaptation of a single-bottle self-etch adhesive for other application

  16. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  17. Influence of application methods of one-step self-etching adhesives on microtensile bond strength

    OpenAIRE

    Chul-Kyu Choi,; Sung-Ae Son; Jin-Hee Ha; Bock Hur,; Hyeon-Cheol Kim; Yong-Hun Kwon; Jeong-Kil Park

    2011-01-01

    Objectives The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15), according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond) and application methods. The adhesive systems were applied on the dentin as follows: 1) T...

  18. Investigation of the shear bond strength to dentin of universal adhesives applied with two different techniques

    Directory of Open Access Journals (Sweden)

    Elif Yaşa

    2017-09-01

    Full Text Available Objective: The aim of this study was to evaluate the shear bond strength of universal adhesives applied with self-etch and etch&rinse techniques to dentin. Materials and Method: Fourty-eight sound extracted human third molars were used in this study. Occlusal enamel was removed in order to expose the dentinal surface, and the surface was flattened. Specimens were randomly divided into four groups and were sectioned vestibulo-lingually using a diamond disc. The universal adhesives: All Bond Universal (Group 1a and 1b, Gluma Bond Universal (Group 2a and 2b and Single Bond Universal (Group 3a and 3b were applied onto the tooth specimens either with self-etch technique (a or with etch&rinse technique (b according to the manufacturers’ instructions. Clearfil SE Bond (Group 4a; self-etch and Optibond FL (Group 4b; etch&rinse were used as control groups. Then the specimens were restored with a nanohybrid composite resin (Filtek Z550. After thermocycling, shear bond strength test was performed with a universal test machine at a crosshead speed of 0.5 mm/min. Fracture analysis was done under a stereomicroscope (×40 magnification. Data were analyzed using two-way ANOVA and post-hoc Tukey tests. Results: Statistical analysis showed significant differences in shear bond strength values between the universal adhesives (p<0.05. Significantly higher bond strength values were observed in self-etch groups (a in comparison to etch&rinse groups (b (p<0.05. Among all groups, Single Bond Universal showed the greatest shear bond strength values, whereas All Bond Universal showed the lowest shear bond strength values with both application techniques. Conclusion: Dentin bonding strengths of universal adhesives applied with different techniques may vary depending on the adhesive material. For the universal bonding agents tested in this study, the etch&rinse technique negatively affected the bond strength to dentin.

  19. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter.

    Science.gov (United States)

    Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid

    2016-01-01

    To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4-5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal-Wallis, Wilcoxon Signed Rank, and Mann-Whitney test. While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary.

  20. Adhesive bonding of titanium with a titanate coupler and 4-META/MMA-TBB opaque resin.

    Science.gov (United States)

    Matsumura, H; Yoshida, K; Tanaka, T; Atsuta, M

    1990-09-01

    Adhesive bonding of titanium was evaluated with a titanate primer and adhesive opaque resin. The primer consisted of 2% isopropyl dimethacryloyl isostearoyl titanate in methyl methacrylate. The adhesive was 4-META/MMA-TBB opaque resin that contained 4-methacryloyloxyethyl trimellitate anhydride and was initiated by tri-n-butylborane derivative. Titanium discs were machined and blasted with aluminum oxide. They were primed and bonded together with the opaque resin. A shear test was performed after repeated thermocycles for investigation of the durability of the bond. The shear strength of the primed and 4-META resin-bonded specimens was 37.2 MPa after 50,000 thermocycles, with only a small decrease in bond strength. This was significantly higher than the control values. Thus, titanate primer and 4-META/MMA-TBB opaque resin may be used for the bonding of titanium in prosthodontic practice.

  1. Effects of chlorhexidine on bonding durability of different adhesive systems using a novel thermocycling method.

    Science.gov (United States)

    Deng, D; Huang, X; Huang, C; Yang, T; Du, X; Wang, Y; Ouyang, X; Pei, D

    2013-06-01

    The purpose of this study was to evaluate the influence of chlorhexidine on the bonding durability of etch-and-rinse and self-etch adhesive systems using the polymerase chain reaction (PCR) thermocycling method. Twenty freshly extracted intact human third molars were ground and bonded with either an etch-and-rinse adhesive (Single-Bond) or a self-etch adhesive (G-Bond). Specimens were either left untouched or placed in PCR tubes filled with three thermocycling mediums: water, chlorhexidine or silicone oil. Thermocycling (5000 cycles) was done using the PCR programme at temperatures of 5 °C and 55 °C. The microtensile bond strength (μTBS) was evaluated and interfacial nanoleakage was assessed by scanning electron microscopy before and after thermocycling. Significant differences were detected among groups kept in different media after thermocycling. For Single-Bond, both the chlorhexidine and silicone oil groups could preserve the μTBS (p Dental Association.

  2. Development of optical guiding forceps for a direct bonding system using lightcured resin adhesives.

    Science.gov (United States)

    Kameda, Takashi; Ohkuma, Kazuo; Sano, Natsuki; Terada, Kazuto

    2014-01-01

    Multi-bracket systems are popular orthodontic appliances and are commonly bonded directly to enamel surfaces by resin adhesives. In light-cured bonding, the tip of the curing unit must be kept at a distance from the adhesive on the tooth, which can lead to low polymerization and insufficient bond strength. The curing lights also generate low-frequency electromagnetic fields, which can be harmful to patient health. Furthermore, bacterial contamination of the light-curing tips during use presents an infection risk for patients. In this study, we describe the development of optical guiding forceps (OGFs) for polymerizing light-cured resin as a solution to these problems. With OGFs, polymerization of adhesives was deeper than with lower magnetic fields and the bonds had the same shear strength as those formed by conventional procedures. These results suggest that OGFs may have practical use in the direct bonding of orthodontic appliances as well as in provisional bonding.

  3. Bond efficacy and interface morphology of self-etching adhesives to ground enamel.

    Science.gov (United States)

    Abdalla, Ali I; El Zohairy, Ahmed A; Abdel Mohsen, Mohamed M; Feilzer, Albert J

    2010-02-01

    This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray) and Hybrid bond (Sun-Medical), a self-etching primer, Clearfil SE Bond (Kuraray), and an etch-and-rinse system, Admira Bond (Voco), were selected. Thirty human molars were used. The root of each tooth was removed and the crown was sectioned into halves. The convex enamel surfaces were reduced by polishing on silicone paper to prepare a flat surface. The bonding systems were applied on this surface. Prior to adhesive curing, a hollow cylinder (2.0 mm height/0.75 mm internal diameter) was placed on the treated surfaces. A resin composite was then inserted into the tube and cured. After water storage for 24 h, the tube was removed and shear bond strength was determined in a universal testing machine at a crosshead speed of 0.5 mm/min. The results were analyzed with ANOVA and the Tukey.-Kramer test at a 59 degrees confidence level. The enamel of five additional teeth was ground, and the etching component of each adhesive was applied and removed with absolute ethanol instead of being light cured. These teeth and selected fractured surfaces were examined by SEM. Adhesion to ground enamel of the Futurabond DC (25 +/- 3.5 MPa) and Clearfil SE Bond (23 +/- 2.9 MPa) self-etching systems was not significantly different from the etch-and-rinse system Admira Bond (27 +/- 2.3 MPa). The two self-etching adhesives Clearfil S Tri bond and Hybrid Bond demonstrated significantly lower bond strengths (14 +/- 1.4 MPa; 11 +/- 1.9 MPa) with no significant differences between them (p adhesive systems are dependent on the type of adhesive system. Some of the new adhesive systems showed bond strength values comparable to that of etch-and-rinse systems. There was no correlation between bond strength and morphological changes in

  4. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Science.gov (United States)

    Chandak, Manoj G.; Pattanaik, Navdheeraj; Das, Ayan

    2012-01-01

    Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC). Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE) was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE). In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE) was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch) showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05) whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0–001). Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A) in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A) as well as without application of the adhesive agent. PMID:23293476

  5. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Manoj G Chandak

    2012-01-01

    Full Text Available Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC. Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE. In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05 whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0-001. Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A as well as without application of the adhesive agent.

  6. Adhesive Penetration of Wood and Its Effect on Bond Strength

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    Woodworkers know that wood is porous in that adhesive flows into lumens for a mechanical interlock (1) and that wood absorbs water, allowing the use of water-borne adhesives. However, the anatomical aspects of wood that lend to its porosity are much more complicated and have a greater influence on adhesive performance than is normallyrealized or discussed. This...

  7. Shear bond strength of three adhesive systems to enamel and dentin of permanent teeth

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2012-01-01

    Full Text Available Background and Aims: The purpose of this experimental study was to investigate the shear bond strength of three new adhesive systems to enamel and dentin of permanent human teeth using three new etch and rinse and self-etch adhesive systems.Materials and Methods: Sixty intact caries-free third molars were selected and randomly divided into 6 groups. Flat buccal and lingual enamel and dentin surfaces were prepared and mounted in the acrylic resin perpendicular to the plan of the horizon. Adhesives used in this study were Tetric N-Bond, AdheSE and AdheSE-One F (Ivoclar/Vivadent, Schaan, Liechtenstein. The adhesives were applied on the surfaces and cured with quartz tungsten halogen curing unit (600 mW/cm2 intensity for 20 s. After attaching composite to the surfaces and thermocycling (500 cycles, 5-55ºC, shear bond strength was measured using a universal testing machine at a crosshead speed of 0.5 mm/min. The failure modes were examined under a stereomicroscope. The data were statistically analyzed using T-test, one-way ANOVA, Tukey and Fisher's exact tests.Results: In enamel, Tetric N-Bond (28.57±4.58 MPa and AdheSE (21.97±7.6 MPa had significantly higher bond strength than AdheSE-One F (7.16±2.09 MPa (P0.05.Conclusion: Shear bond strength to dentin in Tetric N-Bond (etch and rinse system( was higher than self-etch adhesives (AdheSE and AdheSE-One F. The bond strength to enamel and dentin in two-step self-etch (AdheSE was higher than one-step self-etch (AdheSE-One F.

  8. Influence of degradation conditions on dentin bonding durability of three universal adhesives.

    Science.gov (United States)

    Sai, Keiichi; Shimamura, Yutaka; Takamizawa, Toshiki; Tsujimoto, Akimasa; Imai, Arisa; Endo, Hajime; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2016-11-01

    This study aims to determine dentin bonding durability of universal adhesives using shear bond strength (SBS) tests under various degradation conditions. G-Premio Bond (GP, GC), Scotchbond Universal (SU, 3M ESPE) and All Bond Universal (AB, Bisco) were compared with conventional two-step self-etch adhesive Clearfil SE Bond (SE, Kuraray Noritake Dental). Bonded specimens were divided into three groups of ten, and SBSs with bovine dentin were determined after the following treatments: 1) Storage in distilled water at 37°C for 24h followed by 3000, 10,000, 20,000 or 30,000 thermal cycles (TC group), 2) Storage in distilled water at 37°C for 3 months, 6 months or 1year (water storage, WS group) and 3) Storage in distilled water at 37°C for 24h (control). SE bonded specimens showed significantly higher SBSs than universal adhesives, regardless of TC or storage periods, although AB specimens showed significantly increased SBSs after 30,000 thermal cycles. In comparisons of universal adhesives under control and degradation conditions, SBS was only reduced in SU after 1year of WS. Following exposure of various adhesive systems to degradation conditions of thermal cycling and long term storage, SBS values of adhesive systems varied primarily with degradation period. Although universal adhesives have lower SBSs than the two-step self-etch adhesive SE, the present data indicate that the dentin bonding durability of universal adhesives in self-etch mode is sufficient for clinical use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Prolonged exposure times of one-step self-etch adhesives on adhesive properties and durability of dentine bonds.

    Science.gov (United States)

    Hass, Viviane; Luque-Martinez, Issis; Sabino, Nilson Biagini; Loguercio, Alessandro D; Reis, Alessandra

    2012-12-01

    To evaluate the effect of prolonged exposure times on immediate and 6-month adhesive properties: degree of conversion (DC), nanoleakage (NL) and resin-dentine bond strength (μTBS) of three one-step self-etch adhesive systems (Adper Easy One [EO], Clearfil S(3) Bond [CS3] and Go [GO]). The adhesives were applied on exposed dentine surfaces of 90 human molars according to manufacturers' instructions and light polymerized for 10, 20, and 40 s at 600 mW/cm(2). Bonded teeth were sectioned to obtain stick-shaped specimens (0.8 mm(2)) and tested under tensile stress (0.5 mm/min) immediately (IM) or after 6 months of water storage. Two bonded sticks from each tooth at each storage time interval were analysed by SEM for NL evaluation. The in situ DC was evaluated by micro-Raman spectroscopy. Data were analysed by appropriate ANOVA and Tukey's test (α = 0.05). Prolonged exposure times significantly increased the DC (%) (10 s [67.4 ± 17.3]; 20 s [85.9 ± 8.9] and 40 s [85.2 ± 9.0]) and decreased the NL (%) (10 s [24.8 ± 13.2]; 20 s [13.3 ± 7.5] and 40 s [13.5 ± 9.3]) for all adhesives; however it did not increase the IM μTBS for two (EO, GO) out of the three adhesives. Furthermore, this technique did not minimize dentine bond degradation. Although longer exposure times than those recommended could not prevent degradation of dentine bonds, they could increase DC within the hybrid layer and reduced NL for all adhesives tested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. [Bond strengths of absorbable polylactic acid root canal post with three different adhesives].

    Science.gov (United States)

    Pan, Hui; Cheng, Can; Hu, Jia; Liu, He; Sun, Zhi-hui

    2015-12-18

    To find absorbable adhesives with suitable bonding properties for the absorbable polylactic acid root canal post. To test and compare the bond strengths of absorbable polylactic acid root canal post with three different adhesives. The absorbable polylactic acid root canal posts were used to restore the extracted teeth, using 3 different adhesives: cyanoacrylates, fibrin sealant and glass ionomer cement. The teeth were prepared into slices for micro-push-out test. The bond strength was statistically analyzed using ANOVA. The specimens were examined using microscope and the failure mode was divided into four categories: cohesive failure between absorbable polylactic acid root canal posts and adhesives, cohesive failure between dentin and adhesives, failure within the adhesives and failure within the absorbable polylactic acid root canal posts. The bond strength of cyanoacrylates [(16.83 ± 6.97) MPa] and glass ionomer cement [(12.10 ± 5.09) MPa] were significantly higher than fibrin sealant [(1.17 ± 0.50) MPa], Ppolylactic acid root canal posts and the adhesives was 25.0%, the cohesive failure between the dentin and the adhesives was 16.7%, the failure within the adhesives was 33.3%, and the failure within the absorbable polylactic acid root canal posts was 25.0%. In the group of fibrin sealant, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 66.7%, the cohesive failure between the dentin and the adhesives was 22.2%, the failure within the adhesives was 11.1%. In the group of glass ionomer cement, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 87.5%, the failure within the adhesives was 12.5%. The major failure mode in fibrin sealant and glass ionomer cement was the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives. No major failure modes were found in the group of cyanoacrylates. The bond strength of fibrin sealant is low

  11. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives

    Directory of Open Access Journals (Sweden)

    An-Na Choi

    2017-10-01

    Full Text Available The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS testing and confocal laser scanning microscopy (CLSM. Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying, 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey’s post hoc tests (α = 0.05. Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed (p < 0.05. One-way ANOVA showed that All-Bond Universal was the only material influenced by the wetness of the dentin surfaces. Wetness of the dentin surface is a factor influencing the micro-tensile bond strength of universal adhesives.

  12. Four-year water degradation of total-etch adhesives bonded to dentin.

    Science.gov (United States)

    De Munck, J; Van Meerbeek, B; Yoshida, Y; Inoue, S; Vargas, M; Suzuki, K; Lambrechts, P; Vanherle, G

    2003-02-01

    Resin-dentin bonds degrade over time. The objective of this study was to evaluate the influence of variables like hybridization effectiveness and diffusion/elution of interface components on degradation. Hypotheses tested were: (1) There is no difference in degradation over time between two- and three-step total-etch adhesives; and (2) a composite-enamel bond protects the adjacent composite-dentin bond against degradation. The micro-tensile bond strength (microTBS) to dentin of 2 three-step total-etch adhesives was compared with that of 2 two-step total-etch adhesives after 4 years of storage in water. Quantitative and qualitative failure analyses were conducted correlating Fe-SEM and TEM. Indirect exposure to water did not significantly reduce the microTBS of any adhesive, while direct exposure resulted in a significantly reduced microTBS of both two-step adhesives. It is concluded that resin bonded to enamel protected the resin-dentin bond against degradation, while direct exposure to water for 4 years affected bonds produced by two-step total-etch adhesives.

  13. Effect of bonding variables on the shear bond strength and interfacial morphology of a one-bottle adhesive.

    Science.gov (United States)

    Medina, V; Shinkai, K; Shirono, M; Tanaka, N; Katoh, Y

    2001-01-01

    This study's objectives were: 1) to determine the combination of bonding procedures (with or without acid etching, moist or dry substrate, one or two applications of primer/adhesive) that would produce the highest shear bond strength of Prime & Bond and Dyract AP and 2) to characterize the resin-dentin/enamel interface produced by these bonding procedures. Ninety-six bovine incisors were randomly assigned to eight groups for shear bond testing to enamel (n = 6) and dentin (n = 6). Prime & Bond and Dyract AP were applied and cured following manufacturers' instructions. Shear bond testing was conducted in a Universal Testing Machine. Thirty-two bovine incisors were sectioned to produce blocks with enamel and dentin, then bonded in pairs for evaluation of interfacial morphology. They were polished and argon ion-etched using a high-speed argon ion-etching machine and examined by SEM. The groups where enamel was etched, kept moist or dry and received a single application of Prime & Bond produced the highest shear bond strength. Dentin bond strengths were high in the groups where dentin was etched and kept moist. The number of Prime & Bond applications had no effect on dentin bond strength. Acid etching results in better adaptation of Prime & Bond to enamel and dentin regardless of whether moisture is present.

  14. [Influence of thermalcycling on bonding durability of self-etch adhesives with dentin].

    Science.gov (United States)

    Tian, Fu-cong; Wang, Xiao-yan; Gao, Xue-jun

    2014-04-18

    To investigate influence of thermalcycling on the bonding durability of two one-step products [Adper Prompt (AP) and G-bond (GB)] and one two-step self-etching adhesive [Clearfil SE bond (SE)] with dentin in vitro. Forty-two extracted human molars were selected. The superficial dentin was exposed by grinding off the enamel. The teeth were randomly distributed into six groups with varied bonding protocols. The adhesives were applied to the dentin surface. Composite crowns were built up, then the samples were cut longitudinally into sticks with 1.0 mm×1.0 mm bonding area [for microtensile bond strength (MTBS) testing] or 1.0 mm thick slabs (for nanoleakage observation). Bonding performance was evaluated with or without thermalcyling. For the MTBS testing, the strength values were statistically analysed using One-Way ANOVA. Four slabs in each group were observed for nanoleakage by SEM with a backscattered electron detector. Thermalcycling procedures affected MTBS. In the two one-step groups, the MTBS decreased significantly (Padhesives showed lower MTBS than two-step bonding system after aging.For AP and GB, continuous nanoleakage appearance was notable and more obvious than for SE. Thermalcycling can affect the bonding performance of self-etch adhesives including decrease of bond strength and nanoleakage pattern. one-step self-etch adhesives showed more obvious change compared with their two-step counterparts.

  15. Enamel and dentin bond strengths of a new self-etch adhesive system.

    Science.gov (United States)

    Walter, Ricardo; Swift, Edward J; Boushell, Lee W; Braswell, Krista

    2011-12-01

    statement of problem:  Self-etch adhesives typically are mildly acidic and therefore less effective than etch-and-rinse adhesives for bonding to enamel.   The purpose of this study was to evaluate the enamel and dentin shear bond strengths of a new two-step self-etch adhesive system, OptiBond XTR (Kerr Corporation, Orange, CA, USA).   The labial surfaces of 80 bovine teeth were ground to create flat, 600-grit enamel or dentin surfaces. Composite was bonded to enamel or dentin using the new two-step self-etch system or a three-step etch-and-rinse (OptiBond FL, Kerr), two-step self-etch (Clearfil SE Bond, Kuraray America, Houston, TX, USA), or one-step self-etch adhesive (Xeno IV, Dentsply Caulk, Milford, DE, USA). Following storage in water for 24 hours, shear bond strengths were determined using a universal testing machine. The enamel and dentin data sets were subjected to separate analysis of variance and Tukey's tests. Scanning electron microscopy was used to evaluate the effects of each system on enamel.   Mean shear bond strengths to enamel ranged from 18.1 MPa for Xeno IV to 41.0 MPa for OptiBond FL. On dentin, the means ranged from 33.3 MPa for OptiBond FL to 47.1 MPa for Clearfil SE Bond. OptiBond XTR performed as well as Clearfil SE Bond on dentin and as well as OptiBond FL on enamel. Field emission scanning electron microscope revealed that OptiBond XTR produced an enamel etch pattern that was less defined than that of OptiBond FL (37.5% phosphoric acid) but more defined than that of Clearfil SE Bond or Xeno IV.   The new two-step self-etch adhesive system formed excellent bonds to enamel and dentin in vitro. OptiBond XTR, a new two-step self-etch adhesive system, is a promising material for bonding to enamel as well as to dentin. © 2011 Wiley Periodicals, Inc.

  16. Evaluation of bonding behavior of silver-tin-zinc-indium alloy to adhesive luting cements.

    Science.gov (United States)

    Shimizu, H; Kawaguchi, T; Takahashi, K; Takahashi, Y

    2010-12-01

    The bond strengths of a silver-tin-zinc-indium alloy used with adhesive luting cements were investigated. The metal surfaces were primed with two metal conditioners designed for noble metal alloys or base metal alloys, or prepared using a Rocatec tribochemical coating unit. Two adhesive luting cements (Super-Bond C&B and Panavia F 2.0) were applied. It can be concluded that airborne-particle abrasion with alumina was effective, but the effects on the bond durability of both the metal conditioners and the tribochemical silica coating method were not clear Such bonding behavior seems to be particular to this kind of silver-rich dental casting alloy.

  17. Creep simulation of adhesively bonded joints using modified generalized time hardening model

    Energy Technology Data Exchange (ETDEWEB)

    Sadigh, Mohammad Ali Saeimi [Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2016-04-15

    Creep behavior of double lap adhesively bonded joints was investigated using experimental tests and numerical analysis. Firstly, uniaxial creep tests were carried out to obtain the creep characteristics and constitutive parameters of the adhesive at different stress and temperature levels. Generalized time hardening model was used to predict the creep behavior of the adhesive. This model was modified to simulate the creep behavior at different stress and temperature levels. Secondly, the developed model was used to simulate the creep behavior of bonded joints using finite element based numerical analysis. Creep deformations of the joints were measured experimentally and good agreement was observed in comparison with the results obtained using numerical simulation. Afterward, stress redistribution due to the creep along the adhesively bonded joint was obtained numerically. It was observed that temperature level had a significant effect on the stress redistribution along the adhesive thickness.

  18. Bond strength of self-adhesive resin cements to tooth structure

    Directory of Open Access Journals (Sweden)

    Susan Hattar

    2015-04-01

    Conclusions: Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution.

  19. Effect of Curing Mode on Shear Bond Strength of Self-Adhesive Cement to Composite Blocks

    National Research Council Canada - National Science Library

    Jin-Young Kim; Ga-Young Cho; Byoung-Duck Roh; Yooseok Shin

    2016-01-01

    .... The purpose of this study was to evaluate the shear bond strength and fracture pattern of indirect CAD/CAM composite blocks cemented with two self-etch adhesive cements with different curing modes...

  20. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: A systematic review

    National Research Council Canada - National Science Library

    Dionysopoulos, Dimitrios

    2016-01-01

    ...) on bond strength between dental adhesive systems and dentin of composite restorations. The electronic databases that were searched to identify manuscripts for inclusion were Medline via PubMed and Google search engine...

  1. Effect of chlorhexidine and ethanol-wet bonding with a hydrophobic adhesive to intraradicular dentine

    National Research Council Canada - National Science Library

    Ekambaram, Manikandan; Yiu, Cynthia Kar Yung; Matinlinna, Jukka Pekka; Chang, Jeffrey Wen Wei; Tay, Franklin Russell; King, Nigel Martyn

    2014-01-01

    ...) with a hydrophobic adhesive on bond durability of fibre posts to intraradicular dentine. Ninety-six extracted human teeth with a single root and root canal were prepared for post placement after endodontic treatment...

  2. [The durability of three self-etch adhesives bonded to dentin].

    Science.gov (United States)

    Tian, Fu-Cong; Wang, Xiao-Yan; Gao, Xue-Jun

    2013-04-01

    To investigate the durability of self-etch adhesives bonded to dentin in vitro. Forty-two extracted human molars were selected and occlusal dentin surfaces were exposed. The teeth were randomly distributed into three groups based on adhesives applied. The one-step self-etch adhesive B(Adper Prompt) and C(G-Bond) and two-step self-etch adhesive A (Clearfil SE bond) were used. After application of the adhesives to the dentin surfaces, composite crowns were built up, after 24 h water storage, the teeth were sectioned longitudinally into sticks (1.0 mm×1.0 mm bonding area) for microtensile testing or slabs (1 mm thick) for scanning electron microscopec (SEM) observation. Bonding strength (mTBS) and nano-leakage were evaluated immediately after cutting or after 6 months in water. The mTBS was analyzed using one-way ANOVA (SPSS 13.0). The nanoleakage was observed by SEM with a backscattered electron detector. Both adhesives and water storage time affected the mTBS. All adhesives showed decreased bond strength after six-month water aging [A dropped from (40.60 ± 5.76) MPa to (36.04 ± 3.15) MPa; B dropped from (19.06 ± 1.50) MPa to (11.19 ± 1.97) MPa; C dropped from (17.75 ± 1.10) MPa to (9.14 ± 1.15) MPa] (P self-etch adhesives tested were probably influenced by water aging, however, the two-step adhesive showed better durability than the one-step adhesives.

  3. Adhesive bond performance of heat-treated wood at various conditions.

    Science.gov (United States)

    Kol, Hamiyet Sahin; Özbay, Günay

    2016-07-01

    Heat treatment of wood leads to chemical, structural and physical changes in wood constituents, which can significantly affect the bonding performance of wood in several ways depending on the adhesive type used. In the present study, fir (Abies bornmülleriana Mattf.) and beech (Fagus orientalis L.) were heat treated at 170 degrees C, 180 degrees C, 190 degrees C, 200 and 212 degrees C for 2 hours. Four different types of adhesives were used for bonding process: melamine-urea-formaldehyde (MUF), melamine formaldehyde (MF), phenol formaldehyde (PF), and polyurethane (PUR). For all the pretreatment conditions, highest shear strength of adhesive bonds of each adhesive system was observed for untreated samples and shear strength decreased with increasing heat treatment. The strength of each adhesive bond of samples which were soaked in water was much less than dry samples, approximately half of the dry strength. Generally, the shear strength of the adhesive bonds after boiling was smaller than or similar to the values obtained for soaking. The untreated samples lost more strength after soaking and boiling than heat treated samples. With increasing heat treatment severity, reduction in shear strength increased in dry samples while decreased in soaking and boiling samples. For instance, after soaking, the untreated samples lost more strength (almost 39%) than heat treated samples (almost 24% for most severely heat treated samples). The results showed that the shear strength of adhesive bonds was influenced by heat treatment and depended on pretreatment of samples prior to testing. In general, all adhesives used performed in quite a similar way for all pretreatment conditions, and the bonding performance of heat treated fir wood was less satisfactory than that of beech wood for all adhesive system and condition.

  4. Interfacial Characteristics and Bond Durability of Universal Adhesive to Various Substrates.

    Science.gov (United States)

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Wilwerding, T M; Latta, M A; Miyazaki, M

    This study investigated the interfacial characteristics and bond durability of universal adhesives to various substrates. Two universal adhesives were used: 1) Scotchbond Universal and 2) G-Premio Bond. The substrates used were bovine enamel and dentin with or without phosphoric acid etching, resin composite, lithium disilicate and leucite-reinforced glass ceramics, zirconia, and metal alloys. The surface free energy and the parameters of various substrates and of substrates treated by adhesive after light irradiation were determined by measuring the contact angles of three test liquids. Resin composite was bonded to the various substrates to determine shear bond strength after 24 hours water storage and 10,000 thermal cycles. A one-way analysis of variance (ANOVA) and the Tukey post hoc test were used for the surface free energy data, and a two-way ANOVA and the Tukey post hoc test were used for analysis of shear bond strength data (α=0.05). The interfacial characteristics of the various substrates show significant differences depending on the type of substrate, but the interfacial characteristics of substrate treated by adhesive after light irradiation did not show any significant differences regardless of the substrate used. The bond durability of two universal adhesives to various substrates differs depending on the type of substrate and the adhesive. The results of this study suggest that universal adhesives modify the interfacial characteristics of a wide range of substrates and create a consistent surface, but the bond durability of universal adhesive to various substrates differs depending on the type of substrate and the adhesive.

  5. Effect of Forming Speed on Plastic Bending of Adhesively Bonded Sheet Metals

    Science.gov (United States)

    Takiguchi, Michihiro; Yoshida, Fusahito

    Using highly ductile acrylic adhesive, the present authors proposed a new technique of plastic bending of adhesively bonded sheet metals. In this process, the suppression of large transverse shear deformation occurring in the adhesive layer, which in some cases would induce the geometrical imperfection (so-called ‘gull-wing bend') and the delamination of the sheet, is one of the most important technical issues. In the present work, the effect of forming speed on bending deformation was investigated. From experimental observations in V-bending experiments of adhesively bonded aluminium sheets, as well as the corresponding numerical simulations which consider the viscoplasticity nature of the adhesive resin, it was found that the large shear deformation and ‘gull-wing bend' are successfully suppressed by high-speed forming since the deformation resistance of the adhesive resin becomes higher at a high strain rate.

  6. Bonding of single-component adhesives to dentin following chemomechanical caries removal.

    Science.gov (United States)

    El-Kholany, Naglaa R; Abdelaziz, Khalid M; Zaghloul, Nadia M; Aboulenien, Naguib

    2005-01-01

    To determine the effect of chemomechanical caries removal on the bonding quality of contemporary single-component adhesives to dentin. N-monochloro-DL-2-aminobutyrate solution (NMAB) and Carisolv gel were used to chemomechanically remove dentin caries in 60 extracted human molars. Caries removal with rotating instruments served as the control. Two single-component adhesive systems, Syntac Single Component and Excite, were applied to bond the hybrid composite Tetric Ceram to the treated dentin surfaces. The prepared samples were sectioned for microtensile bond strength testing and SEM examination of the bonding interfaces. The debonding patterns of the fractured samples were also assessed. No statistically significant differences were found between the bond strengths of either adhesive to the conventionally and the NMAB-treated dentin (p > 0.05). However, the Carisolv-treated dentin yielded significantly higher (p > 0.05) bond strength values with both adhesives compared to those on dentin prepared with rotating instruments. No statistical difference could be discerned between the 2 adhesive systems (p > 0.05), nor was the interaction between the 2 variables under investigation (method of caries removal and the type of adhesive) statistically significant (p = 0.7712). SEM images indicated unspecific effects of the tested variables on both the thickness of the hybrid layer and the length of the resin tags. Under the conditions of this study, using the Carisolv chemomechanical caries removal system to prepare dentin surfaces enhanced the dentin/adhesive bond strength. In addition, the chemical nature of the adhesive systems seems to have no effect on the values of bond strength.

  7. Tensile bond strength of different universal adhesive systems to lithium disilicate ceramic.

    Science.gov (United States)

    Passia, Nicole; Lehmann, Frank; Freitag-Wolf, Sandra; Kern, Matthias

    2015-10-01

    Today, many adhesive systems with different coupling agents for tooth structures and restorative materials are available. The purpose of this in vitro study was to evaluate the tensile bond strength (TBS) of different universal adhesive systems to etched lithium disilicate ceramic. The authors etched and bonded 96 disk-like lithium disilicate ceramic specimens (IPS e.max CAD, Ivoclar Vivadent) with 4 different adhesive bonding systems to Plexiglas tubes filled with a composite resin. The authors stored the specimens in water at 37°C for 3 days without thermal cycling or for 30 or 150 days with 7,500 or 37,500 thermal cycles between 5°C and 55°C, respectively. Then, all specimens underwent TBS testing. The authors performed statistical analysis by using Kruskal-Wallis and Wilcoxon tests with a Bonferroni-Holm correction for multiple testing. Initially, all adhesive systems exhibited considerable TBS, but some showed a significant reduction after 30 days of storage. After 3, 30, and 150 days, the Monobond Plus and Multilink Automix (Ivoclar Vivadent) silane-containing adhesive system showed significantly higher bond strengths to lithium disilicate ceramic than did the other universal adhesive systems, some of which do not contain silanes. The bond strength to lithium disilicate ceramic is affected significantly by the adhesive bonding system used. Universal adhesive systems that do not contain a silane should be avoided for bonding lithium disilicate ceramic restorations because of their inferior bond strength. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.

  8. Influence of a heating device and adhesive temperature on bond strength of a simplified ethanol-based adhesive system

    Directory of Open Access Journals (Sweden)

    Marcos Paulo Marchiori CARVALHO

    Full Text Available Abstract Introduction Increased adhesive temperature has been reported to promote solvent evaporation, reduce viscosity, and improve monomeric permeation into dentin. Objective The aim of this study was to determine the influence of different heating methods on the microtensile bond strength of an etch-and-rinse adhesive to dentin. Material and method Twenty-four caries-free extracted human third molars were transversally sectioned to expose a flat dentinal surface. The samples were etched with 37% phosphoric acid gel and divided into three groups (n = 8: 1 Control - the adhesive system (Adper Single Bond 2; 3M ESPE was applied at room temperature; 2 Warming device - the adhesive was warmed to 37°C in a custom device before application; and 3 Warm air - the adhesive was warmed to 50°C with an air jet after application on dentin. The specimens were restored with a composite resin (Filtek Z250 A2, 3M ESPE and prepared for microtensile bond strength testing, after 24 h in water storage. The data were subjected to one-way ANOVA and Tukey's test (p 0.05. The mean bond strength values in the control, the warming device, and the warm air groups were 48.5 (± 5.2, 40.35 (± 4.9, and 47.2 (± 5.3 MPa, respectively (p = 0.05. Conclusion The different heating methods had no significant influence on the immediate microtensile bond strength of an etch-and-rinse ethanol-based adhesive to dentin.

  9. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  10. Multicenter bonding in open-shell systems. A nonlinear population analysis approach

    Energy Technology Data Exchange (ETDEWEB)

    Ponec, R.; Torre, A.; Lain, L.; Bochicchio, R.C.

    2000-04-15

    This study reports an extension of the previously described method of nonlinear population analysis to the study of open-shell systems. The results clearly show that this procedure allows one to detect and to localize the presence of multicenter bonding in this type of system. A comparison between the results arising for doublet and triplet states of selected open-shell system from suitable analytical models with those obtained from the self-consistent field unrestricted Hartree-Fock (SCF UHF) calculated values is very satisfactory. In addition to detection of the eventual presence of multicenter bonding in open-shell systems, this approach provides us also with an insight into the nature of 3-center bonding in open-shell systems.

  11. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

    Directory of Open Access Journals (Sweden)

    Victor Hugo dos Santos

    2014-02-01

    Full Text Available Objectives Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Materials and Methods Composite discs were subject to one of six different surface pretreatments: none (control, 35% phosphoric acid etching for 30 seconds (PA, application of silane (silane, PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6. A silicone mold containing a cylindrical orifice (1 mm2 diameter was placed over the composite resin. RelyX Unicem (3M ESPE or BisCem (Bisco Inc. self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05. Results Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate.

  12. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    Directory of Open Access Journals (Sweden)

    Cécile Bernard

    2015-01-01

    Full Text Available The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL and a two-steps/self-etch adhesive system (Optibond XTR were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR. All specimens were submitted to thermocycling ageing (10000 cycles. The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL.

  13. Microtensile bond strength of two self-adhesive cements to enamel and dentin: bonding efficiency and thermocycling effect

    OpenAIRE

    Fernandes Jr, Virgílio Vilas Boas; Faculdade de Odontologia de São José dos Campos; Rodrigues, José Roberto; Faculdade de Odontologia de São José dos Campos; Silva, João Maurício Ferraz da; Faculdade de Odontologia de São José dos Campos; Pagani, Clóvis; Faculdade de Odontologia de São José dos Campos; Malaquias, Henderson; Faculdade de Odontologia de São José dos Campos; Balducci, Ivan; Faculdade de Odontologia de São José dos Campos

    2012-01-01

    The aim of this in vitro study was to evaluate the bonding efficiency between two self-adhesive cements to enamel and dentine, with and without previous dental surface conditioning, before and after thermocycling. Thirty-six molars were divided into 3 experimental groups and 01 control group. The self-adhesive resin cements selected for the experimental groups were: RelyX Unicem (subgroups RE and RD) and Bifix SE (subgroups BE and BD). For control groups, a conventional resin cement, Variolin...

  14. An Analytical Model for Predicting the Stress Distributions within Single-Lap Adhesively Bonded Beams

    OpenAIRE

    Xiaocong He; Yuqi Wang

    2014-01-01

    An analytical model for predicting the stress distributions within single-lap adhesively bonded beams under tension is presented in this paper. By combining the governing equations of each adherend with the joint kinematics, the overall system of governing equations can be obtained. Both the adherends and the adhesive are assumed to be under plane strain condition. With suitable boundary conditions, the stress distribution of the adhesive in the longitudinal direction is determined.

  15. An Analytical Model for Predicting the Stress Distributions within Single-Lap Adhesively Bonded Beams

    Directory of Open Access Journals (Sweden)

    Xiaocong He

    2014-01-01

    Full Text Available An analytical model for predicting the stress distributions within single-lap adhesively bonded beams under tension is presented in this paper. By combining the governing equations of each adherend with the joint kinematics, the overall system of governing equations can be obtained. Both the adherends and the adhesive are assumed to be under plane strain condition. With suitable boundary conditions, the stress distribution of the adhesive in the longitudinal direction is determined.

  16. Atomic force microscopic corroboration of bond ageing for adhesion of Streptococcus thermophilus to solid substrata

    NARCIS (Netherlands)

    Vadillo-Rodriguez, V.; Busscher, H.J.; Norde, W.; Vries, de J.

    2004-01-01

    Initial bacterial adhesion is considered to be reversible, but over time the adhesive bond between a bacterium and a substratum surface may strengthen, turning the process into an irreversible state. Microbial desorption has been studied in situ in controlled flow devices as a function of the

  17. Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata

    NARCIS (Netherlands)

    Vadillo-Rodrı́guez, Virginia; Busscher, Hendrik; Norde, Willem; de Vries, Jacob; van der Mei, Henny C

    2004-01-01

    Initial bacterial adhesion is considered to be reversible, but over time the adhesive bond between a bacterium and a substratum surface may strengthen, turning the process into an irreversible state. Microbial desorption has been studied in situ in controlled flow devices as a function of the

  18. Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths

    Science.gov (United States)

    Thormann, Esben; MizunoPresent Address: Nihon L'Oreal, Research; Innovation Center, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa, Japan., Hiroyasu; Jansson, Kjell; Hedin, Niklas; Fernández, M. Soledad; Arias, José Luis; Rutland, Mark W.; PaiPresent Address: CenterFunctional Nanomaterials, Brookhaven National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973., Ranjith Krishna; Bergström, Lennart

    2012-06-01

    The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude.The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30536d

  19. Influence of Different Etching Modes on Bond Strength to Enamel using Universal Adhesive Systems.

    Science.gov (United States)

    Diniz, Ana Cs; Bandeca, Matheus C; Pinheiro, Larissa M; Dos Santosh Almeida, Lauber J; Torres, Carlos Rg; Borges, Alvaro H; Pinto, Shelon Cs; Tonetto, Mateus R; De Jesus Tavarez, Rudys R; Firoozmand, Leily M

    2016-10-01

    The adhesive systems and the techniques currently used are designed to provide a more effective adhesion with reduction of the protocol application. The objective of this study was to evaluate the bond strength of universal adhesive systems on enamel in different etching modes (self-etch and total etch). The mesial and distal halves of 52 bovine incisors, healthy, freshly extracted, were used and divided into seven experimental groups (n = 13). The enamel was treated in accordance with the following experimental conditions: FUE-Universal System - Futurabond U (VOCO) with etching; FUWE - Futurabond U (VOCO) without etching; SB-Total Etch System - Single Bond 2 (3M); SBUE-Universal System - Single Bond Universal (3M ESPE) with etching; SBUWE - Single Bond Universal (3M ESPE) without etching; CLE-Self-etch System - Clearfil SE Bond (Kuraray) was applied with etching; CLWE - Clearfil SE Bond (Kuraray) without etching. The specimens were made using the composite spectrum TPH (Dentsply) and stored in distilled water (37 ± 1°C) for 1 month. The microshear test was performed using the universal testing machine EMIC DL 2000 with the crosshead speed of 0.5 mm/minute. The bond strength values were analyzed using statistical tests (Kruskal-Wallis test and Mann-Whitney test) with Bonferroni correction. There was no statistically significant difference between groups (p adhesive interface revealed that most failures occurred between the interface composite resin and adhesive. The universal adhesive system used in dental enamel varies according to the trademark, and the previous enamel etching for universal systems and the self-etch both induced greater bond strength values. Selective enamel etching prior to the application of a universal adhesive system is a relevant strategy for better performance bonding.

  20. Effect of adjunctive application of epigallocatechin-3-gallate and ethanol-wet bonding on adhesive-dentin bonds.

    Science.gov (United States)

    Yang, Hongye; Guo, Jingmei; Deng, Donglai; Chen, Zhiyong; Huang, Cui

    2016-01-01

    To determine the effect of the combined use of epigallocatechin-3-gallate (EGCG) and ethanol-wet bonding (EWB) on resin-dentin bonds. Sixty molars were sectioned, polished, and randomly divided into six groups (n=10) according to the following pretreatments: group 1, water-wet bonding (WWB); group 2, WWB with 0.02% (w/v) EGCG; group 3, WWB with 0.1% EGCG; group 4, EWB; group 5, EWB with 0.02% EGCG; and group 6, EWB with 0.1% EGCG. An etch-and-rinse adhesive was then used, followed by the resin composites building. The microtensile bond strength (MTBS), failure modes and interfacial nanoleakage were separately determined after 24h water storage or 10,000 runs of thermocycling. Both pretreatment method (Padhesive-dentin interfaces showed higher MTBS than the control group (PAdhesive failure was the main fracture pattern in all groups. This study showed that pretreatment with 0.02% EGCG/ethanol solutions can effectively improve immediate bond strength and bond stability of etch-and-rinse adhesives on dentin. The adjunctive application of EGCG and EWB provides a new strategy for dentists to obtain the desired bond effectiveness during adhesive restoration in clinical practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Influence of previous acid etching on bond strength of universal adhesives to enamel and dentin.

    Science.gov (United States)

    Torres, Carlos Rocha Gomes; Zanatta, Rayssa Ferreira; Silva, Tatiane Josefa; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler

    2017-01-01

    The objective of this study was to evaluate the effect of acid pretreatment on the bond strength of composite resin bonded to enamel and dentin with 2 different universal self-etching adhesives. The null hypothesis was that the acid treatment performed prior to adhesive application would not significantly change the bond strength to enamel or dentin for either universal adhesive tested. A sample of 112 bovine incisors were selected and embedded in acrylic resin. Half were ground until a flat enamel surface was obtained, and the other half were polished until a 6 × 6-mm area of dentin was exposed, resulting into 2 groups (n = 56). The enamel and dentin groups were divided into 2 subgroups according to the adhesive system applied: Futurabond U or Scotchbond Universal. Each of these subgroups was divided into 2 additional subgroups (n = 14); 1 subgroup received phosphoric acid pretreatment, and 1 subgroup did not. The bond strength was assessed with a microtensile test. Data from enamel and dentin specimens were analyzed separately using 1-way analysis of variance. The acid pretreatment did not significantly change the bond strength of the adhesives tested, either to enamel (P = 0.4161) or to dentin (P = 0.4857). The acid etching pretreatment did not affect the bond strength to dentin and enamel when the tested universal multipurpose adhesive systems were used.

  2. Bond strength evaluation in adhesive joints using NDE and DIC methods

    Science.gov (United States)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a

  3. Bond strength comparison of color-change adhesives for orthodontic bonding using a self-etching primer.

    Science.gov (United States)

    Ekhlassi, Sara; English, Jeryl D; Ontiveros, Joe C; Powers, John M; Bussa, Harry I; Frey, Gary N; Colville, Clark D; Ellis, Randy K

    2011-01-01

    The purpose of this study was to compare the shear bond strengths of two color-change adhesives with a commonly used conventional light-cure adhesive while using a self-etching primer, and to compare any changes in shear bond strengths over time. One hundred and eighty extracted bovine incisors were randomly divided into nine groups of 20 teeth each. The teeth were prepared with a self-etching primer (Transbond™ Plus) Metal lower incisor brackets were bonded directly to each tooth with two different color-change adhesives (TransbondPlus and Grēngloo™) and a control (Transbond XT). The teeth were debonded at three different time points (15 minutes, 24 hours, 1 week) using an Instron at 1.0 mm/min. The teeth that were to be debonded at 24 hours and 1 week were stored in distilled water at 37°C to simulate the oral environment. The data were analyzed by two-way analysis of variance and with Fisher's protected least-significant difference multiple comparisons test at the P Adhesive remnant index (ARI) scores were calculated for each debonded tooth. Transbond Plus at 1 week had the highest mean shear bond strength (14.7 mPa). Grēngloo tested at 24 hours had the lowest mean shear bond strength (11.3 mPa). The mean shear bond strengths for the remaining seven groups had a range of 12-14.5 mPa. Grēngloo had >80% samples presenting with an ARI score of 1 at all times. Interestingly, both Transbond groups had ARI scores of 3 in more than 50% of their samples. Time had no significant effect on the mean shear bond strength of Transbond XT, Grēngloo, or Transbond Plus adhesive.

  4. Bond strength of self-adhesive resin cements to tooth structure.

    Science.gov (United States)

    Hattar, Susan; Hatamleh, Muhanad M; Sawair, Faleh; Al-Rabab'ah, Mohammad

    2015-04-01

    The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed. The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface. Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution.

  5. Shear bond strength comparison between two orthodontic adhesives and self-ligating and conventional brackets.

    Science.gov (United States)

    Northrup, Rodney G; Berzins, David W; Bradley, Thomas Gerard; Schuckit, William

    2007-07-01

    To evaluate and compare the shear bond strengths of two adhesives using two types of brackets: a conventional and a self-ligating bracket system. Sixty extracted human premolars were collected. The premolars were randomly divided into three groups of 20 teeth. All three groups were direct bonded. Groups 1 and 2 used light-cured adhesive and primer (Transbond XT) with a conventional (Orthos) and a self-ligating bracket (Damon 2), respectively. Group 3 used a light-cured primer (Orthosolo) and a light-cured adhesive (Blūgloo) with a self-ligating bracket (Damon 2). The specimens were stored in distilled water at 37 degrees C for 40 +/- 2 hours, after which they were debonded and inspected for Adhesive Remnant Index (ARI) scoring. The mean shear bond strength was 15.2 MPa for group 1, 23.2 MPa for group 2, and 24.8 MPa for group 3. A one-way analysis of variance and post hoc Tukey test showed significant differences in bond strength (P .05) between groups 2 and 3. A Weibull analysis demonstrated that all three groups provided sufficient bond strength with over 90% survival rate at normal masticatory and orthodontic force levels. A Kruskal-Wallis test showed no significant difference (P > .05) in ARI scores among all three groups. All three groups demonstrated clinically acceptable bond strength. The Damon 2 self-ligating bracket exhibited satisfactory in vitro bond strength with both adhesive systems used.

  6. Effect of glutaraldehyde and ferric sulfate on shear bond strength of adhesives to primary dentin

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-12-01

    Full Text Available Aim: The present study was undertaken to evaluate the effect of alternative pulpotomy agents such as glutaraldehyde and ferric sulfate on the shear bond strength of self-etch adhesive systems to dentin of primary teeth. Materials and Methods: Eighty human primary molar teeth were sectioned in a mesiodistal direction and divided into experimental and control groups. Lingual dentin specimens in experimental groups were treated with glutaraldehyde and ferric sulfate. Buccal surfaces soaked in water served as control group. Each group was then divided into two groups based on the adhesive system used: Clearfil SE Bond and Adper Prompt L-Pop. A teflon mold was used to build the composite (Filtek Z-250 cylinders on the dentinal surface of all the specimens. Shear bond strength was tested for all the specimens with an Instron Universal Testing Machine. The failure mode analysis was performed with a Scanning Electron Microscope (SEM. Results: The results revealed that glutaraldehyde and ferric sulfate significantly reduced the shear bond strength of the tested adhesive systems to primary dentin. Clearfil SE Bond showed much higher shear bond strength than Adper Prompt L Pop to primary dentin. SEM analysis revealed a predominant cohesive failure mode for both adhesive systems. Conclusion: This study revealed that the pulpotomy medicaments glutaraldehyde and ferric sulfate adversely affected the bonding of self-etch adhesive systems to primary dentin.

  7. What’s New in Dentine Bonding?: Universal Adhesives.

    Science.gov (United States)

    Trevor Burke, F J; Lawson, Anna; Green, David J B; Mackenzie, Louis

    2017-04-01

    The ability to bond restorations to dentine successfully is central to minimally invasive restorative dentistry. While dentine-bonding agents have gone through a variety of ‘generations’, it is the purpose of this paper to describe the latest dentine-bonding agents, the Universal Bonding Agents. These materials may be considered ‘Universal’ insofar as they may be considered to be capable of being used for direct and indirect dentistry, as well as being suitable for use in whichever etching modality the clinician considers appropriate, namely self-etch, etch and rinse or selective enamel etch. Laboratory investigations and initial clinical studies hold the promise that Universal Bonding Agents are a forward step in the quest for the ultimate bond to tooth substance. Clinical relevance: New Universal Bonding Agents appear to present a promising advance in bonding to dentine.

  8. Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Camila SABATINI

    2013-01-01

    Full Text Available Objective To evaluate the effect of optional phosphoric acid etching on the shear bond strength (SBS of two self-etch adhesives to enamel and dentin. Material and Methods Ninety-six bovine mandibular incisors were ground flat to obtain enamel and dentin substrates. A two-step self-etch adhesive (FL-Bond II and a one-step self-etch adhesive (BeautiBond were applied with and without a preliminary acid etching to both the enamel and dentin. The specimens were equally and randomly assigned to 4 groups per substrate (n=12 as follows: FL-Bond II etched; FL-Bond II un-etched; BeautiBond etched; BeautiBond un-etched. Composite cylinders (Filtek Z100 were bonded onto the treated tooth structure. The shear bond strength was evaluated after 24 hours of storage (37°C, 100% humidity with a testing machine (Ultra-tester at a speed of 1 mm/min. The data was analyzed using a two-way ANOVA and post-hoc Tukey's test with a significance level of p<0.05. A field emission scanning electron microscope was used for the failure mode analysis. Results Both adhesives evidenced a significant decrease in the dentin SBS with the use of an optional phosphoric acid-etching step (p<0.05. Preliminary phosphoric acid etching yielded significantly higher enamel SBS for FL-Bond II (p<0.05 only, but not for BeautiBond. FL-Bond II applied to un-etched dentin demonstrated the highest mean bond strength (37.7±3.2 MPa and BeautiBond applied to etched dentin showed the lowest mean bond strength (18.3±6.7 MPa among all tested groups (p<0.05. Conclusion The use of a preliminary acid-etching step with 37.5% phosphoric acid had a significant adverse effect on the dentin bond strength of the self-etch adhesives evaluated while providing improvement on the enamel bond strength only for FL-Bond II. This suggests that the potential benefit that may be derived from an additional etching step with phosphoric acid does not justify the risk of adversely affecting the bond strength to dentin.

  9. Nondestructive testing of adhesive bonds by nuclear quadrupole resonance method

    Science.gov (United States)

    Hewitt, R. R.

    1971-01-01

    Inert, strain sensitive tracer, cuprous oxide, added to polymeric adhesive ensures sufficiently large signal to noise ratio in NQR system output. Method is successful, provided that RF-transparent structural materials are used between modified adhesive and probe of NQR spectrometer.

  10. Bonding of adhesives to Er:YAG laser-treated dentin.

    Science.gov (United States)

    Koliniotou-Koumpia, Eugenia; Kouros, Pantelis; Zafiriadis, Lazaros; Koumpia, Effimia; Dionysopoulos, Pavlos; Karagiannis, Vassilis

    2012-01-01

    The shear bond strength of adhesives applied to dentin was investigated after irradiation with an erbium-doped yttrium aluminum garnet (Er:YAG) laser. Superficial and deep dentin specimens from human molars were treated either with carbide bur or an Er:YAG laser. Two etch and rinse adhesives (Single Bond and XP Bond) and two self-etch adhesives (Prompt L-Pop and Xeno III) were employed to bond the composite. Shear bond strength (SBS) was determined after storage in water for 24 h using a universal testing machine with a crosshead speed of 0.5 mm/min. Failure patterns and modes were analyzed and evaluated using a stereomicroscope. In addition, samples were processed for Scanning Electron Microscopy SEM evaluation. A linear mixed model was used, and pairwise comparisons were made using the Bonferroni test. Results showed significant differences between the levels of dentin treatment (p=.01) in carbide bur-cut dentin and lased dentin, as well as significant interaction effects due to the depth of dentin and the bonding system used. The etch and rinse adhesives bonded less effectively with lased dentin than with carbide bur-cut dentin, while self-etch adhesives bonded equally well with lased and bur-cut superficial dentin but much less effectively with lased deep dentin than with bur-cut deep dentin. SEM revealed a predominantly adhesive failure mode in laser-ablated fractured specimens, while a mixed failure mode was apparent in the bur-cut fractured specimens. Cavities prepared by laser seem less receptive to adhesive procedures than conventional bur-cut cavities.

  11. Bonding of adhesives to Er:YAG laser-treated dentin

    Science.gov (United States)

    Koliniotou-Koumpia, Eugenia; Kouros, Pantelis; Zafiriadis, Lazaros; Koumpia, Effimia; Dionysopoulos, Pavlos; Karagiannis, Vassilis

    2012-01-01

    Objective: The shear bond strength of adhesives applied to dentin was investigated after irradiation with an erbium-doped yttrium aluminum garnet (Er:YAG) laser. Methods: Superficial and deep dentin specimens from human molars were treated either with carbide bur or an Er:YAG laser. Two etch and rinse adhesives (Single Bond and XP Bond) and two self-etch adhesives (Prompt L-Pop and Xeno III) were employed to bond the composite. Shear bond strength (SBS) was determined after storage in water for 24 h using a universal testing machine with a crosshead speed of 0.5 mm/min. Failure patterns and modes were analyzed and evaluated using a stereomicroscope. In addition, samples were processed for Scanning Electron Microscopy SEM evaluation. A linear mixed model was used, and pairwise comparisons were made using the Bonferroni test. Results: Results showed significant differences between the levels of dentin treatment (p=.01) in carbide bur-cut dentin and lased dentin, as well as significant interaction effects due to the depth of dentin and the bonding system used. The etch and rinse adhesives bonded less effectively with lased dentin than with carbide bur-cut dentin, while self-etch adhesives bonded equally well with lased and bur-cut superficial dentin but much less effectively with lased deep dentin than with bur-cut deep dentin. SEM revealed a predominantly adhesive failure mode in laser-ablated fractured specimens, while a mixed failure mode was apparent in the bur-cut fractured specimens. Conclusions: Cavities prepared by laser seem less receptive to adhesive procedures than conventional bur-cut cavities. PMID:22229003

  12. Shear strength development of the phenol–formaldehyde adhesive bond during cure

    OpenAIRE

    Jost, Matej; Sernek, Milan

    2008-01-01

    The development of the shear strength of the phenol-formaldehyde (PF) adhesive bond during curing was investigated. Five different PF adhesive mixtures and 1.1 mm thick peeled beech (Fagus sylvatica L.) veneer were used to produce lap-shear specimens, which were cured at a pressing temperature of 160°C. Dielectric analysis (DEA) and modified ABES (automated bonding evaluation system) were used to evaluate the physical-chemical and mechanical aspects of PF adhesive cure in a miniature hot-pres...

  13. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  14. Specific adhesion model for bonding hot-melt polyamides to vinyl

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    Hot-melt polyamides are an important market for the dimer acid made from the tall oil fatty acids liberated during the Kraft pulping process. These polyamides bond well to many substrates, but not to polyvinyl chloride (PVC), commonly called vinyl. Dimer-based polyamides made from secondary amines such as piperazine bond well to vinyl. No model for this unique adhesion...

  15. Effect of pre-etching enamel on fatigue of self-etch adhesive bonds

    NARCIS (Netherlands)

    Erickson, R.L.; de Gee, A.J.; Feilzer, A.J.

    2008-01-01

    Objective. A previous study found that the shear bond strength (SBS) to bovine enamel for the self-etching adhesive Adper Prompt-L-Pop (PLP) was 75% of that found with the etch-and-rinse material SingleBond, while the comparative value for the shear fatigue limit (SFL) was only 58% at 10(5) load

  16. Effect of polymerization mode of adhesive and cement on shear bond strength to dentin.

    Science.gov (United States)

    Latta, Mark A; Kelsey, William P; Kelsey, William P

    2006-04-01

    To investigate the shear bond strength to dentin when two resin adhesive systems in light-cure, dual-cure, and auto-cure modes were used with three resin cements. This was done to determine the degree of compatibility that exists when resin products with different polymerization mechanisms are used together. Three hundred non-carious human molars were divided into 30 test groups in which Prime & Bond NT and ScotchBond Multi-Purpose were used as adhesives with Calibra, Nexxus and Variolink cements to attach Rexillium III posts to flattened dentin surfaces. Debonding was achieved with an Instron testing machine and mean shear bond strengths were determined for each test group. The data were subjected to three-way ANOVA and post-hoc LSD testing to determine whether significant differences existed between the test groups. Bond strengths achieved were affected by the adhesive, the cement, and the cement curing mode. In general, the auto-cure application of the three cements demonstrated reduced shear bond strengths, both with respect to the different adhesives and their curing modes as well as compared to the dual-cure technique of the same cement. Additionally, Prime & Bond NT demonstrated considerably more variability than ScotchBond Multi-Purpose when used with both dual-cure and auto-cure varieties of the three cements. The bond strengths of resin cements depend on the curing mode of the cement and the adhesive. Unlike with direct light-cured resin composites, combining adhesive systems and dual-cured resin cements from different manufacturers may be contraindicated.

  17. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives

    Science.gov (United States)

    Lee, Ji-Hye; Son, Sung-Ae; Jung, Kyoung-Hwa; Kwon, Yong Hoon

    2017-01-01

    The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS) testing and confocal laser scanning microscopy (CLSM). Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying), 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey’s post hoc tests (α = 0.05). Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed (p adhesives. PMID:29068404

  18. Nondestructive inspection in adhesive-bonded joint CFRP using pulsed phase thermography

    Science.gov (United States)

    Shin, P. H.; Webb, S. C.; Peters, K. J.

    2013-05-01

    Many forms of damages in fiber reinforcement polymer (FRP) composites are difficult to detect because they occurs in subsurface layers of the composites. One challenging need for inspection capabilities is in adhesively bonded joints between composite components, a common location of premature failure in aerospace structures. This paper investigates pulsed phase thermography (PPT) imaging of fatigue damage in these adhesively bonded joints. Simulated defects were created to calibrate parameters for fatigue loading conditions, PPT imaging parameters, and a damage sizing algorithm for carbon fiber reinforced polymer (CFRP) single lap joints. Afterwards, lap joint specimens were fabricated with varying quality of manufacturing. PPT imaging of the pristine specimens revealed defects such as air bubbles, adhesive thickness variations, and weak bonding surface between the laminate and adhesive. Next, fatigue testing was performed and acquired PPT imaging data identified fatigue induced damage prior to final failure cycles. After failure of each sample, those images were confirmed by visual inspections of failure surface.

  19. Combined surface activated bonding using H-containing HCOOH vapor treatment for Cu/Adhesive hybrid bonding at below 200 °C

    Science.gov (United States)

    He, Ran; Fujino, Masahisa; Akaike, Masatake; Sakai, Taiji; Sakuyama, Seiki; Suga, Tadatomo

    2017-08-01

    Cu/adhesive hybrid bonding is an attractive approach to three-dimensional (3D) integration because it provides direct Cusbnd Cu vertical interconnects and high mechanical stability. However, Cu/adhesive hybrid bonding at below 200 °C is still challenging because of bonding temperature mismatch between Cusbnd Cu and polymer adhesives and lacking of effective adhesive-compatible Cu surface activation methods. In this paper, we investigate and demonstrate a ;Cu-first; hybrid bonding technique by using hydrogen(H)-containing formic acid (HCOOH) vapor prebonding surface treatment for the first time. In this technique, high-quality Cusbnd Cu bonding is obtained at 180-200 °C that is close to or even lower than the temperature of subsequent adhesive curing. We experimentally investigate the effects of the H-containing HCOOH vapor treatment for Cusbnd Cu bonding and cyclo-olefin polymer adhesive-adhesive bonding. This technique enables Cu/adhesive hybrid bonding at below 200 °C, promising smaller thermal stress, higher throughput, and lower cost comparing to the existing ;adhesive-first; hybrid bonding method.

  20. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    Science.gov (United States)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  1. Influence of the Hardener Proportion on Mechanical Properties of Adhesive Bonds Used in Agriculture

    Directory of Open Access Journals (Sweden)

    Valášek P.

    2015-01-01

    Full Text Available Joining materials by adhesive bonding is used across all industrial branches. The occurrence of adhesive bonds in machine constructions is still more frequent because of the development of adhesives which are able to meet various requirements of designers. This trend is observable also in agriculture - in the construction of agricultural machines. There even exists a cooperation between the companies developing the adhesives and the agricultural machines producers. The production process of machines and equipment must consider a required production tact. Adhesives and the process of their hardening have to meet these requirements. In the sphere of agriculture, epoxy resins hardening based either on hardeners or heating are used. Mechanical properties of two-component epoxy resins depending on variable amount of the hardener starting crosslinking of these reactoplastics are described.

  2. Bond strength of self-adhesive resin cements to tooth structure

    OpenAIRE

    Hattar, Susan; Hatamleh, Muhanad M.; Sawair, Faleh; Al-Rabab’ah, Mohammad

    2015-01-01

    Objectives: The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods: Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results w...

  3. Microshear bond strength of a flowable resin to enamel according to the different adhesive systems

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Kim

    2011-01-01

    Full Text Available Objectives The purpose of this study was to compare the microshear bond strength (uSBS of two total-etch and four self-etch adhesive systems and a flowable resin to enamel. Materials and Methods Enamels of sixty human molars were used. They were divided into one of six equal groups (n = 10 by adhesives used; OS group (One-Step Plus, SB group (Single Bond, CE group (Clearfil SE Bond, TY group (Tyrian SPE/One-Step Plus, AP group (Adper Prompt L-Pop and GB group (G-Bond. After enamel surfaces were treated with six adhesive systems, a flowable composite resin (Filek Z 350 was bonded to enamel surface using Tygon tubes. the bonded specimens were subjected to uSBS testing and the failure modes of each group were observed under FE-SEM. Results 1. The uSBS of SB group was statistically higher than that of all other groups, and the uSBS of OS, SE and AP group was statistically higher than that of TY and GB group (p < 0.05. 2. The uSBS for TY group was statistically higher than that for GB group (p < 0.05. 3. Adhesive failures in TY and GB group and mixed failures in SB group and SE group were often analysed. One cohesive failure was observed in OS, SB, SE and AP group, respectively. Conclusions Although adhesives using the same step were applied the enamel sur

  4. Performance of universal adhesives on bonding to leucite-reinforced ceramic.

    Science.gov (United States)

    Kim, Ryan Jin-Young; Woo, Jung-Soo; Lee, In-Bog; Yi, Young-Ah; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-01-01

    This study aimed to investigate the microshear bond strength of universal bonding adhesives to leucite-reinforced glass-ceramic. Leucite-reinforced glass-ceramic blocks were polished and etched with 9.5% hydrofluoric acid for 1 min. The specimens were assigned to one of four groups based on their surface conditioning (n = 16): 1) NC: negative control with no further treatment; 2) SBU: Single Bond Universal (3M ESPE); 3) ABU: ALL-BOND Universal (Bisco); and 4) PC: RelyX Ceramic Primer and Adper Scotchbond Multi-Purpose Adhesive (3M ESPE) as a positive control. RelyX Ultimate resin cement (3M ESPE) was placed on the pretreated ceramic and was light cured. Eight specimens from each group were stored in water for 24 h, and the remaining eight specimens were thermocycled 10,000 times prior to microshear bond strength evaluation. The fractured surfaces were examined by stereomicroscopy and scanning electron microscopy (SEM). After water storage and thermocycling, the microshear bond strength values decreased in the order of PC > SBU and ABU > NC (P adhesives were used, conventional surface conditioning using a separate silane and adhesive is preferable to a simplified procedure that uses only a universal adhesive for cementation of leucite-reinforced glass-ceramic.

  5. Effect of dentine conditioners on the bonding efficacy of one-bottle adhesives.

    Science.gov (United States)

    Cheng, J-T; Itoh, K; Kusunoki, M; Hasegawa, T; Wakumoto, S; Hisamitsu, H

    2005-01-01

    The bonding efficacy of four one-bottle adhesives (OptiBond Solo Plus, Gluma Comfort Bond, One Step and Prime & Bond NT) and a multi-step adhesive (Clearfil Photo Bond) as a control was evaluated. The dentine cavity wall was conditioned with phosphoric acid or ethylenediaminetetraacetic acid (EDTA) and the marginal integrity was estimated by measuring the wall-to-wall contraction gap width between the composite and the dentine cavity surface. In the positive control group, the adhesive was applied following glyceryl methacrylate (GM) priming. The analyses were performed by Kruskal-Wallis and Mann-Whitney U-tests. One-bottle adhesives were clearly inferior to the multi-step bonding system in marginal integrity when dentine was conditioned with EDTA. The present findings also suggested that the marginal sealing ability of ethanol-based one-bottle systems was better than acetone-based one-bottle systems when dentine surfaces were conditioned with EDTA. Nevertheless, further investigations are needed on the function of fillers in one-bottle adhesives for the prevention of contraction gaps.

  6. Bond strength comparison of color-change adhesives for orthodontic bonding using a self-etching primer

    Directory of Open Access Journals (Sweden)

    Frey GN

    2011-06-01

    Full Text Available Sara Ekhlassi, Jeryl D English, Joe C Ontiveros, John M Powers, Harry I Bussa, Gary N Frey, Clark D Colville, Randy K EllisHouston Department of Orthodontics, The University of Texas Dental Branch, Houston, TX, USABackground: The purpose of this study was to compare the shear bond strengths of two color-change adhesives with a commonly used conventional light-cure adhesive while using a self-etching primer, and to compare any changes in shear bond strengths over time.Methods: One hundred and eighty extracted bovine incisors were randomly divided into nine groups of 20 teeth each. The teeth were prepared with a self-etching primer (Transbond™ Plus Metal lower incisor brackets were bonded directly to each tooth with two different color-change adhesives (TransbondPlus and Grengloo™ and a control (Transbond XT. The teeth were debonded at three different time points (15 minutes, 24 hours, 1 week using an Instron at 1.0 mm/min. The teeth that were to be debonded at 24 hours and 1 week were stored in distilled water at 37°C to simulate the oral environment. The data were analyzed by two-way analysis of variance and with Fisher's protected least-significant difference multiple comparisons test at the P < 0.05 level of significance. Adhesive remnant index (ARI scores were calculated for each debonded tooth.Results: Transbond Plus at 1 week had the highest mean shear bond strength (14.7 mPa. Grengloo tested at 24 hours had the lowest mean shear bond strength (11.3 mPa. The mean shear bond strengths for the remaining seven groups had a range of 12–14.5 mPa. Grengloo had >80% samples presenting with an ARI score of 1 at all times. Interestingly, both Transbond groups had ARI scores of 3 in more than 50% of their samples.Conclusion: Time had no significant effect on the mean shear bond strength of Transbond XT, Grengloo, or Transbond Plus adhesive.Keywords: bond strength, color-change adhesives, self-etching primer, orthodontic bonding 

  7. Effect of a chlorhexidine-containing adhesive on dentin bond strength stability.

    Science.gov (United States)

    Sabatini, C

    2013-01-01

    The present study aimed to investigate a novel adhesive system containing 0.2% chlorhexidine digluconate (CHX) for its ability to improve the stability of the adhesive interface compared with the use of 2% CHX as a therapeutic primer. Furthermore, the study aimed to confirm the inhibitory properties of these CHX concentrations (0.2% and 2.0%) on dentin matrix metalloproteinase activity by gelatin zymography. Superficial dentin substrate for bonding was obtained from 120 non-carious human molars. A conventional adhesive Peak LC Bond and a CHX-containing adhesive Peak Universal Bond were used either in combination with 35% phosphoric acid (etch-and-rinse approach) or with self-etching primer (self-etch approach) for evaluation of the variables CHX treatment (2.0% therapeutic primer and 0.2% adhesive), adhesive approach (etch-and-rinse and self-etch), and storage time (24 hours and six months). A bonding jig was used to fabricate composite cylinders, which were stored for either 24 hours or six months, after which shear bond strength (SBS) was evaluated using a notched-edge testing device. A three-way analysis of variance and a Student t-test with a significance level of pdentin powder were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis and incubated in the presence of 0.2% and 2.0% CHX. No significant effect of CHX treatment, adhesive approach, storage time variables, or their interactions on mean SBS was demonstrated (pdentin proteolytic activity. However, when CHX was incorporated into a commercially available adhesive or used as a therapeutic primer, no difference in bond strength was observed at baseline or after six months of storage relative to the control group without CHX.

  8. Bond strength of universal adhesives: A systematic review and meta-analysis.

    Science.gov (United States)

    Rosa, Wellington Luiz de Oliveira da; Piva, Evandro; Silva, Adriana Fernandes da

    2015-07-01

    A systematic review was conducted to determine whether the etch-and-rinse or self-etching mode is the best protocol for dentin and enamel adhesion by universal adhesives. This report followed the PRISMA Statement. A total of 10 articles were included in the meta-analysis. Two reviewers performed a literature search up to October 2014 in eight databases: PubMed, Web of Science, Scopus, BBO, SciELO, LILACS, IBECS and The Cochrane Library. In vitro studies evaluating the bond strength of universal adhesives to dentin and/or enamel by the etch-and-rinse and self-etch strategies were eligible to be selected. Statistical analyses were conducted using RevMan 5.1 (The Cochrane Collaboration, Copenhagen, Denmark). A global comparison was performed with random-effects models at a significance level of puniversal adhesives (p≥0.05). However, for the ultra-mild All-Bond Universal adhesive, the etch-and-rinse strategy was significantly different than the self-etch mode in terms of dentin micro-tensile bond strength, as well as in the global analysis of enamel micro-tensile and micro-shear bond strength (p≤0.05). The enamel bond strength of universal adhesives is improved with prior phosphoric acid etching. However, this effect was not evident for dentin with the use of mild universal adhesives with the etch-and-rinse strategy. Selective enamel etching prior to the application of a mild universal adhesive is an advisable strategy for optimizing bonding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The effect of saliva decontamination procedures on dentin bond strength after universal adhesive curing

    Directory of Open Access Journals (Sweden)

    Jayang Kim

    2015-11-01

    Full Text Available Objectives The purpose of this study was to investigate the effectiveness of multiple decontamination procedures for salivary contamination after curing of a universal adhesive on dentin bond strength according to its etch modes. Materials and Methods Forty-two extracted bovine incisors were trimmed by exposing the labial dentin surfaces and embedded in cylindrical molds. A universal adhesive (All-Bond Universal, Bisco was used. The teeth were randomly divided into groups according to etch mode and decontamination procedure. The adhesive was applied according to the manufacturer's instructions for a given etch mode. With the exception of the control groups, the cured adhesive was contaminated with saliva for 20 sec. In the self-etch group, the teeth were divided into three groups: control, decontamination with rinsing and drying, and decontamination with rinsing, drying, and adhesive. In the etch-and-rinse group, the teeth were divided into four groups: control, decontamination with rinsing and drying, decontamination with rinsing, drying, and adhesive, and decontamination with rinsing, drying, re-etching, and reapplication of adhesive. A composite resin (Filtek Z350XT, 3M ESPE was used for filling and was cured on the treated surfaces. Shear bond strength was measured, and failure modes were evaluated. The data were subjected to one-way analysis of variation and Tukey's HSD test. Results The etch-and-rinse subgroup that was decontaminated by rinse, drying, re-etching, and reapplication of adhesive showed a significantly higher bond strength. Conclusions When salivary contamination occurs after curing of the universal adhesive, additional etching improves the bond strength to dentin.

  10. An in vitro Evaluation of Shear Bond Strength of Adhesive Precoated Brackets

    OpenAIRE

    A S Sibi; Sreejith Kumar; Shobha Sundareswaran; Koshi Philip; Babukuttan Pillai

    2014-01-01

    Newer materials have been introduced in the field of orthodontics to improve clinical efficacy as well as to simplify the technique. In an effort to reduce the time and steps to bond orthodontic attachments, adhesive precoated (APC) brackets were introduced. In this study, an attempt is made to evaluate the shear bond strength (SBS) and debonding behavior of APC brackets compared with uncoated ceramic brackets. A total of 60 human premolar teeth were divided into two groups of 30 each, bonded...

  11. Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives

    Science.gov (United States)

    SABATINI, Camila

    2013-01-01

    Objective: To evaluate the effect of optional phosphoric acid etching on the shear bond strength (SBS) of two self-etch adhesives to enamel and dentin. Material and Methods: Ninety-six bovine mandibular incisors were ground flat to obtain enamel and dentin substrates. A two-step self-etch adhesive (FL-Bond II) and a one-step self-etch adhesive (BeautiBond) were applied with and without a preliminary acid etching to both the enamel and dentin. The specimens were equally and randomly assigned to 4 groups per substrate (n=12) as follows: FL-Bond II etched; FL-Bond II un-etched; BeautiBond etched; BeautiBond un-etched. Composite cylinders (Filtek Z100) were bonded onto the treated tooth structure. The shear bond strength was evaluated after 24 hours of storage (37ºC, 100% humidity) with a testing machine (Ultra-tester) at a speed of 1 mm/min. The data was analyzed using a two-way ANOVA and post-hoc Tukey's test with a significance level of padhesives evidenced a significant decrease in the dentin SBS with the use of an optional phosphoric acid-etching step (pself-etch adhesives evaluated while providing improvement on the enamel bond strength only for FL-Bond II. This suggests that the potential benefit that may be derived from an additional etching step with phosphoric acid does not justify the risk of adversely affecting the bond strength to dentin. PMID:23559113

  12. Porcelain veneers bonded to tooth structure: an ultra-morphological FE-SEM examination of the adhesive interface.

    Science.gov (United States)

    Peumans, M; Van Meerbeek, B; Yoshida, Y; Lambrechts, P; Vanherle, G

    1999-03-01

    The porcelain veneer technique bonds a thin porcelain shell to a minimally prepared tooth surface (enamel and/or dentin) with a luting composite in combination with an adhesive system. When complete, two adhesive interfaces are formed--resin to etched porcelain and resin to tooth structure. The purpose of this laboratory investigation is to analyze the ultra-structure of these two adhesive interfaces in order to find an explanation for some clinical phenomena and/or shortcomings of bonded porcelain veneers. The surfaces of four porcelain disks were treated successively by sandblasting, etching with hydrofluoric acid, ultrasonic cleaning, and silanizing. The effect of each step on the surface structure of the porcelain was evaluated by field-emission scanning electron microscopy (FE-SEM). In addition, the effect of acid etching the tooth surface of veneer preparations on seven extracted upper anterior teeth was similarly determined. Finally, pre-treated porcelain veneers were luted to veneer preparations on 12 extracted upper anterior teeth by means of a contemporary total-etch adhesive system and a photo-polymerizable luting composite. The tooth/luting composite and the luting composite/porcelain interface of the veneer complex were then evaluated ultra-morphologically by FE-SEM after the specimens had been etched with an argon-ion beam to enhance the surface relief. FE-SEM imaging of the tooth/luting composite/porcelain interface showed strong micro-mechanical interlocking of the luting composite in the micro-retentive pits both of the acid-etched tooth surface and in the etch pits of the acid-etched porcelain surface. From this ultra-morphological perspective, the etched porcelain surface is more retentive than the etched tooth surface. At the tooth surface, cervical aprismatic enamel and exposed dentin showed the least resin-receptive surface texture. However, in these areas, no separation of the interface was observed when a multi-step total-etch adhesive

  13. Four-year water degradation of a total-etch and two self-etching adhesives bonded to dentin

    NARCIS (Netherlands)

    Abdalla, A.I.; Feilzer, A.J.

    2008-01-01

    Objectives: To evaluate effect of direct and indirect water storage on the microtensile dentin bond strength of one total-etch and two self-etching adhesives. Methods: The adhesive materials were: one total-etch adhesive; ‘Admira Bond’ and two selfetch adhesives; ‘Clearfil SE Bond’ and ‘Hybrid

  14. New primers for adhesive bonding of aluminum alloys

    Science.gov (United States)

    Burrell, B. W.; Port, W. S.

    1971-01-01

    Synthetic polypeptide adhesive primers are effective, with high temperature epoxy resins, at temperatures from 100 deg to 300 deg C. Lap-shear failure loads and lap-shear strength of both primers are discussed.

  15. Surface Modification of Titanium and Polyimide Sheet for Adhesive Bonding

    NARCIS (Netherlands)

    Akram, M.

    2015-01-01

    Major industrial sectors like automotive, aerospace and others are increasingly using polymer composites in their structural parts. Polyimide sheet and adhesives, are high performance polymers. They are widely used in various engineering applications due to their excellent thermal, mechanical and

  16. The potential of novel primers and universal adhesives to bond to zirconia.

    Science.gov (United States)

    Amaral, Marina; Belli, Renan; Cesar, Paulo Francisco; Valandro, Luiz Felipe; Petschelt, Anselm; Lohbauer, Ulrich

    2014-01-01

    To investigate the adhesive potential of novel zirconia primers and universal adhesives to surface-treated zirconia substrates. Zirconia bars were manufactured (3.0mm×3.0mm×9.0mm) and treated as follows: no treatment (C); air abrasion with 35μm alumina particles (S); air abrasion with 30μm silica particles using one of two systems (Rocatec or SilJet) and; glazing (G). Groups C and S were subsequentially treated with one of the following primers or adhesives: ZP (Z-Prime Plus), AZ (AZ Primer); MP (Monobond Plus); SU (ScotchBond Universal) and; EA (an Experimental Adhesive). Groups Rocatec and SilJet were silanized prior to cementation. Samples form group G were further etched and silanized. Bars were cemented (Multilink) onto bars of a silicate-based ceramic (3.0mm×3.0mm×9.0mm) at 90° angle, thermocycled (2.500 cycles, 5-55°C, 30s dwell time), and tested in tensile strength test. Failure analysis was performed on fractured specimens to measure the bonding area and crack origin. Specimens from group C did not survive thermocycling, while CMP, CSU and CEA groups survived thermocycling but rendered low values of bond strength. All primers presented a better bond performance after air abrasion with Al2O3 particles. SilJet was similar to Rocatec, both presenting the best bond strength results, along with SMP, SSU and CEA. G promoted intermediate bond strength values. Failure mode was predominately adhesive on zirconia surface combined to cohesive of the luting agent. Universal adhesives (MP, SU, EA) may be a considerable alternative for bonding to zirconia, but air abrasion is still previously required. Air abrasion with silica particles followed by silane application also presented high bond strength values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Influence of light dose on bond strength of orthodontic light-cured adhesives.

    Science.gov (United States)

    Yoshida, Shoko; Namura, Yasuhiro; Matsuda, Maki; Saito, Ayano; Shimizu, Noriyoshi

    2012-08-01

    Although the polymerization reaction in light-cured orthodontic adhesive continues for some time after light irradiation, it is unclear whether insufficiently irradiated adhesive develops sufficient bond strength. This in vitro study examined the maturation of bond strength after exposure of a variety of light doses. Large metal brackets were bonded to the enamel of 288 bovine mandibular incisors by irradiation at two light intensities (200 and 400 mW/cm(2)) and for three exposure times (3, 5, and 10 seconds) using three orthodontic adhesives (TB, OP, and BOB). Shear bond strengths and adhesive remnant indices (ARIs) were determined immediately (T1) and 24 hours after bonding (T2; n = 8 in each group). Comparisons were made using the Kruskal-Wallis H-test, the Bonferroni-corrected Mann-Whitney U-test, and the Yates-corrected chi-square test. Bond strengths of the adhesives that showed maturation at low light intensity (200 mW/cm(2)) increased by 1.4- to 2.0-fold in 24 hours. An increase in exposure time increased bond strength more than did an increase in light intensity for most orthodontic adhesives. With an exposure time of 3 seconds at 200 mW/cm(2), the ARI scores of TB and OP differed significantly between T1 and T2. Thus, the most acceptable procedure when applying low-dose light intensity to a bracket before the placement of a wire is to increase the exposure time and/or wait for sufficient maturation of bond strength.

  18. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems.

    Science.gov (United States)

    Yazdi, Fatemeh-Maleknejad; Moosavi, Horieh; Atai, Mohammad; Zeynali, Mahsa

    2015-04-01

    The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (µSBS), their degree of conversion and bonded micro structure. Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% (E0), 5% (E5), 10% (E10), 15% (E15), 20% (E20) (by weight) 10-MDP monomer and Clearfil S3 Bond (CS3) as a control. After 24 hours, microshear bond strength was tested. The degree of conversion was also measured using Fourier transform infrared spectroscopy. Interfacial ultrastructure was observed under a scanning electron microscope in all the groups. A higher microshear bond strength was observed with adhesives containing 10% and 15% 10-MDP in comparison to study groups (PSelf-etch adhesives, 10-MDP, bond strength, degree of conversion.

  19. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    Science.gov (United States)

    Yazdi, Fatemeh-Maleknejad; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (µSBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% (E0), 5% (E5), 10% (E10), 15% (E15), 20% (E20) (by weight) 10-MDP monomer and Clearfil S3 Bond (CS3) as a control. After 24 hours, microshear bond strength was tested. The degree of conversion was also measured using Fourier transform infrared spectroscopy. Interfacial ultrastructure was observed under a scanning electron microscope in all the groups. Results A higher microshear bond strength was observed with adhesives containing 10% and 15% 10-MDP in comparison to study groups (PSelf-etch adhesives, 10-MDP, bond strength, degree of conversion. PMID:26155340

  20. Influence of intrapulpal pressure simulation on the bond strength of adhesive systems to dentin

    Directory of Open Access Journals (Sweden)

    Marcio Vivan Cardoso

    2008-06-01

    Full Text Available The purpose of this study was to evaluate the influence of intrapulpal pressure simulation on the bonding effectiveness of etch & rinse and self-etch adhesives to dentin. Eighty sound human molars were distributed into eight groups, according to the permeability level of each sample, measured by an apparatus to assess hydraulic conductance (Lp. Thus, a similar mean permeability was achieved in each group. Three etch & rinse adhesives (Prime & Bond NT - PB, Single Bond -SB, and Excite - EX and one self-etch system (Clearfil SE Bond - SE were employed, varying the presence or absence of an intrapulpal pressure (IPP simulation of 15 cmH2O. After adhesive and restorative procedures were carried out, the samples were stored in distilled water for 24 hours at 37°C, and taken for tensile bond strength (TBS testing. Fracture analysis was performed using a light microscope at 40 X magnification. The data, obtained in MPa, were then submitted to the Kruskal-Wallis test ( a = 0.05. The results revealed that the TBS of SB and EX was significantly reduced under IPP simulation, differing from the TBS of PB and SE. Moreover, SE obtained the highest bond strength values in the presence of IPP. It could be concluded that IPP simulation can influence the bond strength of certain adhesive systems to dentin and should be considered when in vitro studies are conducted.

  1. Effects of multipurpose, universal adhesives on resin bonding to zirconia ceramic.

    Science.gov (United States)

    Kim, J-H; Chae, S-Y; Lee, Y; Han, G-J; Cho, B-H

    2015-01-01

    This study evaluated the effects of single-bottle, multipurpose, universal adhesives on the bond strength of resin cement to zirconia ceramic. Polished zirconia ceramic (Cercon base) discs were randomly divided into four groups (n=40) according to the applied surface-conditioning agent: Single Bond 2, Single Bond Universal, All-Bond Universal, and Alloy Primer. Cured composite cylinders (Ø 0.8 mm × 1 mm) were cemented to the conditioned zirconia specimens with resin cement (RelyX ARC). The bonded specimens were subjected to a microshear bond-strength test after 24 hours of water storage and after 10,000 cycles of thermocycling. The surface-conditioning agent significantly influenced the bond strength (pUniversal showed the highest initial bond strength (37.7 ± 5.1 MPa), followed by All-Bond Universal (31.3 ± 5.6 MPa), Alloy Primer (26.9 ± 5.1 MPa), and Single Bond 2 (8.5 ± 4.6 MPa). Artificial aging significantly reduced the bond strengths of all the test groups (pUniversal showed the highest bond-strength value (26.9 ± 6.4 MPa). Regardless of artificial aging, Single Bond Universal and All-Bond Universal showed significantly higher bond strengths than Alloy Primer, a conventional metal primer.

  2. BIODEGRADATION AND DENTIN BONDING EFFECTIVENESS OF ONE "UNIVERSAL" SELF-ETCH ADHESIVE USED IN MULTI-MODE MANNER

    Directory of Open Access Journals (Sweden)

    Natalia Gateva

    2017-03-01

    Full Text Available A new type of one-step self-etch adhesives classified as "Universal" or "multi-mode" adhesives appeared in recent years. The idea is that these adhesives can be applied simultaneously with both techniques - etch and rinse and with self-etching technique, without compromising the bonding effectiveness. The aim of this study is to evaluate the micro-tensile adhesive bond strength to dentin of permanent teeth achieved after application of Single Bond Universal (3M ESPE adhesive system used in multi-mode manner. The results of our study show that the use of this universal adhesive system in multi-mode manner will not lead to the same results regarding the achieved bond strength with dentin. The additional etching with 37% phosphoric acid as well as the application of the adhesive in several layers deteriorates the bond strength right after application and after six months storage in artificial saliva medium (SAGF.

  3. The effect of collagen removal on shear bond strength of four single bottle adhesive systems

    Directory of Open Access Journals (Sweden)

    Kasraie Sh

    2006-07-01

    Full Text Available Background and Aim: Achieving adhesion between restorative materials and dentin as a wet and dynamic surface is an important topic in restorative and especially in conservative dentistry. Adhesion of new dentin bonding systems depends on the formation of hybrid layer and micromechanical retention. Nevertheless, an ideal adhesive system has not yet been introduced .Recent studies reveal an increase in bonding stability when the collagen is removed from demineralized dentin surfaces. This study investigates the effect of collagen removal on the shear bond strength of four single bottle dentin bonding systems regarding their structural differences. Materials and Methods: This experimental study was performed on 56 intact human premolar teeth. Smooth surfaces of dentin were prepared on buccal & lingual aspects of teeth, providing 112 dentin surfaces. The dentin surfaces were etched with 37% phosphoric acid for 15 seconds and then rinsed. The specimens were divided into 8 groups. Single bottle adhesive systems [Single Bond (3M, One-Step (Bisco, Prime & Bond NT (Dentsply, and Excite (Vivadent] were then applied on the dentin surfaces of 4 groups using the wet bonding technique. In the other 4 groups, the demineralized dentin surfaces were treated with a 5.25% solution of sodium hypochlorite for one minute in order to remove the surface organic components. The adhesive systems mentioned before were applied to these 4 groups with the same wet bonding technique. A cylinder of Z100 (3M dental composite with a 3 mm diameter and 2 mm height was placed on the adhesive covered dentin surface of all groups and light-cured (400 mW/cm2 ,40 sec on each side. The specimens were kept in distilled water at room temperature for one week and then thermocycled for 3000 times (5-55 oc. Shear bond strength of specimens was measured using an Instron (1495 universal mechanical testing machine with cross-head speed of 0.5 mm/minute and chisel form shearing blade. Data were

  4. Bonding performance of universal adhesives to er,cr:YSGG laser-irradiated enamel.

    Science.gov (United States)

    Ayar, Muhammet Kerim; Erdemir, Fatih

    2017-04-01

    Universal adhesives have been recently introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinical condition. However, their bonding effectiveness to laser-irradiated enamel is still not well-known. Thus, the aim of this study was to compare the shear bond strength (SBS) of universal adhesives (Single Bond Universal; Nova Compo-B Plus) applied to Er,Cr:YSGG laser-irradiated enamel with SBS of the same adhesives applied in self-etch and acid-etching modes, respectively. Crown segments of sixty bovine incisors were embedded into standardized acrylic blocks. Flattened enamel surfaces were prepared. Specimens were divided into six groups according to universal adhesives and application modes randomly (n = 10), as follows: Single Bond Universal/acid-etching mode; Nova Compo-B Plus/acid-etching mode; Single Bond Universal/self-etching mode; Nova Compo-B Plus/self-etching mode; and Single Bond Universal/Er,Cr:YSGG Laser-etching mode; Nova Compo-B Plus/Er,Cr:YSGG Laser-etching mode. After surface treatments, universal adhesives were applied onto surfaces. SBS was determined after storage in water for 24 h using a universal testing machine with a crosshead speed of 0.5 mm min(-1) . Failure modes were evaluated using a stereomicroscope. Data was analyzed using two-way of analyses of variances (ANOVA) (p = 0.05). Two-way ANOVA revealed that adhesive had no effect on SBS (p = 0.88), but application mode significantly influenced SBS (p = 0.00). Acid-etching significantly increased SBS, whereas there are no significant differences between self-etch mode and laser-etching for both adhesives. The bond strength of universal adhesives may depend on application mode. Acid etching may significantly increase bond strength, while laser etching may provide similar bond strength when compared to self-etch mode. © 2016 Wiley Periodicals, Inc.

  5. Comparison of shear bond strength of universal adhesives on etched and nonetched enamel.

    Science.gov (United States)

    Beltrami, Riccardo; Chiesa, Marco; Scribante, Andrea; Allegretti, Jessica; Poggio, Claudio

    2016-04-06

    The purpose of this study was to evaluate the effect of surface pretreatment with 37% phosphoric acid on the enamel bond strength of different universal adhesives. One hundred and sixty bovine permanent mandibular incisors freshly extracted were used as a substitute for human teeth. The materials tested in this study included 6 universal adhesives, and 2 self-etch adhesives as control. The teeth were assigned into 2 groups: In the first group, etching was performed using 37% phosphoric acid for 30 seconds. In the second group, no pretreatment agent was applied. After adhesive application, a nanohybrid composite resin was inserted into the enamel surface by packing the material into cylindrical-shaped plastic matrices. After storing, the specimens were placed in a universal testing machine. The normality of the data was calculated using the Kolmogorov-Smirnov test. Analysis of variance (ANOVA) was applied to determine whether significant differences in debond strength values existed among the various groups. Groups with phosphoric acid pretreatment showed significantly higher shear bond strength values than groups with no enamel pretreatment (p<0.001). No significant variation in shear strength values was detected when comparing the different adhesive systems applied onto enamel after orthophosphoric acid application (p>0.05). All adhesives provide similar bond strength values when enamel pretreatment is applied even if compositions are different. Bond strength values are lower than promised by manufacturers.

  6. [Curing mode of universal adhesives affects the bond strength of resin cements to dentin].

    Science.gov (United States)

    Fu, Z R; Tian, F C; Zhang, L; Han, B; Wang, X Y

    2017-02-18

    To determine the effects of curing mode of one-step and two-step universal adhesives on the micro-tensile bond strength (μTBS) of different dual-cure resin cements to dentin. One-step universal adhesive Single Bond Universal (SBU), and two-step universal adhesive OptiBond Versa (VSA) were chosen as the subjects, one-step self-etching adhesive OptiBond All in One (AIO) and two-step self-etching adhesive Clearfil SE Bond (SEB) were control groups, and two dual-cure resin cements RelyX Ultimate (RLX) and Nexus 3 Universal (NX3) were used in this study. In this study, 80 extracted human molars were selected and the dentin surface was exposed using diamond saw. The teeth were divided into 16 groups according to the adhesives (AIO, SBU, SEB, VSA), cure modes of adhesives (light cure, non-light cure) and resin cements (RLX, NX3). The adhesives were applied on the dentin surface following the instruction and whether light cured or not, then the resin cements were applied on the adhesives with 1 mm thickness and light cured (650 mW/cm(2) for 20 s. A resin was built up (5 mm) on the cements and light cured layer by layer. After water storage for 24 h, the specimens were cut into resin-cement-dentin strips with a cross sectional area of 1 mm×1 mm and the μTBS was measured. Regarding one-step universal adhesive (SBU) light cured, the μTBS with RLX [(35.45±7.04) MPa] or NX3 [(26.84±10.39) MPa] were higher than SBU non-light cured with RLX [(17.93±8.93) MPa)] or NX3 [(10.07±5.89) MPa, Padhesive (VSA) and control adhesive (SEB), curing mode did not affect the μTBS when used with either RLX or NX3 (25.98-32.24 MPa, P>0.05). Curing mode of one-step universal adhesive may affect the μTBS between dual-cure resin cements and dentin, while for two-step universal adhesive, the curing mode and the type of resin cements did not influence the μTBS.

  7. Influence of chlorhexidine concentration on microtensile bond strength of contemporary adhesive systems

    Directory of Open Access Journals (Sweden)

    Edson Alves de Campos

    2009-09-01

    Full Text Available The purpose of this study was to investigate the influence of chlorhexidine (CHX concentration on the microtensile bond strength (μTBS of contemporary adhesive systems. Eighty bovine central incisors were used in this study. The facial enamel surface of the crowns was abraded with 600-grit silicon carbide paper to expose flat, mid-coronal dentin surfaces. The tested materials were Scotchbond Multipurpose (SMP, Single-Bond (SB, Clearfil SE Bond (CSEB and Clearfil Tri S Bond (CTSB. All the materials were applied according to manufacturer's instructions and followed by composite application (Z250. The teeth were randomly divided into 16 groups: for the etch-and-rinse adhesives (SMP and SB, 0.12% or 2% CHX was applied prior to or after the acid etching procedure. For the self-etch adhesives (CSEB and CTSB 0.12% or 2% CHX was applied prior to the primer. Control groups for each one of the adhesive systems were also set up. The specimens were immediately submitted to μTBS testing and the data were analyzed using Analysis of Variance and the Tukey post hoc test (alpha = .01. The failure patterns of the specimens were observed using scanning electron microscopy. The effects of 2% CHX were statistically significant (p < 0.01 for the self-etch adhesives but were not significant for the etch-and-rinse adhesive systems. Analysis of the data demonstrated no statistical difference between the etch-and-rinse adhesive systems. CHX-based cavity disinfectants in concentrations higher than 0.12% should be avoided prior to the self-etch adhesive systems evaluated in this study to diminish the possibilities of reduction in bond strength.

  8. Influence of plasma pretreatment on shear bond strength of self-adhesive resin cements to polyetheretherketone.

    Science.gov (United States)

    Stawarczyk, B; Bähr, N; Beuer, F; Wimmer, T; Eichberger, M; Gernet, W; Jahn, D; Schmidlin, P R

    2014-01-01

    The aim of this study is to evaluate the adhesion between PEEK and two self-adhesive resin cements after plasma treatment. Eight hundred sixty-four polyetheretherketone (PEEK) disks were cut and polished to silicon carbide (SIC) P4000. One half of the specimens were randomly selected and pretreated with plasma, whereas the remaining 432 specimens remained untreated. Subsequently, specimens were randomly allocated to four groups (n = 108/group): Visio.link (Bredent), Signum PEEK Bond (Heraeus Kulzer), Ambarino P60 (Creamed), and a control group without additional treatment. Half of the specimens of each group (n = 54) were then cemented with either RelyX Unicem Automix 2 (3 M ESPE) or with Clearfil SA (Kuraray). All specimens were stored in water for 24 h (37 °C). Afterwards, specimens were divided into three groups (n = 18) for different aging levels: (1) no aging (baseline measurement), (2) thermal aging for 5,000 cycles (5/55 °C), and (3) thermal aging for 10,000 cycles (5/55 °C). Thereafter, shear bond strengths (SBS) were measured, and failure types (adhesive, mixed, and cohesive) were assessed. Data were analyzed using descriptive statistics, four- and one-way ANOVA followed by a post hoc Scheffé test (p Visio.link or Signum PEEK Bond showed predominantly mixed failure types. Control groups, plasma treated, or treated using Ambarino P60 groups fractured predominantly adhesively. The use of methyl methacrylate (MMA)-based adhesives allows bonding between PEEK and self-adhesive resin cements. Plasma treatment has no impact on bond to resin cements. PEEK reconstructions can be cemented using self-adhesive resin cements combined with pretreatment with MMA-based adhesives.

  9. Test method to assess interface adhesion in composite bonding

    NARCIS (Netherlands)

    Teixeira de Freitas, S.; Sinke, J.

    2015-01-01

    This paper introduces a new type of peel tests dedicated to composite bonding: Composite Peel Tests. This test is inspired on the standard floating roller peel test widely used for metal bonding. The aim of this study is to investigate the potential of the Composite Peel Test to assess interface

  10. Thermo-oxidative and hydrothermal ageing of epoxy-dicyandiamide adhesive in bonded stainless steel joints

    Science.gov (United States)

    Gaukler, J. Ch; Fehling, P.; Possart, W.

    2009-09-01

    The ageing behaviour of stainless steel joints bonded with hot-curing adhesives is crucial for their reliability and durability in engineering applications. In industry, accelerated artificial ageing regimes are combined with short-term mechanical tests to simulate the in-service long-term behaviour and to predict the life time of the adhesive joints. With such a focus on mechanical bond strength, chemical changes in the adhesive are widely disregarded. Hence, neither the very causes for the decreasing performance of the joint nor their relevance for application can be revealed. Reasoning this study, lap shear samples of the stainless steel alloy 1.4376 are bonded with an epoxy-dicyandiamide adhesive and aged artificially under moderate thermo-oxidative (60 °C, dried air) or hydrothermal (60 °C, distilled water) condition. After testing (shear stress-strain analysis), chemical modifications of this adhesive due to ageing are detected on the fracture faces by μ-ATR-FTIR-spectroscopy as function of ageing time and position in the adhesive joint. The results attest high thermo-oxidative stability to these adhesive joints. For hydrothermal ageing, permeating water deteriorates the EP network from the edges towards the centre of the joint via hydrolysis of imine groups to ammonia, amine species and carbonyls.

  11. Influence of Ortho Primer Morelli adhesion booster on orthodontic brackets shear bond strength

    Directory of Open Access Journals (Sweden)

    Sabrina de Mendonça Invernici

    2012-06-01

    Full Text Available OBJECTIVE: This work aimed at assessing the bond strength (AS, the site of the flaw and the relation between them and Ortho Primer Morelli® (OPM adhesion optimizer. METHODS: Sixty test specimens, made out of bovine permanent lower incisors, were divided into three groups: TXT Primer (control, in which a conventional adhesive system was applied (primer and paste; OPM, in which TXT primer was replaced by OPM; and TXT without Primer, in which only TXT paste was used. A shear force was applied at a speed of 0,5 mm/min. Failure site was assessed by the Remaining Adhesion Index (RAI. RESULTS: Kruskal-Wallis demonstrated that OPM (8.54 ± 1.86 MPa presented a statistically higher AS (p 0.05 between TXT with or without Primer (6.42 ± 2.12 MPa. Regarding the RAI, the K test demonstrated that TXT Primer and OPM (prevailing scores 2 and 3 showed higher values (p 0.05. CONCLUSION: OPM increases AS and presents the same bond failure location if compared to a conventional adhesive system; the use of the TXT adhesive system paste only was shown to have the same AS if compared to conventional systems, except it does not allow to predict the adhesive failure site; there is no correlation between AS and bond failure location, regardless of the use of any adhesion optimizer.

  12. Nondestructive inspection of CFRP adhesively bonded joints using embedded FBG sensors

    Science.gov (United States)

    Webb, S.; Shin, P.; Peters, K.; Selfridge, R.; Schultz, S.

    2013-05-01

    One challenging need for inspection capabilities is in adhesively bonded joints between composite components, a common location of premature failure in aerospace structures. In this work we demonstrate that dynamic, full spectral scanning of FBG sensors embedded in the adhesive bond can identify changes in bond quality through the measurement of non-linear dynamics of the joint. Eighteen lap joint specimens were fabricated with varying manufacturing quality. Ten samples also included fiber Bragg grating (FBG) sensors embedded in the adhesive bond for real-time inspection during a simulated flight condition of these single-lap joints. Prior to testing, pulse phase thermography imaging of the pristine specimens revealed defects such as air bubbles, adhesive thickness variations, and weak bonding surface between the laminate and adhesive. The lap joint specimens were then subjected to fatigue loading, with regular interrogation of the FBG sensors at selected load cycle intervals. The FBG data was collected during vibration loading of the lap joint to represent an in-flight environment. Changes in the lap joint dynamic response, including the transition to non-linear responses, were measured from both the full-spectral and peak wavelength FBG data. These changes were correlated to initial manufacturing defects and the progression of fatigue-induced damage independently measured with pulse phase imaging and visual inspections of the failure surfaces.

  13. Push-out Bond Strength of Fiber Posts to Intraradicular Dentin Using Multimode Adhesive System.

    Science.gov (United States)

    Oskoee, Siavash Savadi; Bahari, Mahmoud; Kimyai, Soodabeh; Asgary, Saeed; Katebi, Katayoun

    2016-12-01

    Because there is little information about bond strength of fiber posts cemented with a universal adhesive system (UAS) with different resin cements, the aim of this study was to compare the effect of different bonding strategies in the application of UASs on push-out bond strength of fiber posts to intraradicular dentin. Seventy-two single-rooted teeth were randomly divided into 6 groups: self-adhesive resin cement (SAC), dual-cure resin cement (DCC), UAS in the etch-and-rinse (E&R) mode and SAC (E&R + SAC), UAS in the self-etch (SE) mode and SAC (SE + SAC), UAS in the E&R mode and DCC (E&R + DCC), and UAS in the SE mode and DCC (SE + DCC). The push-out test was conducted at a crosshead speed of 0.5 mm/min. Data were analyzed with 2-way analysis of variance (P post space region did not have a significant effect on bond strength (P > .05). ClearfilSA Luting SAC (Kuraray Noritake Dental Inc, New York, NY) cannot be used alone for fiber post adhesion; it needs an adhesive. Universal adhesive in the SE mode is suggested. When UAS is used for luting fiber posts, the type of cement does not have any effect on bond strength. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Influence of photoirradiation conditions on dentin bond durability and interfacial characteristics of universal adhesives.

    Science.gov (United States)

    Hirai, Kazutaka; Tsujimoto, Akimasa; Nojiri, Kie; Ueta, Hirofumi; Takamizawa, Toshiki; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2017-06-23

    The influence of photoirradiation conditions on dentin bond durability and interfacial characteristics of universal adhesives was investigated. Universal adhesives were applied to the dentin surfaces and photoirradiated with 100 mW/cm(2) for 40 s, 200 mW/cm(2) for 20 s, and 400 mW/cm(2) for 10 s. A resin composite was bonded to dentin to determine shear bond strength after 24 h water storage and 30,000 thermal cycles, and water contact angle of cured adhesive were measured by the sessile drop method. Greater dentin bond strengths after 24 h water storage and 30,000 thermal cycles were achieved under these conditions at light intensity exceeding 200 mW/cm(2). Universal adhesives photoirradiated above 200 mW/cm(2) exhibited significantly higher water contact angles than those at 100 mW/cm(2). The results of this study suggested that the photoirradiation conditions affect the dentin bond durability and interfacial characteristics of universal adhesives even at the same total energy.

  15. Biocompatibility and bond degradation of poly-acrylic acid coated copper iodide-adhesives.

    Science.gov (United States)

    ALGhanem, Adi; Fernandes, Gabriela; Visser, Michelle; Dziak, Rosemary; Renné, Walter G; Sabatini, Camila

    2017-09-01

    To investigate the effect of poly-acrylic acid (PAA) copper iodide (CuI) adhesives on bond degradation, tensile strength, and biocompatibility. PAA-CuI particles were incorporated into Optibond XTR, Optibond Solo and XP Bond in 0.1 and 0.5mg/ml. Clearfil SE Protect, an MDPB-containing adhesive, was used as control. The adhesives were applied to human dentin, polymerized and restored with composite in 2mm-increments. Resin-dentin beams (0.9±0.1mm2) were evaluated for micro-tensile bond strength after 24h, 6 months and 1year. Hourglass specimens (10×2×1mm) were evaluated for ultimate tensile strength (UTS). Cell metabolic function of human gingival fibroblast cells exposed to adhesive discs (8×1mm) was assessed with MTT assay. Copper release from adhesive discs (5×1mm) was evaluated with UV-vis spectrophotometer after immersion in 0.9% NaCl for 1, 3, 5, 7, 10, 14, 21 and 30 days. SEM, EDX and XRF were conducted for microstructure characterization. XTR and Solo did not show degradation when modified with PAA-CuI regardless of the concentration. The UTS for adhesives containing PAA-CuI remained unaltered relative to the controls. The percent viable cells were reduced for Solo 0.5mg/ml and XP 0.1 or 0.5mg/ml PAA-CuI. XP demonstrated the highest ion release. For all groups, the highest release was observed at days 1 and 14. PAA-CuI particles prevented the bond degradation of XTR and Solo after 1year without an effect on the UTS for any adhesive. Cell viability was affected for some adhesives. A similar pattern of copper release was demonstrated for all adhesives. Copyright © 2017. Published by Elsevier Ltd.

  16. Bond strength and morphology of enamel using self-etching adhesive systems with different acidities

    Directory of Open Access Journals (Sweden)

    Sandra Kiss Moura

    2009-08-01

    Full Text Available OBJECTIVES: To assess the bond strength and the morphology of enamel after application of self-etching adhesive systems with different acidities. The tested hypothesis was that the performance of the self-etching adhesive systems does not vary for the studied parameters. MATERIAL AND METHODS: Composite resin (Filtek Z250 buildups were bonded to untreated (prophylaxis and treated (bur-cut or SiC-paper enamel surfaces of third molars after application of four self-etching and two etch-and-rinse adhesive systems (n=6/condition: Clearfil SE Bond (CSE; OptiBond Solo Plus Self-Etch (OP; AdheSe (AD; Tyrian Self Priming Etching (TY, Adper Scotchbond Multi-Purpose Plus (SBMP and Adper Single Bond (SB. After storage in water (24 h/37°C, the bonded specimens were sectioned into sticks with 0.8 mm² cross-sectional area and the microtensile bond strength was tested at a crosshead speed of 0.5 mm/min. The mean bond strength values (MPa were subjected to two-way ANOVA and Tukey's test (α=0.05. The etching patterns of the adhesive systems were also observed with a scanning electron microscope. RESULTS: The main factor adhesive system was statistically significant (p<0.05. The mean bond strength values (MPa and standard deviations were: CSE (20.5±3.5, OP (11.3±2.3, AD (11.2±2.8, TY (11.1±3.0, SBMP (21.9±4.0 and SB (24.9±3.0. Different etching patterns were observed for the self-etching primers depending on the enamel treatment and the pH of the adhesive system. CONCLUSION: Although there is a tendency towards using adhesive systems with simplified application procedures, this may compromise the bonding performance of some systems to enamel, even when the prismless enamel is removed.

  17. Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties.

    Science.gov (United States)

    Barcellos, Daphne Câmara; Fonseca, Beatriz Maria; Pucci, César Rogério; Cavalcanti, Bruno das Neves; Persici, Erasmo De Souza; Gonçalves, Sérgio Eduardo de Paiva

    2016-07-01

    This study assessed a 6 month resin/dentin bond's durability and cytotoxic effect of Zn-doped model dentin adhesives. The mechanical and physicochemical properties were also tested. A model etch-and-rinse single-bottle adhesive was formulated (55wt.% Bis-GMA, 45wt.% HEMA, 0.5wt.% CQ, 0.5wt.% DMAEMA) and Zinc methacrylate (Zn-Mt) or ZnO nanoparticles (ZnOn) were added to the model's adhesive, resulting in three groups: Group Control (control model adhesive); Group Zn-Mt (1wt.% Zn-Mt incorporated to adhesive) and Group ZnOn (1wt.% ZnOn incorporated to adhesive). The microtensile bond strength (mTBS) was assessed after 24h or 6 months in water storage. Mechanical properties (diametral tensile strength/DTS, flexural strength/FS, flexural modulus/FM, resilience modulus/RM, and compressive strength/CS) and physicochemical properties (polymerization shrinkage/PS, contact angle/CA, water sorption/WS, and water solubility/WS) were also tested. Cytotoxicity was evaluated with SRB biochemical assay. No significant difference in the DTS, FS, FM, CS, CA, WS, and WS were found when 1% of ZnOn or Zn-Mt was added to the model dentin adhesive. Group Zn-Mt decreased the RM of adhesive. Groups Zn-Mt and ZnOn decreased the PS of adhesives. Group ZnOn reduced the cytotoxicity of adhesive. Group ZnOn preserved mTBS after 6 months storage without degradation areas as seen by SEM analysis. The 1wt.% ZnOn may preserve the integrity of the hybrid layer and may reduce cytotoxicity and polymerization shrinkage of model dentin adhesive. The addition of Zn-Mt to the adhesive had no beneficial effects. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  18. The difference of tensile bond strength between total and self etch adhesive systems in dentin

    Directory of Open Access Journals (Sweden)

    Selly Yusalina

    2010-03-01

    Full Text Available Total etch adhesive system has been widely used in teeth conservation area as an adhesive agent before implicating composite resin restoration agent. The aim of this research is to prove the difference of tensile bond strength between total etch (Single Bond and self etch adhesive system (Adper prompt L-Pop on dentin surface in vitro. The extracted and non carries maxillary premolar teeth were used in this research and were divided into 2 groups. The first group comprised 15 specimen teeth etched in phosphoric acid and was applicated with the Single Bond adhesive agent. The second group comprised 15 specimen teeth, applicated with the Adper Prompt-L-Pop. The composite resin (Z 350, 3M was applied incrementally and each of the layers was rayed for 20 seconds. The specimens were stored in physiologic solution before they were tested. Tensile bond strength was measured by LRX Plus Lloyd Instrument, with 1 N load and 1 mm/minute speed, and the measurement result was in Mpa unit. The result was evaluated statistically by the Student t-test with α = 0.05. Single Bond (the 5th generation showed a better bond strength compared to the Adper Prompt-L-Pop (the 6th generation.

  19. Effect of Fluoride and Simplified Adhesive Systems on the Bond Strength of Primary Molars and Incisors.

    Science.gov (United States)

    Firoozmand, Leily Macedo; Noleto, Lawanne Ellen Carvalho; Gomes, Isabella Azevedo; Bauer, José Roberto de Oliveira; Ferreira, Meire Coelho

    2015-01-01

    The aim of this study was evaluate in vitro the influence of simplified adhesive systems (etch-and-rinse and self-etching) and 1.23% acidulated phosphate fluoride (APF) on the microshear bond strength (μ-SBS) of composite resins on primary molars and incisors. Forty primary molars and forty incisors vestibular enamel was treated with either the self-etching Clearfil SE Bond (CSE, Kuraray) or etch-and-rinse Adper Single Bond 2 (SB2, 3M/ESPE) adhesive system. Each group was subdivided based on the prior treatment of the enamel with or without the topical application of 1.23% APF. Thereafter, matrices were positioned and filled with composite resin and light cured. After storage in distilled water at 37 ± 1°C for 24 h, the specimens were submitted to μ-SBS in a universal testing machine. Kruskal-Wallis and Mann-Whitney tests (p adhesive exerted no significant influence bond strength. In the inter-group analysis, however, significantly bond strength reduction was found for the incisors when CSE was employed with APF. Adhesive failure was the most common type of fracture. The bond strength was affected by the prior application of 1.23% APF and type of tooth.

  20. Adhesive Layer Thickness and Porosity Criteria for Bonded Joints

    Science.gov (United States)

    1982-12-01

    ALUMINUM REPRESENTING ADHESIVE SHEAR FAILURES JADHERENDS 20 3 SPECIAL DAMMIN4G DURING FABRICATIONABOVE~~ 0 010I 80 IN ALUMINUM DOUBE LP 6R9!1AOHE RE NOS 16...the problem than to provide quality assurance r- *standards. TENSION IN BAG SQUEEZES OUT )II ADHESIVE SPLICE OR DOUBLER WIRE A BAG, SPLICE OR DOUBE ...MOOULUSE C POISSON S RATIO (10 JOINT GEOMETRY ... .. . - - -- T WVY PEEL STRESS DISTRIBU rION £ A A & A A £ V THROUGH THICKNESS (Ec ACCOUNTS FOR

  1. Effect of Saliva on the Tensile Bond Strength of Different Generation Adhesive Systems: An In-Vitro Study

    Science.gov (United States)

    Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti

    2015-01-01

    Background Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. Objective The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Materials and Methods Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. Results One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Conclusion Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva. PMID:26393214

  2. Diffusion bonded boron/aluminum spar-shell fan blade

    Science.gov (United States)

    Carlson, C. E. K.; Cutler, J. L.; Fisher, W. J.; Memmott, J. V. W.

    1980-01-01

    Design and process development tasks intended to demonstrate composite blade application in large high by-pass ratio turbofan engines are described. Studies on a 3.0 aspect radio space and shell construction fan blade indicate a potential weight savings for a first stage fan rotor of 39% when a hollow titanium spar is employed. An alternate design which featured substantial blade internal volume filled with titanium honeycomb inserts achieved a 14% potential weight savings over the B/M rotor system. This second configuration requires a smaller development effort and entails less risk to translate a design into a successful product. The feasibility of metal joining large subsonic spar and shell fan blades was demonstrated. Initial aluminum alloy screening indicates a distinct preference for AA6061 aluminum alloy for use as a joint material. The simulated airfoil pressings established the necessity of rigid air surfaces when joining materials of different compressive rigidities. The two aluminum alloy matrix choices both were successfully formed into blade shells.

  3. Improvement in reinforcing bond strength in reinforced concrete with self-repairing chemical adhesives

    Science.gov (United States)

    Dry, Carolyn M.

    1997-05-01

    Self-healing concretes have embedded adhesives which are released from hollow fibers inside the concrete when and where cracking of the matrix and the fibers occurs. It was found that the adhesive improves the strength of the cracked portions of the concrete and increases its ability to deflect under load. Structural materials subjected to dynamic events such as earthquakes and impacts can have improved response by the noise of adhesive type which can impart improved damping, lateral stiffness, or deflection. Testing also assessed the improvement of the bond strength in structures. In laboratory tests the internal adhesive repair system improved the bond between the reinforcing steel and the concrete to prevent pullout failure or debonding at the interface.

  4. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a

  5. Comparison of bonding performance of self-etching and etch-and-rinse adhesives on human dentin using reliability analysis.

    Science.gov (United States)

    Bradna, Pavel; Vrbova, Radka; Dudek, Michal; Roubickova, Adela; Housova, Devana

    2008-12-01

    To estimate the in vitro reliability of typical self-etching and etch-and-rinse adhesives of various application protocols. The following adhesives were applied on flat dentin surfaces of extracted human teeth (n = 223): self-etching two-step adhesives: AdheSE (AH), Clearfil SE Bond (CL), OptiBond SE (OS); one-step adhesives: Adper Prompt L-Pop (ADP), Adper Prompt (AD), and Xeno III (XE); all-in-one adhesive: iBond (IB); etch-and-rinse three-step adhesives: OptiBond FL (OF), two-step Gluma Comfort Bond (G), Excite (E) and Prime & Bond NT (PB). Composite buildups were prepared using a microhybrid composite, Opticor New. Shear bond strength was determined after 24 h of storage at 37 degrees C in distilled water. The results were analyzed with a nested ANOVA (adhesive, type of adhesive) followed by the Fisher post-hoc tests of group homogeneity at alpha = 0.05. A two-parameter Weibull distribution was used to calculate the critical shear bond strength corresponding to 5% probability of failure as a measure of system reliability. ANOVA revealed a significant decrease (p AD=IB=XE>PB=ADP, but no significant difference (p > 0.48) between the etch-and-rinse and self-etching adhesives. The corresponding characteristic bond strength of Weibull distribution ranged between 24.1 and 12.1 MPa, Weibull modulus between 8.3 and 2.1, and the critical shear bond strength varied from 16.0 to 3.0 MPa. Pronounced differences in the critical shear bond strength suggest reliability variations in the adhesive systems tested, which originate from chemical composition rather than type of adhesive.

  6. A comprehensive assessment of adhesively bonded joints between sandwich composite beams

    Science.gov (United States)

    Shahin, Khaled Omar

    Assessment of adhesively bonded joints between sandwich composite beams are presented in this thesis in three parts, each is concerned with a distinct aspect of the joint behaviour. In physical order, these include the deformations of the entire joint assembly, the state of stress in the joint overlap region, and the strain energy release at the crack-tip at the end of the overlap. Analytical models developed in this thesis, however, are not limited in their application to adhesive joint between sandwich beams. In each part of this thesis, the integrity of the proposed analytical models are tested against geometrically non-linear finite element models. In this first part of this thesis, an analytical asymptotic model is presented for the analysis of balanced and unbalanced adhesively bonded joints. The model takes advantage of the asymptotic nature of the adhesive stress functions by eliminating exponentially small terms. Analysis of balanced and unbalanced adhesive joints is greatly simplified with negligible loss in accuracy. Accurate closed-form solutions for both adhesive peel and shear stresses are presented, providing an efficient analysis and design tool and a significant contribution to the literature on unbalanced adhesively bonded joints. In the second part, the asymptotic model is extended to the analysis of strain energy release rates in adhesively bonded joints, using the crack closure concept. Closed-form expressions are presented for various joint types. The shear force and adhesive layer effects are included in the analysis, thus improving on currently available works in the literature. In joints with a long crack and a thin adhesive layer, the asymptotic model is shown to be in good agreement with classical beam theory models. In the third part, deformations in adhesively bonded joints between sandwich beams are studied. Adherends are modeled as cylindrically bent plates on elastic foundations and the overlap section is treated as a single

  7. Cytotoxicity and shear bond strength of four orthodontic adhesive systems.

    Science.gov (United States)

    Jonke, Erwin; Franz, Alexander; Freudenthaler, Josef; König, Franz; Bantleon, Hans-Peter; Schedle, Andreas

    2008-10-01

    The objective of this study was to compare the cytotoxicity of four orthodontic bonding systems, Light Bond, Enlight, Concise, and Transbond, and to evaluate their shear bond strength (SBS). These orthodontic bonding materials were applied to metal brackets (Mini Diamond). Glass specimens were used as controls in all experiments. Only Concise was a chemically cured system, the other systems were light cured. The specimens were added to L-929 fibroblast cultures immediately after fabrication or after pre-incubation for 7 days. The incubation time was 72 hours and the cells were counted by flow cytometry. One hundred and fifty-seven freshly extracted human third molars were used for testing the SBS in a universal testing machine. Statistical significance was determined using analysis of variance followed by post hoc comparisons for multiple-level alpha control. Pairwise comparisons showed a significant difference only between Light Bond and Concise (P = 0.0126). The highest SBS was obtained with Light Bond (23.23 +/- 1.53 MPa) followed by Transbond (20.39 +/- 1.18 MPa) and Enlight, (20.32 +/- 1.06 MPa). Concise (17.87 +/- 1.04 MPa) showed the lowest SBS. The cytotoxicity of all light-cured systems for fresh specimens was comparable, whereas the chemically cured system, Concise, was significantly more cytotoxic. After 7 days of pre-incubation, all systems were significantly less cyotoxic than fresh specimens (P cytotoxic. All bonding systems showed a clinically satisfactory bond strength higher than 10 MPa, with the chemically cured system showing the lowest SBS.

  8. Influence of adhesion promoters and curing-light sources on the shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Claudia Tavares Machado

    2012-01-01

    Conclusions: The conventional orthodontic adhesive presented higher bond strength than the nanofilled composite, although both materials interacted similarly to the teeth. The curing-light devices tested did not influence on bond strength of orthodontic brackets.

  9. Adhesion quality of steel-CFRP interface bonding

    NARCIS (Netherlands)

    de Barros, S.; Teixeira De Freitas, S.; Banea, M.D.; Budhe, S.; Arouche, M.M.; dos Santos, B.L.; Pezzin, S.H.

    2016-01-01

    In this work, peel tests were used to assess the adhesion quality between carbon fiber reinforced polymers (CFRP) and carbon steel plates. The tests were performed according to the ASTM standard of floating roller peel tests (D3167–97) with a new specimen layup. The layup and geometry of specimens

  10. Shear bond strength of orthodontic color-change adhesives with different light-curing times.

    Science.gov (United States)

    Bayani, Shahin; Ghassemi, Amirreza; Manafi, Safa; Delavarian, Mohadeseh

    2015-01-01

    The purpose of this study was to evaluate the effect of light-curing time on the shear bond strength (SBS) of two orthodontic color-change adhesives (CCAs). A total of 72 extracted premolars were randomly assigned into 6 groups of 12 teeth each. Subsequent to primer application, a metal bracket was bonded to the buccal surface using an orthodontic adhesive. Two CCAs (Greengloo and Transbond Plus) were tested and one conventional light-cured adhesive (Resilience) served as control. For each adhesive, the specimens were light-cured for two different times of 20 and 40 s. All the specimens underwent mechanical testing using a universal testing machine to measure the SBS. Adhesive remnant index (ARI) was used to assess the remnant adhesive material on the tooth surface. All statistical analyses were performed using SPSS software. The significance level for all statistical tests was set at P ≤ 0.05. The SBSs of the tested groups were in the range of 14.05-31.25 MPa. Greengloo adhesive showed the highest SBS values when light-cured for 40 s, and Transbond Plus adhesive showed the lowest values when light-cured for 20 s. ARI scores of Transbond Plus adhesive were significantly higher than those of controls, while other differences in ARI values were not significant. Within the limitations of his study, decreasing the light-curing time from 40 to 20 s decreased the SBS of the tested adhesives; however, this decline in SBS was statistically significant only in Transbond Plus adhesive.

  11. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    Science.gov (United States)

    Saleema, N.; Sarkar, D. K.; Paynter, R. W.; Gallant, D.; Eskandarian, M.

    2012-11-01

    Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark treatments such as anodization, which involve use of strong acids and multiple steps of treatment procedures. The NaOH treatment reported in this work is a very simple method with the use of a very dilute solution with simple ultrasonication being sufficient to produce durable joints.

  12. Influence of saliva contamination on the shear bond strength of adhesives on enamel

    Directory of Open Access Journals (Sweden)

    Tatiana Feres Assad-Loss

    2012-04-01

    Full Text Available OBJECTIVE: To evaluate shear bond strength of 3 adhesive systems (Single Bond, TransbondTM MIP and TransbondTM XT applied on bovine enamel under saliva contamination condition. METHOD: One hundred and twenty enamel surfaces of bovine incisors were divided into 6 groups (n = 20 according to the adhesive system used (TransbondTM XT, TransbondTM MIP and Single Bond with or without saliva contamination. For each adhesive system, there were two groups defined as no contamination group (NC: 37% H3PO4 conditioning for 30 seconds and two layers of adhesive systems; saliva contamination group (SC: After the first adhesive layer application, the examined areas were contaminated with saliva. Samples were mounted appropriately for testing and stored in deionized water at 37 ºC for 7 days. Samples were then submitted to shear bond strength trials at a speed of 0.5 mm/min. The Adhesive Remnant Index (ARI was evaluated under stereomicroscopy. Two-way analysis of variance and the Tukey test were used to compare mean values (α = 0.05. RESULTS: Groups XT (NC = 26.29 ± 7.23; MIP (NC = 24.47 ± 7.52 and SB (NC = 32.36 ± 4.14 XT (SC = 19.59 ± 6.76; MIP (SC = 18.08 ± 6.39 and SB (SC = 18.18 ± 7.03 MPa. ARI 0 and 1 were the most prevalent scores in all study groups examined. CONCLUSION: Saliva contamination significantly decreased bond strength of the three adhesive systems examined (p <0.05. However, the comparison of groups with and without saliva contamination did not reveal any significant differences, and, therefore, the three systems may be considered equivalent.

  13. Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive

    OpenAIRE

    Kahraman, R.; M. Sunar; Yilbas, B.

    2007-01-01

    The objective of this study was to develop information on the influence of adhesive thickness and aluminum filler content on the mechanical performance of aluminum joints bonded by aluminum powder filled epoxy. The adhesive strength of the joints was determined by utilizing the single-lap shear test. The influence of adhesive thickness and aluminum filler content on stress distribution within the adhesive was also analyzed by finite element method (FEM). Both FEM analysis and the experimental...

  14. The Fuzzy Finite Element Stress Analysis of Adhesive-Bonded Single Lap Joints

    OpenAIRE

    Alpay AYDEMİR

    2004-01-01

    An adhesive-bonded single lap joint is analyzed using a new fuzzy finite element model. In the model, Young's moduli and Poisson's ratios of the joint materials are taken as fuzzy numbers in order to take the uncertainty of the material properties into account. The fuzzy numbers are modeled using linear triangular membership functions. At a selected material point in the adhesive layer, the possibility distributions for the displacements and shear stresses are depi...

  15. Adhesive Bonding to Computer-aided Design/ Computer-aided Manufacturing Esthetic Dental Materials: An Overview.

    Science.gov (United States)

    Awad, Mohamed Moustafa; Alqahtani, H; Al-Mudahi, A; Murayshed, M S; Alrahlah, A; Bhandi, Shilpa H

    2017-07-01

    To review the adhesive bonding to different computer-aided design/computer-aided manufacturing (CAD/CAM) esthetic restorative materials. The use of CAD/CAM esthetic restorative materials has gained popularity in recent years. Several CAD/ CAM esthetic restorative materials are commercially available. Adhesive bonding is a major determinant of success of CAD/ CAM restorations. Review result: An account of the currently available bonding strategies are discussed with their rationale in various CAD/ CAM materials. Different surface treatment methods as well as adhesion promoters can be used to achieve reliable bonding of CAD/CAM restorative materials. Selection of bonding strategy to such material is determined based on its composition. Further evidence is required to evaluate the effect of new surface treatment methods, such as nonthermal atmospheric plasma and self-etching ceramic primer on bonding to different dental ceramics. An understanding of the currently available bonding strategies to CA/CAM materials can help the clinician to select the most indicated system for each category of materials.

  16. The adhesive effect on ultrasonic Lamb wave detection sensitivity of remotely bonded fiber Bragg grating sensors

    Science.gov (United States)

    Wee, Junghyun; Hackney, Drew A.; Bradford, Philip D.; Peters, Kara J.

    2017-04-01

    Fiber Bragg grating (FBG) sensors are excellent transducers for ultrasonic signal detection in structural health monitoring (SHM) application. While the FBG sensors are typically bonded directly on the surface of a structure to collect signals, one of the major challenges arises from demodulating relevant information from the low amplitude signal. The authors have experimentally demonstrated that the ultrasonic wave detection sensitivity of FBG sensors can be increased by bonding optical fiber away from the FBG location. This configuration is referred to here as remote bonding. However the mechanism causing this phenomenon has not been explored. In this work, we simulate the previous experimental work through a transient analysis based on the finite element method, and the output FBG response is calculated through the transfer matrix method. We first model an optical fiber bonded on the surface of an aluminum plate with an adhesive. The consistent input signal is excited to the plate, which is detected by the directly and remotely-bonded FBGs. The effect of the presence of the adhesive around the FBG is investigated by analyzing strain and displacement along the length of the FBGs at the locations of direct and remote bonding cases, and the consequent output FBG responses. The result demonstrates that the sensitivity difference between the direct and remote bonding cases is originated from shear lag effect due to adhesive.

  17. Effect of Self-etching Adhesives on the Bond Strength of Glass-Ionomer Cements.

    Directory of Open Access Journals (Sweden)

    Zahra Jaberi Ansari

    2014-12-01

    Full Text Available Adequate bond strength between glass ionomer cements and composite resin is necessary for the success of the sandwich technique.This study assessed the micro-shear bond strength of composite resin to glass-ionomer cements (GIC using self-etch adhesives with different pH values.One hundred specimens (6×4×2 mm were made using Fuji II and Fuji II LC GICs and treated with different adhesives as follows: Group 1:Fuji II+ Adper Prompt L-Pop, Group-2: Fuji II+SE bond, Group-3: Fuji II + AdheSE, Group-4:Fuji II+ Protect bond, Group-5: Fuji II + Single bond, Group-6:Fuji II LC+ Adper Prompt LPop, Group-7: Fuji II LC+SE bond, Group-8:Fuji II LC+ AdheSE, Group-9: Fuji II LC+ Protect bond, and Group-10: Fuji II LC+ Single bond. Each group consisted of 10 specimens. A cylinder of Z100 composite resin was placed on each sample and light cured. After 24 hours of water storage (37°C, the specimens were subjected to micro-shear bond strength tests (0.5 mm/min. Data were analyzed using two-way ANOVA and Tukey's test.The mean micro-shear bond strength of groups 1-10 was 11.66±1.79, 16.50±1.85, 18.47±1.77, 13.95±1.77, 15.27±1.49, 15.14±0.90, 20.03±1.19, 17.48±3.00, 16.24±1.98 and 16.03±1.49 MPa, respectively. There were significant differences between groups 1 and 7 (P0.05. Fuji II LC showed higher bond strength than Fuji II (P<0.05.Type of self-etch adhesive had no significant effect on micro-shear bond strength of glass-ionomer to composite resin. Resin modified glass ionomer cement (RMGIC exhibited higher bond strength than the conventional GIC.

  18. Shear bond strength between alumina substrate and prosthodontic resin composites with various adhesive resin systems.

    Science.gov (United States)

    AlJehani, Yousef A; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Vallittu, Pekka K

    2015-05-02

    With the increase in demand for cosmetics and esthetics, resin composite restorations and all-ceramic restorations have become an important treatment alternative. Taking into consideration the large number of prosthodontic and adhesive resins currently available, the strength and durability of these materials needs to be evaluated. This laboratory study presents the shear bond strengths of a range of veneering resin composites bonded to all-ceramic core material using different adhesive resins. Alumina ceramic specimens (Techceram Ltd, Shipley, UK) were assigned to three groups. Three types of commercially available prosthodontic resin composites [BelleGlass®, (BG, Kerr, CA, USA), Sinfony® (SF, 3 M ESPE, Dental Products, Germany), and GC Gradia® (GCG, GC Corp, Tokyo, Japan)] were bonded to the alumina substrate using four different adhesive resins. Half the specimens per group (N = 40) were stored dry for 24 hours, the remaining were stored for 30 days in water. The bonding strength, so-called shear bond strengths between composite resin and alumina substrate were measured. Data were analysed statistically and variations in bond strength within each group were additionally evaluated by calculating the Weibull modulus. Bond strengths were influenced by the brand of prosthodontic resin composites. Shear bond strengths of material combinations varied from 24.17 ± 3.72-10.15 ± 3.69 MPa and 21.20 ± 4.64-7.50 ± 4.22 at 24 h and 30 days, respectively. BG resin composite compared with the other resin composites provided the strongest bond with alumina substrate (p < 0.01). SF resin composite was found to have a lower bond strength than the other composites. The Weibull moduli were highest for BG, which was bonded by using Optibond Solo Plus adhesive resin at 24 h and 30 days. There was no effect of storage time and adhesive brand on bond strength. Within the limitations of this study, the shear bond strengths of composite resins to alumina substrate are related to

  19. Effect of tetracycline on the bond performance of etch-and-rinse adhesives to dentin

    Directory of Open Access Journals (Sweden)

    Rodrigo Stanislawczuk

    2011-10-01

    Full Text Available This study evaluated the effect of modified tetracycline on the resin-dentin bond strength (µTBS, silver nitrate uptake (SNU and solution homogeneity (SH of two adhesives. Dentin surfaces were treated with phosphoric acid, rinsed off and either rewetted with water (control group - CO, 2% minocycline (MI, 2% doxycyline (DO or 2% chlorhexidine (CH. Adhesive systems (Adper Single Bond 2 and Prime Bond NT and composite were applied and light-polymerized. Specimens were sectioned to obtain bonded sticks (0.8 mm² to test under tension at 0.5 mm/min. For SNU, specimens were immersed in silver nitrate and analyzed by EDX-SEM. SH was qualitatively analyzed after mixing the adhesives with different solvent-based solutions containing MI, DO and CH. Lower µTBS values were observed in the DO group compared with MI and CH (p = 0.01. Lower SNU was observed for MI and CH. The lowest µTBS for both adhesives was observed for the DO group (p = 0.01. Signs of phase separation were observed for DO with both adhesives. MI or CH used as rewetting solutions after acid etching did not affect the µTBS and hybrid layer quality.

  20. The Effects of Adhesive and Bonding Length on the Strain Transfer of Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Shiuh-Chuan Her

    2016-01-01

    Full Text Available Optical fiber sensors have been extensively adapted as structural health monitoring devices. Due to the existence of the adhesive layer, a portion of the strain is absorbed by the adhesive. As a result, the structural strain sensed by the optical fiber is underestimated and required to be corrected. An analytical solution is presented through which it is possible to establish the relationship between the strains in the host structure and the surface bonded optical fiber sensor. Experimental measurements based on the Mach–Zehnder interferometric technique were performed to validate the theoretical prediction and reveal the differential strains between the optical fiber strain sensor and test specimen. Parametric studies show that the percentage of the strain in the test specimen actually transferred to the optical fiber is dependent on the bonding length of the optical fiber and the adhesive. The strain transfer is increasing from 56% to 82% as the bonding length increases from 5 cm to 12 cm with the epoxy adhesive. The general trend of the strain transfer obtained from both experimental tests and theoretical predictions shows that the longer the bonding length and the stiffer the adhesive, the more strain is transferred to the optical fiber.

  1. Effects of silver nanoparticles on the bonding of three adhesive systems to fluorotic enamel.

    Science.gov (United States)

    Torres-Méndez, Fernando; Martinez-Castañon, Gabriel-Alejandro; Torres-Gallegos, Iranzihuatl; Zavala-Alonso, Norma-Verónica; Patiño-Marin, Nuria; Niño-Martínez, Nereyda; Ruiz, Facundo

    2017-05-31

    The objective was to evaluate the effect of adding silver nanoparticles into three commercial adhesive systems (Excite™, Adper Prompt L-Pop™ and AdheSE™). Nanoparticles were prepared by a chemical method then mixed with the commercial adhesive systems. This was later applied to the fluorotic enamel, and then micro-tensile bond strength, contact angle measurements and scanning electron microscopy observations were conducted. The commercial adhesive systems achieved the lowest micro-tensile bond strength (Excite™: 11.0±2.1, Adper Prompt L-Pop™: 14.0±5.4 and AdheSE™: 16.0±3.0 MPa) with the highest adhesive failure mode related with the highest contact angle (46.0±0.6º, 30.0±0.5º and 28.0±0.4º respectively). The bond strength achieved in all the experimental adhesive systems (19.0±5.4, 20.0±4.0 and 19.0±3.5 MPa respectively) was statistically higher (padhesive system wetting and its bond strength.

  2. Reliability Analysis for Adhesive Bonded Composite Stepped Lap Joints Loaded in Fatigue

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Sørensen, John Dalsgaard; Lund, Erik

    2012-01-01

    This paper describes a probabilistic approach to calculate the reliability of adhesive bonded composite stepped lap joints loaded in fatigue using three- dimensional finite element analysis (FEA). A method for progressive damage modelling is used to assess fatigue damage accumulation and residual...... by the wind turbine standard IEC 61400-1. Finally, an approach for the assessment of the reliability of adhesive bonded composite stepped lap joints loaded in fatigue is presented. The introduced methodology can be applied in the same way to calculate the reliability level of wind turbine blade components...

  3. Identification of parameters of cohesive elements for modeling of adhesively bonded joints of epoxy composites

    Directory of Open Access Journals (Sweden)

    Kottner R.

    2013-12-01

    Full Text Available Adhesively bonded joints can be numerically simulated using the cohesive crack model. The critical strain energy release rate and the critical opening displacement are the parameters which must be known when cohesive elements in MSC.Marc software are used. In this work, the parameters of two industrial adhesives Hunstman Araldite 2021 and Gurit Spabond 345 for bonding of epoxy composites are identified. Double Cantilever Beam (DCB and End Notched Flexure (ENF test data were used for the identification. The critical opening displacements were identified using an optimization algorithm where the tests and their numerical simulations were compared.

  4. Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V

    Science.gov (United States)

    Belcher, Marcus A.; List, Martina S.; Wohl, Christopher J.; Ghose, Sayata; Watson, Kent A.; Hopkins, John W.; Connell, John W.

    2010-01-01

    Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell.

  5. Experimental and numerical analyses of adhesively bonded T-joints under crash loading

    Directory of Open Access Journals (Sweden)

    Voß H.

    2012-08-01

    Full Text Available Adhesively bonded metallic T-joints were subjected to impact at different loading directions and loading rates ranging from quasi-static to crash. Different damage and failure mechanisms were observed depending on the loading configuration. Finite element simulations were performed with ABAQUS/explicit using a user-defined, fully rate dependent material model for cohesive elements describing the material response of the adhesive bond lines. The FE simulation results were in good agreement with the experimental evidence, capturing both, the observed damage mechanisms, and the recorded force-displacement response.

  6. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives

    OpenAIRE

    An-Na Choi; Ji-Hye Lee; Sung-Ae Son; Kyoung-Hwa Jung; Yong Hoon Kwon; Jeong-Kil Park

    2017-01-01

    The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS) testing and confocal laser scanning microscopy (CLSM). Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying), 5, and 10 s. The dentin surfaces were then treated with three universal ad...

  7. Effects of Temperature and Forming Speed on Plastic Bending of Adhesively Bonded Sheet Metals

    Science.gov (United States)

    Takiguchi, Michihiro; Yoshida, Tetsuya; Yoshida, Fusahito

    This paper deals with the temperature and rate-dependent elasto-viscoplasticity behaviour of a highly ductile acrylic adhesive and its effect on plastic bending of adhesively bonded sheet metals. Tensile lap shear tests of aluminium single-lap joints were performed at various temperature of 10-40°C at several tensile speeds. Based on the experimental results, a new constitutive model of temperature and rate-dependent elasto-viscoplasticity of the adhesive is presented. From V-bending experiments and the corresponding numerical simulation, it was found that the gull-wing bend is suppressed by high-speed forming at a lower temperature.

  8. Bond strength of five dental adhesives using a fracture mechanics approach.

    Science.gov (United States)

    Jancar, Josef

    2011-04-01

    The adhesion tests utilized in dentistry are unable to separate the effects of adhesive composition, substrate properties, joint geometry and type of loading on the measured bond strength. This makes it difficult for the clinician to identify the most suitable adhesive for a given procedure and for the adhesive manufacturer to optimize its composition. Thus, an adhesion test protocol based on the fracture mechanics has been proposed to generate data for which separation of the effect of composition from that of the joint geometry on the shear (τ(a)) and tensile (σ(a)) bond strengths was possible for five commercial dental adhesives. Planar 40×5×5 mm(3) sections of bovine femur were used as model adherends. The adhesive thickness (h) was varied from 15 to 500 μm. Commercial adhesives with fracture toughness (K(IC)) ranging from 0.3 to 1.6 MPa m(1/2) were used. Double lap joint (DLJ) and modified compact tension (MCT) specimens were conditioned for 24 h in 37 °C distilled water, then dried in a vacuum oven at 37 °C for 24 h prior to testing. The thickness dependence of σ(a) and τ(a) was measured at constant strain rate and analyzed using the interface corner stress intensity factor model. Both τ(a) and σ(a) increased with increasing adhesive thickness, exhibiting a maximum bond strength at the optimum thickness (h(opt)). For hadhesion tests currently used in dentistry provide the geometry-dependent bond strength, and such data cannot be used either for prediction of clinical reliability of commercial dental adhesives or for development of new ones. The proposed test protocol allowed us to determine two composition-only dependent parameters determining τ(a) and σ(a). A simple proposed procedure can then be used to estimate the weakest point in clinically relevant joints always exhibiting varying adhesive thickness and, thus, to predict the locus of failure initiation. Moreover, this approach can also be used to analyze the clinical relevance of the

  9. The effects of inherent flaws on the time and rate dependent failure of adhesively bonded joints

    Science.gov (United States)

    Sancaktar, E.; Padgilwar, S.

    1982-01-01

    Inherent flaws, as well as the effects of rate and time, are shown by tests on viscoelastic adhesive-bonded single lap joints to be as critical in joint failure as environmental and stress concentration effects, with random inherent flaws and loading rate changes resulting in an up to 40% reduction in joint strength. It is also found that the asymptotic creep stress, below which no delayed failure may occur, may under creep loading be as much as 45% less than maximum adhesive strength. Attention is given to test results for the case of titanium-LARC-3 adhesive single-lap specimens.

  10. Adhesive Bonding Techniques in Hybrid Structures Made from Fibre Reinforced Polymeric Composites and Concrete

    Directory of Open Access Journals (Sweden)

    Ruxandra Oltean

    2009-01-01

    Full Text Available Mechanical joining techniques are used in construction industry all over the world on a daily basis. A further method of joining has proven to be highly successful – adhesive bonding. Known for thousands of years, adhesive bonding has become as important as other joining techniques as a result of the pace of developments in recent years. In many areas, this bonding technology has become a key technology. Virtually, all solid materials can be connected with one another using adhesives. Although bonding fibre reinforced polymeric composites to the concrete substrate is a relatively simple technique, the proper installation of the fibre reinforced polymeric composites is essential to ensure the adequate performance of the hybrid system. Since the installation procedures differ from one system to another, appropriate specifications will be clearly presented. The paper will include requirements to provide a quality joint assembly, meaning the special pre-treatments of the concrete surface. The material to be bonded is cleaned and prepared so that adhesives can adhere better to them.

  11. Factors affecting the bond strength of self-etch adhesives: A meta-analysis of literature

    Science.gov (United States)

    Vanajasan, P Pranau; Dhakshinamoorthy, Malarvizhi; Rao, CV Subba

    2011-01-01

    Aim: The purpose of this study is to critically evaluate the factors that affect the bond strength of one-step and two-step self-etch adhesives by using meta-analysis. Materials and Methods: Potential papers that were selected according to inclusion and exclusion criteria from articles were published in 13 peer-reviewed journals using “PubMed data base”. From each report, means and standard deviations of bond strengths were extracted and tabulated with corresponding experimental conditions. Results: All the studied parameters showed no significant difference, except for dentin origin/site and bonding area. In addition, statistical analysis done with ANOVA showed statistical significance between the one-step and two-step self-etch adhesives. Conclusions: Our analysis has showed that two-step self-etch adhesive system showed a superior in vitro performance in comparison to one-step self-etch system. Nevertheless, certain factors such as dentin origin, site and area of bonding affect the bond strength of adhesives. PMID:21691509

  12. The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols.

    Science.gov (United States)

    Fatemeh, Koohpeima; Mohammad Javad, Mokhtari; Samaneh, Khalafi

    2017-01-01

    The purpose of this study was to investigate the effect of silver nanoparticles on composite shear bond strength using one etch and rinse and one self-etch adhesive systems. Silver nanoparticles were prepared. Transmission electron microscope and X-ray diffraction were used to characterize the structure of the particles. Nanoparticles were applied on exposed dentin and then different adhesives and composites were applied. All samples were tested by universal testing machine and shear bond strength was assesed. Particles with average diameter of about 20 nm and spherical shape were found. Moreover, it was shown that pretreatment by silver nanoparticles enhanced shear bond strength in both etch and rinse, and in self-etch adhesive systems (p≤0.05). Considering the positive antibacterial effects of silver nanoparticles, using them is recommended in restorative dentistry. It seems that silver nanoparticles could have positive effects on bond strength of both etch-and-rinse and self-etch adhesive systems. The best results of silver nanoparticles have been achieved with Adper Single Bond and before acid etching.

  13. Hybridization quality and bond strength of adhesive systems according to interaction with dentin

    Science.gov (United States)

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-01-01

    Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives – Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems – Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system – Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin. PMID:24926212

  14. The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols

    Directory of Open Access Journals (Sweden)

    KOOHPEIMA Fatemeh

    Full Text Available Abstract In Dentistry, restorative materials and oral bacteria are believed to be responsible for restoration failure. To make long-lasting restorations, antibacterial agents should be made. Inorganic nanoparticles and their nano composites are applied as good antibacterial agents. Objective The purpose of this study was to investigate the effect of silver nanoparticles on composite shear bond strength using one etch and rinse and one self-etch adhesive systems. Material and Methods Silver nanoparticles were prepared. Transmission electron microscope and X-ray diffraction were used to characterize the structure of the particles. Nanoparticles were applied on exposed dentin and then different adhesives and composites were applied. All samples were tested by universal testing machine and shear bond strength was assesed. Results Particles with average diameter of about 20 nm and spherical shape were found. Moreover, it was shown that pretreatment by silver nanoparticles enhanced shear bond strength in both etch and rinse, and in self-etch adhesive systems (p≤0.05. Conclusions Considering the positive antibacterial effects of silver nanoparticles, using them is recommended in restorative dentistry. It seems that silver nanoparticles could have positive effects on bond strength of both etch-and-rinse and self-etch adhesive systems. The best results of silver nanoparticles have been achieved with Adper Single Bond and before acid etching.

  15. Use of shear horizontal waves to distinguish adhesive thickness variation from reduction in bonding strength.

    Science.gov (United States)

    Predoi, Mihai Valentin; Ech Cherif El Kettani, Mounsif; Leduc, Damien; Pareige, Pascal; Coné, Khadidiatou

    2015-08-01

    The capability of shear horizontal (SH) guided waves, to evaluate geometrical imperfections in a bonding layer, is investigated. SH waves are used in a three-layer structure in which the adhesive layer has variable thickness. It is proven that the SH waves are adapting to the local thickness of the adhesive layer (adiabatic waves). This is particularly useful in case of small thickness variations, which is of technical interest. The influence of thickness and stiffness of the adhesive layer on the wavenumbers are investigated. The selected SH2 mode is proven to be very sensitive to the adhesive layer thickness variation in the given frequency range and considerably less sensitive to the adhesive stiffness variation. This property is due to its specific displacement field and is important in practical applications, such as inspection techniques based on SH waves, in order to avoid false alarms.

  16. Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives.

    Science.gov (United States)

    Ahn, Joonghee; Jung, Kyoung-Hwa; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon; Park, Jeong-Kil

    2015-02-01

    This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. In GB, XV and SE (pH ≤ 2), the bond strength was decreased significantly when the dentin was etched (p 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin.

  17. Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Joonghee Ahn

    2015-02-01

    Full Text Available Objectives This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU], and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results In GB, XV and SE (pH ≤ 2, the bond strength was decreased significantly when the dentin was etched (p 0.05. In AU (pH = 3.2, additional etching increased the bond strength significantly (p < 0.05. When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin.

  18. Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives

    Science.gov (United States)

    Ahn, Joonghee; Jung, Kyoung-Hwa; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon

    2015-01-01

    Objectives This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results In GB, XV and SE (pH ≤ 2), the bond strength was decreased significantly when the dentin was etched (p 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin. PMID:25671215

  19. Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique

    Science.gov (United States)

    Li, Zhenhao; Wong, Lawrence L. P.; Chen, Albert I. H.; Na, Shuai; Sun, Jame; Yeow, John T. W.

    2016-11-01

    This paper reports the fabrication process of wafer bonded capacitive micromachined ultrasonic transducers (CMUTs) using photosensitive benzocyclobutene as a polymer adhesive. Compared with direct bonding and anodic bonding, polymer adhesive bonding provides good tolerance to wafer surface defects and contamination. In addition, the low process temperature of 250 °C is compatible with standard CMOS processes. Single-element CMUTs consisting of cells with a diameter of 46 µm and a cavity depth of 323 nm were fabricated. In-air and immersion acoustic characterizations were performed on the fabricated CMUTs, demonstrating their capability for transmitting and receiving ultrasound signals. An in-air resonance frequency of 5.47 MHz was measured by a vibrometer under a bias voltage of 300 V.

  20. Hydrazide-Derivatized Microgels Bond to Wet, Oxidized Cellulose Giving Adhesion Without Drying or Curing.

    Science.gov (United States)

    Yang, Dong; Gustafsson, Emil; Stimpson, Taylor C; Esser, Anton; Pelton, Robert H

    2017-06-21

    Hydrazide-derivatized poly(N-isopropylacrylamide-co-acrylic acid) microgels gave strong adhesion to wet, TEMPO oxidized, regenerated cellulose membranes without a drying or heating step. Adhesion was attributed to hydrazone covalent bond formation with aldehyde groups present on the cellulose surfaces. This is one of only three chemistries we have found that gives significant never-dried adhesion between wet cellulose surfaces. By contrast, for cellulose joints that have been dried and heated before wet testing, the hydrazide-hydrazone chemistry offers no advantages over standard paper industry wet strength resins. The design rules for the hydrazide-microgel adhesives include: cationic microgels are superior to anionic gels; the lower the microgel cross-link density, the higher the adhesion; longer PEG-based hydrazide tethers offer no advantage over shorter attachments; and, adhesion is independent of microgel diameter. Many of these rules were in agreement with predictions of a simple adhesion model where the microgels were assumed to be ideal springs. We propose that the unexpected, high cohesion between neighboring microgels in multilayer films was a result of bond formation between hydrazide groups and residual NHS-carboxyl esters from the preparation of the hydrazide microgels.

  1. Micro-CT evaluation of microleakage under orthodontic ceramic brackets bonded with different bonding techniques and adhesives

    Science.gov (United States)

    Öztürk, Fırat; Ersöz, Mustafa; Öztürk, Seyit Ahmet; Malkoç, Sıddık

    2016-01-01

    Summary Aim: The aim of this study was to evaluate microleakage under orthodontic ceramic brackets bonded with direct and different indirect bonding techniques and adhesives using micro-computed tomography. Materials and methods: A total of 30 human maxillary premolars were randomly separated into five groups with six teeth in each group. In group I, teeth were bonded directly with Transbond XT (3M Unitek). In group II, group III, group IV, and group V, teeth were bonded through an indirect technique with Custom I.Q. (Reliance Orthodontic Products), Sondhi Rapid-Set (3M Unitek), RMbond (RMO), and Transbond IDB (3M Unitek), respectively, following the manufacturer’s instructions. Micro-CT system model 1172 of Skyscan (Kontich, Belgium) was used to scan all samples. NRecon (Skyscan) version 1.6, CT-Analyser V.1.11 (Skyscan), and TView (SkyScan, Bvba) software programs were used for microleakage evaluation. Microleakage values between the test groups were assessed using the Kruskal–Wallis test, while the Wilcoxon signed rank test was used for within-group comparisons. The level of significance was set at P direct and indirect bonding techniques with different adhesives did not significantly affect the amount of microleakage. PMID:25855655

  2. Durability of Adhesive Bonded Structures Subjected to Acoustic Loads,

    Science.gov (United States)

    1981-12-01

    performed on such structures in progressive-wave tubes (PWT) [5]. These tests have involved various adhesives having widely varying peel strengths and lap...loading augmented by selective progressive-wave tube tests appear to be the best approach. Riveted technology prediction methods in general are not...foematiommstum am[*l, Deopo do Servigo de Mateial Fy.Madhmatik GmibH 4a Porn Awne KeeaoemeiapmtmumRue da Eacols Pollticalca 42 D-7314 UgmunLeopdisafen 2 Lim Atn

  3. Bond strength of a self-adhesive resin cement to enamel and dentin.

    Science.gov (United States)

    Fernandes, Virgílio Vilas Boas; Rodrigues, José Roberto; da Silva, João Maurício Ferraz; Pagani, Clovis; Souza, Rodrigo Othávio Assunção

    2015-01-01

    The purpose of this study was to evaluate the influence of surface treatments and thermocycling on the microtensile bond strength (μTBS) of self-adhesive resin cement to human enamel and dentin. Eighty human third molars were selected. The crowns of 40 teeth were transversally sectioned, exposing the mid-coronal dentin. The buccal surfaces of the other 40 teeth were grinded to obtain a 5 mm2 flat enamel area. Eighty resin blocks were produced and cemented to the dental surfaces with RelyX Unicem, then grouped according to the surface treatment (n=10): UnicemC with no conditioning, UnicemP with 37% phosphoric acid/15 s, and UnicemPA with 37% phosphoric acid/15 s plus adhesive bonding (Single Bond 2). There were two control groups, one for enamel and the other for dentin: VR with 37% phosphoric acid/15 s plus adhesive bonding (Single Bond 2) plus Variolink II. The enamel-dentin resin cement blocks were sectioned to produce non-trimmed bar specimens, which were divided into two storage conditions: dry, μTBS immediately after cutting; TC (5,000 x; 5°C/55°C). The samples were submitted to μTBS, and data were statistically analyzed by ANOVA and Tukey's test. The results showed statistical differences between UnicemC and the others. UnicemPA and VR showed better bond strength to dentin during the period before and after thermocycling, respectively. For the enamel, UnicemP showed better bond strength for both situations. Only for UnicemPA did the thermocycling significantly decrease the bond strength values. Within the limits of this study, it could be concluded that the bond strength is influenced by the surface treatments, and that thermocycling decreases the bond strength of all groups, but significantly only for UnicemPA.

  4. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    OpenAIRE

    Fernanda de Souza Henkin; Érika de Oliveira Dias de Macêdo; Karoline da Silva Santos; Marília Schwarzbach; Susana Maria Werner Samuel; Karina Santos Mundstock

    2016-01-01

    ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI) of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to te...

  5. Shear bond strength of amalgam to dentin using different dentin adhesive systems

    Directory of Open Access Journals (Sweden)

    Farimah Sardari

    2012-01-01

    Full Text Available Background and Aims: The aim of this in vitro study was to assess the shear bond strength of amalgam to dentin using four dentin adhesive systems.Materials and Methods: One hundred human molars were selected. After enamel removal, a dentin cylinder with 3 mm thickness was prepared. Eighty specimens were resorted with amalgam and four dentin adhesive systems as follows (n=20: group 1, Scotch Bond Multi-Purpose; group 2, One Coat Bond; group 3, PQ1; and group 4, Panavia-F. In group 5, 20 specimens were resorted with amalgam and varnish as control group. The specimens were incubated at 37°C for 24 h. The shear bond strengths were then measured by using push out method. The data were analyzed by one-way ANOVA and post hoc Duncan's tests.Results: Mean values for bond strengths of test groups were as follows: group 1=21.03±8.9, group 2=23.47±9, group 3=13.16±8.8, group 4=20.07±8.9 and group 5=14.15±8.7 MPa±SD. One-way ANOVA showed the statistically significant difference between the bond strengths of five groups (P=0.001. Post hoc Duncan's test showed significant difference between groups 1and 3 (P=0.008, groups 1 and 5 (P=0.019, groups 2 and 5 (P=0.0008, groups 4 and 5 (P=0.042, and groups 3 and 4 (P=0.018.Conclusion: Results of this study showed that the bond strength of amalgam to dentin using One Coat Bond as dentin adhesive system was higher than that observed in other dentin adhesive systems.

  6. Shear Bond Strength of Bracket Bases to Adhesives Based on Bracket Base Design

    Science.gov (United States)

    2016-04-13

    to the enamel surface. This latest and currently practiced technique of direct bonding of metal orthodontic brackets to natural teeth has been an...strength of the enamel (Retief 1975). Adhesion to teeth , accidental debonding of brackets, and damage to the enamel surface have motivated...interface. By keeping the cement- bracket bond failures below the critical 20-25 MPa, we can minimize enamel fracture. The morphology of the bracket

  7. Effects of the acetone content of single solution dentin bonding agents on the adhesive layer thickness and the microtensile bond strength.

    Science.gov (United States)

    Cho, Byeong-Hoon; Dickens, Sabine H

    2004-02-01

    This study investigated the hypothesis that varying the acetone content of single solution dentin bonding agents may affect the adhesive layer thickness and microtensile bond strength (MTBS) of the bonded complex, and explored whether the adhesive layer thickness is a valid predictor for MTBS. Experimental dentin bonding agents containing (27, 37, 47, 57, or 67) mass fraction% acetone were used to bond composite resin onto occlusal dentin surfaces of extracted human molars. The adhesive layer thickness was determined by digitized image analysis. MTBS was measured after 48 h. The fracture surfaces were observed using SEM. With increasing acetone content, MTBS varied from 38 MPa (67% acetone) to the highest MTBS of 64 MPa (37% acetone), while the adhesive layer thickness decreased linearly. Both dependent variables demonstrated moderate inverse correlation with the acetone content (p0.05). Ninety-four percent of the specimens showed fractures within the adhesive layer extending toward the interfaces with the hybrid layer or the composite resin. In the groups containing 57 and 67% acetone, cracks were observed at these interfaces. Rather than the adhesive layer thickness, interfacial cracks in specimens with acetone-rich bonding agents may have caused lower MTBS. Within the scope of this investigation, lower acetone concentrations, as could be anticipated from solvent evaporation during clinical use of the bonding agent, did not seem to lower MTBS, but rather improved the integrity of the dentin/adhesive bond.

  8. Effect of adhesion promoting monomer addition to MMA-TBBO resin on bonding to pure palladium.

    Science.gov (United States)

    Minami, Hiroyuki; Murahara, Sadaaki; Muraguchi, Koichi; Sakoguchi, Kenji; Suzuki, Shiro; Tanaka, Takuo

    2013-01-01

    This study evaluated the effects of combined use of metal primers and modified monomers on the bonding of MMA-TBBO resins to pure palladium (Pd). Bonding surface was polished with 600-grit silicon carbide paper and primed with one of these four metal primers: V-Primer, M. L. Primer, Metaltite, or Alloy Primer. Four monomers, including three modified ones, were added to MMATBBO resin. One was a methyl methacrylate monomer containing no adhesion promoting monomers, while the other two modified monomers contained the functional monomer of either V-Primer or Alloy Primer. Bonded specimens were prepared by incremental build-up of MMA-TBBO resin on primed Pd surfaces. Shear bond strengths were measured after thermal cycling. Bonding to Pd was significantly improved when modified monomer containing the functional monomer of Alloy Primer was used in combination with M. L. Primer or Metaltite applied on the bonding surface.

  9. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleema, N., E-mail: saleema.noormohammed@imi.cnrc-nrc.gc.ca [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), University of Quebec at Chicoutimi (UQAC), 555 Boulevard University East, Saguenay, Quebec G7H 2B1 (Canada); Paynter, R.W. [Institut National de la Recherche Scientifique Energie Materiaux Telecommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Gallant, D.; Eskandarian, M. [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. Black-Right-Pointing-Pointer Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. Black-Right-Pointing-Pointer Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. Black-Right-Pointing-Pointer Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure

  10. Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding

    Science.gov (United States)

    Dong, Xiaoqing; Li, Hao; Chen, Meng; Wang, Yong; Yu, Qingsong

    2015-01-01

    This study is to evaluate plasma treatment effects on dentin surfaces for improving self-etching adhesive and dentin interface bonding. Extracted unerupted human third molars were used after crown removal to expose dentin. One half of each dentin surface was treated with atmospheric non-thermal argon plasmas, while another half was untreated and used as the same tooth control. Self-etching adhesive and universal resin composite was applied to the dentin surfaces as directed. After restoration, the adhesive-dentin bonding strength was evaluated by micro-tensile bonding strength (μTBS) test. Bonding strength data was analyzed using histograms and Welch’s t-test based on unequal variances. μTBS test results showed that, with plasma treatment, the average μTBS value increased to 69.7±11.5 MPa as compared with the 57.1±17.5 MPa obtained from the untreated controls. After 2 months immersion of the restored teeth in 37 °C phosphate buffered saline (PBS), the adhesive-dentin bonding strengths of the plasma-treated specimens slightly decreased from 69.7±11.5 MPa to 63.9±14.4 MPa, while the strengths of the untreated specimens reduced from 57.1±17.5 MPa to 48.9±14.6 MPa. Water contact angle measurement and scanning electron microscopy (SEM) examination verified that plasma treatment followed by water rewetting could partially open dentin tubules, which could enhance adhesive penetration to form thicker hybrid layer and longer resin tags and consequently improve the adhesive/dentin interface quality. PMID:26273561

  11. Interface strength and degradation of adhesively bonded porous aluminum oxides

    DEFF Research Database (Denmark)

    T. Abrahami, Shoshan; M. M. de Kok, John; Gudla, Visweswara Chakravarthy

    2017-01-01

    studied with transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy to measureresin concentration within structurally different porous anodic oxide layers as a function of depth. Results show that there are twocritical morphological aspects for strong and durable bonding. First...

  12. Bond strength and cement-tooth interfacial characterization of self-adhesive composite cements.

    Science.gov (United States)

    Temel, U Burak; Van Ende, Annelies; Van Meerbeek, Bart; Ermis, R Banu

    2017-08-01

    (1) To determine the microtensile bond strength (µTBS) of self-adhesive (SA) composite cements to unetched/etched enamel and dentin, and (2) to characterize the cements' interaction with tooth tissue. 51 composite blocks were bonded to smear layer-covered enamel and dentin (three teeth per group). Four SA composite cements (Clearfil SA, G-CEM, RelyX Unicem, SmartCem2), and three multi-step composite cements, two used following an etch-and-rinse (E&R) approach (RelyX ARC, Variolink II 'E&R') and one used following a self-etch (SE) approach (Variolink II ' SE') were investigated. The cement-tooth specimens were perpendicularly sectioned into micro-specimens (1.0 × 1.0 mm) in order to measure the µTBS. The data were statistically analyzed by ANOVA followed by Tukey HSD (Pcomposite cements were applied to dentin free of a smear layer, regular and long resin tags were formed. No significant differences in bonding effectiveness were recorded for the self-adhesive composite cements when bonded to unetched/etched enamel and to dentin. Multi-step etch-and-rinse composite cements showed a better bonding effectiveness to enamel, although this could be approximated by the self-adhesive composite cements when enamel was acid-etched beforehand. On dentin, however, the bond strength of the etch-and-rinse composite cement RelyX ARC was superior.

  13. Association of different primers and resin cements for adhesive bonding to zirconia ceramics.

    Science.gov (United States)

    Maeda, Fernando Akio; Bello-Silva, Marina Stella; de Paula Eduardo, Carlos; Miranda Junior, Walter Gomes; Cesar, Paulo Francisco

    2014-06-01

    To evaluate the shear bond strength (SBS) to zirconia ceramics using different associations of primers and resin cements. Two blocks of LAVA zirconia (3Y-TZP) were randomly submitted to an application of three different commercially available primers: Alloy Primer (AP), Z-Prime Plus (ZP), and Signum Zirconia Bond (SZB). Nonprimed specimens were considered controls. After treatment, the 80 specimens (5 mm × 5 mm × 2 mm) were randomly cemented with one of the resin cements: Panavia F, Multilink, seT, and NX3. For cementation, cylinders of resin cement were built on the ceramic surfaces using the SDI SBS apparatus. The specimens were submitted to the SBS test. Fractured surfaces were observed under stereomicroscopy to determine the failure mode, and mean bond strength values were analyzed using the Kruskal-Wallis and Mann-Whitney tests (α = 0.05). Signum Zirconia Bond had the highest SBS compared to all other primers and the control group, regardless of the resin cement used. The highest values were obtained when associating Panavia F with Signum Zirconia Bond. Alloy Primer increased bonding values when associated with seT cement only. When no primer was used, no statistical difference was observed among resin cements. All specimens fractured due to adhesive failure. Signum Zirconia Bond is capable of increasing bonding values of resin cements to zirconia ceramics. Its association with Panavia F shows enhanced results when considering short-term adhesion to zirconia.

  14. Bond strength of one-step self-etch adhesives and their predecessors to ground versus unground enamel

    Science.gov (United States)

    Yazici, A. Ruya; Yildirim, Zeren; Ertan, Atila; Ozgunaltay, Gül; Dayangac, Berrin; Antonson, Sibel A; Antonson, Donald E

    2012-01-01

    Objective The aim of this study was to compare the shear bond strength of several self-etch adhesives to their two-step predecessors to ground and unground enamel. Methods: Seventy-five extracted, non-carious human third molar teeth were selected for this study. The buccal surfaces of each tooth were mechanically ground to obtain flat enamel surfaces (ground enamel), while the lingual surfaces were left intact (unground enamel). The teeth were randomly divided into five groups according to the adhesive systems (n=15): one-step self-etch adhesive - Clearfil S3 Bond, its two-step predecessor - Clearfil SE Bond, one-step self-etch adhesive - AdheSE One, and its two-step predecessor - AdheSE, and a two-step etch-and-rinse adhesive - Adper Single Bond 2(control). After application of the adhesives to the buccal and lingual enamel surfaces of each tooth, a cylindrical capsule filled with a hybrid composite resin (TPH) was seated against the surfaces. The specimens were stored in distilled water at 37°C for 24 hours, followed by thermocy-cling (5°C–55°C/500 cycles). They were subjected to shear bond strength test in a universal testing machine at a crosshead speed of 1.0 mm/minute. The data were compared using a two-way ANOVA, followed by Bonferroni test at Padhesives exhibited statistically similar bond strengths to ground and unground enamel except for the etch-and-rinse adhesive that showed significantly higher bond strengths than the self-etch adhesives (Padhesives tested (P=.17). Conclusion: Similar bond strengths to ground and unground enamel were achieved with one-step self-etch adhesives and their predecessors. Enamel preparation did not influence the bonding performance of the adhesives tested. PMID:22904656

  15. Bond strength of one-step self-etch adhesives and their predecessors to ground versus unground enamel.

    Science.gov (United States)

    Yazici, A Ruya; Yildirim, Zeren; Ertan, Atila; Ozgunaltay, Gül; Dayangac, Berrin; Antonson, Sibel A; Antonson, Donald E

    2012-07-01

    The aim of this study was to compare the shear bond strength of several self-etch adhesives to their two-step predecessors to ground and unground enamel. Seventy-five extracted, non-carious human third molar teeth were selected for this study. The buccal surfaces of each tooth were mechanically ground to obtain flat enamel surfaces (ground enamel), while the lingual surfaces were left intact (unground enamel). The teeth were randomly divided into five groups according to the adhesive systems (n=15): one-step self-etch adhesive - Clearfil S3 Bond, its two-step predecessor - Clearfil SE Bond, one-step self-etch adhesive - AdheSE One, and its two-step predecessor - AdheSE, and a two-step etch-and-rinse adhesive - Adper Single Bond 2(control). After application of the adhesives to the buccal and lingual enamel surfaces of each tooth, a cylindrical capsule filled with a hybrid composite resin (TPH) was seated against the surfaces. The specimens were stored in distilled water at 37°C for 24 hours, followed by thermocy-cling (5°C-55°C/500 cycles). They were subjected to shear bond strength test in a universal testing machine at a crosshead speed of 1.0 mm/minute. The data were compared using a two-way ANOVA, followed by Bonferroni test at Padhesives exhibited statistically similar bond strengths to ground and unground enamel except for the etch-and-rinse adhesive that showed significantly higher bond strengths than the self-etch adhesives (Padhesives tested (P=.17). Similar bond strengths to ground and unground enamel were achieved with one-step self-etch adhesives and their predecessors. Enamel preparation did not influence the bonding performance of the adhesives tested.

  16. An in vitro Evaluation of Shear Bond Strength of Adhesive Precoated Brackets

    Directory of Open Access Journals (Sweden)

    A S Sibi

    2014-01-01

    Full Text Available Newer materials have been introduced in the field of orthodontics to improve clinical efficacy as well as to simplify the technique. In an effort to reduce the time and steps to bond orthodontic attachments, adhesive precoated (APC brackets were introduced. In this study, an attempt is made to evaluate the shear bond strength (SBS and debonding behavior of APC brackets compared with uncoated ceramic brackets. A total of 60 human premolar teeth were divided into two groups of 30 each, bonded with APC ceramic brackets and uncoated ceramic brackets. Group I bonded with APC brackets as prescribed by the manufacturers and group II was bonded with conventional bonding using Turbobond. After bonding, sthe samples were kept in distilled water at 37°C for 24 hours and a universal testing mechine was used to apply an occlusal shear force at a speed of 0.5 mm/min. The shear bond strength of the groups was compared using Student t-test and the debonding behavior were compared using Mann-Whitney′s U test. Mean shear bond strength and standard deviation of the groups were group I - 9.09 ± 2.5 MPa and group II - 12.95 ± 2.81 MPa. There were significant differences in bond strength observed between the two groups. The debonding behavior showed an adhesive remnant index score of 0.90 ± 0.08 for group I and 1.10 ± 0.04 for group II, which indicates there is significant difference between each other. When considering the values required for optimum bond strength, APC brackets in this study showed adequate bond strength and could be used for routine clinical use.

  17. Effect of Self-etching Adhesives on the Bond Strength of Glass-Ionomer Cements.

    Science.gov (United States)

    Jaberi Ansari, Zahra; Panahandeh, Narges; Tabatabaei Shafiei, Zahra Sadat; Akbarzadeh Baghban, Alireza

    2014-11-01

    Adequate bond strength between glass ionomer cements and composite resin is necessary for the success of the sandwich technique. This study assessed the micro-shear bond strength of composite resin to glass-ionomer cements (GIC) using self-etch adhesives with different pH values. One hundred specimens (6×4×2 mm) were made using Fuji II and Fuji II LC GICs and treated with different adhesives as follows: Group 1:Fuji II+ Adper Prompt L-Pop, Group-2: Fuji II+SE bond, Group-3: Fuji II + AdheSE, Group-4:Fuji II+ Protect bond, Group-5: Fuji II + Single bond, Group-6:Fuji II LC+ Adper Prompt LPop, Group-7: Fuji II LC+SE bond, Group-8:Fuji II LC+ AdheSE, Group-9: Fuji II LC+ Protect bond, and Group-10: Fuji II LC+ Single bond. Each group consisted of 10 specimens. A cylinder of Z100 composite resin was placed on each sample and light cured. After 24 hours of water storage (37°C), the specimens were subjected to micro-shear bond strength tests (0.5 mm/min). Data were analyzed using two-way ANOVA and Tukey's test. The mean micro-shear bond strength of groups 1-10 was 11.66±1.79, 16.50±1.85, 18.47±1.77, 13.95±1.77, 15.27±1.49, 15.14±0.90, 20.03±1.19, 17.48±3.00, 16.24±1.98 and 16.03±1.49 MPa, respectively. There were significant differences between groups 1 and 7 (P0.05). Fuji II LC showed higher bond strength than Fuji II (Padhesive had no significant effect on micro-shear bond strength of glass-ionomer to composite resin. Resin modified glass ionomer cement (RMGIC) exhibited higher bond strength than the conventional GIC.

  18. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    Directory of Open Access Journals (Sweden)

    Minju Song

    2015-02-01

    Full Text Available Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001. All combinations with Xeno V (Dentsply De Trey and Clearfil S3 Bond (Kuraray Dental adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05. Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  19. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel

    Directory of Open Access Journals (Sweden)

    Mehdi Abed Kahnemooyi

    2014-12-01

    Full Text Available Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A‒D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultrastructural evaluation. Two-way ANOVA and Tukey test were used for data analysis at P<0.05. Results. The interaction between the adhesive system type and surface preparation protocol was significant (P=0.014, with significant differences in shear bond strengths in terms of the adhesive systems (P<0.01. There were significant differences in shear bond strength in terms of surface preparation techniques irrespective of the adhesive system (P<0.01. Conclusion. The results showed that bleaching with 35% hydrogen peroxide decreased the shear bond strength values with both adhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for 10 minutes restored the bond strength in both adhesive systems.

  20. Hydrogen bonds of a novel resin cement contribute to high adhesion strength to human dentin.

    Science.gov (United States)

    Wu, Wei-Che; Wang, Da-Ming; Lin, Yu-Chen; Dai, Chi-An; Cheng, Kuo-Chung; Hu, Mei-Shan; Lee, Bor-Shiunn

    2016-01-01

    The detachment of fiber posts from root canals is primarily caused by the loss of adhesion between dentin and cement; therefore, the purpose of this study was to formulate a novel resin cement that improves the bond strength of fiber posts to the dentin-cement interface. Three concentrations (30, 35, and 40wt.%) of bis[2-(methacryloyloxy)-ethyl] phosphate (2MP) were prepared as dentin bonding agent components. Isobornyl acrylate (IBOA) and ethylhexylacrylate (EHA) were used as key components to fabricate the resin cement (named IE cement). The adhesive strengths of IE cement to coronal and root canal dentin were tested after placement of specimens in a water bath at 100% humidity and 37°C for either 24h or 5 months. The microtensile bond test, the push-out bond test, and the fracture toughness test were performed. Four commercially available resin cements (Nexus(®) third generation (NX3), Variolink II, RelyX Unicem, and Panavia F 2.0) were used for comparisons. X-ray photoelectron spectroscopy (XPS) was used to analyze the interaction of collagen extracted from human dentin and 2MP as well as the fracture surfaces of the specimens submitted to the microtensile bond test. The 35% concentration of 2MP, in combination with IBOA and EHA, was the most effective for improving the IE cement's bond strength to dentin. The XPS results revealed that the phosphate groups of 2MP formed hydrogen bonds with the collagen and that such bonds prominently decreased in number in the specimens that were stored for 5 months. The combination of 2MP, IBOA, and EHA can effectively increase the adhesive strength of IE cement to dentin via hydrogen bond formation. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. The analysis of adhesively bonded advanced composite joints using joint finite elements

    Science.gov (United States)

    Stapleton, Scott E.

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  2. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  3. Effect of Repeated Container Lid Opening on Dentin Shear Bond Strength of Two Dentin Adhesive Systems

    Directory of Open Access Journals (Sweden)

    H. Hassanzadeh

    2008-03-01

    Full Text Available Objective: Comparing the effect of repeated opening of the container lid of two dentin adhesive systems, Prime&Bond NT (P&B NT and iBond (iB, on shear bond strength.Materials and Methods: Intact bovine lower incisors (n=60, fixed in acrylic were ran-domly divided into six groups (n=10. Groups I and II were set as control groups. P&B NT and iB were applied on the samples after five days a week, three times a day for two weeks of use in groups III and VI; and after four weeks of use in groups V and VI. The samples were evaluated by a universal testing-machine (Instron, cross-head speed 1mm/min and stereomicroscope.Results: There was no significant difference between the bond strengths in any of the three P&B NT. The mean amount of the shear bond strength for iB after 60 times of use (15.31 MPa was significantly lowerthan that at the baseline (23.51 MPa. There was no significant difference between iB at the baseline and after 30 times of use (19.26 Mpa, and also between iB after 30 times of use and after 60 times of use. All P&B NT groups showed significantly highershear bond strengths when compared with their similar iB groups in iB.Conclusion: Repeated use (60 times of the all-in-one adhesive container seems to reduce dentin shear bond strength. Therefore, containers with a lower content of the same adhe-sive or a single-dose of the adhesive are preferred.

  4. Development of design rules for adhesive bonded joints (Verfassung von Rechenregeln für Klebungen)

    NARCIS (Netherlands)

    Straalen, IJ.J. van

    2000-01-01

    This paper deals with the development of design rules for structural adhesive bonded joints. In daily practice engineers are confronted with the problem to verify the safety of their designs. Setting up an experimental programme can do this. For the marine, transport, building and civil engineering

  5. Effects of swelling forces on the durability of wood adhesive bonds

    Science.gov (United States)

    Blake M. Hofferber; Edward Kolodka; Rishawn Brandon; Robert J. Moon; Charles R. Frihart

    2006-01-01

    The purpose of this study was to investigate the role of wood swelling on performance of wood-adhesive bonds (resorcinol formaldehyde, epoxy, emulsion polymerisocyanate), for untreated and acetylated wood. Effects of these treatments on measured strain anisotropy and swelling stress were measured and then related to compressive shear strength and percentage wood...

  6. Cr(VI)-free pre-treatments for adhesive bonding of aerospace aluminium alloys

    NARCIS (Netherlands)

    Abrahami, S.T.

    2016-01-01

    For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminium for adhesively bonded aircraft structures in Europe. Unfortunately, this electrolyte contains hexavalent chromium (Cr(VI)), a compound known for its toxicity and

  7. Bonding Strength of Universal Adhesives To Er,Cr:YSGG Laser ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... However, their bonding effectiveness to laser-irradiated dentin is still not well known. Therefore, the aim of this ... Results: Two-way ANOVA revealed that adhesive had no effect on SBS (P >. 0.05), but application mode .... plexiglass mold was fixed on the surface, giving a cylindrical cavity 4 mm in height ...

  8. Microtensile bond strength of three simplified adhesive systems to caries-affected dentin

    NARCIS (Netherlands)

    Scholtanus, J.D.; Purwanta, K.; Dogan, N.; Kleverlaan, C.J.; Feilzer, A.J.

    2010-01-01

    Purpose: The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Materials and Methods: Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft

  9. The effect of different adhesives and setting times on bond strength between Biodentine and composite.

    Science.gov (United States)

    Çolak, Hakan; Tokay, Uğur; Uzgur, Recep; Uzgur, Zeynep; Ercan, Ertuğrul; Hamidi, Mehmet M

    2016-05-18

    The aim of this study was to evaluate the effects of 3 different adhesives with different functional monomers, on the shear bond strength (SBS) of Biodentine®. Acrylic blocks (n = 90) were prepared and a 2-mm height x 4-mm diameter hole was opened in each block. Every hole was completely restored with Biodentine®. Before preparation of composite restorations over the Biodentine® (2-mm height x 2-mm diameter), 3 different adhesives (Etch-37 (37%) w/BAC by Bisco & Prime Bond N&T, Clearfil S3 Bond and Adper Prompt L-Pop) were applied. SBS was evaluated using a universal testing machine, and failure mode for each sample was recorded. The results were statistically analyzed using 2-way ANOVA and post hoc Tukey test. When the megapascal values of all groups were compared, although there was no statistically significant difference in the different setting times (p>0.05), statistically significant differences were observed among all adhesive groups (p<0.05). Moreover, the highest SBS values were observed in the Clearfil S3 Bond group. Clinical performance of Biodentine® may be affected by adhesive procedures and its setting time.

  10. Strength and durability of one-part polyurethane adhesive bonds to wood

    Science.gov (United States)

    C. B. Vick; E. A. Okkonen

    1998-01-01

    One-part polyurethane wood adhesives comprise a new class of general purpose consumer products. Manufacturersa claims of waterproof bonds brought many inquiries to the Forest Products Laboratory (FPL) from users constructing aircraft, boats, lawn furniture, and other laminated materials for outdoor use. Although FPL has technical information on several types of...

  11. Microtensile Bond Strength of Three Simplified Adhesive Systems to Caries-affected Dentin

    NARCIS (Netherlands)

    Scholtanus, Johannes; Purwanta, Kenny; Dogan, Nilgun; Kleverlaan, Cees J.; Feilzer, Albert J.

    Purpose: The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Materials and Methods: Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft

  12. Adhesive groups and how they relate to the durability of bonded wood

    Science.gov (United States)

    Charles R. Frihart

    2009-01-01

    There is a need to develop models that evaluate the interaction of wood adhesives at the macroscopic level to explain observations on the durability of bonded wood laminate products with changing moisture conditions. This paper emphasizes a model that relates durability to strain on the bondline caused by wood swelling. The effect of this strain is discussed in...

  13. Does Adhesive Resin Application Contribute to Resin Bond Durability on Etched and Silanized Feldspathic Ceramic?

    NARCIS (Netherlands)

    Passos, Sheila Pestana; Valandro, Luiz Felipe; Amaral, Regina; Ozcan, Mutlu; Bottino, Marco Antonio; Kimpara, Estevao Tomomitsu

    2008-01-01

    Purpose: To assess the effect of adhesive application and aging on the bond durability of resin cement to etched and silanized feldspathic ceramic. Materials and Methods: Twenty blocks (6.4 x 6.4 x 4.8 mm) of feldspathic ceramic (Vita VM7) were produced. The ceramic surfaces were conditioned with

  14. Improved bond performance of a dental adhesive system using nano-technology.

    Science.gov (United States)

    Nagano, Futami; Selimovic, Denis; Noda, Mamoru; Ikeda, Takatsumi; Tanaka, Toru; Miyamoto, Yusei; Koshiro, Ken-Ichi; Sano, Hidehiko

    2009-01-01

    Since adhesive technology was introduced into dental field, metal-based restoration has been gradually replaced by metal-free restoration. Using the adhesive technology, minimum invasive technique has been possible in daily clinical practice as well as esthetic tooth-colored restorations have become very popular all over the world.One of the current issues of the dental adhesive is durability of bond between tooth structure and adhesive resin. Several approaches to overcome the issues have been carried out. Self-etching approach is believed to create durable bond because demineralization of superficial tooth surface is very shallow. Other approach is to utilize the inhibitor of enzymes which are suggested to catalyze the decomposition of resin composites and are always secreted within the oral environment.In the present study, Colloidal Platinum Nanoparticles (CPN) was applied before the application of 4-META/MMA-TBB resin cement as the third possibility to prolong the durability of bond. This implies that the use of the CPN solution would create higher conversion at the interface compared with conventional bonding procedures.

  15. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the

  16. Effect of universal adhesive etching modes on bond strength to dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; Brown, Matthew

    2017-09-26

    Information is lacking as to the effect on bond strength of the etching modes of universal adhesives when they are used to bond dual-polymerizing composite resins to dentin. The purpose of this in vitro study was to investigate the bonding of dual-polymerizing foundation composite resins to dentin when universal bonding agents are used in self-etch or etch-and-rinse modes. Sixty caries-free, extracted third molar teeth were sectioned transversely in the apical third of the crown and allocated to 12 groups (n=5). Three different bonding agents (Scotchbond Universal, OptiBond XTR, All-Bond Universal) were used to bond 2 different dual-polymerizing composite resins (CompCore AF or CoreFlo DC) to dentin, using 2 different etching approaches (etch-and-rinse or self-etch). The specimens were sectioned into sticks (1×1×8 mm) with a precision saw. The bond strength of the specimens was tested under microtensile force at a crosshead speed of 0.5 mm/min. The data were analyzed using a 3-way ANOVA, a Games-Howell post hoc comparisons model, and Student t tests with Bonferroni corrections (α=.05). In the overall model, the composite resin used had no effect on bond strength (P=.830). The etching protocol by itself also did not have a significant effect (P=.059), although a trend was present. The bonding agent, however, did have an effect (PUniversal (PUniversal (PUniversal was used, whereas with All-Bond Universal, an etch-and-rinse protocol, provided higher bond strength. When universal bonding agents were used to secure dual-polymerizing composite resins to dentin, no single etching protocol is better than another. Depending on which bonding agent is being used, one etching mode may perform better. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Fracture Mechanics for Structural Adhesive Bonds. Part 2

    Science.gov (United States)

    1978-08-01

    removed from our mailing list, or if the addressee is no longer employed by your organization please notify - WPAFB, OH 45433 to help us maintain a... ORGANIZATION NAME AND ADDRESS 10I. PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS LOCKHEED-CALIFORNIA COMPANY 4’ Burbank, California 91520...BONDLINE CRACK SCENTER OF BOND FATIGUE CRACK, VISUALLY OBSERVED *METAL-PRIME INTERFACE CRACK, VISUALLY OBSERVED PEELI CHEMICA MILIN Figure~~~~ 30 aiu rcso

  18. Bond Strength and Interfacial Morphology of Different Dentin Adhesives in Primary Teeth

    OpenAIRE

    Vashisth, Pallavi; Mittal, Mudit; Goswami, Mousumi; Chaudhary, Seema; Dwivedi, Swati

    2014-01-01

    Objective: To evaluate the interfacial morphology and the bond strength produced by the three-step, two-step and single-step bonding systems in primary teeth. Materials and Methods: Occlusal surfaces of 72 extracted human deciduous teeth were ground to expose the dentin. The teeth were divided into four groups: (a) Scotchbond Multipurpose (3M, ESPE), (b) Adh Se (Vivadent), (d) OptiBond All-in-One (Kerr) and (e)Futurabond NR (VOCO, Cuxhaven, Germany). The adhesives were applied to each group f...

  19. Comparative Shear-Bond Strength of Six Dental Self-Adhesive Resin Cements to Zirconia

    OpenAIRE

    Si-Eun Lee; Ji-Hyeon Bae; Jae-Won Choi; Yong-Chan Jeon; Chang-Mo Jeong; Mi-Jung Yoon; Jung-Bo Huh

    2015-01-01

    This study compared shear bond strength (SBS) of six self-adhesive resin cements (SARC) and one resin-modified glass ionomer cement (RMGIC) to zirconia before and after thermocycling. The cylinder shape (Φ 2.35 mm × 3 mm) of six SARCs (G-CEM LinkAce (GLA), Maxcem Elite (MAX), Clearfil SA Luting (CSL), PermaCem 2.0 (PM2), Rely-X U200 (RXU), Smartcem 2 (SC2)) were bonded to the top surface of the zirconia specimens with light-curing. RMGIC (Fujicem (FJC)) was bonded to the specimens with self-c...

  20. COMPOSITE RESIN BOND STRENGTH TO ETCHED DENTINWITH ONE SELF PRIMING ADHESIVE

    Directory of Open Access Journals (Sweden)

    P SAMIMI

    2002-09-01

    Full Text Available Introduction. The purpose of this study was to compare shear bond strength of composite resins to etched dentin in both dry and wet dentin surface with active and inactive application of a single-bottle adhesive resin (Single Bond, 3M Dental products. Methods. Fourthy four intact human extracted molars and premolars teeth were selected. The facial surfaces of the teeth were grounded with diamond bur to expose dentin. Then specimens were divided into four groups of 11 numbers (9 Molars and 2 Premolars. All the samples were etched with Phosphoric Acid Gel 35% and then rinsed for 10 seconds. The following stages were carried out for each group: Group I (Active-Dry: After rinsing, air drying of dentin surface for 15 seconds, active priming of adhesive resin for 15 seconds, air drying for 5 seconds, the adhesive resin layer was light cured for 10 seconds. Group III (Inactive-Dry:After rinsing, air drying of dentin surface for 15 seconds, adhesive resin was applied and air dryied for 5 seconds, the adhesive layer was light cured for 10 seconds. Group III (Active-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, active priming of adhesive resin for 15 seconds and air drying for 5 seconds, the adhesive layer was light cured for 10 seconds. Group IV (Inactive-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, the adhesive resin was applied and air dryied for 5 seconds and then cured for 10 seconds. After adhesive resin application, composite resin (Z250, 3M Dental products was applied on prepared surface with cylindrical molds (with internal diameter of 2.8mm, & height of 5mm and light-cured for 100 seconds (5x20s. The samples were then thermocycled. They were located in 6±3c water .temperature for 10 seconds and then 15 seconds in inviromental temperature, 10s in 55±3c water temperature and then were located at room temperature for 15s. This test was repeated for 100s. All of the specimens

  1. Optimisation of industrial production of low-force sensors - adhesive bonding of force-centring ball

    Science.gov (United States)

    Maeder, T.; Jacq, C.; Blot, M.; Ryser, P.

    2016-01-01

    This work addresses the issue of attaching the force-centring part (a round ball) to the load cell of a force sensor, a piezoresistive thick-film Wheatstone bridge deposited onto a ceramic cantilever. As the current soldering process requires expensive metallisation steps for both the ball and the cantilever, and subjects the solder pads used for mounting the cantilever to an additional reflow cycle, an alternative adhesive bonding process was developed, allowing both simpler production and the use of other ball materials such as ceramic and glass. The selfcentring action of solder capillary forces was ensured by structuring the adhesive so as to form a mechanical cuvette allowing centring of the ball by gravity. The selected adhesive materials exhibited good printability and bonding, as well as surviving the subsequent soldering and cleaning process steps.

  2. Physico-mechanical properties of plywood bonded with ecological adhesives from Acacia mollissima tannins and lignosulfonates

    Science.gov (United States)

    Rhazi, Naima; Oumam, Mina; Sesbou, Abdessadek; Hannache, Hassan; Charrier-El Bouhtoury, Fatima

    2017-06-01

    The objective of this research was to develop ecological adhesives for bonding plywood panels using lignosulfonates, a common waste product of the wood pulp industry, and natural tannin extracted from Moroccan bark of Acacia mollissima using different process. Natural tannin and lignin were used in wood adhesives formulation to substitute resins based on phenol and formaldehyde. To achieve this, the lignosulfonates were glyoxalated to enhance their reactivity and the used tannins obtained by three different extraction methods were compared with commercial mimosa tannin. The proportion of Acacia mollissima tannins and lignosulfonates, the pressing time, the pressing temperature, and the pressure used were studied to improve mechanical properties, and bonding quality of plywood panel. The properties of plywood panels produced with these adhesives were tested in accordance with normative tests. Thus, the tensile strength, and the shear strength were measured. The results showed that the performance of the plywood panels made using biobased tannin adhesives was influenced by physical conditions such as pressure, press temperature as well as by chemical conditions, such as the tannin-lignin ratio. It exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. This study showed that biobased adhesives formulations presented good and higher mechanical performance and no formaldehyde emission. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  3. The Effect of Epigallocatechin Gallate on the Dentin Bond Durability of Two Self-etch Adhesives.

    Science.gov (United States)

    Khamverdi, Zahra; Rezaei-Soufi, Loghman; Rostamzadeh, Tayebeh

    2015-06-01

    Self-etch adhesives can activate matrix metalloproteinase (MMP) which hydrolyzes organic matrix of demineralized dentin. Epigallocatechin gallate (EGCG), especially found in green tea, could inhibit the activation of MMP. The aim of this study was to evaluate the effect of adding Epigallocatechin gallate (EGCG) into two types of adhesives on dentin bond strength. In this experimental study, 64 extracted third molars were randomly divided into 16 groups. Clearfil SE Bond and Filtek Silorane System with 0 µM, 25µM, 50µM, and 100µM concentration of 95% EGCG were used for bonding. Following the bonding and fabrication of beams (1±0.1 mm(2)) and storage in distilled water, the specimens were subjected to thermal cycles. Microtensile bond strengths of 8 groups were examined after 24 hours and others were tested after 6 months. The fracture modes of specimens were evaluated by stereomicroscope and SEM. Data were analyzed by three-way ANOVA and t-test (α = 0.05). The results of the three- way ANOVA test showed that types of bonding, storage time and interactive effect of EGCG concentration and bonding influenced the bond strength of specimens significantly (padhesive and mixed/cohesive, respectively. The results of SEM at different magnifications showed that most fractures have occurred in the hybrid layer. Although adding 100 µM volume of EGCG to Clearfil SE Bond can preserve the dentin bond, incorporation of EGCG in the silorane system, especially in high concentrations, decreases the bond strength after 6 months.

  4. Effect of Nanofiller Addition to an Experimental Dentin Adhesive on Microtensile Bond Strength to Human Dentin

    Directory of Open Access Journals (Sweden)

    SH. Kasraei

    2009-06-01

    Full Text Available Objective: The purpose of the study was to evaluate the influence of adding nanofiller particles to a dentin bonding agent on resin-dentin bond strength.Materials and Methods: Fifty-four human intact premolar teeth were divided in to 6 groups of nine. The teeth were ground on occlusal surfaces and polished with 320 and then 600 grit silicon carbide papers. An experimental bonding system based on acetone/alcoholsolvent was provided with filler contents of 0.0, 0.5, 1.0, 2.5, 5.0, and 10.0 weight percent fumed silica nanofiller. After dentin surface etching, rinsing and blot drying, the experimentalbonding agents were applied to dentin surface. A composite resin was, then,bonded to the dentin on the bonding agent. The specimens were thermocycled for 500 cycles and sectioned in stick form. After two week of storage in distilled water, resin-dentin microtensile bond strength of the specimens was measured. Data were analyzed by one way ANOVA and DunnettT3 tests.Results: Bond strength to dentin was significantly affected by the filler level. Minimum and maximum resin-microtensile bond strength was in the experimental bonding agent with no filler (5.88 MPa and with filler level of 1.0 weight percent (15.15 MPa, respectively,and decreased with the increase of filler content down to 8.95 MPa for the filler level of 10.0 weight percent.Conclusion: Filler content seems to be one of the important factors influencing the bond strength of dental adhesives. Maximum dentin bond strength was obtained with 1% silanized nanofiller silica added to experimental adhesive system.

  5. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    OpenAIRE

    Minju Song; Yooseok Shin; Jeong-Won Park; Byoung-Duck Roh

    2015-01-01

    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wi...

  6. Bond strength of composite to dentin using conventional, one-step, and self-etching adhesive systems.

    Science.gov (United States)

    Bouillaguet, S; Gysi, P; Wataha, J C; Ciucchi, B; Cattani, M; Godin, C; Meyer, J M

    2001-01-01

    This in vitro study compared the dentin bonding performance of eight adhesive systems using a microtensile bond strength test. Thirty bovine teeth were ground to 600-grit to obtain flat root-dentin surfaces. Two conventional adhesive systems (Scotchbond Multipurpose Plus, OptiBond FL), four one-step adhesive systems (Scotchbond 1, Asba S.A.C., Prime and Bond NT, Excite) and two self-etching adhesive materials (Clearfil Liner Bond 2 V and Prompt L-Pop) were evaluated. Each bonding system was applied according to manufacturer's instructions and followed by composite (Z100) application. Immediately after bonding, the teeth were prepared for microtensile testing. Bond strength to dentin was measured using a Vitrodyne V-1000 universal tester. There were 14 replicates for each material. Fractured specimens were further observed by SEM. Scotchbond Multipurpose Plus exhibited significantly (p<0.05) higher bond strength values (30.3+/-9.4 MPa) than all other materials. The bond strengths of the other materials were (from highest to lowest): Opitbond FL (22.4+/-4.3 MPa); Scotchbond 1(18.9+/-3.2); Clearfil Liner Bond 2 V (18.9+/-3.0); Prime and Bond NT (18.3+/-6.9); Asba S.A.C. (14.4+/-2.9); Excite (13.8+/-3.7); and Prompt L-Pop (9.1+/-3.3). Statistical comparisons frequently overlapped, but Optibond was significantly (p<0.05) greater than Asba, Excite, and Prompt L-Pop; whereas, Scotchbond 1 was only significantly (p<0.05) greater than Prompt L-Pop. Asba, Excite and Prompt L-Pop were not significantly different. The fracture modes were mostly adhesive. The conventional adhesive systems produced higher bond strengths to root dentin than most one-step adhesives and one self-etching adhesive; with the exception of one material in each respective system.

  7. Comparative Evaluation of shear Bond Strength of universal Dental Adhesives -An in vitro study.

    Science.gov (United States)

    Jayasheel, Arun; Niranjan, Nandini; Pamidi, Hemanthkumar; Suryakanth, Mayuri B

    2017-07-01

    Patient demand for tooth colored restorations and desire for minimally invasive restorations have made composites an indispensable part of the restorative process. An important factor affecting the intra-oral performance of composite restorations is bonding. Ninty six freshly extracted molar teeth were collected and occlusal 3mm is removed using a diamond disc to expose dentine. Following with samples were divided in to two main groups (self-etch & total etch). Each main group is again sub divided in to three groups each according to bonding agent used (Tetric N- Bond Universal, Single Bond Universal, Tetric N Bond Total etch in total etch group and Clear Fill SE in self etch group). Following which bonding protocol is followed according to manufacture instructions, a composite buildup of 2x3 mm is done on each specimen and then specimen were subjected to shear bond test under universal testing machine. All the readings were noted and subjected to statistical analysis using One way ANOVA and Tukey's posthoc test. It showed that there is no significant difference among the groups in both self-etch and total etch modes. It can be concluded that application of an etching step prior to Universal Adhesives significantly improves their dentine penetration pattern, although this does not affect their mean SBS. The bond strength values of the TBU regardless of application mode were comparable to SBU making them reliable for working under different clinical conditions. Key words:Dentine bonding agents, self-etch mode, total etch mode, shear bond strength.

  8. Cuspal deflection and cervical microleakage scores to determine the adhesive potential of universal bonding systems.

    Science.gov (United States)

    Kearns, Jennifer O; Barry, John G; Fleming, Garry J P

    2014-08-01

    To assess the adhesive performance of three universal bonding systems (self-etch and total-etch protocols) with cuspal deflection and cervical microleakage score. Fifty-six standardised sound maxillary premolar teeth with uniform mesio-occlusal-distal (MOD) cavities were randomly allocated to six groups. Restoration with resin-based composite (RBC) was performed in conjunction with a universal bonding system facilitated by a quartz-tungsten-halogen light-curing-unit. The dependent variable was the universal bonding protocol (self-etch or total-etch). Buccal and palatal cuspal deflections were recorded at 0, 30, 60 and 180s post-irradiation using a twin channel deflection measuring gauge. Following restoration, the teeth subjected to 500 thermocycles, immersed in a 0.2% basic fuchsin dye for 24h, sectioned and examined for cervical microleakage. Comparing between bonding protocol (self-etch or total-etch), a decrease in total cuspal deflection and a concomitant increase in cervical microleakage were evident when employing the total-etch compared with the self-etch protocol for two of the three universal dental adhesives. The 'Adhesion-Decalcification concept' suggests a trend towards 'mild self-etch' adhesives. Differences in adhesive performance (cuspal deflection and cervical microleakage) between the teeth restored using the self-etch or total-etch protocols is suggested to be a result of the pH of the self-etch solutions. 'Mild self-etch' (pH∼2.0) adhesives out-performed ultra-mild (pH>2.5) or strong (pHadhesives could be identified using the cuspal deflection and cervical microleakage protocol reported which could save the complications encountered clinically with Class II RBC restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Influence of a hydrophobic resin coating on the bonding efficacy of three universal adhesives.

    Science.gov (United States)

    Muñoz, Miguel Angel; Sezinando, Ana; Luque-Martinez, Issis; Szesz, Anna Luiza; Reis, Alessandra; Loguercio, Alessandro D; Bombarda, Nara Hellen; Perdigão, Jorge

    2014-05-01

    To evaluate the effect of an additional hydrophobic resin coating (HE) on the resin-dentine microtensile bond strengths (μTBS), nanoleakage (NL), and in situ degree of conversion (DC) of three universal adhesives used in the etch-and-rinse (ER) and the self-etch (SE) modes. Sixty caries-free extracted third molars were divided into 12 groups according to the combination of the factors adhesive (All-Bond Universal [ABU]; G-Bond Plus [GBP] and Scotchbond Universal [SBU]), adhesive strategy (ER and SE), and the use of HE (Heliobond; yes or no). After restorations were constructed, specimens were stored in water (37°C/24h) and sectioned into resin-dentine beams (0.8mm(2)) to be tested under tension (0.5mm/min). Selected beams from each tooth were used for DC quantification and for NL evaluation. Data from each adhesive were analyzed with two-way ANOVA and Tukey's test (α=0.05). ABU and GBP resulted in higher μTBS in the ER mode. The use of HE increased the μTBS of ABU and GBP only in the SE mode. Lower NL was observed for SBU and ABU in the ER mode+HE, and for GBP in the SE mode+HE. SBU and GBP showed higher DC when used in the ER mode, which was increased with HE application. The DC of ABU was similar in all conditions. The conversion of 1-step SE to 2-step SE may increase the μTBS and DC of current universal adhesives. The reduction in the NL is more dependent on the adhesive composition than on the bonding strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    Directory of Open Access Journals (Sweden)

    Fernanda de Souza Henkin

    Full Text Available ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM. Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM to 9.871 ± 5.106 MPa (TecnidentTM. The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface.

  11. Effect of cleaning methods on bond strength of self-etching adhesive to dentin.

    Science.gov (United States)

    Bronzato, Juliana Delatorre; Cecchin, Doglas; Miyagaki, Daniela Cristina; de Almeida, José Flávio Affonso; Ferraz, Caio Cezar Randi

    2016-01-01

    The aim of this study was to investigate the influence of cleaning methods to remove zinc oxide-eugenol-based root canal sealer (Endomethasone) on the bond strength of the self-etching adhesive to dentin. Twenty crowns of bovine incisors were cut to expose the pulp chamber. A zinc oxide- and eugenol-based sealer was placed for 10 min in contact with the pulp chamber dentin. Specimens were divided into four groups according to the cleaning method of dentin used: G1, no root canal sealer (control); G2, 0.9% sodium chlorite (NaCl); G3, ethanol; and G4, followed by diamond drill. After cleaning, the teeth were restored with composite resin and Clearfil SE Bond. All specimens were sectioned to produce rectangular sticks and dentin/resin interface was submitted to microtensile bond testing. The mean bond strengths were analyzed using ANOVA/Tukey (α = 0.05). G3 and G4 showed bond strengths similar to the G1 (P > 0.05). A significant decrease in the bond strength in the G2 was observed (P bond strength of the self-etching adhesive to dentin differently.

  12. Comparative Shear-Bond Strength of Six Dental Self-Adhesive Resin Cements to Zirconia

    Science.gov (United States)

    Lee, Si-Eun; Bae, Ji-Hyeon; Choi, Jae-Won; Jeon, Yong-Chan; Jeong, Chang-Mo; Yoon, Mi-Jung; Huh, Jung-Bo

    2015-01-01

    This study compared shear bond strength (SBS) of six self-adhesive resin cements (SARC) and one resin-modified glass ionomer cement (RMGIC) to zirconia before and after thermocycling. The cylinder shape (Φ 2.35 mm × 3 mm) of six SARCs (G-CEM LinkAce (GLA), Maxcem Elite (MAX), Clearfil SA Luting (CSL), PermaCem 2.0 (PM2), Rely-X U200 (RXU), Smartcem 2 (SC2)) were bonded to the top surface of the zirconia specimens with light-curing. RMGIC (Fujicem (FJC)) was bonded to the specimens with self-curing. The shear bond strength of all cemented specimens was measured with universal testing machine. Half of the specimens were thermocycled 5000 times before shear bonding strength testing. Fractured surfaces were examined with a field-emission SEM (10,000×) and analyzed by energy dispersive x-ray analysis. MAX, PM2, SC2 group without thermocycling and GLA, MAX, PM2 group with thermocycling showed adhesive failure, but GLA, CSL, RXU, FJC group without thermocycling and SLC, RXU, SC2, FJC group with thermocycling indicated cohesive failure. Within the limitation of this study, All of SARCs except MAX demonstrated higher bond strength than that of RMGIC regardless of thermocycling. Also, SARC containing MDP monomers (CSL) retained better bonds than other cements.

  13. Comparative Shear-Bond Strength of Six Dental Self-Adhesive Resin Cements to Zirconia

    Directory of Open Access Journals (Sweden)

    Si-Eun Lee

    2015-06-01

    Full Text Available This study compared shear bond strength (SBS of six self-adhesive resin cements (SARC and one resin-modified glass ionomer cement (RMGIC to zirconia before and after thermocycling. The cylinder shape (Φ 2.35 mm × 3 mm of six SARCs (G-CEM LinkAce (GLA, Maxcem Elite (MAX, Clearfil SA Luting (CSL, PermaCem 2.0 (PM2, Rely-X U200 (RXU, Smartcem 2 (SC2 were bonded to the top surface of the zirconia specimens with light-curing. RMGIC (Fujicem (FJC was bonded to the specimens with self-curing. The shear bond strength of all cemented specimens was measured with universal testing machine. Half of the specimens were thermocycled 5000 times before shear bonding strength testing. Fractured surfaces were examined with a field-emission SEM (10,000× and analyzed by energy dispersive x-ray analysis. MAX, PM2, SC2 group without thermocycling and GLA, MAX, PM2 group with thermocycling showed adhesive failure, but GLA, CSL, RXU, FJC group without thermocycling and SLC, RXU, SC2, FJC group with thermocycling indicated cohesive failure. Within the limitation of this study, All of SARCs except MAX demonstrated higher bond strength than that of RMGIC regardless of thermocycling. Also, SARC containing MDP monomers (CSL retained better bonds than other cements.

  14. Shear bond strength of self-adhesive resin cements to base metal alloy.

    Science.gov (United States)

    Hattar, Susan; Hatamleh, Muhanad; Khraisat, Ameen; Al-Rabab'ah, Mohammad

    2014-05-01

    Many self-adhesive cements have been introduced in the past few years, with little or no data regarding their clinical performance. This study investigated the shear bond strength of some recently introduced self-adhesive resin cements. The purpose of this study was to evaluate the shear bond strength of self-adhesive and conventional resin-based cements to a base metal alloy. Four groups (10-12 each) that comprised 3 self-adhesive cements (SmartCem2; RelyX Unicem; seT SDI) and a conventional resin-based cement (RelyX ARC) were tested. Cylindrical cement specimens (diameter, 3 mm; height, 3 mm) were applied to nickel-free base metal alloy (Sheradent) disks with a diameter of 12 mm, and the surface was treated with airborne-particle abrasion of 50 μm aluminum oxide. The metal disks were fixed in brass molds specifically designed for the shear bond test device. Test specimens were incubated at 37°C for 24 hours and then the shear bond was tested with a Zwick Roll testing machine at a 0.8 mm/min cross-head speed. In addition, bond failures were investigated and categorized as adhesive, cohesive, or mixed. Shear bond strengths were calculated by dividing the maximum debonding force over the cross-sectional area of each specimen. One-way ANOVA and the Tukey (honestly significant difference) post hoc test were used to test statistical significant differences among the groups (α=.05). Statistical analysis showed significant differences among different resin cements (F=14.34, Padhesive in nature, which occurred at the resin-metal interface. The early bond strength of self-adhesive resin cements varied significantly among the tested materials. SmartCem2 showed the highest bond strength, which was 4 times the strength observed for seT SDI. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Shear bond strength between feldspathic CAD/CAM ceramic and human dentine for two adhesive cements.

    Science.gov (United States)

    Graiff, Lorenzo; Piovan, Caterina; Vigolo, Paolo; Mason, Pier Nicola

    2008-06-01

    The purpose of this study was to evaluate the shear bond strength values between dentin substrate and a feldspathic ceramic material, based on computer-assisted design and manufacture (CAD/CAM) technology, bonded together with two adhesive systems coupled with two dual-polymerized luting agents. In addition, the effect of a silane coupling agent on bond strength was evaluated. Forty cylinders (6 mm in diameter, 5 mm thick) obtained from feldspathic ceramic blocks were cemented to the dentin of 40 recently extracted human teeth stored in saline solution at room temperature until testing. The specimens were randomly divided into four groups of ten teeth each. All specimens were airborne-particle abraded and etched with hydrofluoric acid. In the first two groups (A1, A2) 20 ceramic cylinders were cemented using Excite DSC and Variolink II; in the A2 group the bonding surfaces were also treated with a silane coupling agent. In Groups B1 and B2, 20 ceramic cylinders were cemented using Scotchbond MPP and RelyX ARC; in the B2 group the bonding surfaces were also treated with a silane coupling agent as in Group A2. All cemented specimens were submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin and ceramic. The data were analyzed with two-way analysis of variance (p Variolink II without silanization (Group A1); 29 +/- 3 for Excite DSC/Variolink II with silanization (Group A2); 22 +/- 4 for Scotchbond MPP/RelyX ARC without silanization (Group B1); and 26 +/- 5 for Scotchbond MPP/RelyX ARC with silanization (Group B2). Two-way ANOVA revealed a significant effect of silanization (p 0.1) or the interaction between silanization and bonding agent (p > 0.05). Multinomial logit model did not show any statistical effects on the failure mode by the shear bond strength (p > 0.1). The hypotheses of independence between failure mode (cohesive vs. adhesive) and both the adhesive system (p adhesion strength with both adhesive

  16. Shear bond strength of one-step self-etch adhesives to enamel: effect of acid pretreatment.

    Science.gov (United States)

    Poggio, Claudio; Scribante, Andrea; Della Zoppa, Federica; Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco

    2014-02-01

    The purposes of this study were to evaluate the effect of surface pretreatment with phosphoric acid on the enamel bond strength of four-one-step self-etch adhesives with different pH values. One hundred bovine permanent mandibular incisors were used. The materials used in this study included four-one-step self-etch adhesives with different pH values: Adper(™) Easy Bond Self-Etch Adhesive (ph = 0,8-1), Futurabond NR (ph = 1,4), G-aenial Bond (ph = 1,5), Clearfil(3) S Bond (ph = 2,7). One two-step self-etch adhesive (Clearfil SE Bond/ph = 0,8-1) was used as control. The teeth were assigned into two subgroups according to bonding procedure. In the first subgroup (n = 50), no pretreatment agent was applied. In the second subgroup (n = 50), etching was performed using 37% phosphoric acid for 30 s. After adhesive systems application, a nanohybrid composite resin was inserted into the enamel surface. The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA). After the testing procedure, the fractured surfaces were examined with an optical microscope at a magnification of 10× to determine failure modes. The adhesive remnant index (ARI) was used to assess the amount of adhesive left on the enamel surface. Descriptive statistics of the shear bond strength and frequency distribution of ARI scores were calculated. Enamel pretreatment with phosphoric acid significantly increased bond strength values of all the adhesives tested. No significant differences in bond strength were detected among the four different one-step self-etch adhesives with different pH. Two-step self-etch adhesive showed the highest bond strength. © 2013 John Wiley & Sons A/S.

  17. Composite shear bond strength to dry and wet enamel with three self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Shafiee F

    2006-01-01

    Full Text Available Background and Aim: The bonding mechanisms of self etching primers, based upon the simultaneous etching and priming of dentin, simplifies the bonding technique, but the efficiency of these systems is still controversial. This study compared the shear bond strength of three self etch adhesive systems in dry and wet conditions. Materials and Method: In this experimental study, 77 intact bovine lower incisors with flat 600 grit sanded enamel surface were fixed in acrylic molds and divided into 7 groups, of 11 teeth. The enamel surfaces were treated according to a special procedure as follows: Group 1: Prompt L-Pop (PLP in dry condition, Group 2: Prompt L-Pop in wet condition, Group 3: Clearfield SE Bond (CSEB in dry condition, Group 4: Clearfield SE Bond in wet condition, Group 5: iBond (iB in dry condition, Group 6: iBond in wet condition, Group 7: Margin Bond (Control in dry condition. Surfaces were air dried for ten seconds, or blot dried in wet condition. Composite resin was bonded on the enamel and built up by applying a cylindric teflon split mold (4 mm height 2mm diameter. After 24 hours storage in dionized water at room temperature, all specimens were thermocycled and shear bond test was employed by a universal testing machine (Instron with a cross-head speed of 1mm/min. The shear bond strength was recorded in MPa and data were analyzed with ANOVA and Scheffe statistical tests. P<0.05 was considered as statistically significant. The mode of failure was examined under a stereomicroscope. Results: 1- Shear bond strength of CSEB in dry condition (21.5 ± 4.8 MPa was significantly higher than PLP and iB groups (p<0.0001. 2- Shear bond strength of iB and PLP groups in dry condition (9.60 ± 2.2, 9.49 ± 3 MPa were significantly lower than CSEB and control (2.99 ± 5.1 MPa (P<0.0001. 3- There was no significant difference between PLP and iB groups in dry condition (P=1. 4- Shear bond strength of CSEB in wet condition (21.8 ± 3 MPa was

  18. Long-term bond strength of adhesive systems applied to etched and deproteinized dentin

    Directory of Open Access Journals (Sweden)

    Ninoshka Uceda-Gómez

    2007-12-01

    Full Text Available The aim of this study was to evaluate the early and 12-month bond strength of two adhesive systems (Single Bond-SB and One Step-OS applied to demineralized dentin (WH and demineralized/NaOCl-treated dentin (H. Twenty flat dentin surfaces were exposed, etched, rinsed and slightly dried. For the H groups, a solution of 10% NaOCl was applied for 60 s, rinsed (15 s and slightly dried. The adhesives were applied according to the manufacturer's instructions and composite resin crowns were incrementally constructed. After 24 h (water-37ºC, the specimens was sectioned in order to obtain resin-dentin sticks (0.8 mm². The specimens were tested in microtensile (0.5 mm/min immediately (IM or after 12 months of water storage (12M. The data (MPa were subjected to ANOVA and Tukey's test (a=0.05. Only the main factors adhesive and time were significant (p=0.004 and p=0.003, respectively. SB (42.3±9.1 showed higher bond strengths than OS (33.6±11.6. The mean bond strength for IM-group (42.5±8.7 was statistically superior to 12M (33.3±11.8. The use of 10% NaOCl, after acid etching, did not improve the immediate and the long-term resin-dentin bond strength.

  19. Effect of oxalate desensitizer on the bonding durability of adhesive resin cements to dentin.

    Science.gov (United States)

    Shafiei, Fereshteh; Memarpour, Mahtab; Doozandeh, Maryam

    2012-07-01

    This study investigated whether the tubular occluding effect of oxalate desensitizer (OX) during adhesive cementation improved bonding of a self-etch and two etch-and-rinse resin cements to dentin after 6 months. A flat dentin surface was prepared on 120 extracted premolars, which were randomly divided into six groups of 20 teeth each according to the adhesive resin cement system used: ED primer II/Panavia F2.0, Excite DSC (Ex DSC)/Variolink II, and One-Step Plus (OS Plus)/Duolink, with or without OX (BisBlock) application. After cementation of an indirect composite rod, two subgroups (n=10) were tested after 24 h and 6 months of water storage plus thermocycling, and shear bond strengths were recorded in MPa. Statistical tests showed that although oxalate had a borderline significant negative effect on initial bonding of ED primer II/Panavia F2.0, it significantly improved bonding durability (p0.05). Combining an oxalate desensitizer with three types of resin cements had different effects on bond strength to dentin after aging, depending on the interaction of oxalate with the adhesive system associated to the resin cement. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  20. Influence of fluoride-containing adhesives and bleaching agents on enamel bond strength

    Directory of Open Access Journals (Sweden)

    Vanessa Cavalli

    2012-12-01

    Full Text Available This study evaluated the influence of fluoride-containing carbamide peroxide (CP bleaching agents and adhesive systems on bonded enamel interfaces that are part of the dynamic pH cycling and thermal cycling models. The buccal surfaces of 60 bovine incisors were restored with a composite resin and bonded with three- and two-step, etch-and-rinse, fluoride-containing adhesives, Optibond FL (FL and Optibond Solo Plus (SP, respectively. Restored teeth were subjected to thermal cycling to age the interface. Both SP and FL adhesive-restored teeth were bleached (n = 10 with 10% CP (CP and 10% CP + fluoride (CPF or were left unbleached (control. Bleaching was performed for 14 days simultaneously with pH cycling, which comprised of 14 h of remineralization, 2 h of demineralization and 8 h of bleaching. The control groups (FL and SP were stored in remineralizing solution during their bleaching periods and were also subjected to carious lesion formation. Parallelepiped-shaped samples were obtained from the bonded interface for microtensile bond strength (∝TBS testing. The enamel ∝TBS of the FL and SP groups (control, not bleached were higher (p FL + CPF = FL + CP and SP > SP + CPF = SP + CP. The groups subjected to treatment with the fluoride-containing bleaching agents exhibited similar ∝TBS compared to regular bleaching agents. Bleaching agents, regardless of whether they contained fluoride, decreased enamel bond strength.

  1. Effects of sonic application of adhesive systems on bonding fiber posts to root canals.

    Science.gov (United States)

    Cuadros-Sanchez, Johanna; Szesz, Anna; Hass, Viviane; Patzlaff, Rafael Tiago; Reis, Alessandra; Loguercio, Alessandro D

    2014-08-01

    Luting posts inside the root canal is still a challenge because of the difficulty of bonding adhesive materials in the apical third of roots. This study evaluated the effect of the application mode of 3 simplified etch-and-rinse adhesives on the push-out bond strength (PBS), nanoleakage (NL), and in situ degree of conversion (DC) of fiber posts in the root canal. The roots of human premolars were endodontically prepared and divided into 6 groups according to the combination of the main factors: adhesive (Ambar, FGM, Joinville, SC, Brazil; Adper Single Bond 2, 3MESPE, St Paul, MN; and XP Bond+self-cure activator, DeTrey Dentsply, Konstanz, Germany) and application mode (manual or sonic). The posts were cemented and the PBS tested at 0.5 mm/min. The NL was evaluated by scanning electron microscopy after the immersion of specimens in 50% silver nitrate. Micro-Raman spectroscopy was used to measure the in situ DC. Root third was also considered in the statistical evaluation. Data were analyzed by 3-way repeated measures analysis of variance and Tukey tests (5%). Under sonic application, the PBS and the in situ DC increased, whereas NL decreased significantly for all groups in the middle and apical thirds (P fiber post bond to root canals. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. The effect of double-coating and times on the immediate and 6-month dentin bonding of universal adhesives.

    Science.gov (United States)

    Pashaev, Diial; Demirci, Mustafa; Tekçe, Neslihan; Tuncer, Safa; Baydemir, Canan

    2017-01-01

    The purpose of this study was to evaluate the effect of double-application coats and times on microtensile bond strength (μTBS) and adhesive-dentin interfaces created by dentin adhesive systems after 6 months of storage in water. Two-hundred sixteen extracted non-carious human third molars were selected for the study. Single-Bond Universal (SU) and All-Bond Universal (AU), Adper Easy One (Eo) Self-Etch adhesive and Adper Single-Bond 2 (Sb) etch-and-rinse adhesive were applied to a flat dentin surface using three methods (1): dentin adhesives were applied as recommended by the manufacturers; (2): two consecutive coats of dentin adhesives were applied before photo-polymerization; and (3): a single coat of adhesive was applied but with twice the manufacturers recommended application time. Microtensile bond strength was determined either immediately or after 6 months of water storage. Data were analyzed using one-way analysis of variance and Tukey's post-hoc tests. At 24 h, groups 1, 2, and 3 exhibited statistically similar results for all dentin adhesive systems. For AU-Er, group 3 showed significantly higher bond strength than all group of AU-Se after 6 months. Universal adhesives seemed more stable against water degradation than traditional two-step etch-and-rinse and all-in-one systems within the 6-month period.

  3. The bond strength of different tray adhesives on vinyl polysiloxane to two tray materials: an in vitro study.

    Science.gov (United States)

    Ashwini, B L; Manjunath, S; Mathew, K Xavier

    2014-03-01

    There has been no established chemical bonding between custom tray resin and the elastomeric impression materials without the use of manufacturer's recommended specific tray adhesive. The present study was aimed to compare the bond strength of the manufacturer recommended tray adhesives with the universal tray adhesives using the medium body consistency vinyl polysiloxane (VPS) material and custom tray made of autopolymerising resin and visible light cure (VLC) resin. A total 90 cubicle specimens of autopolymerising resin and 90 specimens of VLC resin were tested for its tensile bond strength. Effectiveness of universal tray adhesive was compared with manufactured tray adhesive. Each of these specimens was then subjected to tensile load in hounsefield universal testing machine at a cross head speed of 5 mm/min and the results were compared and evaluated using one way analysis of variance and post hoc Tuckey's test. Analysis of bond strength revealed that the universal tray adhesive showed better strength and was statiscally significant when compared to the manufacture supplied tray adhesive. Comparison between both the groups, VLC resin showed better bond strength as compared to autopolymerizing resin. Universal tray adhesive had better tensile bond strength than the manufacturers recommended tray adhesive with the medium body viscosity VPS impression material for both autopolymerising and VLC tray resin.

  4. Effect of bond thickness on fracture and fatigue strength of adhesively bonded composite joints

    Science.gov (United States)

    Mall, S.; Ramamurthy, G.

    1989-01-01

    An experimental investigation of composite to composite bonded joints was undertaken to study the effect of bond thickness on debond growth rate under cyclic loading and critical strain energy release rate under static loading. Double cantilever beam specimens of graphite/epoxy adherends bonded with EC 3445 were tested under mode I loading. A different behavior of fracture and fatigue strength was observed with variation of bondline thickness.

  5. Influence of dentin contamination by temporary cements on the bond strength of adhesive systems

    Directory of Open Access Journals (Sweden)

    Josimeri Hebling

    2009-01-01

    Full Text Available Objective: The aim of this study was to assess the bond strength of adhesive systems to dentin contaminated by temporary cements with or without eugenol. Method: Flat dentin surfaces were obtained from twenty-four human third molars. With exception of the control group (n=8, the surfaces were covered with Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA or Cavit (3M ESPE, St. Paul, MN, USA and kept in an oven at 37oC for seven days. After removing the cements, the adhesive systems Adper Single Bond (3M ESPE, St. Paul, MN, USA or Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan were applied in accordance with the manufacturers’ recommendations, and then the crowns were constructed in of resin composite. The teeth were sectioned into specimens with a cross-sectional bond area of 0.81mm2, which were sub mitted to microtensile testing in a mechanical test machine at an actuator speed of 0.5mm/min. The data were analyzed by t- and ANOVA tests, complemented by Tukey tests (α=0.05. Results: For Adper Single Bond (3M ESPE, St. Paul, MN, USA, bond strength did not differ statistically (p>0.05 for all the experimental conditions. For Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan, only the Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA Group showed significantly lower bond strength (30.1±13.8 MPa in comparison with the other groups; control (38.9±13.5 MPa and Cavit (3M ESPE, St. Paul, MN, USA (42.1±11.0 MPa, which showed no significant difference between them.Conclusion: It was concluded that the previous covering of dentin with temporary cement containing eugenol had a deleterious effect on the adhesive performance of the self-etching system only.

  6. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    Science.gov (United States)

    2015-01-01

    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations. PMID:25671210

  7. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength.

    Science.gov (United States)

    Song, Minju; Shin, Yooseok; Park, Jeong-Won; Roh, Byoung-Duck

    2015-02-01

    This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  8. Effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.

    Science.gov (United States)

    Hu, Lin; Xiao, Yu-hong; Fang, Ming; Gao, Yu; Huang, Li; Jia, An-qi; Chen, Ji-hua

    2015-01-01

    This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding. Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by calculating their Pearson's correlation coefficient. Aging induced time-dependent reduction in micro-tensile bond strengths for all the tested adhesive systems, although such reduction for the single-step self-etching adhesive G-Bond (GB) was not statistically significant. The bond strength of the two-step self-etching primer adhesive system Clearfil SE Bond (SEB) was similar to that of the two-step etch-and-rinse self-priming adhesive system Single Bond 2 (SB), and they were both significantly reduced after one or four months of aging. A negative correlation was found between the degree of collagen degradation and magnitude of micro-tensile bond strength (r = -0.65, p = 0.003). The Pearson's correlation coefficient was 0.426, indicating that 42.6% of the aging-induced reduction in bond strength can be explained by the degradation of collagen. In the early phase of dentin bonding, there was a negative correlation between the degree of collagen degradation and the magnitude of micro-tensile bond strength. The reduction of bond strength was accompanied by the degradation of collagen. These results provide evidence for the causative relationship between the degradation of collagen and the deterioration of dentin-adhesive interface.

  9. Effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.

    Directory of Open Access Journals (Sweden)

    Lin Hu

    Full Text Available This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by calculating their Pearson's correlation coefficient.Aging induced time-dependent reduction in micro-tensile bond strengths for all the tested adhesive systems, although such reduction for the single-step self-etching adhesive G-Bond (GB was not statistically significant. The bond strength of the two-step self-etching primer adhesive system Clearfil SE Bond (SEB was similar to that of the two-step etch-and-rinse self-priming adhesive system Single Bond 2 (SB, and they were both significantly reduced after one or four months of aging. A negative correlation was found between the degree of collagen degradation and magnitude of micro-tensile bond strength (r = -0.65, p = 0.003. The Pearson's correlation coefficient was 0.426, indicating that 42.6% of the aging-induced reduction in bond strength can be explained by the degradation of collagen.In the early phase of dentin bonding, there was a negative correlation between the degree of collagen degradation and the magnitude of micro-tensile bond strength. The reduction of bond strength was accompanied by the degradation of collagen. These results provide evidence for the causative relationship between the degradation of collagen and the deterioration of dentin-adhesive interface.

  10. Pulse-echo NDT of adhesively bonded joints in automotive assemblies.

    Science.gov (United States)

    Titov, Sergey A; Maev, Roman Gr; Bogachenkov, Alexey N

    2008-11-01

    A new method for the detection of void-disbonds at the interfaces of adhesively bonded joins is considered. Based on a simple plane wave model, the output waveform is presented as a sum of two responses associated with the reflection of the ultrasonic wave at the first metal-adhesive interface and the second metal-adhesive interface, respectively. The strong response produced by the wave reverberating in the first metal sheet is eliminated through comparison between the pulse-echo signal measured at the area under the test and reference waveform recorded for the bare first metal sheet outside of the joint. The developed decomposition algorithm has been applied to the study of steel and aluminum samples having various adhesive layer thicknesses in a range of 0.1-1mm.

  11. Optimal tubular adhesive-bonded lap joint of the carbon fiber epoxy composite shaft

    Science.gov (United States)

    Kim, Ki S.; Kim, Won T.; Lee, Dai G.; Jun, Eui J.

    The effects of the adhesive thickness and the adherend surface roughness on the fatigue strength of a tubular adhesive-bonded single lap joint were investigated using fatigue test specimens whose adherends were made of S45C carbon steel. Results of fatigue tests showed that the optimal arithmetic surface roughness of the adherends is about 2 microns and the optimal adhesive thickness is about 0.15 mm. Using these values, the prototype torsional adhesive joints were manufactured for power transmission shafts of an automotive vehicle or a small helicopter, and static tests under torque were performed on a single-lap joint, a single-lap joint with scarf, a double-lap joint, and a double-lap joint with scarf. It was found that the double-lap joint was superior among the joints, in terms of torque capacity and manufacturing cost.

  12. Endodontic Irrigation Protocols: Effects on Bonding of Adhesive Systems to Coronal Enamel and Dentin.

    Science.gov (United States)

    Carvalho, Marcos Paulo Marchiori; Morari, Victor Hugo Carvalho; Susin, Alexandre Henrique; Rocha, Rachel De Oliveira; Valandro, Luiz Felipe; Soares, Fabio Zovico Maxnuck

    2017-05-06

     To evaluate the influence of endodontic irrigation protocols on bond strength of total-etch and self-etch adhesive systems to coronal enamel and dentin.  A total of 66 coronal slices from 11 permanent molars were assigned to six groups (n = 11): endodontic irrigation protocols (5% sodium hypochlorite + 17% EDTA; 2% chlorhexidine gel + saline solution + 17% EDTA or no solution - control) and adhesive systems (Adper Single Bond 2 or Clearfil SE Bond). Dental slices were exposed to endodontic irrigation protocols for 30-minute prior to the application of the adhesive systems. Starch tubes were placed over the enamel and the dentin surfaces of each slice (2-4 tubes in each substrate) and filled with Filtek Z350 XT (3M ESPE) to build the microshear bond strength (µSBS) specimens (0.72 mm2 sectional area). After 24 hours of water storage (37°C), µSBS test was performed. Bond strength data (MPa) were analyzed by two-way ANOVA, separately for enamel and dentin (α = 0.05).  µSBS means were not influenced by endodontic irrigation protocols in enamel (p = 0.12) nor dentin (p = 0.49). Clearfil SE Bond system presented higher µSBS values than Adper Single Bond 2 both on enamel (p = 0.024) and dentin (p = 0.005).  Endodontic irrigation protocols (5% sodium hypochlorite or 2% chlorhexidine gel + saline solution combined with 17% EDTA) do not jeopardize the bond strength of adhesive systems to coronal enamel and dentin. The results of this in vitro study suggest that endodontic irrigation protocols do not impair on bonding effectiveness of adhesive systems to coronal enamel and dentin. (J Esthet Restor Dent 29:222-228, 2017). © 2017 Wiley Periodicals, Inc.

  13. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  14. Do matrix metalloproteinase inhibitors improve the bond durability of universal dental adhesives?

    Science.gov (United States)

    Tekçe, Neslihan; Tuncer, Safa; Demirci, Mustafa; Balci, Sibel

    2016-11-01

    The aim of this study was to evaluate the effects of matrix metalloproteinases (MMPs) inhibitors on the microtensile bond strength (μTBS) and the adhesive-dentin interface of two universal dentin bonding agents, Single Bond Universal and All Bond Universal, after 12 months of water storage. Seventy extracted, caries-free, human third molars were used in this study. Of these, 50 were used for μTBS testing and 20 were used for scanning electron microscopy. The two bonding agents were applied to flat dentin surfaces in five different ways: self-etch mode, etch-and-rinse mode with 37% phosphoric acid, etch-and-rinse mode with phosphoric acid containing 1% benzalkonium chloride, etch-and-rinse mode with phosphoric acid and 2% chlorhexidine, and etch-and-rinse mode with 0.5 M ethylenediaminetetraacetic acid (EDTA) (n = 5 for each bonding agent in each group; N = 50). Half the specimens were subjected to μTBS tests at 24 h, while half were subjected to the tests after 12 months of water storage. For each bonding agent, inhibition, storage, and their interaction effects were tested by two-way analysis of variance and Bonferroni tests. For Single Bond Universal, the benzalkonium chloride (p = 0.024) and chlorhexidine groups (p = 0.033) exhibited significantly higher μTBS values at 24 h compared with the self-etch group. For All Bond Universal, all groups displayed similar bond strengths at 24 h (p > 0.05). After 12 months of water storage, the μTBS values decreased significantly in the benzalkonium chloride group for Single Bond Universal (p = 0.001) and the self-etch (p = 0.029), chlorhexidine (p = 0.046), and EDTA (p = 0.032) groups for All Bond Universal. These results suggest that the immediate dentin bond strength increases when universal bonding systems are applied in the etch-and-rinse mode, although the durability decreases. The use of chlorhexidine and EDTA can increase the bond durability of mild adhesives such as

  15. Effect of carbodiimide (EDC) on the bond stability of etch-and-rinse adhesive systems.

    Science.gov (United States)

    Mazzoni, Annalisa; Angeloni, Valeria; Apolonio, Fabianni M; Scotti, Nicola; Tjäderhane, Leo; Tezvergil-Mutluay, Arzu; Di Lenarda, Roberto; Tay, Franklin R; Pashley, David H; Breschi, Lorenzo

    2013-10-01

    Recent studies supported the use of protein cross-linking agents during bonding procedures to inactivate endogenous dentin proteases, preventing dentin collagen degradation thus improving bond durability. The aim of this study was to evaluate the effect of a 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-containing conditioner on the stability of the adhesive interface created by two etch-and-rinse adhesives. Human dentin was etched with 35% phosphoric acid, treated with 0.3M EDC-containing conditioner followed by a three-step or a two-step etch-and-rinse adhesive. Adhesives were applied to control specimens without EDC pre-treatment. Specimens were subjected to microtensile bond strength test and pulled to failure after 24h or 1 year of storage and interfacial nanoleakage expression was evaluated and quantified by light microscopy. Additionally, to investigate endogenous dentin matrix metalloproteinase activity a zymographic assay was performed on protein extracts obtained from phosphoric-acid-etched dentin powder with or without EDC treatment. The use of the EDC-containing conditioner did not affect immediate bond strength to dentin but contributed to preserve the bond strength after 1 year (padhesives. No difference was found in the interfacial nanoleakage expression that increased after aging irrespective from the treatment. EDC pre-treatment inhibited dentin endogenous MMPs as assayed with the zymography. In conclusion, the results of the study provide proof that EDC can produce long-term inactivation of MMPs in acid-etched dentin matrices contributing to bond strength preservation over time. Future studies are needed to support the use of EDC in vivo. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. In vitro longevity of bonding properties of universal adhesives to dentin.

    Science.gov (United States)

    Muñoz, M A; Luque-Martinez, I; Malaquias, P; Hass, V; Reis, A; Campanha, N H; Loguercio, A D

    2015-01-01

    To evaluate the immediate and 6-month resin-dentin bond strength (μTBS) and nanoleakage (NL) of universal adhesives that contain or do not contain methacryloyloxydecyl dihydrogen phosphate (MDP) and are used in the etch-and-rinse and self-etch strategies. Forty caries-free extracted third molars were divided into eight groups for μTBS (n=5). The groups were bonded with the Clearfil SE Bond (CSE) and Adper Single Bond 2 (SB) as controls; Peak Universal, self-etch (PkSe) and etch-and rinse (PkEr); Scotchbond Universal Adhesive, self-etch (ScSe) and etch-and-rinse (ScEr); and All Bond Universal, self-etch (AlSe) and etch-and-rinse (AlEr). After composite restorations, specimens were longitudinally sectioned to obtain resin-dentin bonded sticks (0.8 mm(2)). The μTBS of the specimens was tested immediately (IM) or after 6 months of water storage (6M) at 0.5 mm/min. Some sticks at each storage period were immersed in silver nitrate and photo developed, and the NL was evaluated with scanning electron microscopy. Data were analyzed with two-way repeated-measures analysis of variance and Tukey test (α=0.05). At the IM period, PkSe and PkEr showed μTBS similar to the control adhesives (p>0.05) but increased NL pattern and lower μTBS after 6M (p0.05). AlSe showed the lowest μTBS (p0.05). AlEr showed higher IM μTBS but showed higher degradation after 6M (pUniversal adhesives that contain MDP showed higher and more stable μTBS with reduced NL at the interfaces after 6 months of water storage.

  17. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel.

    Science.gov (United States)

    Abed Kahnemooyi, Mehdi; Ajami, Amir Ahmad; Kimyai, Soodabeh; Pournaghiazar, Fatemeh; Savadi Oskoee, Siavash; Mhammadi Torkani, Mohammad Ali

    2014-01-01

    Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A-D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultra-structural evaluation. Two-way ANOVA and Tukey test were used for data analysis at Padhesive system type and surface preparation protocol was significant (P=0.014), withsignificant differences in shear bond strengths in terms of the adhesive systems (Padhesive system (Padhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for10 minutes restored the bond strength in both adhesive systems.

  18. Mechanical Characterization of Adhesive Bonded Sheet Metal Joints at Elevated Temperature

    Science.gov (United States)

    Mori, Kiyomi; Azimin, Muhd; Tanaka, Masashi; Ikeda, Takashi

    A new approach is expected for heat resisting metal joints with inorganic adhesive. In the present study, the mechanical characterization of the inorganic adhesive and the strength evaluation of metal joints are realized by an experimental procedure that includes a static test for single lap joints bonded with inorganic adhesives. The inorganic adhesive can be cured at 150°C, and the maximum temperature resistance proposed is up to 1,200°C. A tensile shear test for the joints with a nickel adherend is performed at an elevated temperature of up to 400°C. The effect of material property, overlap length, and thickness of adherend on the joint strength is discussed based on stress analysis for corresponding joint models using a Finite Element Method. It is important to confirm whether fracture occurred in the adhesive layer or at the interface between the adhesive and the adherend. Therefore, the deformation and fracture behavior of the adhesive layer is investigated microscopically by the photographs of a scanning electron microscope (SEM) for the fracture surface.

  19. Influence of double application technique on the bonding effectiveness of self-etch adhesive systems.

    Science.gov (United States)

    Nagpal, Rajni; Sharma, Pallavi; Manuja, Naveen; Tyagi, Shashi Prabha; Singh, Udai Pratap; Singh, Shipra; Singh, Payal

    2015-06-01

    To evaluate and compare the effect of double-application of single-step self-etch adhesives using microleakage study and to analyze the dentin-adhesive interfacial micromorphology. In total, 72 extracted human premolars were divided into three groups for different self-etch adhesives (G Bond, GC [GB], Optibond, Kerr [OB], and Xeno V Plus, Dentsply [XV]). Class V cavities were prepared. Each group was further divided into two subgroups (n = 10) according to the placement technique of the adhesive, using the single-application [subgroup (a)] or double-application method [subgroup (b)]. Resin composite (Z 250, 3M ESPE, St. Paul, MN) was used to restore the cavities and light cured for 40 s. Twenty samples from each group were subjected to microleakage study. Two samples from both the subgroups of the three adhesives were used for scanning electron microscopic examination of the resin-dentin interfacial ultrastructure. Dye leakage scores were subjected to statistical analysis using Kruskal-Wallis and Mann-Whitney U-tests at significance level of P adhesives, that is OB and XV. Double application of all-in-one self-etch adhesives improves the marginal sealing ability in dentin although it appears to be product dependent. © 2015 Wiley Periodicals, Inc.

  20. Efficacy of a Universal Adhesive in the Bond Strength of Composite Cements to Polymer-infiltrated Ceramic.

    Science.gov (United States)

    Rohr, Nadja; Flury, Alba; Fischer, Jens

    2017-11-17

    To investigate the effect of a universal adhesive on the bond strength of composite cements to a polymer- infiltrated ceramic network. Shear bond strength to a polymer-infiltrated ceramic network (Vita Enamic) and to its polymer and ceramic components was assessed on polished surfaces using either a conventional dual-curing resin (RelyX Ultimate) or self-adhesive composite cement (RelyX Unicem 2 Automix). Substrate surfaces were either not pretreated or a silane coupling agent (Vitasil), a universal adhesive (Scotchbond Universal Adhesive), or both were applied. Further, the shear bond strength to polymer-infiltrated ceramic network was evaluated after etching with 5% hydrofluoric acid (Vita Ceramics Etch) of 0, 15, 30, 60 or 120 s without or with application of silane, universal adhesive, or both (n = 10). Statistical analysis was performed using the Kruskal-Wallis test (p cement. Application of silane resulted in low mean bond strengths (4 to 5 MPa) to the ceramic. The universal adhesive bonded mainly to the polymer part of the polymer-infiltrated ceramic network. The best bonding performance for both cements was achieved when silane and universal adhesive were applied on the polymer-infiltrated ceramic network. Etching for 30 s or 60 s resulted in the highest mean shear bond strengths for all pretreatment groups (p adhesive dual-curing composite cement RelyX Unicem 2 Automix was found on the HF-etched polymer-infiltrated ceramic network. The conventional dual-curing composite cement RelyX Ultimate with Scotchbond Universal Adhesive may bond chemically to the polymer part of the polymer-infiltrated ceramic network. To achieve the highest bond strengths for both cements, the polymer-infiltrated ceramic network should be etched for 30 to 60 s, followed by the application of silane and universal adhesive.

  1. Effect of water storage on microtensile bond strength of a two-step self-etch adhesive and a two-step etch-and-rinse adhesive.

    Science.gov (United States)

    Mendez, Juan C; Pabon, Gloria E; Hilgenberg, Sergio P; Garcia, Eugenio J; Arana-Correa, Beatriz

    2012-01-01

    This study evaluated the effect of 24 h (1d) and one-year (1yr) water storage on the microtensile dentin bond strength of a two-step total-etch and a two-step self-etch adhesive system. Ten extracted human third molars were sectioned perpendicularly to their long axis to expose flat occlusal dentin surfaces. Teeth were divided into two groups (n=5) according to the adhesive used: a two-step etch-and-rinse adhesive (Adper Single Bond 2) and two-step self-etching adhesive (Adper Scotchbond SE). Composite resin (Z350) build-ups were incrementally constructed on the bonded surfaces. Specimens were sectioned into sticks (cross-sectional mean area 0.8 mm2) and after 1d and 1yr of storage in distilled water at 37 degrees C, the sticks were stressed to failure by microtensile test (1 mm/min). Interfacial observation of silver nanoleakage was performed using scanning electron microscopy (SEM). Data (MPa) were analyzed by two-way ANOVA and Bonferronis test (p = 0.05). SB2 showed the highest bond strength values after 1d of water storage. After 1yr, SB2 values significantly decreased and were similar to ASE, independently of water storage period. Both adhesives, independently of storage time, showed silver nitrate uptake within the hybrid layer and the adhesive layer One-year of water storage only affected the bond strength of the two-step etch-and-rinse adhesive.

  2. INFLUENCE OF DIFFERENT ADHESIVE SYSTEMS ON THE PULL-OUT BOND STRENGTH OF GLASS FIBER POSTS

    Science.gov (United States)

    da Silva, Luciana Mendonça; de Andrade, Andréa Mello; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C.; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost – Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC – 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus – 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost – Angelus) + four #1 accessory posts (Reforpin – Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; α=0.05 showed no statistically significant difference (ppost space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength. PMID:19089224

  3. Influence of different adhesive systems on the pull-out bond strength of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Luciana Mendonça da Silva

    2008-06-01

    Full Text Available This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP Plus - 3M/ESPE, using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10: G1- etching with 37% phosphoric acid gel (3M/ESPE + Adper Single Bond + #1 post (Reforpost - Angelus + four #1 accessory posts (Reforpin - Angelus + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05 between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1. The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.

  4. Influence of different adhesive systems on the pull-out bond strength of glass fiber posts.

    Science.gov (United States)

    da Silva, Luciana Mendonça; Andrade, Andréa Mello de; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus - 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost - Angelus) + four #1 accessory posts (Reforpin - Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37 degrees C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 +/- 7.123; G2- 37.752 +/-13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.

  5. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    Science.gov (United States)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  6. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  7. Dentin bond strength of an adhesive system irradiated with an Nd:YAG laser

    Science.gov (United States)

    Ruschel, V. C.; Malta, D. A. M. P.; Monteiro, S., Jr.

    2016-11-01

    The objective of this study was to evaluate the microtensile bond strength of an adhesive system applied to dentin, followed by Nd:YAG laser irradiation. Twenty-two recently extracted third molars were divided into four groups (n  =  5). In the G1 and G2 groups, the adhesive system was applied conventionally, and in groups G3 and G4, the adhesive system was irradiated with an Nd:YAG laser (100 J cm-2). The specimens were stored in distilled water at 37 °C, those in groups G1 and G3 for 24 h, and those in groups G2 and G4 for 3 months. Two teeth from groups G1 and G3 were used for observation of the hybrid layer, using a confocal microscope (n  =  1). The teeth were submitted to a microtensile bond strength test. Analysis of the type of fracture was performed using a stereoscope (40×). The results for microtensile bond strength (MPa) and standard deviation (±SD) were: G1—31.68 (5.14); G2—37.88 (±5.04) G3—35.32 (±8.79) G4—31.53 (±9.01). There were no significant differences among the groups (p  >  0.05). Adhesive failure was predominant in all the groups. The Nd:YAG laser irradiation of the adhesives did not influence dentin bond strength during the periods of 24 h or 3 months of storage in distilled water.

  8. Effect of salivary contamination during different bonding stages on shear dentin bond strength of one-step self-etch and total etch adhesive

    Directory of Open Access Journals (Sweden)

    H. Kermanshah

    2010-09-01

    Full Text Available Objective: This study evaluated the effect of saliva contamination during bonding procedures without removing saliva on shear dentin bond strength of three adhesive generations when rubber dam isolation is not feasible.Materials and Methods: Flat superficial dentin surfaces of seventy-two extracted human molars were randomly divided into three groups (A: Scotch Bond MP Plus (SBMP, B: Single Bond (SB, C: Prompt L-Pop according to the applied adhesives and twelve subgroups (n=6according to the following saliva contamination applied in different bonding steps. The specimens were contaminated with saliva after etching (A1 and B1, after primer application (A2, after adhesive application before polymerization (A3, B2 and C1, and after adhesivepolymerization (A4, B3 and C2. Three subgroups were not contaminated as controls (A5, B4 and C3. Resin composite was placed on dentin subsequently followed by thermocycling.Shear test was performed by Universal testing machine at 0.5 mm/min crosshead speed. The collected data were statically analyzed using one and two-way ANOVA and Tukey HSD.Results: In contrast to SBMP and SB, the mean shear bond strength of Promote L-Pop was not significantly different between contaminated and uncontaminated subgroups. Mean shear bond strengths of SBMP subgroups contaminated after adhesive polymerization or uncontaminated were significantly higher compared to the other two groups (p<0.05.Conclusion: Unlike Promote L-Pop, saliva contamination could reduce shear bond strength of the total-etch adhesives. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesive contaminated with saliva.

  9. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    Science.gov (United States)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  10. Investigation of the impact of cleaning on the adhesive bond and the process implications

    Energy Technology Data Exchange (ETDEWEB)

    EMERSON,JOHN A.; GUESS,TOMMY R.; ADKINS,CAROL L. JONES; CURRO,JOHN G.; REEDY JR.,EARL DAVID; LOPEZ,EDWIN P.; LEMKE,PAUL A.

    2000-05-01

    While surface cleaning is the most common process step in DOE manufacturing operations, the link between a successful adhesive bond and the surface clean performed before adhesion is not well understood. An innovative approach that combines computer modeling expertise, fracture mechanics understanding, and cleaning experience to address how to achieve a good adhesive bond is discussed here to develop a capability that would result in reduced cleaning development time and testing, improved bonds, improved manufacturability, and even an understanding that leads to improved aging. A simulation modeling technique, polymer reference interaction site model applied near wall (Wall PRISM), provided the capability to include contaminants on the surface. Calculations determined an approximately 8% reduction in the work of adhesion for 1% by weight of ethanol contamination on the structure of a silicone adhesive near a surface. The demonstration of repeatable coatings and quantitative analysis of the surface for deposition of controlled amounts of contamination (hexadecane and mineral oil) was based on three deposition methods. The effect of the cleaning process used on interfacial toughness was determined. The measured interfacial toughness of samples with a Brulin cleaned sandblasted aluminum surface was found to be {approximately} 15% greater than that with a TCE cleaned aluminum surface. The sensitivity of measured fracture toughness to various test conditions determined that both interfacial toughness and interface corner toughness depended strongly on surface roughness. The work of adhesion value for silicone/silicone interface was determined by a contact mechanics technique known as the JKR method. Correlation with fracture data has allowed a better understanding between interfacial fracture parameters and surface energy.

  11. Bond strength and interfacial morphology of different dentin adhesives in primary teeth.

    Science.gov (United States)

    Vashisth, Pallavi; Mittal, Mudit; Goswami, Mousumi; Chaudhary, Seema; Dwivedi, Swati

    2014-03-01

    To evaluate the interfacial morphology and the bond strength produced by the three-step, two-step and single-step bonding systems in primary teeth. Occlusal surfaces of 72 extracted human deciduous teeth were ground to expose the dentin. The teeth were divided into four groups: (a) Scotchbond Multipurpose (3M, ESPE), (b) Adh Se (Vivadent), (d) OptiBond All-in-One (Kerr) and (e)Futurabond NR (VOCO, Cuxhaven, Germany). The adhesives were applied to each group following the manufacturer's instructions. Then, teeth from each group were divided into two groups: (A) For viewing interfacial morphology (32 teeth), with 8 teeth in each group, and (B) For measurement of bond strength (40 teeth), with 10 teeth in each group. All the samples were prepared for viewing under SEM. The statistical analysis was done using SPSS version 15.0 software. Observational measurement of tag length in different adhesives revealed that Scotchbond had the most widely spread values with a range from 12.20 to 89.10μm while OptiBond AIO had the narrowest range (0 to 22.50). The bond strength of Scotchbond Multipurpose was significantly higher (7.4744±1.88763) (p<0.001) as compared to Futurabond NR (3.8070±1.61345), Adhe SE (4.4478 ± 1.3820) and OptiBond-all-in-one (4.4856±1.07925). The three-step bonding system showed better results as compared to simplified studied bonding systems.

  12. Bond strength and interfacial morphology of different dentin adhesives in primary teeth.

    Directory of Open Access Journals (Sweden)

    Pallavi Vashisth

    2014-04-01

    Full Text Available To evaluate the interfacial morphology and the bond strength produced by the three-step, two-step and single-step bonding systems in primary teeth.Occlusal surfaces of 72 extracted human deciduous teeth were ground to expose the dentin. The teeth were divided into four groups: (a Scotchbond Multipurpose (3M, ESPE, (b Adh Se (Vivadent, (d OptiBond All-in-One (Kerr and (eFuturabond NR (VOCO, Cuxhaven, Germany. The adhesives were applied to each group following the manufacturer's instructions. Then, teeth from each group were divided into two groups: (A For viewing interfacial morphology (32 teeth, with 8 teeth in each group, and (B For measurement of bond strength (40 teeth, with 10 teeth in each group. All the samples were prepared for viewing under SEM. The statistical analysis was done using SPSS version 15.0 software.Observational measurement of tag length in different adhesives revealed that Scotchbond had the most widely spread values with a range from 12.20 to 89.10μm while OptiBond AIO had the narrowest range (0 to 22.50. The bond strength of Scotchbond Multipurpose was significantly higher (7.4744±1.88763 (p<0.001 as compared to Futurabond NR (3.8070±1.61345, Adhe SE (4.4478 ± 1.3820 and OptiBond-all-in-one (4.4856±1.07925.The three-step bonding system showed better results as compared to simplified studied bonding systems.

  13. Shear bond strength of one etch-and-rinse and five self-etching dental adhesives when used by six operators.

    Science.gov (United States)

    Soderholm, Karl-Johan M; Soares, Flavio; Argumosa, Miguel; Loveland, Christopher; Bimstein, Enrique; Guelmann, Marcio

    2008-08-01

    To test the hypothesis that some single-bottle self-etching adhesives bond as well to enamel and dentin as a typical two-bottle etch-and-rinse adhesive. Six operators used one two-bottle etch-and-rinse dentin adhesive (Scotchbond MP) and five all-in-one self-etching adhesives (iBond Gluma Inside, Clearfil S(3) Bond, iBond Experimental, Xeno IV, and G-BOND). Each operator carried out six bondings to enamel and six bondings to dentin with each adhesive. After 24 h of storage in water at 37 degrees C, bond strength was determined in shear. The pooled results of all the adhesives revealed no significant difference (p>0.05) in bond strength between dentin and enamel. However, there were significant differences (padhesives. The etch-and-rinse adhesive did better than the self-etching adhesives when substrate was not an issue (pooled enamel and dentin results). On comparing the performance of the different adhesives, it became clear that there were significant interactions (petch-and-rinse adhesive did better than the tested self-etching adhesives. The shear bond strength results were also strongly affected by the operator as well as by the interaction between operator and used product. The pooled bond strength values of the different adhesives revealed no difference in bond strength to dentin versus enamel.

  14. Effect of EDTA Conditioning and Carbodiimide Pretreatment on the Bonding Performance of All-in-One Self-Etch Adhesives

    Directory of Open Access Journals (Sweden)

    Shipra Singh

    2015-01-01

    Full Text Available Objective. This study evaluated the effect of ethylenediaminetetraacetic acid (EDTA conditioning and carbodiimide (EDC pretreatment on the shear bond strength of two all-in-one self-etch adhesives to dentin. Methods. Flat coronal dentin surfaces were prepared on one hundred and sixty extracted human molars. Teeth were randomly divided into eight groups according to two different self-etch adhesives used [G-Bond and OptiBond-All-In-One] and four different surface pretreatments: (a adhesive applied following manufacturer’s instructions; (b dentin conditioning with 24% EDTA gel prior to application of adhesive; (c EDC pretreatment followed by application of adhesive; (d application of EDC on EDTA conditioned dentin surface followed by application of adhesive. Composite restorations were placed in all the samples. Ten samples from each group were subjected to immediate and delayed (6-month storage in artificial saliva shear bond strength evaluation. Data collected was subjected to statistical analysis using three-way ANOVA and post hoc Tukey’s test at a significance level of p<0.05.  Results and Conclusion. EDTA preconditioning as well as EDC pretreatment alone had no significant effect on the immediate and delayed bond strengths of either of the adhesives. However, EDC pretreatment on EDTA conditioned dentin surface resulted in preservation of resin-dentin bond strength of both adhesives with no significant fall over six months.

  15. Tetrahydrofuran as solvent in dental adhesives: cytotoxicity and dentin bond stability.

    Science.gov (United States)

    Fontes, Silvia Terra; Fernández, María Raquel; Ogliari, Fabrício Aulo; de Carvalho, Rodrigo Varella; de Moraes, Rafael Ratto; Pinto, Márcia Bueno; Piva, Evandro

    2013-01-01

    The aim of this study was to investigate the cytotoxicity and 1-year dentin bond stability of solvated etch-and-rinse dental adhesives based on tetrahydrofuran (THF), acetone, or ethanol, containing water or not. Seven primers were prepared using the following solvents: THF, acetone, ethanol, water, THF/water, acetone/water, and ethanol/water. Bovine dentin was used, and specimens for microtensile bond strength (μTBS) test were prepared. Specimens were tested after storage in distilled water for 24 h or 1 year. Cytotoxicity of the solvents was evaluated in 3T3/NIH mouse fibroblasts using a colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay after exposure for 24 h. No significant differences were detected among solvents after storage for 24 h, except for the water-based group, which showed the lowest μTBS values. After storage for 1 year, the THF-based adhesive system resulted in more stable bonds. Yet, THF showed an intermediate cytotoxicity when compared with the other solvents, being less toxic than phosphate monomer and similar to 2-hydroxyethyl methacrylate. THF seems to be a suitable solvent for adhesive systems. THF is a promising solvent that can be used to improve dentin bond stability.

  16. Evaluation of bond strength of a conventional adhesive system in irradiated teeth

    Directory of Open Access Journals (Sweden)

    Emanuel Jordan de CARVALHO

    Full Text Available Abstract Introduction One of the most common treatments of head and neck cancer patients is radiotherapy, a treatment method which uses ionizing radiation beam and destroys tumor cells, minimizing damage to neighbor cells. Purpose To evaluate the bond strength of a conventional adhesive system in irradiated teeth. Method 24 third human molars, 12 of which were randomly exposed to radiation and prepared from the removal of occlusal enamel, then exposed to a flat dentine surface. The adhesive system Stae was applied according to the manufacturer’s instructions. Next, two 2 mm increments of resin were implemented. The samples were hemi sectioned specimens, originating shapped toothpick. To evaluate the bond strength, a micro tensile test was done with 500N load and speed of 0.5 mm/minute. Result There was no statistically significant difference between the bond strength of teeth which were or were not exposed to radiation and which used a conventional adhesive system. Conclusion Although the radiation doses applied may cause some alterations in microscopic range in dental tissues, it can be concluded that these alterations do not influence in the bond strength in dentin of irradiated teeth.

  17. Enamel shear bond strength of different primers combined with an orthodontic adhesive paste.

    Science.gov (United States)

    Seeliger, Julia H; Botzenhart, Ute U; Gedrange, Tomasz; Kozak, Karol; Stepien, Lukas; Machoy, Monika

    2017-08-28

    The aim of this study was a comparison of shear bond strength (SBS) on tooth enamel of different primers combined with the adhesive paste Transbond XT. Forty bovine teeth were used in order to create 40 test blocks. The blocks were divided into four groups of 10 blocks each: group A - sample primer (SP); group B - Opal Seal (OS); group C - Transbond Plus SEP (TSEP); group D - Transbond XT Primer (TXT). After surface preparation and application of the primer, respectively, two stainless steel brackets were fixed on each tooth by using Transbond XT. Accordingly, 80 brackets were debonded (n=20). Shear bond strength and adhesive remnant index (ARI) scores were evaluated. Statistical analyses were performed by using the Student's t-test and Mann-Whitney U test. All tested groups revealed high shear bond strength in a similar size range. There were no significant differences between the groups concerning shear bond strength. The ARI scores of group C showed significantly lower ARI scores (0 and 1) than that of group D. Apart from that there was no statistical difference. In combination with the adhesive paste Transbond XT, all tested primers were suitable for fixing orthodontic brackets. The primers could be changed according to the clinical situation.

  18. F-111 Adhesive Bonded Repairs Assessment Program - Progress Report 2: Analysis of FM300-2K Repairs

    Science.gov (United States)

    2015-01-01

    interrogate the bond interphase region such as laser shearography [9] or laser bond inspection testing [10] may be suitable candidates. A laser...comparison of shearography and pulsed thermography for adhesive bond evaluation, OPTICE 46 (5), 051007, 2007. 10. R.Bossi, K. Housen, C. T. Walters and

  19. Dentin bond strength of a new adhesive system containing calcium phosphate experimentally developed for direct pulp capping.

    Science.gov (United States)

    Shinkai, Koichi; Taira, Yoshihisa; Suzuki, Masaya; Kato, Chikage; Ebihara, Takashi; Wakaki, Suguru; Seki, Hideaki; Shirono, Manabu; Ogisu, Takahito; Yamauchi, Junichi; Suzuki, Shiro; Katoh, Yoshiroh

    2009-11-01

    The purpose of this study was to evaluate the microtensile bond strength (microTBS) to human dentin of an experimental bonding agent containing calcium phosphates experimentally developed for direct pulp capping. Different concentrations of four types of calcium phosphates were added to an experimental bonding monomer, and six experimental bonding agents were thus prepared. Clearfil SE Bond/Bond was used as the control. Flat dentin surfaces of human molars were assigned to the experimental adhesive systems and the control. After Clearfil SE Bond/Primer was applied to the dentin surface, each experimental bonding agent was applied and photopolymerized, and then a resin composite paste was placed and photopolymerized. The specimens were subjected to microTBS testing. Results revealed that there were no significant differences among the microTBS values of the experimental bonding agents and the control. In other words, the calcium phosphate-containing experimental adhesives did not adversely affect the microTBS to dentin.

  20. Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

    Directory of Open Access Journals (Sweden)

    Yoon Lee

    2012-08-01

    Full Text Available Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05. Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

  1. Dynamic measurement of inside strain distributions in adhesively bonded joints by embedded fiber Bragg grating sensor

    Science.gov (United States)

    Murayama, Hideaki; Ning, Xiaoguang; Kageyama, Kazuro; Wada, Daichi; Igawa, Hirotaka

    2014-05-01

    Long-length fiber Bragg grating (FBG) with the length of about 100 mm was embedded onto the surface of a carbon fiber reinforced plastics (CFRP) substrate and two CFRP adherends were joined by adhesive to form an adhesive bonded single-lap joint. The joint was subjected to 0.5 Hz cyclic tensile load and longitudinal strain distributions along FBG were measured at 5 Hz by the fiber-optic distributed sensing system based on optical frequency domain reflectometry (OFDR). We could successfully monitor the strain distributions accurately with high spatial resolution of around 1 mm.

  2. Microtensile Bond Strength of Self-Adhesive Luting Cements to Ceramics

    OpenAIRE

    Tomoko Abo; Shigeru Uno; Masahiro Yoshiyama; Toshimoto Yamada; Nobuhiro Hanada

    2012-01-01

    The purpose of this paper was to compare the bond strengths of the self-adhesive luting cements between ceramics and resin cores and examine their relation to the cement thickness. Three self-adhesive luting cements (Smartcem, Maxcem, and G-CEM) and a resin cement (Panavia F 2.0) for control were used in the paper. The thickness of the cements was controlled in approximately 25, 50, 100, or 200  μ m. Each 10 specimens were made according to the manufacturers' instructions and stored in water ...

  3. Influence of frequency on shear fatigue strength of resin composite to enamel bonds using self-etch adhesives.

    Science.gov (United States)

    Takamizawa, Toshiki; Scheidel, Donal D; Barkmeier, Wayne W; Erickson, Robert L; Tsujimoto, Akimasa; Latta, Mark A; Miyazaki, Masashi

    2016-09-01

    The purpose of this study was to determine the influence of different frequency rates on of bond durability of self-etch adhesives to enamel using shear fatigue strength (SFS) testing. A two-step self-etch adhesive (OX, OptiBond XTR), and two single step self-etch adhesives (GB, G-ӕnial Bond and SU, Scotchbond Universal) were used in this study. The shear fatigue strength (SFS) to enamel was obtained. A staircase method was used to determine the SFS values with 50,000 cycles or until failure occurred. Fatigue testing was performed at frequencies of 5Hz, 10Hz, and 20Hz. For each test condition, 30 specimens were prepared for the SFS testing. Regardless of the bond strength test method, OX showed significantly higher SFS values than the two single-step self-etch adhesives. For each of the three individual self-etch adhesives, there was no significant difference in SFS depending on the frequency rate, although 20Hz results tended to be higher. Regardless of the self-etch adhesive system, frequencies of 5Hz, 10Hz, and 20Hz produced similar results in fatigue strength of resin composite bonded to enamel using 50,000 cycles or until bond failure. Accelerated fatigue testing provides valuable information regarding the long term durability of resin composite to enamel bonding using self-etch adhesive system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of Organic Acids from the Oral Biofilm on the Bond Strength of Self-Etch Adhesives to Dentin.

    Science.gov (United States)

    Amaral, Cristiane Mariote; Correa, Danielly de Sá; Miragaya, Luciana Meirelles; Silva, Eduardo Moreira da

    2015-10-01

    The aim of this study was to evaluate the microtensile bond strength of self-etch adhesive systems to dentin after storage in acids from oral biofilm. Three adhesive systems were used in the study: a two-step self-etch adhesive for use with a silorane-based resin composite (Filtek P90 adhesive system - P90), a two-step self-etch adhesive (Clearfil SE Bond - CSE) and a one-step self-etch adhesive (Adper Easy One - AEO). The bond strength of these products was evaluated by bonding resin composite (Filtek Z350 for CSE and AEO; and Filtek P90 for P90) to 90 bovine dentin tooth fragments, according to the manufacturer's instructions. After 24 h of water storage at 37 °C, the specimens were sectioned into beams (1 mm2) divided and stored in distilled water, lactic acid and propionic acid, for 7 and 30 days. After storage, the specimens were tested for microtensile bond strength. Data were analyzed by three-way ANOVA and Tukey´s test (α=0.05). CSE presented the highest microtensile bond strength after storage in distilled water for 7 and 30 days. The microtensile bond strength of all adhesive systems was lower after storage in lactic acid and propionic acid than after water storage. Significant difference was not found between storage times.

  5. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    Science.gov (United States)

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. © 2015 Eur J Oral Sci.

  6. An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection

    Science.gov (United States)

    Arun, K.; Dhayalan, R.; Balasubramaniam, Krishnan; Maxfield, Bruce; Peres, Patrick; Barnoncel, David

    2012-05-01

    The evaluation of adhesively bonded structures has been a challenge over the several decades that these structures have been used. Applications within the aerospace industry often call for particularly high performance adhesive bonds. Several techniques have been proposed for the detection of disbonds and cohesive weakness but a reliable NDE method for detecting interfacial weakness (also sometimes called a kissing bond) has been elusive. Different techniques, including ultrasonic, thermal imaging and shearographic methods, have been proposed; all have had some degree of success. In particular, ultrasonic methods, including those based upon shear and guided waves, have been explored for the assessment of interfacial bond quality. Since 3-D guided shear horizontal (SH) waves in plates have predominantly shear displacement at the plate surfaces, we conjectured that SH guided waves should be influenced by interfacial conditions when they propagate between adhesively bonded plates of comparable thickness. This paper describes a new technique based on SH guided waves that propagate within and through a lap joint. Through mechanisms we have yet to fully understand, the propagation of an SH wave through a lap joint gives rise to a reverberation signal that is due to one or more reflections of an SH guided wave mode within that lap joint. Based upon a combination of numerical simulations and measurements, this method shows promise for detecting and classifying interfacial bonds. It is also apparent from our measurements that the SH wave modes can discriminate between adhesive and cohesive bond weakness in both Aluminum-Epoxy-Aluminum and Composite-Epoxy-Composite lap joints. All measurements reported here used periodic permanent magnet (PPM) Electro-Magnetic Acoustic Transducers (EMATs) to generate either or both of the two lowest order SH modes in the plates that comprise the lap joint. This exact configuration has been simulated using finite element (FE) models to

  7. Effect of double-layer application on dentin bond durability of one-step self-etch adhesives.

    Science.gov (United States)

    Taschner, M; Kümmerling, M; Lohbauer, U; Breschi, L; Petschelt, A; Frankenberger, R

    2014-01-01

    The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S(3) Bond, XenoV(+), and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S(3) Bond, and XenoV(+) showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.

  8. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive.

    Science.gov (United States)

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-03-01

    In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey's test were used to analyze the data (pself-etch) was significantly different from group D (total-etch) (pself-etch) with D (p= 0.024). The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive.

  9. Effect of rubbing force magnitude on bond strength of universal adhesives applied in self-etch mode.

    Science.gov (United States)

    Irmak, Özgür; Yaman, Batu Can; Orhan, Ekim Onur; Ozer, Fusun; Blatz, Markus B

    2017-10-27

    This study investigated the effect of rubbing force magnitude on dentin bond strengths of multi-mode adhesives applied in self-etch mode. Seventy-two extracted human molar teeth were used. Two different universal adhesives Single Bond Universal (SB) and Clearfil Universal (CL) were applied onto dentin surfaces in three different modes: without rubbing (NR), rubbing with 40 gf (gramforce) (40) or 80 gf (80) load. Teeth were restored with a resin composite. Half of the specimens were subject to thermal aging (10,000 cycles). Microtensile bond strength was measured and data were statistically analyzed with two-way analysis of variance and Tukey's test (α=0.05). Baseline bond strength values for CL adhesive were improved by rubbing (40 and 80 gf) as compared to no rubbing (p0.05). Rubbing improves bonding performance of some universal adhesives to dentin when applied in self-etch mode.

  10. Influence of differently oriented dentin surfaces and the regional variation of specimens on adhesive layer thickness and bond strength.

    Science.gov (United States)

    Pazinatto, Flávia Bittencourt; Atta, Maria Teresa

    2008-01-01

    Adhesive systems can spread differently onto a substrate and, consequently, influence bonding. The purpose of this study was to evaluate the effect of differently oriented dentin surfaces and the regional variation of specimens on adhesive layer thickness and microtensile bond strength (MTBS). Twenty-four molars were sectioned mesiodistally to expose flat buccal and lingual halves. Standardized drop volumes of adhesive systems (Single Bond [SB] and Prime & Bond 2.1 [PB2.1]) were applied to dentin according to the manufacturer's instructions. Teeth halves were randomly divided into groups: 1A-SB/parallel to gravity; 1B-SB/perpendicular to gravity; 2A-PB2.1/parallel to gravity; and 2B-PB2.1/perpendicular to gravity. The bonded assemblies were stored in 37 degrees C distilled water for 24 hours and then sectioned to obtain dentin sticks (0.8 mm2). The adhesive layer thickness was determined in a light microscope (x200), and after 48 hours the specimens were subjected to MTBS test. Data were analyzed by one-way and two-way analysis of variance and Student-Newman-Keuls tests. Mean values (MPa +/- SD) of MTBS were: 39.1 +/- 12.9 (1A); 32.9 +/- 12.4 (1B); 52.9 +/- 15.2 (2A); and 52.3 +/- 16.5 (2B). The adhesive systems' thicknesses (microm +/- SD) were: 11.2 +/- 2.9 (1A); 18.1 +/- 7.3 (1B); 4.2 +/- 1.8 (2A); and 3.9 +/- 1.3 (2B). No correlation between bond strength and adhesive layer thickness for both SB and PB2.1 (r = -0.224, p = 0.112 and r = 0.099, p = 0.491, respectively) was observed. The differently oriented dentin surfaces and the regional variation of specimens on the adhesive layer thickness are material-dependent. These variables do not influence the adhesive systems' bond strength to dentin. CLINICAL SIGNIFICANCE Adhesive systems have different viscosities and spread differently onto a substrate, influencing the bond strength and also the adhesive layer thickness. Adhesive thickness does not influence dentin bond strength, but it may impair adequate solvent

  11. Bond Strength of Resin Cements to Zirconia Ceramic Using Adhesive Primers.

    Science.gov (United States)

    Stefani, Ariovaldo; Brito, Rui Barbosa; Kina, Sidney; Andrade, Oswaldo Scopin; Ambrosano, Gláucia Maria Bovi; Carvalho, Andreia Assis; Giannini, Marcelo

    2016-07-01

    To evaluate the influence of adhesive primers on the microshear bond strength of resin cements to zirconia ceramic. Fifty zirconia plates (12 mm × 5 mm × 1.5 mm thick) of a commercially available zirconium oxide ceramic (ZirCad) were sintered, sandblasted with aluminum oxide particles, and cleaned ultrasonically before bonding. The plates were randomly divided into five groups of 10. Three resin cements were selected (RelyX ARC, Multilink Automix, Clearfil SA Cement self-adhesive resin cement), along with two primers (Metal-Zirconia Primer, Alloy Primer) and one control group. The primers and resin cements were used according to manufacturers' recommendations. The control group comprised the conventional resin cement (RelyX ARC) without adhesive primer. Test cylinders (0.75 mm diameter × 1 mm high) were formed on zirconia surfaces by filling cylindrical Tygon tube molds with resin cement. The specimens were stored in distilled water for 24 hours at 37°C, then tested for shear strength on a Shimadzu EZ Test testing machine at 0.5 mm/min. Bond strength data were analyzed statistically by two-way ANOVA and Dunnett's test (5%). The bond strength means in MPa (± s.d.) were: RelyX ARC: 28.1 (6.6); Multilink Automix: 37.6 (4.5); Multilink Automix + Metal-Zirconia Primer: 55.7 (4.0); Clearfil SA Cement: 46.2 (3.3); and Clearfil SA Cement + Alloy Primer: 47.0 (4.1). Metal-Zirconia Primer increased the bond strength of Multilink Automix resin cement to zirconia, but no effect was observed for Alloy Primer using Clearfil SA Cement. RelyX ARC showed the lowest bond strength to zirconia. © 2015 by the American College of Prosthodontists.

  12. Influence of air-abrasion on zirconia ceramic bonding using an adhesive composite resin.

    Science.gov (United States)

    Yang, B; Barloi, A; Kern, M

    2010-01-01

    Air-abrasion as bonding conditioning method for zirconia ceramic might compromise the mechanical strength of zirconia restorations. The purpose of this study was to evaluate the influence of surface conditioning parameters, i.e., air-abrasion with reduced pressure or no air-abrasion and priming with adhesive primers on the long-term resin bond strength to zirconia ceramic. Zirconia ceramic disks were polished with 600 grit abrasive paper. Plexiglas tubes filled with composite resin were bonded with RelyX Unicem luting composite resin to the conditioned zirconia disks. Three surface conditions (unconditioned, air-born particle abrasion at 0.05 or 0.25 MPa) and four priming conditions (no priming, priming with Metal/Zirconia Primer, priming with Alloy Primer, priming with Clearfil Ceramic Primer) were tested. Sixteen specimens of each combination were bonded. Subgroups of eight bonded samples were stored in water either for 3 days or 150 days with 37,500 thermocycling. Tensile bond strengths (TBSs) were determined with a universal testing machine at a crosshead speed of 2mm/min. Without priming, RelyX Unicem showed durable bond strength to 0.25 MPa airborne-particle abraded ceramic. When combined with 10-methacryloyloxy-decyl dihydrogenphosphate containing primers, air-abrasion resulted in a durable TBS to zirconia ceramic even at a reduced abrasion pressure. However, combined with Metal/Zirconia Primer air-abrasion did not provide a durable TBS to zirconia ceramic. Using a self-adhesive luting resin composite (RelyX Unicem), air-abrasion at 0.25 MPa or the combination of low pressure air-abrasion and priming with MDP-containing primers seems to be useful to achieve durable long-term bonding to zirconia ceramic.

  13. Dry-bonding Etch-and-Rinse Strategy Improves Bond Longevity of a Universal Adhesive to Sound and Artificially-induced Caries-affected Primary Dentin.

    Science.gov (United States)

    Lenzi, Tathiane Larissa; Soares, Fabio Zovico Maxnuck; Raggio, Daniela Prócida; Pereira, Gabriel Kalil Rocha; Rocha, Rachel de Oliveira

    To evaluate the effect of the etching strategy on the immediate and 1-year microtensile bond strength (μTBS) and structural reliability of a universal adhesive to sound and artificially-induced caries-affected dentin of primary teeth. Flat midcoronal dentin surfaces were exposed in 50 primary molars, which were then randomly assigned to 10 groups according to substrate (sound dentin [SD] and artificially-induced caries-affected dentin [CAD] with pH cycling for 14 days) and etching approach using Scotchbond Universal Adhesive (self-etching or dry or wet-bonding etch-and-rinse strategies) with Adper Single Bond Plus (two-step etch-and-rinse adhesive) and Clearfil SE Bond (two-step self-etching system) as controls. Composite buildups were constructed and sectioned to obtain bonded sticks (0.8 mm2) to be subjected to microtensile testing immediately or after 1 year of water aging. Data were analyzed using three-way repeated measures ANOVA and Tukey's test (α = 0.05). Weibull modulus and characteristic strength were also determined. A decrease in bond strength was observed after 1 year of water aging, except when the universal adhesive was used in the dry-bonding etch-and-rinse and self-etching approaches. However, the self-etching approach resulted in lower μTBS values in SD, while no difference among experimental groups was observed in CAD. Overall, higher Weibull modulus values were achieved in the groups with higher bond strength. The relationship between characteristic strength and bond strengths was not linear for all groups. The bond longevity of the universal adhesive using the dry-bonding etch-and-rinse approach on sound and artificially-induced caries-affected primary dentin was better than the other bonding agents and approaches tested.

  14. Influence of chlorhexidine application on longitudinal adhesive bond strength in deciduous teeth

    Directory of Open Access Journals (Sweden)

    Vicente Castelo Branco Leitune

    2011-10-01

    Full Text Available The aim of this study was to evaluate the influence of applying 2% chlorhexidine for 30 seconds after phosphoric acid conditioning of dentin on the immediate and long-term bond strengths in deciduous teeth. The occlusal enamel was removed from 40 human sound deciduous molars, which were exfoliated by natural means, and the dentin was conditioned with 37% phosphoric acid for 15 seconds and washed with running water. The specimens were divided into two groups of 20 teeth. The test group received an application of 2% chlorhexidine for 30 seconds prior to a three-step etch-and-rinse adhesive system, whereas the control group received only the adhesive system. Three cylindrical restorations were made with a composite resin for each tooth. Ten teeth in each group were submitted to a microshear bond strength test after 24 hours, while the remaining teeth were stored in distilled water at 37 °C for 6 months before testing the microshear bond strength. The test group had a higher bond strength than did the control group after 6 months of storage. No statistical differences were found when groups with the same dentin treatment were compared at different times. Short applications of chlorhexidine at low concentrations prevent hybrid layer degradation and positively affect bond strength over time.

  15. Comparison of shear bond strength and microleakage of Scotchbond multi-purpose (MP adhesive system and an experimental dentin bonding agent based on standard of ISOTR 11405

    Directory of Open Access Journals (Sweden)

    Jafarzadeh Kashi T.

    2009-12-01

    Full Text Available "nBackground and Aim: Evaluation of shear bond strength and microleakage of bonding agents is important as these properties play main roles in adhesion of composite to dental tissues. Microleakage results in bacterial penetration into dentin tubules and enamel surfaces and causes sensitivity and recurrent caries followed by destruction of composite filling. Insufficient shear bond strength results in early failure of filling in low masticatory forces. The main goal of this study was to compare the microleakage and shear bond strength of an experimental adhesive and Scotchbond multi-purpose (MP adhesive system."nMaterials and Methods: In this experimental study, sixty extracted caries free human molar teeth were randomly assigned into 4 groups of 15 each for shear bond strength. Variables were bonding agents, enamel and dentin. Twenty teeth assigned into 2 groups of 10 each were used for valuation of the microleakage. Microleakage and shear bond strength were performed according to ISO TR 11405. All data were analyzed with parametric and non-parametric tests according to their normality distribution. Also, Weibull distribution performed on data."nResults: Data obtained from both microleakage and shear bond strength tests showed no significant difference between the experimental bonding and Scotchbond MP bonding (P>0.05. Furthermore, there was no significant difference between the microleakage of occlusal and gingival parts of both bondings (P>0.05."nConclusion: Experimental adhesive bonding showed acceptable results regarding microleakage and shear bond strength. It may be concluded that the experimental dentin bonding had a comparable performance quality with that of commercial system.

  16. Tensile Bond Strength of So-called Universal Primers and Universal Multimode Adhesives to Zirconia and Lithium Disilicate Ceramics.

    Science.gov (United States)

    Elsayed, Adham; Younes, Feras; Lehmann, Frank; Kern, Matthias

    2017-01-01

    To test the bond strength and durability after artificial aging of so-called universal primers and universal multimode adhesives to lithium disilicate or zirconia ceramics. A total of 240 ceramic plates, divided into two groups, were produced and conditioned: 120 acid-etched lithium disilicate plates (IPS e.max CAD) and 120 air-abraded zirconia plates (Zenostar T). Each group was divided into five subgroups (n = 24), and a universal restorative primer or multimode universal adhesive was used for each subgroup to bond plexiglas tubes filled with a composite resin to the ceramic plate. The specimens were stored in water at 37°C for 3 days without thermal cycling, or for 30 or 150 days with 7500 or 37,500 thermal cycles between 5°C and 55°C, respectively. All specimens then underwent tensile bond strength testing. Initially, all bonding systems exhibited high TBS, but some showed a significant reduction after 30 and 150 days of storage. After 3, 30, and 150 days, Monobond Plus, which contains silane and phosphate monomer, showed significantly higher bond strengths than the other universal primer and adhesive systems. The bond strength to lithium disilicate and zirconia ceramic is significantly affected by the bonding system used. Using a separate primer containg silane and phosphate monomer provides more durable bonding than do silanes incorporated in universal multimode adhesives. Only one of five so-called universal primers and adhesives provided durable bonding to lithium disilicate and zirconia ceramic.

  17. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques

    Directory of Open Access Journals (Sweden)

    José Aginaldo de Sousa Júnior

    2015-08-01

    Full Text Available Objectives This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Materials and Methods Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05. Results Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p < 0.05, while the factor 'duration of air-stream' was not significant. Deproteinization of dentin increased the bond strength (p < 0.05. Stae showed the lowest bond strength values (p < 0.05, while no significant difference was observed between XP Bond and Ambar. Conclusions Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique.

  18. Advances in the analysis and design of adhesive-bonded joints in composite aerospace structures

    Science.gov (United States)

    Hart-Smith, L. J.

    1974-01-01

    Several aspects of adhesive-bonded joint analysis and design are presented from the reference of size of structure or load intensity. This integrates the individual characterizations of double-lap, single-lap, stepped-lap, tapered-lap and scarf joints. The paper includes an overview of bonded joint selection from the standpoints of design, fabrication, and processing, each bearing in mind the influence of such considerations on the strength of the joint. A case study is presented of the optimization of a specific relatively thick titanium-to-graphite epoxy stepped-lap joint, using the digital computer analysis program A4EG. The factors accounted for are adhesive plasticity, adherend stiffness imbalance, adherend thermal mismatch, and change of material properties within the range of temperature environment and with load direction. The strength increases obtainable by refining the initial design are demonstrated.

  19. Effect of EDTA Conditioning and Carbodiimide Pretreatment on the Bonding Performance of All-in-One Self-Etch Adhesives.

    Science.gov (United States)

    Singh, Shipra; Nagpal, Rajni; Tyagi, Shashi Prabha; Manuja, Naveen

    2015-01-01

    Objective. This study evaluated the effect of ethylenediaminetetraacetic acid (EDTA) conditioning and carbodiimide (EDC) pretreatment on the shear bond strength of two all-in-one self-etch adhesives to dentin. Methods. Flat coronal dentin surfaces were prepared on one hundred and sixty extracted human molars. Teeth were randomly divided into eight groups according to two different self-etch adhesives used [G-Bond and OptiBond-All-In-One] and four different surface pretreatments: (a) adhesive applied following manufacturer's instructions; (b) dentin conditioning with 24% EDTA gel prior to application of adhesive; (c) EDC pretreatment followed by application of adhesive; (d) application of EDC on EDTA conditioned dentin surface followed by application of adhesive. Composite restorations were placed in all the samples. Ten samples from each group were subjected to immediate and delayed (6-month storage in artificial saliva) shear bond strength evaluation. Data collected was subjected to statistical analysis using three-way ANOVA and post hoc Tukey's test at a significance level of p adhesives. However, EDC pretreatment on EDTA conditioned dentin surface resulted in preservation of resin-dentin bond strength of both adhesives with no significant fall over six months.

  20. Effect of chlorhexidine on bonding durability of two self-etching adhesives with and without antibacterial agent to dentin

    Science.gov (United States)

    Shafiei, Fereshteh; Alikhani, Armaghan; Alavi, Ali Asghar

    2013-01-01

    Background: Considering the possibility of remaining bacteria in the cavity or invading via microgaps, the use of antibacterial agents in adhesive restoration may be beneficial. This study evaluated the effect of chlorhexidine on immediate and long-term shear bond strength of adhesives with and without antibacterial agent to dentin. Materials and Methods: In this in vitro study, the occlusal surfaces of 80 intact human premolars were removed to expose the flat midcoronal dentin. The teeth were assigned to four groups. Two adhesive systems, Clearfil SE Bond (SE) and Clearfil Protect Bond (PB) were used according to manufacturer's instructions as the control groups. In the experimental groups, 2% chlorhexidine was applied prior to acidic primer of two adhesives. Then, resin composite was applied. Half of the specimens in each group were submitted to shear bond test after 24 h without thermocycling, and the other half were submitted to water storage for 6 months and thermocycling before testing. The data was analyzed using three-way analysis of variance (ANOVA) and t-test (α = 0.05). Results: Chlorhexidine application significantly decreased the initial bond strength (BS) of the two self-etch adhesives to dentin (P adhesives after aging. PB showed a lower BS than SE in two time periods (P adhesives over time. However, considering the negative effect of chlorhexidine on the initial BS, the benefits of chlorhexidine associated with these adhesives cannot possibly be used. PMID:24379870

  1. Interfacial integrity of bonded restorations with self-etching adhesives: Water storage and thermo-mechanical cycling.

    Science.gov (United States)

    Martins, Gislaine Cristine; Sánchez-Ayala, Alfonso; D'Alpino, Paulo Henrique Perlatti; Calixto, Abraham Lincoln; Gomes, João Carlos; Gomes, Osnara Maria Mongruel

    2012-04-01

    To evaluate the effect of thermo-mechanical cycling (TMC) on the microleakage (μL) and axial gap width (AG) of Class V bonded restorations in premolars using self-etching adhesive systems. The bond strength of composite restorations to dentin (μTBS) using the same adhesives was also evaluated in third molars after water storage: 24 h and 6 months. The research hypotheses were tested for the results of two self-etching adhesives in comparison when a conventional two-step adhesive was used: (1) the μL and AG would be lower, regardless of TMC; (2) the μTBS of self-etching adhesives would be higher, irrespective of evaluation times. Sixty Class V composite restorations were made in 30 premolars and bonded with Adper Single Bond 2 (ASB2), AdheSE (ASE), and Adper Prompt L-Pop (APL-P) (n=20). Dentin μL and AG were immediately measured for half of the sample. The other half was evaluated after TMC. Eighteen third molars were also selected and bonded using the same adhesives to test the μTBS to dentin. Specimens were evaluated after 24 h and 6 months of water storage. No differences in μL and AG were found among the groups (P>.05). The μTBS mean values were: ASB2>ASE>APL-P (Pconventional, two-step adhesive remains high after 6 months of water storage.

  2. Cost-Efficient Wafer-Level Capping for MEMS and Imaging Sensors by Adhesive Wafer Bonding

    Directory of Open Access Journals (Sweden)

    Simon J. Bleiker

    2016-10-01

    Full Text Available Device encapsulation and packaging often constitutes a substantial part of the fabrication cost of micro electro-mechanical systems (MEMS transducers and imaging sensor devices. In this paper, we propose a simple and cost-effective wafer-level capping method that utilizes a limited number of highly standardized process steps as well as low-cost materials. The proposed capping process is based on low-temperature adhesive wafer bonding, which ensures full complementary metal-oxide-semiconductor (CMOS compatibility. All necessary fabrication steps for the wafer bonding, such as cavity formation and deposition of the adhesive, are performed on the capping substrate. The polymer adhesive is deposited by spray-coating on the capping wafer containing the cavities. Thus, no lithographic patterning of the polymer adhesive is needed, and material waste is minimized. Furthermore, this process does not require any additional fabrication steps on the device wafer, which lowers the process complexity and fabrication costs. We demonstrate the proposed capping method by packaging two different MEMS devices. The two MEMS devices include a vibration sensor and an acceleration switch, which employ two different electrical interconnection schemes. The experimental results show wafer-level capping with excellent bond quality due to the re-flow behavior of the polymer adhesive. No impediment to the functionality of the MEMS devices was observed, which indicates that the encapsulation does not introduce significant tensile nor compressive stresses. Thus, we present a highly versatile, robust, and cost-efficient capping method for components such as MEMS and imaging sensors.

  3. Analysis of an adhesively bonded single lap joint subjected to eccentric loading

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, N. G.

    2013-01-01

    is benchmarking of computational tools. The test is based on a Single Lap Joint subjected to Eccentric Loading (SLJ-EL). The basic concept that lies behind this configuration is that the applied in-plane tensile load leads the adhesive layer to develop normal stresses, in-plane and out-of-plane shear stresses......A new experimental test is proposed, which allows the contribution of Mode I, II and III fracture modes to the failure of the adhesive layer of bonded joints aiming at achieving the realistic conditions often occurring during loading of practical joints. The main objective of this test......, which correspond to Mode I, II and III loading and fracture. These tests were designed so that the metal substrates do not enter plasticity and the adhesive achieves a mode mixity ratio between Mode II and Mode III not lower than 0.5. The experiments were simulated in a 3-dimensional finite element...

  4. In vitro bonding effectiveness of three different one-step self-etch adhesives with additional enamel etching.

    Science.gov (United States)

    Batra, Charu; Nagpal, Rajni; Tyagi, Shashi Prabha; Singh, Udai Pratap; Manuja, Naveen

    2014-08-01

    To evaluate the effect of additional enamel etching on the shear bond strength of three self-etch adhesives. Class II box type cavities were made on extracted human molars. Teeth were randomly divided into one control group of etch and rinse adhesive and three test groups of self-etch adhesives (Clearfil S3 Bond, Futurabond NR, Xeno V). The teeth in the control group (n = 10) were treated with Adper™ Single Bond 2. The three test groups were further divided into two subgroups (n = 10): (i) self-etch adhesive was applied as per the manufacturer's instructions; (ii) additional etching of enamel surfaces was done prior to the application of self-etch adhesives. All cavities were restored with Filtek Z250. After thermocycling, shear bond strength was evaluated using a Universal testing machine. Data were analyzed using anova independent sample's 't' test and Dunnett's test. The failure modes were evaluated with a stereomicroscope at a magnification of 10×. Additional phosphoric acid etching of the enamel surface prior to the application of the adhesive system significantly increased the shear bond strength of all the examined self-etch adhesives. Additional phosphoric acid etching of enamel surface significantly improved the shear bond strength. © 2013 Wiley Publishing Asia Pty Ltd.

  5. Dual-cured etch-and-rinse adhesive systems increase the bond durability of direct coronal dentin restorations.

    Science.gov (United States)

    Borges, B C D; Vilela, A R R C; da Silva-Junior, C A; Souza-Junior, E J; Sinhoreti, M A C; Pinheiro, F H S L; Braz, R; Montes, M A J R

    2013-01-01

    This study aimed to evaluate the bond durability of dentin restorations bonded with light- or dual-cured etch-and-rinse adhesive systems. A three-step adhesive system (Scotchbond Multipurpose Plus), an acetone-based two-step adhesive system (Prime & Bond 2.1), and an ethanol-based two-step adhesive system (Excite) were tested. Both the light- and the dual-cured versions were evaluated. High C-factor dentin cavities were prepared on 120 bovine incisors, which were then restored with resin composite (n=10). The samples were stored in water for 24 hours, and half of them were subjected to additional degradation with 10% NaOCl for five hours. The push-out bond strength test was performed in a universal testing machine until failure. Failure modes were evaluated by scanning electron microscopy. Data were analyzed by three-way analysis of variance and Tukey tests (padhesive system presented a higher immediate bond strength and durability than those that were light cured. The three-step adhesive system produced the highest values, whereas the acetone-based adhesive system produced the lowest result. Therefore, the use of dual-cured etch-and-rinse adhesive systems can induce increased bond durability to direct coronal dentin restorations.

  6. Comparative evaluation of tensile bond strengths of total-etch adhesives and self-etch adhesives with single and multiple consecutive applications: An in vitro study

    OpenAIRE

    Mandava Deepthi; Ajitha P; Narayanan L

    2009-01-01

    Aim: This study evaluates the effect of single and multiple consecutive applications of adhesives on the tensile bond strength. The currently available adhesives follow either the total-etch or the self-etch concept. However, in both techniques the uniformity and thickness of the adhesive layer plays a significant role in the development of a good bond. Materials and Methods: Sixty composite-dentin bonded specimens were prepared using a total-etch adhesive (Gluma) and another 60 using a sel...

  7. A New Material Model for 2D FE Analysis of Adhesively Bonded Composite Joints

    Directory of Open Access Journals (Sweden)

    Libin ZHAO

    2014-12-01

    Full Text Available Effective and convenient stress analysis techniques play important roles in the analysis and design of adhesively bonded composite joints. A new material model is presented at the level of composite ply according to the orthotropic elastic mechanics theory and plane strain assumption. The model proposed has the potential to reserve nature properties of laminates with ply-to-ply modeling. The equivalent engineering constants in the model are obtained only by the material properties of unidirectional composites. Based on commercial FE software ABAQUS, a 2D FE model of a single-lap adhesively bonded joint was established conveniently by using the new model without complex modeling process and much professional knowledge. Stress distributions in adhesive were compared with the numerical results by Tsai and Morton and interlaminar stresses between adhesive and adherents were compared with the results from a detailed 3D FE analysis. Good agreements in both cases verify the validity of the proposed model. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.5960

  8. Microtensile Bond Strength of Self-Adhesive Luting Cements to Ceramics

    Directory of Open Access Journals (Sweden)

    Tomoko Abo

    2012-01-01

    Full Text Available The purpose of this paper was to compare the bond strengths of the self-adhesive luting cements between ceramics and resin cores and examine their relation to the cement thickness. Three self-adhesive luting cements (Smartcem, Maxcem, and G-CEM and a resin cement (Panavia F 2.0 for control were used in the paper. The thickness of the cements was controlled in approximately 25, 50, 100, or 200 μm. Each 10 specimens were made according to the manufacturers’ instructions and stored in water at 37°C. After 24 hours, microtensile bond strength (μTBS was measured. There were significant differences in cements. Three self-adhesive cements showed significantly lower μTBSs than control that required both etching and priming before cementation (Tukey, <0.05. The cement thickness of 50 or 100 μm tended to induce the highest μTBSs for each self-adhesive luting cements though no difference was found.

  9. Laser Ablation Surface Preparation of Ti-6A1-4V for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Watson, Kent A.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Wohl, Christopher J.; Hopkins, John W.; Connell, John W.

    2012-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable bonds. Laser ablation imparts both topographical and chemical changes to a surface which can lead to increased bond durability. A laser based process provides an alternative to chemical-dip, manual abrasion and grit blast treatments which are expensive, hazardous, polluting, and less precise. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Failure mode, surface roughness, and chemical makeup were analyzed using fluorescence enhanced visualization, microscopy, and X-ray photoelectron spectroscopy, respectively. Single lap shear tests were conducted on bonded and aged specimens to observe bond strength retention and failure mode. Some promising results showed increasing strength and durability of lap shear specimens as laser ablation coverage area and beam intensity increased. Chemical analyses showed trends for surface chemical species which correlated with improved bond strength and durability. Combined, these results suggest that laser ablation is a viable process for inclusion with or/and replacement of one or more currently used titanium surface treatments. On-going work will focus on additional mechanical tests to further demonstrate improved bond durability.

  10. Fracture testing and analysis of adhesively bonded joints for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Boeman, R.G.; Warren, C.D. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.

    1994-12-31

    In 1992, the Oak Ridge National Laboratory (ORNL) began a cooperative effort with the Automotive Composites Consortium (ACC) to conduct research and development that would overcome technological hurdles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures for the purpose of increasing fuel efficiency and reducing environmental pollutant emissions. In accomplishing this mission, the bonding of similar and dissimilar materials was identified as being of primary importance to the automotive industry since this enabling technology would give designers the freedom to choose from an expanded menu of low mass materials for component weight reduction. This paper concentrates on the details of developing accurate fracture test methods for adhesively bonded joints in the automotive industry. The test methods being developed are highly standardized and automated so that industry suppliers will be able to pass on reliable data to automotive designers in a timely manner. Mode I fracture tests have been developed that are user friendly and automated for easy data acquisition, data analysis, test control and test repeatability. The development of this test is discussed. In addition, materials and manufacturing issues are addressed which are of particular importance when designing adhesive and composite material systems.

  11. Bracket bond strength with transillumination of a light-activated orthodontic adhesive.

    Science.gov (United States)

    Oesterle, L J; Shellhart, W C

    2001-08-01

    The literature describes transillumination as a means of curing orthodontic light-cured composite adhesive. The literature also recommends a 2 to 3 times increase in light exposure time when light curing using transillumination. The purpose of this study was to determine the transmittance of the curing light through human enamel and the effect of transillumination on the bond strength of orthodontic brackets. One hundred extracted human maxillary incisors were used in this study. Brackets with orthodontic composite adhesive were placed on the labial surface of the incisors and light cured from either the labial or the lingual (transillumination). The control sample was cured from the labial for a total of 40 seconds of light exposure. Experimental samples were cured from the lingual (transillumination) for 20, 30, 40, or 50 seconds. The shear-peel bond strengths were tested at 30 minutes and 24 hours after light application. The results of this study demonstrated no statistically significant difference between 40 seconds of labial curing and most of the lingually cured groups. The only experimental group that differed statistically from the control group was the 40-second lingual cure group tested at 30 minutes after light application. Actual bond strengths, however, were lower for all experimental samples. The samples tested at 24 hours that received 50 seconds of transillumination were nearly the same as the control values. This study demonstrated that transillumination of maxillary incisors is an acceptable method of curing orthodontic adhesive, particularly if the exposure time is increased from 40 to 50 seconds.

  12. Structural model for covalent adhesion of the Streptococcus pyogenes pilus through a thioester bond.

    Science.gov (United States)

    Linke-Winnebeck, Christian; Paterson, Neil G; Young, Paul G; Middleditch, Martin J; Greenwood, David R; Witte, Gregor; Baker, Edward N

    2014-01-03

    The human pathogen Streptococcus pyogenes produces pili that are essential for adhesion to host surface receptors. Cpa, the adhesin at the pilus tip, was recently shown to have a thioester-containing domain. The thioester bond is believed to be important in adhesion, implying a mechanism of covalent attachment analogous to that used by human complement factors. Here, we have characterized a second active thioester-containing domain on Cpa, the N-terminal domain of Cpa (CpaN). Expression of CpaN in Escherichia coli gave covalently linked dimers. These were shown by x-ray crystallography and mass spectrometry to comprise two CpaN molecules cross-linked by the polyamine spermidine following reaction with the thioester bonds. This cross-linked CpaN dimer provides a model for the covalent attachment of Cpa to target receptors and thus the streptococcal pilus to host cells. Similar thioester domains were identified in cell wall proteins of other Gram-positive pathogens, suggesting that thioester domains are more widely used and provide a mechanism of adhesion by covalent bonding to target molecules on host cells that mimics that used by the human complement system to eliminate pathogens.

  13. Evaluation of adhesive bonding of lithium disilicate ceramic material with duel cured resin luting agents.

    Science.gov (United States)

    Lambade, Dipti Pravin; Gundawar, Sham M; Radke, Usha M

    2015-02-01

    The purpose of this vitro study was to comparatively evaluate the adhesive bonding of dual cured resin luting agents with lithium disilicate ceramic material. Porcelain laminate veneers were prepared with lithium disilicate ceramic material i.e. IPS Empress II( E-Max Press). These laminates were bonded with RelyX ARC, Panavia F 2.0, Variolink II, Duolink and Nexus NX3.The porcelain laminates were etched with 9.6% hydrofluoric acid (Pulpdent Corporation) for one minute, washed for 15 sec with three way syringe and dried for 15 sec with air syringe. The silane (Ultradent) was applied with the help of applicator tip in a single coat and kept undisturbed for one minute. The prepared surfaces of the premolars were treated with 37% phosphoric acid (Prime dent) for 15 sec, thoroughly rinsed and dried as per manufactures instructions. The shear bond test was carried out on all samples with the Universal testing machine (Instron U.S.A.) The scanning electron microscopic study was performed at the fractured interface of representative samples from each group of luting agents. In this study, the highest value of shear bond strength was obtained for NEXUS NX3 and the lowest for VARIOLINK II. The difference in bond strength can be interpreted as the difference in fracture resistance of luting agents, to which shearing load was applied during the shear bond strength test. It is inferred from this study that the composition of the luting agent determines the adhesive characteristics in addition to surface treatment and bonding surface area.

  14. Shear bond strengths of self-adhesive luting resins fixing dentine to different restorative materials.

    Science.gov (United States)

    Zhang, Congxiao; Degrange, Michel

    2010-01-01

    The purpose of this study was to assess the bond strengths of three self-adhesive resin cements (Rely X Unicem, Maxcem and Multilink Sprint) fixing dentine to four different restorative substrates (Ni-Cr alloy, E-Max glass-ceramic, Y-TZP Zirconia and Adoro micro-filled composite) and to compare their performances with those of two conventional dual-cured luting cements (Variolink II + Total-etch Excite DSC and Multilink Automix + Self-etching Primer A + B). Cylindric specimens (5 x 5 mm) were prepared with the four restorative materials for bonding to human dentine. Three surface treatments were performed depending on the restorative material: (i) Al2O3 50 microm sandblasting (Ni-Cr, Adoro), (ii) #800 SiC polishing (Zirconia, E-Max), (iii) hydrofluoric acid (HF)-etching (E-Max). Twenty-five groups (n = 10) were designed according to luting cements, restorative materials and surface pre-treatments. In some experimental groups, Variolink II and Multilink Automix were coupled with, respectively, a silane primer (Monobond S) and an alloy/zirconia primer (Multilink A/Z primer). Specimens were stored in distilled water at 37 degrees C for 24 h and then loaded in shear until failure. Variolink II and Multilink Automix showed the highest bond strengths, regardless of the restorative substrate, when used with dentine bonding systems and primers, while the weakest bonds were with Maxcem. The bond strength recorded with the two other self-adhesive cements depended on the nature of the restorative substrate. Increasing retention at the interfaces (i.e., HF ceramic etching) and using specific primers significantly improves the bond strength of luted restorative materials to dentine.

  15. Effects of surface preparation on the long-term durability of adhesively bonded composite joints

    Science.gov (United States)

    Bardis, Jason Dante

    The long-term durability of adhesively bonded composite joints is critical to modern aircraft structures, which are increasingly adopting bonding as an alternative option to mechanical fastening. The effects of the surface preparation of the adherends are critical, affecting initial strength, long-term durability, fracture toughness, and failure modes of bonded joints. In this study, several potential factors are evaluated, with focus on the following: (1) Effects of possible chemical contamination from release fabrics, release films, and peel plies during adherend cure. (2) Chemical and mechanical effects of abrasion on the fracture toughness and failure mode. (3) Characterization of paste and film adhesives. There are several standard test methods used to evaluate specimen fracture, but the majority concentrate on bonded metals and interlaminar composite fracture. Testing concentrated on mode I tests; a custom double cantilever beam specimen was devised and utilized, and two forms of a wedge crack test (traveling and static) were also used. Additionally, single lap shear tests were run to contrast the mode I tests. Non-destructive testing included X-ray photography of crack fronts, energy dispersive spectroscopy and X-ray photoelectron spectroscopy surface chemistry analyses, and scanning electron microscope imaging of prepared surfaces. All mode I test methods tended to be in agreement in the ranking of different surface preparation methods. Test results revealed that release agents deposited on adherend surfaces during their cure cycle prevented proper adhesion. While mechanical abrasion did improve their fracture toughness and lower their contamination greatly, the test values did not reach the levels of samples that were not contaminated before bonding, and the interfacial modes of failure did not always change to desirable modes.

  16. Effect of salivary contamination on shear bond strength of two adhesives: An in vitro study

    Directory of Open Access Journals (Sweden)

    Shruti B Patil

    2014-01-01

    Full Text Available Introduction: Composite material used with bonding system are technique sensitive and contamination of an etched surface by saliva or blood plays a key role in bonding efficacy. Achieving good moisture control is a common problem encountered and is of importance while treating a pediatric age group since rubber dam in dental office is commonly applied in fewer than 10% of restorative treatment. Despite the advantage of rubber dam application, usage of rubber dam depends on child′s behavior and its level of co-operation for which pediatric dentists compromise with its usage. This study was conducted to evaluate the effect of salivary contamination of enamel and dentin on bond strength of two adhesives. Materials and Methods: An in vitro study comprised of test group of 112 central incisors divided into 4 groups for testing on enamel and dentin separately. These are Group I: Control group without salivary contamination; Group II: Contaminated with saliva and air-dried; Group III: Contaminated with saliva, rinsed and air-dried; Group IV: Coated with adhesive, light cured and then contaminated. Shear bond strength was calculated using universal testing machine. Results: For testing on enamel and dentin, significantly decreased bond strength was seen with Group II (P 0.05, when compared with control Group I. Conclusion: The decontamination method used in this study by rinsing the contaminated cured adhesive layer that did not reverse the harmful effect of salivary contamination. As most of the children are active and restless with swinging mood, it is important not to negotiate with the procedural steps during treatment.

  17. Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin.

    Science.gov (United States)

    Naranjo, Jennifer; Ali, Mohsin; Belles, Donald

    2015-11-01

    Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin. With several self-adhesive resin cements currently available, there is confusion about which product and technique is optimal for bonding ceramic restorations to teeth. The objective of this study was to compare the shear bond strength of lithium disilicate cemented to enamel and dentin using 5 adhesive cements. 100 lithium disilicate rods were pretreated with 5% hydrofluoric acid, silane, and cemented to 50 enamel and 50 dentin surfaces using five test cements: Variolink II (etch-and-rinse) control group, Clearfil Esthetic (two step self-etch), RelyX Unicem, SpeedCEM, and BifixSE (self-adhesive). All specimens were stored (37 degrees C, 100% humidity) for 24 hours before testing their shear bond strength using a universal testing machine (Instron). Debonded surfaces were observed under a low-power microscope to assess the location and type of failure. The highest bond strength for both enamel and dentin were recorded for Variolink II, 15.1MPa and 20.4MPa respectively, and the lowest were recorded for BifixSE, 0.6MPa and 0.9MPa respectively. Generally, higher bond strengths were found for dentin (7.4MPa) than enamel (5.3MPa). Tukey's post hoc test showed no significant difference between Clearfil Esthetic and SpeedCem (p = 0.059), Unicem and SpeedCem (p = 0.88), and Unicem and BifixSE (p = 0.092). All cements bonded better to lithium disilicate than to enamel or dentin, as all bond failures occurred at the tooth/adhesive interface except for Variolink II. Bond strengths recorded for self-adhesive cements were very low compared to the control "etch and rinse" and self-etch systems. Further improvements are apparently needed in self-adhesive cements for them to replace multistep adhesive systems. The use of conventional etch and rinse cements such as Veriolink II should be preferred for cementing all ceramic restorations over self-adhesive cements

  18. Effects of long-term storage and thermocycling on bond strength of two self-etching primer adhesive systems.

    Science.gov (United States)

    Yuasa, Toshihiro; Iijima, Masahiro; Ito, Shuichi; Muguruma, Takeshi; Saito, Takashi; Mizoguchi, Itaru

    2010-06-01

    The effects of 2 years of storage and 6000 thermocycles on the shear bond strength (SBS) of two self-etching adhesive systems were studied. Two self-etching primer (SEP) systems (Transbond Plus and Beauty Ortho Bond) and one etch and rinse system (Transbond XT) were used to bond brackets to 126 human premolars that were then stored in artificial saliva for 24 hours or 2 years and thermocycled in distilled water before SBS testing with a universal testing machine. The adhesive remnant index (ARI) scores were calculated. Data were compared by two-way analysis of variance and chi-square analysis. Enamel/adhesive interfaces were examined by scanning electron microscopy. There was no significant difference in the mean SBS for the bonding materials among the three conditions. ARI scores showed that Transbond XT and Beauty Ortho Bond had less adhesive remaining on the teeth after ageing compared with storage for 24 hours. Specimens bonded with Beauty Ortho Bond showed leakage between the resin adhesive and enamel after ageing. Both SEP systems produced adequate SBS even after 2 years or 6000 times thermocycling. Thermocycling is an appropriate technique for determining the durability of orthodontic bracket bonding materials.

  19. Bonding efficacy of etch-and-rinse adhesives after dentin biomodification using ethanol saturation and collagen cross-linker pretreatment.

    Science.gov (United States)

    Sharma, Pallavi; Nagpal, Rajni; Tyagi, Shashi Prabha; Manuja, Naveen

    2015-01-01

    To evaluate whether the application of two simplified etch-and-rinse adhesives to biomodified dentin using ethanol-wet bonding (EWB) and collagen cross-linker (CCL) pretreatment improves their sealing ability. In 176 extracted human molars, the pulp-chambers were deroofed, and teeth were sectioned horizontally. Samples were randomly divided into eight groups according to four bonding techniques using two simplified etch-and-rinse adhesives; Adper Single Bond 2 (ASB) and XP Bond (XPB). The bonding protocols included: (a) Water-wet bonding (WWB); (b) EWB; (c) WWB and CCL application; (d) EWB and CCL application. After composite resin restorations, dye leakage evaluation and scanning electron microscope analysis were done. Leakage scores were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests at a significance level of P adhesives, least dye leakage was observed in EWB groups (b and d) (P = 0.918 and P = 0.399 respectively) which showed no significant difference, while maximum leakage scores were seen in WWB groups (a and c). Regardless of CCL application and adhesives used, EWB technique depicted (P = 0.003 and P = 0.004) significantly greater sealing ability than WWB. Bonding of ASB and XPB using EWB significantly improved their sealing ability. Biomodification using CCL pretreatment had no significant effect on the sealing ability of adhesives bonded with either WWB or EWB.

  20. Dentin bonding performance of experimental one-step adhesives after incorporation of POOH–SiO2 nanoparticles

    National Research Council Canada - National Science Library

    Welter Meereis, Carine Tais; Suárez, Carlos Enrique Cuevas; de Almeida, Suzanne Mendes; de Almeida, Carianne Mendes; Piva, Evandro; Collares, Fabrício Mezzomo; Ogliari, Fabrício Aulo

    2016-01-01

    ...) on dentin bond strength of experimental one-step self-etching adhesives (1-SEAs). Phosphate functional group was grafted onto silica nanoparticles through the free radical polymerization of an acid phosphate monomer...

  1. Influence of adhesive cementation systems on the bond strength of relined fiber posts to root dentin.

    Science.gov (United States)

    Rodrigues, Raquel Viana; Sampaio, Camila Sobral; Pacheco, Rafael Rocha; Pascon, Fernanda Miori; Puppin-Rontani, Regina Maria; Giannini, Marcelo

    2017-10-01

    Glass fiber post cementation procedures have undergone significant development. Relining the post with composite resin is a technique that aims to reduce resin cement thickness and consequently problems inherent to polymerization. Evidence is sparse regarding the efficacy of bonding procedures at increasing depths (from cervical to apical) using different adhesive cementation techniques. The purpose of this in vitro study was to evaluate the push-out bond strength (PBS) of composite resin relined glass fiber posts cemented to bovine root dentin using different adhesive cementation protocols. Eighteen bovine teeth (n=6) were embedded in polystyrene resin blocks, and the crowns were sectioned leaving a root portion of 20 mm in length. Root canals were prepared using rotary instruments provided by the post manufacturer (Whitepost DC #1), resulting in a uniform root canal preparation. The root canals were lubricated with a water-soluble glycerin gel. Silane (Prosil) was applied and the posts relined with a microhybrid composite resin (Filtek Z100) to conform to the root canal anatomy. Three adhesive cementation protocols were evaluated: a 3-step etch-and-rinse adhesive system (Adper Scotchbond Multi Purpose) in combination with a dual polymerizing resin cement (RelyX ARC); a universal adhesive system (Scotchbond Universal) associated with a dual polymerizing resin cement (RelyX Ultimate); and a self-adhesive dual polymerizing resin cement (RelyX Unicem 2). The roots were sectioned, resulting in four 2-mm segments at 4 different depths (cervical to apical) and evaluated by the PBS test, using a universal testing machine (Instron 4411) at 0.5 mm/min, until failure. Interfaces were evaluated by scanning electron microscopy, and failures were classified as cohesive failure in composite resin, cohesive failure in cement, cohesive failure in root dentin, adhesive failure, or mixed. Data were analyzed by 2-way split-plot ANOVA and the Tukey post hoc test (α=.05). No

  2. Water durability of resin bond to pure gold treated with various adhesion promoting thiirane monomers.

    Science.gov (United States)

    Kadoma, Yoshinori; Kojima, Katsunori; Tamaki, Yoh; Nomura, Yoshiaki

    2007-01-01

    Adhesion promoting monomers for precious metals, 2,3-epithiopropyl methacrylate (EP1MA), 4,5-epithiopentyl methacrylate (EP3MA), 9,10-epithiodecyl methacrylate (EP8MA), 10,11-epithioundecyl methacrylate (EP9MA), 9,10-epithiodecyl 4-vinylbenzoate (EP8VB), 2,3-epithiocyclohexyl methacrylate (EPCHMA), and 3,4-epithiobutyl 2,2-bis(methacryloyloxymethyl)-propionate (EP2BMA), were used as surface treatment agents for pure gold to improve the durability of resin bonds against water. Treated specimens were butt-jointed together with MMA-PMMA resins, and tensile bond strength was measured after 2,000 thermal cycles in water. Bond strength to precious metal alloys was also determined under the same condition to clarify the influence of metal composition. The adhesion performance of thiirane monomers to pure gold highly depended on their chemical structure. EP3MA, EP8MA, EP9MA, EP8VB, and EP2BMA showed excellent performance, while EP1MA exhibited a moderate one and EPCHMA a poor one. The comparison of pure gold with precious metal alloys revealed the usefulness of pure gold as a standard, common adherend for bond strength evaluations.

  3. Bond strength durability of self-etching adhesives and resin cements to dentin.

    Science.gov (United States)

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    To evaluate the microtensile bond strength (microTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37 degrees C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm(2) cross-sectional area, which were subjected to microTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The microTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (alpha= 0.05). The interaction effect for all three factors was statistically significant (three-way ANOVA, padhesive combination that provided the most promising bond strength after 90 days of storage in water.

  4. Effect of antibacterial/adhesive approaches on bonding durability of fiber posts cemented with self-etch resin cement

    OpenAIRE

    Shafiei, Fereshteh; Memarpour, Mahtab; Vafamand, Narges; Mohammadi, Mahsa

    2017-01-01

    Background Longevity of post-retained restoration is highly depended on bonding stability of fiber post (FP) to root dentin. This study evaluated the effect of different antibacterial/adhesive approaches on bonding durability of FPs luted into root canal with a self-etch cement. Material and Methods Seventy-two human maxillary central incisor roots were divided into six groups after endodontic treatment, based on the antibacterial/adhesive treatments as follows: 1)ED primer II (ED, control); ...

  5. Comparison of shear bond strength and microleakage of Scotchbond multi-purpose (MP) adhesive system and an experimental dentin bonding agent based on standard of ISOTR 11405

    OpenAIRE

    Jafarzadeh Kashi T.; Erfan M; Nezadi Niasar A.

    2009-01-01

    "nBackground and Aim: Evaluation of shear bond strength and microleakage of bonding agents is important as these properties play main roles in adhesion of composite to dental tissues. Microleakage results in bacterial penetration into dentin tubules and enamel surfaces and causes sensitivity and recurrent caries followed by destruction of composite filling. Insufficient shear bond strength results in early failure of filling in low masticatory forces. The main goal of this study was to c...

  6. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel

    OpenAIRE

    Mehdi Abed Kahnemooyi; Amir Ahmad Ajami; Soodabeh Kimyai; Fatemeh Pournaghiazar; Siavash Savadi Oskoee; • Mohammad Ali Mhammadi Torkani

    2014-01-01

    Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 3...

  7. Effect of different adhesion strategies on bond strength of resin composite to composite-dentin complex.

    Science.gov (United States)

    Özcan, M; Pekkan, G

    2013-01-01

    Service life of discolored and abraded resin composite restorations could be prolonged by repair or relayering actions. Composite-composite adhesion can be achieved successfully using some surface conditioning methods, but the most effective adhesion protocol for relayering is not known when the composite restorations are surrounded with dentin. This study evaluated the effect of three adhesion strategies on the bond strength of resin composite to the composite-dentin complex. Intact maxillary central incisors (N=72, n=8 per subgroup) were collected and the coronal parts of the teeth were embedded in autopolymerized poly(methyl tfr54methacrylate) surrounded by a polyvinyl chloride cylinder. Cylindrical cavities (diameter: 2.6 mm; depth: 2 mm) were opened in the middle of the labial surfaces of the teeth using a standard diamond bur, and the specimens were randomly divided into three groups. Two types of resin composite, namely microhybrid (Quadrant Anterior Shine; AS) and nanohybrid (Grandio; G), were photo-polymerized incrementally in the cavities according to each manufacturer's recommendations. The composite-enamel surfaces were ground finished to 1200-grit silicone carbide paper until the dentin was exposed. The surfaces of the substrate composites and the surrounding dentin were conditioned according to one of the following adhesion protocols: protocol 1: acid-etching (dentin) + silica coating (composite) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); protocol 2: silica coating (composite) + acid-etching (dentin) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); and protocol 3: acid-etching (dentin) + primer (dentin) + silanization (composite) + bonding agent (dentin + composite). Applied primer and bonding agents were the corresponding materials of the composite manufacturer. Silica coating (CoJet sand, 30 μm) was achieved using a chairside air-abrasion device (distance: 10 mm; duration

  8. Dentin deproteinization effect on bond strength of self-adhesive resin cements

    Directory of Open Access Journals (Sweden)

    Danielle Sampaio Lisboa

    2013-02-01

    Full Text Available This study examined the effect of deproteinization on the bond strength between self-adhesive resin cements and dentin surfaces that were untreated (control, acid-etched, or acid-etched and subjected to a post-etch deproteinization treatment. Cylinders of RelyX Unicem or BisCem (n = 6 cement were build-up on the dentin surfaces and tested to determine shear strength. The results were analyzed using two-way ANOVA and Tukey's test (5%. While neither dentin pretreatment improved the bond strength for RelyX Unicem, deproteinization treatments resulted in greater bond strength in BisCem specimens while acid etching alone did not improve the performance of the material.

  9. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-10-01

    The purpose of this study was to determine the relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. As controls, micro-hybrid and nano-hybrid resin composites were tested. The universal adhesives used were Scotchbond Universal, Adhese Universal, and G-Premio Bond. The fracture toughness and flexural properties of resin composites, and shear bond strength and shear fatigue strength of universal adhesive with resin composite using both total-etch and self-etch modes were determined. In the results, short fiber-reinforced resin composite showed significantly higher fracture toughness than did micro-hybrid and nano-hybrid resin composites. The flexural strength and modulus of short fiber-reinforced and nano-hybrid resin composites were significantly lower than were those of micro-hybrid resin composites. Regardless of etching mode, the shear bond strength of universal adhesives with short fiber-reinforced resin composite did not show any significant differences from micro-hybrid and nano-hybrid resin composites. The shear fatigue strength of universal adhesives with short fiber-reinforced resin composite and micro-hybrid resin composites were significantly higher than that of nano-hybrid resin composites. The results of this study suggest that the mechanical properties of short fiber-reinforced resin composite improve their bond durability with universal adhesive. © 2016 Eur J Oral Sci.

  10. CARIOSTATIC EFFECT AND FLUORIDE RELEASE FROM A VISIBLE LIGHT-CURING ADHESIVE FOR BONDING OF ORTHODONTIC BRACKETS

    NARCIS (Netherlands)

    OGAARD, B; REZKLEGA, F; RUBEN, J; ARENDS, J

    This study was designed to investigate the cariostatic potential in vivo of a visible light-curing adhesive for the bonding of orthodontic brackets. The fluoride release of the adhesive in water and saliva was also measured. Ten orthodontic patients with premolars to be extracted participated. One

  11. Microfabrication of plastic-PDMS microfluidic devices using polyimide release layer and selective adhesive bonding

    Science.gov (United States)

    Wang, Shuyu; Yu, Shifeng; Lu, Ming; Zuo, Lei

    2017-05-01

    In this paper, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide film coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. This proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.

  12. The effect of simplified adhesives on the bond strength to dentin of dual-cure resin cements.

    Science.gov (United States)

    Shade, A M; Wajdowicz, M N; Bailey, C W; Vandewalle, K S

    2014-01-01

    The purpose of this study was to compare the shear bond strengths to dentin of two dual-cure resin cements, one with a unique initiator, NX3 (Kerr Corp), and the other with a traditional redox-initiator system, Calibra (Dentsply), when used in combination with simplified or nonsimplified adhesive agents. The two dual-cure resin cements, in either self- or dual-cure activation modes, were bonded to human dentin with four dental adhesives to create 16 subgroups of 10 specimens each. After 24 hours of storage in distilled water at 37°C, the specimens were tested in shear in a universal testing machine. With both NX3 and Calibra, bond strengths significantly increased when the specimens were dual cured. In addition, with either cement in either mode, the nonsimplified adhesives performed significantly better than did the simplified adhesive bonding agents. When used specifically with simplified adhesives in either cure mode, NX3 did not produce significantly higher bond strengths than did Calibra. In general, lower dentin bond strengths were found with simplified adhesives or self-cure activation with either resin cement.

  13. Effect of Sonic Application of Self-etch Adhesives on Bonding Fiber Posts to Root Canal Dentin.

    Science.gov (United States)

    Kirsch, Jasmin; Schmidt, Doreen; Herzberg, Doreen; Weber, Marie-Theres; Gäbler, Stephan; Hannig, Christian

    2017-01-01

    To evaluate the effect of sonic application of 5 different self-etch adhesives on the push-out bond strength of fiber posts in root canals. In a preliminary test, 24 teeth were treated with manual and sonically assisted bonding, then a composite cylinder was built up to test the shear bond strength as a proof of principle. In the main test, 120 root canals were endodontically prepared and divided into 10 groups: 5 self-etch adhesives (Futurabond DC, Futurabond M, Futurabond U, Optibond XTR, Universalbond), each applied under manual and sonic application modes. After insertion of the fiber posts using the specific adhesive and a dual-curing composite, the teeth were sectioned and the push-out test was performed. The specimens were analyzed by light and scanning electron microscopy. Statistical analysis was performed using the Shapiro-Wilk test, one-way ANOVA and the Tamhane test. Sonic application of self-etch adhesive systems did not increase the bond strength of fiber posts in root canals. In general, the bond strength decreased from the coronal to the apical part of the root canal, irrespective of the applied method. The best post retention was achieved with Futurabond U and Optibond XTR. Sonic application of self-etch adhesives did not improve the fiber post retention in the root canal and can therefore not be recommended. Nevertheless, sonic application of etch-and-rinse adhesives can increase the bond strength to coronal dentin.

  14. Effect of Oxygen Inhibition Layer of Universal Adhesives on Enamel Bond Fatigue Durability and Interfacial Characteristics With Different Etching Modes.

    Science.gov (United States)

    Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M

    The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (padhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (puniversal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.

  15. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    Science.gov (United States)

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium.

  16. Bonding efficacy of an acetone/based etch-and-rinse adhesive after dentin deproteinization.

    Science.gov (United States)

    Aguilera, Fátima-Sánchez; Osorio, Raquel; Osorio, Estrella; Moura, Pedro; Toledano, Manuel

    2012-07-01

    to evaluate the effect of sodium hypochlorite (NaOCl) treatment on dentin bonding by means of shear bond strength (SBS) measurements when using Prime&Bond NT (PB NT) adhesive. Ultrastructure of the interfaces was examined by scanning electron microscopy (SEM). Extracted human third molars were sectioned and ground to expose flat surfaces of superficial or deep dentin. Specimens were randomly assigned to two equal groups, and bonded as follows: (1) according to the manufacturers' directions, after 35% H₃PO₄ etching,