WorldWideScience

Sample records for adhesively bonded joints

  1. Effect of adhesive thickness on adhesively bonded T-joint

    Science.gov (United States)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  2. Reliability Analysis of Adhesive Bonded Scarf Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik;

    2012-01-01

    A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... the FEA model, and a sensitivity analysis on the influence of various geometrical parameters and material properties on the maximum stress is conducted. Because the yield behavior of many polymeric structural adhesives is dependent on both deviatoric and hydrostatic stress components, different ratios...... of the compressive to tensile adhesive yield stresses in the failure criterion are considered. It is shown that the chosen failure criterion, the scarf angle and the load are significant for the assessment of the probability of failure....

  3. Automation Tools for Finite Element Analysis of Adhesively Bonded Joints

    Science.gov (United States)

    Tahmasebi, Farhad; Brodeur, Stephen J. (Technical Monitor)

    2002-01-01

    This article presents two new automation creation tools that obtain stresses and strains (Shear and peel) in adhesively bonded joints. For a given adhesively bonded joint Finite Element model, in which the adhesive is characterised using springs, these automation tools read the corresponding input and output files, use the spring forces and deformations to obtain the adhesive stresses and strains, sort the stresses and strains in descending order, and generate plot files for 3D visualisation of the stress and strain fields. Grids (nodes) and elements can be numbered in any order that is convenient for the user. Using the automation tools, trade-off studies, which are needed for design of adhesively bonded joints, can be performed very quickly.

  4. Application of Bonded Joints for Quantitative Analysis of Adhesion

    Directory of Open Access Journals (Sweden)

    Jarmila Trpčevská

    2016-01-01

    Full Text Available The performance of hot-dip coated steel sheets is associated with properties of the zinc coatings on steel substrate. For the characterization of the adhesion behaviour of zinc coating on steel various tests were employed. The study was focused on quantification assessment of galvanized coating adhesion to substrates. Methods for evaluation of the bonding strength of zinc coating by the shear strength and the T-peel tests applying four special types of adhesives were used. The experimental tests of bonded joints show that the adhesion of the zinc coating to the substrate was higher than that of the applied adhesive with the highest strength.

  5. Adhesive Characterization and Progressive Damage Analysis of Bonded Composite Joints

    Science.gov (United States)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2014-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  6. Influence of adhesive bond line thickness on joint strength

    OpenAIRE

    Davies, Peter; Sohier, L; Cognard, J. -y.; Bourmaud, A; Choqueuse, Dominique; Rinnert, Emmanuel; Creac' Hcadec, R

    2009-01-01

    While the geometry of aerospace assemblies is carefully controlled, for many industrial applications such as marine structures bond line thickness can vary significantly. In this study epoxy adhesive joints of different thicknesses between aluminium substrates have been characterized using physico-chemical analyses (differential scanning calorimetry, DSC; dynamic mechanical analysis, DMA; spectroscopy), nano-indentation and mechanical testing. Thermal analyses indicated no influence of thickn...

  7. The analysis of adhesively bonded advanced composite joints using joint finite elements

    Science.gov (United States)

    Stapleton, Scott E.

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  8. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  9. Selection of adhesives and pretreatments for specific failure types in adhesively bonded joints

    NARCIS (Netherlands)

    Berg, A. van den; Botter, H.; Soetens, F.; Vogelesang, L.B.

    2001-01-01

    To accurately predict failure of adhesively bonded joints, it is necessary to distinguish between the different failure modes and failure criteria that can occur. In order to do so and to verify theoretical results with experimental results, joints must be available that exhibit these different

  10. Fatigue de-bond growth in adhesively bonded single lap joints

    Indian Academy of Sciences (India)

    P K Sahoo; B Dattaguru; C M Manjunatha; C R L Murthy

    2012-02-01

    The fatigue de-bond growth studies have been conducted on adhesively bonded lap joint specimens between aluminium and aluminium with Redux-319A adhesive with a pre-defined crack of 3 mm at the bond end. The correlations between fracture parameters and the de-bond growth data are established using both numerical and experimental techniques. In the numerical method, geometrically non-linear finite element analyses were carried out on adhesively bonded joint specimen for various de-bond lengths measured from the lap end along the mid-bond line of the adhesive. The finite element results were post processed to estimate the SERR components $G_I$ and $G_{II}$ using the Modified Virtual Crack Closure Integral (MVCCI) procedure. In experimental work, specimens were fabricated and fatigue de-bond growth tests were conducted at a stress ratio $R = −1$. The results obtained from both numerical analyses and testing have been used to generate de-bond growth curve and establish de-bond growth law in the Paris regime for such joints. The de-bond growth rate is primarily function of mode-I SERR component $G_I$ since the rate of growth in shear mode is relatively small. The value of Paris exponent is found to be 6.55. The high value of de-bond growth exponent in Paris regime is expected, since the adhesive is less ductile than conventional metallic materials. This study is important for estimating the life of adhesively bonded joints under both constant and variable amplitude fatigue loads.

  11. Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    Science.gov (United States)

    Smeltzer, Stanley S., III (Inventor); Lundgren, Eric C. (Inventor)

    2016-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  12. Creep simulation of adhesively bonded joints using modified generalized time hardening model

    Energy Technology Data Exchange (ETDEWEB)

    Sadigh, Mohammad Ali Saeimi [Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2016-04-15

    Creep behavior of double lap adhesively bonded joints was investigated using experimental tests and numerical analysis. Firstly, uniaxial creep tests were carried out to obtain the creep characteristics and constitutive parameters of the adhesive at different stress and temperature levels. Generalized time hardening model was used to predict the creep behavior of the adhesive. This model was modified to simulate the creep behavior at different stress and temperature levels. Secondly, the developed model was used to simulate the creep behavior of bonded joints using finite element based numerical analysis. Creep deformations of the joints were measured experimentally and good agreement was observed in comparison with the results obtained using numerical simulation. Afterward, stress redistribution due to the creep along the adhesively bonded joint was obtained numerically. It was observed that temperature level had a significant effect on the stress redistribution along the adhesive thickness.

  13. Lamb wave based active damage identification in adhesively bonded composite lap joints

    Science.gov (United States)

    Jolly, Prateek

    Bonding composite structures using adhesives offers several advantages over mechanical fastening such as better flow stress, weight saving, improved fatigue resistance and the ability to join dissimilar structures. The hesitation to adopt adhesively bonded composite joints stems from the lack of knowledge regarding damage initiation and propagation mechanisms within the joint. A means of overcoming this hesitation is to continuously monitor damage in the joint. This study proposes a methodology to conduct structural health monitoring (SHM) of an adhesively bonded composite lap joint using acoustic, guided Lamb waves by detecting, locating and predicting the size of damage. Finite element modeling of a joint in both 2D and 3D is used to test the feasibility of the proposed damage triangulation technique. Experimental validation of the methodology is conducted by detecting the presence, location and size of inflicted damage with the use of tuned guided Lamb waves.

  14. Thermo-oxidative and hydrothermal ageing of epoxy-dicyandiamide adhesive in bonded stainless steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Gaukler, J Ch; Fehling, P [Saarland University, Campus C6.3, D-66123 Saarbruecken (Germany); Possart, W, E-mail: w.possart@mx.uni-saarland.de

    2009-09-15

    The ageing behaviour of stainless steel joints bonded with hot-curing adhesives is crucial for their reliability and durability in engineering applications. In industry, accelerated artificial ageing regimes are combined with short-term mechanical tests to simulate the in-service long-term behaviour and to predict the life time of the adhesive joints. With such a focus on mechanical bond strength, chemical changes in the adhesive are widely disregarded. Hence, neither the very causes for the decreasing performance of the joint nor their relevance for application can be revealed. Reasoning this study, lap shear samples of the stainless steel alloy 1.4376 are bonded with an epoxy-dicyandiamide adhesive and aged artificially under moderate thermo-oxidative (60 deg. C, dried air) or hydrothermal (60 deg. C, distilled water) condition. After testing (shear stress-strain analysis), chemical modifications of this adhesive due to ageing are detected on the fracture faces by {mu}-ATR-FTIR-spectroscopy as function of ageing time and position in the adhesive joint. The results attest high thermo-oxidative stability to these adhesive joints. For hydrothermal ageing, permeating water deteriorates the EP network from the edges towards the centre of the joint via hydrolysis of imine groups to ammonia, amine species and carbonyls.

  15. Thermo-oxidative and hydrothermal ageing of epoxy-dicyandiamide adhesive in bonded stainless steel joints

    Science.gov (United States)

    Gaukler, J. Ch; Fehling, P.; Possart, W.

    2009-09-01

    The ageing behaviour of stainless steel joints bonded with hot-curing adhesives is crucial for their reliability and durability in engineering applications. In industry, accelerated artificial ageing regimes are combined with short-term mechanical tests to simulate the in-service long-term behaviour and to predict the life time of the adhesive joints. With such a focus on mechanical bond strength, chemical changes in the adhesive are widely disregarded. Hence, neither the very causes for the decreasing performance of the joint nor their relevance for application can be revealed. Reasoning this study, lap shear samples of the stainless steel alloy 1.4376 are bonded with an epoxy-dicyandiamide adhesive and aged artificially under moderate thermo-oxidative (60 °C, dried air) or hydrothermal (60 °C, distilled water) condition. After testing (shear stress-strain analysis), chemical modifications of this adhesive due to ageing are detected on the fracture faces by μ-ATR-FTIR-spectroscopy as function of ageing time and position in the adhesive joint. The results attest high thermo-oxidative stability to these adhesive joints. For hydrothermal ageing, permeating water deteriorates the EP network from the edges towards the centre of the joint via hydrolysis of imine groups to ammonia, amine species and carbonyls.

  16. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    Science.gov (United States)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  17. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    Science.gov (United States)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  18. Multitechnique monitoring of fatigue damage in adhesively bonded composite lap-joints

    Science.gov (United States)

    Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Dib, Gerges; Haq, Mahmoodul; Udpa, Lalita

    2015-03-01

    The requirement for reduced structural weight has driven the development of adhesively bonded joints. However, a major issue preventing their full acceptance is the initiation of premature failure in the form of a disbond between adherends, mainly due to fatigue, manufacturing flaws or impact damage. This work presents the integrated approach for in-situ monitoring of degradation of the adhesive bond in the GFRP composite lap-joint using ultrasonic guided waves and dynamic measurements from strategically embedded FBG sensors. Guided waves are actuated with surface mounted piezoelectric elements and mode tuning is used to provide high sensitivity to the degradation of the adhesive layer parameters. Composite lap-joints are subjected to fatigue loading, and data from piezoceramic transducers are collected at regular intervals to evaluate the progression of damage. Results demonstrate that quasi-static loading affects guided wave measurements considerably, but FBG sensors can be used to monitor the applied load levels and residual strains in the adhesive bond. The proposed technique shows promise for determining the post-damage stiffness of adhesively bonded joints.

  19. Additional Interface Corner Toughness Data for an Adhesively-Bonded Butt Joint

    Energy Technology Data Exchange (ETDEWEB)

    Guess, T.R.; Reedy, E.D.

    1999-04-14

    Over a period of 15 months, five sets of adhesively-bonded butt joints were fabricated and tested. This previously unreported data is used to assess the variability of measured interface corner toughness values, K{sub ac}, as well as the dependence of K{sub ac} on surface preparation. A correlation between K{sub ac} and the size of the adhesive failure zone is also noted.

  20. Bond strength evaluation in adhesive joints using NDE and DIC methods

    Science.gov (United States)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a

  1. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    Science.gov (United States)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  2. Self Diagnostic Adhesive for Bonded Joints in Aircraft Structures

    Science.gov (United States)

    2016-10-04

    has begun to use adhesive films with fiber scrims inside, to ease handling and improve quality control. For example, Henkel embeds nylon scrim...piezoelectric disc sensors, four layers of adhesive film were used to fully encapsulate the sensors. Two varnished wires with diameter less than 100...near the edge of the bondlines as illustrated in Figure 20. After curing, the sensor on the left showed no signal due to wire connection and the

  3. Identification of parameters of cohesive elements for modeling of adhesively bonded joints of epoxy composites

    Directory of Open Access Journals (Sweden)

    Kottner R.

    2013-12-01

    Full Text Available Adhesively bonded joints can be numerically simulated using the cohesive crack model. The critical strain energy release rate and the critical opening displacement are the parameters which must be known when cohesive elements in MSC.Marc software are used. In this work, the parameters of two industrial adhesives Hunstman Araldite 2021 and Gurit Spabond 345 for bonding of epoxy composites are identified. Double Cantilever Beam (DCB and End Notched Flexure (ENF test data were used for the identification. The critical opening displacements were identified using an optimization algorithm where the tests and their numerical simulations were compared.

  4. Failure criterion for adhesively bonded joints using Arcan´s experimental method

    Directory of Open Access Journals (Sweden)

    Demetrio Jackson dos Santos

    2014-08-01

    Full Text Available Characterization of polymeric materials mechanical behavior requires some previous knowledge about their structure, which allows the choice of more appropriated models and methods. Polymeric materials, below their glass transition temperature (Tg, may be handled as perfect elastic solids, allowing the use of classic mechanics to characterize their behavior. Polymers above their Tg present a viscous contribution to mechanical behavior, which has to be taken into consideration by modeling it. Adhesively bonded joint, joining of different materials using a polymer as adhesive, adds to the mentioned requirements more parameters, such as surface roughness, adhesive thickness and different types of contributions to adhesively bonded joint strength. This work has the purpose of presenting a mechanical behavior characterization of adhesive bonded joints, concerning their average stress at rupture. A modified Arcan´s device was used to obtain the average stress at rupture under different angles or loading conditions, such as pure shear 0°, pure tensile strength 90° and combined conditions. The experimental results were applied to a theoretical model, which takes into consideration the hydrostatic contribution to the mechanical behavior, called Drucker-Prager Model, which was initially developed to characterize soils.

  5. Three-dimensional Material and Geometrical Nonlinear Analysis of Adhesively Bonded Single Lap Joint

    Directory of Open Access Journals (Sweden)

    S. Narasimhan

    2003-04-01

    Full Text Available The paper presents 3-D viscoplastic analysis of adhesively bonded single lap joint considering material and geometric nonlinearity. Total Lagrangian formulation is used to develop a 3-D finite element for geometric nonlinear analysis. The overall geometry of the single lap joint, the loading, and the boundary conditions has been considered, both according to the ASTM testing standards and from those adopted in earlier investigations. The constitutive relations for the adhesive are developed using a pressure-dependant (modified von Mises yield function and Ramberg-Osgood idealisation for the experimental stress-strain curve. The adherends and adhesive layers are both modelled using 20-noded solid elements. However, observations have been made, in particular, on peel and shear stresses in the adhesive layer, which provide useful insight into the 3-D nature of the problem.

  6. The effect of adhesive thickness on spot weld-bonded joints of dissimilar materials using finite element model

    Directory of Open Access Journals (Sweden)

    E Al-Bahkali

    2016-04-01

    Full Text Available In present work, the bonded and spot weld-bonded of dissimilar materialsjoints for three dimensional models using the finite element technique werestudied for different adhesive thicknesses. The results show that the stressesin adhesive bonded joints are concentrated at the ends of the overlappedarea. When the spot-welding is combined with the adhesive bonding, thestresses are concentrated at the adhesive bond ends and at both ends of theweld nugget. The results show also that the stresses are more concentratedtowards the material of the lowest melting point. Changing the thickness ofthe adhesive layer for various dissimilar material models give us the optimalthickness for each case that one can use in designing lap joints of twodissimilar materials. The results in general show that the thinner the adhesiveis, the higher is the peak stresses developed in the weld-bonded joint.

  7. Durability of polyimide adhesives and their bonded joints for high-temperature applications

    Science.gov (United States)

    Parvatareddy, Hari

    The objective of this study was to evaluate and develop an understanding of durability of an adhesive bonded system, for application in a future high speed civil transport (HSCT) aircraft structure. The system under study was comprised of Ti-6Al-4V metal adherends and a thermosetting polyimide adhesive, designated as FM-5, supplied by Cytec Engineered Materials, Inc. An approach based on fracture mechanics was employed to assess Ti-6Al-4V/FM-5 bond durability. Initially, wedge tests were utilized to find a durable surface pretreatment for the titanium adherends. Based on an extensive screening study, chromic acid anodization (CAA) was chosen as the standard pretreatment for this research project. Double cantilever beam specimens (DCB) were then made and aged at 150sp°C, 177sp°C, and 204sp°C in three different environments; ambient atmospheric air (14.7 psia), and reduced air pressures of 2 psia (13.8 KPa) and 0.2 psia (1.38 KPa). Joints were aged for up to 18 months (including several intermediate aging times) in the above environments. The strain energy release rate (G) of the adhesive joints was monitored as a function of exposure time in the different environments. A 40% drop in fracture toughness was noted over the 18 month period, with the greatest degradation observed in samples aged at 204sp°C in ambient atmospheric air pressure. The loss in adhesive bond performance with time was attributable to a combination of physical and chemical aging phenomena in the FM-5 resin, and possible degradation of the metal-adhesive interface(s). Several mechanical and material tests, performed on the bonded joints and neat FM-5 resin specimens, confirmed the above statement. It was also noted that physical aging could be "erased" by thermal rejuvenation, partially restoring the toughness of the FM-5 adhesive material. The FM-5 adhesive material displayed good chemical resistance towards organic solvents and other aircraft fluids such as jet fuel and hydraulic fluid. The

  8. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    Science.gov (United States)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  9. Reliability Analysis for Adhesive Bonded Composite Stepped Lap Joints Loaded in Fatigue

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Sørensen, John Dalsgaard; Lund, Erik

    2012-01-01

    strength under fully reversed cyclic loading based on stiffness/strength degradation. The FEA simulations are conducted using the commercial FEA code ANSYS 12.1. A design equation for fatigue failure of wind turbine blades is chosen based on recommendations given in the wind turbine standard IEC 61400...... by the wind turbine standard IEC 61400-1. Finally, an approach for the assessment of the reliability of adhesive bonded composite stepped lap joints loaded in fatigue is presented. The introduced methodology can be applied in the same way to calculate the reliability level of wind turbine blade components...

  10. Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    Science.gov (United States)

    Smeltzer, III, Stanley S. (Inventor); Lundgren, Eric C. (Inventor)

    2014-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  11. Reliability Analysis for Adhesive Bonded Composite Stepped Lap Joints Loaded in Fatigue

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Sørensen, John Dalsgaard; Lund, Erik

    2012-01-01

    This paper describes a probabilistic approach to calculate the reliability of adhesive bonded composite stepped lap joints loaded in fatigue using three- dimensional finite element analysis (FEA). A method for progressive damage modelling is used to assess fatigue damage accumulation and residual...... strength under fully reversed cyclic loading based on stiffness/strength degradation. The FEA simulations are conducted using the commercial FEA code ANSYS 12.1. A design equation for fatigue failure of wind turbine blades is chosen based on recommendations given in the wind turbine standard IEC 61400...

  12. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles R [Los Alamos National Laboratory; Gobbato, Maurizio [UCSD; Conte, Joel [UCSD; Kosmatke, John [UCSD; Oliver, Joseph A [UCSD

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  13. An investigation of interfacial stresses in adhesively-bonded single lap joints subject to transverse pulse loading

    Science.gov (United States)

    Nwankwo, E.; Soleiman Fallah, A.; Louca, L. A.

    2013-04-01

    Debonding in adhesively-bonded lap joints is a detrimental failure mode contingent upon the level of stresses develped in the adhesive. In this work, an analytical model is developed to estimate the peel and shear stresses in an isotropic elastic adhesive in a single lap joint subjected to transverse pulse loads. The proposed analytical model is an extension of the mathematical models developed by He and Rao (Journal of Sound and Vibration 152 (3), (1992) 405-416, 417-425) to study the coupled transverse and longitudinal vibrations of a bonded lap joint system. The adhesive, in this work, is modelled as an elastic isotropic material implemented in Abaqus 6.9-1. The interfacial stresses obtained by finite element simulations were used to validate the proposed analytical model. The maximum peel and shear stresses in the adhesive as predicted by the analytical model were found to correlate well with the maximum stresses predicted by the corresponding numerical models. The peel stresses in the adhesive were found to be higher than shear stresses, a result which is consistent with intuition for transversally loaded joints. The analytical model is able to predict the maxium stresses in the edges where debonding initiates due to the highly asymetrical stress distribution as observed in the finite element simulations and experiment. This phenomenon is consistent with observations made by Vaidya et al. (International Journal of Adhesion & Adhesives 26 (2006) 184-198). The stress distribution under uniformily distributed transverse pulse loading was observed to be similarly asymetric.

  14. A self-diagnostic adhesive for monitoring bonded joints in aerospace structures

    Science.gov (United States)

    Zhuang, Yitao; Li, Yu-hung; Kopsaftopoulos, Fotis; Chang, Fu-Kuo

    2016-04-01

    Bondline integrity is still one of the most critical concerns in the design of aircraft structures up to date. Due to the lack of confidence on the integrity of the bondline both during fabrication and service, the industry standards and regulations still require assembling the composite using conventional fasteners. Furthermore, current state-of-the-art non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques are incapable of offering mature solutions on the issue of bondline integrity monitoring. Therefore, the objective of this work is the development of an intelligent adhesive film with integrated micro-sensors for monitoring the integrity of the bondline interface. The proposed method makes use of an electromechanical-impedance (EMI) based method, which is a rapidly evolving approach within the SHM family. Furthermore, an innovative screen-printing technique to fabricate piezoelectric ceramic sensors with minimal thickness has been developed at Stanford. The approach presented in this study is based on the use of (i) micro screen-printed piezoelectric sensors integrated into adhesive leaving a minimal footprint on the material, (ii) numerical and analytical modeling of the EMI spectrum of the adhesive bondline, (iii) novel diagnostic algorithms for monitoring the bondline integrity based on advanced signal processing techniques, and (iv) the experimental assessment via prototype adhesively bonded structures in static (varying loads) and dynamic (fatigue) environments. The proposed method will provide a huge confidence on the use of bonded joints for aerospace structures and lead to a paradigm change in their design by enabling enormous weight savings while maximizing the economic and performance efficiency.

  15. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    Science.gov (United States)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  16. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading: Arcan Test Study and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-01-01

    Full Text Available The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress, and combination of both. To realize these stress states in the adhesively-bonded joint during tests, a specific loading device is developed with the capacity of providing six different loading angles, which are 0°(pure tension, 18°, 36°, 54°, 72° and 90°(pure shear. Failure modes of adhesively-bonded joints are investigated. It indicates that, for the pure shear loading, the failure mode is the cohesive failure (near the interface between the adhesive layer and the steel support in the adhesive layer. For the pure tensile and combined loading conditions, the failure mode is the combination of fiber breaking, FRP delamination and interfacial adhesion failure between the FRP sandwich deck and the adhesive layer. The load-bearing capacities of adhesive joints under combined loading are much lower than those of the pure tensile and pure shear loading conditions. According to the test results of six angle loading conditions, a tensile/shear failure criterion of the adhesively-bonded joint is obtained. By using Finite Element (FE modeling method, linear elastic simulations are performed to characterize the stress distribution throughout the adhesively-bonded joint.

  17. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents – Part I: Experiments

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, Nicholas G.

    2013-01-01

    There is a gap in the existing standardized testing procedures (ASTM and ISO) for evaluating the stiffness and strength of composite-to-metal adhesively bonded joints. Thus, there is much effort made in this field towards understanding the impact of the geometric parameters to the loading...

  18. A Fracture-Based Criterion for Debonding Strength of Adhesive-Bonded Double-Strap Steel Joints

    Directory of Open Access Journals (Sweden)

    Prawit Santisukpotha

    2012-01-01

    Full Text Available This paper addresses the debonding strength of adhesive-bonded double-strap steel joints. A fracture-based criterion was formulated in terms of a stress singularity parameter, i.e., the stress intensity factor, which governs the magnitude of a singular stress field near the joint ends. No existing crack was assumed. A total of 24 steel joint specimens were tested under constant amplitude fatigue loadings at stress ratio of 0.2 and frequency of 2 Hz. The joint stiffness ratio was slightly less than one to control the maximum adhesive stresses at the joint ends. To detect the debonding, a simple and practical technique was developed. The test results showed that the interfacial failure near the steel/adhesive corner was a dominant failure mode. The failure was brittle and the debonding life was governed by the crack initiation stage. The finite element analysis was employed to calculate the stress intensity factors and investigate the effects of the adhesive layer thickness, lap length and joint stiffness ratio on the debonding strength.

  19. Analysis of an adhesively bonded single lap joint subjected to eccentric loading

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, N. G.

    2013-01-01

    is benchmarking of computational tools. The test is based on a Single Lap Joint subjected to Eccentric Loading (SLJ-EL). The basic concept that lies behind this configuration is that the applied in-plane tensile load leads the adhesive layer to develop normal stresses, in-plane and out-of-plane shear stresses...... space and a previously developed mixed-mode model is utilized for the adhesive layer, under the framework of Cohesive Zone Modeling (CZM) techniques. The numerical results are in very good agreement with the corresponding experimental measurements, as regards both the linear and non-linear region...

  20. Crack path selection and shear toughening effects due to mixed mode loading and varied surface properties in beam-like adhesively bonded joints

    OpenAIRE

    Guan, Youliang

    2014-01-01

    Structural adhesives are widely used with great success, and yet occasional failures can occur, often resulting from improper bonding procedures or joint design, overload or other detrimental service situations, or in response to a variety of environmental challenges. In these situations, cracks can start within the adhesive layer or debonds can initiate near an interface. The paths taken by propagating cracks can affect the resistance to failure and the subsequent service lives of the bond...

  1. Multivariate Analysis of High Through-Put Adhesively Bonded Single Lap Joints: Experimental and Workflow Protocols

    Science.gov (United States)

    2016-06-01

    bondline thickness, surface preparation, presence of an overflow fillet, and adhesive type. Gains in the Education of Mathematics and Science high... questionnaire results for adhesive fill and fillet quality ..........15 Table 3 Maximum strength and displacement at maximum load as a function of observed...Acknowledgments This research was supported in part by the US Army Education Outreach - Gains in the Education of Math and Science (GEMS) Program at

  2. A finite element modelling methodology for the non-linear stiffness evaluation of adhesively bonded single lap-joints. Part 2, Novel shell mesh to minimise analysis time

    OpenAIRE

    Pearson, Ian T.; Mottram, J. Toby

    2012-01-01

    A new modelling methodology is presented that enables the stiffness of adhesively bonded single lap-joints to be included in the finite element analysis of whole vehicle bodies. This work was driven by the need to significantly reduce computing resources for vehicle analysis. To achieve this goal the adhesive bond line and adherends are modelled by a relatively ‘small’ number of shell elements to replace the usual solid element mesh for a reliable analysis. Previous work in Part 1 has provide...

  3. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  4. Evaluation of the Wedge Cleavage Test for Assessment of Durability of Adhesive Bonded Joints.

    Science.gov (United States)

    1980-07-01

    applied to the adherends. Exposures of hundreds or thousands of hours are necessary to discriminate between pretreatments if conventional lap shear or peel ...was preceded by additional degreasing in a conventional non- caustic proprietary alkaline cleaning solution. Pickling was for 30 minutes at 62-65°C in...consistent with the lower peel strength given by anodised surfaces5 (c) Adhesive FMIOOO Crack lengths are shown in Table 3 and Fig 5. Fracture energies were

  5. Functionally Graded Adhesives for Composite Joints

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  6. Adhesively-Bonded Structural Composite Joint Utilizing Shoulder-Centered Sleeves

    Science.gov (United States)

    Lukowski, Florian P., Jr. (Inventor)

    2015-01-01

    A composite joint includes a first member having a groove therein, a second member adjacent to the first member, and a connector member disposed between the second member and the first member. The connector member is received in the groove so as to bias a load path between the first member and the second member from a peripheral portion to a central portion of the connector member.

  7. Asymptotic Sampling for Reliability Analysis of Adhesive Bonded Stepped Lap Composite Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Lund, Erik; Thomsen, Ole Thybo

    2013-01-01

    Reliability analysis coupled with finite element analysis (FEA) of composite structures is computationally very demanding and requires a large number of simulations to achieve an accurate prediction of the probability of failure with a small standard error. In this paper Asymptotic Sampling, which....... Three dimensional (3D) FEA is used for the structural analysis together with a design equation that is associated with a deterministic code-based design equation where reliability is secured by partial safety factors. The Tsai-Wu and the maximum principal stress failure criteria are used to predict...... failure in the composite and adhesive layers, respectively, and the results are compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. The accuracy and efficiency of Asymptotic Sampling is investigated by comparing the results with predictions obtained using...

  8. An adhesive bond state classification method for a composite skin-to-spar joint using chaotic insonification

    Science.gov (United States)

    Fasel, Timothy R.; Todd, Michael D.

    2010-07-01

    The combination of chaotically amplitude-modulated ultrasonic waves and time series prediction algorithms has shown the ability to locate and classify various bond state damage conditions of a composite bonded joint. This study examines the ability of a new two-part supervised learning classification scheme not only to classify disbond size but also to classify whether a bond for which there is no baseline data is undamaged or has some form of disbond. This classification is performed using data from a similarly configured composite bond for which baseline data are available. The test structures are analogous to a wing skin-to-spar bonded joint. An active excitation signal is imparted to the structure through a macro fiber composite (MFC) patch on one side of the bonded joint and sensed using an equivalent MFC patch on the opposite side of the joint. There is an MFC actuator/sensor pair for each bond condition to be identified. The classification approach compares features derived from an autoregressive (AR) model coefficient vector cross-assurance criterion.

  9. Polyimide adhesives for weld-bonding titanium

    Science.gov (United States)

    Vaughan, R. W.; Sheppard, C. H.; Baucom, R.

    1976-01-01

    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system and a new adhesive system, CP/CFA, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219K (-65 F) to 561K (550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of weld-bonding for fabricating stringer stiffened skin panels.

  10. Strength and failure analysis of inverse Z joints bonded with Vinylester Atlac 580 and Flexo Tix adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Adin, Hamit [Univ. of Batman, Batman (Turkmenistan); Turgut, Aydin [University of Firat, Elazig (Turkmenistan)

    2012-11-15

    In this study, the tensile strength and failure loads of the inverse Z joints were analyzed both experimentally and numerically by using two adhesives with different properties under a tensile load. Vinylester Atlac 580 and Flexo Tix were used as adhesives and the joints were prepared with two different composite materials. Initially, the mechanical properties of the adhesives were specified using bulk specimens. Then, the stress analyses were performed using three dimensional finite element method (3 D FEM) via Ansys (V.10.0.1). The experimental results were compared with the numerical results and they were found quite reasonable. According to the test results, it can be seen that when the adherend thickness is increased, the stress increases as well. The most appropriate value of the adherend thickness is identified as t = 5 mm. Furthermore, it was observed that the lowest failure load was obtained at t = 3 mm the thickness for each specimen.

  11. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  12. A Comparison of the Detectability of Dry Contact Kissing Bonds in Adhesive Joints Using Longitudinal, Shear and High Power Ultrasonic Techniques

    Science.gov (United States)

    Brotherhood, C. J.; Drinkwater, B. W.; Guild, F. J.

    2003-03-01

    This paper details a study on the detectability of dry contact kissing bonds in adhesive joints using three ultrasonic inspection techniques. Conventional normal incidence longitudinal and shear wave inspection were conducted on dry contact kissing bonds using a standard immersion transducer and an EMAT respectively. The detectability of the dry contact kissing bonds was assessed by calculating the reflection coefficient of the interface at varying loads for a number of surface roughnesses. A high power ultrasonic method was also employed to determine the non-linear behavior of the adhesive interface. The non-linearity of the interface was determined by the ratio of the amplitudes of the first harmonic and fundamental frequencies of the transmitted waveform. It was found that the high power technique showed the greatest sensitivity to kissing bonds at low contact pressures, however at high loads conventional longitudinal wave testing was more sensitive. It was also noted that a combination of two or more techniques could provide enhanced information about the kissing bond compared to a single technique alone.

  13. Computational Chemistry of Adhesive Bonds

    Science.gov (United States)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  14. Mode i testing of adhesive joints: Experimental part

    Energy Technology Data Exchange (ETDEWEB)

    Noekkentved, A. [Risoe National Lab., Materials Research Dept., Roskilde (Denmark)

    2006-07-01

    The J integral approach for adhesive bonded joints is particularly attractive for modelling failure process zones. The J integral can be established by a general approach and experimental measurements. By this method, the cohesive law of the adhesive in question can be obtained. Polymer joints with different mechanical properties and geometries are considered in order to study the effect of plasticity within the bond of ductile adhesives, since this can enhance their fracture toughness. The cohesive laws established will be implemented in numerical models - more in part 2. The objective of the project is to establish and demonstrate methods for modelling the mechanical behaviour of adhesively bonded joints in polymer matrix composite materials. Fracture mechanics will assist to establish the relevant framework for their mechanical performance. The main results from this study are expected to be part in a set of recommendations regarding production parameters, design, inspection and control of adhesively bonded joints. (au)

  15. Adhesive bonding of composite aircraft structures: Challenges and recent developments

    Science.gov (United States)

    Pantelakis, Sp.; Tserpes, K. I.

    2014-01-01

    In this review paper, the challenges and some recent developments of adhesive bonding technology in composite aircraft structures are discussed. The durability of bonded joints is defined and presented for parameters that may influence bonding quality. Presented is also, a numerical design approach for composite joining profiles used to realize adhesive bonding. It is shown that environmental ageing and pre-bond contamination of bonding surfaces may degrade significantly fracture toughness of bonded joints. Moreover, it is obvious that additional research is needed in order to design joining profiles that will enable load transfer through shearing of the bondline. These findings, together with the limited capabilities of existing non-destructive testing techniques, can partially explain the confined use of adhesive bonding in primary composite aircraft structural parts.

  16. Progressive Damage Analysis of Bonded Composite Joints

    Science.gov (United States)

    Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.

    2012-01-01

    The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).

  17. Experimental and Numerical Failure Analysis of Adhesive Composite Joints

    Directory of Open Access Journals (Sweden)

    Farhad Asgari Mehrabadi

    2012-01-01

    Full Text Available In the first section of this work, a suitable data reduction scheme is developed to measure the adhesive joints strain energy release rate under pure mode-I loading, and in the second section, three types of adhesive hybrid lap-joints, that is, Aluminum-GFRP (Glass Fiber Reinforced Plastic, GFRP-GFRP, and Steel-GFRP were employed in the determination of adhesive hybrid joints strengths and failures that occur at these assemblies under tension loading. To achieve the aims, Double Cantilever Beam (DCB was used to evaluate the fracture state under the mode-I loading (opening mode and also hybrid lap-joint was employed to investigate the failure load and strength of bonded joints. The finite-element study was carried out to understand the stress intensity factors in DCB test to account fracture toughness using J-integral method as a useful tool for predicting crack failures. In the case of hybrid lap-joint tests, a numerical modeling was also performed to determine the adhesive stress distribution and stress concentrations in the side of lap-joint. Results are discussed in terms of their relationship with adhesively bonded joints and thus can be used to develop appropriate approaches aimed at using adhesive bonding and extending the lives of adhesively bonded repairs for aerospace structures.

  18. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  19. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  20. Analysis of the moisture effect on the mechanical behaviour of an adhesively bonded joint under proportional multi-axial loads

    OpenAIRE

    Arnaud, N.; Creac' Hcadec, R; Cognard, J. Y.; Davies, Peter; Le Gac, Pierre-Yves

    2015-01-01

    The objective of the study is to identify the 3D behaviour of an adhesive in an assembly, and to take into account the effect of ageing in a marine environment. To that end, three different tests were employed. Gravimetric analyses were used to determine the water diffusion kinetics in the adhesive. Bulk tensile tests were performed to highlight the effects of humid ageing on the adhesive behaviour. Modified Arcan tests were performed for several ageing times to obtain the experimental databa...

  1. Polyimide weld bonding for titanium alloy joints

    Science.gov (United States)

    Vaughan, R. W.; Kurland, R. M.

    1974-01-01

    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system. A new polyimide laminating resin, BFBI/BMPM, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219 K (-65 F) to 561 K (+550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of the weld-through weld-bonding process for fabricating stringer stiffened skin panels.

  2. Failure of dissimilar material bonded joints

    Science.gov (United States)

    Konstantakopoulou, M.; Deligianni, A.; Kotsikos, G.

    2016-03-01

    Joining of materials in structural design has always been a challenge for engineers. Bolting and riveting has been used for many years, until the emergence of fusion welding which revolutionised construction in areas such as shipbuilding, automotive, infrastructure and consumer goods. Extensive research in the past 50 years has resulted in better understanding of the process and minimised the occurrence of failures associated with fusion welding such as, residual stress cracking, stress corrosion and corrosion fatigue cracking, localised reduction in mechanical properties due to microstructural changes (heat affected zone) etc. Bonding has been a technique that has been proposed as an alternative because it eliminates several of the problems associated with fusion welding. But, despite some applications it has not seen wide use. There is however a renewed interest in adhesively bonded joints, as designers look for ever more efficient structures which inevitably leads to the use and consequently joining of combinations of lightweight materials, often with fundamentally different mechanical and physical properties. This chapter provides a review of adhesively bonded joints and reports on improvements to bonded joint strength through the introduction of carbon nanotubes at the bond interface. Results from various workers in the field are reported as well as the findings of the authors in this area of research. It is obvious that there are several challenges that need to be addressed to further enhance the strength of bonded joints and worldwide research is currently underway to address those shortcomings and build confidence in the implementation of these new techniques.

  3. Optimisation of the shear stress transfer in structural bonded assemblies using a curved bonded joint geometry

    OpenAIRE

    Chataigner, Sylvain; CARON, Jean François

    2011-01-01

    Structural adhesive bonding is coming into increasing use in civil engineering either for strengthening operations involving the adhesive bonding of external reinforcements or to replace traditional assembly techniques in new structures. However adhesive bonding induces stress concentrations at the edges of the joint, which have been studied by a large number of researchers in order to reduce these phenomena and increase the capacity and service life of the assembly. These studies are all, th...

  4. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    Science.gov (United States)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  5. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents – Part II: Numerical simulation

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, Nicholas G.

    2013-01-01

    . The traction increase part of the cohesive laws is given by an exponential function, which describes the elastoplastic adhesive response, and the traction decrease part is given by a linear function, which describes damage initiation and propagation. By using this model, it was achieved to calculate...

  6. A Finite Element Analysis of Adhesively Bonded Composite Joints Including Geometric Nonlinearity, Nonlinear Viscoelasticity, Moisture Diffusion, and Delayed Failure.

    Science.gov (United States)

    1987-12-01

    code. List no more than two levels of an organizacional hierarchy. Display the name of the orgaaization exactly as it should appear in Government in...Performing Organizacion Name and Address 10. Project/Task/Work Unit No. Virginia Polytechnic Institute and State University Center forAdhesion Science

  7. Time- and temperature-dependent failures of a bonded joint

    Energy Technology Data Exchange (ETDEWEB)

    Sihn, Sangwook; Miyano, Yasushi; Tsai, S.W. [Stanford Univ., Palo Alto, CA (United States)

    1997-07-01

    Time and temperature dependent properties of a tubular lap bonded joint are reported. The joint bonds a cast iron rod and a composite pipe together with an epoxy type of an adhesive material containing chopped glass fiber. A new fabrication method is proposed.

  8. Photochemical tissue bonding with chitosan adhesive films

    Directory of Open Access Journals (Sweden)

    Piller Sabine C

    2010-09-01

    Full Text Available Abstract Background Photochemical tissue bonding (PTB is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm. A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31. The adhesion strength dropped to 0.5 ± 0.1 (n = 8 kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. Conclusion A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  9. Photochemical tissue bonding with chitosan adhesive films.

    Science.gov (United States)

    Lauto, Antonio; Mawad, Damia; Barton, Matthew; Gupta, Abhishek; Piller, Sabine C; Hook, James

    2010-09-08

    Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31). The adhesion strength dropped to 0.5 ± 0.1 (n = 8) kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  10. Adhesion quality of glued joints from different commercial wood species

    Directory of Open Access Journals (Sweden)

    Alexandre Miguel do Nascimento

    2013-12-01

    Full Text Available The objective of this study was to determine the effect of wood density, adhesive type and gluing pressure on the shear strength of glued joints of fourteen commercial wood species. Wood pieces were classified in three density classes (Class 1: less than 0.55 g cm-3; Class 2: from 0.55 to 0.75 g cm-3; and Class 3: greater than 0.75 g cm-3 and joints bonded with two adhesives: polyvinyl acetate (PVA and urea-formaldehyde (UF, under two different pressures: 6 and 12 kgf cm-2. Glued joints bonded with PVA adhesive presented higher shear strength than those bonded with UF adhesive. For percentage of wood failure, the PVA adhesive had the best performance, however, only Classes 1 and 2 reached the values required by ASTM 3110 standard. Glued joints from Class 3, bonded with UF adhesive, did not reach the values of solid wood. The gluing pressure of 12 kgf cm-2 was more efficient for Class 3, for both shear strength and percentage of wood failure.

  11. Chitosan Adhesive Films for Photochemical Tissue Bonding

    Science.gov (United States)

    Lauto, Antonio; Mawad, Damia; Barton, Matthew; Piller, Sabine C.; Longo, Leonardo

    2011-08-01

    Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Materials and Methods. Adhesive films, based on chitosan and containing ˜0.1wt% RB were manufactured and bonded to calf intestine by a solid state laser (wavelength = 532 nm, Fluence ˜110 J/cm2, spot size ˜5 mm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results and Conclusion. The RB-chitosan adhesive bonded firmly to the intestine (15±2 kPa, n = 31). The adhesion strength dropped to 0.5±0.1 kPa (n = 8) when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26 °C to 32 °C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  12. A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing

    Science.gov (United States)

    2016-09-13

    Conventional materials such as steel or aluminum are joined using fasteners and/or bolted joints, which is not favorable for FRPCs as drilling or cutting of...adhesively bonded joints. Composites, 13(1):2937, 1982. [53] A. Baldan. Adhesively-bonded joints and repairs in metallic alloys, polymers and

  13. Moisture contamination detection in adhesive bond using embedded FBG sensors

    Science.gov (United States)

    Mieloszyk, Magdalena; Ostachowicz, Wiesław

    2017-02-01

    The paper presents an application of embedded fibre Bragg grating (FBG) sensors for moisture contamination detection in an adhesive bond between two composite elements. FBG sensors are a great tool to Structural Health Monitoring of composite structures due to their high corrosion resistance as well as their small size and weight. Adhesive bonds are very popular in many industrial branches. One of the major problem limits the use of an adhesive joints is they sensitivity on water form ambient. Even the 1% of moisture affects an adhesive bond layer strength. FBG sensors can be use for detection of even a small amount of moisture concentration (1-3% of sample weight). It can be also used for determination of moisture concentration changes during both soaking and drying processes.

  14. Bond strength of adhesive resin cement with different adhesive systems

    Science.gov (United States)

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; Só, Marcus-Vinicius-Reis

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder™ Scotchbond™ Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-step (Optibond™ FL, Kerr), G3 - etch & rinse system with 3-step (All-Bond 3®, Bisco), G4 - etch & rinse simplified system (Adper™ Single Bond 2, 3M ESPE), G5 - self-etching system with one step (Bond Force, Tokuyama), G6 - universal system in moist dentin (Single Bond Universal, 3M ESPE), G7 - universal system in dry dentin (Single Bond Universal, 3M ESPE). Then all groups received the cementing of a self-adhesive resin cement cylinder (Duo-link, Bisco) made from a polypropylene matrix. In the evaluation of bond strength, the samples were subjected to the microshear test and evaluated according to the fracture pattern by optical microscopy. Results The Kruskal-Wallis test suggests a statistically significant difference between groups (p=0,039), and Tukey for multiple comparisons, indicating a statistically significant difference between G3 and G4 (p<0.05). It was verified high prevalence of adhesive failures, followed by mixed failure and cohesive in dentin. Conclusions The technique and the system used to dentin hybridization are able to affect the immediate bond strength of resin cement dual adhesive. Key words:Adhesion, adhesive resin cement, adhesive systems, microshear. PMID:28149471

  15. Comparing Properties of Adhesive Bonding, Resistance Spot Welding, and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel%Comparing Properties of Adhesive Bonding, Resistance Spot Welding, and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel

    Institute of Scientific and Technical Information of China (English)

    Fatih Hayat

    2011-01-01

    Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) ioints of the zinc coated DP 600 steel were investigated. Additionally, the zinc coating was removed using HCL acid in order to investigate the effect of the coating. The microstructure, tensile shear strengths, and fracture properties of adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) joints of the coated and uncoated DP 600 steel were compared. In addition, a mechani cal-electrical-thermal coupled model in a finite element analysis environment was utilised. The thermal profile phe nomenon was calculated by simulating this process. The results of the tensile shear test indicated that the tensile load bearing capacity (TLBC) values of the coated specimens among the three welding methods were higher than those of the uncoated specimens. Additionally, the tensile strength of the AWB joints of the coated and uncoated specimens was higher than that of the AB and RSW joints. It was determined that the fracture behaviours and the deformation caused were different for the three welding methods.

  16. Handbook of adhesive bonded structural repair

    CERN Document Server

    Wegman, Raymond F

    1992-01-01

    Provides repair methods for adhesive bonded and composite structures; identifies suitable materials and equipment for repairs; describes damage evaluation criteria and techniques, and methods of inspection before and after repair.

  17. Characterization of fatigue damage in adhesively bonded lap joints through dynamic, full-spectral interrogation of fiber Bragg grating sensors: 1. Experiments

    Science.gov (United States)

    Webb, S.; Shin, P.; Peters, K.; Zikry, M. A.; Stan, N.; Chadderdon, S.; Selfridge, R.; Schultz, S.

    2014-02-01

    In this study we measure the in situ response of a fiber Bragg grating (FBG) sensor embedded in the adhesive layer of a single composite lap joint, subjected to harmonic excitation after fatigue loading. After a fully reversed cyclic fatigue loading is applied to the composite lap joint, the full-spectral response of the sensor is interrogated at 100 kHz during two loading conditions: with and without an added harmonic excitation. The full-spectral information avoided dynamic measurement errors often experienced using conventional peak wavelength and edge filtering techniques. The short-time Fourier transform (STFT) is computed for the extracted peak wavelength information to reveal time-dependent frequencies and amplitudes of the dynamic FBG sensor response. The dynamic response of the FBG sensor indicated a transition to strong nonlinear dynamic behavior as fatigue-induced damage progressed. The ability to measure the dynamic response of the lap joint through sensors embedded in the adhesive layer can provide in situ monitoring of the lap joint condition.

  18. Laser ablation assisted adhesive bonding of automotive structural composites

    Energy Technology Data Exchange (ETDEWEB)

    Boeman, R.G.; Paulauskas, F.L.; Warren, C.D.

    1999-07-03

    Laser ablation has been evaluated as a surface pretreatment prior to adhesive bonding. In prior experimental work, it was observed that when adhesively bonded, composite, single lap shear samples fail, the fracture often occurs at either the adhesive/adherend interface or in the resin rich surface layer of the composite. These two areas represent the weakest portion of the joint. Laser ablation pretreatment generates areas where the resin on the composite surface is selectively removed leaving behind exposed reinforcing fibers which are the major load bearing members of the composite. In a subsequent adhesive bonding operation, this allows portions of the fibers to be encapsulated in the adhesive while other portions of the fiber remain in the composite resin. This type of pretreatment permits fibers to bridge and reinforce the interface between adhesive and adherend. A secondary benefit is the removal of surface contaminantes by pyrolysis. Microscopic observation of laser ablated surfaces indicates a prominent, fiber rich area. Results of the mechanical evaluation indicated that the lap shear strength for laser ablated samples was significantly higher than specimens with no pretreatment or with solvent cleaning only, but were slightly lower than specimens that were mechanically roughened and cleaned with solvents prior to bonding.

  19. Polyurethane structural adhesives applied in automotive composite joints

    Directory of Open Access Journals (Sweden)

    Josue Garcia Quini

    2012-06-01

    Full Text Available In recent years structural adhesives technology has demonstrated great potential for application due to its capacity to transform complex structures into solid unitary and monolithic assemblies using different materials. Thus, seams or joints integrate these structures providing, besides a reduction in weight, a considerable increase in the mechanical resistance and stiffness. The increase in the industrial use of structural adhesives is mainly due to their ability to efficiently bond different materials in an irreversible manner, even replacing systems involving mechanical joints. In the automobile industry structural adhesives have been widely used for the bonding of metal substrates, thermoplastics and composites, frequently employing these in combination, particularly glass fiber and polyester resin composites molded using RTM and SMC processes. However, the use of urethane structural adhesives in applications involving composites and thermoplastics has been the subject of few investigations. In this study the effects of temperature and time on the shear strength of RTM, SMC and ABS joints, applying temperatures of -40, 25, 80, 120 and 177 °C and times of 20 minutes and 500 hours, were determined. The objective was to evaluate the performance under extreme conditions of use in order to assess whether these joints could be used in passenger or off-road vehicles. The results showed that the urethane structural adhesive promoted the efficient bonding of these materials, considering that due to the high adhesive strength the failures occurred in the substrates without adversely affecting the bonded area. For each test condition the joint failure modes were also determined.

  20. Applications of total-etch adhesive bonding.

    Science.gov (United States)

    Strassler, Howard E

    2003-06-01

    The concept of total-etch adhesion for enamel and dentin is well accepted. Although new techniques with self-etching adhesives have been introduced, there needs to be more reported clinical trials before making a complete switch to these systems. Currently, the only adhesive systems with long-term data to support confidence and success with their clinical use are total-etch systems. Applications for using a total-etch adhesive bonding technique include sealants, orthodontic brackets, anterior composite resins, posterior composite resins, bonded dental silver amalgam, resin cementation with posts, all-metal, porcelain-metal, composite resin, and ceramic restorations, splinting, core foundations, and conservative treatment of the worn dentition. This article will review the concepts for clinical success with total-etch adhesion for a wide range of clinical applications.

  1. Debonding characteristics of adhesively bonded woven Kevlar composites

    Science.gov (United States)

    Mall, S.; Johnson, W. S.

    1988-01-01

    The fatigue damage mechanism of an adhesively bonded joint between fabric reinforced composite adherends was investigated with cracked-lap-shear specimens. Two bonded systems were studied: fabric Kevlar 49/5208 epoxy adherends bonded together with either EC 3445 or FM-300 adhesive. For each bonded system, two specimen geometries were tested. In all specimens tested, fatigue damage occurred in the form of cyclic debonding; however, the woven Kevlar specimens gave significantly slower debond growth rates and higher fracture toughness than previously found in the nonwoven adherend specimens. The surfaces for the woven adherends were not smooth; rather, they had regular crests (high spots) and troughs (low spots) due to the weave pattern. Radiographs of the specimens and examination of their failure surfaces revealed that fiber bridging occurred between the crests of the two adherends in the debonded region. The observed improvements in debond growth resistance and static fracture toughness are attributed to this bridging.

  2. Thermoplastic polymeric adhesive for structural bonding applications for orthopaedic devices

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, D.; King, R.; Swarts, D.; Lin, S. [Zimmer, Inc., Warsaw, IN (United States); Ramani, K.; Tagle, J. [Purdue Univ., West Lafayette, IN (United States). Dept. of Mechanical Engineering

    1994-12-31

    The orthopaedics industry has witnessed tremendous growth in recent years primarily due to the introduction of high performance, porous coated implants. These devices have eliminated the need for the use of bone cement for in vivo implant fixation, replacing it with the ingrowth of bone into the porous surfaces. The metallurgical bonding processes used for attaching the porous to the implant body introduce some undesirable effect i.e., the reduction of the fatigue strength of the implant due to the ``notches`` created and also due to the high temperature exposure during the sintering operations. This paper describes the development of a thermoplastic polymeric adhesive based structural bonding technique. The high performance polymeric adhesive is fully characterized with respect to its intended application. The design of the porous layer is optimized to achieve a reliable bond to the implant. A thermal heating/cooling process was developed to control the final polymer morphology. Static and fatigue tests were conducted to fully characterize the adhesive bond strength. A ring shear test method was developed to determine the shear strength of the bond interface. Besides the characterization of the adhesive bond, the joints will be analyzed using finite element models. The correlation between the analytical models and the

  3. 49 CFR 587.16 - Adhesive bonding procedure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  4. THE EFFECT OF DEGREASING ON ADHESIVE JOINT STRENGTH

    Directory of Open Access Journals (Sweden)

    Anna Rudawska

    2017-03-01

    Full Text Available The paper investigates the effect of degreasing, a surface preparation methods in adhesive bonding, on adhesive joint strength. 5 types of degreasing agents were used in the study: acetone, extraction naphtha, Ultramyt, Wiko and Loctite 7061. The degreasing operation was performed by three methods: rubbing, spraying and immersion. Strength tests were performed on single-lap adhesive joints of hot-dip galvanized metal sheets made with Loctite 9466 adhesive according to the above variants of surface preparation. The experimental results demonstrate that adhesive joint strength is significantly affected by the applied degreasing agent. Moreover, the method of application of the degreasing agent is crucial, too. The results of strength testing reveal that the most effective degreasing method for hot-dip galvanized metal sheet adhesive joints is spraying using extraction naphtha. Thereby degreased samples have the highest immediate strength and shear strength. The use of extraction naph-tha is also effective in combination with degreasing by rubbing; however, it is not effective when used in combi-nation with immersion, as reflected in the lowest strength results.

  5. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  6. Cure Monitoring Techniques for Adhesive Bonding Techniques.

    Science.gov (United States)

    1980-11-01

    Dissipation Factor 21 Derived From Audrey and Phasemeter Data for PH-73 Ad- hesive. Filled symbols represent positive values of tanq .; hollow symbols...bonded joint. Since the absorption of water is a slow diffusion controlled process, it was decided to test the idea by iomursing a siulated bondline in... water . A series of probed bonds (probe 1/4" x 2ŕ) were fabricated between aluminum adherends with a layer of FE? film adjacent to each adherend. This

  7. Screening of high temperature adhesives for large area bonding

    Science.gov (United States)

    Stenersen, A. A.; Wykes, D. H.

    1980-01-01

    High temperature-resistant adhesive systems were screened for processability, mechanical and physical properties, operational capability at 589 K (600 F), and the ability to produce large area bonds of high quality in fabricating Space Shuttle components. The adhesives consisted primarily of polyimide systems, including FM34B-18, NR-150B2 (DuPont), PMR-15, LARC-13, LARC-160, Thermid 600, and AI-1130L (AMOCA). The processing studies included preparation of polyimide resins, fabrication of film adhesives, development of lay-up and cure procedures, fabrication of honeycomb sandwich panels, and fabrication of mid-plane bonded panels in joints up to 30.5 cm (12 in.) wide. The screening program included tests for tack and drape properties, reticulation and filleting characteristics, ability to produce void-free or low porosity bonds in mid-plane bonded panels, out-time stability, lap shear strength, climbing drum peel strength, and glass transition temperature (Tg). This paper describes the processing methods developed and the test results.

  8. Fracture analysis of adhesive joints in wind turbine blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert

    2015-01-01

    the air-flow rejoins and leaves the blade. Maintenance inspections of wind turbine rotor blades show that among other forms of damage, local debonding of the shells along the trailing edge is a frequent failure type. The cause of trailing edge failure in wind turbine blades is complex, and detailed...... information is scarce. This paper is concerned with the fracture analysis of adhesive joints in general, with a particular focus on trailing edges. For that, the energy release rates in prescribed cracks present in the bond line of a generic trailing edge joint are investigated. In connection...

  9. Time- and temperature-dependent failures of a bonded joint

    Science.gov (United States)

    Sihn, Sangwook

    This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time

  10. Adhesion to tooth structure mediated by contemporary bonding systems.

    Science.gov (United States)

    Stangel, Ivan; Ellis, Thomas H; Sacher, Edward

    2007-07-01

    Given the enormity of the field of adhesion and the number of commercial products available, the discipline of modern adhesive dentistry can be daunting with respect to materials and techniques. This article organizes contemporary bonding practice and materials around an understanding of the fundamentals of adhesion to tooth structure. In providing this context, adhesive development, bonding systems, and their appropriate use are better understood. The end result is the better practice of adhesive dentistry.

  11. Evaluación de la adherencia de uniones adhesivas metálicas con adhesivos epoxídicos modificados Evaluation of the adherence of bonded metallic joints with modified epoxy adhesives

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2008-03-01

    agents. The adhesive properties were investigated using the epoxy resins as independent systems as well as the modified resin. The adhesive properties of modified and unmodified epoxy resins were studied using steel alloy (ASTM A36 as adherent. The adherence has been evaluated using three geometric assays of steel-steel bonded joints. The rheological behavior of the adhesives was investigated under isothermal conditions. The rheological parameters associated with the curing reaction such as reaction rate, pot life and gel time of the pure adhesives were related to the chemical structure of the curing agents. The cloud point and the gel time of the modified adhesives were related to the morphology and the reaction rate, respectively. The morphology was characterized by scanning electronic microscopy. The adherence of the adhesive joints at different mechanical solicitations was related to the generated morphology by the dispersed phase of each modifier and the networks structures of the epoxy adhesives.

  12. An Analytical Model for Predicting the Stress Distributions within Single-Lap Adhesively Bonded Beams

    Directory of Open Access Journals (Sweden)

    Xiaocong He

    2014-01-01

    Full Text Available An analytical model for predicting the stress distributions within single-lap adhesively bonded beams under tension is presented in this paper. By combining the governing equations of each adherend with the joint kinematics, the overall system of governing equations can be obtained. Both the adherends and the adhesive are assumed to be under plane strain condition. With suitable boundary conditions, the stress distribution of the adhesive in the longitudinal direction is determined.

  13. Improved stress prediction in adhesive bonded optical components

    NARCIS (Netherlands)

    Vreugd, J. de; Voert, M.J.A. te; Nijenhuis, J.R.; Pijnenburg, J.A.C.M.; Tabak, E.

    2012-01-01

    Adhesives are widely used in optomechanical structures for bonding optical components to their mounts. The main advantage of using adhesives is the excellent strength to weight ratio. Adhesive bonding is seen as a desirable joining technique as it allows for greater flexibility in design. A disadvan

  14. Adhesive joint and composites modeling in SIERRA.

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III (.,; )

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  15. Shear Bond Strengths of Different Adhesive Systems to Biodentine

    OpenAIRE

    Mesut Enes Odabaş; Mehmet Bani; Resmiye Ebru Tirali

    2013-01-01

    The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system) Prime & Bond NT; group 2: (2-step self-etch adhesive system) Clearfil SE Bond; group 3: (1-step self-etch adhesive systems) Clearfil S3 Bond; group 4: contro...

  16. Analysis of Adhesively Bonded Ceramics Using an Asymmetric Wedge Test

    Science.gov (United States)

    2008-12-01

    moisture durability of adhesive bonding of ceramics is dental applications (12–14). The adhesive bonding of ceramic orthodontic inserts presents unique...sample sets. Environmental exposure is often limited to mechanical testing on the millimeter scale of bonded ceramic blocks or extracted human...Dressler, K. B.; Grenadier, M. R. Direct Bonding of Orthodontic Brackets to Esthetic Restorative Materials Using a Silane. Am. J. Orthodontics and

  17. [The application of universal adhesives in dental bonding].

    Science.gov (United States)

    Guo, Jingmei; Lei, Wenlong; Yang, Hongye; Huang, Cui

    2016-03-01

    The bonding restoration has become an important clinical technique for the development of dental bonding technology. Because of its easy operation and the maximum preservation of tooth tissues, bonding repair is widely used in dental restoration. The recent multi-mode universal adhesives have brought new progress in dental bonding restoration. In this article the universal adhesives were reviewed according to its definition, development, improvement, application features and possible problems.

  18. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2007-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...... stress required to propagate the crack under quasi-static conditions. The fracture mechanical model is theoretically sound and it is accurate and numerically stable. The cohesive zone model has some advantages over the fracture mechanics based model. It is easier to generalise the cohesive zone model...... to take into account effects such as plastic deformation in the adhering shells, and to take into account effects of large local curvatures of the interface crack front. The comparison shows a convergence of the results based on the cohesive zone model towards the results based on a fracture mechanics...

  19. Microleakage under orthodontic brackets bonded with different adhesive systems.

    Science.gov (United States)

    Alkis, Huseyin; Turkkahraman, Hakan; Adanir, Necdet

    2015-01-01

    This in vitro study aimed to compare the microleakage of orthodontic brackets between enamel-adhesive and adhesive-bracket interfaces at the occlusal and gingival margins bonded with different adhesive systems. A total of 144 human maxillary premolar teeth extracted for orthodontic reasons was randomly divided into four groups. Each group was then further divided into three sub-groups. Three total-etching bonding systems (Transbond XT, Greengloo and Kurasper F), three one-step self-etching bonding systems (Transbond Plus SEP, Bond Force and Clearfil S3), three two-step self-etching bonding systems (Clearfil SE Bond, Clearfil Protectbond and Clearfil Liner Bond), and three self-adhesive resin cements (Maxcem Elite, Relyx U 100 and Clearfil SA Cement) were used to bond the brackets to the teeth. After bonding, all teeth were sealed with nail varnish and stained with 0.5% basic fuchsine for 24 h. All samples were sectioned and examined under a stereomicroscope to score for microleakage at the adhesive-enamel and adhesive-bracket interfaces from both occlusal and gingival margins. Statistical analyses were performed with Kruskal-Wallis and Wilcoxon signed-rank tests. The results indicate no statistically significant differences between the microleakage scores of the adhesives; microleakage was detected in all groups. Comparison of the average values of the microleakage scores in the enamel-adhesive and adhesive-bracket interfaces indicated statistically significant differences (P adhesive interface than at the bracket-adhesive interface. All of the brackets exhibited some amount of microleakage. This result means that microleakage does not depend on the type of adhesive used.

  20. Bond strength of adhesives to dentin contaminated with smoker's saliva.

    Science.gov (United States)

    Pinzon, Lilliam M; Oguri, Makoto; O'Keefe, Kathy; Dusevish, Vladimir; Spencer, Paulette; Powers, John M; Marshall, Grayson W

    2010-02-01

    The purpose of this study was to determine the effects of contamination with smoker's and non-smoker's saliva on the bond strength of resin composite to superficial dentin using different adhesive systems. The interfacial structure between the resin and dentin was evaluated for each treatment using environmental scanning electron microscopy (ESEM). Freshly extracted human molars were ground with 600-grit SiC paper to expose the superficial dentin. Adhesives [One-Up-Bond-F-Plus (OUFP) and Adper-Prompt-L-Pop (APLP)] and resin composite (TPHSpectrum) were bonded to the dentin (n = 8/group, 180 total specimens) under five surface conditions: control (adhesive applied following manufacturers' instructions); saliva, then 5-s air dry, then adhesive; adhesive, saliva, 5-s air dry; adhesive, saliva, 5-s water rinse, 5-s air dry (ASW group); and adhesive, saliva, 5-s water rinse, 5-s air dry, reapply adhesive (ASWA group). After storage in water at 37 degrees C for 24 h, the specimens were debonded under tension at a speed of 0.5 mm/min. ESEM photomicrographs of the dentin/adhesive interfaces were taken. Mean bond strength ranged from 8.1 to 24.1 MPa. Fisher's protected least significant difference (P = 0.05) intervals for critical adhesive, saliva, and surface condition differences were 1.3, 1.3, and 2.1 MPa, respectively. There were no significant differences in bond strength to dentin between contamination by smoker's and nonsmoker's saliva, but bond strengths were significantly different between adhesive systems, with OUFP twice as strong as APLP under almost all conditions. After adhesive application and contamination with either smoker's or nonsmoker's saliva followed by washing and reapplication of the adhesive (ASWA group), the bond strength of both adhesive systems was the same as that of the control group.

  1. Shear Bond Strengths of Different Adhesive Systems to Biodentine

    Directory of Open Access Journals (Sweden)

    Mesut Enes Odabaş

    2013-01-01

    Full Text Available The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system Prime & Bond NT; group 2: (2-step self-etch adhesive system Clearfil SE Bond; group 3: (1-step self-etch adhesive systems Clearfil S3 Bond; group 4: control (no adhesive. After the application of adhesive systems, composite resin was applied over Biodentine. This procedure was repeated 24 hours after mixing additional 40 samples, respectively. Shear bond strengths were measured using a universal testing machine, and the data were subjected to 1-way analysis of variance and Scheffé post hoc test. No significant differences were found between all of the adhesive groups at the same time intervals (12 minutes and 24 hours (. Among the two time intervals, the lowest value was obtained for group 1 (etch-and-rinse adhesive at a 12-minute period, and the highest was obtained for group 2 (two-step self-etch adhesive at a 24-hour period. The placement of composite resin used with self-etch adhesive systems over Biodentine showed better shear bond strength.

  2. Shear bond strengths of different adhesive systems to biodentine.

    Science.gov (United States)

    Odabaş, Mesut Enes; Bani, Mehmet; Tirali, Resmiye Ebru

    2013-01-01

    The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system) Prime & Bond NT; group 2: (2-step self-etch adhesive system) Clearfil SE Bond; group 3: (1-step self-etch adhesive systems) Clearfil S(3) Bond; group 4: control (no adhesive). After the application of adhesive systems, composite resin was applied over Biodentine. This procedure was repeated 24 hours after mixing additional 40 samples, respectively. Shear bond strengths were measured using a universal testing machine, and the data were subjected to 1-way analysis of variance and Scheffé post hoc test. No significant differences were found between all of the adhesive groups at the same time intervals (12 minutes and 24 hours) (P > .05). Among the two time intervals, the lowest value was obtained for group 1 (etch-and-rinse adhesive) at a 12-minute period, and the highest was obtained for group 2 (two-step self-etch adhesive) at a 24-hour period. The placement of composite resin used with self-etch adhesive systems over Biodentine showed better shear bond strength.

  3. Shear Bond Strengths of Different Adhesive Systems to Biodentine

    Science.gov (United States)

    Odabaş, Mesut Enes; Bani, Mehmet; Tirali, Resmiye Ebru

    2013-01-01

    The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system) Prime & Bond NT; group 2: (2-step self-etch adhesive system) Clearfil SE Bond; group 3: (1-step self-etch adhesive systems) Clearfil S3 Bond; group 4: control (no adhesive). After the application of adhesive systems, composite resin was applied over Biodentine. This procedure was repeated 24 hours after mixing additional 40 samples, respectively. Shear bond strengths were measured using a universal testing machine, and the data were subjected to 1-way analysis of variance and Scheffé post hoc test. No significant differences were found between all of the adhesive groups at the same time intervals (12 minutes and 24 hours) (P > .05). Among the two time intervals, the lowest value was obtained for group 1 (etch-and-rinse adhesive) at a 12-minute period, and the highest was obtained for group 2 (two-step self-etch adhesive) at a 24-hour period. The placement of composite resin used with self-etch adhesive systems over Biodentine showed better shear bond strength. PMID:24222742

  4. Dentin bond strengths of simplified adhesives: effect of dentin depth.

    Science.gov (United States)

    Lopes, Guilherme Carpena; Perdigão, Jorge; Lopes, Mariana de F; Vieira, Luiz Clovis Cardoso; Baratieri, Luiz Narciso; Monteiro, Sylvio

    2006-06-01

    The objective of this study was to compare the shear bond strength of 3 simplified adhesive systems applied on shallow vs deep dentin. For superficial dentin, 30 human molars were sectioned with a diamond saw to expose dentin immediately below the dentoenamel junction. For deep dentin, 30 molars were sectioned 3 mm below the dentoenamel junction. The teeth were mounted, polished to 600-grit, and randomly assigned to 3 groups (n=10): Single Bonda and OptiBond Solo, total-etch adhesives, and Clearfil Liner Bond 2V, a self-etching primer adhesive. Adhesives were applied, the restorative material Filtek Z250 inserted in a No. 5 gelatin capsule, and light-cured. After 24 hours in water at 37 degrees C, shear bond strength was measured with an Instron at 5 mm/min. The data were analyzed with 2-way ANOVA and Duncan's post-hoc test. The results showed the following shear bond strengths (mean +/- SD in MPa): Single Bond/superficial dentin = 22.1 +/- 2.8; Single Bond/deep dentin = 14.2 +/- 7.0; OptiBond Solo/superficial dentin = 18.9 +/- 4.1; OptiBond Solo/deep dentin = 18.4 +/- 4.8; Clearfil Liner Bond 2V/superficial dentin = 21.0 +/- 7.4; Clearfil Liner Bond 2V/deep dentin = 17.6 +/- 5.9. There were no significant differences between mean shear bond strength for the factor "adhesive system" (P>.822). The Duncan's test showed that Single Bond resulted in higher shear bond strength on superficial dentin than on deep dentin. The mean shear bond strength for Clearfil Liner Bond 2V and OptiBond Solo were not influenced by dentin depth. When data were pooled for dentin depth, deep dentin resulted in statistically lower bond strengths than superficial dentin (Pcomposition of the dentin adhesive.

  5. Comparison of Bond in Roll-bonded and Adhesively Bonded Aluminums

    Science.gov (United States)

    Schwensfeir, R. J., Jr.; Trenkler, G.; Delagi, R. G.; Forster, J. A.

    1985-01-01

    Lap-shear and peel test measurements of bond strength have been carried out as part of an investigation of roll bonding of 2024 and 7075 aluminum alloys. Shear strengths of the bonded material in the F temper are in the range of 14 to 16 ksi. Corresponding peel strengths are 120 to 130 lb/inch. These values, which are three to five times those reported in the literature for adhesively bonded 2024 and 7075, are a result of the true metallurgical bond achieved. The effects of heat-treating the bonded material are described and the improvements in bond strength discussed relative to the shear strength of the parent material. The significance of the findings for aerospace applications is discussed.

  6. Lamb Wave Interaction with Adhesively Bonded Stiffeners and Disbonds Using 3D Vibrometry

    Directory of Open Access Journals (Sweden)

    Ryan Marks

    2016-01-01

    Full Text Available There are many advantages to adhesively bonding stiffeners onto aircraft structures rather than using traditional mechanical fastening methods. However there is a lack of confidence of the structural integrity of adhesively bonded joints over time. Acousto-ultrasonic Lamb waves have shown great potential in structural health monitoring applications in both metallic and composite structures. This paper presents an experimental investigation of the use of acousto-ultrasonic Lamb waves for the monitoring of adhesively bonded joints in metallic structures using 3D scanning laser vibrometry. Two stiffened panels were manufactured, one with an intentional disbonded region. Lamb wave interaction with the healthy and disbonded stiffeners was investigated at three excitation frequencies. A windowed root-mean-squared technique was applied to quantify where Lamb wave energy was reflected, attenuated and transmitted across the structure enabling the size and shape of the defect to be visualised which was verified by traditional ultrasonic inspection techniques.

  7. The influence of adhesive thickness on the microtensile bond strength of three adhesive systems.

    Science.gov (United States)

    D'Arcangelo, Camillo; Vanini, Lorenzo; Prosperi, Gianni Domenico; Di Bussolo, Giulia; De Angelis, Francesco; D'Amario, Maurizio; Caputi, Sergio

    2009-04-01

    To evaluate the effects of multiple adhesive layers of three etch-and-rinse adhesives on both adhesive thickness and microtensile bond strength (microTBS). Midcoronal occlusal dentin of 36 extracted human molars was used. Teeth were randomly assigned to 3 groups (EB, XP, PQ) according to the adhesive system to be used: PQ1 (Ultradent) (PQ), EnaBond (Micerium) (EB), or XP Bond (Dentsply/DeTrey) (XP). Specimens from each group were further divided into three subgroups according to the number of adhesive coatings (1, 2, or 3). In all subgroups, each adhesive layer was light cured before application of each additional layer. After bonding procedures, composite crowns were incrementally built up. Specimens were sectioned perpendicular to the adhesive interface to produce multiple beams, approximately 1 mm2 in area. Beams were tested under tension at a crosshead speed of 0.5 mm/min until failure. Adhesive thicknesses and failure modes were evaluated with SEM. The microTBS data and mean adhesive thickness were analyzed by two-way ANOVA and multiple-comparison Tukey's test (alpha = 0.05). The mean bond strength (in MPa (SD)) of group EB gradually increased from 1 to 3 consecutive coatings (27.02 (9.38) to 44.32 (4.93), respectively) (p adhesive coatings. The mean thickness of the adhesive layer (in microm (SD)) significantly increased with the number of coatings (p adhesive failure between adhesive and dentin. The XP3 and PQ3 subgroups showed a greater number of total cohesive failure in adhesive. Multiple adhesive coats significantly affected bond strength to dentin. An excess of adhesive layer thickness can negatively influence the strength and the quality of adhesion.

  8. SHM of single lap adhesive joints using subharmonic frequencies

    Science.gov (United States)

    Ginzburg, D.; Ciampa, F.; Scarselli, G.; Meo, M.

    2017-10-01

    The increased usage of adhesive bonding as a joining method in modern aerospace components has led to developing reliable ultrasonic health monitoring systems for detection of regions of poor adhesion. Nonlinear acousto-ultrasonic techniques based on higher harmonics and subharmonic frequencies have shown to be sensitive to the detection of micro-voids and disbonds. Nonlinear resonance properties of disbonds generate various nonlinear phenomena such as self-modulation, subharmonics, hysteresis and so on. By exploiting the local natures of these phenomena, this paper demonstrates the use of subharmonics for detection and imaging of flaws in bonded structures. To optimise the experimental testing a two-dimensional analytical model and a three-dimensional finite element analysis simulation were developed for understanding the generation of nonlinear elastic effects with emphasis on subharmonic frequency components. The proposed analytical model qualitatively described the generation of subharmonics but also higher harmonics due to the nonlinear intermodulation of the driving and resonance frequencies associated with the disbonded region. The numerical model was developed by modifying the user defined cohesive element formulation with a bi-linear traction-displacement relationship in order to simulate the interaction of elastic waves with the structural disbond. Whilst the analytical model supported the selection of the driving frequency, the numerical one successfully predicted the generation of subharmonic frequencies originating in the disbonded area. Experimental tests were conducted on a disbonded single lap joint structure using surface-bonded piezoelectric transducers and a laser-Doppler vibrometer, and allowed to validate the analytical and numerical results. It was clearly demonstrated that the nonlinear resonance effects in the form of subharmonics could be used to discriminate reliably regions of poor adhesion in bonded structures. This work can lead to new

  9. Behaviour of Bi-Adhesive in Double-Strap Joint with Embedded Patch Subjected to Bending

    Directory of Open Access Journals (Sweden)

    Temiz Şemsettin

    2015-09-01

    Full Text Available In this study, behaviour of bi-adhesive used in the repair of damaged parts was analyzed, using the finite element method. In a double-strap joint with an embedded patch, patch is embedded into the adherents for structural requirements. In addition, to increase the strength of the joint, two adhesives are used to bond the adherents. This approach reduces stress concentration at the overlap ends, increases the load capacity and delays the failure. These effects give rise to higher joint strength. For this purpose, a stiff adhesive, FM73 produced by Cytec Fiberite, was applied in the middle portion of the overlap, while a softer adhesive, SBT9244 from 3M, was applied towards the edges, prone to stress concentrations. Non-linear finite element analyses were carried out to predict the failure loads, to assist with the geometric design and to identify effective ratios of sizes to maximize joint strength.

  10. Test method to assess interface adhesion in composite bonding

    OpenAIRE

    2015-01-01

    This paper introduces a new type of peel tests dedicated to composite bonding: Composite Peel Tests. This test is inspired on the standard floating roller peel test widely used for metal bonding. The aim of this study is to investigate the potential of the Composite Peel Test to assess interface adhesion in composite bonded structures. To this end, peel tests were performed with nine different types of adhesives and at two environmental temperatures, room temperature and +80°C. The results we...

  11. Bond durability of contemporary adhesive systems to pulp chamber dentin.

    Science.gov (United States)

    Ayar, Muhammet Kerim

    2015-12-01

    Objective: The purpose of this study was to evaluate long-term bond strengths of dentin adhesive systems, which include one-step self-etch adhesive systems (Optibond All-in-one, Kerr; Adper Prompt L-POP, 3 M ESPE), a three-step etch-and-rinse adhesive (Optibond FL, Kerr) and two-step self-etch adhesive (AdheSE Bond, Ivoclar), applied to pulp chamber dentin surfaces after 12-month water storage by using microtensile bond strength (µTBS) test. Materials and methods: Dentin adhesive systems were applied to unprepared pulp chamber dentin surfaces according to manufacturer's directions, respectively (n = 5). After applying adhesive systems, composite buildups were done incrementally. Bond strengths to pulp chamber dentin surfaces were determined using µTBS test after water storage for 24 h and 12 month. Kruskal-Wallis analysis and Mann-Whitney U-test for pairwise comparisons were used to determine statistical differences in µTBS between the groups at a significance level of 5%. Results: There were no significant differences in µTBS between storage periods for tested adhesives regardless adhesive class. Conclusion: Bond durability of tested adhesive systems, including one-bottle self-etch adhesives with pulp chamber dentin surfaces, may be considered stable after 12-month water storage. Therefore, one-step self-etch, also called "user-friendly" adhesives may perform and traditional three-step etch-and-rinse adhesives in the long-term when used for bonding to pulp chamber dentin surfaces.

  12. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  13. Shear bond strength of a "solvent-free" adhesive versus contemporary adhesive systems

    OpenAIRE

    Koliniotou-Koumpia, Eugenia; Kouros, Pantelis; Koumpia,Effimia; Helvatzoglou-Antoniades,Maria

    2014-01-01

    AIM: To compare the shear bond strength (SBS) of a solvent free self-etch adhesive with solvent containing adhesives. METHODS: Forty-five human teeth were sectioned longitudinally to expose superficial dentin and substrates polished with 600-grit SiC paper. The adhesive area was isolated with a cylindrical Teflon mold 3x4 mm. Fifteen specimens were prepared for each material. Were evaluated a solvent free self-etch adhesive (Bond 1 SF), an ethanol self-etch adhesive (Futurabond M), and a wate...

  14. Cohesive zone modelling of interface fracture near flaws in adhesive joints

    DEFF Research Database (Denmark)

    Hansen, Peter Feraren; Jensen, Henrik Myhre

    2004-01-01

    A cohesive zone model is suggested for modelling of interface fracture near flaws in adhesive joints. A shear-loaded adhesive joint bonded with a planar circular bond region is modelled using both the cohesive zone model and a fracture mechanical model. Results from the models show good agreement...... of crack propagation on the location and shape of the crack front and on the initial joint strength. Subsequently, the cohesive zone model is used to model interface fracture through a planar adhesive layer containing a periodic array of elliptical flaws. The effects of flaw shape are investigated, as well...... on the fracture process zone width relative to the flaw dimensions. It is also seen that with increasing fracture process zone width, the strength variation with the flaw shape decreases, however, the strength is effected over a wider range of propagation, (C) 2004 Elsevier Ltd. All rights reserved....

  15. Dentine bond strength and antimicrobial activity evaluation of adhesive systems.

    Science.gov (United States)

    André, Carolina Bosso; Gomes, Brenda Paula Figueiredo Almeida; Duque, Thais Mageste; Stipp, Rafael Nobrega; Chan, Daniel Chi Ngai; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2015-04-01

    This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30 min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10 min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    Science.gov (United States)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  17. An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection

    Science.gov (United States)

    Arun, K.; Dhayalan, R.; Balasubramaniam, Krishnan; Maxfield, Bruce; Peres, Patrick; Barnoncel, David

    2012-05-01

    The evaluation of adhesively bonded structures has been a challenge over the several decades that these structures have been used. Applications within the aerospace industry often call for particularly high performance adhesive bonds. Several techniques have been proposed for the detection of disbonds and cohesive weakness but a reliable NDE method for detecting interfacial weakness (also sometimes called a kissing bond) has been elusive. Different techniques, including ultrasonic, thermal imaging and shearographic methods, have been proposed; all have had some degree of success. In particular, ultrasonic methods, including those based upon shear and guided waves, have been explored for the assessment of interfacial bond quality. Since 3-D guided shear horizontal (SH) waves in plates have predominantly shear displacement at the plate surfaces, we conjectured that SH guided waves should be influenced by interfacial conditions when they propagate between adhesively bonded plates of comparable thickness. This paper describes a new technique based on SH guided waves that propagate within and through a lap joint. Through mechanisms we have yet to fully understand, the propagation of an SH wave through a lap joint gives rise to a reverberation signal that is due to one or more reflections of an SH guided wave mode within that lap joint. Based upon a combination of numerical simulations and measurements, this method shows promise for detecting and classifying interfacial bonds. It is also apparent from our measurements that the SH wave modes can discriminate between adhesive and cohesive bond weakness in both Aluminum-Epoxy-Aluminum and Composite-Epoxy-Composite lap joints. All measurements reported here used periodic permanent magnet (PPM) Electro-Magnetic Acoustic Transducers (EMATs) to generate either or both of the two lowest order SH modes in the plates that comprise the lap joint. This exact configuration has been simulated using finite element (FE) models to

  18. Resolving fundamental limits of adhesive bonding in microfabrication.

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jessica S.; Frischknecht, Amalie Lucile; Emerson, John Allen; Adkins, Douglas Ray; Kent, Michael Stuart; Read, Douglas H.; Giunta, Rachel Knudsen; Lamppa, Kerry P.; Kawaguchi, Stacie; Holmes, Melissa A.

    2004-04-01

    As electronic and optical components reach the micro- and nanoscales, efficient assembly and packaging require the use of adhesive bonds. This work focuses on resolving several fundamental issues in the transition from macro- to micro- to nanobonding. A primary issue is that, as bondline thicknesses decrease, knowledge of the stability and dewetting dynamics of thin adhesive films is important to obtain robust, void-free adhesive bonds. While researchers have studied dewetting dynamics of thin films of model, non-polar polymers, little experimental work has been done regarding dewetting dynamics of thin adhesive films, which exhibit much more complex behaviors. In this work, the areas of dispensing small volumes of viscous materials, capillary fluid flow, surface energetics, and wetting have all been investigated. By resolving these adhesive-bonding issues, we are allowing significantly smaller devices to be designed and fabricated. Simultaneously, we are increasing the manufacturability and reliability of these devices.

  19. Analysis of Balanced Double Lap Joints with a Bi-Linear Softening Adhesive

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik; Schmidt, Jacob Wittrup

    2010-01-01

    -free crack decreased for increasing size of fracture process zone. This suggests that in order to fully describe the loading and unloading response, an unloading law should be implemented in the constitutive model. Apart from adhesively bonded metallic joints, the present solution may be used in analysis...

  20. [Bonding compatibility between adhesive systems and composite resins].

    Science.gov (United States)

    Giachetti, L; Scaminaci Russo, D; Landi, D

    2003-04-01

    The purpose of the present study was to analyse bonding compatibility between photo- and self-polymerising composite resins ad two-step total-etch (one component) adhesive systems with a different activation method. Thirty healthy extracted molars were cut transversally to obtain sixty flat dentin surfaces. The acid conditioned surfaces were bonded with Scotchbond 1 (3M), Excite (Vivadent) or Excite DSC (Vivadent). A cylinder of composite resin (3 mm diameter and 4 mm height) was constructed on each adhesive layer using photopolymerised Tetric Ceram (Vivadend) and dual Luxacore (DMG) but activated only chemically. The samples were subjected to the shear bond test. The fracture surfaces obtained were classified by type and site in the stereomicroscope. Twelve samples representing each group were further prepared for the SEM. The data obtained from the test, the microscopic investigation and statistical analysis (ANOVA and Bonferroni) seem to confirm the presence of a reduced bonding compatibility between one-component adhesive systems and self-polymerising composites. This incompatibility is evident for the adhesive Scotchbond 1 and limited for Excite, while it seems to be overcome by Excite DSC which appears to bond well with both Tetric Ceram and Luxacore. Adhesive-composite incompatibility seems to depend on the activation method of the composite as well as on that of the adhesive system. The chemical compatibility bet-ween these two materials is influenced not only by the chemical composition of the adhesive, but also by that of the composite.

  1. The development of ultrasonic techniques for nondestructive evaluation of adhesive bonds

    Science.gov (United States)

    Chapman, Gilbert B., II

    Demands for improvements in aerospace and automotive energy-efficiency, performance, corrosion resistance, body stiffness and style have increased the use of adhesive bonds to help meet those demands by providing joining technology that accommodates a wider variety of materials and design options. However, the history of adhesive bond performance clearly indicates the need for a robust method of assuring the existence of the required consistent level of adhesive bond integrity in every bonded region. This investigation seeks to meet that need by the development of new, complementary ultrasonic techniques for the evaluation of these bonds, and thus provide improvements over previous methods by extending the range of resolution, speed and applications. The development of a 20 MHz pulse-echo method for nondestructive evaluation of adhesive bonds will accomplish the assessment of bond joints with adhesive as thin as 0.1 mm. This new method advances the state of the art by providing a high-resolution, phase-sensitive procedure that identifies the bond state at each interface of the adhesive with the substrate(s), by the acquisition and analysis of acoustic echoes reflected from interfaces between layers with large acoustic impedance mismatch. Because interface echo amplitudes are marginal when the acoustic impedance of the substrate is close to that of the adhesive, a 25 kHz Lamb wave technique was developed to be employed in such cases, albeit with reduced resolution. Modeling the ultrasonic echoes and Lamb-wave signals was accomplished using mathematical expressions developed from the physics of acoustic transmission, attenuation and reflection in layered media. The models were validated by experimental results from a variety of bond joint materials, geometries and conditions, thereby confirming the validity of the methodology used for extracting interpretations from the phase-sensitive indications, as well as identifying the range and limits of applications. Results

  2. Bonding performance of different adhesive systems to deproteinized dentin: microtensile bond strength and scanning electron microscopy.

    Science.gov (United States)

    Barbosa de Souza, Fábio; Silva, Cláudio Heliomar Vicente; Guenka Palma Dibb, Regina; Sincler Delfino, Carina; Carneiro de Souza Beatrice, Lúcia

    2005-10-01

    Deproteinization has been shown to optimize dentin bonding, but differences in adhesive composition should be considered. The objective of this study was to evaluate the effect of dentin deproteinization on microtensile bond strength (microTBS) of four total-etch adhesive systems (Single Bond/SB, Prime & Bond NT/PB, One Coat Bond/OC, and PQ1/PQ). The ultrastructure of the resin-dentin interfaces was also examined using scanning electron microscopy. Tukey's multiple-comparison tests indicated that PB and PQ produced significantly higher microTBS (padhesive system, as well as the adhesive dentin specificity to the oxidant effect of sodium hypochlorite. Incorporation of fillers in the adhesive, a possible self-etching action, and the presence of a volatile solvent (acetone) were the main factors for a better union between the adhesive system and deproteinized substrate. (c) 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2005.

  3. Failure load prediction of single lap adhesive joints using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Erdi Tosun

    2016-06-01

    Full Text Available The objective of this paper was to predict the failure load in single lap adhesive joints subjected to tensile loading by using artificial neural networks. Experimental data obtained from the literature cover the single lap adhesive joints with various geometric models under the tensile loading. The data are arranged in a format such that two input parameters cover the length and width of bond area in single lap adhesive joints and the corresponding output is the ultimate failure load. An artificial neural network model was developed to estimate relationship between failure loads by using geometric dimensions of bond area as input data. A three-layer feedforward artificial neural network that utilized Levenberg–Marquardt learning algorithm model was used in order to train network. It was observed that artificial neural network model can estimate failure load of single lap adhesive joints with acceptable error. Mean absolute percentage error and Nash–Sutcliffe coefficient of efficiency values of both training and testing data were 3.523 and 3.524 and 0.997 and 0.992, respectively. The results showed that the artificial neural network is an efficient alternative method to predict the failure load of single lap adhesive joints. Also estimated results are in very good agreement with the experimental data.

  4. Effect of adhesive on molten pool structure and penetration in laser weld bonding of magnesium alloy

    Science.gov (United States)

    Liu, L. M.; Ren, D. X.

    2010-09-01

    Laser weld bonding (LWB) is a new hybrid technique that combines adhesive bonding with laser seam welding together, and can achieve higher joint strength than adhesive bonding or laser welding individually. Some new physical phenomena have been observed in this welding method, and the phenomena are different from the normal laser welding process, such as a remarkable deeper penetration in LWB than that in laser welding direct (LWD). The adhesive-induced gas can influence the molten pool structure in front of the keyhole, so that less energy is required for laser keyhole through the upper sheet; thus, higher laser power density can interact with the lower sheet, leading to deeper penetration. Simulation comparison experiments are set to indirectly verify these conclusions above.

  5. THE IMPACT OF SELECTED TECHNOLOGICAL AND MATERIAL PARAMETERS ON THE STRENGTH OF ADHESIVE STEEL SHEETS JOINTS

    Directory of Open Access Journals (Sweden)

    Anna Rudawska

    2017-06-01

    Full Text Available The following paper analyses selected problems regarding the impact of technological parameters and type of adherend material on the strength of adhesive-bonded steel sheet joints. The subject of the test was a single-lap adhesive joint of S235JR steel sheet. Joints were formed on two types of substrates: with or without corrosion products on the surface. The surface of steel sheet adherends was pre-treated with three cleaning solutions: acetone, Wiko industrial degreasing agent and Cortanin F anti-corrosion agent, depend-ing on the state of the surface. Adhesive joints were formed with Epidian 53/ET/100:15 epoxy adhesive. The formed joints were subjected to one of three ageing variants: 14 days, two months and 3 months, which were followed by destructive testing to determine the shear strength of joints. The analysis of results ob-tained in tests indicates that the strength performance of adhesive joints of corrosion-free adherends was characterised by higher values than in corroded steel sheets, regardless of ageing time.

  6. Environmental Durability of Adhesively Bonded Joints

    Science.gov (United States)

    2011-07-21

    linear variable capacitor (displacement measuring device) xxvii of applied far-field stress at fracture instability Giys intercept yield strength Outs...humidity. Two varieties of F M73 were tested: F M®73M containing a non-woven polyester scrim cloth (Figure 6a); and F M®73U, an unsupported "neat...those from the Gr-BMI/AF-191M/Gr-BMI system) or an SLVC (super linear variable capacitor ) capacitance gage transducer for specimens experiencing small

  7. Dental adhesion review: aging and stability of the bonded interface.

    Science.gov (United States)

    Breschi, Lorenzo; Mazzoni, Annalisa; Ruggeri, Alessandra; Cadenaro, Milena; Di Lenarda, Roberto; De Stefano Dorigo, Elettra

    2008-01-01

    Most of current dental adhesive systems show favorable immediate results in terms of retention and sealing of bonded interface, thereby counteracting polymerization shrinkage that affects resin-based restorative materials. Despite immediate efficacy, there are major concerns when dentin bonded interfaces are tested after aging even for short time period, i.e. 6 months. This study critically discusses the latest peer-reviewed reports related to formation, aging and stability of resin bonding, focusing on the micro and nano-phenomena related to adhesive interface degradation. Most simplified one-step adhesives were shown to be the least durable, while three-step etch-and-rinse and two-step self-etch adhesives continue to show the highest performances, as reported in the overwhelming majority of studies. In other words, a simplification of clinical application procedures is done to the detriment of bonding efficacy. Among the different aging phenomena occurring at the dentin bonded interfaces, some are considered pivotal in degrading the hybrid layer, particularly if simplified adhesives are used. Insufficient resin impregnation of dentin, high permeability of the bonded interface, sub-optimal polymerization, phase separation and activation of endogenous collagenolytic enzymes are some of the recently reported factors that reduce the longevity of the bonded interface. In order to overcome these problems, recent studies indicated that (1) resin impregnation techniques should be improved, particularly for two-step etch-and-rinse adhesives; (2) the use of conventional multi-step adhesives is recommended, since they involve the use of a hydrophobic coating of nonsolvated resin; (3) extended curing time should be considered to reduce permeability and allow a better polymerization of the adhesive film; (4) proteases inhibitors as additional primer should be used to increase the stability of the collagens fibrils within the hybrid layer inhibiting the intrinsic

  8. Current aspects on bonding effectiveness and stability in adhesive dentistry.

    Science.gov (United States)

    Cardoso, M V; de Almeida Neves, A; Mine, A; Coutinho, E; Van Landuyt, K; De Munck, J; Van Meerbeek, B

    2011-06-01

    Improved dental adhesive technology has extensively influenced modern concepts in restorative dentistry. In light of minimal-invasive dentistry, this new approach promotes a more conservative cavity design, which basically relies on the effectiveness of current enamel-dentine adhesives. Nowadays, the interaction of adhesives with the dental substrate is based on two different strategies, commonly described as an etch-and-rinse and a self-etch approach. In an attempt to simplify the bonding technique, manufacturers have decreased the number of steps necessary for the accomplishment of the bonding procedure. As a consequence, two-step etch-and-rinse and one-step (self-etch) adhesives were introduced and gained rapid popularity in the dental market due to their claimed user-friendliness and lower technique sensitivity. However, many concerns have been raised on the bonding effectiveness of these simplified adhesives, especially in terms of durability, although this tends to be very material dependent. In order to blend all the adhesive components into one single solution, one-step adhesives were made more acidic and hydrophilic. Unfortunately, these properties induce a wide variety of seemingly unrelated problems that may jeopardize the effectiveness and stability of adhesion to the dental substrate. Being more susceptible to water sorption and thus nanoleakage, these adhesives are more prone to bond degradation and tend to fail prematurely as compared to their multi-step counterparts. Incidentally, another factor that may interfere with the bonding effectiveness of adhesives is the technique used for caries removal and cavity preparation. Several tools are on the market today to effectively remove carious tissue, thereby respecting the current trend of minimum intervention. Despite their promising performance, such techniques modify the tooth substrate in different aspects, possibly affecting bonding effectiveness. Altogether, we may conclude that not only the

  9. Hydrolytic stability of self-etch adhesives bonded to dentin.

    Science.gov (United States)

    Inoue, S; Koshiro, K; Yoshida, Y; De Munck, J; Nagakane, K; Suzuki, K; Sano, H; Van Meerbeek, B

    2005-12-01

    Functional monomers chemically interact with hydroxyapatite that remains within submicron hybrid layers produced by mild self-etch adhesives. The functional monomer 10-MDP interacts most intensively with hydroxyapatite, and its calcium salt appeared most hydrolytically stable, as compared with 4-MET and phenyl-P. We investigated the hypothesis that additional chemical interaction of self-etch adhesives improves bond stability. The micro-tensile bond strength (muTBS) of the 10-MDP-based adhesive did not decrease significantly after 100,000 cycles, but did after 50,000 and 30,000 cycles, respectively, for the 4-MET-based and the phenyl-P-based adhesives. Likewise, the interfacial ultrastructure was unchanged after 100,000 thermocycles for the 10-MDP-based adhesive, while that of both the 4-MET- and phenyl-P-based adhesives contained voids and less-defined collagen. The findings of this study support the concept that long-term durability of adhesive-dentin bonds depends on the chemical bonding potential of the functional monomer.

  10. Alternative adhesive strategies to optimize bonding to radicular dentin.

    Science.gov (United States)

    Bouillaguet, Serge; Bertossa, Bruno; Krejci, Ivo; Wataha, John C; Tay, Franklin R; Pashley, David H

    2007-10-01

    This study tested the hypothesis that bond strengths of filling materials to radicular dentin might be optimized by using an indirect dentin bonding procedure with an acrylic core material. Roots of human teeth were endodontically prepared and obturated with EndoREZ, Epiphany, or the bonding of an acrylic point with SE Bond by using a direct or an indirect bonding technique. Bond strengths of endodontic sealers to radicular dentin were measured with a thin slice push-out test. Push-out strengths of EndoREZ and Epiphany to radicular dentin were less than 5 megapascals (MPa). The direct bonding technique with acrylic points and the self-etching adhesive had push-out strengths of 10 MPa, increasing to 18 MPa with the indirect technique. The use of the indirect bonding protocol with an acrylic point to compensate for polymerization stresses appears to be a viable means for optimizing bond strengths of endodontic filling materials to radicular dentin.

  11. High Bonding Temperatures Greatly Improve Soy Adhesive Wet Strength

    Directory of Open Access Journals (Sweden)

    Charles R. Frihart

    2016-11-01

    Full Text Available Soy wood adhesive bond strengths reported in different literature studies are difficult to compare because a variety of temperatures and other conditions have been used for the bonding and testing step. Some reports have indicated bond strengths are sensitive to bonding temperature, but the reason(s for this has not been intensively investigated. Although these prior studies differ in other ways (such as type of soy, wood species, and test method, the effect of bonding temperature has not been clearly examined, which is important for focusing commercial applications. A tensile shear test using two-parallel-ply veneer specimens with smooth maple was used to measure both the dry and wet cohesive strength of soy adhesives. Although the soy adhesives gave very good strengths and dry wood failure, they often have low wood failure and shear strengths under wet conditions when bonded at 120 °C. However, wet strength greatly increased as the bonding temperature increased (120, 150 and 180 °C for these two-ply tests with. This study examined the use of different types of soys (flours, concentrates and isolates and different bonding temperatures and bonding conditions to evacuate several possible mechanisms for this temperature sensitivity, with coalescence being the most likely.

  12. Transmission of Lamb waves and resonance at an adhesive butt joint of plates.

    Science.gov (United States)

    Mori, Naoki; Biwa, Shiro

    2016-12-01

    The transmission behavior of Lamb waves and the possible occurrence of resonance at an adhesive butt joint of plates are studied experimentally. To this purpose, two 2.5-mm thick aluminum alloy plates are bonded at their edges using cyanoacrylate-based adhesive. Bonded plate specimens with different joint conditions are prepared by changing the bonding procedure. The measurements are performed for the transmission characteristics of the lowest-order symmetric (S0) and antisymmetric (A0) Lamb modes for the frequency range of 0.4-0.6MHz below the cut-off frequency of the higher-order modes. The experimental results show that the transmission coefficients of the S0 and A0 modes exhibit different frequency-dependent characteristics depending on the joint condition. Furthermore, for the incidence of the S0 mode at the center frequency of 1MHz, the transmitted S0 mode in weakly bonded specimens shows a long oscillation tail due to the resonance effect. The experimental results are discussed in the light of the theoretical results based on the spring-type interface model. The interfacial stiffnesses identified from the transmission coefficients are shown to be correlated with the bonding condition of the joint and give reasonable estimates of the resonance frequencies of weakly bonded specimens.

  13. Adhesion between silica surfaces due to hydrogen bonding

    Science.gov (United States)

    Bowen, James; Rossetto, Hebert L.; Kendall, Kevin

    2016-09-01

    The adhesion between surfaces can be enhanced significantly by the presence of hydrogen bonding. Confined water at the nanoscale can display behaviour remarkably different to bulk water due to the formation of hydrogen bonds between two surfaces. In this work we investigate the role of confined water on the interaction between hydrophilic surfaces, specifically the effect of organic contaminants in the aqueous phase, by measuring the peak adhesive force and the work of adhesion. Atomic force microscope cantilevers presenting hemispherical silica tips were interacted with planar single crystals of silica in the presence of dimethylformamide, ethanol, and formamide; solution compositions in the range 0-100 mol% water were investigated for each molecule. Each molecule was chosen for its ability to hydrogen bond with water molecules, with increasing concentrations likely to disrupt the structure of surface-bound water layers. With the exception of aqueous solutions containing low concentrations of ethanol, all molecules decreased the ability of confined water to enhance the adhesion between the silica surfaces in excess of the predicted theoretical adhesion due to van der Waals forces. The conclusion was that adhesion depends strongly on the formation of a hydrogen-bonding network within the water layers confined between the silica surfaces.

  14. Gap measurement and bond strength of five selected adhesive systems bonded to tooth structure.

    Science.gov (United States)

    Arbabzadeh, F; Gage, J P; Young, W G; Shahabi, S; Swenson, S M

    1998-06-01

    The ability of a restorative material to bond and seal the interface with tooth structure is perhaps the most significant factor in determining resistance to marginal caries. Thus, the quality and durability of marginal seal and bond strength are major considerations in the selection of restorative materials. The purpose of this study was to compare the bond strength and marginal discrepancies of five adhesive systems: All-Bond 2, Clearfil Liner Bond, KB 200, ProBond and AELITE Bond. Twenty-five buccal and 25 lingual cavities were prepared in 25 caries-free extracted molar teeth, giving 10 cavities for each of the 5 adhesive systems. All teeth were restored with the resin composite Pertac Hybrid, or PRISMA Total Performance Hybrid with their appropriate adhesive systems. After restoration, the teeth were thermocycled, were stained with a 1.5% aqueous solution of a procion dye (reactive orange 14) and sectioned coronally with a saw microtome. Three sections of 200 microns thickness were prepared from each restoration which were then examined microscopically to measure marginal gap widths using a confocal tandem microscope. Shear bond strength measurements were carried out on the dentine bond using a universal testing machine. The All-Bond 2 adhesive system was found to have higher shear bond strength and to have the least gap width at the cementodentinal margin.

  15. Why do receptor-ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    Science.gov (United States)

    Gao, Zhiwen; Gao, Yanfei

    2016-10-01

    Cell adhesion often exhibits the clustering of the receptor-ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation for the clustering/assembling of the receptor-ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor-ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.

  16. Computed tomography analysis of wood-adhesive bonds

    Science.gov (United States)

    Modzel, Gunter Georg Rolf

    The importance of wood bonding increased in the last decades due to the increased usage of wood composites whose performance depends to a large extent on the adhesive penetration and subsequent bonding of the adherends. The presented research used XMT (x-ray microtomography) to perform a non-destructive, three-dimensional analysis of the adhesive bondline and wood-structure of Southern yellow pine, Douglas-fir and yellow-poplar samples. A phenol-formaldehyde adhesive was used. The sodium hydroxide catalyst was replaced with rubidium hydroxide during resin formulation. This was done to improve the image contrast. The reconstructions of the wood structure of Southern yellow pine showed tracheids, rays, fusiform rays, resin canals and pits. On the Douglas-fir sample tracheids, pits and rays were displayed clearly. The yellow-poplar images showed vessels, fibers, bordered pits, scalariform sieve plates and rays. The renderings of the adhesive-bondline of Southern yellow pine proved the dominant role of tracheids for the adhesive flow and showed rays as a secondary pathway of adhesive flow. The results revealed no adhesive flow occured through bordered pits, while simple pits permitted some adhesive flow through ray parenchyma. The results for Douglas-fir showed a similar result; the tracheids were the predominant path of adhesive penetration, while rays played a secondary role and no adhesive flow through the pit aperture was visible. The adhesive flow through the microstructure of yellow-poplar wood occured mainly through vessels and also through rays, but no adhesive flow through the pits was directly observed. The segmentation of the images in three phases: void space, cell wall substance and adhesive, enabled the calculation of the effective bondline thickness based on the adhesive, as well as the volumetric measurement of all three elements and their share on the sample volume. Subsequent experiments showed that the exposure of the Southern yellow pine and yellow

  17. Bonding stability of adhesive systems to eroded dentin.

    Science.gov (United States)

    Cruz, Janaina Barros; Bonini, Gabriela; Lenzi, Tathiane Larissa; Imparato, José Carlos Pettorossi; Raggio, Daniela Prócida

    2015-01-01

    This in vitro study evaluated the immediate and 6 months microshear bond strength (µSBS) of different adhesive systems to sound and eroded dentin. Sixty bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated into two groups: sound dentin (immersion in artificial saliva) and eroded dentin (erosive challenge following a pH cycling model comprising 4 ×/day Sprite Light® drink for 10 days). Then, specimens were reassigned according to the adhesive system: etch-and-rinse adhesive (Adper Single Bond), two-step self-etch system (Clearfil SE Bond), or one-step self-etch adhesive (Adper Easy One). Polyethylene tubes with an internal diameter of 0.76 mm were placed over pre-treated dentin and filled with resin composite (Z250). Half of the specimens were evaluated by the µSBS test after 24 h, and the other half 6 months later, after water storage at 37 °C. Failure mode was evaluated using a stereomicroscope (400 ×). Data were analyzed by three-way repeated measures analysis of variance and Tukey's post hoc tests (α = 0.05). After 6 months of water aging, marked reductions in µSBS values were observed, irrespective of the substrate. The µSBS values for eroded dentin were lower than those obtained for sound dentin. No difference in bonding effectiveness was observed among adhesive systems. For all groups, adhesive/mixed failure was observed. In conclusion, eroded dentin compromises the bonding quality of adhesive systems over time.

  18. Bonding stability of adhesive systems to eroded dentin

    Directory of Open Access Journals (Sweden)

    Janaina Barros CRUZ

    2015-01-01

    Full Text Available This in vitro study evaluated the immediate and 6 months microshear bond strength (µSBS of different adhesive systems to sound and eroded dentin. Sixty bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated into two groups: sound dentin (immersion in artificial saliva and eroded dentin (erosive challenge following a pH cycling model comprising 4 ×/day Sprite Light® drink for 10 days. Then, specimens were reassigned according to the adhesive system: etch-and-rinse adhesive (Adper Single Bond, two-step self-etch system (Clearfil SE Bond, or one-step self-etch adhesive (Adper Easy One. Polyethylene tubes with an internal diameter of 0.76 mm were placed over pre-treated dentin and filled with resin composite (Z250. Half of the specimens were evaluated by the µSBS test after 24 h, and the other half 6 months later, after water storage at 37°C. Failure mode was evaluated using a stereomicroscope (400×. Data were analyzed by three-way repeated measures analysis of variance and Tukey’s post hoc tests (α = 0.05. After 6 months of water aging, marked reductions in µSBS values were observed, irrespective of the substrate. The µSBS values for eroded dentin were lower than those obtained for sound dentin. No difference in bonding effectiveness was observed among adhesive systems. For all groups, adhesive/mixed failure was observed. In conclusion, eroded dentin compromises the bonding quality of adhesive systems over time.

  19. Development of a Nonchromate Structural Adhesive Bond Primer

    Science.gov (United States)

    2014-11-01

    Prevent corrosion of base metal • Applied to porous anodized surface • Overcoated with non- inhibited epoxy adhesive • High adhesive bond strength...primers •Long-running surveillance of chromate-free alternatives by UTC companies shows weak corrosion inhibition • (A) strontium chromate... corrosion inhibiter achieved Electrokinetic Confirmation of Active Inhibition in Coatings 7 Schematic of defect production and samples for salt

  20. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  1. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  2. Predicting Failure Initiation in Structural Adhesive Joints

    Science.gov (United States)

    2012-08-15

    Elastoplástico de Adhesivos – Modeling, characterization and simulation of the elastoplastic behavior of adhesives. Maestría en Ciencia de Materiales...adhesive and a 1018 steel”. Maestría en Ciencia de Materiales. Centro de Investigación en Materiales Avanzados S.C. May 2012.  Abstract: In the

  3. Microtensile Bond Strength of Single Bond and Adper Prompt-L-Pop Adhesives to Dentin

    Directory of Open Access Journals (Sweden)

    P. Alizadeh Oskoee

    2008-03-01

    Full Text Available Objective: The aim of this study was to evaluate the microtensile bond strength to sound and caries-affected dentin using Single Bond and Adper Prompt-L-Pop adhesives.Materials and Methods: Sixteen extracted human molars with carious lesions extended halfway through dentin were ground to expose the caries affected and the surrounding normal dentin. The samples were divided into two groups of eight samples each, including Single Bond (two-step etch and rinse and Adper Prompt-L-Pop (one step self-etch. Z-100 (3M was used for composite build-ups. The teeth were then sectioned and prepared for micro tensile bond strength test, at cross head speed of 1.5 mm/min. Data were ana-lyzed by 1- and 2-way ANOVA.Results: Bond strengths of Single Bond and Adper Prompt-L-Pop adhesives to sound den-tin were significantly higher than to the caries-affected one (P<0.001, besides, bond strength of Single Bond to dentin was generally found to be higher than Adper Prompt-L-Pop adhesive (P<0.001.The interaction effect was not significant (P=0.116Conclusion: Bond strength to caries-affected dentin was compromised when one and two step adhesives were used.

  4. Shear Strength of Conductive Adhesive Joints on Rigid and Flexible Substrates Depending on Adhesive Quantity

    Science.gov (United States)

    Hirman, Martin; Steiner, Frantisek

    2016-05-01

    This article deals with the impact of electrically conductive adhesive quantity on the shear strength of joints glued by adhesives "EPO-TEKⓇ H20S" and "MG8331S" on three types of substrates (FR-4, MELINEXⓇST504, DuPont™ PyraluxⓇAC). These joints were made by gluing chip resistors 1206, 0805 and 0603, with two curing profiles for each adhesive. Different thicknesses of stencil and reductions in the size of the hole in stencils were used for this experiment. These differences have an effect on the quantity of conductive adhesives which must be used on the samples. Samples were measured after the curing process by using a shear strength test applied by the device LabTest 3.030. This article presents the effects of different curing profiles, various types of substrates, and different quantities of adhesives on the mechanical strength of the joint.

  5. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    Science.gov (United States)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  6. New impact specimen for adhesives: optimization of high-speed-loaded adhesive joints

    NARCIS (Netherlands)

    Bezemer, A.A.; Guyt, C.B.; Vlot, A.

    1998-01-01

    A new kind of joint specimen has been developed to load the adhesive in pure shear on impact. The specimen is tested with three adhesives at five layer thicknesses, and at three test speeds. From these tests it can be concluded that the rod-ring specimen is suitable for use in impact tests at high s

  7. In-Situ Adhesive Bond Assessment

    Science.gov (United States)

    2010-08-01

    2008, Irvine , CA, August 27-29, 2008. [7] Srivastava, A. and Lanza di Scalea, F., "Quantitative Detection of Bond Defects in Composite Aircraft...Zagrai, S. Buckley, J. Ganley, and J. S. Welsh , "Structural Health Monitoring: An Enabler for Responsive Satellites," Proc. SPIE Smart Structures/NDE 6935...Arritt, L. M. Robertson, A. D. Williams, B. K. Henderson, S. Buckley, J. Ganley, J. S. Welsh , L. Ouyang, S. Beard, E. Clayton, M. D. Todd, D. Doyle, and

  8. Durability of Structural Adhesively Bonded System.

    Science.gov (United States)

    1981-06-01

    boundary zone at a time interval of At = 60 minutes (i.e. non-linear with strain rate effect solution). Fig. 8.1 Sequence of environmental history cycle...8.2 Sequence of environmental history cycle Nos. 11 and Il, for investigation of hygrothermal behavior of CFRP and adhesiv specimens, representing the... environmental history on the ’eformational behavior of an FRP adherend as part of a bonded structured more information is needed on the HEC and CTE

  9. Experimental research and statistic analysis of polymer composite adhesive joints strength

    Science.gov (United States)

    Rudawska, Anna; Miturska, Izabela; Szabelski, Jakub; Skoczylas, Agnieszka; Droździel, Paweł; Bociąga, Elżbieta; Madleňák, Radovan; Kasperek, Dariusz

    2017-05-01

    The aim of this paper is to determine the effect of arrangement of fibreglass fabric plies in a polymer composite on adhesive joint strength. Based on the experimental results, the real effect of plies arrangement and their most favourable configuration with respect to strength is determined. The experiments were performed on 3 types of composites which had different fibre orientations. The composites had three plies of fabric. The plies arrangement in Composite I was unchanged, in Composite II the central ply had the 45° orientation, while in Composite III the outside ply (tangential to the adhesive layer) was oriented at 45°. Composite plates were first cut into smaller specimens and then adhesive-bonded in different combinations with Epidian 61/Z1/100:10 epoxy adhesive. After stabilizing, the single-lap adhesive joints were subjected to shear strength tests. It was noted that plies arrangement in composite materials affects the strength of adhesive joints made of these composites between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level).

  10. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleema, N., E-mail: saleema.noormohammed@imi.cnrc-nrc.gc.ca [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), University of Quebec at Chicoutimi (UQAC), 555 Boulevard University East, Saguenay, Quebec G7H 2B1 (Canada); Paynter, R.W. [Institut National de la Recherche Scientifique Energie Materiaux Telecommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Gallant, D.; Eskandarian, M. [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. Black-Right-Pointing-Pointer Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. Black-Right-Pointing-Pointer Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. Black-Right-Pointing-Pointer Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure

  11. Shear bond strength of brackets rebonded with a fluoride-releasing and -recharging adhesive system.

    Science.gov (United States)

    Endo, Toshiya; Ozoe, Rieko; Shinkai, Koichi; Aoyagi, Makiko; Kurokawa, Hiroomi; Katoh, Yoshiroh; Shimooka, Shohachi

    2009-05-01

    To ascertain the effects of repeated bonding on the shear bond strength of orthodontic brackets bonded with a fluoride-releasing and -recharging adhesive system with a self-etching primer in comparison with two other types of adhesive system. A total of 48 premolars were collected and divided equally into three groups of 16. Each group was assigned one of three adhesive systems: Transbond XT, Transbond Plus, or a fluoride-releasing and -recharging adhesive system, Beauty Ortho Bond. Shear bond strength was measured 24 hours after bracket bonding, with the bonding/debonding procedures repeated twice after the first debonding. A universal testing machine was used to determine shear bond strengths, and bracket/adhesive failure modes were evaluated with the adhesive remnant index after each debonding. At every debonding sequence, all of these three adhesive systems had a shear bond strength of 6 MPa, which is a minimum requirement for clinical use. Transbond XT and Transbond Plus had significantly higher mean shear bond strengths than did Beauty Ortho Bond at each debonding. No significant differences in mean bond strength were observed between the three debondings in each adhesive system. Bond failure at the enamel/adhesive interface occurred more frequently in Beauty Ortho Bond than in Transbond XT or Transbond Plus. The fluoride-releasing and -recharging adhesive system with the self-etching primer (Beauty Ortho Bond) had clinically sufficient shear bond strength in repeated bracket bonding; this finding can help orthodontists to decrease the risk of damage to enamel at debonding.

  12. A method to screen and evaluate tissue adhesives for joint repair applications

    Directory of Open Access Journals (Sweden)

    Dehne Tilo

    2012-09-01

    Full Text Available Abstract Background Tissue adhesives are useful means for various medical procedures. Since varying requirements cause that a single adhesive cannot meet all needs, bond strength testing remains one of the key applications used to screen for new products and study the influence of experimental variables. This study was conducted to develop an easy to use method to screen and evaluate tissue adhesives for tissue engineering applications. Method Tissue grips were designed to facilitate the reproducible production of substrate tissue and adhesive strength measurements in universal testing machines. Porcine femoral condyles were used to generate osteochondral test tissue cylinders (substrates of different shapes. Viability of substrates was tested using PI/FDA staining. Self-bonding properties were determined to examine reusability of substrates (n = 3. Serial measurements (n = 5 in different operation modes (OM were performed to analyze the bonding strength of tissue adhesives in bone (OM-1 and cartilage tissue either in isolation (OM-2 or under specific requirements in joint repair such as filling cartilage defects with clinical applied fibrin/PLGA-cell-transplants (OM-3 or tissues (OM-4. The efficiency of the method was determined on the basis of adhesive properties of fibrin glue for different assembly times (30 s, 60 s. Seven randomly generated collagen formulations were analyzed to examine the potential of method to identify new tissue adhesives. Results Viability analysis of test tissue cylinders revealed vital cells (>80% in cartilage components even 48 h post preparation. Reuse (n = 10 of test substrate did not significantly change adhesive characteristics. Adhesive strength of fibrin varied in different test settings (OM-1: 7.1 kPa, OM-2: 2.6 kPa, OM-3: 32.7 kPa, OM-4: 30.1 kPa and was increasing with assembly time on average (2.4-fold. The screening of the different collagen formulations revealed a substance with significant

  13. Durability of bonds and clinical success of adhesive restorations.

    Science.gov (United States)

    Carvalho, Ricardo M; Manso, Adriana P; Geraldeli, Saulo; Tay, Franklin R; Pashley, David H

    2012-01-01

    Resin-dentin bond strength durability testing has been extensively used to evaluate the effectiveness of adhesive systems and the applicability of new strategies to improve that property. Clinical effectiveness is determined by the survival rates of restorations placed in non-carious cervical lesions (NCCL). While there is evidence that the bond strength data generated in laboratory studies somehow correlates with the clinical outcome of NCCL restorations, it is questionable whether the knowledge of bonding mechanisms obtained from laboratory testing can be used to justify clinical performance of resin-dentin bonds. There are significant morphological and structural differences between the bonding substrate used in in vitro testing versus the substrate encountered in NCCL. These differences qualify NCCL as a hostile substrate for bonding, yielding bond strengths that are usually lower than those obtained in normal dentin. However, clinical survival time of NCCL restorations often surpass the durability of normal dentin tested in the laboratory. Likewise, clinical reports on the long-term survival rates of posterior composite restorations defy the relatively rapid rate of degradation of adhesive interfaces reported in laboratory studies. This article critically analyzes how the effectiveness of adhesive systems is currently measured, to identify gaps in knowledge where new research could be encouraged. The morphological and chemical analysis of bonded interfaces of resin composite restorations in teeth that had been in clinical service for many years, but were extracted for periodontal reasons, could be a useful tool to observe the ultrastructural characteristics of restorations that are regarded as clinically acceptable. This could help determine how much degradation is acceptable for clinical success.

  14. Cytotoxic effect of a dentin bonding agent: AdheSE

    Directory of Open Access Journals (Sweden)

    Banava S.

    2007-05-01

    Full Text Available Background and Aim: An important requirement for a dentin bonding agent is biological compatibility. Since dentin bonding agents are placed in cavity preparations with subgingival extensions, with direct contact to gingival and mucosal tissues, tissue response to these materials must be investigated. The aim of this study was to examine the cytotoxicity of AdheSE, a self etching adhesive, on human gingival fibroblasts."nMaterials and Methods: In this experimental in vitro study, primary human gingival fibroblasts were exposed to different dilutions of primer & bond of AdheSE (Vivadent, Liechtenstein. The toxicity of the primer was tested in 30 seconds, 300 seconds and 24 hours. The cytotoxicity of the bond was analyzed in uncured mode after 20 seconds, 5 minutes and 24 hours. In cured mode, tested materials were analyzed after 24 and 48 hours. Cytotoxic effects were evaluated using MTT, cell counting and DNA condensation assays. Data were analyzed by two way repeated measure ANOVA with p<0.05 as the level of significance."nResults: MTT Assay revealed that uncured AdheSE Bond was toxic only in 10-1 dilution and the difference with control group was significant (P<0.05. By increasing the time to 300sec. and 24h, dilutions of 10-2 and 10-4 were the most cytotoxic respectively. Cytotoxicity of uncured primer after 30 sec. and 300 sec. began from 10-2 and after 24h began from 10-2 and reached to 10-1. AdheSE in cured mode showed significant difference with control group in 1:2 (P<0.001,1:4 & 1:6 (P<0.01 dilutions. In cell counting assay only the 1:2 dilution was significantly more toxic than control group. Apoptosis (a morphological and biochemical distinct form of cell death that regulates cell turnover comprised in less than 5% of total death in both cured and uncured adhesives."nConclusions: Based on the results of this study, by increasing the exposure time, smaller amounts of bonding could be cytotoxic. Cytotoxicity was related to material

  15. Detailed investigation of the analysis conditions in the evaluation of bonded joints by cohesive zone models

    Science.gov (United States)

    Rocha, R. J. B.; Campilho, R. D. S. G.

    2017-05-01

    Cohesive Zone Models (CZM) are widely used for the strength prediction of adhesive joints. This work studies the influence of different conditions used in CZM simulations to model a thin adhesive layer in single-lap joints (SLJ) under a tensile loading, for an estimation of their influence on the strength prediction under diverse geometrical and material conditions. Adhesives ranging from brittle to highly ductile and overlap lengths (LO) between 12.5 and 50 mm were considered. Several damage initiation and growth criteria were tested. The analysis carried out in this work allowed to conclude that CZM is a powerful technique for strength prediction of bonded joints, provided that the modelling conditions are properly defined.

  16. Effect of Irradiation on the Shear Bond Strength of Self-adhesive ...

    African Journals Online (AJOL)

    2017-09-14

    Sep 14, 2017 ... The shear bond strengths of adhesive luting cement were examined. ... and build upon the work non-commercially, as long as the author is credited and the new ... bond strength of adhesive restorative techniques systems.

  17. Temporomandibular joint disk adhesion: evidence from magnetic resonance images

    OpenAIRE

    MELO,Daniela Pita de; Oliveira, Luciana Soares de Andrade Freitas; Carvalho, Ana Clara Alves de; Oenning,Anne Caroline Costa; Gonzaga,Amanda Katarinny Goes; Campos,Paulo Sérgio Flores

    2014-01-01

    This case report has the aim to present an adhesion of the temporomadibular disc to the articular eminence, diagnosed on magnetic resonance imaging images. A 37-year-old female patient with TMJ (temporomandibular joint) disk adhesion on the left side and complaining of bilateral otalgia over the last 2 years is reported in the present article. The patient did not complain of articular pain or clicking, or any other noises of any nature. Clinical observation showed that the patient had restric...

  18. Microtensile bond strength of sealant and adhesive systems applied to occlusal primary enamel

    OpenAIRE

    Ramires-Romito, ACD; Reis, A; Loguercio, AD; Hipolito, VD; de Goes, MF; Singer, JD; Grande, RHM

    2007-01-01

    Purpose: To compare the microtensile bond strength (mu TBS) of a self-etch adhesive system (OptiBond Solo Self-Etch Adhesive System), two total etch adhesive system (OptiBond FL; OptiBond Solo), and a conventional sealant (Clinpro) applied to the occlusal surface of primary molars under saliva contamination. Methods: Sealant and adhesive systems were applied under manufacturers' specifications with or without previous saliva contamination. After storage in distilled water at 37 degrees C for ...

  19. Influence of additional adhesive application on the microtensile bond strength of adhesive systems.

    Science.gov (United States)

    de Silva, André Luís Faria; Lima, Débora Alves Nunes Leite; de Souza, Grace Mendonça Dias; dos Santos, Carlos Tadeu Dias; Paulillo, Luís Alexandre Maffei Sartini

    2006-01-01

    This study evaluated microtensile bond strength (pTBS) when an additional adhesive layer was applied to the dentin surface. Thirty-five human third molars were flattened to expose the occlusal dentin surface. The teeth were randomly assigned to 7 experimental groups: G1-Single Bond (SB); G2-additional layer of SB; G3--a layer of Scotchbond Multi-purpose (SMP) adhesive applied over SB; G4-Clearfil SE Bond (CE); G5-additional layer of CE; G6-Adper Prompt (AP) and G7-additional layer of AP. For the G2, G3, G5 and G7 groups, the first adhesive layer was light-cured before application of the additional layer. After bonding procedures, 5-mm high composite crowns were incrementally built up. The samples were sectioned to obtain 0.9 x 0.9 beams, which were tested under tension at a crosshead speed of 0.5-mm/minute until failure. The failure mode and adhesive thickness were evaluated under SEM. The pTBS data were analyzed by 1-way ANOVA and post-hoc Ducan's Test (a=0.05). Mean adhesive thickness was analyzed by 1-way ANOVA and post-hoc Tukey's test (a=0.05). The results indicated that G3 presented the highest microTBS and the thickest adhesive layer. G6 and G7 presented the lowest microTBS values. When solvent-free adhesives systems were used, microTBS values were not affected by the thicker layer.

  20. Characterization of debond growth mechanism in adhesively bonded composites under mode II static and fatigue loadings

    Science.gov (United States)

    Mall, S.; Kochhar, N. K.

    1988-01-01

    An experimental investigation of adhesively bonded composite joint was conducted to characterize the debond growth mechanism under mode II static and fatigue loadings. For this purpose, end-notched flexure specimens of graphite/epoxy (T300/5208) adherends bonded with EC 3445 adhesive were tested. In all specimen tested, the fatigue failure occurred in the form of cyclic debonding. The present study confirmed the result of previous studies that total strain-energy-release rate is the driving parameter for cyclic debonding. Further, the debond growth resistance under cyclic loading with full shear reversal (i.e., stress ratio, R = -1) is drastically reduced in comparison to the case when subjected to cyclic shear loading with no shear reversal (i.e., R = 0.1).

  1. New Experimental Sample for Shear Testing of Adhesively Bonded Assemblies

    Science.gov (United States)

    Challita, Georges; Othman, Ramzi; Guegan, Pierrick; Khalil, Khalid; Poitou, Arnaud

    In this paper, Split Hopkinson Bar technique was used to investigate the shear behaviour of adhesively bonded assemblies at high rates of loading. New sample geometry was adopted so that the compressive wave is transformed in a shear loading in the sample. Samples are conditioned at 20°C and 50% of hygrometry to eliminate any interference with temperature and humidity effects. The new technique is applied to an assembly built with a cyanoacrylate based adhesive and a metallic (Steel) adherent. They are found to be highly rate sensitive.

  2. The Effect of Temperature on Shear Bond Strength of Clearfil SE Bond and Adper Single Bond Adhesive Systems to Dentin

    Directory of Open Access Journals (Sweden)

    Hossein Nouri

    2015-03-01

    Full Text Available Statement of the Problem: Monomer viscosity and solvent evaporation can be affected by the adhesive system temperature. Higher temperature can elevate the vapor pressure in solution and penetration of adhesive in smear layer. Bonding mechanism may be influenced by the adhesive temperature. Purpose: This study aimed to evaluate the effect of pre-heating on shear bond strength of etch-and-rinse and self-etching adhesives to ground bovine dentin surfaces, at temperatures of 4˚C, 25˚C and 40˚C. Materials and Method: In this experimental study, 60 maxillary bovine incisors were randomly divided into 6 groups (n=10. The central part of labial dentin surfaces was exposed with a diamond bur and standardized smear layer was creat-ed by using silicon carbide paper (600 grit under water-coolant while the specimens were mounted in acrylic resin. Two adhesive systems, an etch-and-rinse (Adper single bond and a self-etch (Clearfil SE Bond were stored at temperatures of 4˚C, 25˚C and 40˚C for 30 minutes and were then applied on the prepared labial surface according to the manufacturer’s instructions. The composite resin (Z350 was packed in Teflon mold (5 mm in diameter on this surface and was cured. The shear bond strength (MPa was evaluated by universal testing machine (Zwick/Roell Z020, Germany at cross head speed of 1mm/min. The results were statistically analyzed by using ANOVA and Tukey tests (p< 0.05. Results: No significant difference was found between the shear bond strength of Clearfil SE Bond adhesive in different temperature and single Bond adhesive sys-tem at 25 ̊C and 40 ̊C. However, there were significant differences between 4 ̊C of Adper single bond in comparison with 25˚C and 40˚C (p= 0.0001. Conclusion: Pre-heating did not affect the shear bond strength of SE Bond, but could promote the shear bond strength of Adper Single Bond.

  3. Shear bond strength of ceramic and metallic orthodontic brackets bonded with self-etching primer and conventional bonding adhesives

    Science.gov (United States)

    Arash, Valiollah; Naghipour, Fatemeh; Ravadgar, Mehdi; Karkhah, Ahmad; Barati, Mohammad Saleh

    2017-01-01

    Introduction Adult patients typically require high-quality orthodontic treatment for ceramic brackets, but some clinicians remain concerned about the bond strength of these brackets. Therefore, the aim of this study was to determine the shear bond strength and de-bonding characteristics of metallic and ceramic brackets bonded with two types of bonding agents. Methods In an experimental study done in 2013 in Babol, Iran, 120 extracted human maxillary premolar teeth were randomly divided into four groups as follows: HM group: metallic bracket/conventional bonding agent; SM group: metallic bracket/Transbond self-etching primer; HC group: ceramic bracket/conventional bonding agent; SC group: ceramic bracket/Transbond self-etching primer. Twenty-four hours after thermocycling (1000 cycle, 5 °C–55 °C), the shear bond strength values were measured. The amount of resin remaining on the tooth surface (adhesive remnant index: ARI) was determined under a stereomicroscope. Enamel detachment index was evaluated under a scanning electron microscope. To perform statistical analysis, ANOVA, Kruskal–Wallis, and Tukey post-hoc tests were applied. The level of significance was set at p ceramic brackets. In addition, self-etching primer was able to produce fewer bonds compared with the conventional technique. Many samples showed the bracket-adhesive interface failure or failure inside the adhesive. PMID:28243410

  4. Ultrasonic echo signal fetures of dissimilar material bonding joints

    Institute of Scientific and Technical Information of China (English)

    GANG Tie(刚铁); Yasuo TAKAHASHI

    2004-01-01

    An ultrasonic evaluation method of echo feature of diffusion bond joint between two dissimilar materials is presented. The echo signal was acquired by an automatic ultrasonic C-scan test system. It is found that the intensity of echo and its phase can be used to evaluate the joint quality, and interface products of dissimilar materials bonding can be evaluated by ultrasonic method.

  5. Evaluation of the micro-shear bond strength of four adhesive systems to dentin with and without adhesive area limitation.

    Science.gov (United States)

    Chai, Yuan; Lin, Hong; Zheng, Gang; Zhang, Xuehui; Niu, Guangliang; Du, Qiao

    2015-01-01

    The purpose of this study was to evaluate the bonding ability of four representative dentin-adhesive systems by applying the micro-shear bond strength (μ-SBS) test method and to evaluate the influence of adhesive area limitation on the bond strength. Two different adhesive application methods were used in the μ-SBS test (with and without adhesives area limitation), and four representative adhesive systems were used in this study. Each dentin surface was treated with one of the four representative adhesive systems, and with twenty samples per group (n=20), each of the four groups underwent a μ-SBS test. The results showed that the bond strength was significantly influenced by the adhesive application method (padhesive type (padhesive systems, 3-E&R has a much better bond quality compared to the other adhesive systems. Furthermore, the micro-shear bond strength test method of restricting the area of both the adhesive and the resin is more reliable for evaluating the bonding property of adhesives to dentin, and it is also adequate for comparing the different adhesives systems.

  6. Interface strength and degradation of adhesively bonded porous aluminum oxides

    DEFF Research Database (Denmark)

    T. Abrahami, Shoshan; M. M. de Kok, John; Gudla, Visweswara Chakravarthy

    2017-01-01

    environmental and health regulations. Replacing this traditional process in a high-demandingand high-risk industry such as aircraft construction requires an in-depth understanding of the underlying adhesion and degradationmechanisms at the oxide/resin interface resulting from alternative processes......, a minimum pore size is pivotal for the formation of a stableinterface, as reflected by the initial peel strengths. Second, the increased surface roughness of the oxide/resin interface caused byextended chemical dissolution at higher temperature and higher phosphoric acid concentration is crucial to assure...... bond durabilityunder water ingress. There is, however, an upper limit to the beneficial amount of anodic dissolution above which bonds are pronefor corrosive degradation. Morphology is, however, not the only prerequisite for good bonding and bond performance alsodepends on the oxides’ chemical...

  7. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds

    Science.gov (United States)

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Gruber, Hermann J.; Cui, Yidan; Traxler, Lukas; Siligan, Christine; Park, Sungsu; Hinterdorfer, Peter

    2016-09-01

    Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion.

  8. Elastic Plastic Stress Distributions in Weld-bonded Lap Joint under Axial Loading

    Directory of Open Access Journals (Sweden)

    Essam A. Al-Bahkali

    2014-06-01

    Full Text Available Weld-bonding process is increasingly used in many industries such like automobile and aerospace. It offers significant improvements of sheet metal joints in static, dynamic, corrosion, noise resistance, stiffness and impact toughness properties. A full understanding of this process, including the elastic-plastic stress distribution in the joint, is a must for joints design and automation of manufacturing. Also, the modelling and analysis of this process, though it is complex, proves to be of prime importance. Thus, in this study a systematic experimental and theoretical study employing Finite Element Analysis (FEA is conducted on the weld-bonded joint, fabricated from Austenitic Stainless steel (AISI 304 sheets of 1.00 mm thickness and Epoxy adhesive Araldite 2011, subjected to axial loading. Complete 3-D finite element models are developed to evaluate the normal, shear and triaxial Von Mises stresses distributions across the entire joint, in both the elastic and plastic regions. The, needed quantities and properties, for the FE modelling and analysis, of the base metals and the adhesive, such like the elastic-plastic properties, modulus of elasticity, fracture limit, the nugget and Heat Affected Zones (HAZ properties, etc., are obtained from the experiments. The stress distribution curves obtained are found to be consistent with those obtained from the FE models and in excellent agreement with the experimental and theoretical published data, particularly in the elastic region. Furthermore, the stress distribution curves obtained for the weld-bonded joint display the best uniform smooth distribution curves compared to those obtained for the spot and bonded joint cases. The stress concentration peaks at the edges of the weld-bonded region, are almost eliminated resulting in achieving the strongest joint.

  9. Shear bond strength of new self-adhesive flowable composite resins.

    Science.gov (United States)

    Wajdowicz, Michael N; Vandewalle, Kraig S; Means, Mark T

    2012-01-01

    Recently, new self-adhesive flowable composite resin systems have been introduced to the market. These new composite resin systems reportedly bond to dentin and enamel without the application of an adhesive bonding agent. The purpose of this study was to evaluate the shear bond strength to enamel of two new self-adhesive flowable composites with and without the use of an etch-and-rinse bonding agent. The new self-adhesive flowable composites had significantly lower bond strengths to enamel compared to a traditional adhesively bonded flowable composite. Both self-adhesive flowable composites had a significant increase in bond strength to enamel with the use of a phosphoric acid-etch and adhesive bonding agent.

  10. Propagation of Iamb waves in adhesively bonded multilayered media

    Institute of Scientific and Technical Information of China (English)

    ZHANG Haiyan; XIE Yuanxia; LIU Zhenqing

    2003-01-01

    The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes are required to the transfer matrix formulation for the propagation of elastic waves. By introduction of a complex wavenumber, the model can be used to the propagation of attenuative Lamb waves. Numerical examples for a three-layered aluminium-epoxy-aluminium plate show that attenuation values of each mode in plates are related not only to attenuation, but also to the thickness of the bonded layer, which is in agreement with practical situations.

  11. What's new in dentine bonding? Self-etch adhesives.

    Science.gov (United States)

    Burke, F J Trevor

    2004-12-01

    Bonding to dentine is an integral part of contemporary restorative dentistry, but early systems were not user-friendly. The introduction of new systems which have a reduced number of steps--the self-etch adhesives--could therefore be an advantage to clinicians, provided that they are as effective as previous adhesives. These new self-etch materials appear to form hybrid layers as did the previous generation of materials. However, there is a need for further clinical research on these new materials. Advantages of self-etch systems include, no need to etch and rinse, reduced post-operative sensitivity and low technique sensitivity. Disadvantages include, the inhibition of set of self- or dual-cure resin materials and the need to roughen untreated enamel surfaces prior to bonding.

  12. Some Approaches of Ultrasonic Evaluation of Metal Sheets Adhesive Bonds

    Science.gov (United States)

    Maeva, E. Yu.; Severina, I. A.; O'Neill, B.; Severin, F. M.; Maev, R. Gr.

    2004-02-01

    Proper interpretation of ultrasonic inspection results for adhesive bonding of thin metal sheets is discussed. Several approaches including pulse-echo imaging, resonance spectrometry and Lamb wave technique are compared. New method of signal processing based on estimation of cross-correlation function is proposed. Theoretical speculations are supported by experiments with plane and spherically focused acoustic beams. The practical aspects of discussed methods as well as technical recommendations are provided for developing a specialized inspection system.

  13. An Approach to Quality Assurance of Structural Adhesive Joints

    OpenAIRE

    Michaloudaki, Marianna

    2007-01-01

    With the development of advanced materials and structures, new nondestructive test techniques are being developed to evaluate material and structural integrity. Since adhesive bonding in engineering structures promises significant advantages - uniform stress distribution, enhanced fatigue properties, light weight, combination of dissimilar materials - over traditional techniques like welding and mechanical fastening, increased interest is registered in transport, construction, mechanical engi...

  14. Mechanical behaviour of adhesive joint under tensile and shear loading

    NARCIS (Netherlands)

    Jiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2013-01-01

    Due to various advantages of Fibre-Reinforced Polymer (FRP) decks, the FRP to steel composite bridge system is being increasingly used in new bridge structures as well as rehabilitation projects for old bridges. This paper focuses on the mechanical behaviours and failure modes of the adhesively-bond

  15. Regional bond strengths of adhesive resins to pulp chamber dentin.

    Science.gov (United States)

    Belli, S; Zhang, Y; Pereira, P N; Ozer, F; Pashley, D H

    2001-08-01

    Microleakage of oral microorganisms, which can occur due to the lack of sealing ability of permanent restorative materials, may cause failure of root canal treatments. Although a great deal of research has been done on sealing enamel and coronal dentin with resins, little research has been done on the adhesion of resins to the walls of pulp chambers. The purpose of this study was to evaluate regional bond strengths of two adhesive systems to the walls of pulp chambers. A section was made horizontally through the middle of the pulp chamber of extracted human third molars to divide the chamber into upper and lower halves. The pulp tissue was removed and the tooth segments were then divided into treatment subgroups. The pulp chambers were bonded with C&B Metabond (Parkell) or One-Step (Bisco), with or without 5% NaOCI pretreatment. The microtensile bond strengths of these resins to four different pulp chamber regions (bottom, wall, roof, and pulp horn areas) were then measured using an Instron machine. The data were expressed in MPa and were analyzed by a three-way ANOVA. Statistically significant differences were found among the test groups (p < 0.001). One-Step produced higher bond strengths to all pulp chamber regions except the floor, compared with C&B Metabond. The results indicated that high bond strengths can be achieved between adhesive resins and the various regions of the pulp chamber. This should permit the use of a thick layer of unfilled resin along the floor of the pulp chamber and over the canal orifices as a secondary protective seal after finishing root canal therapy.

  16. The Effect of Primer Application Modifications on the Bond Strength of 4th Generation Adhesive Bonding Agents

    Science.gov (United States)

    2012-03-30

    The influence of deviations from the manufacturer’s instructions for the use of six adhesive systems on the bond strengths to enamel and dentin...application of two layers of the self- etching adhesive systems produced significant improvement in bond strength to enamel compared to the passive...2010) evaluated the relationship between the number of adhesive layers and internal adaptation on the microtensile bond strength to enamel and dentin

  17. Contraction stress in dentin adhesives bonded to dentin.

    Science.gov (United States)

    Hashimoto, M; de Gee, A J; Kaga, M; Feilzer, A J

    2006-08-01

    Adhesives cured under constrained conditions develop contraction stresses. We hypothesized that, with dentin as a bonding substrate, the stress would reach a maximum, followed by a continuous decline. Stress development was determined with a tensilometer for two total-etch systems and two systems with self-etching primers. The adhesives were placed in a thin layer between a glass plate and a flat dentin surface pretreated with phosphoric acid or self-etching primer. After an initial maximum shortly after light-curing, the stress decreased dramatically for the total-etch systems (70%) and, to a lesser extent, for the adhesives with self-etching primers (30%). The greater stress decrease for the total-etch systems was ascribed to water and/or solvents released into the adhesives from the fully opened dentinal tubules by the pulling/sucking action of the contraction stress. This happened less with the adhesives with self-etching primers, where the tubules remained mainly closed.

  18. Adhesive joint evaluation by ultrasonic interface and lamb waves

    Science.gov (United States)

    Rokhlin, S. I.

    1986-01-01

    Some results on the application of interface and Lamb waves for the study of curing of thin adhesive layers were summarized. In the case of thick substrates (thickness much more than the wave length) the interface waves can be used. In this case the experimental data can be inverted and the shear modulus of the adhesive film may be explicitly found based on the measured interface wave velocity. It is shown that interface waves can be used for the study of curing of structural adhesives as a function of different temperatures and other experimental conditions. The kinetics of curing was studied. In the case of thin substrates the wave phenomena are much more complicated. It is shown that for successful measurements proper selection of experimental conditions is very important. This can be done based on theoretical estimations. For correctly selected experimental conditions the Lamb waves may be a sensitive probe of adhesive bond quality and may be used or cure monitoring.

  19. Reliability of Adhesive Bonds Under Severe Environments. Report of the Committee on Reliability of Adhesive Bonds in Severe Environments

    Science.gov (United States)

    1984-12-01

    Arlington, Virginia LAWRENCE T. DRZAL, Air Force Wright Aeronautical Laboratory, Wright-Patterson Air Force Base, Ohio BEN A. WILCOX , Defense Advanced...area of mechanics included additi, nal research in the area of nondestructive evaluation ( NDE ), the - - r. w-o I----- - -: - -." .--. search for...carried out on the cffects of additives and impurities on adhesive bond durability. • . - I MECHANICS o Efforts should be made to develop NDE

  20. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    Science.gov (United States)

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  1. Microtensile Bond Strength of Single Bond and Adper Prompt-L-Pop Adhesives to Dentin

    OpenAIRE

    P. Alizadeh Oskoee; AA. Ajami; S. Savadi Oskoee; F. Pournaghi-Azar

    2008-01-01

    Objective: The aim of this study was to evaluate the microtensile bond strength to sound and caries-affected dentin using Single Bond and Adper Prompt-L-Pop adhesives.Materials and Methods: Sixteen extracted human molars with carious lesions extended halfway through dentin were ground to expose the caries affected and the surrounding normal dentin. The samples were divided into two groups of eight samples each, including Single Bond (two-step etch and rinse) and Adper Prompt-L-Pop (one step s...

  2. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    Science.gov (United States)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  3. Numerical study of an arcan tensile compression shear test in dynamic: application to bonded joints

    OpenAIRE

    Valès, B.; Marguet, S.; Créac'hcadec, R.; Sohier, L; Ferrero, J-F.; Navarro, P.

    2015-01-01

    This paper presents a numerical study of the Arcan TCS testing device under dynamic conditions. This test is commonly used to characterize the mechanical behavior of bonded joints subjected to combined quasi-static loadings. In this study, the question of its extensibility to dynamic loadings by the use of an impactor guided in a drop tower is investigated. A dedicated finite element model is built under the plane stress assumption. Stress distributions in the adhesive are analysed trought ti...

  4. Ethanol-wet bonding technique may enhance the bonding performance of contemporary etch-and-rinse dental adhesives.

    Science.gov (United States)

    Li, Fang; Liu, Xiao-Yang; Zhang, Ling; Kang, Jun-Jun; Chen, Ji-Hua

    2012-04-01

    To determine whether bonds of contemporary etch-and-rinse adhesives made with ethanol-wet bonding are stronger and more durable than those made with water-wet bonding, and to explore the possible reasons for the bonding results. Flat surfaces of midcoronal dentin were made in extracted human third molars. The dentin surfaces were randomized into 6 groups according to bonding techniques (water- vs ethanol-wet bonding) and dental adhesives [Single Bond 2 (SB), Prime Bond NT (PB), and Gluma Comfort Bond (GB)]. After etching and rinsing, dentin surfaces were either left water-moist or immersed in ethanol. Following adhesive application and composite buildups, the bonded teeth were sectioned into beams for microtensile bond strength evaluation with or without NaOCl challenge. The morphology of the hybrid layer was analyzed with SEM. The wettability of water- vs. ethanol-saturated dentin was evaluated. The concentrations of non-volatile ingredients in the adhesives were compared. Compared to water-wet bonding, ethanol-wet bonding yielded similar (p > 0.05 for PB and GB) or higher (p adhesives), and produced more even hybrid layers. Moreover, ethanol-saturated dentin exhibited a lower contact angle than water-saturated specimens, and the concentrations of non-volatile ingredients of the adhesives decreased in the order of SB > GB > PB. Ethanol-wet bonding could improve the bonding efficacy of contemporary etch-and-rinse adhesives, probably due to the good wettability of ethanol-saturated dentin and the structure of the hybrid layer. Moreover, this positive effect of ethanol-wet bonding might be influenced by the composition of adhesives.

  5. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin

    2015-10-19

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  6. Effect of adhesive thickness and surface treatment on shear strength on single lap joint Al/CFRP using adhesive of epoxy/Al fine powder

    Science.gov (United States)

    Diharjo, Kuncoro; Anwar, Miftahul; Tarigan, Roy Aries P.; Rivai, Ahmad

    2016-02-01

    The objective of this study is to investigate the effect of adhesive thickness and surface treatment on the shear strength and failure type characteristic of single lap joint (SLJ) CFRP/Al using adhesive epoxy/Al-fine-powder. The CFRP was produced by using hand layup method for 30% of woven roving carbon fiber (w/w) and the resin used was bisphenolic. The adhesive was prepared using 12.5% of aluminum fine powder (w/w) in the epoxy adhesive. The powder was mixed by using a mixing machine at 60 rpm for 6 minutes, and then it was used to join the Al plate-2024 and CFRP. The start time to pressure for the joint process was 20 minutes after the application of adhesive on the both of adherends. The variables in this research are adhesive thickness (i.e. 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1 mm) and surface treatment of adherends (i.e. acetone, chromate sulphuric acid, caustic etch and tucker's reagent). Before shear testing, all specimens were post-cured at 100 °C for 15 minutes. The result shows that the SLJ has the highest shear strength for 0.4 mm of adhesive thickness. When the adhesive thickness is more than 0.4 mm (0.6-1 mm), the shear strength decreases significantly. It might be caused by the property change of adhesive from ductile to brittle. The acetone surface treatment produces the best bonding between the adhesive and adherends (CFRP and Al-plate 2024), and the highest shear strength is 9.31 MPa. The surface treatment give the humidification effect of adherend surfaces by adhesive. The failure characteristic shows that the mixed failure of light-fiber-tear-failure and cohesive-failure are occurred on the high shear strength of SLJ, and the low shear strength commonly has the adhesive-failure type.

  7. Comparison between universal adhesives and two-step self-etch adhesives in terms of dentin bond fatigue durability in self-etch mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2017-06-01

    This aim of this study was to compare universal adhesives and two-step self-etch adhesives in terms of dentin bond fatigue durability in self-etch mode. Three universal adhesives - Clearfil Universal, G-Premio Bond, and Scotchbond Universal Adhesive - and three-two-step self-etch adhesives - Clearfil SE Bond, Clearfil SE Bond 2, and OptiBond XTR - were used. The initial shear bond strength and shear fatigue strength of resin composite bonded to adhesive on dentin in self-etch mode were determined. Scanning electron microscopy observations of fracture surfaces after bond strength tests were also made. The initial shear bond strength of universal adhesives was material dependent, unlike that of two-step self-etch adhesives. The shear fatigue strength of Scotchbond Universal Adhesive was not significantly different from that of two-step self-etch adhesives, unlike the other universal adhesives. The shear fatigue strength of universal adhesives differed depending on the type of adhesive, unlike those of two-step self-etch adhesives. The results of this study encourage the continued use of two-step self-etch adhesive over some universal adhesives but suggest that changes to the composition of universal adhesives may lead to a dentin bond fatigue durability similar to that of two-step self-etch adhesives. © 2017 Eur J Oral Sci.

  8. Bond efficacy and interface morphology of self-etching adhesives to ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; El Zohairy, A.A.; Mohsen, M.M.A.; Feilzer, A.J.

    2010-01-01

    Purpose: This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Materials and Methods: Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray) an

  9. Bond efficacy and interface morphology of self-etching adhesives to ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; El Zohairy, A.A.; Mohsen, M.M.A.; Feilzer, A.J.

    2010-01-01

    Purpose: This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Materials and Methods: Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray)

  10. Influence of application methods of one-step self-etching adhesives on microtensile bond strength

    Directory of Open Access Journals (Sweden)

    Chul-Kyu Choi,

    2011-05-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15, according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond and application methods. The adhesive systems were applied on the dentin as follows: 1 The single coating, 2 The double coating, 3 Manual agitation, 4 Ultrasonic agitation. Following the adhesive application, light-cure composite resin was constructed. The restored teeth were stored in distilled water at room temperature for 24 hours, and prepared 15 specimens per groups. Then microtensile bond strength was measured and the failure mode was examined. Results Manual agitation and ultrasonic agitation of adhesive significantly increased the microtensile bond strength than single coating and double coating did. Double coating of adhesive significantly increased the microtensile bond strength than single coating did and there was no significant difference between the manual agitation and ultrasonic agitation group. There was significant difference in microtensile bonding strength among all adhesives and Clearfil Tri-S Bond showed the highest bond strength. Conclusions In one-step self-etching adhesives, there was significant difference according to application methods and type of adhesives. No matter of the material, the manual or ultrasonic agitation of the adhesive showed significantly higher microtensile bond strength.

  11. Thickness influence in mechanical properties of polyurethane adhesive overlap joints; Influencia del espesor de adhesivo de poliuretano en la resistencia deuniones sometidas a cortadura

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Ledesma, R.; Onoro, J.; Amo, J. M.; Duran, M. C.; Duran, J.

    2005-07-01

    The thickness of adhesive layers in metallic bonded joints has direct influence in the performance and mechanical behaviour of these joints. The aim of this study was to analyse the strength and strain properties of steel overlap joints bonded with polyurethane adhesive layers with different thickness. The results show that the strength is maximum when the thickness of the adhesive layer is very thin, 0.1 mm. When the thickness growth to 1 mm the strength goes down rapidly. for layers from 1 to 1.5 mm the strength goes down slower and from 1.5 to 4 mm the strength is nearly constant. In other hand, the joint strain increase uniformly with adhesive layer thickness growth. (Author) 13 refs.

  12. Improved Bond Strength of Cyanoacrylate Adhesives Through Nanostructured Chromium Adhesion Layers

    Science.gov (United States)

    Gobble, Kyle; Stark, Amelia; Stagon, Stephen P.

    2016-09-01

    The performance of many consumer products suffers due to weak and inconsistent bonds formed to low surface energy polymer materials, such as polyolefin-based high-density polyethylene (HDPE), with adhesives, such as cyanoacrylate. In this letter, we present an industrially relevant means of increasing bond shear strength and consistency through vacuum metallization of chromium thin films and nanorods, using HDPE as a prototype material and cyanoacrylate as a prototype adhesive. For the as received HDPE surfaces, unmodified bond shear strength is shown to be only 0.20 MPa with a standard deviation of 14 %. When Cr metallization layers are added onto the HDPE at thicknesses of 50 nm or less, nanorod-structured coatings outperform continuous films and have a maximum bond shear strength of 0.96 MPa with a standard deviation of 7 %. When the metallization layer is greater than 50 nm thick, continuous films demonstrate greater performance than nanorod coatings and have a maximum shear strength of 1.03 MPa with a standard deviation of 6 %. Further, when the combination of surface roughening with P400 grit sandpaper and metallization is used, 100-nm-thick nanorod coatings show a tenfold increase in shear strength over the baseline, reaching a maximum of 2.03 MPa with a standard deviation of only 3 %. The substantial increase in shear strength through metallization, and the combination of roughening with metallization, may have wide-reaching implications in consumer products which utilize low surface energy plastics.

  13. INVESTIGATION OF THE STRUCTURE OF ADHESIVE JOINTS WITH A MICROTOMOGRAPHY METHOD

    Directory of Open Access Journals (Sweden)

    Chauzov K. V.

    2014-11-01

    Full Text Available The article provides a comparative analysis of two methods for assessing the structure of adhesive joint: optical microscopy and microtomography. Comparative analysis of the accuracy of measurement was shown; we have also built the graphs of the thickness of adhesive joint. The depth of penetration adhesive into the wood was determined. The structure of adhesive joint for two types of binders was studied

  14. Micro-tensile bond strength of adhesives to pulp chamber dentin after irrigation with Ethylenediaminetetraacetic acid

    Directory of Open Access Journals (Sweden)

    Ç Barutcigil

    2012-01-01

    Conclusion: This study showed that EDTA irrigation can affect the bond strength of adhesive systems on pulp chamber lateral walls. Clinically, low EDTA concentrations can be recommended if self-etch adhesives have been selected.

  15. Effect of Irradiation on the Shear Bond Strength of Self-adhesive ...

    African Journals Online (AJOL)

    2017-09-14

    Sep 14, 2017 ... changes in the crystalline structure of dental hard tissues. Keywords: Bond strength, irradiation, self-adhesive luting cement. Effect of Irradiation on the ..... Self-adhesive resin cements: A literature review. J Adhes Dent. 2008 ...

  16. Stress relaxation and bonding in Si3N4/MA6000 joints by reactive interlayers

    Science.gov (United States)

    Frisch, A.; Kaysser, W. A.; Zhang, W.; Petzow, G.

    Diffusion bonding of Si3N4 to the new generation of ODS-superalloys, such as MA6000, may yield strongly joined metal-ceramic systems for high-temperature applications. Si3N4 has been diffusion bonded to MA6000 during HIP at 100 MPa at 1100-1300 C. Stresses caused by the large thermal mismatch were reduced by multiphase interlayers. To promote the chemical adhesion, reactive and adhesive interlayers were used at the metal-ceramic interface which, in the absence of such layers, fail at low stresses. It has been shown that, during reactive bonding, brittle phases are frequently formed at the interfaces which may lead to a failure of the joint. The reduce of thermal stresses by thin soft interlayers is very limited but can be obtained by a microcrack-induced stress relaxation mechanism. During adhesive diffusion bonding, the mechanical strength of the bond is limited by the stress state and the strength of the ceramic component.

  17. Evaluation of bond strength and thickness of adhesive layer according to the techniques of applying adhesives in composite resin restorations.

    Science.gov (United States)

    de Menezes, Fernando Carlos Hueb; da Silva, Stella Borges; Valentino, Thiago Assunção; Oliveira, Maria Angélica Hueb de Menezes; Rastelli, Alessandra Nara de Souza; Conçalves, Luciano de Souza

    2013-01-01

    Adhesive restorations have increasingly been used in dentistry, and the adhesive system application technique may determine the success of the restorative procedure. The aim of this study was to evaluate the influence of the application technique of two adhesive systems (Clearfil SE Bond and Adper Scotchbond MultiPurpose) on the bond strength and adhesive layer of composite resin restorations. Eight human third molars were selected and prepared with Class I occlusal cavities. The teeth were restored with composite using various application techniques for both adhesives, according to the following groups (n = 10): group 1 (control), systems were applied and adhesive was immediately light activated for 20 seconds without removing excesses; group 2, excess adhesive was removed with a gentle jet of air for 5 seconds; group 3, excess was removed with a dry microbrushtype device; and group 4, a gentle jet of air was applied after the microbrush and then light activation was performed. After this, the teeth were submitted to microtensile testing. For the two systems tested, no statistical differences were observed between groups 1 and 2. Groups 3 and 4 presented higher bond strength values compared with the other studied groups, allowing the conclusion that excess adhesive removal with a dry microbrush could improve bond strength in composite restorations. Predominance of adhesive fracture and thicker adhesive layer were observed via scanning electron microscopy (SEM) in groups 1 and 2. For groups 3 and 4, a mixed failure pattern and thinner adhesive layer were verified. Clinicians should be aware that excess adhesive may negatively affect bond strength, whereas a thin, uniform adhesive layer appears to be favorable.

  18. Effect of water storage on the bonding effectiveness of 6 adhesives to Class I cavity dentin.

    Science.gov (United States)

    De Munck, Jan; Shirai, Kenichi; Yoshida, Yasuhiro; Inoue, Satoshi; Van Landuyt, Kirsten; Lambrechts, Paul; Suzuki, Kazuomi; Shintani, Hideaki; Van Meerbeek, Bart

    2006-01-01

    Adhesive-dentin interfaces degrade with time. This study determined the effect water storage may have on the bonding effectiveness of adhesives to occlusal Class I cavity-bottom dentin. Six adhesives, all representing contemporary classes of adhesives, were applied: a 3-step (OptiBond FL, Kerr) and 2-step (Scotchbond 1*, 3M ESPE) etch-and-rinse adhesive, a 2-step (Clearfil SE, Kuraray) and 1-step (Adper prompt, 3M ESPE) self-etch adhesive and a 2-step (FujiBond LC, GC) and 1-step (Reactmer, Shofu) resin-modified glass-ionomer adhesive. Bonding effectiveness was assessed by microtensile bond strength testing (MTBS) and electron microscopy (Feg-SEM and TEM). The MTBS was determined after 1 day and 1 year water storage of the entire restored cavity (indirect exposure of the adhesive-dentin interface to water) and prepared microTBS-beams (direct exposure of the adhesive-dentin interface to water). The hypotheses tested were: (1) resin-dentin bonds formed at the bottom of Class I cavities resist 1-year water storage and (2) an adjacent composite-enamel bond protects the composite-dentin bond against degradation. Non-parametric Kruskal-Wallis analysis statistically analyzed the microTBSs. The first hypothesis was rejected, as only the microTBS of OptiBond FL and Clearfil SE did not significantly decrease after 1-year direct and/or indirect water storage. The second hypothesis was corroborated, as the bonding effectiveness of most simplified adhesives (Scotchbond 1, Adper Prompt, FujiBond LC and Reactmer) approached 0 (because of the frequent pre-testing failures) after 1-year direct water exposure. The second hypothesis concluded that the 3-step etch-and-rinse adhesive must still be regarded the "gold standard." Though microTBS decreased significantly, Clearfil SE, as a 2-step self-etch adhesive, was the only simplified adhesive to perform reliably after 1-year direct water exposure.

  19. A study of the non-linear behaviour of adhesively-bonded composite assemblies

    OpenAIRE

    Cognard, Jean Yves; Davies, Peter; Sohier, S; Creac' Hcadec, R

    2006-01-01

    The objective of this study is to define a reliable tool for dimensioning of adhesively bonded assemblies, particularly for marine and underwater applications. This paper presents experimental and numerical results, which describe the non-linear behaviour of an adhesive in a bonded assembly for various loadings. A modified Arcan fixture, well-suited for the study of the behaviour of bonded metal-metal assemblies, was developed in order to focus on the analysis of the behaviour of the adhesive...

  20. Effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin

    Science.gov (United States)

    Ebrahim, Mohamed I.

    2017-01-01

    Background Bond strength of adhesive layer can absorb unwanted stresses of polymerization shrinkage in composite resin restorations; increased microshear bond strength can prevent failure of restoration materials, the purpose of this study was to evaluate the effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin. Material and Methods Two different types of adhesive systems: universal adhesive (ExciTE) and newly developed adhesive (Nano-Bond), and one type of light-cured resin restorative material (Nanocomposite resin) were used in this study. The occlusal surfaces of extracted human molar teeth were ground perpendicular to the long axis of each tooth to expose a flat dentin surface. The adhesives were applied on dentin surfaces (single application or double application). Nanocomposite resin was then placed and light cured for 40 seconds. After 24 hours of immersion in water at 37°C, then subjected to thermocycling before testing, a microshear bond test was carried out. The data were analyzed by a two-way ANOVA. For comparison between groups, Tukey’s post-hoc test was used. Results The mean bond strengths of ExciTE and Nano-Bond adhesives with a single application were 8.8 and 16.6 MPa, respectively. The mean bond strengths of ExciTE and Nano-Bond adhesives with double application were 13.2 and 21.8MPa, respectively. There were no statistically significant differences in microshear bond strengths between the single application of Nano-Bond and the double application of ExciTE adhesives. Conclusions Microshear bond strength increased significantly as the applied adhesive layer was doubled. Key words:Adhesive, microshear, bond, strength, nanocomposite. PMID:28210433

  1. Analysis of the nonlinear behavior of adhesives in bonded assemblies - Comparison of TAST and Arcan tests

    OpenAIRE

    Cognard, J; Creac' Hcadec, R; Sohier, L; Davies, Peter

    2008-01-01

    This paper describes a study in which the shear behavior of a structural epoxy adhesive has been measured using the standard thick adherend shear test (TAST) specimen and a modified Arcan test A. numerical study of the TAST test taking into account the nonlinear behavior of the adhesive and the finite deformations of the adhesive joint, shows that there is a localization of plastic zones close to the adhesive-substrate interface near the free edge of the adhesive. Experimental tests carried o...

  2. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Liu, L.; Mori, H.; Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2012-03-01

    Highlights: Black-Right-Pointing-Pointer Adhesive reduces shrinkage porosity and stress concentration around the weld nugget. Black-Right-Pointing-Pointer Adhesive promotes the formation of intermetallic compounds during weld bonding. Black-Right-Pointing-Pointer In Mg/steel joints fusion zone appears only at the Mg side with dendritic structures. Black-Right-Pointing-Pointer Weld-bonded Mg/steel joints are considerably stronger than RSW Mg/steel joints. Black-Right-Pointing-Pointer Fatigue strength is three-fold higher for weld-bonded joints than for RSW joints. - Abstract: The aim of this study was to evaluate microstructures, tensile and fatigue properties of weld-bonded (WB) magnesium-to-magnesium (Mg/Mg) similar joints and magnesium-to-steel (Mg/steel) dissimilar joints, in comparison with resistance spot welded (RSW) Mg/steel dissimilar joints. In the WB Mg/Mg joints, equiaxed dendritic and divorced eutectic structures formed in the fusion zone (FZ). In the dissimilar joints of RSW and WB Mg/steel, FZ appeared only at Mg side with equiaxed and columnar dendrites. At steel side no microstructure changed in the WB Mg/steel joints, while the microstructure in the RSW Mg/steel joints consisted of lath martensite, bainite, pearlite and retained austenite leading to an increased microhardness. The relatively low cooling rate suppressed the formation of shrinkage porosity but promoted the formation of MgZn{sub 2} and Mg{sub 7}Zn{sub 3} in the WB Mg/steel joints. The added adhesive layer diminished stress concentration around the weld nugget. Both WB Mg/Mg and Mg/steel joints were significantly stronger than RSW Mg/steel joints in terms of the maximum tensile shear load and energy absorption, which also increased with increasing strain rate. Fatigue strength was three-fold higher for WB Mg/Mg and Mg/steel joints than for RSW Mg/steel joints. Fatigue failure in the RSW Mg/steel joints occurred from the heat-affected zone near the notch root at lower load levels, and

  3. Mixed-Mode Fatigue Disbond on Metallic Bonded Joints

    NARCIS (Netherlands)

    Bürger, D.B.

    2015-01-01

    Aerospace structures have been long dealing with the safety versus weight issue. Lighter airplanes are cheaper to operate, however, they may face a safety issue because of the reduced fatigue life. Consequently, a heavier/safer structure is designed. Adhesive bonding is a joining technique that offe

  4. Efficacy of microtensile versus microshear bond testing for evaluation of bond strength of dental adhesive systems to enamel

    NARCIS (Netherlands)

    El Zohairy, A.A.; Saber, M.H.; Abdalla, A.I.; Feilzer, A.J.

    2010-01-01

    Objective The aim of the study was to evaluate the efficacy of the microtensile bond test (μTBS) and the microshear bond test (μSBS) in ranking four dental adhesives according to bond strength to enamel and identify the modes of failure involved. Materials and methods Forty-four caries-free human

  5. Micro-tensile bond strength of adhesive systems applied on occlusal primary enamel.

    Science.gov (United States)

    Ramires-Romito, Ana Cláudia; Reis, Alessandra; Loguercio, Alessandro Dourado; de Góes, Mario Fernando; Grande, Rosa Helena Miranda

    2004-01-01

    The aim of this study was to evaluate the micro-tensile bond strength of adhesive systems (OptiBond Solo, Kerr; Prime & Bond NT, Dentsply) on occlusal surface of primary molars. The adhesives were tested under manufacturers' specifications and after contamination of the bonding site with saliva. Hourglass cylindrical-shaped samples were obtained and subjected to a tensile force. No significant difference was observed among the groups. OptiBond Solo and Prime & Bond NT showed similar values of bond strengths when applied on occlusal enamel of primary molar under either saliva contamination or not.

  6. Experimental study about the influence of adhesive stiffness to the bonding strengths of adhesives for ceramic/metal targets

    Directory of Open Access Journals (Sweden)

    W. Seifert

    2016-04-01

    The experimental results indicate that the damage behavior of the ceramic/metal composites depends on the absolute elongation of the adhesive layer. This can be controlled either by the thickness or the stiffness of the bonding layer.

  7. Bond strength of different adhesives to normal and caries-affected dentins

    Institute of Scientific and Technical Information of China (English)

    XUAN Wei; HOU Ben-xiang; L(U) Yalin

    2010-01-01

    Background Currently, several systems of dentin substrate-reacting adhesives are available for use in the restorative treatment against caries. However, the bond effectiveness and property of different adhesive systems to caries-affected dentin are not fully understood. The objective of this study was to evaluate the bond strength of different adhesives to both normal dentin (ND) and caries-affected dentin (CAD) and to analyze the dentin/adhesive interracial characteristics.Methods Twenty eight extracted human molars with coronal medium carious lesions were randomly assigned to four groups according to adhesives used. ND and CAD were bonded with etch-and-rinse adhesive Adper~(TM) Single Bond 2 (SB2) or self-etching adhesives Clearfil SE Bond (CSE), Clearfil S~3 Bond (CS3), iBond GI (IB). Rectangular sticks of resin-dentin bonded interfaces 0.9 mm~2 were obtained. The specimens were subjected to microtensile bond strength (μTBS) testing at a crosshead speed of 1 mm/min. Mean μTBS was statistically analyzed with analysis of variance (ANOVA) and Student-Newman-Keuls tests. Interfacial morphologies were analyzed by Scanning Electron Microscopy (SEM).Results Etch-and-rinse adhesive Adper~(TM) Single Bond 2 yielded high bond strength when applied to both normal and caries-affected dentin. The two-step self-etching adhesive Clearfil SE Bond generated the highest bond strength to ND among all adhesives tested but a significantly reduced strength when applied to CAD. For the one-step self-etching adhesives, Clearfil S~3 Bond and iBond GI, the bond strength was relatively low regardless of the dentin type. SEM interfacial analysis revealed that hybrid layers were thicker with poorer resin tag formation and less resin-filled lateral branches in the CAD than in the ND for all the adhesives tested.Conclusion The etch-and-rinse adhesive performed more effectively to caries-affected dentin than the self-etching adhesives.

  8. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter

    OpenAIRE

    Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid

    2016-01-01

    Objective: To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. Materials and Methods: In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4?5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed tee...

  9. Adhesive bond failure monitoring with triboluminescent optical fiber sensor

    Science.gov (United States)

    Shohag, Md Abu S.; Hammel, Emily C.; Olawale, David O.; Okoli, Okenwa O.

    2016-04-01

    One of the most severe damage modes in modern wind turbines is the failure of the adhesive joints in the trailing edge of the large composite blades. The geometrical shape of the blade and current manufacturing techniques make the trailing edge of the wind turbine blade more sensitive to damage. Failure to timely detect this damage type may result in catastrophic failures, expensive system downtime, and high repair costs. A novel sensing system called the In-situ Triboluminescent Optical Fiber (ITOF) sensor has been proposed for monitoring the initiation and propagation of disbonds in composite adhesive joints. The ITOF sensor combines the triboluminescent property of ZnS:Mn with the many desirable features of optical fiber to provide in-situ and distributed damage sensing in large composite structures like the wind blades. Unlike other sensor systems, the ITOF sensor does not require a power source at the sensing location or for transmitting damage-induced signals to the hub of the wind turbine. Composite parts will be fabricated and the ITOF integrated within the bondline to provide in-situ and real time damage sensing. Samples of the fabricated composite parts with integrated ITOF will be subjected to tensile and flexural loads, and the response from the integrated sensors will be monitored and analyzed to characterize the performance of the ITOF sensor as a debonding damage monitoring system. In addition, C-scan and optical microscopy will be employed to gain greater insights into the damage propagation behavior and the signals received from the ITOF sensors.

  10. Strength scaling of adhesive joints in polymer–matrix composites

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Goutianos, Stergios; Jacobsen, Torben K.

    2009-01-01

    The fracture of adhesive joints between two glass-fibre laminates was studied by testing double cantilever beam test specimens loaded by uneven bending moments. A large-scale fracture process zone, consisting of a crack tip and a fibre bridging zone, developed. The mixed mode fracture resistance...... increased with increasing crack length, eventually reaching a steady-state level (R-curve behaviour). The steady-state fracture resistance level increased with increasing amount of tangential crack opening displacement. Cohesive laws, obtained from fracture resistance data, were used for prediction the load...

  11. Bonding durability between acrylic resin adhesives and titanium with surface preparations.

    Science.gov (United States)

    Yanagida, Hiroaki; Minesaki, Yoshito; Matsumura, Kousuke; Tanoue, Naomi; Muraguchi, Koichi; Minami, Hiroyuki

    2017-01-31

    The purpose of the present study was to evaluate the efficacy of pretreatment on the bonding durability between titanium casting and two acrylic adhesives. Cast titanium disk specimens treated with four polymer-metal bonding systems as follow: 1) air-abraded with 50-70 μm alumina, 2) 1)+Alloy Primer, 3) 1)+M.L. Primer and 4) tribochemical silica/silane coating system (Rocatec System). The specimens were bonded with M bond or Super-bond C&B adhesive. The shear bond strengths were determined before and after thermocycling (20,000 cycles). The surface characteristics after polishing, and for the 1) and 4) preparations were determined. The bond strengths for all combinations significantly decreased after thermocycling. The combination of Super-bond C&B adhesive and 2) led to significantly higher bond strength than the other preparations after thermocycling. The maximum height of the profile parameters for the polishing group was lower than other preparations.

  12. Enamel Wetness Effects on Microshear Bond Strength of Different Bonding Agents (Adhesive Systems): An in vitro Comparative Evaluation Study.

    Science.gov (United States)

    Kulkarni, Girish; Mishra, Vinay K

    2016-05-01

    The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no

  13. Effect of proanthocyanidin incorporation into dental adhesive resin on resin-dentine bond strength.

    Science.gov (United States)

    Epasinghe, D J; Yiu, C K Y; Burrow, M F; Tay, F R; King, N M

    2012-03-01

    This study evaluated the effect of proanthocyanidin (PA) incorporation into experimental dental adhesives on resin-dentine bond strength. Four experimental hydrophilic adhesives containing different PA concentrations were prepared by combining 50wt% resin comonomer mixtures with 50wt% ethanol. Proanthocyanidin was added to the ethanol-solvated resin to yield three adhesives with PA concentrations of 1.0, 2.0 and 3.0wt%, respectively. A PA-free adhesive served as the control. Flat dentine surfaces from 40 extracted third molars were etched with 32% phosphoric acid. The specimens were randomly assigned to one of the four adhesive groups. Two layers of one of the four experimental adhesives were applied to the etched dentine and light-cured for 20s. Composite build-ups were performed using Filtek Z250 (3M ESPE). After storage in distilled water at 37°C for 24h, twenty-four bonded teeth were sectioned into 0.9 mm×0.9 mm beams and stressed to failure under tension for bond strength testing. Bond strength data were evaluated by one-way ANOVA and Tukey's test (α=0.05). Interfacial nanoleakage was examined in the remaining teeth using a field-emission scanning electron microscope and analysed using the Chi-square test (α=0.05). No significant difference in bond strength was found amongst PA-free, 1% and 2% PA adhesives. However, incorporation of 3% PA into the adhesive significantly lowered bond strength as demonstrated by a greater number of adhesive failures and more extensive nanoleakage along the bonded interface. Incorporation of 2% proanthocyanidin into dental adhesives has no adverse effect on dentine bond strength. The addition of proanthocyanidin to an experimental adhesive has no adverse effect on the immediate resin-dentine bond strength when the concentration of proanthocyanidin in the adhesive is less than or equal to 2%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Bond strength of adhesives to dentin contaminated with smoker’s saliva

    Science.gov (United States)

    Oguri, Makoto; O’Keefe, Kathy; Dusevish, Vladimir; Spencer, Paulette; Powers, John M.; Marshall, Grayson W.

    2010-01-01

    The purpose of this study was to determine the effects of contamination with smoker’s and non-smoker’s saliva on the bond strength of resin composite to superficial dentin using different adhesive systems. The interfacial structure between the resin and dentin was evaluated for each treatment using environmental scanning electron microscopy (ESEM). Freshly extracted human molars were ground with 600-grit SiC paper to expose the superficial dentin. Adhesives [One-Up-Bond-F-Plus (OUFP) and Adper-Prompt-L-Pop (APLP)] and resin composite (TPH-Spectrum) were bonded to the dentin (n = 8/group, 180 total specimens) under five surface conditions: control (adhesive applied following manufacturers’ instructions); saliva, then 5-s air dry, then adhesive; adhesive, saliva, 5-s air dry; adhesive, saliva, 5-s water rinse, 5-s air dry (ASW group); and adhesive, saliva, 5-s water rinse, 5-s air dry, reapply adhesive (ASWA group). After storage in water at 37°C for 24 h, the specimens were debonded under tension at a speed of 0.5 mm/min. ESEM photomicrographs of the dentin/adhesive interfaces were taken. Mean bond strength ranged from 8.1 to 24.1 MPa. Fisher’s protected least significant difference (P = 0.05) intervals for critical adhesive, saliva, and surface condition differences were 1.3, 1.3, and 2.1 MPa, respectively. There were no significant differences in bond strength to dentin between contamination by smoker’s and non-smoker’s saliva, but bond strengths were significantly different between adhesive systems, with OUFP twice as strong as APLP under almost all conditions. After adhesive application and contamination with either smoker’s or nonsmoker’s saliva followed by washing and reapplication of the adhesive (ASWA group), the bond strength of both adhesive systems was the same as that of the control group. PMID:20155506

  15. Evaluation of bond strength of self-adhesive cements to dentin with or without application of adhesive systems.

    Science.gov (United States)

    Barcellos, Daphne Câmara; Batista, Graziela Ribeiro; Silva, Melissa Aline; Rangel, Patrícia Maria; Torres, Carlos Rocha; Fava, Marcelo

    2011-06-01

    To evaluate the bond strength of indirect restorations to dentin using self-adhesive cements with and without the application of adhesive systems. Seventy-two bovine incisors were used, in which the buccal surfaces were ground down to expose an area of dentin measuring a minimum of 4 x 4 mm. The indirect resin composite Resilab was used to make 72 blocks, which were cemented onto the dentin surface of the teeth and divided into 4 groups (n = 18): group 1: self-adhesive resin cement BiFix SE, applied according to manufacturer's recommendations; group 2: self-adhesive resin cement RelyX Unicem, used according to manufacturer's recommendations; group 3: etch-and-rinse Solobond M adhesive system + BiFix SE; group 4: etch-and-rinse Single Bond 2 adhesive system + RelyX Unicem. The specimens were sectioned into sticks and subjected to microtensile testing in a universal testing machine (EMIC DL- 200 MF). Data were subjected to one-way ANOVA and Tukey's test (α = 5%). The mean values (± standard deviation) obtained for the groups were: group 1: 15.28 (± 8.17)a, group 2: 14.60 (± 5.21)a, group 3: 39.20 (± 9.98)c, group 4: 27.59 (± 6.57)b. Different letters indicate significant differences (ANOVA; p = 0.0000). The application of adhesive systems before self-adhesive cements significantly increased the bond strength to dentin. In group 2, RelyX Unicem associated with the adhesive system Single Bond 2 showed significantly lower mean tensile bond strengths than group 3 (BiFix SE associated with the etch-and-rinse Solobond M adhesive system).

  16. Anti-proteolytic property and bonding durability of mussel adhesive protein-modified dentin adhesive interface.

    Science.gov (United States)

    Fang, Hui; Li, Quan-Li; Han, Min; Mei, May Lei; Chu, Chun Hung

    2017-10-01

    To evaluate the effect of mussel adhesive protein (MAP) on collagenase activity, dentin collagen degradation and microtensile dentin bond strength (μTBS). Three groups were designed: 1. experimental group: treated with MAP; 2. positive control: treated with GM6001 (collagenase-inhibitor); 3. negative control: treated with distilled water (DW). For collagenase activity, Clostridiopeptidase-A was added to each group (n=5), and collagenase activity was assessed by colorimetric assay. For dentin collagen degradation, thirty dentin slabs were allocated to the three above groups (n=10). Dentin collagen degradation was evaluated by measuring released hydroxyproline by colorimetric assay after being incubated in Clostridiopeptidase-A for 7 days. For microtensile bond strength, sixty human third molars with flat dentin surfaces were etched by phosphoric acid and then assigned to the three above groups (n=20). An etch-and-rinse adhesive system was applied to all three groups as stated in standard clinic protocol. The test of μTBS was performed before and after thermocycling and collagenase challenge. The collagenase activities (nmol/min/mg) in the group of MAP was significantly less inactive compared to the group of GM6001 and DW (MAP0.06), the value of μTBSs after thermocycling and collagenase challenge was significantly greater in the group of MAP and GM6001 compared to the group of DW (MAP, GM6000>DW, pcomposite restoration over time. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Shear bond strength of metallic and ceramic brackets using color change adhesives

    Directory of Open Access Journals (Sweden)

    Aisha de Souza Gomes Stumpf

    2013-04-01

    Full Text Available OBJECTIVE: To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. METHODS: Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI. RESULTS: The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. CONCLUSIONS: The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.

  18. Effects of endodontic tri-antibiotic paste on bond strengths of dentin adhesives to coronal dentin

    Directory of Open Access Journals (Sweden)

    Parvin Mirzakoucheki

    2015-05-01

    Full Text Available Objectives The aim of this study was to evaluate the effects of tri-antibiotic paste (TAP on microtensile bond strengths (MTBS of dental adhesives to dentin. Materials and Methods Sixty extracted molars had their occlusal surfaces flattened to expose dentin. They were divided into two groups, i.e., control group with no dentin treatment and experimental group with dentin treatment with TAP. After 10 days, specimens were bonded using self-etch (Filtek P90 adhesive or etch-and-rinse (Adper Single Bond Plus adhesives and restored with composite resin. Teeth were sectioned into beams, and the specimens were subjected to MTBS test. Data were analyzed using two-way ANOVA and post hoc Tukey tests. Results There was a statistically significant interaction between dentin treatment and adhesive on MTBS to coronal dentin (p = 0.003. Despite a trend towards worse MTBS being noticed in the experimental groups, TAP application showed no significant effect on MTBS (p = 0.064. Conclusions The etch-and-rinse adhesive Adper Single Bond Plus presented higher mean bond strengths than the self-etch adhesive Filtek P90, irrespective of the group. The superior bond performance for Adper Single Bond when compared to Filtek P90 adhesive was confirmed by a fewer number of adhesive failures. The influence of TAP in bond strength is insignificant.

  19. Post-bleaching application of an antioxidant on dentin bond strength of three dental adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Conclusions: The findings suggest that bond strength of resin to bleached dentin may be affected with the adhesive system. Reduced SBS to bleached dentin can be amended by the use of SA as an antioxidizing agent. However, the amount of reversed bond strength subsequent to applying antioxidant might be related to the kind of dental adhesive.

  20. Adhesion strategy and early bond strengths of glass-fiber posts luted into root canals

    Directory of Open Access Journals (Sweden)

    André Luis Faria-e-Silva

    2012-10-01

    Full Text Available This study investigated the effect of coinitiator solutions and self-adhesive resin cement on the early retention of glass-fiber posts. Cylindrical glass-fiber posts were luted into 40 incisor roots with different adhesion strategies (n = 10: SB2, Single Bond 2 + conventional resin cement (RelyX ARC; AP, Scotchbond Multipurpose Plus (SBMP activator + primer + ARC; APC, SBMP activator + primer + catalyst + ARC; and UNI, self-adhesive cement (RelyX Unicem. Pull-out bond strength results at 10 min after cementation showed APC > UNI > SB2 = AP (P < 0.05. The adhesion strategy significantly affected early bonding to root canals.

  1. Protein Modifiers Generally Provide Limited Improvement in Wood Bond Strength of Soy Flour Adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda Lorenz

    2013-01-01

    Soy flour adhesives using a polyamidoamine-epichlorohydrin (PAE) polymeric coreactant are used increasingly as wood adhesives for interior products. Although these adhesives give good performance, higher bond strength under wet conditions is desirable. Wet strength is important for accelerated tests involving the internal forces generated by the swelling of wood and...

  2. Polymerization contraction stress in dentin adhesives bonded to dentin and enamel

    NARCIS (Netherlands)

    M. Hashimoto; A.J. de Gee; A.J. Feilzer

    2008-01-01

    Objective In a previous study on of polymerization contraction stress determinations of adhesives bonded to dentin a continuous decline of stress was observed after the adhesives had been light-cured. The decline was ascribed to stress relief caused by diffusion into the adhesive layer of water and/

  3. Polymerization contraction stress in dentin adhesives bonded to dentin and enamel

    NARCIS (Netherlands)

    Hashimoto, M.; de Gee, A.J.; Feilzer, A.J.

    2008-01-01

    Objective In a previous study on of polymerization contraction stress determinations of adhesives bonded to dentin a continuous decline of stress was observed after the adhesives had been light-cured. The decline was ascribed to stress relief caused by diffusion into the adhesive layer of water

  4. Evaluation of adhesive bond Young's modulus during crosslinking using a mechanical method and an ultrasound method

    Science.gov (United States)

    Mascaro, B.; Budzik, M. K.; Castaings, M.; Jumel, J.; Shanahan, M. E. R.

    2012-03-01

    The strength and stability of adhesive bonded structures are related to polymer curing, when crosslinking occurs and leads to adhesive strength, stiffness and durability. Depending on the resin and curing agent used, cure time can vary from minutes to weeks. Methods based on dynamic mechanical analysis (DMA) or calorimetric techniques (DSC, DTA) are valuable for evaluating mechanical properties of adhesives, but are devoted specifically to the polymers alone, and not in situ in adhesive bonds. In this contribution, we have monitored - during crosslinking - the Young's modulus of a slow-curing DGEBA - PAMAM adhesive system, with two non-destructive, in situ, methods used for the characterisation of the adhesive in a bonded system. The first method is based on measurements obtained from strain gauges mounted on one bonded adherend. The second method uses an ultrasound technique based on the through-transmission. Both methods suggest the same curing kinetics.

  5. Surface Monitoring of CFRP Structures for Adhesive Bonding

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.

    2017-01-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are < 100 mJ is referred to as mLIBS. CFRP surfaces were contaminated with polydimethylsiloxane (PDMS), a major component of silicone based mold release agents. The presence of PDMS is found by inspecting the Si I emission line at 288.2 nm. Untreated CFRP samples and CFRP contaminated with PDMS were tested. The PDMS areal density ranged from 0.36 Â+/- 0.04 to 0.51 Â+/- 0.16 mg/cm2. The results demonstrate the successful detection of PDMS on CFRP using mLIBS. In addition, OSEE was used to measure CFRP surface cleanliness pre- and post-treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.

  6. On structural health monitoring of aircraft adhesively bonded repairs

    Science.gov (United States)

    Pavlopoulou, Sofia

    The recent interest in life extension of ageing aircraft and the need to address the repair challenges in the new age composite ones, led to the investigation of new repair methodologies such as adhesively bonded repair patches. The present thesis focuses on structural health monitoring aspects of the repairs, evaluating their performance with guided ultrasonic waves aiming to develop a monitoring strategy which would eliminate unscheduled maintenance and unnecessary inspection costs. To address the complex nature of the wave propagation phenomena, a finite element based model identified the existing challenges by exploring the interaction of the excitation waves with different levels of damage. The damage sensitivity of the first anti-symmetric mode was numerically investigated. An external bonded patch and a scarf repair, were further tested in static and dynamic loadings, and their performance was monitored with Lamb waves, excited by surface-bonded piezoelectric transducers.. The response was processed by means of advanced pattern recognition and data dimension reduction techniques such as novelty detection and principal component analysis. An optimisation of these tools enabled an accurate damage detection under complex conditions. The phenomena of mode isolation and precise arrival time determination under a noisy environment and the problem of inadequate training data were investigated and solved through appropriate transducer arrangements and advanced signal processing respectively. The applicability of the established techniques was demonstrated on an aluminium repaired helicopter tail stabilizer. Each case study utilised alternative non-destructive techniques for validation such as 3D digital image correlation, X-ray radiography and thermography. Finally a feature selection strategy was developed through the analysis of the instantaneous properties of guided waves for damage detection purposes..

  7. Microtensile bond strength of etch and rinse versus self-etch adhesive systems.

    Science.gov (United States)

    Hamouda, Ibrahim M; Samra, Nagia R; Badawi, Manal F

    2011-04-01

    The aim of this study was to compare the microtensile bond strength of the etch and rinse adhesive versus one-component or two-component self-etch adhesives. Twelve intact human molar teeth were cleaned and the occlusal enamel of the teeth was removed. The exposed dentin surfaces were polished and rinsed, and the adhesives were applied. A microhybride composite resin was applied to form specimens of 4 mm height and 6 mm diameter. The specimens were sectioned perpendicular to the adhesive interface to produce dentin-resin composite sticks, with an adhesive area of approximately 1.4 mm(2). The sticks were subjected to tensile loading until failure occurred. The debonded areas were examined with a scanning electron microscope to determine the site of failure. The results showed that the microtensile bond strength of the etch and rinse adhesive was higher than that of one-component or two-component self-etch adhesives. The scanning electron microscope examination of the dentin surfaces revealed adhesive and mixed modes of failure. The adhesive mode of failure occurred at the adhesive/dentin interface, while the mixed mode of failure occurred partially in the composite and partially at the adhesive/dentin interface. It was concluded that the etch and rinse adhesive had higher microtensile bond strength when compared to that of the self-etch adhesives.

  8. Standard Guide for Acousto-Ultrasonic Assessment of Composites, Laminates, and Bonded Joints

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide explains the rationale and basic technology for the acousto-ultrasonic (AU) method. Guidelines are given for nondestructive evaluation (NDE) of flaws and physical characteristics that influence the mechanical properties and relative strength of composite structures (for example, filament-wound pressure vessels), adhesive bonds (for example, joints between metal plates), and interlaminar and fiber/matrix bonds in man-made composites and natural composites (for example, wood products). 1.2 This guide covers technical details and rules that must be observed to ensure reliable and reproducible quantitative AU assessments of laminates, composites, and bonded structures. The underlying principles, prototype apparatus, instrumentation, standardization, examination methods, and data analysis for such assessments are covered. Limitations of the AU method and guidelines for taking advantage of its capabilities are cited. 1.3 The objective of AU is to assess subtle flaws and associated strength variations...

  9. Predicting the geometry and location of defects in adhesive and spot-welded lap joints using steady-state thermographic techniques

    Science.gov (United States)

    Turler, Daniel; Orlando, Ernest

    1999-03-01

    Development of nondestructive evaluation (NDE) methods for spot-welded and adhesive-bonded sheet metal joints is essential for widespread use of lightweight materials and new construction techniques in automotive applications. An important objective of research in progress is development of NDE methods to identify and characterize critical flaws in welded and adhesive-bonded joints. We used steady-state heat- flow and thermographic imaging techniques to test welded and adhesive-bonded lap joints in steel and aluminum samples and in adhesive-bonded composite panels and to identify defective spot welds. The resulting surface-temperature maps or thermograms were used to detect voids and areas where the adhesive was not bonded. To better characterize defects in welds and adhesive layers, algorithms have been developed to post process temperature data, producing more accurate definition of the geometry and location of defects than in previous images. Classic heat-transfer theory was used to calculate the heat-flux equilibrium for each individual pixel on the thermograms. Convective and radiative surface heat- transfer coefficients were applied to compensate for the heat exchange between the sample and the environment. This post processing permits us to determine the locations of spot welds and the sizes of the weld nuggets in welded joints, and to clearly image voids in adhesive layers between joints. The effectiveness of the image-processing algorithms was investigated using data from laboratory experiments on test specimens with flaws of known size and location. In addition, the images of the defects produced with the new method were compared to results of two-dimensional heat transfer simulations through the same samples. The simulations were also used to determine boundary conditions for post-processing of images.

  10. "The effect of an addicional adhesive layer on dentin bond strength : comparison with manufacture protocol"

    OpenAIRE

    Andrade, Ana Soraia Pinheiro

    2014-01-01

    Tese de Mestrado, Medicina Dentária, Universidade de Lisboa, Faculdade de Medicina Dentária, 2014 The aesthetic requirements of today's society led to the development of a new concept of adhesive dentistry, in which manufacturers are challenged to design the simplest, user-friendly and least technique-sensitive-adhesive. Thus, a newly developed class of dental adhesives has appeared on the market the universal adhesives systems. Purpose: To evaluate the micro-tensile bond strength to denti...

  11. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    OpenAIRE

    Yazdi, Fatemeh Maleknejad; Moosavi, Horieh; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (µSBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% ...

  12. Effectiveness of immediate bonding of etch-and-rinse adhesives to simplified ethanol-saturated dentin

    Directory of Open Access Journals (Sweden)

    Leandro Afonso Guimarães

    2012-04-01

    Full Text Available This study examined the immediate bond strength of etch-and-rinse adhesives to demineralized dentin saturated with either water or absolute ethanol. The research hypothesis was that there would be no difference in bond strength to dentin between water or ethanol wet-bonding techniques. The medium dentin of 20 third molars was exposed (n = 5. The dentin surface was then acid-etched, left moist and randomly assigned to be saturated via either water wet-bonding (WBT or absolute ethanol wet-bonding (EBT. The specimens were then treated with one of the following etch-and-rinse adhesive systems: a 3-step, water-based system (Adper Scotchbond Multipurpose, or SBMP or a 2-step, ethanol/water-based system (Adper Single Bond 2, or SB. Resin composite build-ups were then incrementally constructed. After water storage for 24 h at 37°C, the tensile strength of the specimens was tested in a universal testing machine (0.5 mm/min. Data were analyzed by two-way ANOVA and Tukey's test (a = 5%. The failure modes were verified using a stereomicroscope (40'. For both adhesives, no significant difference in bond strength was observed between WBT and EBT (p > 0.05. The highest bond strength was observed for SB, regardless of the bonding technique (p < 0.05. No significant interaction between adhesives and bonding techniques was noticed (p = 0.597. There was a predominance of adhesive failures for all tested groups. The EBT and WBT displayed similar immediate bond strength means for both adhesives. The SB adhesive exhibited higher means for all conditions tested. Further investigations are needed to evaluate long-term bonding to dentin mediated by commercial etch-and-rinse adhesives using the EBT approach.

  13. Effect of Curing Direction on Microtensile Bond Strength of Fifth and Sixth Generation Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ali Nadaf

    2012-09-01

    Full Text Available Background and Aims: Composite restorative materials and dental adhesives are usually cured with light sources. The light direction may influence the bond strength of dental adhesives. The aim of this study was to evaluate the effect of light direction on the microtensile bond strength of fifth and sixth generation dental adhesives.Materials and Methods: Prime & Bond NT and Clearfil SE bond were used with different light directions.Sixty human incisor teeth were divided into 4 groups (n=15. In groups A and C, Clearfil SE bond with light curing direction from buccal was used for bonding a composite resin to dentin. In groups B and D, Prime & Bond NT with light curing direction from composite was used. After thermocycling the specimens were subjected to tensile force until debonding occurred and values for microtensile bond strength were recorded. The data were analyzed using two-way ANOVA and Tukey post hoc test.Results: The findings showed that the bond strength of Clearfil SE bond was significantly higher than that of Prime&Bond NT (P<0.001. There was no significant difference between light curing directions (P=0.132.Conclusion: Light curing direction did not have significant effect on the bond strength. Sixth generation adhesives was more successful than fifth generation in terms of bond strength to dentin.

  14. In vitro evaluation of microleakage under orthodontic brackets bonded with different adhesive systems.

    Science.gov (United States)

    Atash, Ramin; Fneiche, Ali; Cetik, Sibel; Bahrami, Babak; Balon-Perin, Alain; Orellana, Maria; Glineur, Régine

    2017-01-01

    Adhesives systems have a drawback when utilized for bonding orthodontic brackets: they shrink during photopolymerization creating microleakage. The aim of this study was to assess the stability of different orthodontic adhesives around brackets and enamel. Sixty noncarious mandibular premolars extracted for orthodontic reasons were randomly divided into six groups of adhesives used for bonding brackets to dental enamel: NeoBond(®) Light Cure Adhesive Kit, Transbond™ Plus Self-Etching, Victory V-Slot APC PLUS(®) + Transbond™ MIP, Rely-A-Bond(®) Kit, Light Cure Orthodontic Adhesive Kit (OptiBond(®)), and Transbond™ MIP. Following bonding, all teeth underwent 2500 cycles of thermal cycling in baths ranging from 5°C to 55°C before being immersed in 2% methylene blue for 24 h. All samples were examined under a binocular microscope to assess the degree of microleakage at the "bracket-adhesive" and "adhesive-enamel" interfaces in the gingival and occlusal regions of the bracket. A significant difference was found at the "occlusal bracket-adhesive" interface. The highest microleakage values were found in the occlusal region, although no significant. Microleakage was observed in all groups. Group 2 had the highest microleakage values whereas Group 6 had the lowest values.

  15. Elucidating How Wood Adhesives Bond to Wood Cell Walls using High-Resolution Solution-State NMR Spectroscopy

    Science.gov (United States)

    Daniel J. Yelle

    2013-01-01

    Some extensively used wood adhesives, such as pMDI (polymeric methylene diphenyl diisocyanate) and PF (phenol formaldehyde) have shown excellent adhesion properties with wood. However, distinguishing whether the strength is due to physical bonds (i.e., van der Waals, London, or hydrogen bond forces) or covalent bonds between the adherend and the adhesive is not fully...

  16. Does hybridized dentin affect bond strength of self-adhesive resin cement?

    Science.gov (United States)

    do Valle, Accácio-Lins; de Andrade, Gustavo-Henrique-Barbosa; Vidotti, Hugo-Alberto; Só, Marcus-Vinícius-Reis; Pereira, Jefferson-Ricardo

    2016-01-01

    Background Evaluate the influence of different hybridization bonding techniques of a self-adhesive resin cement. Material and Methods 30 human health molars were divided into six groups (n=10). The specimens received three longitudinal sections, allowing insertion of central cuts in PVC matrices. Each group received a different dentin pretreatment according to the manufacturer’s recommendations, except the control group (G1), as follows. G2 - a 3-step total-etch adhesive system (Optibond™ FL, Kerr); G3 - a 3-step total-etch adhesive system (Adper™ Scotchbond™ Multi-Purpose, 3M ESPE); G4 - a 2-step total-etch adhesive system (Adper™ Single Bond 2, 3M ESPE); G5 - a single-step self-etching system (Bond Force, Tokuyama); and G6 - universal bonding system (Single Bond Universal, 3M ESPE). Then, cylinders made of self-adhesive resin cement with polypropylene matrix was cemented in all groups (RelyX U200, 3M ESPE). Bond strength was assessed by submitting the specimens to micro-shear test and was characterized according to the fracture pattern observed through optical microscopy. Results The results were submitted to the Kruskal-Wallis test, which indicated a statistically significant difference between the groups (p=0.04), and Tukey’s multiple comparisons, which indicated a statistically significant difference between G1 and G3 (p<0.05). The microscopic analysis revealed a high prevalence of adhesive failures, followed by mixed fractures, and cohesive failures in the dentin. Conclusions The use of a previous dentin hybridization protocol is able to increase adhesive bonding resistance of self-adhesive resin cement, especially when used Adper™ Scotchbond™ Multi-Purpose system. Key words:Bonding, self-adhesive resin cement, adhesive systems, microshear. PMID:27703609

  17. [The adhesive properties of two bonding systems to tetracycline stained dentin].

    Science.gov (United States)

    Liu, H L; Liang, K N; Cheng, L; Li, J Y; He, L B

    2016-01-01

    To investigate and compare the bonding properties of Single Bond 2 and SE Bond to tetracycline stained dentin in vitro. Ten extracted tetracycline stained human teeth and ten extracted normal human teeth were collected and the occlusal dentin surfaces of all extracted teeth were exposed. The tetracycline stained teeth and normal teeth were divided into two groups, respectively and randomly, based on the adhesives applied. Total-etch adhesive(Single Bond 2) and self-etch adhesive(SE Bond) were used. After application of the adhesives to the dentin surfaces, composite crowns were built up. After 24 h water storage, the teeth were sectioned longitudinally into sticks(0.9 mm×0.9 mm bonding area) for micro tensile testing or micro Raman spectroscopy detection. Bonding strength(μTBS) and resin conversion rate were analyzed using one-way ANOVA. The tetracycline Single Bond 2 group presented lower bonding strength[(16.17 ± 3.16) MPa] than the tetracycline SE Bond group[(25.82 ± 2.62) MPa], and also demonstrated lower bonding strength than the normal Single Bond 2 group[(29.13 ± 2.44) MPa] and the normal SE Bond group[(24.29±2.83) MPa] (P0.05). The resin conversion rate of tetracycline Single Bond 2 group[(55±6)%] was significantly lower than the tetracycline SE Bond group[(66±3)% ](P0.05). The bonding strength of total-etch adhesive system to the tetracycline stained dentin was significantly lower than that to the normal dentin.

  18. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials

    Directory of Open Access Journals (Sweden)

    Janaina Barros Cruz

    2012-08-01

    Full Text Available This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva and eroded dentin (pH cycling model - 3× / cola drink for 7 days. Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix, resin-modified glass ionomer cement (VitremerTM or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250. Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×. Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05. Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001. For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  19. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials.

    Science.gov (United States)

    Cruz, Janaina Barros; Lenzi, Tathiane Larissa; Tedesco, Tamara Kerber; Guglielmi, Camila de Almeida Brandão; Raggio, Daniela Prócida

    2012-01-01

    This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva) and eroded dentin (pH cycling model - 3× / cola drink for 7 days). Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix), resin-modified glass ionomer cement (VitremerTM) or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250). Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×). Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05). Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001). For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  20. An Average Failure Index Method for the Tensile Strength Prediction of Composite Adhesive-bondedJoints

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianyu; SHAN Meijuan; ZHAO Libin; FEI Binjun

    2015-01-01

    An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bondedπjoints. Based on the simple and independent maximum stress failure criterion, the failure index was introduced to characterize the degree of stress components close to their corresponding material strength. With a brief load transfer analysis, the weak fillers were prominent and further detailed discussion was performed. The maximum value among the average failure indices which were related with different stress components was filtrated to represent the failure strength of the critical surface, which is either the two curved upside surfaces or the bottom plane of the fillers for compositeπjoints. The tensile strength of three kinds ofπjoints with different material systems, configurations and lay-ups was predicted by the proposed method and corresponding experiments were conducted. Good agreements between the numerical and experimental results give evidence of the effectiveness of the proposed method. In contrast to the existed time-consuming strength prediction methods, the proposed method provides a capability of quickly assessing the failure of complex out-of-plane joints and is easy and convenient to be widely utilized in engineering.

  1. Influence of Etching Mode on Enamel Bond Durability of Universal Adhesive Systems.

    Science.gov (United States)

    Suzuki, T; Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Endo, H; Erickson, R L; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to determine the enamel bond durability of three universal adhesives in different etching modes through fatigue testing. The three universal adhesives used were Scotchbond Universal, Prime&Bond Elect universal dental adhesive, and All-Bond Universal light-cured dental adhesive. A single-step self-etch adhesive, Clearfil S(3) Bond Plus was used as a control. The shear bond strength (SBS) and shear fatigue strength (SFS) to human enamel were evaluated in total-etch mode and self-etch mode. A stainless steel metal ring with an internal diameter of 2.4 mm was used to bond the resin composite to the flat-ground (4000-grit) tooth surfaces for determination of both SBS and SFS. For each enamel surface treatment, 15 specimens were prepared for SBS and 30 specimens for SFS. The staircase method for fatigue testing was then used to determine the SFS of the resin composite bonded to the enamel using 10-Hz frequencies for 50,000 cycles or until failure occurred. Scanning electron microscopy was used to observe representative debonded specimen surfaces and the resin-enamel interfaces. A two-way analysis of variance and the Tukey post hoc test were used for analysis of the SBS data, whereas a modified t-test with Bonferroni correction was used for the SFS data. All adhesives in total-etch mode showed significantly higher SBS and SFS values than those in self-etch mode. Although All-Bond Universal in self-etch mode showed a significantly lower SBS value than the other adhesives, there was no significant difference in SFS values among the adhesives in this mode. All adhesives showed higher SFS:SBS ratios in total-etch mode than in self-etch mode. With regard to the adhesive systems used in this study, universal adhesives showed higher enamel bond strengths in total-etch mode. Although the influence of different etching modes on the enamel-bonding performance of universal adhesives was found to be dependent on the adhesive material, total-etch mode

  2. Bonding of universal adhesives to dentine--Old wine in new bottles?

    Science.gov (United States)

    Chen, C; Niu, L-N; Xie, H; Zhang, Z-Y; Zhou, L-Q; Jiao, K; Chen, J-H; Pashley, D H; Tay, F R

    2015-05-01

    Multi-mode universal adhesives offer clinicians the choice of using the etch-and-rinse technique, selective enamel etch technique or self-etch technique to bond to tooth substrates. The present study examined the short-term in vitro performance of five universal adhesives bonded to human coronal dentine. Two hundred non-carious human third molars were assigned to five groups based on the type of the universal adhesives (Prime&Bond Elect, Scotchbond Universal, All-Bond Universal, Clearfil Universal Bond and Futurabond U). Two bonding modes (etch-and-rinse and self-etch) were employed for each adhesive group. Bonded specimens were stored in deionized water for 24h or underwent a 10,000-cycle thermocycling ageing process prior to testing (N=10). Microtensile bond testing (μTBS), transmission electron microscopy (TEM) of resin-dentine interfaces in non-thermocycled specimens and scanning electron microscopy (SEM) of tracer-infused water-rich zones within hybrid layers of thermocycled specimens were performed. Both adhesive type and testing condition (with/without thermocycling) have significant influences on μTBS. The use of each adhesive in either the etch-and-rinse or self-etch application mode did not result in significantly different μTBS to dentine. Hybrid layers created by these adhesives in the etch-and-rinse bonding mode and self-etch bonding mode were ∼5μm and ≤0.5μm thick respectively. Tracer-infused regions could be identified within the resin-dentine interface from all the specimens prepared. The increase in versatility of universal adhesives is not accompanied by technological advances for overcoming the challenges associated with previous generations of adhesives. Therapeutic adhesives with bio-protective and bio-promoting effects are still lacking in commercialized adhesives. Universal adhesives represent manufacturers' attempt to introduce versatility in product design via adaptation of a single-bottle self-etch adhesive for other application

  3. Application of honeymoon cold-set adhesive systems for structural end joints in North America

    Science.gov (United States)

    Roland E. Kreibich; Richard W. Hemingway; William T. Nearn

    1993-01-01

    High quality, structural end joints can be cold-set at mill speed using a two-component honeymoon adhesive system composed of southern pine bark or pecan shell membrane tannin and a modified, commercially available. phenol-resorcinol-formaldehyde resin. Adhesive costs of a fully waterproof glueline are approximately $0.60/lb. of applied adhesive mix compared to $0.80/...

  4. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    Science.gov (United States)

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words:Bond strength, self-adhesive cement, silane, dentin, indirect composite. PMID:26855700

  5. Effectiveness of pit and fissure sealants bonded with different adhesive systems: a prospective randomized controlled trial.

    Science.gov (United States)

    Erbas Unverdi, Gizem; Atac, Stephan Atilla; Cehreli, Zafer Cavit

    2016-11-30

    To evaluate and compare the clinical retention of a resin-based fissure sealant placed with an intermediate layer of etch-and-rinse (ER) or self-etch (SE) adhesives. Two hundred twenty-eight sealants were placed in 57 children with previously unsealed, caries-free permanent first molars, employing a split-mouth design. The teeth were randomized into four groups (n = 57 teeth/groups) according to the adhesive system placed under the tested sealant (Delton FS+; Dentsply). Group 1 (control): no bonding agent (conventional acid-etch sealant); group 2: prior enamel etch + ER adhesive (XP Bond; Dentsply); group 3: SE adhesive (Clearfil SE Bond; Kuraray) without prior etching; and group 4: prior enamel etch + SE adhesive (Clearfil SE Bond). Clinical assessments were performed according to modified USPHS criteria at 1, 3, 6, 12, 18, and 24 months. The data were analyzed statistically using Fisher's Exact test, the Kaplan-Meier analysis, and the Log-rank test. At 24 months, sealants bonded with XP Bond and Clearfil SE Bond with prior enamel etching showed similar retention rates (p > 0.05), and these rates were significantly better than the rates of the conventional sealant and Clearfil-SE groups (p  0.05). The cumulative survival rates on palatal/buccal surfaces showed similar outcomes as with occlusal surfaces: XP Bond (94%), Clearfil SE Bond + acid-etch (94%), conventional sealant (52%), and Clearfil SE Bond only (37%). Application of the tested ER adhesive and the SE adhesive with enamel etching significantly improved the clinical retention of Delton-FS over the 24-month period. The use of a resin-based fissure sealant placed with ER or SE adhesive with prior acid-etching yielded better retention than the conventional sealant over the 24-month period.

  6. Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives

    OpenAIRE

    SABATINI, Camila

    2013-01-01

    Objective To evaluate the effect of optional phosphoric acid etching on the shear bond strength (SBS) of two self-etch adhesives to enamel and dentin. Material and Methods Ninety-six bovine mandibular incisors were ground flat to obtain enamel and dentin substrates. A two-step self-etch adhesive (FL-Bond II) and a one-step self-etch adhesive (BeautiBond) were applied with and without a preliminary acid etching to both the enamel and dentin. The specimens were equally and randomly assigned t...

  7. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter.

    Science.gov (United States)

    Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid

    2016-01-01

    To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4-5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal-Wallis, Wilcoxon Signed Rank, and Mann-Whitney test. While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary.

  8. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter

    Science.gov (United States)

    Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid

    2016-01-01

    Objective: To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. Materials and Methods: In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4–5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal–Wallis, Wilcoxon Signed Rank, and Mann–Whitney test. Results: While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Conclusion: Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary. PMID:27095895

  9. Bonding effectiveness of a new 'multi-mode' adhesive to enamel and dentine.

    Science.gov (United States)

    Hanabusa, Masao; Mine, Atsushi; Kuboki, Takuo; Momoi, Yasuko; Van Ende, Annelies; Van Meerbeek, Bart; De Munck, Jan

    2012-06-01

    Self-etch adhesives are well adopted in general practice, obviously primarily thanks to their ease of use and fast application time. Nevertheless, phosphoric acid is still often recommended to beforehand etch enamel following a so-called 'selective' enamel-etch technique, this in particular when most cavity margins end in enamel. The purpose of this study was to test if a new one-step adhesive can be applied in a multi-mode manner, this following different, either 'full' or 'selective', self-etch and etch-and-rinse approaches. Specific research hypotheses tested were that prior phosphoric-acid etching did not affect the bonding effectiveness of the one-step adhesive to enamel and dentine, and that the bonding effectiveness to dentine was also not affected when the adhesive was applied either following a 'dry-bonding' or 'wet-bonding' etch-and-rinse technique. The micro-tensile bond strength (μTBS) of the one-step self-etch adhesive G-Bond Plus (GC, Tokyo, Japan; 1-SEA) was measured when it was bonded to bur-cut enamel following either a 'self-etch' or an 'etch-and-rinse' adhesive protocol, and to bur-cut dentine when applied following either a 'self-etch', a 'dry-bonding' or a 'wet-bonding' etch-and-rinse adhesive protocol. Bond-strength testing was corroborated by ultra-structural analysis of the interfacial interaction at enamel and dentine using transmission electron microscopy (TEM). Prior phosphoric-acid etching significantly increased the bonding effectiveness of the 1-SEA to enamel. A clearly enhanced micro-retentive surface was revealed by TEM. To dentine, no statistically significant difference in bonding effectiveness was recorded when the 1-SEA was either applied following a self-etch or both etch-and-rinse approaches. The 'dry-bonding' etch-and-rinse protocol was significantly more effective than its 'wet-bonding' version. TEM however revealed indications of low-quality hybridisation following both etch-and-rinse approaches, in particular in the form

  10. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Manoj G Chandak

    2012-01-01

    Full Text Available Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC. Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE. In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05 whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0-001. Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A as well as without application of the adhesive agent.

  11. Microtensile Bond Strength and Micromorphology of Bur-cut Enamel Using Five Adhesive Systems.

    Science.gov (United States)

    Vinagre, Alexandra; Ramos, João; Messias, Ana; Marques, Fernando; Caramelo, Francisco; Mata, António

    2015-04-01

    This study compared the microtensile bond strengths (μTBS) of two etch-and-rinse (ER) (OptiBond FL [OBFL]; Prime & Bond NT [PBNT]) and three self-etching (SE) (Clearfil SE Bond [CSEB]; Xeno III [XIII]; Xeno V+ [XV+]) adhesives systems to bur-prepared human enamel considering active (AA) and passive (PA) application of the self-etching systems. Ninety-six enamel surfaces were prepared with a medium-grit diamond bur and randomly allocated into 8 groups to receive adhesive restorations: G1: OBFL; G2: PBNT; G3: CSEB/PA; G4: CSEB/ AA; G5: XIII/PA; G6: XIII/AA; G7: XV+/PA; G8: XV+/AA. After composite buildup, samples were sectioned to obtain a total of 279 bonded sticks (1 mm2) that were submitted to microtensile testing (μTBS; 0.5 mm/min) after 24-h water storage (37°C). Etching patterns and adhesive interfacial ultramorphology were also evaluated with confocal laser scanning (CLSM) and scanning electron microscopy (SEM). Data was analyzed with one-way ANOVA (α = 0.05). Weibull probabilistic distribution was also determined. Regarding μTBS, both adhesive system and application mode yielded statistically significant differences (p adhesive systems together with CSEB/AA and XIII/PA recorded the highest and statistically similar bond strength results. XV+ presented very low bond strength values, regardless of the application mode. Among self-etching adhesives, CSEB produced significantly higher μTBS values when applied actively. Qualitative evaluation by SEM and CLSM revealed substantial differences between groups both in adhesive interfaces and enamel conditioning patterns. ER and SE adhesive systems presented distinctive bond strengths to bur-cut enamel. The application mode effect was adhesive dependent. Active application improved etching patterns and resin interfaces micromorphology.

  12. Shear bond strength of three adhesive systems to enamel and dentin of permanent teeth

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2012-01-01

    Full Text Available Background and Aims: The purpose of this experimental study was to investigate the shear bond strength of three new adhesive systems to enamel and dentin of permanent human teeth using three new etch and rinse and self-etch adhesive systems.Materials and Methods: Sixty intact caries-free third molars were selected and randomly divided into 6 groups. Flat buccal and lingual enamel and dentin surfaces were prepared and mounted in the acrylic resin perpendicular to the plan of the horizon. Adhesives used in this study were Tetric N-Bond, AdheSE and AdheSE-One F (Ivoclar/Vivadent, Schaan, Liechtenstein. The adhesives were applied on the surfaces and cured with quartz tungsten halogen curing unit (600 mW/cm2 intensity for 20 s. After attaching composite to the surfaces and thermocycling (500 cycles, 5-55ºC, shear bond strength was measured using a universal testing machine at a crosshead speed of 0.5 mm/min. The failure modes were examined under a stereomicroscope. The data were statistically analyzed using T-test, one-way ANOVA, Tukey and Fisher's exact tests.Results: In enamel, Tetric N-Bond (28.57±4.58 MPa and AdheSE (21.97±7.6 MPa had significantly higher bond strength than AdheSE-One F (7.16±2.09 MPa (P0.05.Conclusion: Shear bond strength to dentin in Tetric N-Bond (etch and rinse system( was higher than self-etch adhesives (AdheSE and AdheSE-One F. The bond strength to enamel and dentin in two-step self-etch (AdheSE was higher than one-step self-etch (AdheSE-One F.

  13. Effect of chlorhexidine incorporation into dental adhesive resin on durability of resin-dentin bond.

    Science.gov (United States)

    Yiu, Cynthia K; Hiraishi, Noriko; Tay, Franklin R; King, Nigel M

    2012-08-01

    This study evaluated the effect of chlorhexidine (CHX) incorporation into experimental dentin adhesives with different hydrophilicities on the microtensile bond strength (µTBS) to dentin. Flat, deep dentin surfaces were prepared from 60 extracted human third molars. Three ethanol-solvated (50 wt% ethanol/50 wt% comonomers) experimental adhesives with varying degrees of hydrophilicity were prepared for the CHX-free groups. For the CHX-containing groups, chlorhexidine diacetate was further added to the ethanol-solvated adhesives to form a concentration of 2.0 wt% CHX. Dentin surfaces were etched with 37% phosphoric acid for 15 s, rinsed and blot dried before bonding. The adhesives were generously applied to dentin with a microbrush for 15 s. A second application of fresh adhesive was made and light cured for 20 s (600 mW/cm2) after solvent evaporation. Composite buildups were made using Filtek Z250 (3M ESPE). The bonded teeth were sectioned into 0.9 mm x 0.9 mm beams and stressed to failure at a crosshead speed of 1 mm/min. Testing was performed 24 h after specimen preparation and 12 months after storage in artificial saliva. The µTBS data were analyzed using three-way ANOVA and Tukey's multiple comparison tests. Fractographic analysis was performed by SEM. Significant differences were observed for the three factors "adhesive hydrophilicity" (p adhesives (p > 0.05). After storage in artificial saliva, significant reduction in bond strength was observed in all adhesive groups, except for CHX-containing adhesive I (p adhesive III was significantly higher than the corresponding CHX-free adhesive (p dental adhesives, chlorhexidine can partially reduce the degradation of the resin-dentin bonds.

  14. Debonding and adhesive remnant cleanup: an in vitro comparison of bond quality, adhesive remnant cleanup, and orthodontic acceptance of a flash-free product.

    Science.gov (United States)

    Grünheid, Thorsten; Sudit, Geoffrey N; Larson, Brent E

    2015-10-01

    A new flash-free adhesive promises to eliminate the need to clean up excess adhesive upon orthodontic bracket bonding. This study evaluated this new adhesive with regard to microleakage at the enamel-bracket interface, amount of adhesive remaining on the tooth after bracket debonding, time required for adhesive remnant cleanup, and clinical practitioners' preference in comparison to a conventional adhesive. A total of 184 bovine incisors were bonded with ceramic brackets using either the flash-free adhesive (APC Flash-Free Adhesive Coated Appliance System, 3M Unitek [3M], Monrovia, California, USA) or a conventional adhesive (APCII Adhesive Coated Appliance System, 3M). Twenty-four of the teeth were scanned using microcomputed tomography to quantify microleakage into the adhesive layer. Twenty orthodontists debonded the brackets, removed the remaining adhesive, and then completed a survey regarding their preference for one of the two adhesives. The adhesive remnant was quantified and the time required for its removal recorded. Differences between the adhesives were tested for statistical significance. For both adhesives, the microleakage was minimal with no significant differences between the two adhesives. The adhesive remnant was significantly larger for the flash-free adhesive, whereas there was no significant difference in adhesive cleanup time. Fourteen out of the 20 orthodontists preferred the flash-free adhesive over the conventional adhesive. In vitro testing cannot replicate the actual clinical situation during in vivo debonding. With regard to bond quality and adhesive remnant cleanup, the new flash-free adhesive performs just as well as the conventional adhesive, and, of the two products, is the one preferred by most orthodontists. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Microtensile bond strength test and failure analysis to assess bonding characteristics of different adhesion approaches to ground versus unground enamel.

    Science.gov (United States)

    Hipólito, Vinicius Di; Alonso, Roberta Caroline Bruschi; Carrilho, Marcela Rocha de Oliveira; Anauate Netto, Camillo; Sinhoreti, Mário Alexandre Coelho; Goes, Mario Fernando de

    2011-01-01

    This study evaluated the bonding characteristics to ground and unground enamel obtained with different strategies. For this purpose, 24 sound third-molars were bisected mesiodistally to obtain tooth halves. A flat enamel area was delimited in the tooth sections, which were randomly distributed into 8 groups (n=6), according to the enamel condition (ground and unground) and adhesive system (Adper Single Bond 2 - SB2; Adper Prompt L-Pop - PLP; Adper Prompt - AD; Clearfil SE Bond - SE). Each system was applied according manufacturers' instructions and a 6-mm-high resin composite "crown" was incrementally built up on bonded surfaces. Hourglass-shaped specimens with 0.8 mm(2) cross-section were produced. Microtensile bond strength (μTBS) was recorded and the failure patterns were classified. Results were analyzed by two-way ANOVA and Tukey's test (α=0.05). There were no statistically significant differences among the μTBS values of SB2, PLP and AD (p>0.05). SE values were significantly lower (p0.05). There was prevalence of cohesive failure within enamel, adhesive system and resin composite for SB2. The self-etch systems produced higher incidence of cohesive failures in the adhesive system. Enamel condition did not determine significant differences on bonding characteristics for the same bonding system. In conclusion, the bonding systems evaluated in this study resulted in specific μTBS and failure patterns due to the particular interaction with enamel.

  16. Comparative evaluation of tensile bond strengths of total-etch adhesives and self-etch adhesives with single and multiple consecutive applications: An in vitro study

    Directory of Open Access Journals (Sweden)

    Mandava Deepthi

    2009-01-01

    Full Text Available Aim: This study evaluates the effect of single and multiple consecutive applications of adhesives on the tensile bond strength. The currently available adhesives follow either the total-etch or the self-etch concept. However, in both techniques the uniformity and thickness of the adhesive layer plays a significant role in the development of a good bond. Materials and Methods: Sixty composite-dentin bonded specimens were prepared using a total-etch adhesive (Gluma and another 60 using a self-etch adhesive (AdheSE. Each group was further divided into six subgroups based on the number of applications, i.e., single application and multiple (2, 3, 4, 6, and 8 applications. The tensile bond strength was tested with the Instron universal testing machine. The values were analyzed with one-way ANOVA and multiple range tests by Tukey′s HSD procedure to identify those subgroups that had significantly higher bond strength. Results: The results indicate that with total-etch adhesive the bond strength increases significantly as the number of applications are increased from one to two or from two to three", for self-etch adhesive the bond strength obtained with two applications is significantly higher than that with one application. However, for both adhesive systems, there was a decrease in the tensile bond strength values with further applications. Conclusion: We conclude that, in the clinical setting, the application of multiple coats of total etch adhesive improves bonding.

  17. The effect of storage and thermocycling on the shear bond strength of three dentinal adhesives.

    Science.gov (United States)

    Lino Carracho, A J; Chappell, R P; Glaros, A G; Purk, J H; Eick, J D

    1991-09-01

    The purpose of this investigation was to evaluate the effects of time of storage and thermocycling on the shear bond strength of three dentinal adhesives. The shear bond strength of Mirage Bond was significantly greater than that of Scotchbond 2, which was significantly greater than that of Scotchbond Dual Cure (P less than or equal to .05). Thermocycling significantly lowered the shear bond strength of Scotchbond Dual Cure and Scotchbond 2, but not that of Mirage Bond (P less than or equal to .05). Time of storage did not affect the shear bond strength of the other adhesives, but Mirage Bond had a significantly greater shear bond strength after 1 month of storage (P less than or equal to .05). Scanning electron microscopic observations showed that the fracture patterns were all at the smear layer-adhesive interface for Scotchbond Dual Cure, the majority of the fractures were at the primer-adhesive interface for Scotchbond 2, and most of the fractures were cohesive in the bonding agent for Mirage Bond.

  18. Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates

    Science.gov (United States)

    Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi

    2017-06-01

    Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.

  19. Shear Bond Strength of Ormocer-Based Restorative Material Using Specific and Nonspecific Adhesive Systems

    OpenAIRE

    Hamouda, Ibrahim M.; Shehata, Salah H.

    2011-01-01

    The aim of this study was to evaluate the shear bond strength of ormocer-based restorative material bonded to tooth structure using specific ormocer and nonspecific resin-based adhesives. Human molars were prepared to obtain flat buccal enamel surfaces and flat occlusal dentin surfaces. Admira bond, and Prime & Bond NT, Excite, AdheSE, and Prompt-L-Pop were applied to the prepared enamel and dentin surfaces. Ormocer restorative material was inserted into a mold fixed onto the prepared tooth s...

  20. Interaction morphology and bond strength of nanofilled simplified-step adhesives to acid etched dentin

    OpenAIRE

    DI HIPÓLITO, Vinicius; Reis, André Figueiredo; Mitra, Sumita B.; Goes, Mario Fernando De

    2012-01-01

    Objective: To evaluate the effect of nanofillers incorporated into adhesives on the microtensile bond strength (μ-TBS) and interfacial micromorphology to dentin. Methods: The occlusal enamel of 5 human molars was removed and each tooth sectioned into four quarters. The exposed dentin was treated with one of the following adhesives: Adper Single Bond (SB-unfilled), OptiBond Solo Plus (OS-barium aluminoborosilicate, 400nm Ø), Prime & Bond NT (NT-colloidal silica, 7–40 nm Ø) and Adper Single Bon...

  1. Adhesive Bonding of Titanium to Carbon-Carbon Composites for Heat Rejection Systems

    Science.gov (United States)

    Cerny, Jennifer; Morscher, Gregory

    2006-01-01

    High temperature adhesives with good thermal conductivity, mechanical performance, and long term durability are crucial for the assembly of heat rejection system components for space exploration missions. In the present study, commercially available adhesives were used to bond high conductivity carbon-carbon composites to titanium sheets. Bonded pieces were also exposed to high (530 to 600 Kelvin for 24 hours) and low (liquid nitrogen 77K for 15 minutes) temperatures to evaluate the integrity of the bonds. Results of the microstructural characterization and tensile shear strengths of bonded specimens will be reported. The effect of titanium surface roughness on the interface microstructure will also be discussed.

  2. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: A systematic review

    National Research Council Canada - National Science Library

    Dionysopoulos, Dimitrios

    2016-01-01

    ...) on bond strength between dental adhesive systems and dentin of composite restorations. The electronic databases that were searched to identify manuscripts for inclusion were Medline via PubMed and Google search engine...

  3. Bond strength of self-adhesive resin cements to tooth structure

    Directory of Open Access Journals (Sweden)

    Susan Hattar

    2015-04-01

    Conclusions: Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution.

  4. [Influence of different dentin depths on microtensile bond strength of two dentin adhesive systems].

    Science.gov (United States)

    Zheng, Tie-li; Huang, Cui; Zheng, Zhi-xing

    2009-10-01

    To determine the microtensile bond strength of two adhesives systems to either superficial or deep dentin. The crowns extracted human premolars were transversally sectioned next to the occlusal DEJ to expose flat dentin surfaces. The surfaces were bonded with: (1)two-step, total-etch adhesive Prime&Bond NT (PB),(2)wo-step, self-etching adhesive FL-Bond (FB), according to manufacturers' directions. Composite build-ups were constructed incrementally. After storage for 24 hours in water at 37 degrees, the teeth were longitudinally sectioned in the "x" and "y" directions to obtain bonded sticks with a cross-sectional area of 0.81mm(2) with a slow-speed diamond saw. The remaining dentin thickness (RDT) was measured to assess the superficial dentin group (RDT> or =3mm) and the deep dentin group (RDT0.05). No cohesive failure was observed in either superficial or deep dentin. Most of the failure was adhesive failure. From this study, it can be concluded that different dentin depths can not influence the microtensile bond strengths of Prime&Bond NT and FL-Bond adhesive systems.

  5. Adhesive bond performance of heat-treated wood at various conditions.

    Science.gov (United States)

    Kol, Hamiyet Sahin; Özbay, Günay

    2016-07-01

    Heat treatment of wood leads to chemical, structural and physical changes in wood constituents, which can significantly affect the bonding performance of wood in several ways depending on the adhesive type used. In the present study, fir (Abies bornmülleriana Mattf.) and beech (Fagus orientalis L.) were heat treated at 170 degrees C, 180 degrees C, 190 degrees C, 200 and 212 degrees C for 2 hours. Four different types of adhesives were used for bonding process: melamine-urea-formaldehyde (MUF), melamine formaldehyde (MF), phenol formaldehyde (PF), and polyurethane (PUR). For all the pretreatment conditions, highest shear strength of adhesive bonds of each adhesive system was observed for untreated samples and shear strength decreased with increasing heat treatment. The strength of each adhesive bond of samples which were soaked in water was much less than dry samples, approximately half of the dry strength. Generally, the shear strength of the adhesive bonds after boiling was smaller than or similar to the values obtained for soaking. The untreated samples lost more strength after soaking and boiling than heat treated samples. With increasing heat treatment severity, reduction in shear strength increased in dry samples while decreased in soaking and boiling samples. For instance, after soaking, the untreated samples lost more strength (almost 39%) than heat treated samples (almost 24% for most severely heat treated samples). The results showed that the shear strength of adhesive bonds was influenced by heat treatment and depended on pretreatment of samples prior to testing. In general, all adhesives used performed in quite a similar way for all pretreatment conditions, and the bonding performance of heat treated fir wood was less satisfactory than that of beech wood for all adhesive system and condition.

  6. Shear bond strength between alumina substrate and prosthodontic resin composites with various adhesive resin systems.

    Science.gov (United States)

    AlJehani, Yousef A; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Vallittu, Pekka K

    2015-05-02

    With the increase in demand for cosmetics and esthetics, resin composite restorations and all-ceramic restorations have become an important treatment alternative. Taking into consideration the large number of prosthodontic and adhesive resins currently available, the strength and durability of these materials needs to be evaluated. This laboratory study presents the shear bond strengths of a range of veneering resin composites bonded to all-ceramic core material using different adhesive resins. Alumina ceramic specimens (Techceram Ltd, Shipley, UK) were assigned to three groups. Three types of commercially available prosthodontic resin composites [BelleGlass®, (BG, Kerr, CA, USA), Sinfony® (SF, 3 M ESPE, Dental Products, Germany), and GC Gradia® (GCG, GC Corp, Tokyo, Japan)] were bonded to the alumina substrate using four different adhesive resins. Half the specimens per group (N = 40) were stored dry for 24 hours, the remaining were stored for 30 days in water. The bonding strength, so-called shear bond strengths between composite resin and alumina substrate were measured. Data were analysed statistically and variations in bond strength within each group were additionally evaluated by calculating the Weibull modulus. Bond strengths were influenced by the brand of prosthodontic resin composites. Shear bond strengths of material combinations varied from 24.17 ± 3.72-10.15 ± 3.69 MPa and 21.20 ± 4.64-7.50 ± 4.22 at 24 h and 30 days, respectively. BG resin composite compared with the other resin composites provided the strongest bond with alumina substrate (p resin composite was found to have a lower bond strength than the other composites. The Weibull moduli were highest for BG, which was bonded by using Optibond Solo Plus adhesive resin at 24 h and 30 days. There was no effect of storage time and adhesive brand on bond strength. Within the limitations of this study, the shear bond strengths of composite resins to alumina substrate are related to the composite

  7. Relationship between degree of polymerization and enamel bonding strength with self-etching adhesives.

    Science.gov (United States)

    Kanehira, Masafumi; Finger, Werner J; Hoffmann, Marcus; Endo, Tatsuo; Komatsu, Masashi

    2006-08-01

    To investigate the relationship between the degree of conversion of double bonds of all-in-one adhesives and their shear bond strength on ground human enamel. Six commercially available systems and one experimental adhesive were tested: Absolute (ABS; Dentsply-Sankin), Clearfil S3 Bond (CSB; Kuraray), G-Bond (GBO; GC), Hybrid Bond (HYB; Sun Medical), iBond (IBO; Heraeus Kulzer), Xeno IV (XEN; Dentsply Caulk), and experimental iBond NG (ING; Heraeus Kulzer). Conventional shear bond strengths (SBS, n=8) of adhesive-coated enamel specimens bonded to Venus composite (Heraeus Kulzer) and degrees of conversion (DC) (FTIR, n=5) were determined after 1 and 10 min, 1, 2, and 24 h of storage. Data were statistically analyzed using ANOVA and Duncan's post hoc test (0 adhesives' SBS (MPa) and DC (%) by testing time followed logarithmic regression lines established by the least square method. Mean shear bond strengths after 1 min/24 h were: ABS 9.8/14.9; CSB 14.7/23.4; GBO 14.8/22.0; HYB 9.7/17.0; IBO 11.3/22.3; XEN 9.1/17.3; ING 9.7/25.6. The corresponding mean DC values were: ABS 51.3/66.2; CSB 83.1/90.8; GBO 75.8/87.7; HYB 49.6/67.2; IBO 72.6/93.7; XEN 61.6/74.1; ING 64.9/89.1. Linear regressions for the relationship DC vs. SBS were significant with coefficients of determination (r2) between 0.72 and 0.97. Despite similar acidity, the adhesives showed different SBSs on enamel. Based on the relationships between DC and SBS, the cohesive failure patterns observed, and the composition-property relations discussed, it is concluded that the percentage DC is the main parameter influencing an adhesive's bonding efficacy to ground enamel.

  8. Non-uniform breaking of molecular bonds, peripheral morphology and releasable adhesion by elastic anisotropy in bio-adhesive contacts.

    Science.gov (United States)

    Liu, Yan; Gao, Yanfei

    2015-01-01

    Biological adhesive contacts are usually of hierarchical structures, such as the clustering of hundreds of sub-micrometre spatulae on keratinous hairs of gecko feet, or the clustering of molecular bonds into focal contacts in cell adhesion. When separating these interfaces, releasable adhesion can be accomplished by asymmetric alignment of the lowest scale discrete bonds (such as the inclined spatula that leads to different peeling force when loading in different directions) or by elastic anisotropy. However, only two-dimensional contact has been analysed for the latter method (Chen & Gao 2007 J. Mech. Phys. Solids 55, 1001-1015 (doi:10.1016/j.jmps.2006.10.008)). Important questions such as the three-dimensional contact morphology, the maximum to minimum pull-off force ratio and the tunability of releasable adhesion cannot be answered. In this work, we developed a three-dimensional cohesive interface model with fictitious viscosity that is capable of simulating the de-adhesion instability and the peripheral morphology before and after the onset of instability. The two-dimensional prediction is found to significantly overestimate the maximum to minimum pull-off force ratio. Based on an interface fracture mechanics analysis, we conclude that (i) the maximum and minimum pull-off forces correspond to the largest and smallest contact stiffness, i.e. 'stiff-adhere and compliant-release', (ii) the fracture toughness is sensitive to the crack morphology and the initial contact shape can be designed to attain a significantly higher maximum-to-minimum pull-off force ratio than a circular contact, and (iii) since the adhesion is accomplished by clustering of discrete bonds or called bridged crack in terms of fracture mechanics terminology, the above conclusions can only be achieved when the bridging zone is significantly smaller than the contact size. This adhesion-fracture analogy study leads to mechanistic predictions that can be readily used to design biomimetics and

  9. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    OpenAIRE

    LIN, JIE; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coat...

  10. Microshear Bond Strength of Adhesives to Enamel Remineralized Using Casein Phosphopeptide Agents.

    Science.gov (United States)

    Mobarak, E H; Ali, N; Daifalla, L E

    2015-01-01

    This study was carried out to evaluate the difference between bonding to demineralized enamel and remineralized enamel using casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACFP) or without fluoride (CPP-ACP) compared to normal enamel. Another aim was to test if the newly introduced Single Bond Universal adhesive system would show better bonding to any enamel condition in comparison to the other tested adhesive systems. The lingual enamel surfaces of 40 non carious human third molars were divided into four main groups according to the enamel condition (ground normal enamel [negative control]; demineralized enamel [positive control]; and remineralized enamel with CPP-ACP or with CPP-ACFP, respectively). Within each main group, the lingual enamel surface of each tooth was sectioned into three slabs, resulting in 30 slabs that were distributed into three subgroups according to the adhesive system utilized (Clearfil S(3) Bond Plus, Single Bond Universal, or G-aenial Bond). Two resin composite microcylinder buildups were made on each enamel slab using Filtek Z350 XT. The μSBS was evaluated at a crosshead speed of 0.5 mm/min. Modes of failure were detected using an environmental scanning electron microscope at 300× magnification. The two-way analysis of variance with repeated measures revealed a significant effect for the enamel condition. However, there was no significant effect for the type of adhesive system. The interaction between the enamel condition and the type of adhesive system was also not significant. Modes of failure were mainly adhesive except for the demineralized enamel. It showed a mixed type of failure, in which cohesive failure in enamel was recorded. All single-step self-etch adhesives revealed comparable μSBS values to ground enamel and enamel remineralized with CPP-ACP or CPP-ACFP. Bonding to demineralized enamel was ineffective. With any enamel condition, no tested single-step self-etch adhesive was superior in its bonding.

  11. Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives.

    Science.gov (United States)

    Nakajima, M; Sano, H; Burrow, M F; Tagami, J; Yoshiyama, M; Ebisu, S; Ciucchi, B; Russell, C M; Pashley, D H

    1995-10-01

    Tensile bond strength measurements are commonly used for the evaluation of dentin adhesive systems. Most tests are performed using extracted non-carious human or bovine dentin. However, the adhesion of resins to caries-affected dentin is still unclear. The objectives of this study were to test the hypothesis that bonding to caries-affected dentin is inferior to bonding to normal dentin, and that the quality of the hybrid layer plays a major role in creating good adhesion. We used a micro-tensile bond strength test to compare test bond strengths made to either caries-affected dentin or normal dentin, using three commercial adhesive systems (All Bond 2, Scotchbond Multi-Purpose, and Clearfil Liner Bond II). For scanning electron microscopy, the polished interfaces between the adhesive bond and dentin were subjected to brief exposure to 10% phosphoric acid solution and 5% sodium hypochlorite, so that the quality of the hybrid layers could be observed. Bonding to normal dentin with either All Bond 2 (26.9 +/- 8.8 MPa) or Clearfil Liner Bond II (29.5 +/- 10.9 MPa) showed tensile bond strengths higher than those to caries-affected dentin (13.0 +/- 3.6 MPa and 14.0 +/- 4.3 MPa, respectively). The tensile bond strengths obtained with Scotchbond Multi-Purpose were similar in normal and caries-affected dentin (20.3 +/- 5.5 MPa and 18.5 +/- 4.0 MPa, respectively). The hybrid layers created by All Bond 2 in normal dentin and by Clearfil Liner Bond II in normal or caries-affected dentin showed phosphoric acid and sodium hypochlorite resistance, whereas the hybrid layers created by All Bond 2 in caries-affected dentin and those created by Scotchbond Multi-Purpose to normal and caries-affected dentin showed partial susceptibility to the acid and sodium hypochlorite treatment. The results indicate that the strength of adhesion to dentin depends upon both the adhesive system used and the type of dentin. Moreover, the quality of the hybrid layer may not always contribute

  12. Initial Screening of Environmentally Sustainable Surface Pretreatments for Adhesive Bonding Applications

    Science.gov (United States)

    2017-05-17

    grit-blasted samples are consistent with observations for methacrylate adhesive usage for dental applications, both with and without added silane...strengthening properties in a dental adhesive . Acta Biomaterialia. 2016;(35): 138–152. 18. Mather B, Viswanathan K, Miller K, Long T. Michael addition reactions... Adhesive Bonding Applications by Miriam S Silton, David P Flanagan, Daniel C DeSchepper, and Robert E Jensen Approved for public

  13. Introduction to the adhesive bonding session. [foam system for attaching thermal insulation on space shuttle

    Science.gov (United States)

    Mccarty, J. E.

    1972-01-01

    Space shuttle unique requirements call for the development of a specific adhesive system to reliable attach reusable surface insulation. A low density foam system has been developed that provides strain isolation from the support structure and remains structurally stable in space shuttle thermal environment. Surface preparation and its stabilization by an adhesive primer system are the most important factors in preventing corrosion from reducing the reliability and durability of the adhesive bonding component.

  14. Fracture analysis of cracked metallic plate repaired with adhesive bonding composite patch

    Institute of Scientific and Technical Information of China (English)

    Su Weiguo; Mu Zhitao

    2014-01-01

    Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhesive debonding. The crack length and debonding area were measured at different numbers of cycles. The nonlinear three-dimensional(3D)finite element(FE)model considering adhesive debonding and crack growth simultaneously was developed. The experimental and analytical results were in good agreement with each other.

  15. BONDING OF MINIATURE PARTS WITH ADHESIVES AND VISION BASED PROCEDURE INSPECTION

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaodong; Jürgen Hesselbach

    2004-01-01

    Bonding with adhesives is an important technique for building up hybrid microsystems.Some adhesives are tested with capillary dispensing system for microassembly,and volume of droplets less than 10 nl with good repeatability can be acquired.1-part UV curing adhesive hardens rapidly and is suitable for bonding of transparent microparts.Light-activated adhesive starts the curing process in an adjustable short period of time after the radiation of visible light,and thus suits bonding of non-transparent microparts.A method is proposed for bonding the guides of a miniature linear motor being developed by collaborate research center 516 (SFB516) in Germany.With the method high assembly accuracy in the vertical direction can be guaranteed.By making small grooves on the stator for containing adhesive,the deterioration of the accuracy due to the thickness of adhesive layer can be avoided.The criteria on deciding the size of the groove are given and analyzed.Vision based inspection method is introduced for automatic assembly of the guides.The dispensing volume and position of dispensed adhesive droplets can be detected for ensuring the bonding quality.

  16. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin.

    Science.gov (United States)

    Bernard, Cécile; Villat, Cyril; Abouelleil, Hazem; Gustin, Marie-Paule; Grosgogeat, Brigitte

    2015-01-01

    The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm(2) sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL).

  17. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    Directory of Open Access Journals (Sweden)

    Cécile Bernard

    2015-01-01

    Full Text Available The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL and a two-steps/self-etch adhesive system (Optibond XTR were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR. All specimens were submitted to thermocycling ageing (10000 cycles. The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL.

  18. Nondestructive testing of adhesive bonds by nuclear quadrupole resonance method

    Science.gov (United States)

    Hewitt, R. R.

    1971-01-01

    Inert, strain sensitive tracer, cuprous oxide, added to polymeric adhesive ensures sufficiently large signal to noise ratio in NQR system output. Method is successful, provided that RF-transparent structural materials are used between modified adhesive and probe of NQR spectrometer.

  19. Effect of glutaraldehyde and ferric sulfate on shear bond strength of adhesives to primary dentin

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-12-01

    Full Text Available Aim: The present study was undertaken to evaluate the effect of alternative pulpotomy agents such as glutaraldehyde and ferric sulfate on the shear bond strength of self-etch adhesive systems to dentin of primary teeth. Materials and Methods: Eighty human primary molar teeth were sectioned in a mesiodistal direction and divided into experimental and control groups. Lingual dentin specimens in experimental groups were treated with glutaraldehyde and ferric sulfate. Buccal surfaces soaked in water served as control group. Each group was then divided into two groups based on the adhesive system used: Clearfil SE Bond and Adper Prompt L-Pop. A teflon mold was used to build the composite (Filtek Z-250 cylinders on the dentinal surface of all the specimens. Shear bond strength was tested for all the specimens with an Instron Universal Testing Machine. The failure mode analysis was performed with a Scanning Electron Microscope (SEM. Results: The results revealed that glutaraldehyde and ferric sulfate significantly reduced the shear bond strength of the tested adhesive systems to primary dentin. Clearfil SE Bond showed much higher shear bond strength than Adper Prompt L Pop to primary dentin. SEM analysis revealed a predominant cohesive failure mode for both adhesive systems. Conclusion: This study revealed that the pulpotomy medicaments glutaraldehyde and ferric sulfate adversely affected the bonding of self-etch adhesive systems to primary dentin.

  20. New adhesives and bonding techniques. Why and when?

    Science.gov (United States)

    Scotti, Nicola; Cavalli, Giovanni; Gagliani, Massimo; Breschi, Lorenzo

    2017-01-01

    Nowadays, adhesive dentistry is a fundamental part of daily clinical work. The evolution of adhesive materials and techniques has been based on the need for simplicity in the step-by-step procedures to obtain long-lasting direct and indirect restorations. For this reason, recently introduced universal multimode adhesives represent a simple option for creating a hybrid layer, with or without the use of phosphoric acid application. However, it is important to understand the limitations of this latest generation of adhesive systems as well as how to use them on coronal and radicular dentin. Based on the findings in the literature, universal multimode adhesives have shown promising results, even if the problem of hybrid layer degradation due to the hydrolytic activity of matrix metalloproteinases (MMPs) still exists. Studies are therefore required to help us understand how to reduce this degradation.

  1. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    OpenAIRE

    Cécile Bernard; Cyril Villat; Hazem Abouelleil; Marie-Paule Gustin; Brigitte Grosgogeat

    2015-01-01

    The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-et...

  2. Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Camila SABATINI

    2013-01-01

    Full Text Available Objective To evaluate the effect of optional phosphoric acid etching on the shear bond strength (SBS of two self-etch adhesives to enamel and dentin. Material and Methods Ninety-six bovine mandibular incisors were ground flat to obtain enamel and dentin substrates. A two-step self-etch adhesive (FL-Bond II and a one-step self-etch adhesive (BeautiBond were applied with and without a preliminary acid etching to both the enamel and dentin. The specimens were equally and randomly assigned to 4 groups per substrate (n=12 as follows: FL-Bond II etched; FL-Bond II un-etched; BeautiBond etched; BeautiBond un-etched. Composite cylinders (Filtek Z100 were bonded onto the treated tooth structure. The shear bond strength was evaluated after 24 hours of storage (37°C, 100% humidity with a testing machine (Ultra-tester at a speed of 1 mm/min. The data was analyzed using a two-way ANOVA and post-hoc Tukey's test with a significance level of p<0.05. A field emission scanning electron microscope was used for the failure mode analysis. Results Both adhesives evidenced a significant decrease in the dentin SBS with the use of an optional phosphoric acid-etching step (p<0.05. Preliminary phosphoric acid etching yielded significantly higher enamel SBS for FL-Bond II (p<0.05 only, but not for BeautiBond. FL-Bond II applied to un-etched dentin demonstrated the highest mean bond strength (37.7±3.2 MPa and BeautiBond applied to etched dentin showed the lowest mean bond strength (18.3±6.7 MPa among all tested groups (p<0.05. Conclusion The use of a preliminary acid-etching step with 37.5% phosphoric acid had a significant adverse effect on the dentin bond strength of the self-etch adhesives evaluated while providing improvement on the enamel bond strength only for FL-Bond II. This suggests that the potential benefit that may be derived from an additional etching step with phosphoric acid does not justify the risk of adversely affecting the bond strength to dentin.

  3. Adhesive bond testing of carbon-epoxy composites by laser shockwave

    NARCIS (Netherlands)

    Perton, Mathieu; Blouin, Alain; Monchalin, Jean-Pierre

    2011-01-01

    Adhesive bonding, particularly of composite laminates, presents many practical advantages when compared with other joining methods but its use is limited, since there is presently no non-destructive inspection technique to ensure the quality of the bond. We are developing a technique based on the

  4. Effect of pre-etching enamel on fatigue of self-etch adhesive bonds

    NARCIS (Netherlands)

    Erickson, R.L.; de Gee, A.J.; Feilzer, A.J.

    2008-01-01

    Objective. A previous study found that the shear bond strength (SBS) to bovine enamel for the self-etching adhesive Adper Prompt-L-Pop (PLP) was 75% of that found with the etch-and-rinse material SingleBond, while the comparative value for the shear fatigue limit (SFL) was only 58% at 10(5) load

  5. [Bond strength evaluation of four adhesive systems to dentin in vitro].

    Science.gov (United States)

    Xiao, Ximei; Xing, Lu; Xu, Haiping; Jiang, Zhe; Su, Qin

    2012-08-01

    To compare the adhesive strength and observe the bonding interface. According to statistic analysis and scanning electron microscope (SEM) observation, the resistance capacity of four adhesive systems is evaluated. Prime & Bond NT (PBNT), Tetric N-Bond (TNB), Clearfil SE Bond (CSEB), G Bond (GB) were bonded to the occlusal surfaces and mesial surfaces of third molars respectively. The mesial resins received shear force experiment and the fracture load were recorded. The tensile bond strength (TBS) of the remaining parts were tested. The interfacial configuration were observed under SEM. In the shear bond strength (SBS) experiment, PBNT and TNB showed the best result, but there was no significant difference between them (P>0.05). The SBS of PBNT was stronger than that of CSEB and GB (P0.05). In accordance with the shear force result, the TBS of PBNT and TNB was larger than CSEB and GB (Psystem, total-etching system could reach better bonding strength. There is some connection between the interfacial configuration of adhesives and bond strength of them.

  6. Effects of chlorhexidine on bonding durability of different adhesive systems using a novel thermocycling method.

    Science.gov (United States)

    Deng, D; Huang, X; Huang, C; Yang, T; Du, X; Wang, Y; Ouyang, X; Pei, D

    2013-06-01

    The purpose of this study was to evaluate the influence of chlorhexidine on the bonding durability of etch-and-rinse and self-etch adhesive systems using the polymerase chain reaction (PCR) thermocycling method. Twenty freshly extracted intact human third molars were ground and bonded with either an etch-and-rinse adhesive (Single-Bond) or a self-etch adhesive (G-Bond). Specimens were either left untouched or placed in PCR tubes filled with three thermocycling mediums: water, chlorhexidine or silicone oil. Thermocycling (5000 cycles) was done using the PCR programme at temperatures of 5 °C and 55 °C. The microtensile bond strength (μTBS) was evaluated and interfacial nanoleakage was assessed by scanning electron microscopy before and after thermocycling. Significant differences were detected among groups kept in different media after thermocycling. For Single-Bond, both the chlorhexidine and silicone oil groups could preserve the μTBS (p < 0.001). For G-Bond, μTBS of the chlorhexidine and water groups were significantly decreased (p < 0.05). No obvious increase in silver deposition was observed in specimens incubated in water after thermocycling, less silver penetration was found in specimens incubated in chlorhexidine. In this experimental model, chlorhexidine was found to preserve bonding durability in Single-Bond but have no significant effects on G-Bond. © 2013 Australian Dental Association.

  7. THE PROBLEMS OF ENSURE OF SAFE LABOR CONDITIONS ON WORKPLACES FOR ADHESIVE BONDING

    Directory of Open Access Journals (Sweden)

    Barbara CIECIŃSKA

    2016-04-01

    Full Text Available In the performance a variety of technological operations a human may come into contact with a variety of factors caus-ing deterioration of safety at work. As an example of which is described in article, adhesive bonding operations are re-quiring use of specific chemicals, which are adhesives. They are produced on the basis of a variety of compounds, often hazardous to human health. Furthermore, adhesive bonding requires a series of preparatory operations such as degreas-ing or surface preparation with a specific structure and roughness and auxiliary operations such as measurement of the wettability of surface. In this paper are described examples of risks occurring during adhesive bonding, it is a simple way to estimate the risks associated with the performance of operations. The examples of the determination by the produc-ers of chemicals are described which are used in adhesive bonding and fragment of international chemical safety card (ICSC, as a source of information important to the workplace organization and ensuring safety during adhesive bonding.

  8. Influence of chlorhexidine digluconate on bond strength durability of a self-etching adhesive system

    Directory of Open Access Journals (Sweden)

    Synara Santos Herênio

    2011-10-01

    Full Text Available Introduction and objective: The aim of this study was to evaluate in vitro the effect of 2% chlorhexidine on bond strength durability of a self-etching adhesive system (ClearFill SE Bond. Material and methods: Forty bovine incisors’ crowns had their labial surfaces abraded to dentinexposure,inorderthatthestandardadhesion dentin exposure, inorderthatthestandardadhesion in order that the standard adhesion area reached 4 mm in diameter. Subsequently, they were divided into four groups, according to the treatments performed on the surfaces and storage time: G1 – adhesive system without chlorhexidine for 24 hours (control group; G2 – adhesive system without chlorhexidine for 6 months (control group; G3 – adhesive system with chlorhexidine for 24 hours (experimental group; G4 – adhesive system with chlorhexidine for 6 months (experimental group. After dentin surface treatments, cylinders of composite resin (Z350 were constructed. Then, the specimens were stored in distilled water according to each group design and storage time. Following, the four groups were subjected to shear bond strength test, at a crosshead speed of 0.5 mm / min. The obtained values were subjected to statistical analysis. Results: The results indicated a significant decrease of bond strength in the group treated with chlorhexidine followed by 24-hour storage when compared to control group. However, there was no significant difference in 6-month storage between the experimental and control groups (p>0.05. Conclusion: The application of 2% chlorhexidine was deleterious for bond strength after 24-hour storage.

  9. Fracture mechanics characterisation of medium-size adhesive joint specimens

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jacobsen, T.K.

    2004-01-01

    Medium-size specimens (adhesive layer were tested in four point bending to determine their load carrying capacity. Specimens having different thickness were tested. Except for onespecimen, the cracking occurred as cracking...... along the adhesive layer; initially cracking occurred along the adhesive/laminate interface, but after some crack extension the cracking took place inside the laminate (for one specimen the later part of thecracking occurred unstably along the adhesive/ laminate interface). Crack bridging by fibres...

  10. The Effect of Epigallocatechin Gallate on the Dentin Bond Durability of Two Self-etch Adhesives

    Directory of Open Access Journals (Sweden)

    Zahra Khamverdi

    2015-06-01

    Full Text Available Statement of the Problem: Self-etch adhesives can activate matrix metalloprotein-ase (MMP which hydrolyzes organic matrix of demineralized dentin. Epigallocatechin gallate (EGCG, especially found in green tea, could inhibit the activation of MMP. Purpose: The aim of this study was to evaluate the effect of adding Epigallocatechin gallate (EGCG into two types of adhesives on dentin bond strength. Materials and Method: In this experimental study, 64 extracted third molars were randomly divided into 16 groups. Clearfil SE Bond and Filtek Silorane System with 0 µM, 25µM, 50µM, and 100µM concentration of 95% EGCG were used for bond-ing. Following the bonding and fabrication of beams (1±0.1 mm2 and storage in distilled water, the specimens were subjected to thermal cycles. Microtensile bond strengths of 8 groups were examined after 24 hours and others were tested after 6 months. The fracture modes of specimens were evaluated by stereomicroscope and SEM. Data were analyzed by three-way ANOVA and t-test (α = 0.05. Results: The results of the three- way ANOVA test showed that types of bonding, storage time and interactive effect of EGCG concentration and bonding influenced the bond strength of specimens significantly (p<0.05. The results of the t-test indi-cated that storage time only had significant effect on bond strength of Clearfil SE Bond with no EGCG (p= 0.017. The most common failure modes in Filtek Silorane System groups and Clearfil SE Bond groups were adhesive and mixed/cohesive, respectively. The results of SEM at different magnifications showed that most fractures have occurred in the hybrid layer. Conclusion: Although adding 100 µM volume of EGCG to Clearfil SE Bond can preserve the dentin bond, incorporation of EGCG in the silorane system, especially in high concentrations, decreases the bond strength after 6 months.

  11. Influence of the Hardener Proportion on Mechanical Properties of Adhesive Bonds Used in Agriculture

    Directory of Open Access Journals (Sweden)

    Valášek P.

    2015-01-01

    Full Text Available Joining materials by adhesive bonding is used across all industrial branches. The occurrence of adhesive bonds in machine constructions is still more frequent because of the development of adhesives which are able to meet various requirements of designers. This trend is observable also in agriculture - in the construction of agricultural machines. There even exists a cooperation between the companies developing the adhesives and the agricultural machines producers. The production process of machines and equipment must consider a required production tact. Adhesives and the process of their hardening have to meet these requirements. In the sphere of agriculture, epoxy resins hardening based either on hardeners or heating are used. Mechanical properties of two-component epoxy resins depending on variable amount of the hardener starting crosslinking of these reactoplastics are described.

  12. Preliminary evaluation of adhesion strength measurement devices for ceramic/titanium matrix composite bonds

    Science.gov (United States)

    Pohlchuck, Bobby; Zeller, Mary V.

    1992-01-01

    The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.

  13. Bond strength of self-adhesive resin cements to tooth structure

    OpenAIRE

    Susan Hattar; Hatamleh, Muhanad M.; Faleh Sawair; Mohammad Al-Rabab’ah

    2015-01-01

    Objectives: The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods: Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results w...

  14. Effect of dentin location and long-term water storage on bonding effectiveness of dentin adhesives.

    Science.gov (United States)

    De Munck, Jan; Mine, Atsushi; Vivan Cardoso, Marcio; De Almeida Neves, Aline; Van Landuyt, Kirsten L; Poitevin, André; Van Meerbeek, Bart

    2011-01-01

    Dentin is a variable substrate with properties that change considerable in a single surface. The purpose of this study was to evaluate the bonding effectiveness to these different dentin locations and evaluate these differences over time. After bonding procedures with five different adhesives, small micro-tensile bond strength (µTBS) beams were prepared and dichotomously divided in 'center' and 'periphery' dentin specimens. After 1 week, 3, 6 and 12 months of water storage the µTBS of specimens of each group was determined, enabling a paired study design. The bond strengths of both etch&rinse adhesives were insensitive to regional variability. For the two-step self-etch adhesives, a marked increase in bond strengths was observed with increasing amount of intertubular dentin. Regional variability did not affect the long-term bonding effectiveness for any of the adhesives tested. In conclusion, only for the mild self-etch adhesives, µTBS to 'periphery' dentin was higher than for the 'center' specimens.

  15. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    Science.gov (United States)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  16. Bond strength comparison of color-change adhesives for orthodontic bonding using a self-etching primer

    Directory of Open Access Journals (Sweden)

    Frey GN

    2011-06-01

    Full Text Available Sara Ekhlassi, Jeryl D English, Joe C Ontiveros, John M Powers, Harry I Bussa, Gary N Frey, Clark D Colville, Randy K EllisHouston Department of Orthodontics, The University of Texas Dental Branch, Houston, TX, USABackground: The purpose of this study was to compare the shear bond strengths of two color-change adhesives with a commonly used conventional light-cure adhesive while using a self-etching primer, and to compare any changes in shear bond strengths over time.Methods: One hundred and eighty extracted bovine incisors were randomly divided into nine groups of 20 teeth each. The teeth were prepared with a self-etching primer (Transbond™ Plus Metal lower incisor brackets were bonded directly to each tooth with two different color-change adhesives (TransbondPlus and Grengloo™ and a control (Transbond XT. The teeth were debonded at three different time points (15 minutes, 24 hours, 1 week using an Instron at 1.0 mm/min. The teeth that were to be debonded at 24 hours and 1 week were stored in distilled water at 37°C to simulate the oral environment. The data were analyzed by two-way analysis of variance and with Fisher's protected least-significant difference multiple comparisons test at the P < 0.05 level of significance. Adhesive remnant index (ARI scores were calculated for each debonded tooth.Results: Transbond Plus at 1 week had the highest mean shear bond strength (14.7 mPa. Grengloo tested at 24 hours had the lowest mean shear bond strength (11.3 mPa. The mean shear bond strengths for the remaining seven groups had a range of 12–14.5 mPa. Grengloo had >80% samples presenting with an ARI score of 1 at all times. Interestingly, both Transbond groups had ARI scores of 3 in more than 50% of their samples.Conclusion: Time had no significant effect on the mean shear bond strength of Transbond XT, Grengloo, or Transbond Plus adhesive.Keywords: bond strength, color-change adhesives, self-etching primer, orthodontic bonding 

  17. [Influence of thermalcycling on bonding durability of self-etch adhesives with dentin].

    Science.gov (United States)

    Tian, Fu-cong; Wang, Xiao-yan; Gao, Xue-jun

    2014-04-18

    To investigate influence of thermalcycling on the bonding durability of two one-step products [Adper Prompt (AP) and G-bond (GB)] and one two-step self-etching adhesive [Clearfil SE bond (SE)] with dentin in vitro. Forty-two extracted human molars were selected. The superficial dentin was exposed by grinding off the enamel. The teeth were randomly distributed into six groups with varied bonding protocols. The adhesives were applied to the dentin surface. Composite crowns were built up, then the samples were cut longitudinally into sticks with 1.0 mm×1.0 mm bonding area [for microtensile bond strength (MTBS) testing] or 1.0 mm thick slabs (for nanoleakage observation). Bonding performance was evaluated with or without thermalcyling. For the MTBS testing, the strength values were statistically analysed using One-Way ANOVA. Four slabs in each group were observed for nanoleakage by SEM with a backscattered electron detector. Thermalcycling procedures affected MTBS. In the two one-step groups, the MTBS decreased significantly (P<0.05) after thermalcycling [AP group from (19.06±1.50) MPa to (12.62±2.10) MPa; GB group from (17.75±1.10) MPa to (6.24±0.42)MPa]. But in SE groups, MTBS did not significantly affect [(45.80±2.97) MPa compared with(40.60±5.76) MPa]. As a whole, one-step self-etching adhesives showed lower MTBS than two-step bonding system after aging.For AP and GB, continuous nanoleakage appearance was notable and more obvious than for SE. Thermalcycling can affect the bonding performance of self-etch adhesives including decrease of bond strength and nanoleakage pattern. one-step self-etch adhesives showed more obvious change compared with their two-step counterparts.

  18. Four-year water degradation of a total-etch and two self-etching adhesives bonded to dentin

    NARCIS (Netherlands)

    A.I. Abdalla; A.J. Feilzer

    2008-01-01

    Objectives: To evaluate effect of direct and indirect water storage on the microtensile dentin bond strength of one total-etch and two self-etching adhesives. Methods: The adhesive materials were: one total-etch adhesive; ‘Admira Bond’ and two selfetch adhesives; ‘Clearfil SE Bond’ and ‘Hybrid Bond’

  19. Four-year water degradation of a total-etch and two self-etching adhesives bonded to dentin

    NARCIS (Netherlands)

    Abdalla, A.I.; Feilzer, A.J.

    2008-01-01

    Objectives: To evaluate effect of direct and indirect water storage on the microtensile dentin bond strength of one total-etch and two self-etching adhesives. Methods: The adhesive materials were: one total-etch adhesive; ‘Admira Bond’ and two selfetch adhesives; ‘Clearfil SE Bond’ and ‘Hybrid

  20. Fatigue Behavior of Adhesively Bonded Joints. Volume II. Appendices.

    Science.gov (United States)

    1980-04-01

    StressoAnayiFnt lmns tic, andc argh th eeemntinar violastrick3 - modelO foAGoES ne 1D 4. MONTOIN A EDITC O *AWL’ NO ADPO~IfSiftfl OBSOLETE lla Offce 1...for the stresses. We now turn the problem around in the sense of pre- scribing the loading on the rigid adherends and ask for the resulting creep

  1. Influence of ceramic thickness and type on micromechanical properties of light-cured adhesive bonding agents.

    Science.gov (United States)

    Öztürk, Elif; Bolay, Sükran; Hickel, Reinhard; Ilie, Nicoleta

    2014-10-01

    The aim of this study was to evaluate the micromechanical properties of different adhesive bonding agents when polymerized through ceramics. Sixty sound extracted human third molars were selected and the crowns were sectioned perpendicular to the long axis in order to obtain dentin slices to be bonded with one of the following adhesives: Syntac/Heliobond (Ivoclar-Vivadent) or Adper-Scotchbond-1XT (3M-ESPE). The adhesives were cured by using a LED-unit (Bluephase®, Ivoclar Vivadent) with three different curing times (10 s, 20 s and 30 s) under two ceramics (IPS-e.max-Press, Ivoclar-Vivadent; IPS-Empress®CAD, Ivoclar-Vivadent) of different thicknesses (0 mm, 0.75 mm, 2 mm). Thirty groups were included, each containing 60 measurements. Micromechanical properties (Hardness, HV; indentation modulus, E; and creep, Cr) of the adhesives were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). Data were statistically analyzed by using one-way ANOVA and Tukey's post-hoc test, as well as a multivariate analysis to test the influence of the study parameters (SPSS 18.0). Significant differences were observed between the micromechanical properties of the adhesives (p ceramic type showed the highest effect on HV (Partial-eta squared (η(2)) = 0.109) of the tested adhesives, while E (η(2) = 0.275) and Cr (η(2) = 0.194) were stronger influenced by the adhesive type. Ceramic thickness showed no effect on the E and Cr of the adhesives. The adhesive bonding agents used in this study performed well by curing through different thicknesses of ceramics. The micromechanical properties of the adhesives were determined by the adhesive type and were less influenced by ceramic type and curing time.

  2. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements.

    Science.gov (United States)

    Fuentes, María-Victoria; Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-02-01

    No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Bond strength values were significantly influenced by the resin cement used (pcomposite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Bond strength, self-adhesive cement, silane, dentin, indirect composite.

  3. BIODEGRADATION AND DENTIN BONDING EFFECTIVENESS OF ONE "UNIVERSAL" SELF-ETCH ADHESIVE USED IN MULTI-MODE MANNER

    Directory of Open Access Journals (Sweden)

    Natalia Gateva

    2017-03-01

    Full Text Available A new type of one-step self-etch adhesives classified as "Universal" or "multi-mode" adhesives appeared in recent years. The idea is that these adhesives can be applied simultaneously with both techniques - etch and rinse and with self-etching technique, without compromising the bonding effectiveness. The aim of this study is to evaluate the micro-tensile adhesive bond strength to dentin of permanent teeth achieved after application of Single Bond Universal (3M ESPE adhesive system used in multi-mode manner. The results of our study show that the use of this universal adhesive system in multi-mode manner will not lead to the same results regarding the achieved bond strength with dentin. The additional etching with 37% phosphoric acid as well as the application of the adhesive in several layers deteriorates the bond strength right after application and after six months storage in artificial saliva medium (SAGF.

  4. The effect of collagen removal on shear bond strength of four single bottle adhesive systems

    Directory of Open Access Journals (Sweden)

    Kasraie Sh

    2006-07-01

    Full Text Available Background and Aim: Achieving adhesion between restorative materials and dentin as a wet and dynamic surface is an important topic in restorative and especially in conservative dentistry. Adhesion of new dentin bonding systems depends on the formation of hybrid layer and micromechanical retention. Nevertheless, an ideal adhesive system has not yet been introduced .Recent studies reveal an increase in bonding stability when the collagen is removed from demineralized dentin surfaces. This study investigates the effect of collagen removal on the shear bond strength of four single bottle dentin bonding systems regarding their structural differences. Materials and Methods: This experimental study was performed on 56 intact human premolar teeth. Smooth surfaces of dentin were prepared on buccal & lingual aspects of teeth, providing 112 dentin surfaces. The dentin surfaces were etched with 37% phosphoric acid for 15 seconds and then rinsed. The specimens were divided into 8 groups. Single bottle adhesive systems [Single Bond (3M, One-Step (Bisco, Prime & Bond NT (Dentsply, and Excite (Vivadent] were then applied on the dentin surfaces of 4 groups using the wet bonding technique. In the other 4 groups, the demineralized dentin surfaces were treated with a 5.25% solution of sodium hypochlorite for one minute in order to remove the surface organic components. The adhesive systems mentioned before were applied to these 4 groups with the same wet bonding technique. A cylinder of Z100 (3M dental composite with a 3 mm diameter and 2 mm height was placed on the adhesive covered dentin surface of all groups and light-cured (400 mW/cm2 ,40 sec on each side. The specimens were kept in distilled water at room temperature for one week and then thermocycled for 3000 times (5-55 oc. Shear bond strength of specimens was measured using an Instron (1495 universal mechanical testing machine with cross-head speed of 0.5 mm/minute and chisel form shearing blade. Data were

  5. Test method to assess interface adhesion in composite bonding

    NARCIS (Netherlands)

    Teixeira de Freitas, S.; Sinke, J.

    2015-01-01

    This paper introduces a new type of peel tests dedicated to composite bonding: Composite Peel Tests. This test is inspired on the standard floating roller peel test widely used for metal bonding. The aim of this study is to investigate the potential of the Composite Peel Test to assess interface ad

  6. Determination of Water Diffusion Coefficients and Dynamics in Adhesive/ Carbon Fiber Reinforced Epoxy Resin Composite Joints

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; WANG Zhi; WANG Jing; SU Tao

    2007-01-01

    To determinate the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxygen in the adhesive in adhesive/carbon fiber reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analysis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of both energy dispersive X-ray spectroscopy and elemental analysis. The determined results with EDX analysis are almost the same as those determined with elemental analysis and the results also show that the durability of the adhesive/carbon fiber reinforced epoxy resin composite joints subjected to silane coupling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treatment.

  7. Acromioclavicular joint pain in patients with adhesive capsulitis: a prospective outcome study.

    Science.gov (United States)

    Anakwenze, Oke A; Hsu, Jason E; Kim, Jae S; Abboud, Joseph A

    2011-09-09

    Diagnosis of adhesive capsulitis is a clinical diagnosis based on history and physical examination. Afflicted patients exhibit active and passive loss of motion in all planes and a positive capsular stretch sign. The effect of adhesive capsulitis on acromioclavicular biomechanics leading to tenderness has not been documented in the literature. This study reports on the incidence of acromioclavicular tenderness in the presence of adhesive capsulitis. Furthermore, we note the natural history of such acromioclavicular joint pain in relation to that of adhesive capsulitis. Over a 2-year period (2005-2007), 84 patients undergoing initial evaluation for adhesive capsulitis were prospectively examined with the use of validated outcome measures and physical examination. Acromioclavicular joint tenderness results were compared and analyzed on initial evaluation and final follow-up of at least 1 year. Forty-eight patients (57%) with adhesive capsulitis had acromioclavicular joint pain on examination. At final follow-up, as range of motion improved, a significant increase in American Shoulder and Elbow Surgeons/Penn shoulder score and decrease in number of patients with acromioclavicular pain was noted with only 6 patients with residual pain (Pacromioclavicular motion. This often results in transient symptoms at the acromioclavicular joint, which abate as the frozen shoulder resolves and glenohumeral motion improves. This is important to recognize to avoid unnecessary invasive treatment of the acromioclavicular joint when the patient presents with adhesive capsulitis. Copyright 2011, SLACK Incorporated.

  8. Effects of adhesion promoter on orthodontic bonding in fluorosed teeth: A scanning electron microscopy study

    Science.gov (United States)

    Gaur, Aditi; Maheshwari, Sandhya; Verma, Sanjeev Kumar; Tariq, Mohd.

    2016-01-01

    Introduction: The objectives of the present study were to elucidate the effects of fluorosis in orthodontic bonding and to evaluate the efficiency of an adhesion promoter (Assure Universal Bonding Resin) in bonding to fluorosed teeth. Materials and Methods: Extracted premolars were divided into two groups on the basis of Thylstrup and Fejerskov Index. Ten samples from each group were etched and evaluated for etching patterns using scanning electron microscope (SEM). The remaining samples were subdivided into four groups of 20 each on the basis of adhesives used: IA, IIA - Transbond XT and IB, IIB - Transbond XT plus Assure Universal Bonding Resin. Shear bond strength (SBS) was measured after 24 h using the universal testing machine. Adhesive remnant index (ARI) scores were recorded using SEM. Statistical analysis was conducted using a two-way analysis of variance, and Tukey's post hoc test was performed on SBS and ARI scores. Results: Similar etching patterns were observed in both fluorosed and nonfluorosed teeth. No significant differences were found in the SBS values observed in both groups (8.66 ± 3.19 vs. 8.53 ± 3.44, P = 1.000). Increase in SBS was observed when Assure Universal Bonding Resin was used. Higher ARI scores were observed when adhesion promoter was used for bonding. Conclusions: Mild-moderately fluorosed teeth etch in a manner similar to the nonfluorosed teeth. Similar bond strengths were achieved in fluorosed and nonfluorosed teeth when conventional composite was used. Use of adhesion promoter increases the bond strengths in both groups of teeth. PMID:27556020

  9. Influence of chlorhexidine concentration on microtensile bond strength of contemporary adhesive systems

    Directory of Open Access Journals (Sweden)

    Edson Alves de Campos

    2009-09-01

    Full Text Available The purpose of this study was to investigate the influence of chlorhexidine (CHX concentration on the microtensile bond strength (μTBS of contemporary adhesive systems. Eighty bovine central incisors were used in this study. The facial enamel surface of the crowns was abraded with 600-grit silicon carbide paper to expose flat, mid-coronal dentin surfaces. The tested materials were Scotchbond Multipurpose (SMP, Single-Bond (SB, Clearfil SE Bond (CSEB and Clearfil Tri S Bond (CTSB. All the materials were applied according to manufacturer's instructions and followed by composite application (Z250. The teeth were randomly divided into 16 groups: for the etch-and-rinse adhesives (SMP and SB, 0.12% or 2% CHX was applied prior to or after the acid etching procedure. For the self-etch adhesives (CSEB and CTSB 0.12% or 2% CHX was applied prior to the primer. Control groups for each one of the adhesive systems were also set up. The specimens were immediately submitted to μTBS testing and the data were analyzed using Analysis of Variance and the Tukey post hoc test (alpha = .01. The failure patterns of the specimens were observed using scanning electron microscopy. The effects of 2% CHX were statistically significant (p < 0.01 for the self-etch adhesives but were not significant for the etch-and-rinse adhesive systems. Analysis of the data demonstrated no statistical difference between the etch-and-rinse adhesive systems. CHX-based cavity disinfectants in concentrations higher than 0.12% should be avoided prior to the self-etch adhesive systems evaluated in this study to diminish the possibilities of reduction in bond strength.

  10. Adhesive dentistry: the development of immediate dentin sealing/selective etching bonding technique.

    Science.gov (United States)

    Helvey, Gregg A

    2011-01-01

    A major objective of dental research over the past 60 years has been a search for the "dream-team" of dental adhesives. In fact, a recent Medline search produced more than 6,500 papers on dentin bonding and its techniques. Adhesive systems are designed to retain direct and indirect restorations, minimize leakage at the margin, and be simple to place while producing consistent results. The development of materials and techniques has an interesting history; some have recirculated from the past and are being used in some form today. Buonocore used the etchant phosphoric acid at the beginning of the adhesive revolution. Though not accepted for many years it eventually became the "gold standard" for etching enamel. Technique sensitivity moved it out of favor and, through the development of self-etching acidic primers, was eliminated from some adhesive systems. Although these primers may have successfully addressed postoperative sensitivity, adhesion was compromised. The bond strength of these systems has now been improved with the incorporation of phosphoric acid-etch to condition enamel prior to using the adhesive system. This article will trace the history of adhesive techniques and materials and how it has led to the creation of a new technique that combines two bonding methods.

  11. Bond strength of universal adhesives: A systematic review and meta-analysis.

    Science.gov (United States)

    Rosa, Wellington Luiz de Oliveira da; Piva, Evandro; Silva, Adriana Fernandes da

    2015-07-01

    A systematic review was conducted to determine whether the etch-and-rinse or self-etching mode is the best protocol for dentin and enamel adhesion by universal adhesives. This report followed the PRISMA Statement. A total of 10 articles were included in the meta-analysis. Two reviewers performed a literature search up to October 2014 in eight databases: PubMed, Web of Science, Scopus, BBO, SciELO, LILACS, IBECS and The Cochrane Library. In vitro studies evaluating the bond strength of universal adhesives to dentin and/or enamel by the etch-and-rinse and self-etch strategies were eligible to be selected. Statistical analyses were conducted using RevMan 5.1 (The Cochrane Collaboration, Copenhagen, Denmark). A global comparison was performed with random-effects models at a significance level of padhesives (p≥0.05). However, for the ultra-mild All-Bond Universal adhesive, the etch-and-rinse strategy was significantly different than the self-etch mode in terms of dentin micro-tensile bond strength, as well as in the global analysis of enamel micro-tensile and micro-shear bond strength (p≤0.05). The enamel bond strength of universal adhesives is improved with prior phosphoric acid etching. However, this effect was not evident for dentin with the use of mild universal adhesives with the etch-and-rinse strategy. Selective enamel etching prior to the application of a mild universal adhesive is an advisable strategy for optimizing bonding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The Effect of Epigallocatechin Gallate on the Dentin Bond Durability of Two Self-etch Adhesives.

    Science.gov (United States)

    Khamverdi, Zahra; Rezaei-Soufi, Loghman; Rostamzadeh, Tayebeh

    2015-06-01

    Self-etch adhesives can activate matrix metalloproteinase (MMP) which hydrolyzes organic matrix of demineralized dentin. Epigallocatechin gallate (EGCG), especially found in green tea, could inhibit the activation of MMP. The aim of this study was to evaluate the effect of adding Epigallocatechin gallate (EGCG) into two types of adhesives on dentin bond strength. In this experimental study, 64 extracted third molars were randomly divided into 16 groups. Clearfil SE Bond and Filtek Silorane System with 0 µM, 25µM, 50µM, and 100µM concentration of 95% EGCG were used for bonding. Following the bonding and fabrication of beams (1±0.1 mm(2)) and storage in distilled water, the specimens were subjected to thermal cycles. Microtensile bond strengths of 8 groups were examined after 24 hours and others were tested after 6 months. The fracture modes of specimens were evaluated by stereomicroscope and SEM. Data were analyzed by three-way ANOVA and t-test (α = 0.05). The results of the three- way ANOVA test showed that types of bonding, storage time and interactive effect of EGCG concentration and bonding influenced the bond strength of specimens significantly (pbond strength of Clearfil SE Bond with no EGCG (p= 0.017). The most common failure modes in Filtek Silorane System groups and Clearfil SE Bond groups were adhesive and mixed/cohesive, respectively. The results of SEM at different magnifications showed that most fractures have occurred in the hybrid layer. Although adding 100 µM volume of EGCG to Clearfil SE Bond can preserve the dentin bond, incorporation of EGCG in the silorane system, especially in high concentrations, decreases the bond strength after 6 months.

  13. A non-collinear mixing technique to measure the acoustic nonlinearity parameter of an adhesive bond from one side of the sample

    Science.gov (United States)

    Ju, Taeho; Achenbach, Jan D.; Jacobs, Laurence J.; Qu, Jianmin

    2017-02-01

    In this study, we developed a non-collinear mixing technique to measure the Acoustic Nonlinearity Parameter (ANLP) of adhesive bonds. One of the most significant features of the new method is that it requires only one-side access to the adhesive bond being measured, which significantly increases its utility in field measurements. To demonstrate the effectiveness of the newly developed technique, an adhesively jointed aluminum sample was measured with different thermal aging times, using the non-collinear mixing technique with a longitudinal and a shear wave as incident waves to obtain the ANLP of the adhesive bond. The measured results clearly show that the ANLP varies with aging time. To verify that the signals received from the shear wave receiver are indeed the mixing wave, the finite element method was used to simulate the wave motion in the test sample. The simulation results clearly show that the signals recorded by the shear wave receiver are the desired mixing wave, whose amplitude is proportional to the ANLP of the adhesive bond.

  14. Adhesive bond strength evaluation in composite materials by laser-generated high amplitude ultrasound

    Science.gov (United States)

    Perton, M.; Blouin, A.; Monchalin, J.-P.

    2011-01-01

    Adhesive bonding of composites laminates is highly efficient but is not used for joining primary aircraft structures, since there is presently no nondestructive inspection technique to ensure the quality of the bond. We are developing a technique based on the propagation of high amplitude ultrasonic waves to evaluate the adhesive bond strength. Large amplitude compression waves are generated by a short pulse powerful laser under water confinement and are converted after reflection by the assembly back surface into tensile waves. The resulting tensile stresses can cause a delamination inside the laminates or at the bond interfaces. The adhesion strength is evaluated by increasing the laser pulse energy until disbond. A good bond is unaffected by a certain level of stress whereas a weaker one is damaged. The method is shown completely non invasive throughout the whole composite assembly. The sample back surface velocity is measured by an optical interferometer and used to estimate stress history inside the sample. The depth and size of the disbonds are revealed by a post-test inspection by the well established laser-ultrasonic technique. Experimental results show that the proposed method is able to differentiate weak bond from strong bonds and to estimate quantitatively their bond strength.

  15. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a weigh

  16. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a

  17. BIODEGRADATION AND DENTIN BONDING EFFECTIVENESS OF ONE "UNIVERSAL" SELF-ETCH ADHESIVE USED IN MULTI-MODE MANNER

    OpenAIRE

    Natalia Gateva; Angela Gusyiska; Pavel Stanimirov; Ivan Raychev; Rossitza Kabaktchieva

    2017-01-01

    A new type of one-step self-etch adhesives classified as "Universal" or "multi-mode" adhesives appeared in recent years. The idea is that these adhesives can be applied simultaneously with both techniques - etch and rinse and with self-etching technique, without compromising the bonding effectiveness. The aim of this study is to evaluate the micro-tensile adhesive bond strength to dentin of permanent teeth achieved after application of Single Bond Universal (3M ESPE) adhesive system used in m...

  18. Silver Adhesive Layer for Enhanced Pressure-Free Bonding Using Copper Nanoparticles

    Science.gov (United States)

    Satoh, Toshikazu; Ishizaki, Toshitaka; Akedo, Kunio

    2017-02-01

    Pressure-free Cu nanoparticle bonding between two Cu plates with an Ag adhesive layer was examined. Insertion of the Ag adhesive layer considerably enhanced the bonding strength at firing temperatures between 523 K and 673 K. The bonding strength generally increased with the firing temperature. The strength enhancement of the Ag adhesive layer was observed even for a very thin (3 nm) Ag layer, and there was no obvious dependence of the thickness of the Ag layer on the bonding strength for Ag layers of thickness up to 200 nm. Ag atoms from the adhesive layer diffused away to the bonding layer with an increase in the firing temperature. The elemental mapping images showed that the Ag had two morphologies: thin Ag layers existing between particulate Cu grains, and fine Ag particles dispersed in coarse Cu crystals. The microstructure near the interface between the Cu nanoparticle bonding layer and Cu plate used as the substrate suggests that the enhancement effect of the Ag layer originates in the active migration of the Ag layer itself.

  19. Effect of Fluoride and Simplified Adhesive Systems on the Bond Strength of Primary Molars and Incisors.

    Science.gov (United States)

    Firoozmand, Leily Macedo; Noleto, Lawanne Ellen Carvalho; Gomes, Isabella Azevedo; Bauer, José Roberto de Oliveira; Ferreira, Meire Coelho

    2015-01-01

    The aim of this study was evaluate in vitro the influence of simplified adhesive systems (etch-and-rinse and self-etching) and 1.23% acidulated phosphate fluoride (APF) on the microshear bond strength (μ-SBS) of composite resins on primary molars and incisors. Forty primary molars and forty incisors vestibular enamel was treated with either the self-etching Clearfil SE Bond (CSE, Kuraray) or etch-and-rinse Adper Single Bond 2 (SB2, 3M/ESPE) adhesive system. Each group was subdivided based on the prior treatment of the enamel with or without the topical application of 1.23% APF. Thereafter, matrices were positioned and filled with composite resin and light cured. After storage in distilled water at 37 ± 1°C for 24 h, the specimens were submitted to μ-SBS in a universal testing machine. Kruskal-Wallis and Mann-Whitney tests (p adhesive exerted no significant influence bond strength. In the inter-group analysis, however, significantly bond strength reduction was found for the incisors when CSE was employed with APF. Adhesive failure was the most common type of fracture. The bond strength was affected by the prior application of 1.23% APF and type of tooth.

  20. The difference of tensile bond strength between total and self etch adhesive systems in dentin

    Directory of Open Access Journals (Sweden)

    Selly Yusalina

    2010-03-01

    Full Text Available Total etch adhesive system has been widely used in teeth conservation area as an adhesive agent before implicating composite resin restoration agent. The aim of this research is to prove the difference of tensile bond strength between total etch (Single Bond and self etch adhesive system (Adper prompt L-Pop on dentin surface in vitro. The extracted and non carries maxillary premolar teeth were used in this research and were divided into 2 groups. The first group comprised 15 specimen teeth etched in phosphoric acid and was applicated with the Single Bond adhesive agent. The second group comprised 15 specimen teeth, applicated with the Adper Prompt-L-Pop. The composite resin (Z 350, 3M was applied incrementally and each of the layers was rayed for 20 seconds. The specimens were stored in physiologic solution before they were tested. Tensile bond strength was measured by LRX Plus Lloyd Instrument, with 1 N load and 1 mm/minute speed, and the measurement result was in Mpa unit. The result was evaluated statistically by the Student t-test with α = 0.05. Single Bond (the 5th generation showed a better bond strength compared to the Adper Prompt-L-Pop (the 6th generation.

  1. Influence of Er,Cr:YSGG laser treatment on microtensile bond strength of adhesives to enamel.

    Science.gov (United States)

    Cardoso, Marcio Vivan; De Munck, Jan; Coutinho, Eduardo; Ermis, R Banu; Van Landuyt, Kirsten; de Carvalho, Rubens Corte Real; Van Meerbeek, Bart

    2008-01-01

    The current trend towards minimum-intervention dentistry has introduced laser technology as an alternative technique for cavity preparation. This study assessed the null hypothesis that enamel prepared either by Er,Cr:YSGG laser or conventional diamond bur is equally receptive to adhesive procedures. The buccal and lingual surfaces of 35 sound human molars were prepared with Er,Cr:YSGG laser or a medium-grit diamond bur. One etch&rinse (OptiBond FL) and three self-etch adhesives (Adper Prompt L-Pop, Clearfil SE Bond and Clearfil S3 Bond) were applied on laser-irradiated and bur-cut enamel, followed by the application of a 5-6 mm build-up of Z100. The micro-tensile bond strength (microTBS) was determined after 24 hours of storage in water at 37 degrees C. Prepared enamel surfaces and failure patterns were evaluated using a stereomicroscope and a field-emission-gun scanning electron microscope (Feg-SEM). The pTBS to laser-irradiated enamel was significantly lower than to bur-cut enamel (pOptiBond FL. SEM analysis revealed significant morphological alterations of the laser-irradiated enamel surface, such as areas of melted and recrystalized hydroxyapatite and deep extensive micro-cracks. In conclusion, the bonding effectiveness of adhesives to laser-irradiated enamel depends not only on the structural substrate alterations induced by the laser, but also on the characteristics of the adhesive employed.

  2. Post-bleaching application of an antioxidant on dentin bond strength of three dental adhesives.

    Science.gov (United States)

    Khoroushi, Maryam; Saneie, Tahereh

    2012-01-01

    Antioxidizing agents have recently been suggested to compensate decreased bond strength of resin materials to bleached tooth tissues. This study compared the shear bond strength (SBS) of three different adhesives on bleached dentin immediately after bleaching, bleached/delayed for 1 week, and bleached/applied antioxidizing agent. The dentinal surfaces of 132 intact extracted molars were prepared and divided into 12 groups. The following adhesives were investigated: Optibond FL (OFL) (three-step etch-and-rinse), Optibond Solo Plus (two-step etch-and-rinse), and Optibond all-in-one (OA) (one-step self-etch) (Kerr, Orange, USA). Unbleached dentin groups (groups 1-3) were prepared as negative controls (NC). The remainder surfaces (groups 4-12) were bleached with 20% Opalescent PF (Ultradent, USA). Specimens were bonded immediately after bleaching (groups 4-6), after 1 week (groups 7-9), or after using 10% sodium ascorbate (SA) gel (groups 10-12). Subsequent to bonding of composite resin, the samples were tested for SBS and analyzed using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Regarding control groups, OA showed the highest SBS among the studied adhesives (Padhesives after bleaching except for OFL. No statistically significant difference in SBS were noted when the SA and delayed bonding groups were compared with their similar NC groups (P>0.05) except the of delay bonding with OA. The findings suggest that bond strength of resin to bleached dentin may be affected with the adhesive system. Reduced SBS to bleached dentin can be amended by the use of SA as an antioxidizing agent. However, the amount of reversed bond strength subsequent to applying antioxidant might be related to the kind of dental adhesive.

  3. Loss effects on adhesively-bonded multilayer ultrasonic transducers by self-heating.

    Science.gov (United States)

    Wu, Zhengbin; Cochran, Sandy

    2010-04-01

    Multilayer ultrasonic transducers are widely being used for high power applications. In these applications, typical Langevin/Tonpilz structures without any adhesive bondings however have the disadvantage of limited bandwidth. Therefore adhesively-bonded structures are still a potential solution for this issue. In this paper, two-layer piezoelectric ceramic ultrasonic transducers with two different adhesive bondlines were investigated comparing to a single-layer transducer in terms of loss effects during operation with excitation signals sufficient to cause self-heating. The theoretical functions fitted to the measured time-temperature dependency data are compared with experimental results of different piezoelectric transducers. Theoretical analysis of loss characteristics at various surface displacements and the relationship with increasing temperature are reported. The effects of self-heating on the practical performance of multilayer ultrasonic transducers with adhesive bondlines are discussed.

  4. Improvement in reinforcing bond strength in reinforced concrete with self-repairing chemical adhesives

    Science.gov (United States)

    Dry, Carolyn M.

    1997-05-01

    Self-healing concretes have embedded adhesives which are released from hollow fibers inside the concrete when and where cracking of the matrix and the fibers occurs. It was found that the adhesive improves the strength of the cracked portions of the concrete and increases its ability to deflect under load. Structural materials subjected to dynamic events such as earthquakes and impacts can have improved response by the noise of adhesive type which can impart improved damping, lateral stiffness, or deflection. Testing also assessed the improvement of the bond strength in structures. In laboratory tests the internal adhesive repair system improved the bond between the reinforcing steel and the concrete to prevent pullout failure or debonding at the interface.

  5. Adhesive Bonding and Corrosion Protection of a Die Cast Magnesium Automotive Door

    Science.gov (United States)

    Bretz, G. T.; Lazarz, K. A.; Hill, D. J.; Blanchard, P. J.

    It is well known that magnesium alloys, in close proximity to other alloys, are susceptible to galvanic corrosion. Combined with this fact, in automotive applications, it is rare that magnesium will be present in the absence of other alloys such as steel or aluminum. Therefore, in wet applications, where the galvanic cell is completed, it is necessary to isolate the magnesium in order to prevent accelerated corrosion. There are numerous commercial pre-treatments available for magnesium, however this paper focuses on conversion coatings in conjunction with a spray powder coat. By means of example, results for a hem flange joint on an AM50 die cast magnesium door structure will be presented. The outer door skin is an aluminum alloy hemmed around a cast magnesium flange. An adhesive is used between the inner and outer to help with stiffness and NVH (Noise, Vibration and Harshness). Results from bonded lap-shear coupon tests that have been exposed to accelerated corrosion cycles are presented. A second phase of this work considered a surrogate hem flange coupon, which was similarly exposed to the same accelerated corrosion cycle. Results from both of these tests are presented within this paper along with a discussion as to their suitability for use within automotive applications.

  6. Comparison of bonding performance of self-etching and etch-and-rinse adhesives on human dentin using reliability analysis.

    Science.gov (United States)

    Bradna, Pavel; Vrbova, Radka; Dudek, Michal; Roubickova, Adela; Housova, Devana

    2008-12-01

    To estimate the in vitro reliability of typical self-etching and etch-and-rinse adhesives of various application protocols. The following adhesives were applied on flat dentin surfaces of extracted human teeth (n = 223): self-etching two-step adhesives: AdheSE (AH), Clearfil SE Bond (CL), OptiBond SE (OS); one-step adhesives: Adper Prompt L-Pop (ADP), Adper Prompt (AD), and Xeno III (XE); all-in-one adhesive: iBond (IB); etch-and-rinse three-step adhesives: OptiBond FL (OF), two-step Gluma Comfort Bond (G), Excite (E) and Prime & Bond NT (PB). Composite buildups were prepared using a microhybrid composite, Opticor New. Shear bond strength was determined after 24 h of storage at 37 degrees C in distilled water. The results were analyzed with a nested ANOVA (adhesive, type of adhesive) followed by the Fisher post-hoc tests of group homogeneity at alpha = 0.05. A two-parameter Weibull distribution was used to calculate the critical shear bond strength corresponding to 5% probability of failure as a measure of system reliability. ANOVA revealed a significant decrease (p AD=IB=XE>PB=ADP, but no significant difference (p > 0.48) between the etch-and-rinse and self-etching adhesives. The corresponding characteristic bond strength of Weibull distribution ranged between 24.1 and 12.1 MPa, Weibull modulus between 8.3 and 2.1, and the critical shear bond strength varied from 16.0 to 3.0 MPa. Pronounced differences in the critical shear bond strength suggest reliability variations in the adhesive systems tested, which originate from chemical composition rather than type of adhesive.

  7. Evaluate the effect of different mmps inhibitors on adhesive physical properties of dental adhesives, bond strength and mmp substarte activity.

    Science.gov (United States)

    Zheng, Pei; Chen, Hui

    2017-07-10

    We have evaluated and compare the effect of different exogenous MMP inhibitors on adhesive physical properties of dental adhesives, bond strength, micro permeability and MMP substrate activity. 180-grit Sic paper was used to obtain the superficial dentin surface from each and every tooth after the wet grinding procedure. Dentin was exposed to four different MMP inhibitors to evaluate the effect on resin adhesive dentin interface. The four groups used in study were: 2% chlorhexidine digluconate, 2% doxycycline solution, 5% Proanthocyanidin (PR), Control Group. We evaluated and compared the four groups at each and every step of etching, bonding and resin application. Then, the immunolabeling was done with the help of the secondary antibodies with the pH of 7 and the dilution of 1:20. Amongst all the etching pretreatment groups, CHE group (Chlorhexidine etching group) revealed highest exposure to collagen fibrils than the other groups of etching. Then after the CHE group, the next group which has the second highest exposure DOE group. MMP inhibitor application for time duration of 1 minute after the etching procedures significantly improves the bond strength, exposure to collagen fibres and uniforms the dense form of dentin hybrid layer.

  8. Challenges to the clinical placement and evaluation of adhesively-bonded, cervical composite restorations.

    Science.gov (United States)

    Kubo, Shisei; Yokota, Hiroaki; Yokota, Haruka; Hayashi, Yoshihiko

    2013-01-01

    The incidence of non-carious cervical lesions (NCCLs) has been increasing. The clinical performance of resin composites in NCCLS was previously unsatisfactory due to their non-retentive forms and margins lying on dentin. In order to address this problem, a lot of effort has been put into developing new dentin adhesives and restorative techniques. This article discusses these challenges and the criteria used for evaluating clinical performance as they relate to clinical studies, especially long-term clinical trials. Polymerization contraction, thermal changes and occlusal forces generate debonding stresses at adhesive interfaces. In laboratory studies, we have investigated how these stresses can be relieved by various restorative techniques and how bond strength and durability can be enhanced. Lesion forms, restorative techniques, adhesives (adhesive strategies, bond strengths, bond durability, and the relationship between enamel and dentin bond strengths) were found to have a complex relationship with microleakage. With regard to some restorative techniques, only several short-term clinical studies were available. Although in laboratory tests marginal sealing improved with a low-viscosity resin liner, an enamel bevel or prior enamel etching with phosphoric acid, clinical studies failed to detect significant effects associated with these techniques. Long-term clinical trials demonstrated that adhesive bonds continuously degraded in various ways, regardless of the adhesion strategy used. Early loss of restoration may no longer be the main clinical problem when reliable adhesives are properly used. Marginal discoloration increased over time and may become a more prominent reason for repair or replacement. Reliable and standardized criteria for the clinical evaluation of marginal discoloration should be established as soon as possible and they should be based on evidence and a policy of minimal intervention. Copyright © 2012 Academy of Dental Materials. Published by

  9. Influence of saliva contamination on the shear bond strength of adhesives on enamel

    Directory of Open Access Journals (Sweden)

    Tatiana Feres Assad-Loss

    2012-04-01

    Full Text Available OBJECTIVE: To evaluate shear bond strength of 3 adhesive systems (Single Bond, TransbondTM MIP and TransbondTM XT applied on bovine enamel under saliva contamination condition. METHOD: One hundred and twenty enamel surfaces of bovine incisors were divided into 6 groups (n = 20 according to the adhesive system used (TransbondTM XT, TransbondTM MIP and Single Bond with or without saliva contamination. For each adhesive system, there were two groups defined as no contamination group (NC: 37% H3PO4 conditioning for 30 seconds and two layers of adhesive systems; saliva contamination group (SC: After the first adhesive layer application, the examined areas were contaminated with saliva. Samples were mounted appropriately for testing and stored in deionized water at 37 ºC for 7 days. Samples were then submitted to shear bond strength trials at a speed of 0.5 mm/min. The Adhesive Remnant Index (ARI was evaluated under stereomicroscopy. Two-way analysis of variance and the Tukey test were used to compare mean values (α = 0.05. RESULTS: Groups XT (NC = 26.29 ± 7.23; MIP (NC = 24.47 ± 7.52 and SB (NC = 32.36 ± 4.14 XT (SC = 19.59 ± 6.76; MIP (SC = 18.08 ± 6.39 and SB (SC = 18.18 ± 7.03 MPa. ARI 0 and 1 were the most prevalent scores in all study groups examined. CONCLUSION: Saliva contamination significantly decreased bond strength of the three adhesive systems examined (p <0.05. However, the comparison of groups with and without saliva contamination did not reveal any significant differences, and, therefore, the three systems may be considered equivalent.

  10. Analysis of interfacial structure and bond strength of self-etch adhesive systems

    Science.gov (United States)

    Pinzon, Lilliam M; Watanabe, Larry G; Reis, Andre F; Powers, John M; Marshall, Sally J; Marshall, Grayson W

    2013-01-01

    Purpose To determine the bond strength, nanoleakage and interfacial morphology of four self-etch adhesives bonded to superficial dentin. Methods Micro-tensile (MT, n=15) and single plane shear (SP, n=8) bond tests were performed using human dentin polished through 320-grit SiC paper. Clearfil Protect Bond (PB), Clearfil S3 Bond (S3), Prompt L-Pop (PLP) and G-BOND (GB) were used according to manufacturers’ instructions. Composite was applied as cylinders with a thickness of 4 mm with a 1-mm diameter and stored in water at 37° C for 24 hours. Specimens were debonded with a testing machine at a cross-head speed of 1 mm/min. Means and standard deviations of bond strength were calculated. Data were analyzed using ANOVA. Fisher’s PLSD intervals were calculated at the 0.05 level of significance. Failure modes were determined at 100X. The hybrid layer was revealed by treatment with 5N HCl/5% NaOCl or fractured perpendicular to the interface and sputter coated with gold. Specimens were viewed at 1000X, 2500X, and 5000X in a field emission SEM at 15 kV. Teeth (n=2) sectioned into 0.9-mm thick slabs were immersed in ammoniacal silver nitrate solution for 24 hours, rinsed and immersed in photo-developing solution for 8h. Specimens were sectioned (90-nm thick) and observed under TEM. Results Means ranged from 25.0 to 73.1 MPa for MT and from 15.5 to 56.4 MPa for SP. MT values were greater than SP, but were highly correlated (R2 = 0.99, p= 0.003) and provided the same order for the systems studied. Fisher’s PLSD intervals (pbond strength techniques and adhesives results were 1.7 and 2.3 MPa, respectively. Failures sites were mixed. TEM showed that hybrid layers were ~0.5 µm for PB, GB and S3 and ~5 µm for PLP. SEM showed morphologic differences among adhesives. Silver nitrate deposits were observed within interfaces for all adhesive systems. Clinical significance Simplification of application procedures appears to induce loss of adhesion capabilities. In this in vitro

  11. The Environmental and Impact Resistance of Adhesively Bonded Thermoplastic Fibre Composites

    Science.gov (United States)

    1992-11-01

    Compact tension specimen DCB Double cantilever beam specimen DGEBA Diglycidyl ether of bisphenol A DMTA Dynamic mechanical thermal analysis ELS End...based upon a DGEBA resin. Starter cracks had been inserted into the adhesive layer, and the joints were loaded at various constant rates of displacement...plot. 3 66 I_ Chapter Two: Literature Survey An example of an uptake plot for an epoxy adhesive, based on DGEBA -DMP epoxide, in water at 45°C is shown in

  12. Micro-tensile bond strength of adhesives to pulp chamber dentin after irrigation with Ethylenediaminetetraacetic acid

    OpenAIRE

    Ç Barutcigil; Arslan, H.; Özcan, E.; O T Harorli

    2012-01-01

    Aim: The aim of this study was to evaluate the influence of different concentrations of Ethylenediaminetetraacetic acid (EDTA) solution on adhesion, that is, the bond strength of the different adhesive systems, to the pulp chamber dentin. Materials and Methods: Recently extracted, sound, human, third molars were cut horizontally to expose the pulp horn. The roof of the pulp chamber and pulp tissue was removed. The teeth were then divided into five main groups. The teeth in each group were ...

  13. Effects of Different Hardeners on the Working Properties and Bonding Strength of Urea-formaldehyde Adhesives

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The addition of a hardener is necessary for the curing of urea-formaldehyde (UF) adhesives in the production of MDF and particleboard. The most commonly used hardener, ammonium chloride, however, is suspected to cause the formation of poisonous dioxin when waste boards are combusted and hence considered as a potential source of pollution. To assess the feasibility of substituting ammonium sulphate for ammonium chloride, working properties and bonding strength were measured for UF adhesives with the two ...

  14. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer.

    Science.gov (United States)

    Matos-Pérez, Cristina R; White, James D; Wilker, Jonathan J

    2012-06-06

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues.

  15. Interaction morphology and bond strength of nanofilled simplified-step adhesives to acid etched dentin

    Science.gov (United States)

    Di Hipólito, Vinicius; Reis, André Figueiredo; Mitra, Sumita B.; de Goes, Mario Fernando

    2012-01-01

    Objective: To evaluate the effect of nanofillers incorporated into adhesives on the microtensile bond strength (μ-TBS) and interfacial micromorphology to dentin. Methods: The occlusal enamel of 5 human molars was removed and each tooth sectioned into four quarters. The exposed dentin was treated with one of the following adhesives: Adper Single Bond (SB-unfilled), OptiBond Solo Plus (OS-barium aluminoborosilicate, 400nm Ø), Prime & Bond NT (NT-colloidal silica, 7–40 nm Ø) and Adper Single Bond 2 (SB2-colloidal silica, 5nm Ø). Cylinders of resin-based composite were constructed on the adhesive layers. After 24-hour storage, the restored tooth-quadrants were sectioned to obtain stick-shaped specimens (0.8 mm2, cross-sectional area) and submitted to μ-TBS at a cross-speed of 0.5 mm/min. Data were analyzed using one-way ANOVA and Tukey’s test (alpha = .05). Twenty-eight additional teeth were used for interfacial micro-morphologic analysis by SEM (16-teeth) and TEM (12-teeth). The dentin surfaces of 32 discs were treated with the adhesives (8 discs for adhesive) and laminated to form disc-pairs using a flowable resin composite for SEM/EDS analysis. For TEM, 90nm-thick nondemineralized unstained sections were processed. Results: SB2 showed significant higher bond strength than SB, OS and NT. The SEM/EDS and TEM analysis revealed nanofillers infiltrated within the interfibrillar spaces of the SB2-hybrid layer. Fillers were concentrated around patent tubular orifices and in the adhesive layer for OS and NT. Conclusion: The presence of nanofillers within the interfibrillar spaces of the SB2-hybrid layer suggests its importance in the improvement of the μ-TBS. PMID:23077413

  16. Influence of adhesion promoters and curing-light sources on the shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Claudia Tavares Machado

    2012-01-01

    Conclusions: The conventional orthodontic adhesive presented higher bond strength than the nanofilled composite, although both materials interacted similarly to the teeth. The curing-light devices tested did not influence on bond strength of orthodontic brackets.

  17. Effect of cleaning methods on bond strength of self-etching adhesive to dentin

    Directory of Open Access Journals (Sweden)

    Juliana Delatorre Bronzato

    2016-01-01

    Full Text Available Aim: The aim of this study was to investigate the influence of cleaning methods to remove zinc oxide-eugenol-based root canal sealer (Endomethasone on the bond strength of the self-etching adhesive to dentin. Materials and Methods: Twenty crowns of bovine incisors were cut to expose the pulp chamber. A zinc oxide- and eugenol-based sealer was placed for 10 min in contact with the pulp chamber dentin. Specimens were divided into four groups according to the cleaning method of dentin used: G1, no root canal sealer (control; G2, 0.9% sodium chlorite (NaCl; G3, ethanol; and G4, followed by diamond drill. After cleaning, the teeth were restored with composite resin and Clearfil SE Bond. All specimens were sectioned to produce rectangular sticks and dentin/resin interface was submitted to microtensile bond testing. The mean bond strengths were analyzed using ANOVA/Tukey (α = 0.05. Results: G3 and G4 showed bond strengths similar to the G1 (P > 0.05. A significant decrease in the bond strength in the G2 was observed (P < 0.05. G1, G3, and G4, the predominant failure mode was the mixed type. The prevalence of adhesive failure mode was verified in the G2. Conclusion: The cleaning methods affected the bond strength of the self-etching adhesive to dentin differently.

  18. Effects of adhesion promoters on the shear bond strengths of orthodontic brackets to fluorosed enamel.

    Science.gov (United States)

    Adanir, Necdet; Türkkahraman, Hakan; Yalçin Güngör, Ahmet

    2009-06-01

    The aims of this in vitro study were to evaluate the effect of enamel fluorosis on the shear bond strength (SBS) of orthodontic brackets and to determine whether adhesion promoter, Enhance LC, increases the bond strength of brackets to fluorosed enamel. Forty-five (30 fluorosed and 15 non-fluorosed) non-carious fresh human premolar teeth, extracted for orthodontic reasons and without any caries or visible defects, were used in this study. The fluorosed teeth were selected according to the modified Thylstrup and Fejerskov index, which is based on the clinical changes in fluorosed teeth. In groups 1 (fluorosed teeth) and 3 (control), the brackets were bonded with Light Bond composite resin and cured with a halogen light. In group 2, Enhance LC was applied to fluorosed enamel before bonding. After bonding, the SBS of the brackets was tested with a universal testing machine. One-way analysis of variance and Tukey multiple comparison tests were used to compare the SBS of the groups. Any adhesive remaining after debonding was assessed and scored according to the modified adhesive remnant index. The results showed that while fluorosis significantly reduced the bond strengths of the orthodontic brackets (mean 13.94 +/- 3.24 MPa; P enamel (mean 18.22 +/- 5.97 Mpa; P enamel-composite interface.

  19. Adhesive Bonding to Computer-aided Design/ Computer-aided Manufacturing Esthetic Dental Materials: An Overview.

    Science.gov (United States)

    Awad, Mohamed Moustafa; Alqahtani, H; Al-Mudahi, A; Murayshed, M S; Alrahlah, A; Bhandi, Shilpa H

    2017-07-01

    To review the adhesive bonding to different computer-aided design/computer-aided manufacturing (CAD/CAM) esthetic restorative materials. The use of CAD/CAM esthetic restorative materials has gained popularity in recent years. Several CAD/ CAM esthetic restorative materials are commercially available. Adhesive bonding is a major determinant of success of CAD/ CAM restorations. Review result: An account of the currently available bonding strategies are discussed with their rationale in various CAD/ CAM materials. Different surface treatment methods as well as adhesion promoters can be used to achieve reliable bonding of CAD/CAM restorative materials. Selection of bonding strategy to such material is determined based on its composition. Further evidence is required to evaluate the effect of new surface treatment methods, such as nonthermal atmospheric plasma and self-etching ceramic primer on bonding to different dental ceramics. An understanding of the currently available bonding strategies to CA/CAM materials can help the clinician to select the most indicated system for each category of materials.

  20. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments.

    Science.gov (United States)

    Dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto; Faria-E-Silva, André Luis

    2014-02-01

    Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. COMPOSITE DISCS WERE SUBJECT TO ONE OF SIX DIFFERENT SURFACE PRETREATMENTS: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm(2) diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate.

  1. Push-out Bond Strength of Fiber Posts to Intraradicular Dentin Using Multimode Adhesive System.

    Science.gov (United States)

    Oskoee, Siavash Savadi; Bahari, Mahmoud; Kimyai, Soodabeh; Asgary, Saeed; Katebi, Katayoun

    2016-12-01

    Because there is little information about bond strength of fiber posts cemented with a universal adhesive system (UAS) with different resin cements, the aim of this study was to compare the effect of different bonding strategies in the application of UASs on push-out bond strength of fiber posts to intraradicular dentin. Seventy-two single-rooted teeth were randomly divided into 6 groups: self-adhesive resin cement (SAC), dual-cure resin cement (DCC), UAS in the etch-and-rinse (E&R) mode and SAC (E&R + SAC), UAS in the self-etch (SE) mode and SAC (SE + SAC), UAS in the E&R mode and DCC (E&R + DCC), and UAS in the SE mode and DCC (SE + DCC). The push-out test was conducted at a crosshead speed of 0.5 mm/min. Data were analyzed with 2-way analysis of variance (P strategies (P  .05). ClearfilSA Luting SAC (Kuraray Noritake Dental Inc, New York, NY) cannot be used alone for fiber post adhesion; it needs an adhesive. Universal adhesive in the SE mode is suggested. When UAS is used for luting fiber posts, the type of cement does not have any effect on bond strength. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Effects of silver nanoparticles on the bonding of three adhesive systems to fluorotic enamel.

    Science.gov (United States)

    Torres-Méndez, Fernando; Martinez-Castañon, Gabriel-Alejandro; Torres-Gallegos, Iranzihuatl; Zavala-Alonso, Norma-Verónica; Patiño-Marin, Nuria; Niño-Martínez, Nereyda; Ruiz, Facundo

    2017-05-31

    The objective was to evaluate the effect of adding silver nanoparticles into three commercial adhesive systems (Excite™, Adper Prompt L-Pop™ and AdheSE™). Nanoparticles were prepared by a chemical method then mixed with the commercial adhesive systems. This was later applied to the fluorotic enamel, and then micro-tensile bond strength, contact angle measurements and scanning electron microscopy observations were conducted. The commercial adhesive systems achieved the lowest micro-tensile bond strength (Excite™: 11.0±2.1, Adper Prompt L-Pop™: 14.0±5.4 and AdheSE™: 16.0±3.0 MPa) with the highest adhesive failure mode related with the highest contact angle (46.0±0.6º, 30.0±0.5º and 28.0±0.4º respectively). The bond strength achieved in all the experimental adhesive systems (19.0±5.4, 20.0±4.0 and 19.0±3.5 MPa respectively) was statistically higher (padhesive system wetting and its bond strength.

  3. In vitro comparison of the tensile bond strength of denture adhesives on denture bases.

    Science.gov (United States)

    Kore, Doris R; Kattadiyil, Mathew T; Hall, Dan B; Bahjri, Khaled

    2013-12-01

    With several denture adhesives available, it is important for dentists to make appropriate patient recommendations. The purpose of this study was to evaluate the tensile bond strength of denture adhesives on denture base materials at time intervals of up to 24 hours. Fixodent, Super Poligrip, Effergrip, and SeaBond denture adhesives were tested with 3 denture base materials: 2 heat-polymerized (Lucitone 199 and SR Ivocap) and 1 visible-light-polymerized (shade-stable Eclipse). Artificial saliva with mucin was used as a control. Tensile bond strength was tested in accordance with American Dental Association specifications at 5 minutes, 3 hours, 6 hours, 12 hours, and 24 hours after applying the adhesive. Maximum forces before failure were recorded in megapascals (MPa), and the data were subjected to a 2-way analysis of variance (α=.05). All 4 adhesives had greater tensile bond strength than the control. Fixodent, Super Poligrip, and SeaBond had higher tensile bond strength values than Effergrip. All adhesives had the greatest tensile bond strength at 5 minutes and the least at 24 hours. The 3 denture bases produced significantly different results with each adhesive (Padhesives had the greatest tensile bond strength, followed by Ivocap and Eclipse. All 4 adhesives had greater tensile bond strength than the control, and all 4 adhesives were strongest at the 5-minute interval. On all 3 types of denture bases, Effergrip produced significantly lower tensile bond strength, and Fixodent, Super Poligrip, and SeaBond produced significantly higher tensile bond strength. At 24 hours, the adhesive-base combinations with the highest tensile bond strength were Fixodent on Lucitone 199, Fixodent on Eclipse, Fixodent on Ivocap, and Super Poligrip on Ivocap. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  4. Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V

    Science.gov (United States)

    Belcher, Marcus A.; List, Martina S.; Wohl, Christopher J.; Ghose, Sayata; Watson, Kent A.; Hopkins, John W.; Connell, John W.

    2010-01-01

    Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell.

  5. Sciatic nerve repair using adhesive bonding and a modiifed conduit

    Institute of Scientific and Technical Information of China (English)

    Xiangdang Liang; Hongfei Cai; Yongyu Hao; Geng Sun; Yaoyao Song; Wen Chen

    2014-01-01

    When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not ifx the nerve ends well and allows glue to easily invade the nerve ends. In this study, we established a rat model of completely transected sciatic nerve injury and re-paired it using a modiifed 1 cm-length conduit with inner diameter of 1.5 mm. Each end of the cylindrical conduit contains a short linear channel, while the enclosed central tube protects the nerve ends well. Nerves were repaired with 2-octyl-cyanoacrylate and suture, which complement the function of the modiifed conduit. The results demonstrated that for the same conduit, the av-erage operation time using the adhesive method was much shorter than with the suture method. No signiifcant differences were found between the two groups in sciatic function index, motor evoked potential latency, motor evoked potential amplitude, muscular recovery rate, number of medullated nerve fibers, axon diameter, or medullary sheath thickness. Thus, the adhesive method for repairing nerves using a modiifed conduit is feasible and effective, and reduces the operation time while providing an equivalent repair effect.

  6. Low-frequency features of the ultrasound echo from an adhesively bonded layer-substrate structure

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaomin; LI Mingxuan; MAO Jie; LIAN Guoxuan

    2005-01-01

    The low-frequency features of the ultrasound reflection spectra from the structure of a single layer on a substrate bonded by a thin adhesive layer are theoretically studied; the low-frequency here means the frequency of the interrogating ultrasonic wave is less than the quart-wavelength resonance frequency of the adhesive layer. The possibility of the inversion of the thickness and the evaluation of the cohesion strength of the adhesive layer from the resonance frequency shifts of the layered system is indicated. An analytic solution to the nonlinear equation satisfied by the resonance frequency is presented by Taylor expansion method showing satisfactory agreement with the numerical results by Newton iterative method. The results indicate larger range for application than the traditional spring model for the thin adhesive layer. In a much lower frequency range the thin adhesive layer may be regarded to be a spring.

  7. Effects of Type I Collagen Degradation on the Durability of Three Adhesive Systems in the Early Phase of Dentin Bonding

    OpenAIRE

    Lin Hu; Yu-hong Xiao; Ming Fang; Yu Gao; Li Huang; An-qi Jia; Ji-hua Chen

    2015-01-01

    Objective This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding. Methods Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by ...

  8. Experimental study about the influence of adhesive stiffness to the bonding strengths of adhesives for ceramic/metal targets

    Institute of Scientific and Technical Information of China (English)

    W. SEIFERT; E. STRASSBURGER; S. GREFEN; S. SCHAARE

    2016-01-01

    The aim of the investigations presented here was to understand how the stiffness of the adhesive affects the failure of ceramic tiles adhered to metallic backings. The working hypothesis was that varying the adhesive stiffness could have the same effect on the ballistic performance as a variation of the adhesive thickness. Two different projectile/target combinations were utilized for ballistic tests in order to generate extremely different loading conditions. With targets consisting of 6 mm aluminum oxide ceramic and 6 mm aluminum backing, complete penetration occurred in each test with 7.62 mm tungsten carbide core AP ammunition at an impact velocity of 940 m/s. In contrast, with ceramic tiles of 20 mm thickness on 13 mm steel backing, no penetration of the ceramic occurred at the impact of a 7.62 mm ball round at 840 m/s. Four different types of adhesive (high-strength till high-flexible) were tested in both configurations. The elongation of the adhesive layer, the deformation of the metallic backing and the failure of the ceramics were observed by means of a high-speed camera during the projectile/target interaction. The results of the ballistic tests showed that a higher fracture strain caused a larger deformation of the backing compared to adhesives, which exhibit a high tensile strength and low fracture strains. The experimental results indicate that the damage behavior of the ceramic/metal composites depends on the absolute elongation of the adhesive layer. This can be controlled either by the thickness or the stiffness of the bonding layer.

  9. Micro-shear bond strength of adhesive resins to enamel at different relative humidity conditions.

    Science.gov (United States)

    Bavbek, Andaç Barkın; Demir, Erhan; Goktas, Barış; Ozcopur, Betül; Behram, Benin; Eskitascioglu, Gürcan; Ozcan, Mutlu

    2013-01-01

    This study tested whether exhaled humid conditions would affect the adhesion of etch-and-rinse, two-step and one-step self-etch adhesive resins to enamel. Enamel surfaces of human maxillary anterior teeth (N=240, n=20) were exposed to four humid conditions (H1: 63-68%, H2: 73-78%, H3: 93-98%, H4: 36-45% RH) during bonding with Adper Single Bond 2 (SB2), Clearfil SE Bond (CSE) and Adper Easy Bond (AEB). Specimens were stored in distilled water at 37 ºC for 24 h and tested to failure using micro-shear bond strength (μSBS) test. Data were analyzed using two-way ANOVA and Tukey's test (penamel with SB2, CSE and AEB was not significantly affected by humidity parameters. AEB resulted in significantly lower μSBS in all conditions. The frequency of adhesive failures was the highest at H2, H3 for SB2, H3 for CSE and H1-4 for AEB indicating that humidity conditions may decrease adhesion quality to enamel.

  10. Hybridization quality and bond strength of adhesive systems according to interaction with dentin

    Science.gov (United States)

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-01-01

    Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives – Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems – Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system – Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin. PMID:24926212

  11. Adhesion between dental ceramic and bonding resin: quantitative evaluation by Vickers indenter methodology.

    Science.gov (United States)

    Doucet, Sylvie; Tavernier, Bruno; Colon, Pierre; Picard, Bernard

    2008-01-01

    The purpose of this study was to evaluate the adhesion to dental ceramic by Vickers indenter methodology. This technique allows the creation of adhesive fractures and determines the influence of the surface treatment on adhesive capacities. A single bond adhesive system (One Step Bisco) was applied to ceramic Vitapan 3D Master CE 0124 samples. Ceramic samples were polished with 500 or 4000-grit paper, sandblasted or not (Sa/NSa), treated with fluorhydric acid or not (A/NA) and silane or not (Si/NSi). The experimental groups (Gr) were: (Gr 1) 4000; (Gr 2) 4000+Si; (Gr 3) 4000+Sa+A; (Gr 4) 4000+Sa+A+Si; (Gr 5) 500+Sa+A+Si. Each sample was indented with the diamond Vickers indenter Leitz Durimet 2 (Wetzlar, Germany) using a load of 20N for 30s. The surfaces of the debonded areas were observed in an optical microscope providing a digital image of the debonded surface. The adhesion bond strength was calculated according to the formula of Engel and Roshon [Engel PA, Roshon DD. Indentation-debonding of an adhered surface layer. J Adhesion 1979;10(33): 237-53]. The statistical analysis was conducted using Student's t test (padhesion of an adhesive layer on a feldspathic ceramic.

  12. Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique

    Science.gov (United States)

    Li, Zhenhao; Wong, Lawrence L. P.; Chen, Albert I. H.; Na, Shuai; Sun, Jame; Yeow, John T. W.

    2016-11-01

    This paper reports the fabrication process of wafer bonded capacitive micromachined ultrasonic transducers (CMUTs) using photosensitive benzocyclobutene as a polymer adhesive. Compared with direct bonding and anodic bonding, polymer adhesive bonding provides good tolerance to wafer surface defects and contamination. In addition, the low process temperature of 250 °C is compatible with standard CMOS processes. Single-element CMUTs consisting of cells with a diameter of 46 µm and a cavity depth of 323 nm were fabricated. In-air and immersion acoustic characterizations were performed on the fabricated CMUTs, demonstrating their capability for transmitting and receiving ultrasound signals. An in-air resonance frequency of 5.47 MHz was measured by a vibrometer under a bias voltage of 300 V.

  13. Adhesion to pulp chamber dentin: Effect of ethanol-wet bonding technique and proanthocyanidins application

    Directory of Open Access Journals (Sweden)

    Pallavi Sharma

    2015-01-01

    Full Text Available Aim: To evaluate the microleakage of a simplified etch-and-rinse adhesive bonded to pulp chamber dentin with water-wet bonding (WWB or ethanol-wet bonding (EWB with and without proanthocyanidins (PA application. Materials and Methods: Total 88 non-carious extracted human molar teeth were sectioned horizontally to expose the pulp chambers 1.5 mm coronal to the cemento-enamel junction. After the pulp tissue extirpation, canal orifices were enlarged and the root ends were sealed. The samples were randomly divided equally into following four groups according to the four bonding techniques performed using Adper Single Bond 2 [SB] adhesive (1 WWB; (2 EWB; (3 WWB and PA application [WWB + PA]; (4 EWB and PA application [EWB + PA]. Composite resin restorations were performed in all the pulp chambers. Total 20 samples from each group were subjected to microleakage evaluation, and two samples per group were assessed under scanning electron microscope for interfacial micromorphology. Results: The least microleakage score was observed in group 2 (EWB with similar results seen in group 4 (EWB + PA (P = 0.918. Group 2 (EWB showed significantly less microleakage than group 1 (WWB; P = 0.002 and group 3 (WWB + PA; P = 0.009. Group 4 (EWB + PA also depicted significantly reduced microleakage as compared with group 1 (WWB; P = 0.001 and group 3 (WWB + PA; P = 0.003. Conclusion: The use of EWB technique in a clinically relevant simplified dehydration protocol significantly reduced microleakage in simplified etch-and-rinse adhesive, Adper Single Bond 2, bonded to pulp chamber dentin. Application of PA had no significant effect on the microleakage of the adhesive bonded with either WWB or EWB.

  14. Shear bond strength of amalgam to dentin using different dentin adhesive systems

    Directory of Open Access Journals (Sweden)

    Farimah Sardari

    2012-01-01

    Full Text Available Background and Aims: The aim of this in vitro study was to assess the shear bond strength of amalgam to dentin using four dentin adhesive systems.Materials and Methods: One hundred human molars were selected. After enamel removal, a dentin cylinder with 3 mm thickness was prepared. Eighty specimens were resorted with amalgam and four dentin adhesive systems as follows (n=20: group 1, Scotch Bond Multi-Purpose; group 2, One Coat Bond; group 3, PQ1; and group 4, Panavia-F. In group 5, 20 specimens were resorted with amalgam and varnish as control group. The specimens were incubated at 37°C for 24 h. The shear bond strengths were then measured by using push out method. The data were analyzed by one-way ANOVA and post hoc Duncan's tests.Results: Mean values for bond strengths of test groups were as follows: group 1=21.03±8.9, group 2=23.47±9, group 3=13.16±8.8, group 4=20.07±8.9 and group 5=14.15±8.7 MPa±SD. One-way ANOVA showed the statistically significant difference between the bond strengths of five groups (P=0.001. Post hoc Duncan's test showed significant difference between groups 1and 3 (P=0.008, groups 1 and 5 (P=0.019, groups 2 and 5 (P=0.0008, groups 4 and 5 (P=0.042, and groups 3 and 4 (P=0.018.Conclusion: Results of this study showed that the bond strength of amalgam to dentin using One Coat Bond as dentin adhesive system was higher than that observed in other dentin adhesive systems.

  15. Effect of adhesive resin cements and post surface silanization on the bond strengths of adhesively inserted fiber posts.

    Science.gov (United States)

    Wrbas, Karl-Thomas; Altenburger, Markus Jörg; Schirrmeister, Jörg Fabian; Bitter, Kerstin; Kielbassa, Andrej Michael

    2007-07-01

    This study evaluated the tensile bond strengths and the effect of silanization of fiber posts inserted with different adhesive systems. Sixty DT Light Posts (size 1) were used. Thirty posts were pretreated with silane. The posts were cemented into form-congruent artificial root canals (12 mm) of bovine dentine. Six groups were formed: G1, Prime&Bond NT/Calibra; G2, Monobond-S+Prime&Bond NT/Calibra; G3, ED Primer/Panavia 21ex; G4, Monobond-S+ED Primer/Panavia 21ex; G5, RelyX Unicem; and G6, Monobond-S+RelyX Unicem. The mean (standard deviation) tensile bond strengths (megapascals) were 7.69 (0.85) for G1, 7.15 (1.01) for G2, 6.73 (0.85) for G3, 6.78 (0.97) for G4, 4.79 (0.58) for G5, and 4.74 (0.88) for G6. G1 achieved significantly higher bond strengths than G3 and G5; G3 had significantly higher values than G5 (P Silanization had no significant effect (P > .05, one-way analysis of variance). Tensile bond strengths were significantly influenced by the type of resin cement. Silanization of fiber post surfaces seems to have no clinical relevance.

  16. Polyurethane structural adhesives applied in automotive composite joints

    National Research Council Canada - National Science Library

    Quini, Josue Garcia; Marinucci, Gerson

    2012-01-01

    In recent years structural adhesives technology has demonstrated great potential for application due to its capacity to transform complex structures into solid unitary and monolithic assemblies using different materials...

  17. Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding.

    Science.gov (United States)

    Dong, Xiaoqing; Li, Hao; Chen, Meng; Wang, Yong; Yu, Qingsong

    2015-06-01

    This study is to evaluate plasma treatment effects on dentin surfaces for improving self-etching adhesive and dentin interface bonding. Extracted unerupted human third molars were used after crown removal to expose dentin. One half of each dentin surface was treated with atmospheric non-thermal argon plasmas, while another half was untreated and used as the same tooth control. Self-etching adhesive and universal resin composite was applied to the dentin surfaces as directed. After restoration, the adhesive-dentin bonding strength was evaluated by micro-tensile bonding strength (μTBS) test. Bonding strength data was analyzed using histograms and Welch's t-test based on unequal variances. μTBS test results showed that, with plasma treatment, the average μTBS value increased to 69.7±11.5 MPa as compared with the 57.1±17.5 MPa obtained from the untreated controls. After 2 months immersion of the restored teeth in 37 °C phosphate buffered saline (PBS), the adhesive-dentin bonding strengths of the plasma-treated specimens slightly decreased from 69.7±11.5 MPa to 63.9±14.4 MPa, while the strengths of the untreated specimens reduced from 57.1±17.5 MPa to 48.9±14.6 MPa. Water contact angle measurement and scanning electron microscopy (SEM) examination verified that plasma treatment followed by water rewetting could partially open dentin tubules, which could enhance adhesive penetration to form thicker hybrid layer and longer resin tags and consequently improve the adhesive/dentin interface quality.

  18. Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding

    Science.gov (United States)

    Dong, Xiaoqing; Li, Hao; Chen, Meng; Wang, Yong; Yu, Qingsong

    2015-01-01

    This study is to evaluate plasma treatment effects on dentin surfaces for improving self-etching adhesive and dentin interface bonding. Extracted unerupted human third molars were used after crown removal to expose dentin. One half of each dentin surface was treated with atmospheric non-thermal argon plasmas, while another half was untreated and used as the same tooth control. Self-etching adhesive and universal resin composite was applied to the dentin surfaces as directed. After restoration, the adhesive-dentin bonding strength was evaluated by micro-tensile bonding strength (μTBS) test. Bonding strength data was analyzed using histograms and Welch’s t-test based on unequal variances. μTBS test results showed that, with plasma treatment, the average μTBS value increased to 69.7±11.5 MPa as compared with the 57.1±17.5 MPa obtained from the untreated controls. After 2 months immersion of the restored teeth in 37 °C phosphate buffered saline (PBS), the adhesive-dentin bonding strengths of the plasma-treated specimens slightly decreased from 69.7±11.5 MPa to 63.9±14.4 MPa, while the strengths of the untreated specimens reduced from 57.1±17.5 MPa to 48.9±14.6 MPa. Water contact angle measurement and scanning electron microscopy (SEM) examination verified that plasma treatment followed by water rewetting could partially open dentin tubules, which could enhance adhesive penetration to form thicker hybrid layer and longer resin tags and consequently improve the adhesive/dentin interface quality. PMID:26273561

  19. Primary Adhesively Bonded Structure Technology (PABST). General Material Property Data

    Science.gov (United States)

    1978-09-01

    the repetition of this re-immers1ng procedure, the findings were translated cumulatively 1n the graph of Figure 25 with the dissolution rate computed...there are no large shifts in the centroids of the peaks. The asymmetrical shape of the peaks for the P and PG samples suggests the possibility of an...5541, M.C. Coating - OPS 9.4? MIL-P-23377 epoxy potyc- tJe pr!r«r •• npj; 4.50-138 2.1.2 METAL ADHESIVE BOf.’UtU ASSEMBL’ Es 2.1.2.1 Aluminum S*taI

  20. Inferring spatial organization of bonds within adhesion clusters by exploiting fluctuations of soft interfaces

    Science.gov (United States)

    Smith, A.-S.; Fenz, S. F.; Sengupta, K.

    2010-01-01

    Detecting the organization of bonds within adhesion domains connecting two interacting membranes is, at present, extremely challenging. Herein we present a technique, based on Reflection Interference Contrast Microscopy, which uses spontaneous thermal fluctuations of a soft interface as a tool to identify the organization of specific ligand-receptor bonds. The key is a time-resolved analysis of micro-interferometric data that systematically quantifies fluctuations and enables the detection of their suppression due to the formation of bonds, which, in turn, allows the identification of the bond organization without the use of fluorescent labelling. The identification of a new type of bond organization characterized by sparsely distributed bonds, as well as detection of pinning centres of nanometric size is presented.

  1. Effect of silorane-based adhesive system on bond strength between composite and dentin substrate

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo Pereira

    2015-01-01

    Full Text Available Context: The complexities of the oral environment, the dentin substrate, and the different bond and composite resin systems represent a challenge to the maintenance of reasonable bond between the composite resin and the tooth structure. Aims: To evaluate the effect of the adhesive system on bond strength between silorane-based composite resin and dentin. Materials and Methods: Fourteen human molars extracted were selected and vertically cut into 3 dentin fragments, randomly divided among the experimental groups and restored with Z250 and P90 composite resin using different adhesive protocols (Adper Single Bond 2, Silorano primer, Adper SE Plus, and Scotchbond Multiuse. Two composite resin cylinders were built up on each dentin surface (n = 10 and subjected to a micro-shear bond strength test. Statistical Analysis Used: Kruskal-Wallis one-way analysis of variance and Tukey test (P = 0.05. Results: According to the results, Kruskal-Wallis test evidenced at least one statistical significant difference (P = 0.001. The Tukey test showed statistically significant differences among the group (P < 0.05. Group PSM8 (P90 + SM showed statically significant higher results when compared with groups PSP4 (P90 + SP, PSB2 (P90 + SB, and ZSE5 (Z250 + SE. Conclusion: The results evidenced that the monomer of the adhesive system has an effect on bond strength between the composite resin and dentin.

  2. Clinically used adhesive ceramic bonding methods: a survey in 2007, 2011, and in 2015.

    Science.gov (United States)

    Klosa, K; Meyer, G; Kern, M

    2016-09-01

    The objective of the study is to evaluate practices of dentists regarding adhesive cementation of all-ceramic restorations over a period of 8 years. The authors developed a questionnaire regarding adhesive cementation procedures for all-ceramic restorations. Restorations were distinguished between made out of silicate ceramic or oxide ceramic. The questionnaire was handed out to all dentists participating in a local annual dental meeting in Northern Germany. The returned questionnaires were analyzed to identify incorrect cementation procedures based upon current evidence-based technique from the scientific dental literature. The survey was conducted three times in 2007, 2011, and 2015 and their results were compared. For silicate ceramic restorations, 38-69 % of the participants used evidence-based bonding procedures; most of the incorrect bonding methods did not use a silane containing primer. In case of oxide ceramic restorations, most participants did not use air-abrasion prior to bonding. Only a relatively low rate (7-14 %) of dentists used evidence-based dental techniques for bonding oxide ceramics. In adhesive cementation of all-ceramic restorations, the practices of surveyed dentists in Northern Germany revealed high rates of incorrect bonding. During the observation period, the values of evidence-based bonding procedures for oxide ceramics improved while the values for silicate ceramics declined. Based on these results, some survey participants need additional education for adhesive techniques. Neglecting scientifically accepted methods for adhesive cementation of all-ceramic restorations may result in reduced longevity of all-ceramic restorations.

  3. In vitro study of adhesive polymethylmethacrylate bone cement bonding to cortical bone in maxillofacial surgery.

    Science.gov (United States)

    Smeets, Ralf; Marx, Rudolf; Kolk, Andreas; Said-Yekta, Sareh; Grosjean, Maurice B; Stoll, Christian; Tinschert, Joachim; Wirtz, Dieter C; Riediger, Dieter; Endres, Kira

    2010-12-01

    In the treatment of midface fractures, the fragments are immobilized using screws and plates for osteosynthesis until reunion has occurred. This method involves drilling holes for the insertion of the screws, which can be associated with additional fracturing of the corresponding bone owing to the complex architecture and thin layers of facial bone. To alleviate this problem, new adhesive techniques for fixing the plates for osteosynthesis have been investigated, mitigating the detrimental effects of screw hole drilling. In the present experimental study, the strength of this adhesive bond and its resistance to hydrolysis were investigated. To determine the adhesive bonding strength, a tension test was implemented. Osteosynthesis plates with screw holes 1.3 mm in diameter were fixed to cortical bone samples of bovine femur using ultraviolet (UV) light-curing polymethylmethacrylate bone cement. To facilitate bonding, the surface of the bone was conditioned with an amphiphilic bonding agent before cementing. UV light curing was implemented using either a conventional UV unit, such as is used in dentistry, or with a specialized UV unit with a limited emission spectrum but high luminosity. Reference control samples were prepared without application of the bone bonding agent. After this procedure, the samples were stored for 1 to 7 days at 37°C submerged in 0.9% saline solution before being subjected to the tension test. Without the bone bonding agent, the bonding strength was 0.2 MPa. The primary average bonding strength at day 0 was 8.5 MPa when cured with the conventional UV unit and 14 MPa for the samples cured with the specialized UV unit. An almost constant average bond strength of 8 and 16 MPa was noted for all samples stored up to 7 days after curing with the conventional and specialized UV unit, respectively. With the development of a new bone bonding agent, a method is now available to promote the bonding between the hydrophilic bone surface and the

  4. Bonding to dentin: evaluation of three adhesive materials.

    Science.gov (United States)

    Sedighi, H; Davila, J M; Gwinnett, A J

    1992-01-01

    Dye penetration was observed in all specimens. SEM demonstrated isolated areas with no gap formation, suggesting a partial bond with dentin. A correlation is evident from the results of both techniques. Since dye-penetration was found to be similar in all the specimens, it was difficult to assess the effect of thermocycling on the amount of dye penetration. The use of posterior composites should be considered as a short-term tested procedure. It should be utilized carefully, following the manufacturer's instructions, and monitored routinely. Undoubtedly, the utilization of posterior composite materials is a very technique-sensitive procedure. Comparing the results of this in vitro study with those previously reported suggests that little improvement has been made in the bonding of the materials tested. Development of new materials and improved techniques are necessary.

  5. Adhesive Bonding of Neoprene to Metals in Sonar Devices

    Science.gov (United States)

    1989-08-31

    primers. However, the most effective primers contained an epoxy resin similar to the diglycidyl ether of bisphenol-A ( DGEBA ) and 7-AEAPS. In a few cases...289.2 291.2 Table V. Non-Proprietary Primer for Bonding Neoprene to Steel. DGEBA 7.90 grams Carbon Black 2.25 7-AEAPS 1.50 Dowanol PM 45.00 Toluene

  6. Effect of chemomechanical caries removal on bonding of self-etching adhesives to caries-affected dentin.

    Science.gov (United States)

    Hamama, Hamdi Hosni Hamdan; Yiu, Cynthia Kar Yung; Burrow, Michael Frances

    2014-12-01

    To evaluate the effect of enzyme-based (Papacárie) and sodium-hypochlorite-based (Carisolv) chemomechanical caries removal methods on bonding of self-etching adhesives to caries-affected dentin, in comparison to the standard rotary-instrument caries removal method. Seventy-eight carious permanent molars exhibiting frank cavitation into dentin were used. Forty-eight teeth were randomly divided into three groups, according to the caries excavation methods: (i) Papacárie, (ii) Carisolv and (iii) a round steel bur. After caries removal, each group was subdivided into two groups for two-step (Clearfil SE Bond) or one-step (Clearfil S3 Bond) self-etching adhesive application and resin composite buildups. Bonded specimens were sectioned into beams for microtensile bond strength testing. Bond strength data were analyzed using three-way ANOVA and Tukey's test. For interfacial nanoleakage evaluation using a field-emission scanning electron microscope, caries was similarly removed from the remaining thirty carious molars, bonding was performed as for bond strength testing, and the teeth were sectioned. RESULTS of three-way ANOVA revealed that bond strength was significantly affected by "adhesive" (p0.05). The bond strength of the two-step self-etching adhesive was significantly higher than that of the one-step self-etching adhesive (pChemomechanical caries removal did not affect the bonding of self-etching adhesives to caries-affected dentin as compared to caries excavation with rotary instruments.

  7. First-principles calculations of adhesion, bonding and magnetism of the Fe/HfC interface

    Energy Technology Data Exchange (ETDEWEB)

    Si Abdelkader, H., E-mail: hayet.siabdelkader@mail.univ-tlemcen.dz [Laboratoire d' Etude et Prediction des Materiaux, Unite de Recherche Materiaux et Energies Renouvelables. LEPM-URMER. Universite de Tlemcen, Tlemcen 13000 (Algeria); Faraoun, H.I. [Laboratoire d' Etude et Prediction des Materiaux, Unite de Recherche Materiaux et Energies Renouvelables. LEPM-URMER. Universite de Tlemcen, Tlemcen 13000 (Algeria)

    2012-12-15

    First-principles plane-wave pseudopotential calculations of the adhesion, bonding and magnetism of the interface between the ferromagnetic bcc Fe and non-magnetic HfC are performed. The work of adhesion for C- and Hf-site Fe/HfC interfaces is calculated. High adhesion at C-site interface is found and Fe-C polar covalent bonds are formed across the interface. The magnetic moments of Fe atoms at interface are increased in both interfaces. The effect of the magnetism on the electronic structure of Fe/HfC interface is also investigated. It is shown that the change in band of majority-spin leads to enhance the magnetic moment of Fe. - Highlights: Black-Right-Pointing-Pointer Adhesion, electronic and magnetism of Fe(110)/HfC(100) interface are studied. Black-Right-Pointing-Pointer High adhesion at C-site interface is found and Fe-C polar covalent bonds are formed across the interface. Black-Right-Pointing-Pointer The magnetic moments of interfacial Fe atoms are increased in both C-site and Hf-site interfaces.

  8. Does Adhesive Resin Application Contribute to Resin Bond Durability on Etched and Silanized Feldspathic Ceramic?

    NARCIS (Netherlands)

    Passos, Sheila Pestana; Valandro, Luiz Felipe; Amaral, Regina; Ozcan, Mutlu; Bottino, Marco Antonio; Kimpara, Estevao Tomomitsu

    2008-01-01

    Purpose: To assess the effect of adhesive application and aging on the bond durability of resin cement to etched and silanized feldspathic ceramic. Materials and Methods: Twenty blocks (6.4 x 6.4 x 4.8 mm) of feldspathic ceramic (Vita VM7) were produced. The ceramic surfaces were conditioned with 10

  9. Microtensile bond strength of three simplified adhesive systems to caries-affected dentin

    NARCIS (Netherlands)

    Scholtanus, J.D.; Purwanta, K.; Dogan, N.; Kleverlaan, C.J.; Feilzer, A.J.

    2010-01-01

    Purpose: The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Materials and Methods: Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft caries-infect

  10. Fluoride level in saliva after bonding orthodontic brackets with a fluoride containing adhesive

    NARCIS (Netherlands)

    Ogaard, B; Arends, J; Helseth, H; Dijkman, G; vanderKuijl, M

    1997-01-01

    The fluoride level in saliva is considered an important parameter in caries prevention. Elevation of the salivary fluoride level by a fluoride-releasing orthodontic bonding adhesive would most likely be beneficial in the prevention of enamel caries. In this study, the fluoride level in saliva was me

  11. Adhesion to tooth structure: a critical review of "micro" bond strength test methods.

    Science.gov (United States)

    Armstrong, Steve; Geraldeli, Saulo; Maia, Rodrigo; Raposo, Luís Henrique Araújo; Soares, Carlos José; Yamagawa, Junichiro

    2010-02-01

    The objective of this paper is to critically review the literature regarding the mechanics, geometry, load application and other testing parameters of "micro" shear and tensile adhesion tests, and to outline their advantages and limitations. The testing of multiple specimens from a single tooth conserves teeth and allows research designs not possible using conventional 'macro' methods. Specimen fabrication, gripping and load application methods, in addition to material properties of the various components comprising the resin-tooth adhesive bond, will influence the stress distribution and consequently, the nominal bond strength and failure mode. These issues must be understood; as should the limitations inherent to strength-based testing of a complicated adhesive bond joining dissimilar substrates, for proper test selection, conduct and interpretation. Finite element analysis and comprehensive reporting of test conduct and results will further our efforts towards a standardization of test procedures. For the foreseeable future, both "micro" and "macro" bond strength tests will, as well as various morphological and spectroscopic investigative techniques, continue to be important tools for improving resin-tooth adhesion to increase the service life of dental resin-based composite restorations.

  12. Temperature effect on the static behaviour of adhesively-bonded metal skin to composite stiffener

    NARCIS (Netherlands)

    Teixeira De Freitas, S.; Sinke, J.

    2015-01-01

    The purpose of this research is to study the effect of temperature on the static behavior of an hybrid structure consisting of adhesively bonded Fiber Metal Laminate skin to a composite stiffener. This hybrid structure was tested using stiffener pull-off tests, which is a typical set-up used to simu

  13. The effect of different adhesives and setting times on bond strength between Biodentine and composite.

    Science.gov (United States)

    Çolak, Hakan; Tokay, Uğur; Uzgur, Recep; Uzgur, Zeynep; Ercan, Ertuğrul; Hamidi, Mehmet M

    2016-05-18

    The aim of this study was to evaluate the effects of 3 different adhesives with different functional monomers, on the shear bond strength (SBS) of Biodentine®. Acrylic blocks (n = 90) were prepared and a 2-mm height x 4-mm diameter hole was opened in each block. Every hole was completely restored with Biodentine®. Before preparation of composite restorations over the Biodentine® (2-mm height x 2-mm diameter), 3 different adhesives (Etch-37 (37%) w/BAC by Bisco & Prime Bond N&T, Clearfil S3 Bond and Adper Prompt L-Pop) were applied. SBS was evaluated using a universal testing machine, and failure mode for each sample was recorded. The results were statistically analyzed using 2-way ANOVA and post hoc Tukey test. When the megapascal values of all groups were compared, although there was no statistically significant difference in the different setting times (p>0.05), statistically significant differences were observed among all adhesive groups (p<0.05). Moreover, the highest SBS values were observed in the Clearfil S3 Bond group. Clinical performance of Biodentine® may be affected by adhesive procedures and its setting time.

  14. Fluoride level in saliva after bonding orthodontic brackets with a fluoride containing adhesive

    NARCIS (Netherlands)

    Ogaard, B; Arends, J; Helseth, H; Dijkman, G; vanderKuijl, M

    The fluoride level in saliva is considered an important parameter in caries prevention. Elevation of the salivary fluoride level by a fluoride-releasing orthodontic bonding adhesive would most likely be beneficial in the prevention of enamel caries. In this study, the fluoride level in saliva was

  15. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the contac

  16. Microtensile bond strength of three simplified adhesive systems to caries-affected dentin

    NARCIS (Netherlands)

    Scholtanus, J.D.; Purwanta, K.; Dogan, N.; Kleverlaan, C.J.; Feilzer, A.J.

    2010-01-01

    Purpose: The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Materials and Methods: Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft

  17. Microtensile Bond Strength of Three Simplified Adhesive Systems to Caries-affected Dentin

    NARCIS (Netherlands)

    Scholtanus, Johannes; Purwanta, Kenny; Dogan, Nilgun; Kleverlaan, Cees J.; Feilzer, Albert J.

    Purpose: The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Materials and Methods: Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft

  18. Microtensile Bond Strength of Three Simplified Adhesive Systems to Caries-affected Dentin

    NARCIS (Netherlands)

    Scholtanus, Johannes; Purwanta, Kenny; Dogan, Nilgun; Kleverlaan, Cees J.; Feilzer, Albert J.

    2010-01-01

    Purpose: The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Materials and Methods: Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft caries-infect

  19. Effect of Repeated Container Lid Opening on Dentin Shear Bond Strength of Two Dentin Adhesive Systems

    Directory of Open Access Journals (Sweden)

    H. Hassanzadeh

    2008-03-01

    Full Text Available Objective: Comparing the effect of repeated opening of the container lid of two dentin adhesive systems, Prime&Bond NT (P&B NT and iBond (iB, on shear bond strength.Materials and Methods: Intact bovine lower incisors (n=60, fixed in acrylic were ran-domly divided into six groups (n=10. Groups I and II were set as control groups. P&B NT and iB were applied on the samples after five days a week, three times a day for two weeks of use in groups III and VI; and after four weeks of use in groups V and VI. The samples were evaluated by a universal testing-machine (Instron, cross-head speed 1mm/min and stereomicroscope.Results: There was no significant difference between the bond strengths in any of the three P&B NT. The mean amount of the shear bond strength for iB after 60 times of use (15.31 MPa was significantly lowerthan that at the baseline (23.51 MPa. There was no significant difference between iB at the baseline and after 30 times of use (19.26 Mpa, and also between iB after 30 times of use and after 60 times of use. All P&B NT groups showed significantly highershear bond strengths when compared with their similar iB groups in iB.Conclusion: Repeated use (60 times of the all-in-one adhesive container seems to reduce dentin shear bond strength. Therefore, containers with a lower content of the same adhe-sive or a single-dose of the adhesive are preferred.

  20. Physico-mechanical properties of plywood bonded with ecological adhesives from Acacia mollissima tannins and lignosulfonates

    Science.gov (United States)

    Rhazi, Naima; Oumam, Mina; Sesbou, Abdessadek; Hannache, Hassan; Charrier-El Bouhtoury, Fatima

    2017-06-01

    The objective of this research was to develop ecological adhesives for bonding plywood panels using lignosulfonates, a common waste product of the wood pulp industry, and natural tannin extracted from Moroccan bark of Acacia mollissima using different process. Natural tannin and lignin were used in wood adhesives formulation to substitute resins based on phenol and formaldehyde. To achieve this, the lignosulfonates were glyoxalated to enhance their reactivity and the used tannins obtained by three different extraction methods were compared with commercial mimosa tannin. The proportion of Acacia mollissima tannins and lignosulfonates, the pressing time, the pressing temperature, and the pressure used were studied to improve mechanical properties, and bonding quality of plywood panel. The properties of plywood panels produced with these adhesives were tested in accordance with normative tests. Thus, the tensile strength, and the shear strength were measured. The results showed that the performance of the plywood panels made using biobased tannin adhesives was influenced by physical conditions such as pressure, press temperature as well as by chemical conditions, such as the tannin-lignin ratio. It exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. This study showed that biobased adhesives formulations presented good and higher mechanical performance and no formaldehyde emission. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  1. Improvement of mechanical properties of polylactic acid adhesion joints with bio-based adhesives by using air atmospheric plasma treatment

    OpenAIRE

    Jordá Vilaplana, Amparo; Sánchez Nacher, Lourdes; Fombuena Borrás, Vicent; García García, Daniel; Carbonell Verdú, Alfredo

    2015-01-01

    The packaging industry generates a high volume of wastes; so that, there is a high demand of biodegradable materials, which do not damage the environment. Nowadays, there is an interesting consumption of polylactic acid (PLA) due to its biodegradable features. This work focuses on the improvement of mechanical properties of PLA adhesion joints for uses in the packaging industry. In order to achieve that purpose, atmospheric plasma treatment is used to selectively modify PLA surface properties...

  2. Effect of Nanofiller Addition to an Experimental Dentin Adhesive on Microtensile Bond Strength to Human Dentin

    Directory of Open Access Journals (Sweden)

    SH. Kasraei

    2009-06-01

    Full Text Available Objective: The purpose of the study was to evaluate the influence of adding nanofiller particles to a dentin bonding agent on resin-dentin bond strength.Materials and Methods: Fifty-four human intact premolar teeth were divided in to 6 groups of nine. The teeth were ground on occlusal surfaces and polished with 320 and then 600 grit silicon carbide papers. An experimental bonding system based on acetone/alcoholsolvent was provided with filler contents of 0.0, 0.5, 1.0, 2.5, 5.0, and 10.0 weight percent fumed silica nanofiller. After dentin surface etching, rinsing and blot drying, the experimentalbonding agents were applied to dentin surface. A composite resin was, then,bonded to the dentin on the bonding agent. The specimens were thermocycled for 500 cycles and sectioned in stick form. After two week of storage in distilled water, resin-dentin microtensile bond strength of the specimens was measured. Data were analyzed by one way ANOVA and DunnettT3 tests.Results: Bond strength to dentin was significantly affected by the filler level. Minimum and maximum resin-microtensile bond strength was in the experimental bonding agent with no filler (5.88 MPa and with filler level of 1.0 weight percent (15.15 MPa, respectively,and decreased with the increase of filler content down to 8.95 MPa for the filler level of 10.0 weight percent.Conclusion: Filler content seems to be one of the important factors influencing the bond strength of dental adhesives. Maximum dentin bond strength was obtained with 1% silanized nanofiller silica added to experimental adhesive system.

  3. Influence of a hydrophobic resin coating on the bonding efficacy of three universal adhesives.

    Science.gov (United States)

    Muñoz, Miguel Angel; Sezinando, Ana; Luque-Martinez, Issis; Szesz, Anna Luiza; Reis, Alessandra; Loguercio, Alessandro D; Bombarda, Nara Hellen; Perdigão, Jorge

    2014-05-01

    To evaluate the effect of an additional hydrophobic resin coating (HE) on the resin-dentine microtensile bond strengths (μTBS), nanoleakage (NL), and in situ degree of conversion (DC) of three universal adhesives used in the etch-and-rinse (ER) and the self-etch (SE) modes. Sixty caries-free extracted third molars were divided into 12 groups according to the combination of the factors adhesive (All-Bond Universal [ABU]; G-Bond Plus [GBP] and Scotchbond Universal [SBU]), adhesive strategy (ER and SE), and the use of HE (Heliobond; yes or no). After restorations were constructed, specimens were stored in water (37°C/24h) and sectioned into resin-dentine beams (0.8mm(2)) to be tested under tension (0.5mm/min). Selected beams from each tooth were used for DC quantification and for NL evaluation. Data from each adhesive were analyzed with two-way ANOVA and Tukey's test (α=0.05). ABU and GBP resulted in higher μTBS in the ER mode. The use of HE increased the μTBS of ABU and GBP only in the SE mode. Lower NL was observed for SBU and ABU in the ER mode+HE, and for GBP in the SE mode+HE. SBU and GBP showed higher DC when used in the ER mode, which was increased with HE application. The DC of ABU was similar in all conditions. The conversion of 1-step SE to 2-step SE may increase the μTBS and DC of current universal adhesives. The reduction in the NL is more dependent on the adhesive composition than on the bonding strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of caries infiltrant application on shear bond strength of different adhesive systems to sound and demineralized enamel.

    Science.gov (United States)

    Jia, Liuhe; Stawarczyk, Bogna; Schmidlin, Patrick R; Attin, Thomas; Wiegand, Annette

    2012-12-01

    To investigate the influence of caries infiltrant application on the shear bond strength of different adhesives on sound and demineralized enamel. Sound and artificially demineralized (14 days, acidic buffer, pH 5.0) bovine enamel specimens were treated with a caries infiltrant (Icon, DMG), three different commercial adhesives (unfilled etch and- rinse adhesive: Heliobond, Ivoclar Vivadent; filled etch-and-rinse adhesive: Optibond FL, Kerr; or self-etching adhesive: iBOND Self Etch, Heraeus Kulzer) or a combination of caries infiltrant and adhesive. The shear bond strength of a nanohybrid composite was analyzed after thermocycling (5000x, 5° to 55°C) at a crosshead speed of 1 mm/min. Failure mode was inspected under a stereomicroscope at 25X magnification. In both sound and demineralized enamel, the shear bond strength of the caries infiltrant was not significantly different from the etch-and-rinse adhesives, while the self-etching adhesive showed significantly lower values compared to all other groups. Pretreatment with the caries infiltrant significantly increased the bond strength of the self-etching adhesive in both substrates and of the filled etch-and-rinse adhesive in demineralized enamel. While shear bond strength was not significantly different between the two substrates, cohesive failures were more likely to occur in demineralized than sound specimens. The shear bond strength of the caries infiltrant was similar to the etch-and-rinse adhesives. The caries infiltrant did not impair bonding to sound or demineralized enamel, and even increased adhesion of the selfetching agent.

  5. An In Vitro Study of the Bond Strength of Five Adhesives Used for Vinyl Polysiloxane Impression Materials and Tray Materials

    OpenAIRE

    Kumar, Surender; Gandhi, Udey Vir; Banerjee, Saurav

    2013-01-01

    Although stock trays often provide mechanical retention for elastomeric impression materials, manufacturers typically recommend the use of an adhesive, whether a stock or custom tray is used. The mention of the bond strength on the adhesive packaging is not available, therefore the clinician has no idea whatsoever of the ideal adhesive. The aim of this study was to evaluate the bond strength of three vinyl polysiloxane (VPS) materials, one with a poly(methyl methacrylate) autopolymerizing (PM...

  6. One-day bonding effectiveness of new self-etch adhesives to bur-cut enamel and dentin.

    Science.gov (United States)

    De Munck, Jan; Vargas, Marcos; Iracki, Jacek; Van Landuyt, Kristen; Poitevin, André; Lambrechts, Paul; Van Meerbeek, Bart

    2005-01-01

    Self-etch adhesives try to solve difficulties commonly associated with the clinical application of etch-and-rinse adhesives. Their application procedure is considered less time-consuming and, more importantly, less technique-sensitive. The main objective of this study was to determine the bonding effectiveness to and the interaction with enamel/dentin of three contemporary one- and two-step self-etch adhesives by microtensile bond strength testing (microTBS), Fe-SEM and TEM when compared to a control two-step self-etch and a three-step etch-and-rinse adhesive. The one-step self-etch adhesive, Adper Prompt (3M ESPE), scored the lowest microTBS of all experimental and control adhesives tested. Conversely, the two-step self-etch adhesives Clearfil SE (Kuraray) and OptiBond Solo Plus Self-Etch (Kerr) approached the values obtained by the three-step etch-and-rinse control (OptiBond FL, Kerr) when bonded to enamel and dentin. Ultramorphological characterization showed that interfacial morphology and the pH of the self-etch primer/adhesive are strongly associated. The interaction with dentin varied from the formation of a submicron, hydroxyapatite-containing hybrid layer for the "mild" self-etch adhesive Clearfil SE to a 3-5 microm thick, hydroxyapatite-depleted hybrid layer for the "strong" self-etch adhesive Adper Prompt. The two-step self-etch adhesives AdheSE and OptiBond Solo Plus Self-Etch presented with a hybrid layer with a hydroxyapatite-depleted top part and a hydroxyapatite-containing base part and were therefore classified into a new group of self-etch adhesives, namely "intermediary strong" self-etch adhesives.

  7. Comparative Shear-Bond Strength of Six Dental Self-Adhesive Resin Cements to Zirconia

    Directory of Open Access Journals (Sweden)

    Si-Eun Lee

    2015-06-01

    Full Text Available This study compared shear bond strength (SBS of six self-adhesive resin cements (SARC and one resin-modified glass ionomer cement (RMGIC to zirconia before and after thermocycling. The cylinder shape (Φ 2.35 mm × 3 mm of six SARCs (G-CEM LinkAce (GLA, Maxcem Elite (MAX, Clearfil SA Luting (CSL, PermaCem 2.0 (PM2, Rely-X U200 (RXU, Smartcem 2 (SC2 were bonded to the top surface of the zirconia specimens with light-curing. RMGIC (Fujicem (FJC was bonded to the specimens with self-curing. The shear bond strength of all cemented specimens was measured with universal testing machine. Half of the specimens were thermocycled 5000 times before shear bonding strength testing. Fractured surfaces were examined with a field-emission SEM (10,000× and analyzed by energy dispersive x-ray analysis. MAX, PM2, SC2 group without thermocycling and GLA, MAX, PM2 group with thermocycling showed adhesive failure, but GLA, CSL, RXU, FJC group without thermocycling and SLC, RXU, SC2, FJC group with thermocycling indicated cohesive failure. Within the limitation of this study, All of SARCs except MAX demonstrated higher bond strength than that of RMGIC regardless of thermocycling. Also, SARC containing MDP monomers (CSL retained better bonds than other cements.

  8. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    Directory of Open Access Journals (Sweden)

    Fernanda de Souza Henkin

    Full Text Available ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM. Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM to 9.871 ± 5.106 MPa (TecnidentTM. The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface.

  9. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    Science.gov (United States)

    Henkin, Fernanda de Souza; de Macêdo, Érika de Oliveira Dias; Santos, Karoline da Silva; Schwarzbach, Marília; Samuel, Susana Maria Werner; Mundstock, Karina Santos

    2016-01-01

    ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI) of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM). Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM) to 9.871 ± 5.106 MPa (TecnidentTM). The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface. PMID:28125142

  10. In vivo bonding of orthodontic brackets to fluorosed enamel using an adhesion promotor.

    Science.gov (United States)

    Noble, James; Karaiskos, Nicholas E; Wiltshire, William A

    2008-03-01

    To determine the success of bracket retention using an adhesion promoter with and without the additional microabrasion of enamel. Fifty-two teeth with severe dental fluorosis were bonded in vivo using a split-mouth design where the enamel surfaces of 26 teeth were microabraded with 50 microm of aluminum silicate for 5 seconds under rubber dam and high volume suction. Thirty-seven percent phosphoric acid was then applied to the enamel, washed and dried, and followed by placement of Scotchbond Multipurpose Plus Bonding Adhesive. Finally, precoated 3M Unitek Victory brackets were placed and light cured. The remaining teeth were bonded using the same protocol but without microabrasion. After 9 months of intraoral service, only one bond failure occurred in the control group where microabrasion was used. Chi-square analysis revealed P = .31, indicating no statistical significance between the two groups. Bonding orthodontic attachments to fluorosed enamel using an adhesion promoter is a viable clinical procedure that does not require the additional micro-mechanical abrasion step.

  11. Long-term bond strength of adhesive systems applied to etched and deproteinized dentin

    Directory of Open Access Journals (Sweden)

    Ninoshka Uceda-Gómez

    2007-12-01

    Full Text Available The aim of this study was to evaluate the early and 12-month bond strength of two adhesive systems (Single Bond-SB and One Step-OS applied to demineralized dentin (WH and demineralized/NaOCl-treated dentin (H. Twenty flat dentin surfaces were exposed, etched, rinsed and slightly dried. For the H groups, a solution of 10% NaOCl was applied for 60 s, rinsed (15 s and slightly dried. The adhesives were applied according to the manufacturer's instructions and composite resin crowns were incrementally constructed. After 24 h (water-37ºC, the specimens was sectioned in order to obtain resin-dentin sticks (0.8 mm². The specimens were tested in microtensile (0.5 mm/min immediately (IM or after 12 months of water storage (12M. The data (MPa were subjected to ANOVA and Tukey's test (a=0.05. Only the main factors adhesive and time were significant (p=0.004 and p=0.003, respectively. SB (42.3±9.1 showed higher bond strengths than OS (33.6±11.6. The mean bond strength for IM-group (42.5±8.7 was statistically superior to 12M (33.3±11.8. The use of 10% NaOCl, after acid etching, did not improve the immediate and the long-term resin-dentin bond strength.

  12. Influence of fluoride-containing adhesives and bleaching agents on enamel bond strength

    Directory of Open Access Journals (Sweden)

    Vanessa Cavalli

    2012-12-01

    Full Text Available This study evaluated the influence of fluoride-containing carbamide peroxide (CP bleaching agents and adhesive systems on bonded enamel interfaces that are part of the dynamic pH cycling and thermal cycling models. The buccal surfaces of 60 bovine incisors were restored with a composite resin and bonded with three- and two-step, etch-and-rinse, fluoride-containing adhesives, Optibond FL (FL and Optibond Solo Plus (SP, respectively. Restored teeth were subjected to thermal cycling to age the interface. Both SP and FL adhesive-restored teeth were bleached (n = 10 with 10% CP (CP and 10% CP + fluoride (CPF or were left unbleached (control. Bleaching was performed for 14 days simultaneously with pH cycling, which comprised of 14 h of remineralization, 2 h of demineralization and 8 h of bleaching. The control groups (FL and SP were stored in remineralizing solution during their bleaching periods and were also subjected to carious lesion formation. Parallelepiped-shaped samples were obtained from the bonded interface for microtensile bond strength (∝TBS testing. The enamel ∝TBS of the FL and SP groups (control, not bleached were higher (p FL + CPF = FL + CP and SP > SP + CPF = SP + CP. The groups subjected to treatment with the fluoride-containing bleaching agents exhibited similar ∝TBS compared to regular bleaching agents. Bleaching agents, regardless of whether they contained fluoride, decreased enamel bond strength.

  13. Influence of fluoride-containing adhesives and bleaching agents on enamel bond strength.

    Science.gov (United States)

    Cavalli, Vanessa; Liporoni, Priscila Cristiane Suzy; Rego, Marcos Augusto do; Berger, Sandrine Bittencourt; Giannini, Marcelo

    2012-01-01

    This study evaluated the influence of fluoride-containing carbamide peroxide (CP) bleaching agents and adhesive systems on bonded enamel interfaces that are part of the dynamic pH cycling and thermal cycling models. The buccal surfaces of 60 bovine incisors were restored with a composite resin and bonded with three- and two-step, etch-and-rinse, fluoride-containing adhesives, Optibond FL (FL) and Optibond Solo Plus (SP), respectively. Restored teeth were subjected to thermal cycling to age the interface. Both SP and FL adhesive-restored teeth were bleached (n = 10) with 10% CP (CP) and 10% CP + fluoride (CPF) or were left unbleached (control). Bleaching was performed for 14 days simultaneously with pH cycling, which comprised of 14 h of remineralization, 2 h of demineralization and 8 h of bleaching. The control groups (FL and SP) were stored in remineralizing solution during their bleaching periods and were also subjected to carious lesion formation. Parallelepiped-shaped samples were obtained from the bonded interface for microtensile bond strength (μTBS) testing. The enamel μTBS of the FL and SP groups (control, not bleached) were higher (p FL > FL + CPF = FL + CP and SP > SP + CPF = SP + CP). The groups subjected to treatment with the fluoride-containing bleaching agents exhibited similar μTBS compared to regular bleaching agents. Bleaching agents, regardless of whether they contained fluoride, decreased enamel bond strength.

  14. The effect of double-coating and times on the immediate and 6-month dentin bonding of universal adhesives.

    Science.gov (United States)

    Pashaev, Diial; Demirci, Mustafa; Tekçe, Neslihan; Tuncer, Safa; Baydemir, Canan

    2017-01-01

    The purpose of this study was to evaluate the effect of double-application coats and times on microtensile bond strength (μTBS) and adhesive-dentin interfaces created by dentin adhesive systems after 6 months of storage in water. Two-hundred sixteen extracted non-carious human third molars were selected for the study. Single-Bond Universal (SU) and All-Bond Universal (AU), Adper Easy One (Eo) Self-Etch adhesive and Adper Single-Bond 2 (Sb) etch-and-rinse adhesive were applied to a flat dentin surface using three methods (1): dentin adhesives were applied as recommended by the manufacturers; (2): two consecutive coats of dentin adhesives were applied before photo-polymerization; and (3): a single coat of adhesive was applied but with twice the manufacturers recommended application time. Microtensile bond strength was determined either immediately or after 6 months of water storage. Data were analyzed using one-way analysis of variance and Tukey's post-hoc tests. At 24 h, groups 1, 2, and 3 exhibited statistically similar results for all dentin adhesive systems. For AU-Er, group 3 showed significantly higher bond strength than all group of AU-Se after 6 months. Universal adhesives seemed more stable against water degradation than traditional two-step etch-and-rinse and all-in-one systems within the 6-month period.

  15. Bond strength between composite resin and resin modified glass ionomer using different adhesive systems and curing techniques.

    Science.gov (United States)

    Boruziniat, Alireza; Gharaei, Samineh

    2014-03-01

    To evaluate bond strength between RMGI and composite using different adhesive systems and curing techniques. Sixty prepared samples of RMGI were randomly divided into six groups according to adhesive systems (total-etch, two-step self-etch and all-in-one) and curing techniques (co-curing and pre-curing). In co-curing technique, the adhesive systems were applied on uncured RMGI samples and co-cured together. In the pre-curing technique, before application of adhesive systems, the RMGI samples were cured. Composite layers were applied and shear bond strength was measured. Two samples of each group were evaluated by SEM. Failure mode was determined by streomicroscope. Both curing methods and adhesive systems had significant effect on bond strength (P-value adhesives had significantly higher shear bond strength than the total-etch adhesive (P-value adhesives, but decreased the bond strength in total-etch adhesive (P-valueadhesive systems and co-curing technique can improve the bond strength between the RMGI and composite.

  16. Influence of dentin contamination by temporary cements on the bond strength of adhesive systems

    Directory of Open Access Journals (Sweden)

    Josimeri Hebling

    2009-01-01

    Full Text Available Objective: The aim of this study was to assess the bond strength of adhesive systems to dentin contaminated by temporary cements with or without eugenol. Method: Flat dentin surfaces were obtained from twenty-four human third molars. With exception of the control group (n=8, the surfaces were covered with Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA or Cavit (3M ESPE, St. Paul, MN, USA and kept in an oven at 37oC for seven days. After removing the cements, the adhesive systems Adper Single Bond (3M ESPE, St. Paul, MN, USA or Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan were applied in accordance with the manufacturers’ recommendations, and then the crowns were constructed in of resin composite. The teeth were sectioned into specimens with a cross-sectional bond area of 0.81mm2, which were sub mitted to microtensile testing in a mechanical test machine at an actuator speed of 0.5mm/min. The data were analyzed by t- and ANOVA tests, complemented by Tukey tests (α=0.05. Results: For Adper Single Bond (3M ESPE, St. Paul, MN, USA, bond strength did not differ statistically (p>0.05 for all the experimental conditions. For Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan, only the Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA Group showed significantly lower bond strength (30.1±13.8 MPa in comparison with the other groups; control (38.9±13.5 MPa and Cavit (3M ESPE, St. Paul, MN, USA (42.1±11.0 MPa, which showed no significant difference between them.Conclusion: It was concluded that the previous covering of dentin with temporary cement containing eugenol had a deleterious effect on the adhesive performance of the self-etching system only.

  17. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  18. Effect of laser preparation on bond strength of a self-adhesive flowable resin.

    Science.gov (United States)

    Yazici, A Rüya; Agarwal, Ishita; Campillo-Funollet, Marc; Munoz-Viveros, Carlos; Antonson, Sibel A; Antonson, Donald E; Mang, Thomas

    2013-01-01

    The aim of this in vitro study was to evaluate the effect of laser treatment on shear bond strength of a self-adhesive flowable resin composite to human dentin. Eighty extracted sound human molar teeth were used for the study. The teeth were sectioned mesiodistally and embedded in acrylic blocks. The dentin surfaces were ground wet with 600-grit silicon carbide (SiC) paper. They were randomly divided into two preparation groups: laser (Er:YAG laser, with 12 Hz, 350 mJ energy) and control (SiC). Each group was then divided into two subgroups according to the flowable resin composite type (n = 20). A self-adhesive flowable (Vertise Flow) and a conventional flowable resin (Premise Flow) were used. Flowable resin composites were applied according to the manufacturer's recommendations using the Ultradent shear bond Teflon mold system. The bonded specimens were stored in water at 37 °C for 24 h. Shear bond strength was tested at 1 mm/min. The data were logarithmically transformed and analyzed using two-way analysis of variance and Student-Newman-Keul's test at a significance level of 0.05. The self-adhesive flowable resin showed significantly higher bond strength values to laser-prepared surfaces than to SiC-prepared surfaces (p flowable resin did not show such differences (p = 0.224). While there was a significant difference between the two flowable resin composites in SiC-prepared surfaces (p flowable resin composite differs according to the type of dentin surface preparation. Laser treatment increased the dentin bonding values of the self-adhesive flowable resin.

  19. Effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.

    Directory of Open Access Journals (Sweden)

    Lin Hu

    Full Text Available This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by calculating their Pearson's correlation coefficient.Aging induced time-dependent reduction in micro-tensile bond strengths for all the tested adhesive systems, although such reduction for the single-step self-etching adhesive G-Bond (GB was not statistically significant. The bond strength of the two-step self-etching primer adhesive system Clearfil SE Bond (SEB was similar to that of the two-step etch-and-rinse self-priming adhesive system Single Bond 2 (SB, and they were both significantly reduced after one or four months of aging. A negative correlation was found between the degree of collagen degradation and magnitude of micro-tensile bond strength (r = -0.65, p = 0.003. The Pearson's correlation coefficient was 0.426, indicating that 42.6% of the aging-induced reduction in bond strength can be explained by the degradation of collagen.In the early phase of dentin bonding, there was a negative correlation between the degree of collagen degradation and the magnitude of micro-tensile bond strength. The reduction of bond strength was accompanied by the degradation of collagen. These results provide evidence for the causative relationship between the degradation of collagen and the deterioration of dentin-adhesive interface.

  20. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fengfeng; Ruan, Hongjiang [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Fan, Cunyi, E-mail: fancunyi888@hotmail.com [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Zeng, Bingfang; Wang, Chunyang; Wang, Xiang [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China)

    2010-01-01

    Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which extracellular signal-regulated kinase (ERK)2 is considered to be crucial. Based on these theories, we examined the effects of a lentivirus-mediated small interfering RNA (siRNA) targeting ERK2 on the suppression of joint adhesion formation in vivo. The effects were assessed in vivo from different aspects including the adhesion score, histology and joint contracture angle. We found that the adhesions in the ERK2 siRNA group became soft and weak, and were easily stretched. Accordingly, the flexion contracture angles in the ERK2 siRNA group were also reduced (P < 0.05 compared with the control group). The animals appeared healthy, with no signs of impaired wound healing. In conclusion, local delivery of a lentivirus-mediated siRNA targeting ERK2 can ameliorate joint adhesion formation effectively and safely.

  1. Do matrix metalloproteinase inhibitors improve the bond durability of universal dental adhesives?

    Science.gov (United States)

    Tekçe, Neslihan; Tuncer, Safa; Demirci, Mustafa; Balci, Sibel

    2016-11-01

    The aim of this study was to evaluate the effects of matrix metalloproteinases (MMPs) inhibitors on the microtensile bond strength (μTBS) and the adhesive-dentin interface of two universal dentin bonding agents, Single Bond Universal and All Bond Universal, after 12 months of water storage. Seventy extracted, caries-free, human third molars were used in this study. Of these, 50 were used for μTBS testing and 20 were used for scanning electron microscopy. The two bonding agents were applied to flat dentin surfaces in five different ways: self-etch mode, etch-and-rinse mode with 37% phosphoric acid, etch-and-rinse mode with phosphoric acid containing 1% benzalkonium chloride, etch-and-rinse mode with phosphoric acid and 2% chlorhexidine, and etch-and-rinse mode with 0.5 M ethylenediaminetetraacetic acid (EDTA) (n = 5 for each bonding agent in each group; N = 50). Half the specimens were subjected to μTBS tests at 24 h, while half were subjected to the tests after 12 months of water storage. For each bonding agent, inhibition, storage, and their interaction effects were tested by two-way analysis of variance and Bonferroni tests. For Single Bond Universal, the benzalkonium chloride (p = 0.024) and chlorhexidine groups (p = 0.033) exhibited significantly higher μTBS values at 24 h compared with the self-etch group. For All Bond Universal, all groups displayed similar bond strengths at 24 h (p > 0.05). After 12 months of water storage, the μTBS values decreased significantly in the benzalkonium chloride group for Single Bond Universal (p = 0.001) and the self-etch (p = 0.029), chlorhexidine (p = 0.046), and EDTA (p = 0.032) groups for All Bond Universal. These results suggest that the immediate dentin bond strength increases when universal bonding systems are applied in the etch-and-rinse mode, although the durability decreases. The use of chlorhexidine and EDTA can increase the bond durability of mild adhesives such as

  2. Shear bond strengths and microleakage of four types of dentin adhesive materials.

    Science.gov (United States)

    Ateyah, Nasrien Z; Elhejazi, Ahmed A

    2004-02-15

    The aim of this investigation was to compare the microleakage of composite resin (Z-100) and shear bond strength to bovine dentin using different types of adhesive systems (Scotch Bond Multi-Purpose, All-Bond 2, One-Step, and Perma Quick) to compare and correlate microleakage to shear bond strength. For the microleakage aspect of the study, 20 class V were prepared (bovine incisors) with 90-degree cavosurface margins and were located at the cemento-enamel junction using a template. Each dentin bonding system was applied to five cavities following the manufacturer's instructions and restored with Z-100 composite resin. After 24 hours of storage in distilled water at 37 degrees C, the teeth were immersed in 2% basic fuchsin dye. All teeth were sectioned in a mesiodistal direction using a diamond saw, and each section was then inspected under a stereomacroscope. For the shear bond strength aspect of the study, 20 bovine incisors were centrally horizontally mounted in Teflon mold with cold cure acrylic resin. Flat labial dentin surfaces were prepared using different grit silicon carbide abrasive wheels. Five specimens were used for each of the bonding agent systems. Each specimen was bonded with restorative composite resin (Z-100) and applied to the treated dentinal surface through a split Teflon mold. All specimens were stored in distilled water at 37 degrees C for 24 hours. The bonds were stressed using shear forces at a crosshead speed of 0.5mm/min using an Instron Universal testing machine. Findings indicate none of the systems tested in this study were free from microleakage. Scotch bond multi-purpose achieved the best seal, with One-Step being second best, while All-Bond 2 and Perma Quick had the poorest seal. However, there were significant differences among the shear bond strengths of the four bonding systems tested. Scotch Bond Multi-Purpose has a higher bond strength to composite resin when compared to the other dentin adhesives. The study also concluded

  3. Fabrication, testing and analysis of steel/composite DLS adhesive joints

    DEFF Research Database (Denmark)

    Hashim, S.; Berggreen, Christian; Tsouvalis, N.;

    2011-01-01

    This paper describes experimental and numerical techniques to study the structural design of double lap shear joints that are based on thick-adherend steel/steel and steel/composite, with epoxy adhesive. A standard practical fabrication method was used to produce specimens of various dimensions...... the importance of modelling the composite layers adjacent to the adhesive bondline in order to account for the critical local stresses. The FEA results also showed that overall shear stress distributions can be used to characterise joint failure. The paper presents the experimental and numerical details with key...

  4. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel.

    Science.gov (United States)

    Abed Kahnemooyi, Mehdi; Ajami, Amir Ahmad; Kimyai, Soodabeh; Pournaghiazar, Fatemeh; Savadi Oskoee, Siavash; Mhammadi Torkani, Mohammad Ali

    2014-01-01

    Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A-D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultra-structural evaluation. Two-way ANOVA and Tukey test were used for data analysis at Padhesive system type and surface preparation protocol was significant (P=0.014), withsignificant differences in shear bond strengths in terms of the adhesive systems (Padhesive system (Padhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for10 minutes restored the bond strength in both adhesive systems.

  5. IMPACTS OF DIFFERENT JOINT ANGLES AND ADHESIVES ON DIAGONAL TENSION PERFORMANCES OF BOX-TYPE FURNITURE

    Directory of Open Access Journals (Sweden)

    Musa Atar

    2010-02-01

    Full Text Available The goal of this study was to determine the effects of different joint angles and adhesives on diagonal tension performances of the box-type furniture made from solid wood and medium density fiberboard (MDF. After drilling joints of 75º, 78º, 81º, 84º, and 87º degrees on Oriental beech, European oak, Scotch pine, and MDF samples, a diagonal tensile test was applied on corners glued with polyvinyl acetate (PVAc and polyurethane (D-VTKA = Desmodur-Vinyl Trieketonol Acetate according to ASTM D 1037 standard. With reference to the obtained results, the highest tensile strength was obtained in European oak with PVAc glue and joint angle of 84º, while the lowest value was obtained in MDF with D-VTKA glue and joint angle of 75º. Considering the interaction of wood, adhesive, and joint angle, the highest tensile strength was obtained in European oak with joint angle of 81º and D-VTKA glue (1.089 N.mm-2, whereas the lowest tensile strength was determined in MDF with joint angle of 75º and PVAc glue (0.163 N.mm-2. Therefore, PVAc as glue and 81º as joint angle could be suggested to obtain some advantageous on the dovetail joint process for box-type furniture made from both solid wood and MDF.

  6. Influence of different intrapulpal pressure simulation liquids on the microtensile bond strength of adhesive systems to dentin.

    Science.gov (United States)

    Mobarak, Enas H; El-Deeb, Heba A; Yousry, Mai M

    2013-12-01

    To evaluate the effect of three different liquids used for intrapulpal pressure (IPP) simulation on the microtensile bond strength (µTBS) of three adhesive systems to dentin. The occlusal surfaces of sound human molars were ground flat down to mid-dentin depth. The teeth were bonded under 15 mmHg simulated IPP using distilled water, phosphate buffered saline, or human plasma as a simulating liquid. Three adhesive systems were tested: a single-bottle etch-and-rinse adhesive (SingleBond, 3M ESPE), and two single-step self-etching adhesives (G-Bond, GC) and (iBond, Heraeus Kulzer). Resin composite (Tetric EvoCeram, Ivoclar Vivadent) buildups were made in 2 increments, each 2 mm in height. Specimens were stored in artificial saliva under 20 mmHg IPP at 37°C for 24 h prior to testing. µTBS (n = 15) was tested using a universal testing machine, and failure modes were determined. Data were statistically analyzed using ANOVA and Bonferroni post-hoc tests at p adhesive, distilled water showed significantly higher µTBS compared to plasma and phosphate buffered saline. With G-Bond, no significant difference was found between distilled water and phosphate buffered saline, whereas plasma showed significantly lower µTBS values. In contrast, no significant difference was encountered between the three IPP liquids for iBond adhesive. Predominant modes of failure were adhesive and mixed. A difference in intrapulpal pressure simulating liquids influences the bonding of adhesives to dentin. Etch-and-rinse adhesives are more sensitive to intrapulpal simulating liquids than are self-etching adhesives. Adhesives containing protein-coagulating components perform better with plasma perfusion than those lacking such components.

  7. Shear bond strength of a novel silorane adhesive to orthodontic brackets and unprepared bovine enamel.

    Science.gov (United States)

    Brauchli, Lorenz; Steineck, Markus; Ball, Judith

    2013-02-01

    To evaluate the suitability of a novel epoxy-based resin, Filtek Silorane, for orthodontic bracket bonding on unprepared enamel. Shear forces to bovine enamel were measured for Filtek Silorane and Transbond XT in combination with steel, ceramic, and polymer brackets. For Filtek Silorane, etching was performed with the Silorane self-etching primer alone or an additional previous application of phosphoric acid. Transbond XT (conventional methacrylate) was used for the control group and the enamel was previously etched with 35% phosphoric acid. All samples were thermocycled (1000X, 5°to 55° C). Shear bond testing was done with an Instron 3344 at a crosshead speed of 1 mm/min. In addition, adhesive remnant index (ARI) scores were evaluated. The shear forces showed a weak adhesion of Filtek Silorane to unprepared enamel both with the selfetching primer and conventional etching (0.87 to 4.28 MPa). The shear forces of the control group were significantly higher (7.6 to 16.5 MPa). The ARI scores showed a clear failure at the enamel/adhesive interface for all Filtek Silorane samples. For the combination of Transbond XT and different brackets, the failure was found at the adhesive/bracket interface. The novel epoxy-based resin Filtek Silorane is not appropriate for bonding of brackets to unprepared enamel.

  8. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.

    Science.gov (United States)

    Agirregabiria, M; Blanco, F J; Berganzo, J; Arroyo, M T; Fullaondo, A; Mayora, K; Ruano-López, J M

    2005-05-01

    This paper describes a novel fabrication process based on successive wafer-level bonding and releasing steps for stacking several patterned layers of the negative photoresist EPON SU-8. This work uses a polyimide film to enhance previous low temperature bonding technology. The film acts as a temporary substrate where the SU-8 is photopatterned. The poor adhesion between the polyimide film and SU-8 allows the film to be released after the bonding process, even though the film is still strong enough to carry out photolithography. Using this technique, successive adhesive bonding steps can be carried out to obtain complex 3-D multilayer structures. Interconnected channels with smooth vertical sidewalls and freestanding structures are fabricated. Unlike previous works, all the layers are photopatterned before the bonding process yielding sealed cavities and complex three-dimensional structures without using a sacrificial layer. Adding new SU-8 layers reduces the bonding quality because each additional layer decreases the thickness uniformity and increases the polymer crosslinking level. The effect of these parameters is quantified in this paper. This process guarantees compatibility with CMOS electronics and MEMS. Furthermore, the releasing step leaves the input and the output of the microchannels in contact with the outside world, avoiding the usual slow drilling process of a cover. Hence, in addition to the straightforward integration of electrodes on a chip, this fabrication method facilitates the packaging of these microfluidic devices.

  9. Enhanced antifungal activity by disinfected titanium dioxide nanotubes via reduced nano-adhesion bonds.

    Science.gov (United States)

    Beltrán-Partida, Ernesto; Valdez-Salas, Benjamín; Curiel-Álvarez, Mario; Castillo-Uribe, Sandra; Escamilla, Alan; Nedev, Nicola

    2017-07-01

    We have provided evidence that the beneficial effect of super-oxidized water (SOW) disinfected Ti6Al4V-TiO2 nanotubes (NTs) can reduce bacterial adhesion and biofilm formation. However, the need of antifungal nanostructured surfaces with osteoactive capabilities is an important goal that has been arising for dental implants (DI) applications. Thus, in the present study we isolated and tested the effects of Candida albicans (C. albicans) on disinfected, wetter and nanoroughness NTs compared to a non-modified control. Moreover, we elucidated part of the fungal adhesion mechanism by studying and relating the mycotic adhesion kinetics and the formation of fungal nanoadhesion bonds among the experimental materials, to gain new insight of the fungal-material-interface. Similarly, the initial behavior of human alveolar bone osteoblasts (HAOb) was microscopically evaluated. NTs significantly reduced the yeasts adhesion and viability with non-outcomes of biofilm than the non-modified surface. Cross-sectioning of the fungal cells revealed promoted nano-contact bonds with superior fungal spread on the control alloy interface; meanwhile NTs evidenced decreased tendency along time; suggesting, down-regulation by the nanostructured morphology and the SOW treatment. Importantly, the initial performance of HAOb demonstrated strikingly promoted anchorage with effects of filopodia formation and increased vital cell on NTs with SOW. The present study proposes SOW treatment as an active protocol for synthesis and disinfection of NTs with potent antifungal capability, acting in part by the reduction of nano-adhesion bonds at the surface-fungal interface; opening up a novel route for the investigation of mycotic-adhesion processes at the nanoscale for bone implants applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Investigation of the impact of cleaning on the adhesive bond and the process implications

    Energy Technology Data Exchange (ETDEWEB)

    EMERSON,JOHN A.; GUESS,TOMMY R.; ADKINS,CAROL L. JONES; CURRO,JOHN G.; REEDY JR.,EARL DAVID; LOPEZ,EDWIN P.; LEMKE,PAUL A.

    2000-05-01

    While surface cleaning is the most common process step in DOE manufacturing operations, the link between a successful adhesive bond and the surface clean performed before adhesion is not well understood. An innovative approach that combines computer modeling expertise, fracture mechanics understanding, and cleaning experience to address how to achieve a good adhesive bond is discussed here to develop a capability that would result in reduced cleaning development time and testing, improved bonds, improved manufacturability, and even an understanding that leads to improved aging. A simulation modeling technique, polymer reference interaction site model applied near wall (Wall PRISM), provided the capability to include contaminants on the surface. Calculations determined an approximately 8% reduction in the work of adhesion for 1% by weight of ethanol contamination on the structure of a silicone adhesive near a surface. The demonstration of repeatable coatings and quantitative analysis of the surface for deposition of controlled amounts of contamination (hexadecane and mineral oil) was based on three deposition methods. The effect of the cleaning process used on interfacial toughness was determined. The measured interfacial toughness of samples with a Brulin cleaned sandblasted aluminum surface was found to be {approximately} 15% greater than that with a TCE cleaned aluminum surface. The sensitivity of measured fracture toughness to various test conditions determined that both interfacial toughness and interface corner toughness depended strongly on surface roughness. The work of adhesion value for silicone/silicone interface was determined by a contact mechanics technique known as the JKR method. Correlation with fracture data has allowed a better understanding between interfacial fracture parameters and surface energy.

  11. Selected Methods for Locking Screw Joints, Including the Use of Adhesives, Used in the Helicopter Construction

    Science.gov (United States)

    Rudawska, Anna; Cisz, Sławomir; Warda, Tomasz

    2014-12-01

    The paper presents the problems of preventing screw joints from self-loosening on one of helicopter. The research examines selected locking methods used in aircraft produced by different manufacturers. Experimental tests were performed to investigate the loosening torque of screw joints locked by various devices: cotter pin, locknut, centre punching, self-locking nut and adhesive. A comparative analysis of the investigated locking methods is made with respect to their locking strength and efficiency.

  12. Excimer laser surface modification of coated steel for enhancement of adhesive bonding

    Science.gov (United States)

    Jahani, Hamid R.; Moffat, B.; Mueller, R. E.; Fumo, D.; Duley, W.; North, T.; Gu, Bo

    1998-05-01

    Zinc coated sheet steel in the form of temper rolled galvanize and galvanneal are used extensively in the automotive industry. Through a process of excimer laser surface treatment, we have developed a procedure to significantly enhance the adhesion characteristics of these coated steels. We report here results of processing trials using both XeCl (308 nm) and KrF (248 nm) excimer lasers and a two-part epoxy adhesive (3M DP-460) with a range of processing conditions. Bond strengths are measured by T-peel and shear test methods. Using T-peel tests, bond strength improvements greater than five times than for untreated surfaces have been observed. With the improved surface condition, the bond strength becomes limited by the cohesive strength of the adhesive. Detailed measurements of the physical structure and chemical composition of the excimer laser processed surfaces are presented. The enhancement in bond strength is correlated with the observed changes in physical and chemical structure of the laser processed surfaces. Surface structure is observed using SEM and physical characteristics are quantified using a Talysurf profilometer. The chemical composition of the treated surface has been analysed using XPS and time-of-flight mass spectroscopy.

  13. Damascene patterned metal/adhesive wafer bonding for three-dimensional integration

    Science.gov (United States)

    McMahon, J. Jay

    Wafer bonding of damascene patterned metal/adhesive surfaces is explored for a new three-dimensional (3D) integration technology platform. By bonding a pair of damascene patterned metal/adhesive layers, high density micron-sized vias can be formed for interconnection of fully fabricated integrated circuit (IC) dies at the wafer-level. Such via dimensions increase the areal interconnect density by at least two orders of magnitude over current package and die-stacking approaches to 3D integration. The adhesive field-dielectric produces a high critical adhesion energy bond and has the potential to produce void-free bonded interfaces. This new technology platform has been demonstrated by fabricating and characterizing inter-wafer via-chains on 200 mm diameter Si wafers. Copper and partially cured divinylsiloxane bis-benzocyclobutene (BCB) are selected as the metal and adhesive, respectively, and unit processes for this demonstration are described. Typical alignment tolerance is ˜2 mum, and baseline bonding conditions include vacuum of 5x10-4 mbar, bonding force of 10 kN, and two step bonding temperature of 250°C for 60 min followed by 350°C for 60 min. Integration issues associated with the damascene patterning and the wafer bonding processes are discussed, particularly the resulting topography of damascene patterned Cu/BCB. Cross-sectional investigation of bonded and annealed inter-wafer interconnections provides insight into the Cu-Cu and BCB-BCB bonding interfaces. Inter-wafer specific contact resistance is measured to be on the order of 10-7 O-cm 2 for these via-chains. Several material characterization techniques have been explored to evaluate partially cured BCB as an adhesive field-dielectric. To investigate the critical adhesion energy, Gc, four-point bending is utilized to compare surfaces bonded after chemical-mechanical planarization (CMP) and various post-CMP treatments. The Gc of bonded 50% partially cured BCB is measured to be in the range of 32--44 J

  14. Effect of salivary contamination during different bonding stages on shear dentin bond strength of one-step self-etch and total etch adhesive

    Directory of Open Access Journals (Sweden)

    H. Kermanshah

    2010-09-01

    Full Text Available Objective: This study evaluated the effect of saliva contamination during bonding procedures without removing saliva on shear dentin bond strength of three adhesive generations when rubber dam isolation is not feasible.Materials and Methods: Flat superficial dentin surfaces of seventy-two extracted human molars were randomly divided into three groups (A: Scotch Bond MP Plus (SBMP, B: Single Bond (SB, C: Prompt L-Pop according to the applied adhesives and twelve subgroups (n=6according to the following saliva contamination applied in different bonding steps. The specimens were contaminated with saliva after etching (A1 and B1, after primer application (A2, after adhesive application before polymerization (A3, B2 and C1, and after adhesivepolymerization (A4, B3 and C2. Three subgroups were not contaminated as controls (A5, B4 and C3. Resin composite was placed on dentin subsequently followed by thermocycling.Shear test was performed by Universal testing machine at 0.5 mm/min crosshead speed. The collected data were statically analyzed using one and two-way ANOVA and Tukey HSD.Results: In contrast to SBMP and SB, the mean shear bond strength of Promote L-Pop was not significantly different between contaminated and uncontaminated subgroups. Mean shear bond strengths of SBMP subgroups contaminated after adhesive polymerization or uncontaminated were significantly higher compared to the other two groups (p<0.05.Conclusion: Unlike Promote L-Pop, saliva contamination could reduce shear bond strength of the total-etch adhesives. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesive contaminated with saliva.

  15. Effect of Multiple Coatings of One-step Self-etching Adhesive on Microtensile Bond Strength to Primary Dentin

    Institute of Scientific and Technical Information of China (English)

    Lin Ma; Jian-feng Zhou; Jian-guo Tan; Quan Jing; Ji-zhi Zhao; Kuo Wan

    2011-01-01

    Objective To investigate the effect of multiple coatings of the one-step self-etching adhesive on immediate microtensile bond strength to primary dentin.Methods Twelve caries-free human primary molars were randomly divided into 2 groups with 6 teeth each. In group 1,each tooth was hemisected into two halves. One half was assigned to control subgroup 1,which was bonded with a single-step self-etching adhesive according to the manufacturer's instructions; the other half was assigned to experimental subgroup 1 in which the adhesive was applied three times before light curing. In group 2, the teeth were also hemisected into two halves. One half was assigned to control subgroup 2, which was bonded with the single-step self-etching adhesive according to the manufacturer's instructions; the other half was assigned to experimental subgroup 2 in which three layers of adhesive were applied with light curing each successive layer. Microtensile bond strength was immediately tested after specimen preparation.Results When the adhesive was applied three times before light curing, the bond strength of the experimental subgroup 1 (n=33, 57.49±11.61 MPa) was higher than that of the control subgroup 1 (n=31,49.71±11.43 MPa, P0.05).Conclusion multiple coatings of one-step self-etching adhesive can increase the immediate bond strength to primary dentin when using the technique of light-curing after applying three layers of adhesive.

  16. Effect of EDTA Conditioning and Carbodiimide Pretreatment on the Bonding Performance of All-in-One Self-Etch Adhesives

    Directory of Open Access Journals (Sweden)

    Shipra Singh

    2015-01-01

    Full Text Available Objective. This study evaluated the effect of ethylenediaminetetraacetic acid (EDTA conditioning and carbodiimide (EDC pretreatment on the shear bond strength of two all-in-one self-etch adhesives to dentin. Methods. Flat coronal dentin surfaces were prepared on one hundred and sixty extracted human molars. Teeth were randomly divided into eight groups according to two different self-etch adhesives used [G-Bond and OptiBond-All-In-One] and four different surface pretreatments: (a adhesive applied following manufacturer’s instructions; (b dentin conditioning with 24% EDTA gel prior to application of adhesive; (c EDC pretreatment followed by application of adhesive; (d application of EDC on EDTA conditioned dentin surface followed by application of adhesive. Composite restorations were placed in all the samples. Ten samples from each group were subjected to immediate and delayed (6-month storage in artificial saliva shear bond strength evaluation. Data collected was subjected to statistical analysis using three-way ANOVA and post hoc Tukey’s test at a significance level of p<0.05.  Results and Conclusion. EDTA preconditioning as well as EDC pretreatment alone had no significant effect on the immediate and delayed bond strengths of either of the adhesives. However, EDC pretreatment on EDTA conditioned dentin surface resulted in preservation of resin-dentin bond strength of both adhesives with no significant fall over six months.

  17. Bonding effectiveness of different adhesion approaches to unground versus ground primary tooth enamel.

    Science.gov (United States)

    Knirsch, M S; Bonifácio, C C; Shimaoka, A M; Andrade, A P; Carvalho, R C R

    2009-06-01

    This study aims to evaluate the bonding effectiveness of self-etch and etch-and-rinse adhesive systems in on intact and ground primary tooth enamel. Sixty primary incisors were divided into 6 groups according to the adhesive system (etch-and-rinse - Adper Single Bond 2 - SB, 2 steps self-etch -Clearfil SE Bond - SE, and 1 step self-etch - One Up Bond F Plus OBF) and to the substrate (ground or intact enamel): G1-SB/intact enamel; G2-SE/intact enamel; G3- OBF/intact enamel; G4-SB/ground enamel; G5- SE/ground enamel and G6-OBF/ground enamel. Microshear bond test specimens were prepared with microhybrid composite and after 24h of water storage the microshear test was performed. Data were submitted to statistical analysis using two-way ANOVA and Tukey's tests (penamel characteristics (ground or intact) only when SE was used a statistically significant difference was found, as G2 (21.12+/-4.52) was statistically lower than G5 (33.29+/-5.44). Among the intact enamel groups, SB (26.11+/-7.56) was statistically superior to SE (21.12+/-4.52) and OBF (17.01+/-3.96). However, when comparisons were made among groups of ground enamel, SE (33.29+/-5.44) was significantly higher than SB (26.35+/-8.18) and OBF (17.52+/-3.46). The two-step self-etch adhesive system is a reliable alternative to etch and rinse adhesive systems on both ground and intact primary enamel.

  18. Influence of different tooth types on the bond strength of two orthodontic adhesive systems

    Science.gov (United States)

    Öztürk, Bora; Koyutürk, Alp Erdin; Çatalbaş, Bülent; Özer, Füsun

    2008-01-01

    The aim of this investigation was to evaluate the effects of different tooth types on the shear bond strength (SBS) of two orthodontic resin adhesive systems in vitro. Two hundred extracted sound human teeth were used in the study. Ten teeth of each tooth type were the mounted in acrylic resin leaving the buccal surface of the crowns parallel to the base of the moulds. In each experimental group, the adhesives (Transbond XT™ and Light Bond™) were applied to the etched enamel surfaces. The orthodontic composite resins were then applied to the surface in cylindrical-shaped plastic matrices. For SBS testing, a force transducer (Ultradent™) was applied at a crosshead speed of 1 mm/minute at the interface between the tooth and composite until failure occurred. Data were analysed using two-way analysis of variance (ANOVA), Kruskal–Wallis one-way ANOVA, a Bonferroni adjusted Mann–Whitney U-test, and an independent t-test. Generally, it was found that tooth type had a significant effect on SBS (P < 0.05) with Light Bond™ showing a higher SBS than Transbond XT™ (P < 0.05). The highest bond strengths were observed for the upper central incisor and lower molars with Light Bond™ (P < 0.05) and the lowest mean bond strengths for the upper molars and lower canine with Transbond XT™ (P <0.05). The results demonstrated that enamel SBS was significantly altered by both tooth type and adhesive system. Thus, the findings of this study confirm that enamel bond strength is not uniform for all teeth. These results may also explain the variability in the enamel-bonding efficacy of adhesives. PMID:18678760

  19. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    Science.gov (United States)

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. © 2015 Eur J Oral Sci.

  20. Composite-Dentin Bond Strength of Two Adhesives in Different Conditions

    Directory of Open Access Journals (Sweden)

    P. Samimi

    2007-01-01

    Full Text Available Introduction: The purpose of this study was to evaluate the effect of thermo-cycling and curing mode of composites (light and chemical curing on dentin bond strength of one all-in-one and an one-bottle bonding systems.Methods and Materials: Occlusal enamels of eighty caries-free third molars were ground with a model trimmer to create flat surfaces in superficial dentin for bonding, and randomly divided into 4 groups. Teflon molds with 1 mm internal diameter were mounted on the flat surfaces, Prompt L-pop (all-in-one system (3M-ESPE and Single-Bond(one-bottle system (3M-ESPE were used and restored with FiltekZ250 (light-cured composite (3M-RSPE and Concise (chemically cured composite (3M-ESPE composites. Specimens were stored in 37°c distilled water for 24 hours. 10 specimens of each group were thermo-cycled 500 times between 5°c to 55°c. Micro- shear bond strength test was done with 0.5mm/min crosshead speed (Dartec, England. The data were analyzed by ANOVA and Duncan's tests.Results: The mean shear bond strengths of two adhesive systems with light-cured composite showed no significant differences with and without thermo-cycling (P<0.05. Also, there was no significant difference between bond strength of two adhesive systems with light cured composite (P<0.05. Use of chemically cured composite reduced the bond strength of Single-Bond significantly (P<0.001. There was not any bond between chemically cured composite to dentin, using prompt L-pop.Discussion: Thermal cycles, in the range that we used them, did not have any influence on the bond strengths of two mentioned systems. The effect of increasing cycles should be evaluated. Use of chemically cured composite decreases the bond strength of Single Bond and there was no bond between this kind of composite and Prompt L-pop system. So these systems, especially Prompt L-pop, shouldn't be used with chemically cured composite in routine dental treatments.

  1. Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

    Directory of Open Access Journals (Sweden)

    Yoon Lee

    2012-08-01

    Full Text Available Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05. Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

  2. Effects of matrix metallproteinases on dentin bonding and strategies to increase durability of dentin adhesion

    Directory of Open Access Journals (Sweden)

    Jung-Hyun Lee

    2012-02-01

    Full Text Available The limited durability of resin-dentin bonds severely compromises the longevity of composite resin restorations. Resin-dentin bond degradation might occur via degradation of water-rich and resin sparse collagen matrices by host-derived matrix metalloproteinases (MMPs. This review article provides overview of current knowledge of the role of MMPs in dentin matrix degradation and four experimental strategies for extending the longevity of resin-dentin bonds. They include: (1 the use of broad-spectrum inhibitors of MMPs, (2 the use of cross-linking agents for silencing the activities of MMPs, (3 ethanol wet-bonding with hydrophobic resin, (4 biomimetic remineralization of water-filled collagen matrix. A combination of these strategies will be able to overcome the limitations in resin-dentin adhesion.

  3. Development of dissimilar metal transition joint by hot roll bonding technique

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Takayuki; Takeda, Seiichiro; Tanaka, Yasumasa (Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works); Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Ikenaga, Yoshiaki

    1994-12-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by the hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author).

  4. Development of dissimilar metal transition joint by hot roll bonding technique

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Takayuki; Takeuchi, Masayuki; Takeda, Seiichiro; Shikakura, Sakae [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Kajimura, Haruhiko

    1995-12-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called `rotary reduction mill`. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author).

  5. Micro push-out bond strengths of 2 fiber post types luted using different adhesive strategies.

    Science.gov (United States)

    Erdemir, Ugur; Mumcu, Emre; Topcu, Fulya Toksoy; Yildiz, Esra; Yamanel, Kivanc; Akyol, Mesut

    2010-10-01

    The objective of this study was to evaluate the push-out bond strengths of carbon and glass fiber posts adhesively luted with Panavia F 2.0 and RelyX Unicem luting cements, as well as a modified application procedure using RelyX Unicem cement in combination with a single-bottle total-etch adhesive in 3 segments of teeth. Sixty single-rooted human maxillary central incisors and canines were sectioned below the cementoenamel junction, and the roots were endodontically treated. The roots were divided into 2 fiber-post groups, and then divided into 3 subgroups of 10 specimens each to test different luting strategies. Bonded specimens were cut (1-mm-thick sections) and push-out tests were performed (crosshead-speed, 0.5 mm/min). Failure modes were evaluated using a stereomicroscope at original magnification ×40. Micro push-out bond strengths were significantly affected by the type of luting agent and the type of post (P push-out bond strength values of glass fiber posts were significantly higher than that of carbon fiber posts (P push-out bond strengths were measured for Panavia F 2.0 and RelyX Unicem cements. These values were significantly higher than that of modified application procedure in the medium section for both glass- and carbon-fiber posts, and in the apical root sections only for glass-fiber post (P < .05). In each region, the modified application procedure showed the lowest bond strength values. Adhesive failure between dentin and cement was the most frequent type of failure. In all root segments, the glass fiber post provided significantly increased post retention compared with the carbon fiber post, regardless of the luting strategy used. Copyright © 2010 Mosby, Inc. All rights reserved.

  6. Single-Lap-Joint Screening of Hysol EA 9309NA Epoxy Adhesive

    Science.gov (United States)

    2017-05-10

    them to cool to a reasonable temperature within their respective test tubes. Each sample was patted dry with a paper towel prior to mechanical...Critchlow GW, Figueiredo MAV, Brown K. Special issue on durability of adhesive joints effect of material, geometry, surface treatment and

  7. [Adhesive (retractile) capsulitis of the hip joint in diabetes mellitus. An x-ray histomorphological synopsis].

    Science.gov (United States)

    Dihlmann, W; Höpker, W W

    1992-09-01

    Adhesive (retractile) capsulitis of the hip joint is a rare complication (association) of (juvenile) diabetes mellitus. The clinical features, plain radiographic and CT findings and histomorphological appearances of this condition are described and attention is drawn to changes in the elastic tissue in the fibrosed capsule. Three diagnostic radiological features have been defined; in their presence, arthrography or diagnostic arthroscopy need not be performed.

  8. Impact of cold temperatures on the shear strength of Norway spruce joints glued with different adhesives

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2015-01-01

    × 20 mm × 10 mm) were bonded with seven commercially available adhesives: polyurethane (PUR), polyvinyl acetate (PVAc), emulsion-polymer-isocyanate (EPI), melamine-formaldehyde (MF), phenol-resorcinol-formaldehyde (PRF), melamine-urea-formaldehyde1 (MUF1), and melamine-urea-formaldehyde2 (MUF2). Each...

  9. Bonding between oxide ceramics and adhesive cement systems: a systematic review.

    Science.gov (United States)

    Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per

    2014-02-01

    The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used.

  10. Influence of chlorhexidine application on longitudinal adhesive bond strength in deciduous teeth

    Directory of Open Access Journals (Sweden)

    Vicente Castelo Branco Leitune

    2011-10-01

    Full Text Available The aim of this study was to evaluate the influence of applying 2% chlorhexidine for 30 seconds after phosphoric acid conditioning of dentin on the immediate and long-term bond strengths in deciduous teeth. The occlusal enamel was removed from 40 human sound deciduous molars, which were exfoliated by natural means, and the dentin was conditioned with 37% phosphoric acid for 15 seconds and washed with running water. The specimens were divided into two groups of 20 teeth. The test group received an application of 2% chlorhexidine for 30 seconds prior to a three-step etch-and-rinse adhesive system, whereas the control group received only the adhesive system. Three cylindrical restorations were made with a composite resin for each tooth. Ten teeth in each group were submitted to a microshear bond strength test after 24 hours, while the remaining teeth were stored in distilled water at 37 °C for 6 months before testing the microshear bond strength. The test group had a higher bond strength than did the control group after 6 months of storage. No statistical differences were found when groups with the same dentin treatment were compared at different times. Short applications of chlorhexidine at low concentrations prevent hybrid layer degradation and positively affect bond strength over time.

  11. Nano-modified adhesive by graphene: the single lap-joint case

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Almir; Cruz, Diego Thadeu Lopes da; Avila, Antonio Ferreira, E-mail: aavila@netuno.lcc.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica

    2013-11-01

    This paper addresses the performance study on, low viscosity, nano-modified adhesives by graphene. For achieving this goal, single-lap joints following ASTM D 5868-01 were manufactured and tested. X-ray diffraction, scanning electron microscopy and nanoindentation were employed for graphene based nanostructures characterization. The increase on joint strength was around 57% when compared against the control group. Furthermore, all failures for the nano-modified adhesive were cohesive failure for the carbon fibre/epoxy composites indicating that the adhesive was tested. X-ray diffractions signatures indicate formation of nano-structures with 17-19 nm diameters. Moreover, nanoindentation tests revealed a homogeneous dispersion of graphene. (author)

  12. Analysis of interfacial structure and bond strength of self-etch adhesives.

    Science.gov (United States)

    Pinzon, Lilliam M; Watanabe, Larry G; Reis, Andre F; Powers, John M; Marshall, Sally J; Marshall, Grayson W

    2013-12-01

    To determine the bond strength, nanoleakage and interfacial morphology of four self-etch adhesives bonded to superficial dentin. Microtensile (MT) (n= 15) and single plane shear (SP) (n= 8) bond tests were performed using human dentin polished through 320-grit SiC paper. Clearfil Protect Bond (PB), Clearfil S3 Bond (S3), Prompt L-Pop (PLP) and G-Bond (GB) were used according to their manufacturers' instructions. Composite was applied as cylinders with a thickness of 4 mm with a 1 mm diameter and stored in water at 370C for 24 hours. Specimens were debonded with a testing machine at a cross-head speed of 1 mm/minute. Means and standard deviations of bond strength were calculated. Data were analyzed using ANOVA. Fisher's PLSD intervals were calculated at the 0.05 level of significance. Failure modes were determined at x100. The hybrid layer was revealed by treatment with 5N HC1/5% NaOCl or fractured perpendicular to the interface and sputter coated with gold. Specimens were viewed at x1,000, x2,500, and x5,000 in a field emission SEM at 15 kV. Teeth (n=2) sectioned into 0.9 mm-thick slabs were immersed in ammoniacal silver nitrate solution for 24 hours, rinsed and immersed in photo-developing solution for 8 hours. Specimens were sectioned (90 nm-thick) and observed under TEM. Means ranged from 25.0 to 73.1 MPa for MT and from 15.5 to 56.4 MPa for SP. MT values were greater than SP, but were highly correlated (R2 = 0.99, P= 0.003) and provided the same order for the systems studied. Fisher's PLSD intervals (P< 0.05) for bond strength techniques and adhesives results were 1.7 and 2.3 MPa, respectively. Failures sites were mixed. TEM showed that hybrid layers were -0.5 pm for PB, GB and S3 and approximately 5 microm for PLP. SEM showed morphologic differences among adhesives. Silver nitrate deposits were observed within the interfaces for all adhesive systems.

  13. Technological aspects of manufacturing and numerical modelling of clinch-adhesive joints

    CERN Document Server

    Sadowski, Tomasz; Golewski, Przemysław

    2015-01-01

    This short book describes the basic technological aspects involved in the creation of purely clinch and clinch-adhesive joints made of different types of adherent materials and employing different joining technologies. Basic parameters that need to be taken into account in the design process are also presented, while a comparison of experimental testing of the hybrid joint with simple clinching for a combination of different joining materials underlines the advantages of opting for hybrid joints. The book’s conclusions will facilitate the practical application of this new fastening technology.

  14. Influence of adhesive layer properties on laser-generated ultrasonic waves in thin bonded plates

    Institute of Scientific and Technical Information of China (English)

    Sun Hong-Xiang; Xu Bai-Qiang; Zhang Hua; Gao Qian; Zhang Shu-Yi

    2011-01-01

    This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.

  15. Cost-Efficient Wafer-Level Capping for MEMS and Imaging Sensors by Adhesive Wafer Bonding

    Directory of Open Access Journals (Sweden)

    Simon J. Bleiker

    2016-10-01

    Full Text Available Device encapsulation and packaging often constitutes a substantial part of the fabrication cost of micro electro-mechanical systems (MEMS transducers and imaging sensor devices. In this paper, we propose a simple and cost-effective wafer-level capping method that utilizes a limited number of highly standardized process steps as well as low-cost materials. The proposed capping process is based on low-temperature adhesive wafer bonding, which ensures full complementary metal-oxide-semiconductor (CMOS compatibility. All necessary fabrication steps for the wafer bonding, such as cavity formation and deposition of the adhesive, are performed on the capping substrate. The polymer adhesive is deposited by spray-coating on the capping wafer containing the cavities. Thus, no lithographic patterning of the polymer adhesive is needed, and material waste is minimized. Furthermore, this process does not require any additional fabrication steps on the device wafer, which lowers the process complexity and fabrication costs. We demonstrate the proposed capping method by packaging two different MEMS devices. The two MEMS devices include a vibration sensor and an acceleration switch, which employ two different electrical interconnection schemes. The experimental results show wafer-level capping with excellent bond quality due to the re-flow behavior of the polymer adhesive. No impediment to the functionality of the MEMS devices was observed, which indicates that the encapsulation does not introduce significant tensile nor compressive stresses. Thus, we present a highly versatile, robust, and cost-efficient capping method for components such as MEMS and imaging sensors.

  16. Comparison of shear bond strength and microleakage of Scotchbond multi-purpose (MP adhesive system and an experimental dentin bonding agent based on standard of ISOTR 11405

    Directory of Open Access Journals (Sweden)

    Jafarzadeh Kashi T.

    2009-12-01

    Full Text Available "nBackground and Aim: Evaluation of shear bond strength and microleakage of bonding agents is important as these properties play main roles in adhesion of composite to dental tissues. Microleakage results in bacterial penetration into dentin tubules and enamel surfaces and causes sensitivity and recurrent caries followed by destruction of composite filling. Insufficient shear bond strength results in early failure of filling in low masticatory forces. The main goal of this study was to compare the microleakage and shear bond strength of an experimental adhesive and Scotchbond multi-purpose (MP adhesive system."nMaterials and Methods: In this experimental study, sixty extracted caries free human molar teeth were randomly assigned into 4 groups of 15 each for shear bond strength. Variables were bonding agents, enamel and dentin. Twenty teeth assigned into 2 groups of 10 each were used for valuation of the microleakage. Microleakage and shear bond strength were performed according to ISO TR 11405. All data were analyzed with parametric and non-parametric tests according to their normality distribution. Also, Weibull distribution performed on data."nResults: Data obtained from both microleakage and shear bond strength tests showed no significant difference between the experimental bonding and Scotchbond MP bonding (P>0.05. Furthermore, there was no significant difference between the microleakage of occlusal and gingival parts of both bondings (P>0.05."nConclusion: Experimental adhesive bonding showed acceptable results regarding microleakage and shear bond strength. It may be concluded that the experimental dentin bonding had a comparable performance quality with that of commercial system.

  17. Durability and Intelligent Nondestructive Evaluation of Adhesive Composite Joints

    Science.gov (United States)

    2007-11-02

    Technical Report No. 10, 1998 [11] A. Spivak and Y. Dzenis, "Model for flexural wave propagation through single lap composite joints", AFOSR Technical...Students Involved in this Project: A. Spivak 1999 UNL Best Graduate Research Assistant Award (two for the University) M. Qin UNL Department of...Engineering Mechanics W. Brooks Fellowship Award (1999) A. Spivak UNL College of Engineering and Technology Milton E. Mohr Fellowship Award (1999) 22 J. Qian

  18. Evaluation of antibacterial and fluoride-releasing adhesive system on dentin--microtensile bond strength and acid-base challenge.

    Science.gov (United States)

    Shinohara, Mirela Sanae; Yamauti, Monica; Inoue, Go; Nikaido, Toru; Tagami, Junji; Giannini, Marcelo; de Goes, Mario Fernando

    2006-09-01

    This study evaluated the influence of a fluoride-containing adhesive on microtensile bond strength (microTBS) to dentin, as well as analyzed the dentin-adhesive interface after acid-base challenge. Experimental groups were: G1--Clearfil SE Bond control (SE); G2--Clearfil Protect Bond control (PB); G3--Primer[SE]/Adhesive[PB]; G4--Primer[PB]/Adhesive[SE]. For microTBS evaluation, dentin surfaces were ground, bonded, and composite resin crowns were built up to obtain beams to be tested. For interfacial analysis, adhesive system was applied on dentin surface and a low-viscosity resin was placed between two dentin disks. Then, the specimens were subjected to acid-base challenge, sectioned, and polished to be observed by SEM. microTBS data showed no statistical differences among the groups (GI: 51.3, G2: 47.6, G3: 55.0, G4: 53.9; mean in MPa). Through SEM, it was observed that a thick acid-base resistant zone adjacent to the hybrid layer was created only when the fluoride-releasing adhesive was used. In conclusion, the presence of fluoride in an adhesive contributed significantly to preventing secondary caries, and did not interfere with dentin-adhesive bond strength.

  19. Adhesion of Two Bonding Systems to Air-Abraded or Bur-Abraded Human Enamel Surfaces

    OpenAIRE

    Sengun, Abdulkadir; Orucoglu, Hasan; Ipekdal, Ilknur; Ozer, Fusun

    2008-01-01

    Objectives The purpose of this in vitro study was to evaluate whether mechanical alteration of the enamel surfaces with air abrasion and bur abrasion techniques could enhance the bonding performance of a three step and a self etching adhesive resin systems to enamel. Methods 126 extracted lower human incisor teeth were used. The teeth were divided into three groups including 40 teeth each. First group; teeth were used as control and no preparation was made on enamel surfaces, 2nd group; outer...

  20. Adhesives for bonding RSI tile to Gr/Pi structure for advanced space transportation systems

    Science.gov (United States)

    Smith, K. E.; Hamermesh, C. L.; Hogenson, P. A.

    1979-01-01

    An adhesive was developed having improved high-temperature capability while retaining the ideal processing characteristics of RTV silicones. After evaluating several possibilities, mixtures of RTV with glass resins were selected as most promising. While results are not conclusive, tests of the final mixture evaluated, designated RA59, indicated capability of performing as a tile bonding agent to temperatures approaching 370C (700F) during repeated cycling.

  1. Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips.

    Science.gov (United States)

    Lima, Renato S; Leão, Paulo A G C; Piazzetta, Maria H O; Monteiro, Alessandra M; Shiroma, Leandro Y; Gobbi, Angelo L; Carrilho, Emanuel

    2015-08-21

    A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist adherence, formation of bubbles, and thermal stress were effectively solved by using simple and inexpensive alternatives.

  2. Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips

    Science.gov (United States)

    Lima, Renato S.; Leão, Paulo A. G. C.; Piazzetta, Maria H. O.; Monteiro, Alessandra M.; Shiroma, Leandro Y.; Gobbi, Angelo L.; Carrilho, Emanuel

    2015-08-01

    A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist adherence, formation of bubbles, and thermal stress were effectively solved by using simple and inexpensive alternatives.

  3. Structural model for covalent adhesion of the Streptococcus pyogenes pilus through a thioester bond.

    Science.gov (United States)

    Linke-Winnebeck, Christian; Paterson, Neil G; Young, Paul G; Middleditch, Martin J; Greenwood, David R; Witte, Gregor; Baker, Edward N

    2014-01-03

    The human pathogen Streptococcus pyogenes produces pili that are essential for adhesion to host surface receptors. Cpa, the adhesin at the pilus tip, was recently shown to have a thioester-containing domain. The thioester bond is believed to be important in adhesion, implying a mechanism of covalent attachment analogous to that used by human complement factors. Here, we have characterized a second active thioester-containing domain on Cpa, the N-terminal domain of Cpa (CpaN). Expression of CpaN in Escherichia coli gave covalently linked dimers. These were shown by x-ray crystallography and mass spectrometry to comprise two CpaN molecules cross-linked by the polyamine spermidine following reaction with the thioester bonds. This cross-linked CpaN dimer provides a model for the covalent attachment of Cpa to target receptors and thus the streptococcal pilus to host cells. Similar thioester domains were identified in cell wall proteins of other Gram-positive pathogens, suggesting that thioester domains are more widely used and provide a mechanism of adhesion by covalent bonding to target molecules on host cells that mimics that used by the human complement system to eliminate pathogens.

  4. Laser Ablation Surface Preparation of Ti-6A1-4V for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Watson, Kent A.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Wohl, Christopher J.; Hopkins, John W.; Connell, John W.

    2012-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable bonds. Laser ablation imparts both topographical and chemical changes to a surface which can lead to increased bond durability. A laser based process provides an alternative to chemical-dip, manual abrasion and grit blast treatments which are expensive, hazardous, polluting, and less precise. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Failure mode, surface roughness, and chemical makeup were analyzed using fluorescence enhanced visualization, microscopy, and X-ray photoelectron spectroscopy, respectively. Single lap shear tests were conducted on bonded and aged specimens to observe bond strength retention and failure mode. Some promising results showed increasing strength and durability of lap shear specimens as laser ablation coverage area and beam intensity increased. Chemical analyses showed trends for surface chemical species which correlated with improved bond strength and durability. Combined, these results suggest that laser ablation is a viable process for inclusion with or/and replacement of one or more currently used titanium surface treatments. On-going work will focus on additional mechanical tests to further demonstrate improved bond durability.

  5. Halloysite nanotube incorporation into adhesive systems—effect on bond strength to human dentin.

    Science.gov (United States)

    Alkatheeri, Mohammed S; Palasuk, Jadesada; Eckert, George J; Platt, Jeffrey A; Bottino, Marco C

    2015-11-01

    This study aimed to evaluate the effect of Halloysite® aluminosilicate clay nanotube (HNT) incorporation into a two-step etch-and-rinse (ER) and a one-step self-etch (SE) adhesive on human dentin shear bond strength (SBS). Ten groups (n = 12) were prepared according to the adhesive system (i.e., ER or SE) and amount of HNT incorporated (5-20%, w/v), as follows: commercial control (i.e., the adhesive was used as purchased, 0% HNT); experimental control (i.e., the adhesive was processed through mixing/stirring and sonication similarly to the HNT-incorporated experimental groups, but without HNT); and 5, 10, and 20% HNT. SBS testing was performed after 24 h of storage in deionized water at 37 °C. Failure modes were examined using a stereomicroscope (×40). Scanning electron microscopy (SEM) of the resin-dentin interface of selected specimens was carried out. Two-way ANOVA revealed that incorporation of HNT up to 20% (w/v) in ER and up to 10% (w/v) in SE demonstrated an increased SBS compared to their experimental controls. Compared to the commercial control, SBS of HNT-modified dentin adhesives was not significantly different for ER adhesives (p > 0.05) but was significantly higher with 5% HNT in the SE adhesive (p adhesive and mixed failures. SEM micrographs of resin-dentin interfaces for ER-commercial control and ER-10% showed a similar morphology. A thicker adhesive layer and the presence of agglomerated HNT on the resin tags were seen in ER-10%. An increased number of short resin tags in SE-5% compared with SE-commercial control were observed. HNT addition up to 20% in ER and up to 10 % in SE showed increased SBS to dentin compared with the experimental control. HNT can be used not only to reinforce adhesive resins but also hold potential for the development of bioactive adhesives by the encapsulation of matrix metalloproteinase (MMP) inhibitors or anticariogenic agents.

  6. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    Science.gov (United States)

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated.

  7. Shear Bond Strength between Fiber-Reinforced Composite and Veneering Resin Composites with Various Adhesive Resin Systems.

    Science.gov (United States)

    AlJehani, Yousef A; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Vallittu, Pekka K

    2016-07-01

    The aim of this research was to evaluate the shear bond strength of different laboratory resin composites bonded to a fiber-reinforced composite substrate with some intermediate adhesive resins. Mounted test specimens of a bidirectional continuous fiber-reinforced substrate (StickNet) were randomly assigned to three equal groups. Three types of commercially available veneering resin composites - BelleGlass®, Sinfony®, and GC Gradia® were bonded to these specimens using four different adhesive resins. Half the specimens per group were stored for 24 hours; the remaining were stored for 30 days. There were 10 specimens in the test group (n). The shear bond strengths were calculated and expressed in MPa. Data were analyzed statistically, and variations in bond strength within each group were additionally evaluated by calculating the Weibull modulus. Shear bond values of those composites are influenced by the different bonding resins and different indirect composites. There was a significant difference in the shear bond strengths using different types of adhesive resins (p = 0.02) and using different veneering composites (p composite resin exhibited the lowest shear bond strength values when used with the same adhesive resins. The adhesive mode of failure was higher than cohesive with all laboratory composite resins bonded to the StickNet substructure at both storage times. Water storage had a tendency to lower the bond strengths of all laboratory composites, although the statistical differences were not significant. Within the limitations of this study, it was found that bonding of the veneering composite to bidirectional continuous fiber-reinforced substrate is influenced by the brand of the adhesive resin and veneering composite. © 2015 by the American College of Prosthodontists.

  8. Shear bond strengths of self-adhesive luting resins fixing dentine to different restorative materials.

    Science.gov (United States)

    Zhang, Congxiao; Degrange, Michel

    2010-01-01

    The purpose of this study was to assess the bond strengths of three self-adhesive resin cements (Rely X Unicem, Maxcem and Multilink Sprint) fixing dentine to four different restorative substrates (Ni-Cr alloy, E-Max glass-ceramic, Y-TZP Zirconia and Adoro micro-filled composite) and to compare their performances with those of two conventional dual-cured luting cements (Variolink II + Total-etch Excite DSC and Multilink Automix + Self-etching Primer A + B). Cylindric specimens (5 x 5 mm) were prepared with the four restorative materials for bonding to human dentine. Three surface treatments were performed depending on the restorative material: (i) Al2O3 50 microm sandblasting (Ni-Cr, Adoro), (ii) #800 SiC polishing (Zirconia, E-Max), (iii) hydrofluoric acid (HF)-etching (E-Max). Twenty-five groups (n = 10) were designed according to luting cements, restorative materials and surface pre-treatments. In some experimental groups, Variolink II and Multilink Automix were coupled with, respectively, a silane primer (Monobond S) and an alloy/zirconia primer (Multilink A/Z primer). Specimens were stored in distilled water at 37 degrees C for 24 h and then loaded in shear until failure. Variolink II and Multilink Automix showed the highest bond strengths, regardless of the restorative substrate, when used with dentine bonding systems and primers, while the weakest bonds were with Maxcem. The bond strength recorded with the two other self-adhesive cements depended on the nature of the restorative substrate. Increasing retention at the interfaces (i.e., HF ceramic etching) and using specific primers significantly improves the bond strength of luted restorative materials to dentine.

  9. Room-temperature bonding method for polymer substrate of flexible electronics by surface activation using nano-adhesion layers

    Science.gov (United States)

    Matsumae, Takashi; Fujino, Masahisa; Suga, Tadatomo

    2015-10-01

    A sealing method for polymer substrates to be used in flexible electronics is studied. For this application, a low-temperature sealing method that achieves flexible bonding of inorganic bonding material is required, but no conventional technique satisfies these requirements simultaneously. In this study, a new polymer bonding method using thin Si and Fe layers and the surface activated bonding (SAB) method are applied to bond poly(ethylene naphthalate) (PEN) films to each other. PEN films can be bonded via the proposed method without voids at room temperature, and the bonded samples are bendable. The adhesion strength of the bonded samples is so strong that fracture occurs in the polymer bulk rather than at the bond interface. Investigations of the bonded samples by transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR) reveal that bonding is achieved by chemical interactions between the polymer surface and deposited atoms.

  10. Bond strength of self-adhesive resin cements to different treated indirect composites.

    Science.gov (United States)

    Fuentes, M Victoria; Ceballos, Laura; González-López, Santiago

    2013-04-01

    The objective of this study was to determine microtensile bond strength (μTBS) to dentin of three self-adhesive and a total-etch resin cements used for luting different treated indirect composites. Composite overlays (Filtek Z250) were prepared. Their intaglio surfaces were ground with 600-grit SiC papers and randomly assigned to three different surface treatments: no treatment, silane application (RelyX Ceramic Primer), and silane agent followed by a bonding agent (Adper Scotchbond 1 XT). The composite overlays were luted to flat dentin surfaces of extracted human third molars using the following self-adhesive resin cements: RelyX Unicem, Maxcem Elite and G-Cem, and a total-etch resin cement, RelyX ARC. The bonded assemblies were stored in water (24 h, 37 °C) and subsequently prepared for μTBS testing. Beams of approximately 1 mm(2) were tested in tension at 1 mm/min in a universal tester (Instron 3345). Data were analyzed by two-way ANOVA and Student-Newman-Keuls tests (α = 0.05). A significant influence of the resin cement used was detected. Composite surface treatment and the interaction between the resin cement applied and surface treatment did not affect μTBS. Surface treatment of indirect resin composite did not improve the μTBS results of dentin/composite overlay complex. Self-adhesive resin cements tested obtained lower μTBS than the total-etch resin cement RelyX ARC. Specimens luted with Maxcem Elite exhibited the highest percentage of pretesting failures. Surface treatment of indirect resin composite with silane or silane followed by a bonding agent did not affect bond strength to dentin.

  11. Micro-tensile bond strength of self-etching primer adhesive systems to human coronal carious dentin.

    Science.gov (United States)

    Doi, J; Itota, T; Torii, Y; Nakabo, S; Yoshiyama, M

    2004-10-01

    The aim of this study was to evaluate the micro-tensile bond strengths of three self-etching primer adhesive systems to normal dentin (ND), caries-affected dentin (CAD) and caries-infected dentin (CID). Human extracted molars with caries were used, and flat dentin surfaces ground by 600-grit SiC paper were prepared. The surfaces were dyed using Caries-Detector solution, treated with Clearfil SE Bond, Mac-Bond II and UniFil Bond, and then covered with resin composites according to manufacturer's instructions. After immersion in 37 degrees C water for 24 h, the teeth were serially sectioned into multiple slices. Each slice was distinguished into ND, CAD and CID groups by the degree of staining, and the bond strength was measured in a universal testing machine. Scanning electron microscopic (SEM) observation was also performed. For statistical analysis, anova and Scheffe's test were used (P bond strengths of the three adhesive systems to CAD and CID were significantly lower than those to ND. There was significant difference in the bond strength to ND between Clearfil SE Bond and UniFil Bond, but no significant differences to CAD and CID among the three adhesive systems. On SEM, the hybrid layers in CAD and CID showed more porous structures compared with ND. The results indicated that the bond strengths to CAD and CID were not affected by a variety of self-etching primer adhesive systems because of the porous hybrid layer formation in carious dentin.

  12. Drying time of tray adhesive for adequate tensile bond strength between polyvinylsiloxane impression and tray resin material.

    Science.gov (United States)

    Yi, Myong-Hee; Shim, Joon-Sung; Lee, Keun-Woo; Chung, Moon-Kyu

    2009-07-01

    Use of custom tray and tray adhesive is clinically recommended for elastomeric impression material. However there is not clear mention of drying time of tray adhesive in achieving appropriate bonding strength of tray material and impression material. This study is to investigate an appropriate drying time of tray adhesives by evaluating tensile bonding strength between two types of polyvinylsiloxane impression materials and resin tray, according to various drying time intervals of tray adhesives, and with different manufacturing company combination of impression material and tray adhesive. Adhesives used in this study were Silfix (Dentsply Caulk, Milford, Del, USA) and VPS Tray Adhesive (3M ESPE, Seefeld, Germany) and impression materials were Aquasil Ultra (monophase regular set, Dentsply Caulk, Milford, Del, USA) and Imprint II Garant (regular body, 3M ESPE, Seefeld, Germany). They were used combinations from the same manufacture and exchanged combinations of the two. The drying time was designed to air dry, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. Total 240 of test specimens were prepared by auto-polymerizing tray material (Instant Tray Mix, Lang, Wheeling, Il, USA) with 10 specimens in each group. The specimens were placed in the Universal Testing machine (Instron, model 3366, Instron Corp, University avenue, Nowood, MA, USA) to perform the tensile test (cross head speed 5 mm/min). The statistically efficient drying time was evaluated through ANOVA and Scheffe test. All the tests were performed at 95% confidence level. The results revealed that at least 10 minutes is needed for Silfix-Aquasil, and 15 minutes for VPS Tray Adhesive-Imprint II, to attain an appropriate tensile bonding strength. VPS Tray Adhesive-Imprint II had a superior tensile bonding strength when compared to Silfix-Aquasil over 15 minutes. Silfix-Aquasil had a superior bonding strength to VPS Tray Adhesive-Aquasil, and VPS Tray Adhesive-Imprint II had a superior tensile

  13. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the adhesive and composite/adhesive interfaces of existing fiber reinforced composite material joints and...

  14. Multiple Coatings can Improve the Bond Durability of One-step Self-etching Adhesive to Primary Dentin

    Institute of Scientific and Technical Information of China (English)

    Lin Ma; Jian-feng Zhou; Quan Jing; Ji-zhi Zhao; Kuo Wan

    2012-01-01

    Objective To investigate whether multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin.Methods Twelve caries-free human primary molars were randomly divided into 2 groups.In group 1,each tooth was hemisected into 2 halves.One half was assigned to the control subgroup 1,which was bonded with a commercially available one-step self-etching adhesive according to the manufacturer's instructions; the other half was assigned to experimental subgroup 1,in which the adhesive was applied three times before light curing.In group 2,one split half tooth was bonded with a commercially available one-step self-etching adhesive according to the manufacturer's instructions; for the other half,three layers of adhesive were applied with each successive layer of light curing.Specimens were stored in 0.9% NaCl containing 0.02% sodium azide at 37℃ for 18 months and then were subjected to microtensile bond strength test and the fracture mode analysis.Results When the adhesive was applied three times before light curing,the bond strength of the experimental subgroup 1 was significandy higher than that of the control subgroup 1 (47.46±13.91 vs.38.12±11.21 MPa,P<0.05).When using the technique of applying multiple layers of adhesive with each successive layer of light curing,no difference was observed in bond strength between the control subgroup and the experimental subgroup (39.40±8.87 vs.40.87±9.33 MPa,P>0.05).Conclusion Multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin when using the technique of light-curing after applying 3 layers of adhesive.

  15. Effect of different adhesion strategies on bond strength of resin composite to composite-dentin complex.

    Science.gov (United States)

    Özcan, M; Pekkan, G

    2013-01-01

    Service life of discolored and abraded resin composite restorations could be prolonged by repair or relayering actions. Composite-composite adhesion can be achieved successfully using some surface conditioning methods, but the most effective adhesion protocol for relayering is not known when the composite restorations are surrounded with dentin. This study evaluated the effect of three adhesion strategies on the bond strength of resin composite to the composite-dentin complex. Intact maxillary central incisors (N=72, n=8 per subgroup) were collected and the coronal parts of the teeth were embedded in autopolymerized poly(methyl tfr54methacrylate) surrounded by a polyvinyl chloride cylinder. Cylindrical cavities (diameter: 2.6 mm; depth: 2 mm) were opened in the middle of the labial surfaces of the teeth using a standard diamond bur, and the specimens were randomly divided into three groups. Two types of resin composite, namely microhybrid (Quadrant Anterior Shine; AS) and nanohybrid (Grandio; G), were photo-polymerized incrementally in the cavities according to each manufacturer's recommendations. The composite-enamel surfaces were ground finished to 1200-grit silicone carbide paper until the dentin was exposed. The surfaces of the substrate composites and the surrounding dentin were conditioned according to one of the following adhesion protocols: protocol 1: acid-etching (dentin) + silica coating (composite) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); protocol 2: silica coating (composite) + acid-etching (dentin) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); and protocol 3: acid-etching (dentin) + primer (dentin) + silanization (composite) + bonding agent (dentin + composite). Applied primer and bonding agents were the corresponding materials of the composite manufacturer. Silica coating (CoJet sand, 30 μm) was achieved using a chairside air-abrasion device (distance: 10 mm; duration

  16. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-10-01

    The purpose of this study was to determine the relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. As controls, micro-hybrid and nano-hybrid resin composites were tested. The universal adhesives used were Scotchbond Universal, Adhese Universal, and G-Premio Bond. The fracture toughness and flexural properties of resin composites, and shear bond strength and shear fatigue strength of universal adhesive with resin composite using both total-etch and self-etch modes were determined. In the results, short fiber-reinforced resin composite showed significantly higher fracture toughness than did micro-hybrid and nano-hybrid resin composites. The flexural strength and modulus of short fiber-reinforced and nano-hybrid resin composites were significantly lower than were those of micro-hybrid resin composites. Regardless of etching mode, the shear bond strength of universal adhesives with short fiber-reinforced resin composite did not show any significant differences from micro-hybrid and nano-hybrid resin composites. The shear fatigue strength of universal adhesives with short fiber-reinforced resin composite and micro-hybrid resin composites were significantly higher than that of nano-hybrid resin composites. The results of this study suggest that the mechanical properties of short fiber-reinforced resin composite improve their bond durability with universal adhesive.

  17. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond

    Science.gov (United States)

    Evans, Evan; Leung, Andrew; Heinrich, Volkmar; Zhu, Cheng

    2004-08-01

    Many biomolecular bonds exhibit a mechanical strength that increases in proportion to the logarithm of the rate of force application. Consistent with exponential decrease in bond lifetime under rising force, this kinetically limited failure reflects dissociation along a single thermodynamic pathway impeded by a sharp free energy barrier. Using a sensitive force probe to test the leukocyte adhesion bond P-selectin glycoprotein ligand 1 (PSGL-1)-P-selectin, we observed a linear increase of bond strength with each 10-fold increase in the rate of force application from 300 to 30,000 pN/sec, implying a single pathway for failure. However, the strength and lifetime of PSGL-1-P-selectin bonds dropped anomalously when loaded below 300 pN/sec, demonstrating unexpectedly faster dissociation and a possible second pathway for failure. Remarkably, if first loaded by a "jump" in force to 20-30 pN, the bonds became strong when subjected to a force ramp as slow as 30 pN/sec and exhibited the same single-pathway kinetics under all force rates. Applied in this way, a new "jump/ramp" mode of force spectroscopy was used to show that the PSGL-1-P-selectin bond behaves as a mechanochemical switch where force history selects between two dissociation pathways with markedly different properties. Furthermore, replacing PSGL-1 by variants of its 19-aa N terminus and by the crucial tetrasaccharide sialyl LewisX produces dramatic changes in the failure kinetics, suggesting a structural basis for the two pathways. The two-pathway switch seems to provide a mechanism for the "catch bond" response observed recently with PSGL-1-P-selectin bonds subjected to small-constant forces.

  18. CARIOSTATIC EFFECT AND FLUORIDE RELEASE FROM A VISIBLE LIGHT-CURING ADHESIVE FOR BONDING OF ORTHODONTIC BRACKETS

    NARCIS (Netherlands)

    OGAARD, B; REZKLEGA, F; RUBEN, J; ARENDS, J

    1992-01-01

    This study was designed to investigate the cariostatic potential in vivo of a visible light-curing adhesive for the bonding of orthodontic brackets. The fluoride release of the adhesive in water and saliva was also measured. Ten orthodontic patients with premolars to be extracted participated. One b

  19. CARIOSTATIC EFFECT AND FLUORIDE RELEASE FROM A VISIBLE LIGHT-CURING ADHESIVE FOR BONDING OF ORTHODONTIC BRACKETS

    NARCIS (Netherlands)

    OGAARD, B; REZKLEGA, F; RUBEN, J; ARENDS, J

    This study was designed to investigate the cariostatic potential in vivo of a visible light-curing adhesive for the bonding of orthodontic brackets. The fluoride release of the adhesive in water and saliva was also measured. Ten orthodontic patients with premolars to be extracted participated. One

  20. CARIOSTATIC EFFECT AND FLUORIDE RELEASE FROM A VISIBLE LIGHT-CURING ADHESIVE FOR BONDING OF ORTHODONTIC BRACKETS

    NARCIS (Netherlands)

    OGAARD, B; REZKLEGA, F; RUBEN, J; ARENDS, J

    1992-01-01

    This study was designed to investigate the cariostatic potential in vivo of a visible light-curing adhesive for the bonding of orthodontic brackets. The fluoride release of the adhesive in water and saliva was also measured. Ten orthodontic patients with premolars to be extracted participated. One b

  1. Microfabrication of plastic-PDMS microfluidic devices using polyimide release layer and selective adhesive bonding

    Science.gov (United States)

    Wang, Shuyu; Yu, Shifeng; Lu, Ming; Zuo, Lei

    2017-05-01

    In this paper, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide film coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. This proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.

  2. In vitro fracture resistance of root-filled teeth using new-generation dentine bonding adhesives.

    Science.gov (United States)

    Hürmüzlü, F; Serper, A; Siso, S H; Er, K

    2003-11-01

    To compare the fracture resistance of root-filled premolar teeth restored with new-generation dentine bonding adhesives. Sixty extracted single-rooted human maxillary premolar teeth were used. Access cavities were prepared, and the roots were instrumented with K-files to an apical size 50 using a step-back technique. Root fillings were accomplished using gutta percha (Sure-Endo, Seoul, Korea) and AH Plus root canal sealer (Dentsply DeTrey, Konstanz, Germany) using the lateral condensation technique. The teeth were then randomly divided into six groups of 10 teeth each. A mesiodistocclusal (MOD) cavity was prepared in the teeth to the level of the canal orifices so that the thickness of the buccal wall of the teeth measured 2 mm at the occlusal surface and 3 mm at the cemento-enamel junction. Preparations were restored using the following adhesive systems: Etch & Prime 3.0 (Degussa AG, Hanau, Germany), Clearfil SE Bond (Kuraray, Osaka, Japan), Prompt L-Pop (ESPE, Seefeld, Germany), Panavia F (Kuraray, Osaka, Japan), Optibond Plus (Kerr, Orange, CA, USA) and Admira Bond (Voco, Cuxhaven, Germany); all preparations except those of the Panavia F and Admira Bond groups were further restored with resin composites. The Panavia F group was restored with amalgam and the Admira Bond group with Ormocer (Voco, Cuxhaven, Germany). The teeth were mounted in a Universal Testing Machine (Hounsfield, Surrey, UK), and the buccal walls were subjected to a slowly increasing compressive force until fracture occurred. The force of fracture of the walls of each tooth was recorded and the results in the various groups were compared. Statistical analysis of the data was accomplished using one-way anova. There was no significant difference in the fracture resistance of any of the test groups. In this laboratory study, the type of dentine bonding agents had no influence in the fracture resistance of teeth.

  3. Effect of saliva and blood contamination on the bond strength of self-etching adhesive system- An in vitro study

    Science.gov (United States)

    Koppolu, Madhusudhana; Gogala, Dorasani; Mathew, Vinod B; Thangala, Venugopal; Deepthi, Mandava; Sasidhar, Nalluru

    2012-01-01

    Aim: The aims of this study were to determine the effect of saliva and blood contamination on the shear bond strength of self-etching adhesive to enamel and dentin; and, to compare the difference in bond strength due to contamination beforeand after application of the self-etch adhesive. Materials and Methods: 40 human mandibular molars were wet ground on both buccal and lingual surfaces to prepare flat superficial enamel and dentin surfaces. They were randomly divided into two groups (n = 40) based on the substrate (enamel and dentin). Each group was further divided into five subgroups (n = 8) based on the type of contamination it was subjected to, and the step in the bonding sequence when the contamination occurred (before or after adhesive application). Fresh saliva and fresh human blood were applied either before or after the application of Xeno III® self-etching adhesive system (SES). Composite resin was applied as inverted, truncated cured cones that were subjected to shear bond strength test. Statistical Analysis: One-way analysis of variance (ANOVA) and Tukey's Honestly Significant Difference (HSD) test were used. Results: Statistically significant reduction in the bond strength was shown after both saliva and blood contamination before and after Xeno III® application (Pcontamination with blood as compared to saliva. Conclusions: When self-etching adhesive systems are used, saliva and blood contamination significantly decrease the bond strength of the adhesive to enamel and dentin of the tooth. PMID:22876017

  4. Resin Bonding of Self-Etch Adhesives to Bovine Dentin Bleached from Pulp Chamber

    Science.gov (United States)

    Haruyama, Akiko; Kato, Junji; Takemoto, Shinji; Oda, Yutaka; Kawada, Eiji; Takahashi, Toshiyuki; Furusawa, Masahiro

    2016-01-01

    This study evaluated the microtensile bond strength (μTBS) of 1-step self-etch adhesives (1-SEAs) and 2-step self-etch adhesives (2-SEAs) to pulp chamber dentin immediately after bleaching with 2 types of common bleaching techniques. Pulp chamber dentin of bovine teeth was bleached using 30% hydrogen peroxide (H2O2) solution with quartz-tungsten-halogen light-curing unit (Group 1) and 3.5% H2O2-containing titanium dioxide (TiO2) (Pyrenees®) activated with 405-nm violet diode laser for 15 min (Group 2). Unbleached specimens were placed in distilled water for 15 min and used as controls. After treatment, dentin was bonded with resin composite using 1-SEA or 2-SEA and stored in water at 37°C for 24 h. Each specimen was sectioned and trimmed to an hourglass-shape and μTBS was measured. Fractured specimens were examined under a scanning electron microscope to determine fracture modes. All specimens in Group 1 failed before proper bonding tests. In Group 2, the μTBS of 2-SEA was significantly greater (with no failed specimens) than 1-SEA (where 21 out of 36 failed). These results indicate that 2-SEA is a better adhesive system than 1-SEA on bleached dentin. Our results also demonstrated that application of H2O2 significantly decreases bond strength of resin to dentin; however, in the case of nonvital tooth bleaching, Pyrenees® is a better alternative to the conventional 30% H2O2 bleaching. PMID:27747220

  5. Resin Bonding of Self-Etch Adhesives to Bovine Dentin Bleached from Pulp Chamber.

    Science.gov (United States)

    Haruyama, Akiko; Kameyama, Atsushi; Kato, Junji; Takemoto, Shinji; Oda, Yutaka; Kawada, Eiji; Takahashi, Toshiyuki; Furusawa, Masahiro

    2016-01-01

    This study evaluated the microtensile bond strength (μTBS) of 1-step self-etch adhesives (1-SEAs) and 2-step self-etch adhesives (2-SEAs) to pulp chamber dentin immediately after bleaching with 2 types of common bleaching techniques. Pulp chamber dentin of bovine teeth was bleached using 30% hydrogen peroxide (H2O2) solution with quartz-tungsten-halogen light-curing unit (Group 1) and 3.5% H2O2-containing titanium dioxide (TiO2) (Pyrenees®) activated with 405-nm violet diode laser for 15 min (Group 2). Unbleached specimens were placed in distilled water for 15 min and used as controls. After treatment, dentin was bonded with resin composite using 1-SEA or 2-SEA and stored in water at 37°C for 24 h. Each specimen was sectioned and trimmed to an hourglass-shape and μTBS was measured. Fractured specimens were examined under a scanning electron microscope to determine fracture modes. All specimens in Group 1 failed before proper bonding tests. In Group 2, the μTBS of 2-SEA was significantly greater (with no failed specimens) than 1-SEA (where 21 out of 36 failed). These results indicate that 2-SEA is a better adhesive system than 1-SEA on bleached dentin. Our results also demonstrated that application of H2O2 significantly decreases bond strength of resin to dentin; however, in the case of nonvital tooth bleaching, Pyrenees® is a better alternative to the conventional 30% H2O2 bleaching.

  6. Resin Bonding of Self-Etch Adhesives to Bovine Dentin Bleached from Pulp Chamber

    Directory of Open Access Journals (Sweden)

    Akiko Haruyama

    2016-01-01

    Full Text Available This study evaluated the microtensile bond strength (μTBS of 1-step self-etch adhesives (1-SEAs and 2-step self-etch adhesives (2-SEAs to pulp chamber dentin immediately after bleaching with 2 types of common bleaching techniques. Pulp chamber dentin of bovine teeth was bleached using 30% hydrogen peroxide (H2O2 solution with quartz-tungsten-halogen light-curing unit (Group 1 and 3.5% H2O2-containing titanium dioxide (TiO2 (Pyrenees® activated with 405-nm violet diode laser for 15 min (Group 2. Unbleached specimens were placed in distilled water for 15 min and used as controls. After treatment, dentin was bonded with resin composite using 1-SEA or 2-SEA and stored in water at 37°C for 24 h. Each specimen was sectioned and trimmed to an hourglass-shape and μTBS was measured. Fractured specimens were examined under a scanning electron microscope to determine fracture modes. All specimens in Group 1 failed before proper bonding tests. In Group 2, the μTBS of 2-SEA was significantly greater (with no failed specimens than 1-SEA (where 21 out of 36 failed. These results indicate that 2-SEA is a better adhesive system than 1-SEA on bleached dentin. Our results also demonstrated that application of H2O2 significantly decreases bond strength of resin to dentin; however, in the case of nonvital tooth bleaching, Pyrenees® is a better alternative to the conventional 30% H2O2 bleaching.

  7. Effect of EDTA and Phosphoric Acid Pretreatment on the Bonding Effectiveness of Self-Etch Adhesives to Ground Enamel

    Science.gov (United States)

    Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.

    2010-01-01

    Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162

  8. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  9. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Science.gov (United States)

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  10. Fracture Analysis of Beam-Column Joints due to Bond-Slip Mechanism

    NARCIS (Netherlands)

    Jankovic, D.; Chopra, M.B.; Kunnath, S.K.

    2002-01-01

    In order to predict a bond-slip behavior of the reinforcement bar in inner joint in a ‘seismic’ reinforced concrete frame structure, experiments and numerical analyses were conducted. A reinforced cylinder with a centrally embedded deformed rebar served as a simple joint model. The bar was fully

  11. Durable bonds at the adhesive/dentin interface: an impossible mission or simply a moving target?

    Science.gov (United States)

    SPENCER, Paulette; Jonggu PARK, Qiang YE; MISRA, Anil; BOHATY, Brenda S.; SINGH, Viraj; PARTHASARATHY, Ranga; SENE, Fábio; de Paiva GONÇALVES, Sérgio Eduardo; LAURENCE, Jennifer

    2013-01-01

    Composite restorations have higher failure rates, more recurrent caries and increased frequency of replacement as compared to dental amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and failure. The gingival margin of composite restora tions is particularly vulnerable to decay and at this margin, the adhesive and its seal to dentin provides the primary barrier between the prepared tooth and the environment. The intent of this article is to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:24855586

  12. Depletion of water molecules during ethanol wet-bonding with etch and rinse dental adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, Genevieve, E-mail: gregoire@cict.fr [Department of Biomaterials, Faculty of Odontology, University Toulouse III, 31062, Toulouse (France); Sharrock, Patrick [Medical and Spatial Imaging Laboratory, University Toulouse III, Ave. Pompidou, 81104, Castres (France); Delannee, Mathieu [Department of Biomaterials, Faculty of Odontology, University Toulouse III, 31062, Toulouse (France); Delisle, Marie-Bernadette [Faculty of Medicine, University Toulouse III, 31062, Toulouse (France)

    2013-01-01

    The treatment of demineralized dentin with ethanol has been proposed as a way to improve hydrophobic monomer penetration into otherwise water saturated collagen fibrils. The ethanol rinse is expected to preserve the fibrils from collapsing while optimizing resin constituent infiltration for better long term adhesion. The physico-chemical investigations of demineralized dentin confirmed objectively these working hypotheses. Namely, Differential Scanning Calorimetry (DSC) measurements of the melting point of water molecules pointed to the presence of free and bound water states. Unfreezable water was the main type of water remaining following a rinsing step with absolute ethanol. Two different liquid water phases were also observed by Magic Angle Spinning (MAS) solid state Nuclear magnetic Resonance (NMR) spectroscopy. Infrared spectra of ethanol treated specimens illustrated differences with the fully hydrated specimens concerning the polar carbonyl vibrations. Optical microscopy observations as well as scanning electron microscopy showed an improved dentin-adhesive interface with ethanol wet bonding. The results indicate that water can be confined to strongly bound structural molecules when excess water is removed with ethanol prior to adhesive application. This should preserve collagen from hydrolysis upon aging of the hybrid layer. - Highlights: Black-Right-Pointing-Pointer Non-freezable water exists in demineralized dentine. Black-Right-Pointing-Pointer Free water can be removed by ethanol rinse of the demineralized collagen. Black-Right-Pointing-Pointer Ethanol wet bonding leads to a homogeneous hybrid layer free of defects.

  13. Effects of bonding temperature on microstructure, fracture behavior and joint strength of Ag nanoporous bonding for high temperature die attach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Su, E-mail: mskim927@gmail.com [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nishikawa, Hiroshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2015-10-01

    Ag nanoparticle sintering has received much attention as an alternative joining method to lead-based soldering for high temperature electronic applications. However, there are still certain issues with this method, such as difficulties of in controlling the joining layer thickness and the occurrence of unexpected voids resulting from solvent evaporation. In this study, the effect of bonding temperature (200–400 °C) and environment (air and N{sub 2}) on the joint strength of Ag nanoporous bonding (NPB) on electroless nickel/immersion gold finished Cu disks was investigated. A nanoporous Ag sheet fabricated using dealloying method from an Al–Ag precursor was adopted as the insert material. The NPB was conducted at various temperatures (200–400 °C) for 30 min at a pressure of 20 MPa in both air and N{sub 2} environments. The joint strength of NPB was closely related with the microstructure of the Ag layer and the fracture mode of the joint, and increased with increasing bonding temperature through the formation of strong interface and a coarsened Ag layer. The effect of the bonding environment was not significant, except in the case of bonding temperature of 400 °C.

  14. Effect of different adhesive strategies on microtensile bond strength of computer aided design/computer aided manufacturing blocks bonded to dentin

    Science.gov (United States)

    Roperto, Renato; Akkus, Anna; Akkus, Ozan; Lang, Lisa; Sousa-Neto, Manoel Damiao; Teich, Sorin; Porto, Thiago Soares

    2016-01-01

    Background: The aim of this study was to determine the microtensile bond strength (μTBS) of ceramic and composite computer aided design-computer aided manufacturing (CAD-CAM) blocks bonded to dentin using different adhesive strategies. Materials and Methods: In this in vitro study, 30 crowns of sound freshly extracted human molars were sectioned horizontally 3 mm above the cementoenamel junction to produce flat dentin surfaces. Ceramic and composite CAD/CAM blocks, size 14, were sectioned into slices of 3 mm thick. Before bonding, CAD/CAM block surfaces were treated according to the manufacturer's instructions. Groups were created based on the adhesive strategy used: Group 1 (GI) - conventional resin cement + total-etch adhesive system, Group 2 (GII) - conventional resin cement + self-etch adhesive system, and Group 3 (GIII) - self-adhesive resin cement with no adhesive. Bonded specimens were stored in 100% humidity for 24h at 37΀C, and then sectioned with a slow-speed diamond saw to obtain 1 mm × 1 mm × 6 mm microsticks. Microtensile testing was then conducted using a microtensile tester. μTBS values were expressed in MPa and analyzed by one-way ANOVA with post hoc (Tukey) test at the 5% significance level. Results: Mean values and standard deviations of μTBS (MPa) were 17.68 (±2.71) for GI/ceramic; 17.62 (±3.99) for GI/composite; 13.61 (±6.92) for GII/composite; 12.22 (±4.24) for GII/ceramic; 7.47 (±2.29) for GIII/composite; and 6.48 (±3.10) for GIII/ceramic; ANOVA indicated significant differences among the adhesive modality and block interaction (P ceramic. Bond strength of GIII was consistently lower (P ceramic, can be significantly affected by different adhesive strategies used. PMID:27076825

  15. An in vitro study of the bond strength of five adhesives used for vinyl polysiloxane impression materials and tray materials.

    Science.gov (United States)

    Kumar, Surender; Gandhi, Udey Vir; Banerjee, Saurav

    2014-03-01

    Although stock trays often provide mechanical retention for elastomeric impression materials, manufacturers typically recommend the use of an adhesive, whether a stock or custom tray is used. The mention of the bond strength on the