WorldWideScience

Sample records for adhesive sliding wear-friction

  1. Influence of self-affine roughness on the adhesive friction coefficient of a rubber body sliding on a solid substrate

    NARCIS (Netherlands)

    Palasantzas, G

    2004-01-01

    In this work we investigate characteristics of the adhesive friction during sliding of a rubber body on a rough self-affined surface. The latter is characterized by the rms roughness amplitude w, the in-plane correlation length, and the roughness exponent H (0

  2. Adhesion and sliding response of a biologically inspired fibrillar surface: experimental observations.

    Science.gov (United States)

    Yao, H; Rocca, G Della; Guduru, P R; Gao, H

    2008-07-01

    Inspired by the adhesion mechanisms of several animal species such as geckos, beetles and flies, several efforts in designing and fabricating surface engineering strategies have been made recently to mimic the adhesive and frictional behaviour of biological foot pads. An important feature of such biological adhesion systems is the ability to switch between strong attachment and easy detachment, which is crucial for animal locomotion. Recent investigations have suggested that such a 'switching' mechanism can be achieved by the elastic anisotropy of the attachment pad, which renders the magnitude of the detachment force to be direction dependent. This suggestion is supported by the observations that the fibres of the foot pads in geckos and insects are oriented at an angle to the base and that geckos curl their toes backwards (digital hyperextension) while detaching from a surface. One of the promising bio-inspired architectures developed recently is a film-terminated fibrillar PDMS surface; this structure was demonstrated to result in superior detachment force and energy dissipation compared with a bulk PDMS surface. In this investigation, the film-terminated fibrillar architecture is modified by tilting the fibres to make the surface vertically more compliant and elastically anisotropic. The directional detachment and the sliding resistance between the tilted fibrillar surfaces and a spherical glass lens are measured: both show significant directional anisotropy. It is argued that the anisotropy introduced by the tilted fibres and the deformation-induced change in the compliance of the fibre layer are responsible for the observed anisotropy in the detachment force. PMID:17971321

  3. Biomechanics of shear-sensitive adhesion in climbing animals: peeling, pre-tension and sliding-induced changes in interface strength.

    Science.gov (United States)

    Labonte, David; Federle, Walter

    2016-09-01

    Many arthropods and small vertebrates use adhesive pads for climbing. These biological adhesives have to meet conflicting demands: attachment must be strong and reliable, yet detachment should be fast and effortless. Climbing animals can rapidly and reversibly control their pads' adhesive strength by shear forces, but the mechanisms underlying this coupling have remained unclear. Here, we show that adhesive forces of stick insect pads closely followed the predictions from tape peeling models when shear forces were small, but strongly exceeded them when shear forces were large, resulting in an approximately linear increase of adhesion with friction. Adhesion sharply increased at peel angles less than ca 30°, allowing a rapid switch between attachment and detachment. The departure from classic peeling theory coincided with the appearance of pad sliding, which dramatically increased the peel force via a combination of two mechanisms. First, partial sliding pre-stretched the pads, so that they were effectively stiffer upon detachment and peeled increasingly like inextensible tape. Second, pad sliding reduces the thickness of the fluid layer in the contact zone, thereby increasing the stress levels required for peeling. In combination, these effects can explain the coupling between adhesion and friction that is fundamental to adhesion control across all climbing animals. Our results highlight that control of adhesion is not solely achieved by direction-dependence and morphological anisotropy, suggesting promising new routes for the development of controllable bio-inspired adhesives. PMID:27605165

  4. Effect of fluorocarbon self-assembled monolayer films on sidewall adhesion and friction of surface micromachines with impacting and sliding contact interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, H.; Komvopoulos, K. [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States)

    2013-06-14

    A self-assembled monolayer film consisting of fluoro-octyltrichlorosilane (FOTS) was vapor-phase deposited on Si(100) substrates and polycrystalline silicon (polysilicon) surface micromachines. The hydrophobic behavior and structural composition of the FOTS film deposited on Si(100) were investigated by goniometry and X-ray photoelectron spectroscopy, respectively. The effects of contact pressure, relative humidity, temperature, and impact/sliding cycles on the adhesive and friction behavior of uncoated and FOTS-coated polysilicon micromachines (referred to as the Si and FOTS/Si micromachines, respectively) were investigated under controlled loading and environmental conditions. FOTS/Si micromachines demonstrated much lower and stable adhesion than Si micromachines due to the highly hydrophobic and conformal FOTS film. Contrary to Si micromachines, sidewall adhesion of FOTS/Si micromachines demonstrated a weak dependence on relative humidity, temperature, and impact cycles. In addition, FOTS/Si micromachines showed low and stable adhesion and low static friction for significantly more sliding cycles than Si micromachines. The adhesive and static friction characteristics of Si and FOTS/Si micromachines are interpreted in the context of physicochemical surface changes, resulting in the increase of the real area of contact and a hydrophobic-to-hydrophilic transition of the surface chemical characteristics caused by nanoscale surface smoothening and the removal of the organic residue (Si micromachines) or the FOTS film (FOTS/Si micromachines) during repetitive impact and oscillatory sliding of the sidewall surfaces.

  5. Adhesion

    Science.gov (United States)

    As the body moves, tissues or organs inside are normally able to shift around each other. This is because these tissues have ... occur if the adhesions cause an organ or body part to: Twist Pull ... unable to move normally The risk of forming adhesions is high ...

  6. Atomic Scale Interface Manipulation, Structural Engineering, and Their Impact on Ultrathin Carbon Films in Controlling Wear, Friction, and Corrosion.

    Science.gov (United States)

    Dwivedi, Neeraj; Yeo, Reuben J; Yak, Leonard J K; Satyanarayana, Nalam; Dhand, Chetna; Bhat, Thirumaleshwara N; Zhang, Zheng; Tripathy, Sudhiranjan; Bhatia, Charanjit S

    2016-07-13

    Reducing friction, wear, and corrosion of diverse materials/devices using systems. Here, we present a novel approach based on atomic scale interface manipulation to engineer and control the friction, wear, corrosion, and structural characteristics of 0.7-1.7 nm carbon-based films on CoCrPt:oxide-based magnetic media. We demonstrate that when an atomically thin (∼0.5 nm) chromium nitride (CrNx) layer is sandwiched between the magnetic media and an ultrathin carbon overlayer (1.2 nm), it modifies the film-substrate interface, creates various types of interfacial bonding, increases the interfacial adhesion, and tunes the structure of carbon in terms of its sp(3) bonding. These contribute to its remarkable functional properties, such as stable and lowest coefficient of friction (∼0.15-0.2), highest wear resistance and better corrosion resistance despite being only ∼1.7 nm thick, surpassing those of ∼2.7 nm thick current commercial carbon overcoat (COC) and other overcoats in this work. While this approach has direct implications for advancing current magnetic storage technology with its ultralow thickness, it can also be applied to advance the protective and barrier capabilities of other ultrathin materials for associated technologies. PMID:27267790

  7. Friction-induced vibrations and self-organization mechanics and non-equilibrium thermodynamics of sliding contact

    CERN Document Server

    Nosonovsky, Michael

    2013-01-01

    Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechani

  8. Slide Rule For Calculating Curing Schedules

    Science.gov (United States)

    Heater, Don

    1995-01-01

    Special-purpose slide rule devised for calculating schedules for storing and curing adhesives, sealants, and other materials characterized by known curing times and shelf lives. Prevents mistakes commonly made in determining storage and curing schedules.

  9. 3-AMINOPROPYLTRIETHOXYSILANE TREATED SLIDES

    OpenAIRE

    sprotocols

    2014-01-01

    Author: University of Nottingham Medical School Division of Histopathy ### METHOD: 1. Wash glass slides in detergent for 30 minutes. - Wash glass slides in running tap water for 30 minutes. - Wash glass slides in distilled water 2x5 minutes. - Wash glass slides in 95% alcohol 2x5 minutes. - Air dry for 10 minutes. - Immerse slides in a freshly prepared 2% solution for 3-aminopropyltriethoxysilane in dry acetone for 5 seconds. - Wash briefly in distilled water twi...

  10. Abdominal Adhesions

    Science.gov (United States)

    ... adhesions? Abdominal adhesions can cause intestinal obstruction and female infertility—the inability to become pregnant after a year of trying. Abdominal adhesions can lead to female infertility by preventing fertilized eggs from reaching the uterus, ...

  11. Tribological Behaviour of W-DLC against an Aluminium Alloy Subjected to Lubricated Sliding

    OpenAIRE

    S. Bhowmick; A. Banerji; A.T. Alpas

    2015-01-01

    Diamond like carbon (DLC) coatings mitigate aluminium adhesion and reduce friction under the ambient conditions but their tribological behaviour under lubricated sliding need to be further investigated. In this study, tribological tests were performed to evaluate the friction and wear characteristics of W-DLC and H-DLC coatings sliding against an aluminium alloy (319 Al) under unlubricated (40 % RH) and lubricated sliding conditions. For unlubricated sliding, coefficient of friction (COF) val...

  12. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  13. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  14. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  15. UNDERSTANDING THE SLIDE RULE.

    Science.gov (United States)

    JOHNSON, RONALD E.; AND OTHERS

    A BOOKLET DESIGNED FOR ELEMENTARY SCHOOL STUDENTS TO BE USED INDEPENDENTLY FROM AND IN ADDITION TO THE REGULAR CLASSROOM CURRICULUM IN MATHEMATICS IS GIVEN. THE FIFTH- OR SIXTH-GRADE STUDENT IS PRESENTED WITH A DISCUSSION OF THE APPLICATIONS OF THE SLIDE RULE AND WITH A BACKGROUND REVIEW OF NECESSARY CONCEPTS. THE CONCEPTS OF THE SLIDE RULE ARE…

  16. Mailing microscope slides

    Science.gov (United States)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  17. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  18. Mechanics of slide dams

    International Nuclear Information System (INIS)

    Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)

  19. Sliding tethered ligands add topological interactions to the toolbox of ligand-receptor design

    Science.gov (United States)

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-09-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand-receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering.

  20. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  1. Reversing the Slide

    Science.gov (United States)

    Gallagher, Michael

    2005-01-01

    The Government is embarking on a grand market-based vision for the sector just at the moment when university enrolments will begin a long and perhaps inexorable slide. And according to Michael Gallagher, higher education is becoming a less attractive investment for the private sector even as the Government is pushing the sector towards ever higher…

  2. Slowing the Summer Slide

    Science.gov (United States)

    Smith, Lorna

    2012-01-01

    Research shows that summer slide--the loss of learning over the summer break--is a huge contributor to the achievement gap between low-income students and their higher-income peers. In fact, some researchers have concluded that two-thirds of the 9th-grade reading achievement gap can be explained by unequal access to summer learning opportunities…

  3. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  4. Shear adhesion strength of aligned electrospun nanofibers.

    Science.gov (United States)

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities.

  5. Drying induced upright sliding and reorganization of carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li Qingwen [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); De Paula, Raymond [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhang Xiefei [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zheng Lianxi [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Arendt, Paul N [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mueller, Fred M [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhu, Y T [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tu Yi [CVD-First Nano, 1860 Smithtown Avenue, Ronkonkoma, NY 11779 (United States)

    2006-09-28

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns.

  6. Drying induced upright sliding and reorganization of carbon nanotube arrays

    International Nuclear Information System (INIS)

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns

  7. Presentation = Speech + Slides

    Directory of Open Access Journals (Sweden)

    Derik Badman

    2008-12-01

    Full Text Available Back in October, Aaron Schmidt posted “HOWTO give a good presentation” to his blog walking paper. His second bullet point of “thoughts” on good presentations is: Please don’t fill your slides with words. Find some relevant and pretty pictures to support what you’re saying. You can use the pictures to remind yourself what you’re going [...

  8. Saltatory formation, sliding and dissolution of ER–PM junctions in migrating cancer cells

    OpenAIRE

    Dingsdale, Hayley; Okeke, Emmanuel; Awais, Muhammad; Haynes, Lee; Criddle, David N.; Sutton, Robert; Tepikin, Alexei V.

    2013-01-01

    We demonstrated three novel forms of dynamic behaviour of junctions between the ER (endoplasmic reticulum) and the PM (plasma membrane) in migrating cancer cells: saltatory formation, long-distance sliding and dissolution. The individual ER–PM junctions formed near the leading edge of migrating cells (usually within 0.5 μm of polymerized actin and close to focal adhesions) and appeared suddenly without sliding from the interior of the cell. The long distance sliding and dissolution of ER–PM j...

  9. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  10. Tile adhesive production by Inorganic materials

    Directory of Open Access Journals (Sweden)

    Fasil Alemayehu Hayilu

    2013-07-01

    Full Text Available In modern construction, ceramic tile and mosaic which are used for finishing and decoration are attached to the surface by using tile adhesives. It was a long way for tiling technology to arrive at the current cement based modified adhesive. The development in additives and modifier are the paramount factor to improve workability, higher flexibility, and better adhesion. In this document tile adhesive has been produced for economical and high performance formulation. These products have been produced by considering the effect of aggregate. These two products with different size of aggregate have been compared and tested. The test made was slip, bending, and compression test. Economical formulation consists of components like cement, quartz sand, cellulose ether and tartaric acid. But high performance consists of limestone and cellulose fiber in addition to these components. The modifier added has enhanced the final product resistance to sliding, bending and compression strength. In terms of compression strength test about 17.27% high performance is stronger than economical formulation. And in addition high performance is stronger than economical formulation by about 16.89% in terms of bending strength. The other thing is the effect of grain size, the component that has low grain size have shown great strength and resistant to slide.

  11. Solar-Cell Slide Rule

    Science.gov (United States)

    Yamakawa, K. A.

    1983-01-01

    Slide rule relates efficiency, impurity types, impurity concentrations, and process types. Solar cell slide rule calculations are determination of allowable impurity concentration for nonredistributive process, determination of impurity buildup factor for redistributive process and determination of allowable impurity concentration for redistributive process.

  12. Using Scrap Slides for Art.

    Science.gov (United States)

    Hanlon, Heather

    1979-01-01

    Using scrap slides for an art lesson can be an exciting, creative experience for people of all ages, and many techniques are applicable in both primary and secondary grades. Scrap slides are an inexpensive means to unique, original, and stimulating discoveries about film as an art form. (Author)

  13. Operational Semantics for SPARQL Update (slides)

    OpenAIRE

    Horne, Ross

    2011-01-01

    These are the slides presented at JIST 2011. The slides contain examples of updates. The examples are based on Chinese history local to Hangzhou, where the conference was held. The slides also feature the crocodile served at the conference banquet.

  14. Appearance normalization of histology slides.

    Science.gov (United States)

    Vicory, Jared; Couture, Heather D; Thomas, Nancy E; Borland, David; Marron, J S; Woosley, John; Niethammer, Marc

    2015-07-01

    This paper presents a method for automatic color and intensity normalization of digitized histology slides stained with two different agents. In comparison to previous approaches, prior information on the stain vectors is used in the plane estimation process, resulting in improved stability of the estimates. Due to the prevalence of hematoxylin and eosin staining for histology slides, the proposed method has significant practical utility. In particular, it can be used as a first step to standardize appearance across slides and is effective at countering effects due to differing stain amounts and protocols and counteracting slide fading. The approach is validated against non-prior plane-fitting using synthetic experiments and 13 real datasets. Results of application of the method to adjustment of faded slides are given, and the effectiveness of the method in aiding statistical classification is shown.

  15. Shearing Nanometer-Thick Confined Hydrocarbon Films: Friction and Adhesion

    DEFF Research Database (Denmark)

    Sivebæk, I. M.; Persson, B. N. J.

    2016-01-01

    We present molecular dynamics (MD) friction and adhesion calculations for nanometer-thick confined hydrocarbon films with molecular lengths 20, 100 and 1400 carbon atoms. We study the dependency of the frictional shear stress on the confining pressure and sliding speed. We present results...

  16. Advanced adhesives in electronics

    CERN Document Server

    Bailey, C

    2011-01-01

    Adhesives are widely used in the manufacture of electronic devices to act as passive and active components. Recently there has been considerable interest in the use of conductive adhesives. This book reviews key types of conductive adhesives, processing methods, properties and the way they can be modelled as well as potential applications.$bAdhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic ...

  17. Hot melt "corner point method" for attaching large plastic sections to glass slides.

    Science.gov (United States)

    Krämer, K L; von Hagens, G

    1983-03-01

    We describe a fast method for firm attachment of large plastic sections to glass slides with EVA-copolymers, commonly known as hot melt sticks. Solid hot melt sticks dissolve slowly in xylene to form an adhesive gel within 6 hours. Small drops of hot melt gel are applied to the corners of the sections and surrounding slide surface at ambient or elevated temperatures. The gel sticks to both the plastic and the glass slides. The hot melt "corner point method" prevented detachment of sections in staining procedures. As an additional technique, we suggest the use of hot melt adhesive for attaching plastic specimen blocks to wooden blocks or metallic specimen holders. PMID:6353677

  18. Shear adhesion strength of aligned electrospun nanofibers.

    Science.gov (United States)

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities. PMID:25105533

  19. An Airship Slide Rule

    Science.gov (United States)

    Weaver, E R; Pickering, S F

    1924-01-01

    This report prepared for the National Advisory Committee for Aeronautics, describes an airship slide rule developed by the Gas-Chemistry Section of the Bureau of Standards, at the request of the Bureau of Engineering of the Navy Department. It is intended primarily to give rapid solutions of a few problems of frequent occurrence in airship navigation, but it can be used to advantage in solving a great variety of problems, involving volumes, lifting powers, temperatures, pressures, altitudes and the purity of the balloon gas. The rule is graduated to read directly in the units actually used in making observations, constants and conversion factors being taken care of by the length and location of the scales. It is thought that with this rule practically any problem likely to arise in this class of work can be readily solved after the user has become familiar with the operation of the rule; and that the solution will, in most cases, be as accurate as the data warrant.

  20. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  1. Adhesion and size dependent friction anisotropy in boron nitride nanotubes

    International Nuclear Information System (INIS)

    The frictional properties of individual multiwalled boron nitride nanotubes (BN-NTs) synthesized by chemical vapour deposition (CVD) and deposited on a silicon substrate are investigated using an atomic force microscope tip sliding along (longitudinal sliding) and across (transverse sliding) the tube’s principal axis. Because of the tube’s transverse deformations during the tip sliding, a larger friction coefficient is found for the transverse sliding as compared to the longitudinal sliding. Here, we show that the friction anisotropy in BN-NTs, defined as the ratio between transverse and longitudinal friction forces per unit area, increases with the nanotube–substrate contact area, estimated to be proportional to (LNTRNT)1/2, where LNT and RNT are the length and the radius of the nanotube, respectively. Larger contact area denotes stronger surface adhesion, resulting in a longitudinal friction coefficient closer to the value expected in the absence of transverse deformations. Compared to carbon nanotubes (C-NTs), BN-NTs display a friction coefficient in each sliding direction with intermediate values between CVD and arc discharge C-NTs. CVD BN-NTs with improved tribological properties and higher oxidation temperature might be a better candidate than CVD C-NTs for applications in extreme environments. (paper)

  2. Controllable ON-OFF adhesion for Earth orbit grappling applications

    Science.gov (United States)

    Parness, Aaron; Hilgendorf, Tyler; Daniel, Phillip; Frost, Matt; White, Victor; Kennedy, Brett

    ON-OFF adhesives can benefit multiple Earth orbit applications by providing the capability to selectively anchor two surfaces together repeatedly and releasably without significant preload. Key to this new capability, targets will not need special preparation; ON-OFF adhesives can be used with cooperative and non-cooperative objects, like defunct satellites or space debris. Using an ON-OFF adhesive gripper allows large surfaces on a target to serve as potential grapple points, reducing the precision needed in the sensing and control throughout the grapple operation. A space-rated adhesive structure is presented that can be turned ON-OFF using a slight sliding motion. This adhesive mimics the geometry and performance characteristics of the adhesive structures found on the feet of gecko lizards. Results from adhesive testing on common orbital surfaces like solar panels, thermal blankets, composites, and painted surfaces are presented. Early environmental testing results from cold temperature and vacuum tests are also presented. Finally, the paper presents the design, fabrication, and preliminary testing of a gripping mechanism enabled by these ON-OFF adhesives in preparation for satellite-servicing applications. Adhesive levels range from near zero on rough surfaces to more than 75 kPa on smooth surfaces like glass.

  3. Friction and adhesion mediated by supramolecular host-guest complexes

    Science.gov (United States)

    Guerra, Roberto; Benassi, Andrea; Vanossi, Andrea; Ma, Ming; Urbakh, Michael

    The adhesive and frictional response of an AFM tip connected to a substrate through supramolecular host-guest complexes is investigated by dynamic Monte Carlo simulations. The variation of the pull-off force with the unloading rate recently observed in experiments is here unraveled by evidencing a simultaneous (progressive) break of the bonds at fast (slow) rates. The model reveals the origin of the observed plateaus in the retraction force as a function of tip-surface distance, showing that they ensue from the tip geometrical features. In lateral sliding, the model exhibits a wide range of dynamic behaviors ranging from smooth sliding to stick-slip at different velocities, with the average friction force determined by the characteristic formation/rupture rates of the complexes. In particular, it is shown that for some molecular complexes friction can become almost constant over a wide range of velocities. Also, we show the possibility to exploit ageing effect through slide-hold-slide experiments, in order to infer the characteristic formation rate. Finally, our model predicts a novel "anti-ageing" effect which is characterized by a decrease of static friction force with the hold time. Such effect is explained in terms of enhancement of adhesion during sliding, especially observed at high driving velocities.

  4. Friction and adhesion mediated by supramolecular host-guest complexes.

    Science.gov (United States)

    Guerra, Roberto; Benassi, Andrea; Vanossi, Andrea; Ma, Ming; Urbakh, Michael

    2016-04-01

    The adhesive and frictional response of an AFM tip connected to a substrate through supramolecular host-guest complexes is investigated by dynamic Monte Carlo simulations. Here, the variation of the pull-off force with the unloading rate recently observed in experiments is unraveled by evidencing simultaneous (progressive) breaking of the bonds at fast (slow) rates. The model reveals the origin of the observed plateaus in the retraction force as a function of the tip-surface distance, showing that they result from the tip geometrical features. In lateral sliding, the model exhibits a wide range of dynamic behaviors ranging from smooth sliding to stick-slip at different velocities, with the average friction force determined by the characteristic formation/rupture rates of the complexes. In particular, it is shown that for some molecular complexes friction can become almost constant over a wide range of velocities. Also, we show the possibility of exploiting the ageing effect through slide-hold-slide experiments, in order to infer the characteristic formation rate. Finally, our model predicts a novel "anti-ageing" effect which is characterized by a decrease of the static friction force with the hold time. Such an effect is explained in terms of enhancement of adhesion during sliding, especially observed at high driving velocities. PMID:26975343

  5. Mapping stain distribution in pathology slides using whole slide imaging

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Yeh

    2014-01-01

    Full Text Available Background: Whole slide imaging (WSI offers a novel approach to digitize and review pathology slides, but the voluminous data generated by this technology demand new computational methods for image analysis. Materials and Methods: In this study, we report a method that recognizes stains in WSI data and uses kernel density estimator to calculate the stain density across the digitized pathology slides. The validation study was conducted using a rat model of acute cardiac allograft rejection and another rat model of heart ischemia/reperfusion injury. Immunohistochemistry (IHC was conducted to label ED1 + macrophages in the tissue sections and the stained slides were digitized by a whole slide scanner. The whole slide images were tessellated to enable parallel processing. Pixel-wise stain classification was conducted to classify the IHC stains from those of the background and the density distribution of the identified IHC stains was then calculated by the kernel density estimator. Results: The regression analysis showed a correlation coefficient of 0.8961 between the number of IHC stains counted by our stain recognition algorithm and that by the manual counting, suggesting that our stain recognition algorithm was in good agreement with the manual counting. The density distribution of the IHC stains showed a consistent pattern with those of the cellular magnetic resonance (MR images that detected macrophages labeled by ultrasmall superparamagnetic iron-oxide or micron-sized iron-oxide particles. Conclusions: Our method provides a new imaging modality to facilitate clinical diagnosis. It also provides a way to validate/correlate cellular MRI data used for tracking immune-cell infiltration in cardiac transplant rejection and cardiac ischemic injury.

  6. Dendrimer-Mediated Adhesion between Vapor-Deposited Au and Glass or Si Wafers.

    Science.gov (United States)

    Baker, L A; Zamborini, F P; Sun, L; Crooks, R M

    1999-10-01

    Here, we report the use of amine-terminated poly(amidoamine) (PAMAM) dendrimers as adhesion promoters between vapor-deposited Au films and Si-based substrates. This method is relatively simple, requiring only substrate cleaning, dipping, and rinsing. Proof of concept is illustrated by coating glass slides and single-crystal Si wafers with monolayers of PAMAM dendrimers and then evaporating adherent, 150-nm-thick Au films atop the dendritic adhesion promoter. Scanning tunneling microscopy and cyclic voltammetry have been used to assess the surface roughness and electrochemical stability of the Au films. The effectiveness of the dendrimer adhesion layer is demonstrated using standard adhesive-tape peel tests.

  7. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  8. Switching stiction and adhesion of a liquid on a solid

    Science.gov (United States)

    Mertens, Stijn F. L.; Hemmi, Adrian; Muff, Stefan; Gröning, Oliver; de Feyter, Steven; Osterwalder, Jürg; Greber, Thomas

    2016-06-01

    When a gecko moves on a ceiling it makes use of adhesion and stiction. Stiction—static friction—is experienced on microscopic and macroscopic scales and is related to adhesion and sliding friction. Although important for most locomotive processes, the concepts of adhesion, stiction and sliding friction are often only empirically correlated. A more detailed understanding of these concepts will, for example, help to improve the design of increasingly smaller devices such as micro- and nanoelectromechanical switches. Here we show how stiction and adhesion are related for a liquid drop on a hexagonal boron nitride monolayer on rhodium, by measuring dynamic contact angles in two distinct states of the solid-liquid interface: a corrugated state in the absence of hydrogen intercalation and an intercalation-induced flat state. Stiction and adhesion can be reversibly switched by applying different electrochemical potentials to the sample, causing atomic hydrogen to be intercalated or not. We ascribe the change in adhesion to a change in lateral electric field of in-plane two-nanometre dipole rings, because it cannot be explained by the change in surface roughness known from the Wenzel model. Although the change in adhesion can be calculated for the system we study, it is not yet possible to determine the stiction at such a solid-liquid interface using ab initio methods. The inorganic hybrid of hexagonal boron nitride and rhodium is very stable and represents a new class of switchable surfaces with the potential for application in the study of adhesion, friction and lubrication.

  9. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  10. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  11. Comprehensive Smokefree Indoor Air PDF Slides

    Data.gov (United States)

    U.S. Department of Health & Human Services — Download the comprehensive smokefree indoor air slides. These slides are available in PDF and PowerPoint formats. The PowerPoint version can be found at:...

  12. Slide-based ergometer rowing

    DEFF Research Database (Denmark)

    Vinther, Anders; Alkjær, T; Kanstrup, I-L;

    2012-01-01

    Force production profile and neuromuscular activity during slide-based and stationary ergometer rowing at standardized submaximal power output were compared in 14 male and 8 female National Team rowers. Surface electromyography (EMG) was obtained in selected thoracic and leg muscles along...

  13. Model coupling friction and adhesion for steel-concrete interfaces

    CERN Document Server

    Raous, Michel

    2010-01-01

    The interface behaviour between steel and concrete, during pull-out tests, is numerically investigated using an interface model coupling adhesion and Coulomb friction. This model, first developed by Raous, Cang\\'emi, Cocou and Monerie (RCCM), is based on the adhesion intensity variable, introduced by Fr\\'emond, which is a surface damage variable. The RCCM model is here completed by taking a variable friction coefficient to simulate the slip weakening of the interface when sliding occurs. Identification of the parameters and validation of the model are carried on pull out experiments conducted at the INSA of Toulouse on steel-concrete interface of reinforced concrete.

  14. Diseases of Landscape Ornamentals. Slide Script.

    Science.gov (United States)

    Powell, Charles C.; Sydnor, T. Davis

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with recognizing and controlling diseases found on ornamental landscape plants. Included in the script are narrations for use with a total of 80 slides illustrating various foliar diseases (anthracnose, black spot, hawthorn leaf blight,…

  15. Linear Classification of Dairy Cattle. Slide Script.

    Science.gov (United States)

    Sipiorski, James; Spike, Peter

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with principles of the linear classification of dairy cattle. Included in the guide are narrations for use with 63 slides, which illustrate the following areas that are considered in the linear classification system: stature, strength,…

  16. Approved Practices in Dairy Reproduction. Slide Script.

    Science.gov (United States)

    Roediger, Roger D.; Barr, Harry L.

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with approved practices in dairy reproduction. Included in the guide are narrations for use with 200 slides dealing with the following topics: the importance of good reproduction, the male and female roles in reproduction, selection of…

  17. Tribological Behaviour of W-DLC against an Aluminium Alloy Subjected to Lubricated Sliding

    Directory of Open Access Journals (Sweden)

    S. Bhowmick

    2015-09-01

    Full Text Available Diamond like carbon (DLC coatings mitigate aluminium adhesion and reduce friction under the ambient conditions but their tribological behaviour under lubricated sliding need to be further investigated. In this study, tribological tests were performed to evaluate the friction and wear characteristics of W-DLC and H-DLC coatings sliding against an aluminium alloy (319 Al under unlubricated (40 % RH and lubricated sliding conditions. For unlubricated sliding, coefficient of friction (COF values of H-DLC and W-DLC were 0.15 and 0.20. A lower COF value of 0.11 was observed when W-DLC was tested using lubricant oil incorporating sulphur while the H-DLC’s COF remained almost unchanged. The mechanisms responsible for the low friction of W-DLC observed during lubricated sliding were revealed by studying the compositions of the coating surfaces and the transfer layers formed on 319 Al. Micro-Raman spectroscopy indicated that the transfer layers formed during lubricated sliding of W-DLC incorporated tungsten disulphide (WS2.

  18. Sliding Mode Control Design for a Class of SISO Systems with Uncertain Sliding Surface

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2013-01-01

    Full Text Available The problem of designing a sliding mode controller with uncertain sliding surface for a class of uncertain single-input-single-output systems is studied. The design case is handled by using the invariant transformation first in order to separate the sliding mode and the reaching mode of the sliding mode control system. It is shown that the sliding mode design needs not to consider the uncertainties of the sliding surface, which can be handled in the reaching phase design. The results generalize the robust design of the reaching phase such that one specific reaching phase design may agree with several sliding surfaces.

  19. In vitro inhibition of Pseudomonas aeruginosa adhesion by Xylitol

    OpenAIRE

    Letícia Pinheiro de Sousa; Annelisa Farah da Silva; Natalia Oliveira Calil; Murilo Gomes Oliveira; Silvio Silvério da Silva; Nádia Rezende Barbosa Raposo

    2011-01-01

    This study evaluated, in vitro, the antimicrobial activity and the anti-adherent property of xylitol (0.5, 2.5 and 5.0%, w/v) on two Pseudomonas aeruginosa strains (ATCC 9027 and clinical). The assay of antimicrobial activity was performed to determine a minimum inhibitory concentration (MIC) and the adhesion test was performed, by which the parameters regarding, growth in the culture medium, number of colony forming units (CFUs) released and slide evaluation by scanning electron microscopy (...

  20. Study on distribution rule of sliding pushing force and remnant resistant sliding force acting on anti-sliding pile

    Institute of Scientific and Technical Information of China (English)

    Qingyang YU; Lei NIE

    2006-01-01

    Anti-slide pile is one of the important methods to administer landslide geological disaster because of its advantages. It plays important role in administering landslide. It is a premise of reasonable economy and technological advance to know the distribution rule and feature of the force between anti-sliding pile and surrounding rock. To determine the sliding force and remnant resistant sliding force, according to need of study, this paper sets up the geological model and mechanics model in term of a typical landslide, and analyzes the effect rule of sliding body distortion, strength and gravity to the pushing force and remnant resistant sliding force by use of the numerical model. The distribution rule of pushing force and remnant resistant sliding force of the type of landslide is given.

  1. Pressure vessel sliding support unit and system using the sliding support unit

    Science.gov (United States)

    Breach, Michael R.; Keck, David J.; Deaver, Gerald A.

    2013-01-15

    Provided is a sliding support and a system using the sliding support unit. The sliding support unit may include a fulcrum capture configured to attach to a support flange, a fulcrum support configured to attach to the fulcrum capture, and a baseplate block configured to support the fulcrum support. The system using the sliding support unit may include a pressure vessel, a pedestal bracket, and a plurality of sliding support units.

  2. Automated single-slide staining device

    Science.gov (United States)

    Wilkins, J. R.; Mills, S. M. (Inventor)

    1977-01-01

    A simple apparatus and method is disclosed for making individual single Gram stains on bacteria inoculated slides to assist in classifying bacteria in the laboratory as Gram-positive or Gram-negative. The apparatus involves positioning a single inoculated slide in a stationary position and thereafter automatically and sequentially flooding the slide with increments of a primary stain, a mordant, a decolorizer, a counterstain and a wash solution in a sequential manner without the individual lab technician touching the slide and with minimum danger of contamination thereof from other slides.

  3. Penetration of urea-formaldehyde adhesives in wood tissue, part I: Radial penetration of UF adhesives into beech

    Directory of Open Access Journals (Sweden)

    Gavrilović-Grmuša Ivana

    2008-01-01

    Full Text Available Adhesive penetration plays an important role in wood adhesion, since wood is a porous material. The degree of penetration mostly depends on the wood factors, resin type and formulation and processing parameters. Tangentially cut 5 mm thick beech wood (Fagus moesiaca plies, 100 mm long (parallel to grain and 30 mm wide, were prepared for this study. The urea-formaldehyde (UF adhesive was applied to the surface of one ply. Two plies were assembled into sample so that the grains of two plies were parallel. Samples were pressed in a hydraulic press at 120°C and 0,7 MPa for 15 min. Microtome test-specimens were cut of each sample. 20 μm thick microtomes were cut by sliding microtome apparatus, exposing a bondline with a cross-sectional surface. The lack of more exhausting research on the penetration of urea-formaldehyde adhesives in wood is evident. Since ureaformaldehyde (UF glue resins were the most important type of adhesives in the wood industry in the last 60 years (Dunky, 2000, the objective of this research was microscopic detection of UF adhesive penetration in wood tissue. Four types of UF resins with different levels of polycondensation were used in this research. Safranin was added in resins, since epi-fluorescence microscope was used in this research for measuring the adhesive penetration.

  4. EXPERIMENTALLY-STATISTICAL MODEL OF CLADDING LAYER FORMATION PROCESS ON SLIDE-WAYS

    Directory of Open Access Journals (Sweden)

    N. N. Maksimchenko

    2010-01-01

    Full Text Available The developed experimentally-statistical model of the cladding composite layer formation process on slide-ways allows to operate technological modes of cladding by flexible instrument (CFI in order to obtain the set properties of a coating (thickness, continuity, adhesion strength.The established optimum technological modes of CFI process providing formation of continuous, strongly adhered to a basis composite coatings of the required thickness have been used for applying coatings on working surfaces of slide-ways of metal-cutting machine tool beds that has allowed to lower friction factor in coupling on the average by 1.3–1.7-fold and to improve uniformity of slow moving of machine tool units by 1.74-fold in comparison with slide-ways without a coating. 

  5. Wear mechanism of Mo−W doped carbon-based coating during boundary lubricated sliding

    OpenAIRE

    Mandal, Paranjayee; Ehiasarian, Arutiun; Hovsepian, Papken

    2015-01-01

    The high temperature tribological applications of state-of-the-art diamond-like-carbon (DLC) coatings in automotive industry are often compromised due to their poor adhesion strength and low thermal stability. A molybdenum and tungsten doped carbon-based coating (Mo−W−C) is developed in order to overcome these limitations and to enhance tribological performance during boundary lubricated sliding at ambient and elevated temperature. The coating was deposited utilising HIPIMS technology. Mo−W−C...

  6. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  7. Electro-dry-adhesion.

    Science.gov (United States)

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample.

  8. Bacterial adhesion to glass and metal-oxide surfaces.

    Science.gov (United States)

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  9. Tissue adhesives in otorhinolaryngology

    Directory of Open Access Journals (Sweden)

    Schneider, Gerlind

    2009-01-01

    Full Text Available The development of medical tissue adhesives has a long history without finding an all-purpose tissue adhesive for clinical daily routine. This is caused by the specific demands which are made on a tissue adhesive, and the different areas of application. In otorhinolaryngology, on the one hand, this is the mucosal environment as well as the application on bones, cartilage and periphery nerves. On the other hand, there are stressed regions (skin, oral cavity, pharynx, oesophagus, trachea and unstressed regions (middle ear, nose and paranasal sinuses, cranial bones. But due to the facts that adhesives can have considerable advantages in assuring surgery results, prevention of complications and so reduction of medical costs/treatment expenses, the search for new adhesives for use in otorhinolaryngology will be continued intensively. In parallel, appropriate application systems have to be developed for microscopic and endoscopic use.

  10. Experimental Investigation of Adhesion and Friction Phenomena of Ultrananocrystalline Diamond (UNCD) and Aluminum Oxide in MEMS

    NARCIS (Netherlands)

    Buja, F.

    2015-01-01

    This thesis aims to provide the latest progresses on the experimental investigation of friction and adhesion phenomena, occurring at the nanoscale in microelectromechanical systems (MEMS). I have studied and characterized the interaction between MEMS sidewalls in contact and sliding one onto another

  11. "Slide less pathology": Fairy tale or reality?

    Science.gov (United States)

    Indu, M; Rathy, R; Binu, M P

    2016-01-01

    Pathology practice is significantly advanced in various frontiers. Therefore, "slide less digital" pathology will not be a mere imagination in near future. Digitalization of histopathological slides (whole slide imaging [WSI]) is possible with the help of whole slide scanner. The WSI has a positive impact not only in routine practice but also in research field, medical education and bioindustry. Even if digital pathology has definitive advantages, its widespread use is not yet possible. As it is an upcoming technology in our field, this article is aimed to discussessential aspects of WSI. PMID:27601824

  12. Sliding mode control for mobile welding robot

    Institute of Scientific and Technical Information of China (English)

    Lü Xueqin; Zhang Ke; Wu Yixiong

    2006-01-01

    The sliding mode controller of mobile welding robot is established in this paper through applying the method of variable structure control with sliding mode into the control of the mobile welding robot.The traditional switching function smooth method is improved by combining the smoothed switching function with the time-varying control gain.It is shown that the proposed sliding mode controller is robust to bounded external disturbances.Experimental results demonstrate that sliding mode controller algorithm can be used into seam tracking and the tracking system is stable with bounded uncertain disturbance.In the seam tracking process, the robot moves steadily without any obvious chattering.

  13. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    International Nuclear Information System (INIS)

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  14. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Meli, E., E-mail: enrico.meli@unifi.it; Ridolfi, A., E-mail: a.ridolfi@unifi.it [University of Florence, Department of Industrial Engineering (Italy)

    2015-03-15

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  15. Handbook of adhesion

    CERN Document Server

    Packham, D E

    2006-01-01

    This second edition of the successful Handbook of Adhesion provides concise and authoritative articles covering many aspects of the science and technology associated with adhesion and adhesives. It is intended to fill a gap between the necessarily simplified treatment of the student textbook and the full and thorough treatment of the research monograph and review article. The articles are structured in such a way, with internal cross-referencing and external literature references, that the reader can build up a broader and deeper understanding, as their needs require.This second edition includ

  16. [Endothelial cell adhesion molecules].

    Science.gov (United States)

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  17. Lactobacillus Adhesion to Mucus

    Directory of Open Access Journals (Sweden)

    Maxwell L. Van Tassell

    2011-05-01

    Full Text Available Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host.

  18. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques.

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-05

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  19. Leukocyte Adhesion Deficiency (LAD)

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area Leukocyte Adhesion Deficiency (LAD) LAD is an immune deficiency in ... are slow to heal also may have LAD. Treatment and Research Doctors prescribe antibiotics to prevent and ...

  20. Management of adhesive capsulitis

    OpenAIRE

    Neviaser, Andrew

    2015-01-01

    Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive cri...

  1. Linear-induction-motor slide drive

    Energy Technology Data Exchange (ETDEWEB)

    Barkman, W. E.

    1977-10-11

    A linear-induction-motor drive system to position machine tool slides has been developed on a test bed that utilizes an air-bearing slide, laser interferometer feedback, and a microprocessor-based servo system. Static and dynamic positioning accuracies of +-16 nm (+-0.6 ..mu..in) have been demonstrated.

  2. Roots of crosscap slides and crosscap transpositions

    OpenAIRE

    Parlak, Anna; Stukow, Michał

    2016-01-01

    Let $N_{g}$ denote a closed nonorientable surface of genus $g$. For $g \\geq 2$ the mapping class group $\\mathcal{M}(N_{g})$ is generated by Dehn twists and one crosscap slide ($Y$-homeomorphism) or by Dehn twists and a crosscap transposition. Margalit and Schleimer observed that Dehn twists have nontrivial roots. We construct roots of crosscap slides and crosscap transpositions.

  3. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  4. Eurosafe-2011 - Papers and slides

    International Nuclear Information System (INIS)

    This document gathers some slides, papers and posters that were presented at the 2011 annual EUROSAFE forum. This forum focuses in its plenary part on 'Nuclear safety: new challenges, gained experience and public expectations' in the light of the Fukushima nuclear power station (NPS) accident. The topic will be considered from the point of view of Japanese safety authorities, of a regulator, of an international organisation, of a utility and of a Technical Safety Organisation (TSO). The first part of the second day will be devoted to presentations of the Fukushima NPS accident. The second part of this day will present the latest work carried out by ETSON (European Technical Safety Organizations Network) and EUROSAFE members and their partners worldwide through three seminars (nuclear safety research and safety assessment, radiation protection and environment, nuclear material and nuclear facilities security) and a workshop on operating experience feedback on nuclear fuel cycle facilities

  5. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  6. Adhesion and friction characteristics of carbon nanotube arrays

    International Nuclear Information System (INIS)

    There has been a great deal of interest in understanding, design and fabrication of bio-mimetic and bio-inspired adhesives in recent years. In this paper we present theoretical investigations on adhesion, friction behaviors and characteristics of fibrillar arrays composed of noninteracting carbon nanotubes for bio-inspired dry adhesives. Contact, compression, subsequent pulling off and dry sliding friction simulations were performed. It is demonstrated that there are two different adhesion forces during pull off. Static friction force values are in between 40 and 60 N cm−2 at different loads and they are significantly larger than the normal adhesion forces. Dynamic friction force and load are anisotropic and they depend on the direction of the motion. It is also found that friction force values and friction coefficients decrease although contact length and contact area increase when the loads are high. This is due to the arms of the nanotubes which bend significantly and act as stiffer springs at high loads. (paper)

  7. An updated nuclear criticality slide rule

    International Nuclear Information System (INIS)

    This Volume 2 contains the functional version of the updated nuclear criticality slide rule (more accurately, sliding graphs) that is referenced in An Updated Nuclear Criticality Slide Rule: Technical Basis, NUREG/CR-6504, Vol. 1 (ORNL/TM-13322/V1). This functional slide rule provides a readily usable open-quotes in-handclose quotes method for estimating pertinent nuclear criticality accident information from sliding graphs, thereby permitting (1) the rapid estimation of pertinent criticality accident information without laborious or sophisticated calculations in a nuclear criticality emergency situation, (2) the appraisal of potential fission yields and external personnel radiation exposures for facility safety analyses, and (3) a technical basis for emergency preparedness and training programs at nonreactor nuclear facilities. The slide rule permits the estimation of neutron and gamma dose rates and integrated doses based upon estimated fission yields, distance from the fission source, and time-after criticality accidents for five different critical systems. Another sliding graph permits the estimation of critical solution fission yields based upon fissile material concentration, critical vessel geometry, and solution addition rate. Another graph provides neutron and gamma dose-reduction factors for water, steel, and concrete. Graphs from historic documents are provided as references for estimating critical parameters of various fissile material systems. Conversion factors for various English and metric units are provided for quick reference

  8. Magnetic field switchable dry adhesives.

    Science.gov (United States)

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  9. Sliding wear resistance of iron aluminides

    Indian Academy of Sciences (India)

    Garima Sharma; M Sundararaman; N Prabhu; G L Goswami

    2003-04-01

    Room temperature dry sliding wear behaviour of iron aluminides containing 28% aluminium and various amounts of chromium has been investigated using pin on disk wear tester. The aluminides were heat treated to have ordered 3 structure. It was found that wear rate of the aluminides increased with the increase of applied normal load and sliding speed. Wear resistance of the aluminides increased with increase in chromium content. SEM observation of the worn surface showed that the microcutting and microploughing were the dominant sliding wear mechanisms.

  10. Sliding mode control for synchronous electric drives

    CERN Document Server

    Ryvkin, Sergey E

    2011-01-01

    This volume presents the theory of control systems with sliding mode applied to electrical motors and power converters. It demonstrates the methodology of control design and the original algorithms of control and observation. Practically all semiconductor devices are used in power converters, that feed electrical motors, as power switches. A switching mode offers myriad attractive, inherent properties from a control viewpoint, especially a sliding mode. Sliding mode control supplies high dynamics to systems, invariability of systems to changes of their parameters and of exterior loads in combi

  11. The Earth surface slide movement at Soledad

    Science.gov (United States)

    Moreno, A.

    1986-11-01

    The Earth surface slide movement at Soledad is a mountain-slide type of movement. Estimations of the thickness of the layer which is moving range between 10 and 100 m. There is no proof that the movement is water induced, but it could be influenced by the water household. The slope of the slide area is H: D = 1: 2. The height difference in the moving area studied, according to this paper, is 1 km. The actual rate of movement is about 12 cm/yr.

  12. SLIDING MODE CONTROL FOR ACTIVE AUTOMOBILE SUSPENSIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Nonlinear control methods are presented based on theory of sliding mode control (SMC) or variable structure control (VSC) for application to active automobile suspensions. Requirements of reducing manufacturing cost and energy consumption of the active suspension system may be satisfiedby reasonable design of the sliding surface and hydraulic servo system. Emphasis is placed on the study of the discrete sliding mode control method (DSMC) applicable for a new sort of speed on-off solenoid valves of anti-dust capability and low price. Robustness and effectiveness of the feedback linearized controller in typical road conditions are demonstrated by numerical results fora quarter-car suspension model.

  13. Ergometer rowing with and without slides

    DEFF Research Database (Denmark)

    Larsen, Anders Holsgaard; Jensen, K

    2010-01-01

    A rowing ergometer can be placed on a slide to imitate 'on-water' rowing. The present study examines I) possible differences in biomechanical and physiological variables of ergometer rowing with and without slides and II) potential consequences on training load during exercise. 7 elite oars......-women rowed in a randomized order in a slide or stationary ergometer at 3 predefined submaximal and at maximal intensity. Oxygen uptake was measured and biomechanical variables of the rowing were calculated based upon handle force (force transducer) and velocity/length (potentiometer) of the stroke. Stroke...

  14. Slides with no attached paper

    International Nuclear Information System (INIS)

    This document brings together the different presentations (slides) given at the workshop but with no attached paper. These slides refer to the following presentations: - Presentation of ITN (Instituto Tecnologico e Nuclear); - Minor Actinide Partitioning (Dominique Warin); - Transmutation (Janne Wallenius); - Radioactive Waste Management, IGD-TP (Gerald Ouzounian); - Present status of the Swedish nuclear waste management programme (Peter Wikberg); - The U.S. Fuel Cycle Research and Development Program - Separations Research and Development (Terry Todd); - Strategies and national programs of closed fuel cycles - Russian Expert Vision (Mikhael Kormilitsyn) - Extraction Studies Of Potential Solvent Formulations For The GANEX Process (Fiona MacLachlan); - Investigations of The Fundamental Chemistry of the TALSPEAK Process (Ken Nash); - Extraction Separation of Trivalent Minor Actinides and Lanthanides by Hexa-dentate Nitrogen-donor Extractant, TPEN, and its Analogs (Kenji Takeshita); - Fluorinated Diluents for HLW Processing - technological point of view (Vasiliy Babain); - Extraction properties of some new pyridine molecules and search for better diluents (Irena Spendlikova); - Kinetics of extraction of Eu3+ ion by TODGA and CyMe4-BTBP studied using the RMC technique (Trong Hung Vu); - Redox Chemistry of Neptunium in Solutions of Nitric Acid (Alena Paulenova); - NMR applied to actinide ions and their complexes. In search of covalency effects (Geoffrey Vidick); - Towards 'Stability Rules' for Radiolysis of bis-DGA compounds (Ana Nunez); - Pyroprocess Research Activities at IGCAR, Kalpakkam, India (K. Nagarajan); - Critical issues of nuclear energy systems employing molten salt fluorides: from ISTC No. 1606 to No. 3749 (1. year of project activity) and MARS/EVOL cooperation (Victor Ignatiev); - Conversion processes: Internal Gelation and the Sphere-pac concept (Manuel Pouchon); - A Combined Nuclear Technology and Nuclear Chemistry Master. A Unique Initiative

  15. New Approach to Ceramic/Metal-Polymer Multilayered Coatings for High Performance Dry Sliding Applications

    Science.gov (United States)

    Rempp, A.; Killinger, A.; Gadow, R.

    2012-06-01

    The combination of thermally sprayed hard coatings with a polymer based top coat leads to multilayered coating systems with tailored functionalities concerning wear resistance, friction, adhesion, wettability or specific electrical properties. The basic concept is to combine the mechanical properties of the hard base coating with the tribological or chemical abilities of the polymer top coat suitable for the respective application. This paper gives an overview of different types of recently developed multilayer coatings and their application in power transmission under dry sliding conditions. State of the art coatings for dry sliding applications in power transmission are mostly based on thin film coatings like diamond-like carbon or solid lubricants, e.g. MoS2. A new approach is the combination of thin film coatings with combined multilayer coatings. To evaluate the capability of these tribological systems, a multi-stage investigation has been carried out. In the first stage the performance of the sliding lacquers and surface topography of the steel substrate has been evaluated. In the following stage thermally sprayed hard coatings were tested in combination with different sliding lacquers. Wear resistance and friction coefficients of combined coatings were determined using a twin disc test-bed.

  16. The Influence of Normal Load and Sliding Speed on Frictional Properties of Skin

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Shi-rong Ge; Hua Zhu; Xi-chuan Cao; Ning Li

    2008-01-01

    The study of frictional properties of human skin is important for medical research, skin care products and textile exploitation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carried out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N,normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of fiiction. When sliding speed increases from 0.5 mm·s-1 to 4 mm·s-1,the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was interpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.

  17. Sliding wear studies of sprayed chromium carbide-nichrome coatings for gas-cooled reactor applications

    International Nuclear Information System (INIS)

    Chromium carbide-nichrome coatings being considered for wear protection of some critical components in high-temperature gas-cooled reactors (HTGR's) were investigated. The coatings were deposited either by the detonation gun or the plasma-arc process. Sliding wear tests were conducted on specimens in a button-on-plate arrangement with sliding velocities of 7.1 x 10-3 and 7.9 mm/s at 8160C in a helium environment simulates HTGR primary coolant chemistry. The coatings containing 75 or 80 wt % chromium carbide exhibited excellent wear resistance. As the chromium carbide content decreased from either 80 or 75 to 55 wt %, with a concurrent decrease in coating hardness, wear-resistance deteriorated. The friction and wear behavior of the soft coating was similar to that of the bare metal--showing severe galling and significant amounts of wear debris. The friction characteristics of the hard coating exhibited a strong velocity dependence with high friction coefficients in low sliding velocity tests ad vice versa. Both the soft coating and bare metal showed no dependence on sliding velocity. The wear behavior observed in this study is of adhesive type, and the wear damage is believed to be controlled primarily by the delamination process

  18. Adhesion in hydrogel contacts

    Science.gov (United States)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  19. Wheel slide protection control using a command map and Smith predictor for the pneumatic brake system of a railway vehicle

    Science.gov (United States)

    Lee, Nam-Jin; Kang, Chul-Goo

    2016-10-01

    In railway vehicles, excessive sliding or wheel locking can occur while braking because of a temporarily degraded adhesion between the wheel and the rail caused by the contaminated or wet surface of the rail. It can damage the wheel tread and affect the performance of the brake system and the safety of the railway vehicle. To safeguard the wheelset from these phenomena, almost all railway vehicles are equipped with wheel slide protection (WSP) systems. In this study, a new WSP algorithm is proposed. The features of the proposed algorithm are the use of the target sliding speed, the determination of a command for WSP valves using command maps, and compensation for the time delay in pneumatic brake systems using the Smith predictor. The proposed WSP algorithm was verified using experiments with a hardware-in-the-loop simulation system including the hardware of the pneumatic brake system.

  20. Penetration of urea formaldehyde adhesives in wood tissue, Part II: Radial penetration of UF adhesives into silver fir

    Directory of Open Access Journals (Sweden)

    Gavrilović-Grmuša Ivana

    2009-01-01

    Full Text Available Penetration is the ability of the adhesive to move into the voids on the substrate surface or into the substrate itself. Wood's cellular nature allows significant penetration of the adhesive into the substrate. Objective of this work was the evaluation of the penetration and hence the distribution of urea-formaldehyde (UF resins by means of microscopic detection of the penetration of such UF adhesives into the wood tissue. Tangentially cut 5 mm thick silver fir (Abies alba Mill. plies, 100 mm long (parallel to the grain and 30 mm width, were prepared for this study. Four types of UF resins with different degree of condensation were investigated in this research. Safranin was added to the resins and epi-fluorescence microscope was used for measuring the adhesive penetration. The UF adhesive mixes, consisting of the various resins, extender and hardener were applied to the surface of one ply. Two plies, one with applied adhesive mix and one without adhesive mix, were assembled with parallel grain direction. Samples were pressed in a hydraulic press at 120°C and 1.0 MPa for 15 minutes. Test-specimens of 20 μm thickness were cut of each sample using a sliding microtome apparatus, exposing a bondline on a cross-sectional surface. The results show a significant correlation between the penetration behaviour and the degree of condensation (molecular sizes, viscosity of the resins. The higher the degree of condensation, the lower the possibility for penetration, expresses as average penetration (AP and as portion of filled tracheids on the whole cross section of interphase (filled interphase region FIR.

  1. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    OpenAIRE

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structur...

  2. Dry sliding wear system response of ferritic and tempered martensitic ductile iron

    Science.gov (United States)

    Jha, V. K.; Mozumder, Y. H.; Shama, S.; Behera, R. K.; Pattaniak, A.; P, Sindhoora L.; Mishra, S. C.; Sen, S.

    2015-02-01

    Spheroidal graphite cast iron (SG iron) is the most preferable member of cast iron family due to its strength and toughness along with good tribological properties. SG iron specimens with annealed and martensitic matrix were subjected to dry sliding wear condition and the system response was correlated to matrix microstructure. Respective microstructure was obtained by annealing and quench and tempering heat treatment process for an austenitizing temperature of 1000°C. Specimens were subjected to Ball on plate wear tester under 40N, 50N, 60N load for a sliding distance of 7.54m. Except for quench and tempered specimen at 50N, weight loss was observed in every condition. The wear surface under optical microscope reveals adhesive mechanism for as-cast and annealed specimen whereas delaminated wear track feature was observed for quench and tempered specimen.

  3. Automated single-slide staining system

    Science.gov (United States)

    Mills, S. M.; Wilkins, J. R.

    1974-01-01

    Apparatus developed to Gram-stain single slides automatically is flexible enough to accommodate other types of staining procedures. Method frees operator and eliminates necessity for subjective evaluations as to length of staining or decolorizing time.

  4. Variations of the Sliding Ladder Problem

    Science.gov (United States)

    Kapranidis, Stelios; Koo, Reginald

    2008-01-01

    This article takes another look at the sliding ladder problem that students meet in the study of related rates in calculus. Physically realistic situations with both constrained and understrained ladders are explored.

  5. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  6. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  7. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  8. On the Effect of Counterface Materials on Tribo-Behavior of Steel Wire Sliding Under Dry Contact Condition

    Science.gov (United States)

    Chee, Su Be; Al Shalabi, Ammar; Yousif, B. F.

    Steel wires are implemented in numerous systems and undergo frequent faults due to tribological loading conditions. Therefore, this paper presents a study on the tribological performance of steel wire sliding against different counterfaces, namely, aluminum alloy, stainless steel, and mild steel using a block-on-ring tribo-tester. According to common mechanisms, the tests were performed under 5 N applied load and 0.15 m/s sliding velocity under dry contact condition. Additionally, scanning electron microscopy was used to examine the damaged features on the worn surfaces of the steel wire. Weight loss and friction coefficient results were presented versus sliding distances (0-1.6 km). In general, the results showed that friction coefficient did not reach the steady state due to the transformation of the wear mechanism from adhesive to abrasive mode. Nevertheless, the average of friction coefficient was found to be about 0.7 ± 0.1 for stainless steel and 0.2 ± 0.1 for mild steel. Weight loss gradually increased with the increase of sliding distance. The micrographs of worn surfaces revealed that the contact mechanism was transformed from adhesive to abrasive wear mode as implied by the scars and grooves on the wire surface.

  9. Compact, Automated Centrifugal Slide-Staining System

    Science.gov (United States)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2004-01-01

    The Directional Acceleration Vector-Driven Displacement of Fluids (DAVD-DOF) system, under development at the time of reporting the information for this article, would be a relatively compact, automated, centrifugally actuated system for staining blood smears and other microbiological samples on glass microscope slides in either a microgravitational or a normal Earth gravitational environment. The DAVD-DOF concept is a successor to the centrifuge-operated slide stainer (COSS) concept, which was reported in Slide-Staining System for Microgravity or Gravity (MSC-22949), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 64. The COSS includes reservoirs and a staining chamber that contains a microscope slide to which a biological sample is affixed. The staining chamber is sequentially filled with and drained of staining and related liquids from the reservoirs by use of a weighted plunger to force liquid from one reservoir to another at a constant level of hypergravity maintained in a standard swing-bucket centrifuge. In the DAVD-DOF system, a staining chamber containing a sample would also be sequentially filled and emptied, but with important differences. Instead of a simple microscope slide, one would use a special microscope slide on which would be fabricated a network of very small reservoirs and narrow channels connected to a staining chamber (see figure). Unlike in the COSS, displacement of liquid would be effected by use of the weight of the liquid itself, rather than the weight of a plunger.

  10. Nanoscale friction and adhesion of tree frog toe pads.

    Science.gov (United States)

    Kappl, Michael; Kaveh, Farzaneh; Barnes, W Jon P

    2016-01-01

    Tree frogs have become an object of interest in biomimetics due to their ability to cling to wet and slippery surfaces. In this study, we have investigated the adhesion and friction behavior of toe pads of White's tree frog (Litoria caerulea) using atomic force microscopy (AFM) in an aqueous medium. Facilitating special types of AFM probes with radii of ∼400 nm and ∼13 μm, we were able to sense the frictional response without damaging the delicate nanopillar structures of the epithelial cells. While we observed no significant adhesion between both types of probes and toe pads in wet conditions, frictional forces under such conditions were very pronounced and friction coefficients amounted between 0.3 and 1.1 for the sliding friction between probes and the epithelial cell surfaces. PMID:27165465

  11. Pathogenesis of postoperative adhesion formation

    NARCIS (Netherlands)

    Hellebrekers, B.W.J.; Kooistra, T.

    2011-01-01

    Background: Current views on the pathogenesis of adhesion formation are based on the "classical concept of adhesion formation", namely that a reduction in peritoneal fibrinolytic activity following peritoneal trauma is of key importance in adhesion development. Methods: A non-systematic literature s

  12. Accurate Sliding-Mode Control System Modeling for Buck Converters

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper shows that classical sliding mode theory fails to correctly predict the output impedance of the highly useful sliding mode PID compensated buck converter. The reason for this is identified as the assumption of the sliding variable being held at zero during sliding mode, effectively...... approach also predicts the self-oscillating switching action of the sliding-mode control system correctly. Analytical findings are verified by simulation as well as experimentally in a 10-30V/3A buck converter....

  13. Effect of Microscale Contact State of Polyurethane Surface on Adhesion and Friction

    Institute of Scientific and Technical Information of China (English)

    Yu Min; Ji Ai-hong; Dai Zhen-dong

    2006-01-01

    The effect of microscale contact of rough surfaces on the adhesion and friction under negative normal forces was experimentally investigated. The adhesive force of single point contact - sapphire ball to flat polyurethane did not vary with the normal force. With rough surface contact, which was assumed to be a great number of point contacts, the adhesive force increased logarithmically with the normal force. Under negative normal force adhesive state, the tangential force (more than hundred mN)were much larger than the negative normal force (several mN) and increased with the linear decrease of negative normal force.The results reveal why the gecko's toe must slide slightly on the target surface when it makes contact on a surface and suggest how a biomimetic gecko foot might be designed.

  14. Frictional sliding tests on combined coal-rock samples

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Yaodong Jiang; Shaojian Zhan; Chen Wang

    2014-01-01

    A test system was developed to understand the sliding mechanism of coal-rock structure. The test system was composed by a double-shear testing model and an acousto-optic monitoring system in association with a digital camera and an acoustic emission (AE) instrument. The tests can simulate the movement of activated faults and the sliding in coal-rock structure. In this regard, instable sliding conditions of coal-rock samples, sliding types under different conditions, displacement evolution law, and AE character-istics during sliding process were investigated. Several sliding types were monitored in the tests, including unstable continuous sliding, unstable discontinuous sliding, and stable sliding. The sliding types have close relation with the axial loads and loading rates. Larger axial load and smaller loading rate mean that unstable sliding is less likely to occur. The peak shear stress was positively correlated with the axial load when sliding occurred, whereas the displacement induced by unstable sliding was uncorre-lated with the axial load. A large number of AE events occurred before sliding, and the AE rate decreased after stable sliding. The results show that the tests can well simulate the process of structural instability in a coal bump, and are helpful in the understanding of fault activation and the physical processes during squeezing process of roof and floor.

  15. Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces.

    Science.gov (United States)

    Cohen, N; Dotan, A; Dodiuk, H; Kenig, S

    2016-09-20

    Superhydrophobic (SH) coatings have been shown to reduce freezing and ice nucleation rates, by means of low surface energy chemistry tailored with nano/micro roughness. Durability enhancement of SH surfaces is a crucial issue. Consequently, the present research on reducing ice adhesion is based on radiation-induced radical reaction for covalently bonding SiO2 nanoparticles to polymer coatings to obtain durable roughness. Results indicated that the proposed approach resulted in SH surfaces having high contact angles (>155°) and low sliding angles (ice formed during exposure to air/supercooled water drops at -20 °C. The ice shear adhesion investigation (at -20 °C) demonstrated reduction of shear adhesion to a variety of SH treated substrates having low thermal expansion coefficient (copper and aluminum) and high thermal expansion coefficient (polycarbonate and poly(methyl methacrylate)). It was concluded that the thermal mismatch between the adhering ice and the various substrates and its resultant interfacial thermal stresses affect the adhesion strength of the ice to the respective substrate. PMID:27578298

  16. Scuffing of aluminum/steel contacts under dry sliding conditions

    Science.gov (United States)

    Sheiretov, Todor Konstantinov

    Some typical applications where scuffing may occur are gear teeth, piston rings and cylinder pairs, cams and followers, splines, sleeve bearings, and parts of swash and wobble plate compressors. Unlike other tribology-related failures, scuffing occurs very fast, without any warning, and usually leads to the complete destruction of the sliding pair. Practical experience with steel has helped to outline safe ranges of operation for some components. Very little, however, is known about aluminum, which is the second most commonly used engineering metal. The aim of this study is to obtain a better understanding scuffing and seizure of aluminum/steel contacts. The research includes an experimental study of scuffing of aluminum/steel contacts under dry sliding conditions, a study of the physics of the scuffing process, evaluation of various hypotheses for scuffing, and modeling of scuffing. The experiments are conducted in a custom-designed tribometer, which provides accurate control of the environmental conditions. Special instrumentation, experimental procedures and software are developed as a part of the experimental program. These provide a reliable reproduction and identification of scuffing under laboratory conditions. The scuffing characteristics of five materials are obtained in air and refrigerant (R134a) environments. The effects of load, sliding velocity, mechanical strength, environmental temperature, specimen geometry, time, loading history, and type of environment are evaluated. The mechanisms leading to scuffing are studied by examination of surfaces, subsurfaces and wear debris of specimens in the process of scuffing. Quantitative measurements of subsurface plastic strain are also obtained. The theoretical part of the study includes the development of a finite element model for the contact of runned-in rough surfaces and several other models for subsurface stresses, temperatures, and strains. These models provide information about the local conditions in

  17. Management of adhesive capsulitis

    Directory of Open Access Journals (Sweden)

    Stupay KL

    2015-08-01

    Full Text Available Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive criteria for diagnosis make evaluating treatment modalities difficult. Many treatment methods have been reported, most with some success, but few have been proved to alter the natural course of this disease. Most afflicted patients will achieve acceptable shoulder function without surgery. Those who remain debilitated after 8–12 months are reasonable candidates for invasive treatments. Here, the various treatment methods and the data to support their use are reviewed. Keywords: frozen shoulder, stiff shoulder, periarthritis, painful shoulder 

  18. Elastic–plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments

    Energy Technology Data Exchange (ETDEWEB)

    Ratynskaia, S., E-mail: svetlana.ratynskaia@ee.kth.se [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Tolias, P. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Shalpegin, A. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-lès-Nancy (France); Vignitchouk, L. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); De Angeli, M. [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy); Bykov, I. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Bystrov, K.; Bardin, S. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Edisonbaan 14, 3439MN Nieuwegein (Netherlands); Brochard, F. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-lès-Nancy (France); Ripamonti, D. [Istituto per l’Energetica e le Interfasi – Consiglio Nazionale delle Ricerche, Milan (Italy); Harder, N. den; De Temmerman, G. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Edisonbaan 14, 3439MN Nieuwegein (Netherlands)

    2015-08-15

    Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.

  19. Elastic–plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments

    International Nuclear Information System (INIS)

    Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust

  20. [The expression level of adhesion molecules on neutrophils depending at segmentation of their nuclei].

    Science.gov (United States)

    Kashutin, S L; Danilov, S I; Vereshchagina, E N; Kluchareva, S V

    2013-11-01

    The article deals with results of detection of expression level of adhesion molecules on neutrophils and segmentation of their nuclei. It is established that in conditions of absence of antigen stimulation neutrophils of circulating pool express molecules of L-selectin in 53.34%, LFA-1 molecules in 65.64%, ICAM-1 in 40.51%, LE4-3 in 58.72% and PECAM-1 in 59.74%. The full readiness to realization of phase of sliding, strong adhesion and immediately transmigration itselfis detected in neutrophils with five segments in nucleus. PMID:24640111

  1. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  2. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    Science.gov (United States)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  3. Better slides needed at AGU Meetings

    Science.gov (United States)

    Jacobson, Randall S.

    Recent AGU meetings show a dangerous trend in the quality of presentations. A fair percentage of slides used during oral presentations consisted of a black background and colored lines and/or words for data. Such slides are illegible and serve to undercut the speaker's points by not demonstrating the data clearly.A typical example consisted of dark red, dark blue, and green data on a black background. Even the author had difficulty in pointing out the data using his light arrow. Line drawings, in particular, should not use colors, but instead use high-contrast white-on-black for the following reasons: dark colors on black backgrounds provide little contrast, making it difficult to discern patterns; people who are colorblind are at a disadvantage; and the same information can be obtained using a variety of line weights (dotdash, solid, dotted, etc.) with single color slides.

  4. In vitro inhibition of adhesion of Escherichia coli strains by Xylitol

    OpenAIRE

    Annelisa Farah da Silva; Érika Yoko Suzuki; Aline Siqueira Ferreira; Murilo Gomes Oliveira; Sílvio Silvério da Silva; Nádia Rezende Barbosa Raposo

    2011-01-01

    The present study aimed to evaluate xylitol's antimicrobial and anti-adherence activities on Escherichia coli (ATCC 8739) and on another clinical strain enteropathogenic E. coli (EPEC). In vitro minimum inhibitory concentration (MIC) test and adhesion assays were performed using 0.5, 2.5 and 5.0% xylitol. It was found that xylitol did not have antimicrobial properties on these strains. The scanning electron microscopy (SEM) demonstrated that the slides treated with xylitol had a significant r...

  5. Develop and Manufacture an airlock sliding tray

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Cindy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-26

    Objective: The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already tested and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.

  6. Frictional coupling between sliding and spinning motion

    CERN Document Server

    Farkas, Z; Unger, T; Wolf, D E; Farkas, Zeno; Bartels, Guido; Unger, Tamas; Wolf, Dietrich E.

    2002-01-01

    We show that the friction force and torque, acting at a dry contact of two objects moving and rotating relative to each other, are inherently coupled. As a simple test system, a sliding and spinning disk on a horizontal flat surface is considered. We calculate, and also measure, how the disk is slowing down, and find that it always stops its sliding and spinning motion at the same moment. We discuss the impact of this coupling between friction force and torque on the physics of granular materials.

  7. Experimental Investigation on Caisson Breakwater Sliding

    DEFF Research Database (Denmark)

    Ruol, Piero; Martin, Paolo; Andersen, Thomas Lykke;

    2014-01-01

    This note presents wave flume experiments, carried out at Aalborg University, measuring the horizontal sliding distance of a vertical breakwater in 1:40 scale. Horizontal and uplift wave induced pressures were accurately measured simultaneously with the caisson movements. Caissons of different...... weight and same geometries are tested under regular and irregular waves. It is found that, under breaking conditions, the expected inaccuracy of the prediction of the force, inherent on the variability of the breaking process, induce unacceptable errors in the prediction of the sliding. This observation...

  8. Asymmetric frictional sliding between incommensurate surfaces

    OpenAIRE

    Santoro, Giuseppe E.; Vanossi, Andrea; Manini, Nicola; Divitini, Giorgio; Tosatti, Erio

    2006-01-01

    We study the frictional sliding of two ideally incommensurate surfaces with a third incommensurate sheet - a sort of extended lubricant - in between. When the mutual ratios of the three periodicities in this sandwich geometry are chosen to be the golden mean \\phi=(1+\\sqrt 5)/2, this system is believed to be statically pinned for any choice of system parameters. In the present study we overcome this pinning and force the two "substrates" to slide with a mutual velocity V_ext, analyzing the res...

  9. Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation

    Science.gov (United States)

    Thenozhi, Suresh; Yu, Wen

    2016-04-01

    Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.

  10. Long-term subglacial sliding patterns based on a sliding law with cavitation

    DEFF Research Database (Denmark)

    Ugelvig, Sofie Vej; Egholm, D.L.

    In ice-sheet models and glacial landscape evolution models, subglacial sliding rates are often related to basal shear stress by a power-law. However, the power-law relationship implies that the subglacial bed can provide unlimited levels of basal drag as sliding rates increases, which is recogniz...... of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005). Egholm et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011)....

  11. Wear mechanism for spray deposited Al-Si/SiCp composites under dry sliding condition

    Institute of Scientific and Technical Information of China (English)

    滕杰; 李华培; 陈刚

    2015-01-01

    Al-Si/15%SiCp (volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy (OM). Dry sliding wear tests were carried out using a block-on-ring wear machine to investigate the effect of applied load range of 10−220 N on the wear and friction behavior of these composites sliding against SAE 52100 grade bearing steel. Scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX) were utilized to examine the morphologies of the worn surfaces in order to observe the wear characteristics and investigate the wear mechanism. The results show that the wear behavior of these composites is dependent on the silicon content in the matrix alloy and the applied load. Al-Si/15%SiCp composites with higher silicon content exhibit better wear resistance in the applied load range. Under lower loads, the major wear mechanisms are oxidation wear and abrasive wear for all tested composites. Under higher loads, severe adhesive wear becomes the main wear mechanisms for Al-7Si/15%SiCp and Al-13Si/15%SiCp composites, while Al-20Si/15%SiCp presents a compound wear mechanism, consisting of oxidation, abrasive wear and adhesion wear.

  12. Adhesive tape exfoliation

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2015-01-01

    cleaving of a single chunk of graphite. For both cases, parallel and serial exfoliation, it is investigated how many generations of cleavages are needed. An approximate model with the probability distribution expressed as a simple closed form is presented and compared with the simulations.......Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful...

  13. [Adhesive cutaneous pharmaceutical forms].

    Science.gov (United States)

    Gafiţanu, E; Matei, I; Mungiu, O C; Pavelescu, M; Mîndreci, I; Apostol, I; Ionescu, G

    1989-01-01

    The adhesive cutaneous pharmaceutical forms aimed to local action release the drug substance in view of a dermatological, traumatological, antirheumatic, cosmetic action. Two such preparations were obtained and their stability, consistency and pH were determined. The "in vitro" tests of their bioavailability revealed the dynamics of calcium ions release according to the associations of each preparation. The bioavailability determined by evaluating the pharmacological response demonstrated the antiinflammatory action obtained by the association of calcium ions with the components extracted from poplar muds. The therapeutical efficiency of the studied preparations has proved in the treatment of some sport injuries.

  14. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  15. Adhesion properties of gecko setae

    Science.gov (United States)

    Hill, Ginel; Peattie, Anne; Daniels, Roxanne; Full, Robert; Kenny, Thomas

    2005-03-01

    Millions of keratin hairs on gecko feet, called setae, act as a spectacular dry adhesive. Each seta branches into hundreds of smaller fibers that terminate in spatula-shaped ends. Morphological differences between the setae from different gecko species are suspected to affect both single-seta and whole-animal adhesion properties. Single-seta adhesive force measurements made using a MEMS piezoresistive cantilever capable of two-axis measurements are presented.

  16. Puerperal endometritis and intrauterine adhesions.

    Science.gov (United States)

    Polishuk, W Z; Anteby, S O; Weinstein, D

    1975-08-01

    The role of puerperal endometritis in intrauterine adhesion formation was studied by hysterography in 171 women who had cesarean sections. Of 28 patients who developed significant endometritis, only one developed intracervical adhesions. In the control group of 143 cases, there was also only one such case. Endometritis alone apparently does not play a significant role in intrauterine and endocervical adhesion formation. The possible role of placental fibroblasts in preventing endometrial regeneration is discussed. PMID:1158622

  17. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  18. Current Cigarette Use Among Youth (YRBSS) PDF Slides

    Data.gov (United States)

    U.S. Department of Health & Human Services — Download the current cigarette use among youth slides. These slides are available in PDF and PowerPoint formats. The PowerPoint version can be found at:...

  19. Current Cigarette Use Among Adults (BRFSS) PDF Slides

    Data.gov (United States)

    U.S. Department of Health & Human Services — Download the current cigarette use among adults slides. These slides are available in PDF and PowerPoint formats. The PowerPoint version can be found at:...

  20. Excise Tax Rates On Packs Of Cigarettes PDF Slides

    Data.gov (United States)

    U.S. Department of Health & Human Services — Download the current excise tax rates on packs of cigarettes slides. These slides are available in PDF and PowerPoint formats. The PowerPoint version can be found...

  1. Sliding Mode Control of Induction Motor Phase Currents

    DEFF Research Database (Denmark)

    Hansen, R.B.; Hattel, T.; Bork, J;

    1995-01-01

    Sliding mode control of induction motor phase currents are investigated through development of two control concepts.......Sliding mode control of induction motor phase currents are investigated through development of two control concepts....

  2. Simulations of atomic-scale sliding friction

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Stoltze, Per

    1996-01-01

    Simulation studies of atomic-scale sliding friction have been performed for a number of tip-surface and surface-surface contacts consisting of copper atoms. Both geometrically very simple tip-surface structures and more realistic interface necks formed by simulated annealing have been studied. Ki...

  3. [Development of an obstetrical pocket slide rule].

    Science.gov (United States)

    Krüger, G

    1986-01-01

    We present a slide rule to value old obstetric and ultrasound findings in prenatal care day by day. We have developed the scale. Manufacturer is VEB Mantissa Dresden, sales department is Staatliches Versorgungskontor für Pharmazie und Medizintechnik. PMID:3727852

  4. Transistor h parameter conversion slide rule

    Science.gov (United States)

    Brantner, R. E.

    1967-01-01

    Slide rule enables the ready conversion of transistor h parameters from one form to another and reduces calculation time by a factor of 5 to 10. The scales are selected to cover all ranges of each parameter that will normally exist for any transistor, and answers are given in the correct order of magnitude, making powers-of-ten calculations unnecessary.

  5. A thermodynamic model of sliding friction

    Directory of Open Access Journals (Sweden)

    Lasse Makkonen

    2012-03-01

    Full Text Available A first principles thermodynamic model of sliding friction is derived. The model predictions are in agreement with the observed friction laws both in macro- and nanoscale. When applied to calculating the friction coefficient the model provides a quantitative agreement with recent atomic force microscopy measurements on a number of materials.

  6. Adaptive Sliding Mode Control for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.;

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback...

  7. WWNPQFT-2010 - Slides of the presentations

    International Nuclear Information System (INIS)

    This document is made up of the slides of the presentations. The object of this workshop is to consolidate and publicize new efforts in non-perturbative field theories. The main topics are quantum chromodynamics, Yang-Mills theory, effective locality, the Gribov-Zwanziger Lagrangian, and renormalization. A presentation is dedicated to the initial stages of high energy nucleus-nucleus collisions

  8. Fuzzy Sliding Mode Control for Discrete Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    F.Qiao.Q.M.Zhu; A.Winfield; C.Melhuish

    2003-01-01

    Sliding mode control is introduced into classical model free fuzzy logic control for discrete time nonlinear systems with uncertainty to the design of a novel fuzzy sliding mode control to meet the requirement of necessary and sufficient reaching conditions of sliding mode control. The simulation results show that the proposed controller outperforms the original fuzzy sliding mode controller and the classical fuzzy logic controller in stability, convergence and robustness.

  9. Pressure sensitive adhesives from renewable resources

    OpenAIRE

    Maaßen, Wiebke

    2015-01-01

    Pressure-sensitive adhesives (PSAs) represent an important segment of the adhesives market. In this work, novel insights into the adhesive performance of bio-based pressure sensitive adhesives are presented. Three different homopolymers based on fatty acids derived from native vegetable oils as renewable feedstock were characterized in terms of their mechanical and adhesive properties.

  10. Color standardization in whole slide imaging using a color calibration slide

    OpenAIRE

    Bautista, Pinky A.; Noriaki Hashimoto; Yukako Yagi

    2014-01-01

    Background: Color consistency in histology images is still an issue in digital pathology. Different imaging systems reproduced the colors of a histological slide differently. Materials and Methods: Color correction was implemented using the color information of the nine color patches of a color calibration slide. The inherent spectral colors of these patches along with their scanned colors were used to derive a color correction matrix whose coefficients were used to convert the pixels’ colors...

  11. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  12. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate. PMID:26167951

  13. Stretchable, adhesion-tunable dry adhesive by surface wrinkling.

    Science.gov (United States)

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (approximately 10.8 N/cm(2)) and shear adhesion (approximately 14.7 N/cm(2)) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of approximately 3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of approximately 0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment.

  14. Effect of adhesive thickness on adhesively bonded T-joint

    Science.gov (United States)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  15. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  16. Slides and the Foreign Language Teacher: A Bibliography.

    Science.gov (United States)

    Galt, Alan

    This bibliography lists 275 items relating to the use of visual and audiovisual aids in the foreign language classroom. The items are entered under the following major headings: (1) Audiovisual Aids; (2) Photography; (3) Picture Composition; (4) Slides and Photographs for Teaching; and (5) Slides and Slide Shows: Production and Presentation.…

  17. Interventional microadhesiolysis: A new nonsurgical release technique for adhesive capsulitis of the shoulder

    Directory of Open Access Journals (Sweden)

    Lim Tae-Kyun

    2008-01-01

    Full Text Available Abstract Background A nonsurgical intervention, interventional microadhesiolysis, was developed to release adhesions in joints and soft tissues. This paper introduces the procedure and evaluates the efficacy of the intervention for adhesive capsulitis of the shoulder. Methods Ten patients (five men and five women with primary adhesive capsulitis of the shoulder were treated at a chronic pain management center in Korea. Three specially made needles are used in interventional microadhesiolysis: the Round, Flexed Round, and Ahn's needles. A Round Needle is inserted on the skin over middle of supraspinatus and advanced under the acromion and acromioclavicular joint (subacromial release. A Flexed Round Needle is inserted two-fingers caudal to the inferior border of the scapular spine and advanced over the capsule sliding on the surface of infraspinatus muscle-tendon fascia. The capsule is released while an assistant simultaneously passively abducts the shoulder to full abduction (posteroinferior capsule release. An Ahn's Needle is inserted on the skin over the lesser tubercle and advanced under the coracoid process sliding on the surface of the subscapularis muscle (subcoracoid release. Results After the patients underwent interventional microadhesiolysis, the self-rated pain score or severity declined significantly (p p Conclusion Our findings suggest that interventional microadhesiolysis is effective for managing adhesive capsulitis of the shoulder.

  18. Mechanical Properties and Adhesion of a Micro Structured Polymer Blend

    Directory of Open Access Journals (Sweden)

    Brunero Cappella

    2011-07-01

    Full Text Available A 50:50 blend of polystyrene (PS and poly(n-butyl methacrylate (PnBMA has been characterized with an Atomic Force Microscope (AFM in Tapping Mode and with force-distance curves. The polymer solution has been spin-coated on a glass slide. PnBMA builds a uniform film on the glass substrate with a thickness of @200 nm. On top of it, the PS builds an approximately 100 nm thick film. The PS-film undergoes dewetting, leading to the formation of holes surrounded by about 2 µm large rims. In those regions of the sample, where the distance between the holes is larger than about 4 µm, light depressions in the PS film can be observed. Topography, dissipated energy, adhesion, stiffness and elastic modulus have been measured on these three regions (PnBMA, PS in the rims and PS in the depressions. The two polymers can be distinguished in all images, since PnBMA has a higher adhesion and a smaller stiffness than PS, and hence a higher dissipated energy. Moreover, the polystyrene in the depressions shows a very high adhesion (approximately as high as PnBMA and its stiffness is intermediate between that of PnBMA and that of PS in the rims. This is attributed to higher mobility of the PS chains in the depressions, which are precursors of new holes.

  19. Cleaning properties of dry adhesives

    Institute of Scientific and Technical Information of China (English)

    J.; P.; DíAZ; TéLLEZ; D.; SAMEOTO; C.; MENON

    2010-01-01

    In this paper we present a study into the cleaning properties of synthetic dry adhesives. We have manufactured the adhesive micro-fibres through a low-cost, high yield fabrication method using Sylgard 184 Polydimethylsiloxane (PDMS) as the structural material. We deliberately contaminated the adhesive samples with different sized particles in the micro and macro scales and tested different cleaning methods for their efficacy with respect to each particle size. We investigated different cleaning methods, which included the use of wax moulding, vibration and pressure sensitive adhesives. For adhesion testing we used a custom system with a linear stage and a force sensor indenting a hemispherical probe into the adhesive surface and measuring the pull-off force. To characterize the cleaning efficacy we visually inspected each sample in a microscope and weighed the samples with a microgram-accuracy analytical balance. Results showed that the moulding method induced adhesion recovery in a greater percentage than the other cleaning methods and even helped with the recovery of collapsed posts in some cases. On the other hand pressure sensitive adhesives seem to have the upper hand with regards to certain particle sizes that can potentially pose problems with the moulding method.

  20. [Retention of adhesive bridges].

    Science.gov (United States)

    Raes, F; De Boever, J

    1994-04-01

    Since the development of adhesive bridges in the early seventies, the retention and therefore the durability of these bridges has been tremendously improved. Conditioning of the non-precious metal by silanisation, careful acid etching of the enamel and the use of the appropriate composite resin are of prime importance. Furthermore, the meticulous preparation with enough interproximal embrace, occlusal rests, interocclusal clearance and cingulum stops is equally important. Including more teeth in the design does not necessarily lead to an improved retention. Besides the material and technical aspects, the whole clinical procedure needs much attention. The retention does not depend on one single factor, but on the precision of all the necessary clinical steps and on a well-defined selection of the material. In this way a five-year survival rate of close to 80% can be obtained. PMID:11830965

  1. Hyaluronan-mediated cellular adhesion

    Science.gov (United States)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  2. Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives.

    Science.gov (United States)

    Akiyama, Haruhisa; Kanazawa, Satoshi; Okuyama, Yoko; Yoshida, Masaru; Kihara, Hideyuki; Nagai, Hideki; Norikane, Yasuo; Azumi, Reiko

    2014-05-28

    Multiazobenzene compounds, hexakis-O-[4-(phenylazo)phenoxyalkylcarboxyl]-D-mannitols and hexakis-O-[4-(4-hexylphenylazo)phenoxyalkylcarboxyl]-D-mannitols, exhibit photochemically reversible liquefaction and solidification at room temperature. Their photochemical and thermal phase transitions were investigated in detail through thermal analysis, absorption spectroscopy, and dynamic viscoelasticity measurements, and were compared with those of other sugar-alcohol derivatives. Tensile shear strength tests were performed to determine the adhesions of the compounds sandwiched between two glass slides to determine whether the compounds were suitable for application as adhesives. The adhesions were varied by alternately irradiating the compounds with ultraviolet and visible light to photoinduce phase transitions. The azobenzene hexyl tails, lengths of the methylene spacers, and differences in the sugar-alcohol structures affected the photoresponsive properties of the compounds.

  3. Fault detection and fault-tolerant control using sliding modes

    CERN Document Server

    Alwi, Halim; Tan, Chee Pin

    2011-01-01

    ""Fault Detection and Fault-tolerant Control Using Sliding Modes"" is the first text dedicated to showing the latest developments in the use of sliding-mode concepts for fault detection and isolation (FDI) and fault-tolerant control in dynamical engineering systems. It begins with an introduction to the basic concepts of sliding modes to provide a background to the field. This is followed by chapters that describe the use and design of sliding-mode observers for FDI using robust fault reconstruction. The development of a class of sliding-mode observers is described from first principles throug

  4. An Efficient Method for Distributing Animated Slides of Web Presentations

    Directory of Open Access Journals (Sweden)

    Yusuke Niwa

    2016-01-01

    Full Text Available Attention control of audience is required for suc-cessful presentations, therefore giving a presentation with im-mediate reaction, called reactive presentation, to unexpected changes in the context given by the audience is important. Examples of functions for the reactive presentation are shape animation effects on slides and slide transition effects. Understanding the functions that realize the reactive pre-sentation on the Web can be useful. In this work, we present an effective method for synchronizing shape animation effects on the Web, such as moving the objects and changing the size and color of the shape objects. The main idea is to make a video of animated slides, called Web Slide Media, including the page information of slides as movie chapter information for synchronization. Moreover, we explain a method to reduce the file size of the Web slide media by removing all shape animation effects and slide transition effects from a Web slide media item, called Sparse Web Slide Media. We demonstrate that the performance of the system is enough for practical use and the file size of the Sparse Web Slide Media is smaller than the file size of the Web Slide Media.

  5. An updated nuclear criticality slide rule. Technical basis

    International Nuclear Information System (INIS)

    In January 1974, a limited distribution report, entitled open-quotes A Slide Rule for Estimating Nuclear Criticality Information,close quotes was written by C. M. Hopper for the Oak Ridge Y-12 Plant as a tool for emergency response to nuclear criticality accidents. Because of several shortcomings of the original slide rule, work began recently to update the slide rule using modern computational tools. Volume 1 of this report describes the analyses performed in support of this updated slide-rule tool and includes a sample, nonfunctioning version of the new slide rule. Volume 2 contains the functional version of the slide rule. The new slide-rule tool provides capabilities for the continued updating of accident information during the evolution of emergency response, including victim exposure information; potential exposures to emergency reentry personnel; estimates of future radiation fields; and fission-yield estimates

  6. Automated sliding susceptibility mapping of rock slopes

    Directory of Open Access Journals (Sweden)

    A. Günther

    2004-01-01

    Full Text Available We present a suite of extensions for ARCVIEW GIS™ (ESRI that allows to map the spatial distribution of first-order mechanical slope-properties in hard rock terrain, e.g. for large slope areas like water reservoir slopes. Besides digital elevation data, this expert-system includes regional continuous grid-based data on geological structures that might act as potential sliding or cutoff planes for rockslides. The system allows rapid automated mapping of geometrical and kinematical slope properties in hard rock, providing the basis for spatially distributed deterministic sliding-susceptibility evaluations on a pixel base. Changing hydrostatic slope conditions and rock mechanical parameters can be implemented and used for simple predictive static stability calculations. Application is demonstrated for a study area in the Harz Mts., Germany.

  7. Sliding Wear Modeling of Artificial Rough Surfaces

    OpenAIRE

    Imam Syafa’at; Budi Setiyana; Muchammad; Jamari

    2012-01-01

    Surface roughness plays an important role in machine design. In the micro-scale when two engineering surfaces are brought into contact, the real contact area occurs at isolated point of asperity. Wear is one of some effects of contacting surfaces. This paper presents a modeling of sliding wear at asperity level on the artificial rough surfaces. The surface roughness is represented by spherical asperities at the hemispherical pin that is developed from the existing model. The wear model is bas...

  8. Surface softening in metal-ceramic sliding contacts: an experimental and numerical investigation.

    Science.gov (United States)

    Stoyanov, Pantcho; Merz, Rolf; Romero, Pedro A; Wählisch, Felix C; Abad, Oscar Torrents; Gralla, Robert; Stemmer, Priska; Kopnarski, Michael; Moseler, Michael; Bennewitz, Roland; Dienwiebel, Martin

    2015-02-24

    This study investigates the tribolayer properties at the interface of ceramic/metal (i.e., WC/W) sliding contacts using various experimental approaches and classical atomistic simulations. Experimentally, nanoindentation and micropillar compression tests, as well as adhesion mapping by means of atomic force microscopy, are used to evaluate the strength of tungsten-carbon tribolayers. To capture the influence of environmental conditions, a detailed chemical and structural analysis is performed on the worn surfaces by means of XPS mapping and depth profiling along with transmission electron microscopy of the debris particles. Experimentally, the results indicate a decrease in hardness and modulus of the worn surface compared to the unworn one. Atomistic simulations of nanoindentation on deformed and undeformed specimens are used to probe the strength of the WC tribolayer and despite the fact that the simulations do not include oxygen, the simulations correlate well with the experiments on deformed and undeformed surfaces, where the difference in behavior is attributed to the bonding and structural differences of amorphous and crystalline W-C. Adhesion mapping indicates a decrease in surface adhesion, which based on chemical analysis is attributed to surface passivation.

  9. Validation of diagnostic accuracy using digital slides in routine histopathology

    Directory of Open Access Journals (Sweden)

    Fónyad László

    2012-03-01

    Full Text Available Abstract Background Robust hardware and software tools have been developed in digital microscopy during the past years for pathologists. Reports have been advocated the reliability of digital slides in routine diagnostics. We have designed a retrospective, comparative study to evaluate the scanning properties and digital slide based diagnostic accuracy. Methods 8 pathologists reevaluated 306 randomly selected cases from our archives. The slides were scanned with a 20× Plan-Apochromat objective, using a 3-chip Hitachi camera, resulting 0.465 μm/pixel resolution. Slide management was supported with dedicated Data Base and Viewer software tools. Pathologists used their office PCs for evaluation and reached the digital slides via intranet connection. The diagnostic coherency and uncertainty related to digital slides and scanning quality were analyzed. Results Good to excellent image quality of slides was recorded in 96%. In half of the critical 61 digital slides, poor image quality was related to section folds or floatings. In 88.2% of the studied cases the digital diagnoses were in full agreement with the consensus. Out of the overall 36 incoherent cases, 7 (2.3% were graded relevant without any recorded uncertainty by the pathologist. Excluding the non-field specific cases from each pathologist's record this ratio was 1.76% of all cases. Conclusions Our results revealed that: 1 digital slide based histopathological diagnoses can be highly coherent with those using optical microscopy; 2 the competency of pathologists is a factor more important than the quality of digital slide; 3 poor digital slide quality do not endanger patient safety as these errors are recognizable by the pathologist and further actions for correction could be taken. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1913324336747310.

  10. Dry Sliding Wear Behavior of a Novel 6351 Al-Al4SiC4 Composite

    Science.gov (United States)

    Mondal, Manas Kumar; Biswas, Koushik; Saha, Atanu; Maity, Joydeep

    2015-02-01

    In this research work the dry sliding wear behavior of 6351 Al alloy and 6351 Al based composites possessing varying amount of (2-7 vol.%) in situ Al4SiC4 reinforcement was investigated at low sliding speed (1 m/s) against a hardened EN 31 disk at different loads. In general, the wear mechanism involved adhesion and microcutting abrasion. Under selected loads (9.8 and 24.5 N), the overall wear resistance increased with increasing content of Al4SiC4 particles since particles stood tall against the process of wear. Besides, strain hardening of the matrix played an additional role to provide wear resistance. Therefore, the newly developed 6351Al-Al4SiC4 composite can be used as light weight wear resistance component in industry.

  11. Virtual slides: application in pulmonary pathology consultations.

    Directory of Open Access Journals (Sweden)

    Michał Wojciechowski

    2008-02-01

    Full Text Available The Virtual Slide (VS is an interactive microscope emulator that presents a complete digitized tissue section via the Internet. A successful implementation of VS has been observed for educational, research venues and quality control. VS acquisition for consultative pathology is not so common. The purpose of this study was to explore the efficacy and usability of VS in the consultative pulmonary telepathology. 20 lung tumors entered the study. The performance was programmed for 2 medical centers specialized in pulmonary pathology (beginner and advancer in telepathology. A high-quality VSs were prepared by Coolscope (Nikon, Eclipsnet VSL, Japan, and were evaluated via the Internet. The cases were reviewed for the second time with conventional light microscope. VS diagnostic accuracy and the interobserver variability were evaluated. Also the time taken by examiners to render the diagnoses and time needed to scan the microscopic slide were analyzed. Percentage concordance between original glass-slides diagnosis and diagnosis for VSs was very high. Pathologists found the download speed of VSs adequate; experience in telepathology reduced the time of VS diagnosis. VS implementation suggests advantages for teleconsulation and education but also indicate some technical limitations. This is the first Polish trial of VS implementation in telepathology consultative service.

  12. Adhesion and multi-materials

    International Nuclear Information System (INIS)

    Adhesion is a multidisciplinary science relevant to many practical fields. The main application of adhesion is bonding by adhesives. This technique is widely used in the industrial world and more specifically in the advanced technical domains. Adhesion is also involved in multi-component materials such as coatings, multilayer materials, polymer blends, composite materials... The multidisciplinary aspect of adhesion is well demonstrated by considering the wide variety of concepts, models and theories proposed for its description. An example of the adhesion between a fiber and a matrix in a composite material will lead to a general model relating the molecular properties of the interface to its capacity of stress transfer and hence to the macroscopic mechanical properties of the composite. This relationship is valid whatever the fiber (glass, carbon, polymeric) or the polymer matrix (thermoplastics, thermosetting). Any deviation from this model can be attributed to the existence of an interfacial zone or interphase exhibiting properties, mainly mechanical properties, different from the bulk matrix. Two examples are examined: the first one deals with the creation of a trans crystalline interphase in a semi-crystalline thermoplastic matrix and the second one is concerned with the formation of a pseudo glassy interphase in an elastomer matrix. These examples stress the need for complementary approaches in the understanding of adhesion phenomena at different levels of knowledge, from molecular to macroscopic. They also show how important it is to understand the mechanisms of formation of inter phases in order to be able to master the performance of multicomponent materials. (Author)

  13. Slide-specific models for segmentation of differently stained digital histopathology whole slide images

    Science.gov (United States)

    Brieu, Nicolas; Pauly, Olivier; Zimmermann, Johannes; Binnig, Gerd; Schmidt, Günter

    2016-03-01

    The automatic analysis of whole slide images (WSIs) of stained histopathology tissue sections plays a crucial role in the discovery of predictive biomarkers in the field on immuno-oncology by enabling the quantification of the phenotypic information contained in the tissue sections. The automatic detection of cells and nuclei, while being one of the major steps of such analysis, remains a difficult problem because of the low visual differentiation of high pleomorphic and densely cluttered objects and of the diversity of tissue appearance between slides. The key idea of this work is to take advantage of well-differentiated objects in each slide to learn about the appearance of the tissue and in particular about the appearance of low-differentiated objects. We detect well-differentiated objects on a automatically selected set of representative regions, learn slide-specific visual context models, and finally use the resulting posterior maps to perform the final detection steps on the whole slide. The accuracy of the method is demonstrated against manual annotations on a set of differently stained images.

  14. Adaptive Sliding Mode Control Method Based on Nonlinear Integral Sliding Surface for Agricultural Vehicle Steering Control

    Directory of Open Access Journals (Sweden)

    Taochang Li

    2014-01-01

    Full Text Available Automatic steering control is the key factor and essential condition in the realization of the automatic navigation control of agricultural vehicles. In order to get satisfactory steering control performance, an adaptive sliding mode control method based on a nonlinear integral sliding surface is proposed in this paper for agricultural vehicle steering control. First, the vehicle steering system is modeled as a second-order mathematic model; the system uncertainties and unmodeled dynamics as well as the external disturbances are regarded as the equivalent disturbances satisfying a certain boundary. Second, a transient process of the desired system response is constructed in each navigation control period. Based on the transient process, a nonlinear integral sliding surface is designed. Then the corresponding sliding mode control law is proposed to guarantee the fast response characteristics with no overshoot in the closed-loop steering control system. Meanwhile, the switching gain of sliding mode control is adaptively adjusted to alleviate the control input chattering by using the fuzzy control method. Finally, the effectiveness and the superiority of the proposed method are verified by a series of simulation and actual steering control experiments.

  15. Focal Adhesion Kinases in Adhesion Structures and Disease

    Directory of Open Access Journals (Sweden)

    Pierre P. Eleniste

    2012-01-01

    Full Text Available Cell adhesion to the extracellular matrix (ECM is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases.

  16. Focal adhesion kinases in adhesion structures and disease.

    Science.gov (United States)

    Eleniste, Pierre P; Bruzzaniti, Angela

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases. PMID:22888421

  17. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  18. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  19. Focal Adhesion Kinases in Adhesion Structures and Disease

    OpenAIRE

    Pierre P. Eleniste; Angela Bruzzaniti

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organiza...

  20. Methodology of Mathematical error-Based Tuning Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Farzin Piltan

    2012-04-01

    Full Text Available Design a nonlinear controller for second order nonlinear uncertain dynamical systems is one of the most important challenging works. This paper focuses on the design of a chattering free mathematical error-based tuning sliding mode controller (MTSMC for highly nonlinear dynamic robot manipulator, in presence of uncertainties. In order to provide high performance nonlinear methodology, sliding mode controller is selected. Pure sliding mode controller can be used to control of partly known nonlinear dynamic parameters of robot manipulator. Conversely, pure sliding mode controller is used in many applications; it has an important drawback namely; chattering phenomenon which it can causes some problems such as saturation and heat the mechanical parts of robot manipulators or drivers. In order to reduce the chattering this research is used the switching function in presence of mathematical error-based method instead of switching function method in pure sliding mode controller. The results demonstrate that the sliding mode controller with switching function is a model-based controllers which works well in certain and partly uncertain system. Pure sliding mode controller has difficulty in handling unstructured model uncertainties. To solve this problem applied mathematical model-free tuning method to sliding mode controller for adjusting the sliding surface gain (ë . Since the sliding surface gain (ë is adjusted by mathematical model free-based tuning method, it is nonlinear and continuous. In this research new ë is obtained by the previous ë multiple sliding surface slopes updating factor (á. Chattering free mathematical error-based tuning sliding mode controller is stable controller which eliminates the chattering phenomenon without to use the boundary layer saturation function. Lyapunov stability is proved in mathematical error-based tuning sliding mode controller with switching (sign function. This controller has acceptable performance in

  1. Denture Adhesives - A Literature Review

    Directory of Open Access Journals (Sweden)

    Sudhanshu Shekhar

    2016-06-01

    Full Text Available Successful complete denture treatment combines exemplary technique, effective patient rapport and education and familiarity with all possible management options to provide the highest degree of patient satisfaction. Dentists need to know about denture adhesives to be able to identify those patients who actually need them and to be able to educate them about the advantages, disadvantages and correct use of these products. Denture adhesives are commercially available nontoxic, soluble materials that when applied to the tissue surface of dentures enhance their retention, stability and performance. They were introduced in dentistry in the late 18th century. The first patent related to adhesives was issued in 1913, followed in the 1920’s and 1930’s. The purpose of the use of denture adhesives can be described as to subjectively benefit denture-wearers with improved stability, retention and comfort of their dentures, and with improved incisal force, masticatory ability, and confidence.

  2. Magnetorheological Elastomer Films with Tunable Wetting and Adhesion Properties.

    Science.gov (United States)

    Lee, Sanghee; Yim, Changyong; Kim, Wuseok; Jeon, Sangmin

    2015-09-01

    We fabricated magnetorheological elastomer (MRE) films consisting of polydimethylsiloxane and various concentrations of fluorinated carbonyl iron particles. The application of a magnetic field to the MRE film induced changes in the surface morphology due to the alignment of the iron particles along the magnetic field lines. At low concentrations of iron particles and low magnetic field intensities, needle-like microstructures predominated. These structures formed more mountain-like microstructures as the concentration of iron particles or the magnetic field intensity increased. The surface roughness increased the water contact angle from 100° to 160° and decreased the sliding angle from 180° to 10°. The wettability and adhesion properties changed substantially within a few seconds simply upon application of a magnetic field. Cyclical measurements revealed that the transition was completely reversible. PMID:26301942

  3. In vitro inhibition of Pseudomonas aeruginosa adhesion by Xylitol

    Directory of Open Access Journals (Sweden)

    Letícia Pinheiro de Sousa

    2011-10-01

    Full Text Available This study evaluated, in vitro, the antimicrobial activity and the anti-adherent property of xylitol (0.5, 2.5 and 5.0%, w/v on two Pseudomonas aeruginosa strains (ATCC 9027 and clinical. The assay of antimicrobial activity was performed to determine a minimum inhibitory concentration (MIC and the adhesion test was performed, by which the parameters regarding, growth in the culture medium, number of colony forming units (CFUs released and slide evaluation by scanning electron microscopy (SEM were analyzed. The Statistical Package for the Social Sciences (SPSS was employed for statistical analysis. Results showed that xylitol had no antimicrobial activity on these strains; however, the inhibition of bacterial adherence was observed in microphotographs obtained by SEM. These results indicated that xylitol could be a future alternative to combat bacterial colonization.

  4. Underwater adhesion: The barnacle way

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.

    rosa and demonstrated the stimulatory effect of dopamine and noradrenaline on such secretion. Their study indicated exocytosis to be the major mode of cement secretion and suggest that gradual, localized exocytotic secretion of cement triggered... by catecholaminergic neurons to be the key mechanism during permanent attachment by barnacle cyprids [51]. Properties of barnacle adhesive The resistance to chemical breakdown by barnacle adhesive caused a major problem in its characterization. However...

  5. Laser surface modification and adhesion

    CERN Document Server

    Mittal, K L

    2014-01-01

    The book provides a unique overview on laser techniques and applications for the purpose of improving adhesion by altering surface chemistry and topography/morphology of the substrate. It details laser surface modification techniques for a wide range of industrially relevant materials (plastics, metals, ceramics, composites) with the aim to improve and enhance their adhesion to other materials. The joining of different materials is of critical importance in the fabrication of many and varied products.

  6. Notch-Mediated Cell Adhesion

    OpenAIRE

    Akihiko Murata; Shin-Ichi Hayashi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of...

  7. Mechanisms of adhesion in geckos.

    Science.gov (United States)

    Autumn, Kellar; Peattie, Anne M

    2002-12-01

    The extraordinary adhesive capabilities of geckos have challenged explanation for millennia, since Aristotle first recorded his observations. We have discovered many of the secrets of gecko adhesion, yet the millions of dry, adhesive setae on the toes of geckos continue to generate puzzling new questions and valuable answers. Each epidermally-derived, keratinous seta ends in hundreds of 200 nm spatular tips, permitting intimate contact with rough and smooth surfaces alike. Prior studies suggested that adhesive force in gecko setae was directly proportional to the water droplet contact angle (θ) , an indicator of the free surface energy of a substrate. In contrast, new theory suggests that adhesion energy between a gecko seta and a surface (W(GS)) is in fact proportional to (1 + cosθ), and only for θ > 60°. A reanalysis of prior data, in combination with our recent study, support the van der Waals hypothesis of gecko adhesion, and contradict surface hydrophobicity as a predictor of adhesion force. Previously, we and our collaborators measured the force production of a single seta. Initial efforts to attach a seta failed because of improper 3D orientation. However, by simulating the dynamics of gecko limbs during climbing (based on force plate data) we discovered that, in single setae, a small normal preload, combined with a 5 μm displacement yielded a very large adhesive force of 200 microNewton (μN), 10 times that predicted by whole-animal measurements. 6.5 million setae of a single tokay gecko attached maximally could generate 130 kg force. This raises the question of how geckos manage to detach their feet in just 15 ms. We discovered that simply increasing the angle that the setal shaft makes with the substrate to 30° causes detachment. Understanding how simultaneous attachment and release of millions of setae are controlled will require an approach that integrates levels ranging from molecules to lizards.

  8. Adhesive capsulitis: a case report

    OpenAIRE

    Kazemi, Mohsen

    2000-01-01

    Adhesive capsulitis or frozen shoulder is an uncommon entity in athletes. However, it is a common cause of shoulder pain and disability in the general population. Although it is a self limiting ailment, its rather long, restrictive and painful course forces the affected person to seek treatment. Conservative management remains the mainstay treatment of adhesive capsulitis. This includes chiropractic manipulation of the shoulder, therapeutic modalities, mobilization, exercise, soft tissue ther...

  9. Unfolding Grammars in Adhesive Categories

    OpenAIRE

    Baldan, Paolo; Corradini, Andrea; Heindel, Tobias; König, Barbara; Sobocinski, Pawel

    2009-01-01

    We generalize the unfolding semantics, previously developed for concrete formalisms such as Petri nets and graph grammars, to the abstract setting of (single pushout) rewriting over adhesive categories. The unfolding construction is characterized as a coreflection, i.e. the unfolding functor arises as the right adjoint to the embedding of the category of occurrence grammars into the category of grammars.As the unfolding represents potentially infinite computations, we need to work in adhesive...

  10. Adhesion and friction of transition metals in contact with non-metallic hard materials

    International Nuclear Information System (INIS)

    An investigation was conducted to examine the adhesion and friction behavior of transition metals in contact with various non-metallic hard materials and the nature of the metal transfer to the hard materials. Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium and rhodium in sliding contact with single-crystal diamond, silicon carbide, pyrolytic boron nitride and ferrite. All experiments were conducted under the following conditions: loads, 0.05-0.3 N; sliding velocities, 3 x 10-3 and 0.7 x 10-3 m min-1; in a vacuum of 10-8 Pa; at room temperature. Auger electron spectroscopy analysis was conducted with the metals and non-metals to determine the surface chemistry and the degree of surface cleanness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater the amount of transfer to the non-metals. (Auth.)

  11. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  12. Covalent binding of formalin fixed paraffin embedded brain tissue sections to glass slides suitable for in situ hybridization.

    Science.gov (United States)

    Tourtellotte, W W; Verity, A N; Schmid, P; Martinez, S; Shapshak, P

    1987-02-01

    A novel method for covalently binding formalin fixed paraffin embedded (FFPE) tissue sections to glass microscope slides is validated suitable for in situ hybridization (ISH). Using the organosilane methodology of Maples (1985), 100% tissue adhesion is reported with no nonspecific probe binding, staining, or autoradiographic artefacts. JC viral nucleic acid sequences are successfully detected in FFPE progressive multifocal leukoencephalopathy brain tissue and the Tm of the hybridized product is estimated. From the Tm the most stringent washing condition resulting in an optimal signal to noise ratio is determined. A comparison is made between currently used methods of tissue adhesion and the proposed organosilane methodology. This methodology greatly facilitates studies of conditions for ISH and elucidation of mechanisms of viral infections requiring consecutive FFPE sections. It is also applicable to studies using cryosections and cultured cells.

  13. Sliding wear and friction behaviour of zircaloy-4 in water

    Science.gov (United States)

    Sharma, Garima; Limaye, P. K.; Jadhav, D. T.

    2009-11-01

    In water cooled nuclear reactors, the sliding of fuel bundles in fuel channel handling system can lead to severe wear and it is an important topic to study. In the present study, sliding wear behaviour of zircaloy-4 was investigated in water (pH ˜ 10.5) using ball-on-plate sliding wear tester. Sliding wear resistance zircaloy-4 against SS 316 was examined at room temperature. Sliding wear tests were carried out at different load and sliding frequencies. The coefficient of friction of zircaloy-4 was also measured during each tests and it was found to decrease slightly with the increase in applied load. The micro-mechanisms responsible for wear in zircaloy-4 were identified to be microcutting, micropitting and microcracking of deformed subsurface zones in water.

  14. Pre-Stressed Rope Reinforced Anti-Sliding Pile

    Institute of Scientific and Technical Information of China (English)

    XU Jun; WANG Chenghua

    2006-01-01

    Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti-sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic.

  15. Finite time convergent control using terminal sliding mode

    Institute of Scientific and Technical Information of China (English)

    Yiguang HONG; Guowu YANG; Daizhan CHENG; Sarah SPURGEON

    2004-01-01

    A method for terminal sliding mode control design is discussed. As we know, one of the strong points of terminal sliding mode control is its finite-time convergence to a given equilibrium of the system under consideration, which may be useful in specific applications. The proposed method, different from many existing terminal sliding model control design methods, is studied, and then feedback laws are designed for a class of nonlinear systems, along with illustrative examples.

  16. A sliding cell technique for diffusion measurements in liquid metals

    OpenAIRE

    Yongliang Geng; Chunao Zhu; Bo Zhang

    2014-01-01

    The long capillary and shear cell techniques are the usual methods for diffusion measurements in liquid metals. Here we present a new “sliding cell technique” to measure interdiffusion in liquid alloys, which combines the merits of these two methods. Instead of a number of shear cells, as used in the shear cell method, only one sliding cell is designed to separate and join the liquid diffusion samples. Using the sliding cell technique, the influence of the heating process (which affects liqui...

  17. Power System Stabilizer Based on Global Fuzzy Sliding Mode Control

    OpenAIRE

    Nechadi, E.; Harmas, M. N.

    2013-01-01

    —Power systems stability is enhanced through a novel stabiliser developed around a fuzzy sliding mode approach. First, sliding mode control is applied to selected operating point based models of a power system separately then fuzzy logic is used to form a global model encompassing the separate subsystems, thus leading to a fuzzy sliding mode power system control. Stability is insured through Lyapunov synthesis. Severe operating conditions are used in a simulation study to test the validity of...

  18. The histological slides and drawings of Cajal

    Directory of Open Access Journals (Sweden)

    Pablo Garcia-Lopez

    2010-03-01

    Full Text Available Ramon y Cajal´s studies in the world of neuroscience provoked a radical change in the course of its history. For this reason he is considered as the father of modern neuroscience. Some of his items are housed at the Cajal Museum (Cajal Institute, CSIC, Madrid, Spain. In this article, we will present an analysis of Cajal’s effects used in his research that could help to understand his enormous scientific production, and that offers some curious insights into his work and his legacy. Furthermore, we present some images relating Cajal’s scientific drawings with his histological slides.

  19. Collective sliding states for colloidal molecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia [Los Alamos National Laboratory

    2008-01-01

    We study the driving of colloidal molecular crystals over periodic substrates such as those created with optical traps. The n-merization that occurs in the colloidal molecular crystal states produces a remarkably rich variety of distinct dynamical behaviors, including polarization effects within the pinned phase and the formation of both ordered and disordered sliding phases. Using computer simulations, we map the dynamic phase diagrams as a function of substrate strength for dimers and trimers on a triangular substrate, and correlate features on the phase diagram with transport signatures.

  20. Cable Sliding at Supports in Cable Structures

    Institute of Scientific and Technical Information of China (English)

    魏建东

    2004-01-01

    To develop an effective numerical method for the cable sliding problem in cable structures, two-node catenary cable element was built to model the cables based on analytical solution of elastic catenary. Cooperated with Newton method, continuation method was used to solve the nonlinear equations. This approach is more efficient than using Newton method only and has a wider range to select initial values for the process to converge. The relationship between the tension on a cable segment and its unstrained length was derived and used to calculate the unbalanced cable tensions at the supports. An example is presented to show the correctness and efficiency of the proposed method.

  1. Handle slides for delta-matroids

    OpenAIRE

    Moffatt, Iain; MPHAKO-BANDA, EUNICE

    2015-01-01

    A classic exercise in the topology of surfaces is to show that, using handle slides, every disc-band surface, or 1-vertex ribbon graph, can be put in a canonical form consisting of the connected sum of orientable loops, and either non-orientable loops or pairs of interlaced orientable loops. Motivated by the principle that ribbon graph theory informs delta-matroid theory, we find the delta-matroid analogue of this surface classification. We show that, using a delta-matroid analogue of handle-...

  2. A Sliding Mode Multimodel Control for a Sensorless Photovoltaic System

    OpenAIRE

    Rhif, Ahmed; Kardous, Zohra; Braiek, Naceur BenHadj

    2013-01-01

    In this work we will talk about a new control test using the sliding mode control with a nonlinear sliding mode observer, which are very solicited in tracking problems, for a sensorless photovoltaic panel. In this case, the panel system will has as a set point the sun position at every second during the day for a period of five years; then the tracker, using sliding mode multimodel controller and a sliding mode observer, will track these positions to make the sunrays orthogonal to the photovo...

  3. Sliding Mode Robustness Control Strategy for Shearer Height Adjusting System

    Directory of Open Access Journals (Sweden)

    Xiuping Su

    2013-09-01

    Full Text Available This paper firstly established mathematical model of height adjusting hydro cylinder of the shearer, as well as the state space equation of the shearer height adjusting system. Secondly we designed a shearer automatic height adjusting controller adopting the sliding mode robustness control strategy. The height adjusting controller includes the sliding mode surface switching function based on Ackermann formula, as well as sliding mode control function with the improved butterworth filter. Then simulation of the height adjustment controller shows that the sliding mode robustness control solves buffeting of typical controller, and achieves automatic control for the rolling drum of the shearer.

  4. Slide less pathology”: Fairy tale or reality?

    Science.gov (United States)

    Indu, M; Rathy, R; Binu, MP

    2016-01-01

    Pathology practice is significantly advanced in various frontiers. Therefore, “slide less digital” pathology will not be a mere imagination in near future. Digitalization of histopathological slides (whole slide imaging [WSI]) is possible with the help of whole slide scanner. The WSI has a positive impact not only in routine practice but also in research field, medical education and bioindustry. Even if digital pathology has definitive advantages, its widespread use is not yet possible. As it is an upcoming technology in our field, this article is aimed to discussessential aspects of WSI.

  5. Second order sliding mode control for a quadrotor UAV.

    Science.gov (United States)

    Zheng, En-Hui; Xiong, Jing-Jing; Luo, Ji-Liang

    2014-07-01

    A method based on second order sliding mode control (2-SMC) is proposed to design controllers for a small quadrotor UAV. For the switching sliding manifold design, the selection of the coefficients of the switching sliding manifold is in general a sophisticated issue because the coefficients are nonlinear. In this work, in order to perform the position and attitude tracking control of the quadrotor perfectly, the dynamical model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. For the former, a sliding manifold is defined by combining the position and velocity tracking errors of one state variable, i.e., the sliding manifold has two coefficients. For the latter, a sliding manifold is constructed via a linear combination of position and velocity tracking errors of two state variables, i.e., the sliding manifold has four coefficients. In order to further obtain the nonlinear coefficients of the sliding manifold, Hurwitz stability analysis is used to the solving process. In addition, the flight controllers are derived by using Lyapunov theory, which guarantees that all system state trajectories reach and stay on the sliding surfaces. Extensive simulation results are given to illustrate the effectiveness of the proposed control method.

  6. Second order sliding mode control for a quadrotor UAV.

    Science.gov (United States)

    Zheng, En-Hui; Xiong, Jing-Jing; Luo, Ji-Liang

    2014-07-01

    A method based on second order sliding mode control (2-SMC) is proposed to design controllers for a small quadrotor UAV. For the switching sliding manifold design, the selection of the coefficients of the switching sliding manifold is in general a sophisticated issue because the coefficients are nonlinear. In this work, in order to perform the position and attitude tracking control of the quadrotor perfectly, the dynamical model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. For the former, a sliding manifold is defined by combining the position and velocity tracking errors of one state variable, i.e., the sliding manifold has two coefficients. For the latter, a sliding manifold is constructed via a linear combination of position and velocity tracking errors of two state variables, i.e., the sliding manifold has four coefficients. In order to further obtain the nonlinear coefficients of the sliding manifold, Hurwitz stability analysis is used to the solving process. In addition, the flight controllers are derived by using Lyapunov theory, which guarantees that all system state trajectories reach and stay on the sliding surfaces. Extensive simulation results are given to illustrate the effectiveness of the proposed control method. PMID:24751475

  7. Optimizing Adhesive Design by Understanding Compliance.

    Science.gov (United States)

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.

  8. Dynamical bond cooperativity enables very fast and strong binding between sliding surfaces

    CERN Document Server

    Trømborg, Jørgen Kjoshagen

    2015-01-01

    Cooperative binding affects many processes in biology, but it is commonly addressed only in equilibrium. In this work we explore dynamical cooperativity in driven systems, where the cooperation occurs because some of the bonds change the dynamical response of the system to a regime where the other bonds become active. To investigate such cooperativity we study the frictional binding between two flow driven surfaces that interact through a large population of activated bonds. In particular, we study systems where each bond can have two different modes: one mode corresponds to a fast forming yet weak bond, and the other is a strong yet slow forming bond. We find considerable cooperativity between both types of bonds. Under some conditions the system behaves as if there were only one binding mode, corresponding to a strong and fast forming bond. Our results may have important implications on the friction and adhesion between sliding surfaces containing complementary binding motifs, such as in the case of cells b...

  9. Aggregation of amphiphilic polymers in the presence of adhesive small colloidal particles

    Science.gov (United States)

    Baulin, Vladimir A.; Johner, Albert; Avalos, Josep Bonet

    2010-11-01

    The interaction of amphiphilic polymers with small colloids, capable to reversibly stick onto the chains, is studied. Adhesive small colloids in solution are able to dynamically bind two polymer segments. This association leads to topological changes in the polymer network configurations, such as looping and cross-linking, although the reversible adhesion permits the colloid to slide along the chain backbone. Previous analyses only consider static topologies in the chain network. We show that the sliding degree of freedom ensures the dominance of small loops, over other structures, giving rise to a new perspective in the analysis of the problem. The results are applied to the analysis of the equilibrium between colloidal particles and star polymers, as well as to block copolymer micelles. The results are relevant for the reversible adsorption of silica particles onto hydrophilic polymers, used in the process of formation of mesoporous materials of the type SBA or MCM, cross-linked cyclodextrin molecules threading on the polymers and forming the structures known as polyrotaxanes. Adhesion of colloids on the corona of the latter induce micellization and growth of larger micelles as the number of colloids increase, in agreement with experimental data.

  10. Options for preventing postlaminectomy adhesion: a comparative study in rabbit model

    Institute of Scientific and Technical Information of China (English)

    刘瑞军; 周跃

    2002-01-01

    Objective: To compare the various methods for prevention of peridural adhesion. Methods: Laminectomy was performed in lumbar 1, 3 and 5 segments in 30 adult rabbits that were divided into 5 groups. A 10 mm×5 mm dura was exposed, and then covered with autogenou purifieds pearl fat (APPF) mixed with basic fibroblast growth factor (bFGF) in Group A, with APPF treated with insulin in Group B, with APPF in Group C, with 2% sodium hyaluronate (SHA) in Group D, and uncovered in Group E. The slide sections for histological study were observed at 2, 4, 6, 8 and 12 weeks postoperatively. The specimens were observed with a computed imaging analysis system at 4 and 8 weeks postoperatively.Results: Severe peridural adhesions were formed in Groups B, C, D and E after laminectomy. But no adhesion was formed in the Group A at all time points. bFGF could stimulate pearl fat revascularization, increase the number of newly formed vessels and contribute to the survival of pearl fat. However, insulin had no certain effect in preventing degradation and deterioration of pearl fat. SHA had some effect in prevention of peridural adhesions only in the early stage, which was weakened with the lapse of time. Conclusions: APPF implantation mixed with bFGF provides a potential new approach to improving fat survival and preventing peridural adhesion postlaminectomy.

  11. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  12. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  13. Elastocapilllarity in insect adhesion: the case of beetle adhesive hair

    Science.gov (United States)

    Gernay, Sophie; Gilet, Tristan; Lambert, Pierre; Federle, Walter

    2014-11-01

    The feet of many insects are covered with dense arrays of hair-like structures called setae. Liquid capillary bridges at the tip of these micrometric structures are responsible for the controlled adhesion of the insect on a large variety of substrates. The resulting adhesion force can exceed several times the body weight of the insect. The high aspect-ratio of setae suggests that flexibility is a key ingredient in this capillary-based adhesion mechanism. There is indeed a strong coupling between their elastic deformation and the shape of the liquid meniscus. In this experimental work, we observe and quantify the local deflection of dock beetle seta tips under perpendicular loading using interference microscopy. Our results are then interpreted in the light of an analytic model of elastocapillarity. This research has been funded by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  14. Numerical Modelling of Tsunami Generated by Deformable Submarine Slides: Parameterisation of Slide Dynamics for Coupling to Tsunami Propagation Model

    Science.gov (United States)

    Smith, R. C.; Collins, G. S.; Hill, J.; Piggott, M. D.; Mouradian, S. L.

    2015-12-01

    Numerical modelling informs risk assessment of tsunami generated by submarine slides; however, for large-scale slides modelling can be complex and computationally challenging. Many previous numerical studies have approximated slides as rigid blocks that moved according to prescribed motion. However, wave characteristics are strongly dependent on the motion of the slide and previous work has recommended that more accurate representation of slide dynamics is needed. We have used the finite-element, adaptive-mesh CFD model Fluidity, to perform multi-material simulations of deformable submarine slide-generated waves at real world scales for a 2D scenario in the Gulf of Mexico. Our high-resolution approach represents slide dynamics with good accuracy, compared to other numerical simulations of this scenario, but precludes tracking of wave propagation over large distances. To enable efficient modelling of further propagation of the waves, we investigate an approach to extract information about the slide evolution from our multi-material simulations in order to drive a single-layer wave propagation model, also using Fluidity, which is much less computationally expensive. The extracted submarine slide geometry and position as a function of time are parameterised using simple polynomial functions. The polynomial functions are used to inform a prescribed velocity boundary condition in a single-layer simulation, mimicking the effect the submarine slide motion has on the water column. The approach is verified by successful comparison of wave generation in the single-layer model with that recorded in the multi-material, multi-layer simulations. We then extend this approach to 3D for further validation of this methodology (using the Gulf of Mexico scenario proposed by Horrillo et al., 2013) and to consider the effect of lateral spreading. This methodology is then used to simulate a series of hypothetical submarine slide events in the Arctic Ocean (based on evidence of historic

  15. A frictional sliding algorithm for liquid droplets

    Science.gov (United States)

    Sauer, Roger A.

    2016-08-01

    This work presents a new frictional sliding algorithm for liquid menisci in contact with solid substrates. In contrast to solid-solid contact, the liquid-solid contact behavior is governed by the contact line, where a contact angle forms and undergoes hysteresis. The new algorithm admits arbitrary meniscus shapes and arbitrary substrate roughness, heterogeneity and compliance. It is discussed and analyzed in the context of droplet contact, but it also applies to liquid films and solids with surface tension. The droplet is modeled as a stabilized membrane enclosing an incompressible medium. The contact formulation is considered rate-independent such that hydrostatic conditions apply. Three distinct contact algorithms are needed to describe the cases of frictionless surface contact, frictionless line contact and frictional line contact. For the latter, a predictor-corrector algorithm is proposed in order to enforce the contact conditions at the contact line and thus distinguish between the cases of advancing, pinning and receding. The algorithms are discretized within a monolithic finite element formulation. Several numerical examples are presented to illustrate the numerical and physical behavior of sliding droplets.

  16. Influence of normal loads and sliding velocities on friction properties of engineering plastics sliding against rough counterfaces

    Science.gov (United States)

    Nuruzzaman, D. M.; Chowdhury, M. A.; Rahaman, M. L.; Oumer, A. N.

    2016-02-01

    Friction properties of plastic materials are very important under dry sliding contact conditions for bearing applications. In the present research, friction properties of engineering plastics such as polytetrafluoroethylene (PTFE) and nylon are investigated under dry sliding contact conditions. In the experiments, PTFE and nylon slide against different rough counterfaces such as mild steel and stainless steel 316 (SS 316). Frictional tests are carried out at low loads 5, 7.5 and 10 N, low sliding velocities 0.5, 0.75 and 1 m/s and relative humidity 70%. The obtained results reveal that friction coefficient of PTFE increases with the increase in normal loads and sliding velocities within the observed range. On the other hand, frictional values of nylon decrease with the increase in normal loads and sliding velocities. It is observed that in general, these polymers show higher frictional values when sliding against SS 316 rather than mild steel. During running-in process, friction coefficient of PTFE and nylon steadily increases with the increase in rubbing time and after certain duration of rubbing, it remains at steady level. At identical operating conditions, the frictional values are significantly different depending on normal load, sliding velocity and material pair. It is also observed that in general, the influence of normal load on the friction properties of PTFE and nylon is greater than that of sliding velocity.

  17. Capillarity-based switchable adhesion.

    Science.gov (United States)

    Vogel, Michael J; Steen, Paul H

    2010-02-23

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.

  18. Tribological Properties of MoSi2 Against AISI10045 Steel Under Sliding Friction

    Institute of Scientific and Technical Information of China (English)

    CHEN Ping; ZHANG Hou-an; CHEN Hua-hui

    2006-01-01

    MoSi2 samples were prepared by a self-propagating high-temperature synthesis (SHS) and a hot-press technique. The sliding friction and wear properties of intermetallic MoSi2 against AISI10045 steel under dry friction and oil lubrication conditions were investigated with a MRH-5A type ring-on-block friction and wear tester. The elemental composition, microstructure and worn surface morphology of the MoSi2 material were observed and analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The synthetic parameter pv value reflecting friction work, was used to discuss the tribological properties of MoSi2 material. The results show that 1) oil lubrication can obviously improve the tribological properties of MoSi2, 2) the bigger the pv value, the greater the antifriction and the abrasive resistance of MoSi2 under oil lubrication, 3) with an increase in the pv value, the wear mechanism of MoSi2 material under dry sliding friction is the fatigue fracture and adhesive wear and 4) under oil lubrication the wear mechanism is mainly fatigue pitting.

  19. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  20. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    International Nuclear Information System (INIS)

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals

  1. A critical appraisal of positive cooperativity in oral streptococcal adhesion: Scatchard analyses of adhesion data versus analyses of the spatial arrangement of adhering bacteria.

    Science.gov (United States)

    Van der Mei, H C; Cox, S D; Geertsema-Doornbusch, G I; Doyle, R J; Busscher, H J

    1993-05-01

    Positive cooperativity is a mechanism proposed to account for the adhesion of bacteria to surfaces. In this paper, two methods that both claim to assess experimentally cooperative phenomena, viz. Scatchard analysis of adhesion data (using adhesion to vials) and analysis of the spatial arrangement of adhering cells (using a flow chamber), were compared and critically evaluated. Three oral strains were used and the substrata involved were glass (hydrophilic) and silicone-coated glass (hydrophobic) employed with or without a salivary coating. Scatchard analysis and near-neighbour analysis of adhering cells yield similar conclusions with regard to the mechanism of adhesion of the cells, provided that adhering cells are sufficiently immobilized under the experimental conditions. In the case of incomplete immobilization, near-neighbour collection results from sliding of adhering cells rather than from cooperative phenomena. Also, the agreement between the conclusions from both methods seems to be better, the more reversibly the cells adhere. Positive cooperativity can be absent or present on saliva-coated substrata with a distinct effect of the substratum hydrophobicity, despite the presence of an adsorbed film. This suggests that a different pellicle develops on a hydrophobic substratum than on a hydrophilic substratum. This is confirmed by our observation that the amino acid composition of salivary films is different on both types of substratum. PMID:8336110

  2. A Sliding Mode Control for Uncertain Time-delay Systems

    Institute of Scientific and Technical Information of China (English)

    WU Jun-sheng; WENG Zheng-xin; TIAN Zuo-hua; SHI Song-jiao

    2008-01-01

    By means of the feasibility of some linear matrix inequalities (LMIs), delay dependeat sufficient condition is derived for the existence of a linear sliding surface, which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface. And a reaching motion controller is proposed. A numerical simulation shows the effectiveness of the approach.

  3. Optimizing Student Learning: Examining the Use of Presentation Slides

    Science.gov (United States)

    Strauss, Judy; Corrigan, Hope; Hofacker, Charles F.

    2011-01-01

    Sensory overload and split attention result in reduced learning when instructors read slides with bullet points and complex graphs during a lecture. Conversely, slides containing relevant visual elements, when accompanied by instructor narration, use both the visual and verbal channels of a student's working memory, thus improving the chances of…

  4. Analysis of tensioned membrane structures considering cable sliding

    Institute of Scientific and Technical Information of China (English)

    宋昌永

    2003-01-01

    In routine design of tensioned membrane structures, the membrane is generally modeled using space membrane elements and the cables by space cable elements, with no sliding allowed between the membrane and the cables. On the other hand, large deflections are expected and sliding between the membrane and the cables is inevitable. In the present paper, the general finite element code ABAQUS was employed to investigate the influence of cable sliding on membrane surface on the structural behavior. Three analysis models were devised to fulfill this purpose: (1) The membrane element shares nodes with the cable element; (2) The cable can slide on the membrane surface freely (without friction) and (3) The cable can slide on the membrane surface, but with friction between the cable and the membrane. The sliding problem is modeled using a surface - based contact algorithm. The results from three analysis models are compared, showing that cable sliding has only little influence on the structure shape and on the stress distributions in the membrane. The main influence of cable sliding may be its effect on the dynamic behavior of tensioned membrane structures.

  5. A Computer System for Making Quick and Economical Color Slides.

    Science.gov (United States)

    Pryor, Harold George

    1986-01-01

    A computer-based method for producing 35mm color slides has been used in Ohio State University's College of Dentistry. The method can produce both text and slides in less than two hours, providing substantial flexibility in planning and revising visual presentations. (Author/MLW)

  6. Adhesive Wear and Frictional Behavior of Multilayered Polyester Composite Based on Betelnut Fiber Mats Under Wet Contact Conditions

    Science.gov (United States)

    Yousif, B. F.; Devadas, Alvin; Yusaf, Talal F.

    In the current study, a multilayered polyester composite based on betelnut fiber mats is fabricated. The adhesive wear and frictional performance of the composite was studied against a smooth stainless steel at different sliding distances (0-6.72 km) and applied loads (20-200 N) at 2.8 m/s sliding velocity. Variations in specific wear rate and friction coefficient were evaluated at two different orientations of fiber mat; namely parallel (P-O) and normal (N-O). Results obtained were presented against sliding distance. The worn surfaces of the composite were studied using an optical microscope. The effect of the composite sliding on the stainless steel counterface roughness was investigated. The results revealed that the wear performance of betelnut fiber reinforced polyester (BFRP) composite under wet contact condition was highly dependent on test parameters and fiber mat orientation. The specific wear rate performance for each orientation showed an inverse relationship to sliding distance. BFRP composite in N-O exhibited better wear performance compared with P-O. However, the friction coefficient in N-O was higher than that in P-O at lower range of applied load. The predominant wear mechanism was debonding of fiber with no pullout or ploughing. Moreover, at higher applied loads, micro- and macrocracking and fracture were observed in the resinous region.

  7. Sliding behaviors of elastic cylindrical tanks under seismic loading

    International Nuclear Information System (INIS)

    There is a paper that reports on the occurrence of sliding in several oil tanks on Alaskan earthquake of 1964. This incident appears to be in need of further investigation for the following reasons: First, in usual seismic designing of cylindrical tanks ('tanks'), sliding is considered to occur when the lateral inertial force exceeds the static friction force. When the tank in question can be taken as a rigid body, this rule is known to hold true. If the tank is capable of undergoing a considerable amount of elastic deformation, however, its applicability has not been proved. Second, although several studies have been done on the critical conditions for static sliding the present author is unaware of like ones made on the dynamic sliding, except for the pioneering work of Sogabe, in which they have empirically indicated possibility of sliding to occur under the force of sloshing. Third, this author has shown earlier on that tanks, if not anchored properly, will start rocking, inducing uplifting of the base plate, even at a relatively small seismic acceleration of 10 gal or so. The present study has been conducted with these observations for the background. Namely, based on a notion that elastic deformation given rise to by rocking oscillation should be incorporated as an important factor in any set of critical conditions for the onset of sliding, a series of shaking table experiments were performed for rigid steel block to represent the rigid tanks ('rigid model') and a model tank having a same sort of plate thickness-to-diameter ratio as industrial tanks to represent the elastic cylindrical tanks ('elastic model'). Following observations have been obtained for the critical condition of the onset of sliding: (1) sliding of rigid tanks will occur when the lateral force given rise to by oscillation exceeds the static, or the Coulombic, friction force. (2) if vertical oscillation is imposed on the lateral oscillation, the lateral force needed to induce sliding of a

  8. Teaching Veterinary Histopathology: A Comparison of Microscopy and Digital Slides.

    Science.gov (United States)

    Brown, Peter J; Fews, Debra; Bell, Nick J

    2016-01-01

    Virtual microscopy using digitized slides has become more widespread in teaching in recent years. There have been no direct comparisons of the use of virtual microscopy and the use of microscopes and glass slides. Third-year veterinary students from two different schools completed a simple objective test, covering aspects of histology and histopathology, before and after a practical class covering relevant material presented as either glass slides viewed with a microscope or as digital slides. There was an overall improvement in performance by students at both veterinary schools using both practical formats. Neither format was consistently better than the other, and neither school consistently outperformed the other. In a comparison of student appraisal of use of digital slides and microscopes, the digital technology was identified as having many advantages.

  9. Advances in sliding mode control concept, theory and implementation

    CERN Document Server

    Janardhanan, S; Spurgeon, Sarah

    2013-01-01

    The sliding mode control paradigm has become a mature technique for the design of robust controllers for a wide class of systems including nonlinear, uncertain and time-delayed systems. This book is a collection of plenary and invited talks delivered at the 12th IEEE International Workshop on Variable Structure System held at the Indian Institute of Technology, Mumbai, India in January 2012. After the workshop, these researchers were invited to develop book chapters for this edited collection in order to reflect the latest results and open research questions in the area. The contributed chapters have been organized by the editors to reflect the various themes of sliding mode control which are the current areas of theoretical research and applications focus; namely articulation of the fundamental underpinning theory of the sliding mode design paradigm, sliding modes for decentralized system representations, control of time-delay systems, the higher order sliding mode concept, results applicable to nonlinear an...

  10. Sliding mode controller for signal input multiple state submarine system

    International Nuclear Information System (INIS)

    Sliding mode control design has become a popular choice for controlling non-linear dynamical systems. This paper, explores the dynamics of a submarine and represents the same in state space form. It also investigates the potential of sliding mode controller for a single input multiple state system of a submarine. Mathematical derivation of the controller is presented and it is proved that the sliding mode controllers is robust to changes in operating conditions. The problem of chattering in sliding mode controller design is discussed and remedy of this problem is suggested. Simulation studies are carried out which demonstrate that the sliding mode controller can efficiency be used as a heading controller for the submarine under investigation. (author)

  11. [FTIR spectroscopic studies of facial prosthetic adhesives].

    Science.gov (United States)

    Kang, Biao; Yang, Qing-fang; Liang, Jian-feng; Zhao, Yi-min

    2008-10-01

    According to the composition of the traditional facial prosthetic adhesives, most of adhesives can be classified into two categories: acrylic polymer-based adhesive and silicone-based adhesive. In previous studies, measurements of various mechanical bond strengths were carried out, whereas the functional groups of the adhesives were evaluated seldom during the adhesion. In the present study the analysis of two facial prosthetic adhesives (Epithane and Secure Adhesive) was carried out by using infrared spectroscopy. Two adhesives in the form of fluid or semisolid were submitted to FTIR spectroscopy, respectively. The results showed that water and ammonia residue volatilized during the solidification of Epithane, and absorption peak reduction of carbonyl was due to the volatilization of acetate vinyl from Secure Adhesive. Similar silicone functional groups both in the silicone-based adhesive and in silicone elastomer could be the key to higher bond strength between silicone elastomer and skin with silicone-based adhesive. The position, shape of main absorption peaks of three adhesives didn't change, which showing that their main chemicals and basic structures didn't change during solidification. PMID:19123392

  12. Frictional sliding with geometrically broken reflection symmetry

    CERN Document Server

    Aldam, Michael; Svetlizky, Ilya; Brener, Efim A; Fineberg, Jay; Bouchbinder, Eran

    2016-01-01

    The dynamics of frictional interfaces play an important role in many physical systems spanning a broad range of scales. It is well-known that frictional interfaces separating two dissimilar materials couple interfacial slip and normal stress variations, a coupling that has major implications on their stability, failure mechanism and rupture directionality. In contrast, interfaces separating identical materials are traditionally assumed not to feature such a coupling due to symmetry considerations. We show, combining theory and experiments, that interfaces which separate bodies made of identical materials, but lack geometric reflection symmetry, generically feature such a coupling. We discuss two applications of this novel feature. First, we show that it accounts for a distinct and previously unexplained weakening effect in frictional cracks observed experimentally. Second, we demonstrate that it can destabilize frictional sliding which is otherwise stable. The emerging framework is expected to find applicatio...

  13. Robust Sliding Mode Control for Tokamaks

    Directory of Open Access Journals (Sweden)

    I. Garrido

    2012-01-01

    Full Text Available Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

  14. Sliding Trellis-Based Frame Synchronization

    CERN Document Server

    Ali, Usman; Kieffer, Michel

    2011-01-01

    Frame Synchronization (FS) is required in several communication standards in order to recover the individual frames that have been aggregated in a burst. This paper proposes a low-delay and reducedcomplexity Sliding Trellis (ST)-based FS technique, compared to our previously proposed trellis-based FS method. Each burst is divided into overlapping windows in which FS is performed. Useful information is propagated from one window to the next. The proposed method makes use of soft information provided by the channel, but also of all sources of redundancy present in the protocol stack. An illustration of our STbased approach for the WiMAX Media Access Control (MAC) layer is provided. When FS is performed on bursts transmitted over Rayleigh fading channel, the ST-based approach reduces the FS latency and complexity at the cost of a very small performance degradation compared to our full complexity trellis-based FS and outperforms state-of-the-art FS techniques.

  15. Waves in stratified geomaterials with sliding layers

    Science.gov (United States)

    Pasternak, Elena; Dyskin, Arcady

    2016-04-01

    Wave propagation in stratified geomaterials with sliding layers is strongly anisotropic. The simplest representation of this behaviour is an elastic transverse-isotropic (orthotropic in 2D) continuum. Such a model is however only applicable when loading that is sufficiently uniform or when the wavelength is much larger than the layer thickness. In this case the stress non-uniformity over the layer thickness and the associated layer bending can be neglected. In an intermediate case when the wavelength is still higher than the layer thickness but not as high to neglect the stress non-uniformity at least bending moments and layer bending need to be taken into account. This is equivalent to retaining only the linear term of the normal stress variation over the layer thickness. The layer bending creates additional, rotational degrees of freedom. In 2D only one rotational degree of freedom exists, which considerably simplifies the modelling. The corresponding rotation is represented by the average gradient of layer deflection. The presence of rotations makes the stress tensor non-symmetrical. On top of that the rotation gradient creates moment stresses, which represent bending moments over the unit area in the layer cross-section. This requires the use of a 2D orthotropic Cosserat continuum to model the dynamics of such a stratified geomaterial. We show that in the stratified geomaterial shear-bending waves propagate. We determine the wave velocities and demonstrate that as the resistance to sliding reduces, the waves tend to localise over a line normal to the layering.

  16. DPS Discovery Slide Sets for the Introductory Astronomy Instructor

    Science.gov (United States)

    Meinke, Bonnie K.; Jackson, Brian; Buxner, Sanlyn; Horst, Sarah; Brain, David; Schneider, Nicholas M.

    2016-10-01

    The DPS actively supports the E/PO needs of the society's membership, including those at the front of the college classroom. The DPS Discovery Slide Sets are an opportunity for instructors to put the latest planetary science into their lectures and for scientists to get their exciting results to college students.In an effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division for Planetary Sciences (DPS) has developed "DPS Discoveries", which are 3-slide presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides which cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide that includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and 26 sets are available in Farsi and Spanish. We intend for these slide sets to help Astronomy 101 instructors include new developments (not yet in their textbooks) into the broader context of the course. If you need supplemental material for your classroom, please checkout the archived collection: http://dps.aas.org/education/dpsdiscMore slide sets are now in development and will be available soon! In the meantime, we seek input, feedback, and help from the DPS membership to add fresh slide sets to the series and to connect the college classroom to YOUR science. It's easy to get involved – we'll provide a content template, tips and tricks for a great slide set, and pedagogy reviews. Talk to a coauthor to find out how you can disseminate your science or get involved in E/PO with your contributions.

  17. Influence of graphite content on sliding wear characteristics of CNTs-Ag-G electrical contact materials

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; FENG Yi; LI Shu; LIN Shen

    2009-01-01

    CNTs-Ag-G electrical contact composite material was prepared by means of powder metallurgical method. The influence of the graphite content on sliding wear characteristics of electrical contact levels was examined. In experiments, CNTs content was retained as 1% (mass fraction), and graphite was added at content levels of 8%, 10%, 13%, 15% and 18%, respectively. The results indicate that with the increase of graphite content, the contact resistance of electrical contacts is enhanced to a certain level then remains constant. Friction coefficient decreases gradually with the increase of graphite content. Wear mass loss decreases to the minimum value then increases. With the small content of graphite, the adhesive wear is hindered, which leads to the decrease of wear mass loss, while excessive graphite brings much more worn debris, resulting in the increase of mass loss. It is concluded that wear mass loss reaches the minimum value when the graphite mass fraction is about 13%. Compared with conventional Ag-G contact material, the wear mass loss of CNTs-Ag-G composite is much less due to the obvious increase of hardness and electrical conductivity, decline of friction surface temperature and inhibition of adhesive wear between composites and slip rings.

  18. COMPOSITION EFFECT ON DRY SLIDING WEAR BEHAVIORS OF Ti-B-N THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    P. Sit; Y.H. Lu; H. Chen; Z.F. Zhou; Y.G. Shen; K.Y. Li

    2005-01-01

    Friction and sliding wear behaviour of Ti-B-N coatings against AISI440C steel ball and WC-6wt%Co ball were studied by using pin-on-disk tribometer along with microstructure characterization using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is shown that the wear resistance of film depended on the wear mechanism. In the case of AISI440C steel, adhesive wear were pre-dominant and the wear rate increased sharply to a maximum when N content reach ~38at. %. This might be related to the change of film microstructure and phase configuration, so the least adhesive transfer of tribo-film was observed. If WC-6wt% Co ball was used, less deformation wear debris was observed, this was responsible for the rise of wear rate. Despite of different wear modes, friction coefficients in both cases were found to depend mainly on the formation and the amount of h-BN phase. Elemental analysis by energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) revealed that oxygen participated in the wear behavior by reacting with films to form the debris comprised of various types of Ti oxide including TiO, TiO2 and Ti2O3 ,which increased wear resistance.

  19. Candida biofilms: is adhesion sexy?

    Science.gov (United States)

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins. PMID:18727911

  20. Creep behaviour of flexible adhesives

    NARCIS (Netherlands)

    Straalen, IJ.J. van; Botter, E.; Berg, A. van den; Beers, P. van

    2004-01-01

    Since flexible adhesives are used more and more in structural applications, designers should have a better understanding of its behaviour under various conditions as ultimate load, fatigue load, long-term load and environmental conditions. This paper focuses on long-term load conditions and its effe

  1. Computational Chemistry of Adhesive Bonds

    Science.gov (United States)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  2. Adhesion of biocompatible and biodegradable micropatterned surfaces

    NARCIS (Netherlands)

    Kaiser, J.S.; Kamperman, M.M.G.; Souza, E.J.; Schick, B.; Arzt, E.

    2011-01-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PL

  3. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  4. In vitro inhibition of adhesion of Escherichia coli strains by Xylitol

    Directory of Open Access Journals (Sweden)

    Annelisa Farah da Silva

    2011-04-01

    Full Text Available The present study aimed to evaluate xylitol's antimicrobial and anti-adherence activities on Escherichia coli (ATCC 8739 and on another clinical strain enteropathogenic E. coli (EPEC. In vitro minimum inhibitory concentration (MIC test and adhesion assays were performed using 0.5, 2.5 and 5.0% xylitol. It was found that xylitol did not have antimicrobial properties on these strains. The scanning electron microscopy (SEM demonstrated that the slides treated with xylitol had a significant reduction in the number of bacilli and the inhibition of microbial adhesion was probably the xylitol's mechanism of action. Xylitol could be a possible alternative on the control of E. coli infections.

  5. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  6. Self-Adjustable Adhesion of Polyampholyte Hydrogels.

    Science.gov (United States)

    Roy, Chanchal Kumar; Guo, Hong Lei; Sun, Tao Lin; Ihsan, Abu Bin; Kurokawa, Takayuki; Takahata, Masakazu; Nonoyama, Takayuki; Nakajima, Tasuku; Gong, Jian Ping

    2015-12-01

    Developing nonspecific, fast, and strong adhesives that can glue hydrogels and biotissues substantially promotes the application of hydrogels as biomaterials. Inspired by the ubiquitous adhesiveness of bacteria, it is reported that neutral polyampholyte hydrogels, through their self-adjustable surface, can show rapid, strong, and reversible adhesion to charged hydrogels and biological tissues through the Coulombic interaction.

  7. Single molecule study of a processivity clamp sliding on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  8. Analysis of tensioned membrane structures considering cable sliding

    Institute of Scientific and Technical Information of China (English)

    宋昌永

    2003-01-01

    In routine design of tensioned membrane st ructures, the membrane is gen erally modeled using space membrane elements and the cables by space cable eleme nts, with no sliding allowed between the membrane and the cables. On the other h and, large deflections are expected and sliding between the membrane and the cab les is inevitable. In the present paper, the general finite element code ABAQUS was employed to investigate the influence of cable sliding on membrane surface o n the structural behavior. Three analysis models were devised to fulfill this pu rpose: (1) The membrane element shares nodes with the cable element; (2) The cab le can slide on the membrane surface freely (without friction) and (3) The cable can slide on the membrane surface, but with friction between the cable and the membrane. The sliding problem is modeled using a surface-based contact algorithm . The results from three analysis models are compared, showing that cable slidin g has only little influence on the structure shape and on the stress distributio ns in the membrane. The main influence of cable sliding may be its effect on the dynamic behavior of tensioned membrane structures.

  9. Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots

    Directory of Open Access Journals (Sweden)

    Farzin Piltan

    2012-08-01

    Full Text Available In this research, a new approach for gradient descent optimal sliding mode controller for continuum robots is proposed. Based on the new dynamic models developed, a novel technique for nonlinear control of continuum manipulators to be employed in various situations has also been proposed and developed. A section of a continuum arm is modeled using lumped model elements (masses, springs and dampers and control by nonlinear methodology (sliding mode method and optimization the sliding surface slope by gradient descent method. It is shown that this type of control methodology, although used to a certain model, can be used to conveniently control the dynamics of the arm with suitable tradeoff in accuracy of modeling. This relatively controller is more plausible to implement in an actual real-time when compared to other techniques of nonlinear controller methodology of continuum arms. Principles of sliding mode methodology is based on derive the sliding surface slope and nonlinear dynamic model and applied in the system. Based on the gradient descent optimization method, the sliding surface slope and gain updating factor has been developed in certain and partly uncertain continuum robots. This methodology is represented in certain and uncertain area whose only optimization for certain area and test this optimization for uncertainty. The new techniques proposed and methodologies adopted in this paper supported by MATLAB/SIMULINK results represent a significant contribution to the field of design an optimized nonlinear sliding mode controller for continuum robots.

  10. Introducing Slide Sets for the Introductory Astronomy Instructor

    Science.gov (United States)

    Meinke, Bonnie K.; Schneider, Nicholas; Brain, David; Schultz, Gregory; Buxner, Sanlyn; Smith, Denise

    2014-11-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) community and Forums work together to bring the cutting-edge discoveries of NASA Astrophysics and Planetary Science missions to the introductory astronomy college classroom. These mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present two new opportunities for college instructors to bring the latest NASA discoveries in Space Science into their classrooms.In an effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division of Planetary Sciences (DPS) has developed “DPS Discoveries”, which are short, topical presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides that cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide that includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and sets are available in Farsi and Spanish. The NASA SMD Planetary Science Forum has recently partnered with the DPS to continue producing the Discovery slides and connect them to NASA mission science. http://dps.aas.org/education/dpsdisc Similarly, the NASA SMD Astrophysics Forum is coordinating the development of a series of slide sets to help Astronomy 101 instructors incorporate new discoveries in their classrooms. The “Astro 101 slide sets” are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses. We intend for these slide sets to help Astronomy 101 instructors include new developments (not yet in their textbooks) into the

  11. SurfaceSlide: a multitouch digital pathology platform.

    Directory of Open Access Journals (Sweden)

    Yinhai Wang

    Full Text Available BACKGROUND: Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation. METHODOLOGY: In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer. CONCLUSION: SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human-digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.

  12. Coarse Graining and Localized Plasticity between Sliding Nanocrystalline Metals

    Science.gov (United States)

    Romero, Pedro A.; Järvi, Tommi T.; Beckmann, Nils; Mrovec, Matous; Moseler, Michael

    2014-07-01

    Tribological shearing of polycrystalline metals typically leads to grain refinement at the sliding interface. This study, however, shows that nanocrystalline metals exhibit qualitatively different behavior. Using large-scale atomistic simulations, we demonstrate that during sliding, contact interface nanocrystalline grains self-organize through extensive grain coarsening and lattice rotation until the optimal plastic slip orientation is established. Subsequently, plastic deformation is frequently confined to localized nanoshear bands aligned with the shearing direction and emanating from voids and other defects in the vicinity of the sliding interface.

  13. Sliding mode control of switching power converters techniques and implementation

    CERN Document Server

    Tan, Siew-Chong; Tse, Chi-Kong

    2011-01-01

    Sliding Mode Control of Switching Power Converters: Techniques and Implementation is perhaps the first in-depth account of how sliding mode controllers can be practically engineered to optimize control of power converters. A complete understanding of this process is timely and necessary, as the electronics industry moves toward the use of renewable energy sources and widely varying loads that can be adequately supported only by power converters using nonlinear controllers.Of the various advanced control methods used to handle the complex requirements of power conversion systems, sliding mode c

  14. Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips

    Science.gov (United States)

    Lima, Renato S.; Leão, Paulo A. G. C.; Piazzetta, Maria H. O.; Monteiro, Alessandra M.; Shiroma, Leandro Y.; Gobbi, Angelo L.; Carrilho, Emanuel

    2015-08-01

    A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist adherence, formation of bubbles, and thermal stress were effectively solved by using simple and inexpensive alternatives.

  15. Photochemical tissue bonding with chitosan adhesive films

    Directory of Open Access Journals (Sweden)

    Piller Sabine C

    2010-09-01

    Full Text Available Abstract Background Photochemical tissue bonding (PTB is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm. A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31. The adhesion strength dropped to 0.5 ± 0.1 (n = 8 kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. Conclusion A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  16. Gecko adhesion pad: a smart surface?

    Science.gov (United States)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  17. Gecko adhesion pad: a smart surface?

    Energy Technology Data Exchange (ETDEWEB)

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  18. Nanocapillary Adhesion between Parallel Plates.

    Science.gov (United States)

    Cheng, Shengfeng; Robbins, Mark O

    2016-08-01

    Molecular dynamics simulations are used to study capillary adhesion from a nanometer scale liquid bridge between two parallel flat solid surfaces. The capillary force, Fcap, and the meniscus shape of the bridge are computed as the separation between the solid surfaces, h, is varied. Macroscopic theory predicts the meniscus shape and the contribution of liquid/vapor interfacial tension to Fcap quite accurately for separations as small as two or three molecular diameters (1-2 nm). However, the total capillary force differs in sign and magnitude from macroscopic theory for h ≲ 5 nm (8-10 diameters) because of molecular layering that is not included in macroscopic theory. For these small separations, the pressure tensor in the fluid becomes anisotropic. The components in the plane of the surface vary smoothly and are consistent with theory based on the macroscopic surface tension. Capillary adhesion is affected by only the perpendicular component, which has strong oscillations as the molecular layering changes.

  19. Bacterial adhesion and biofilms on surfaces

    Institute of Scientific and Technical Information of China (English)

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang

    2008-01-01

    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  20. Host Selection of Microbiota via Differential Adhesion.

    Science.gov (United States)

    McLoughlin, Kirstie; Schluter, Jonas; Rakoff-Nahoum, Seth; Smith, Adrian L; Foster, Kevin R

    2016-04-13

    The host epithelium is the critical interface with microbial communities, but the mechanisms by which the host regulates these communities are poorly understood. Here we develop the hypothesis that hosts use differential adhesion to select for and against particular members of their microbiota. We use an established computational, individual-based model to study the impact of host factors that regulate adhesion at the epithelial surface. Our simulations predict that host-mediated adhesion can increase the competitive advantage of microbes and create ecological refugia for slow-growing species. We show how positive selection via adhesion can be transformed into negative selection if the host secretes large quantities of a matrix such as mucus. Our work predicts that adhesion is a powerful mechanism for both positive and negative selection within the microbiota. We discuss molecules-mucus glycans and IgA-that affect microbe adhesion and identify testable predictions of the adhesion-as-selection model. PMID:27053168

  1. Adhesive mechanisms in cephalopods: a review.

    Science.gov (United States)

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown. PMID:17110356

  2. Loading dynamics of a sliding DNA clamp.

    KAUST Repository

    Cho, Won-Ki

    2014-05-22

    Sliding DNA clamps are loaded at a ss/dsDNA junction by a clamp loader that depends on ATP binding for clamp opening. Sequential ATP hydrolysis results in closure of the clamp so that it completely encircles and diffuses on dsDNA. We followed events during loading of an E. coli β clamp in real time by using single-molecule FRET (smFRET). Three successive FRET states were retained for 0.3 s, 0.7 s, and 9 min: Hydrolysis of the first ATP molecule by the γ clamp loader resulted in closure of the clamp in 0.3 s, and after 0.7 s in the closed conformation, the clamp was released to diffuse on the dsDNA for at least 9 min. An additional single-molecule polarization study revealed that the interfacial domain of the clamp rotated in plane by approximately 8° during clamp closure. The single-molecule polarization and FRET studies thus revealed the real-time dynamics of the ATP-hydrolysis-dependent 3D conformational change of the β clamp during loading at a ss/dsDNA junction.

  3. Edit Distance to Monotonicity in Sliding Windows

    CERN Document Server

    Chan, Ho-Leung; Lee, Lap-Kei; Pan, Jiangwei; Ting, Hing-Fung; Zhang, Qin

    2011-01-01

    Given a stream of items each associated with a numerical value, its edit distance to monotonicity is the minimum number of items to remove so that the remaining items are non-decreasing with respect to the numerical value. The space complexity of estimating the edit distance to monotonicity of a data stream is becoming well-understood over the past few years. Motivated by applications on network quality monitoring, we extend the study to estimating the edit distance to monotonicity of a sliding window covering the $w$ most recent items in the stream for any $w \\ge 1$. We give a deterministic algorithm which can return an estimate within a factor of $(4+\\eps)$ using $O(\\frac{1}{\\eps^2} \\log^2(\\eps w))$ space. We also extend the study in two directions. First, we consider a stream where each item is associated with a value from a partial ordered set. We give a randomized $(4+\\epsilon)$-approximate algorithm using $O(\\frac{1}{\\epsilon^2} \\log \\epsilon^2 w \\log w)$ space. Second, we consider an out-of-order strea...

  4. Low radiation doses - Book of presentations (slides)

    International Nuclear Information System (INIS)

    This document brings together all the available presentations (slides) of the conference on low radiation doses organised by the 'research and health' department of the French society of radiation protection (SFRP). Ten presentations are available and deal with he following topics: 1 - Cyto-toxicity, geno-toxicity: comparative approach between ionizing radiations and other geno-toxic agents (F. Nesslany, Institut Pasteur, Lille); Succession of events occurring after a radio-induced DNA damage (D. Averbeck, IRSN/CEA); Importance of stem cells in the response to ionizing radiations (J. Lebeau, CEA); Relation between energy deposition at the sub-cell scale and early biological effects (C. Villagrasa, IRSN); Natural history of breast cancer: predisposition, susceptibility with respect to irradiation (S. Rivera, IGR); Pediatrics scanner study and the EPI-CT project (M.O Bernier, IRSN); What future for an irradiated cell: survival or apoptosis? (E. Sage, Institut Curie); Differential effect of a 137Cs chronic contamination on the different steps of the atheromatous pathology (T. Ebrahimian, IRSN); Variability of the individual radiosensitivity (S. Chevillard, CEA); What definitions for individual sensitivity? (A. Schmidt, CEA); Low doses: some philosophical remarks (A. Grinbaum, CEA)

  5. Depth Estimation Using a Sliding Camera.

    Science.gov (United States)

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm.

  6. Depth Estimation Using a Sliding Camera.

    Science.gov (United States)

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm. PMID:26685238

  7. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    Syndecans are transmembrane proteoglycans which can participate in diverse cell surface interactions, involving extracellular matrix macromolecules, growth factors, protease inhibitors, and even viral entry. Currently, all extracellular interactions are believed to be mediated by distinct...... structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...

  8. Culinary Medicine-Jalebi Adhesions.

    Science.gov (United States)

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.' PMID:27186047

  9. Temperature rise and wear of sliding contact of alloy steels

    Science.gov (United States)

    Goswami, Arindam Roy; Sardar, Santanu; Karmakar, Santanu Kumar

    2016-07-01

    The tribo-failure of machine elements under relative sliding velocities is greatly affected by frictional heating and resultant contact temperature rise. Nevertheless, the tribo-failure of automotive components is a combined effect of mechanical, thermal and chemical phenomena. Over the decades, there have been developed a number of different mathematical models for predicting surface temperature rise at sliding contact under different geometries of asperity contacts and operating conditions. The experimental investigation is still relevant today to find out the surface temperature rise at sliding contact along with the outcomes of friction and wear under various operating conditions for real time applications. The present work aims at finding average surface temperature rise at different sliding velocities, normal loads with different surface roughness experimentally. It also involves to prepare two different rough surfaces of alloy steels and to study their influences in the process of generating contact temperature rise under a given operating conditions.

  10. Thermal imaging on simulated faults during frictional sliding

    CERN Document Server

    Mair, Karen; Gundersen, Olav

    2008-01-01

    Heating during frictional sliding is a major component of the energy budget of earthquakes and represents a potential weakening mechanism. It is therefore important to investigate how heat dissipates during sliding on simulated faults. We present results from laboratory friction experiments where a halite (NaCl) slider held under constant load is dragged across a coarse substrate. Surface evolution and frictional resistance are recorded. Heat emission at the sliding surface is monitored using an infra-red camera. We demonstrate a link between plastic deformations of halite and enhanced heating characterized by transient localized heat spots. When sand 'gouge' is added to the interface, heating is more diffuse. Importantly, when strong asperities concentrate deformation, significantly more heat is produced locally. In natural faults such regions could be nucleation patches for melt production and hence potentially initiate weakening during earthquakes at much smaller sliding velocities or shear stress than pre...

  11. Fuzzy Backstepping Sliding Mode Control for Mismatched Uncertain System

    Directory of Open Access Journals (Sweden)

    H. Q. Hou

    2014-06-01

    Full Text Available Sliding mode controllers have succeeded in many control problems that the conventional control theories have difficulties to deal with; however it is practically impossible to achieve high-speed switching control. Therefore, in this paper an adaptive fuzzy backstepping sliding mode control scheme is derived for mismatched uncertain systems. Firstly fuzzy sliding mode controller is designed using backstepping method based on the Lyapunov function approach, which is capable of handling mismatched problem. Then fuzzy sliding mode controller is designed using T-S fuzzy model method, it can improve the performance of the control systems and their robustness. Finally this method of control is applied to nonlinear system as a case study; simulation results are also provided the performance of the proposed controller.

  12. No further risk of underwater slides?; Skredfaren over?

    Energy Technology Data Exchange (ETDEWEB)

    Haarvik, Linda; Kvalstad, Tore

    2002-07-01

    The Ormen Lange oil field of the Norwegian Sea is situated in the middle of the enormous Storegga submarine slide that occurred about 8000 years ago. The danger is probably over, but it is unclear what caused the slide. The Norwegian Geotechnical Institute has begun a comprehensive research project in order to increase the knowledge of how oil- and gas exploitation at great depths can be safeguarded against geological hazards like slides, earthquakes, flood waves and clay volcanos. This is motivated by the fact that oil exploration has moved to greater depths, where the conditions for development are very different from those at shallower depths. Future developers will have to consider the discovery of traces of old slides along the Norwegian continental shelf all the way to Spitsbergen.

  13. A generalized regular form for multivariable sliding mode control

    Directory of Open Access Journals (Sweden)

    W. Perruquetti

    2001-01-01

    Full Text Available The paper shows how to compute a diffeomorphic state space transformation in order to put the initial mutivariable nonlinear model into an appropriate regular form. This form is an extension of the one proposed by Lukyanov and Utkin [9], and constitutes a guidance for a “natural” choice of the sliding surface. Then stabilization is achieved via a sliding mode strategy. In order to overcome the chattering phenomenon, a new nonlinear gain is introduced.

  14. A novel higher order sliding mode control scheme

    OpenAIRE

    Defoort, Michael; Floquet, Thierry; Kökösy, Annemarie; Perruquetti, Wilfrid

    2009-01-01

    A higher order sliding mode control algorithm is proposed for a class of uncertain multi-input multi-output nonlinear systems. This problem can be viewed as the finite time stabilization of a higher order input-output dynamic system with bounded uncertainties. The developed control scheme is based on geometric homogeneity and sliding mode control. The proposed procedure provides explicit conditions on the controller parameters and guarantees robustness against uncertainties. An illustrative e...

  15. Sliding Mode Control for Trajectory Tracking of an Intelligent Wheelchair

    Directory of Open Access Journals (Sweden)

    Razvan SOLEA

    2009-12-01

    Full Text Available This paper deal with a robust sliding-mode trajectory tracking controller, fornonholonomic wheeled mobile robots and its experimental evaluation by theimplementation in an intelligent wheelchair (RobChair. The proposed control structureis based on two nonlinear sliding surfaces ensuring the tracking of the three outputvariables, with respect to the nonholonomic constraint. The performances of theproposed controller for the trajectory planning problem with comfort constraint areverified through the real time acceleration provided by an inertial measurement unit.

  16. Soliton dynamics in a solid lubricant during sliding friction

    Science.gov (United States)

    Vigentini, Anna; Van Hattem, Barbara; Diato, Elena; Ponzellini, Paolo; Meledina, Tommaso; Vanossi, Andrea; Santoro, Giuseppe; Tosatti, Erio; Manini, Nicola

    2014-03-01

    Recent highly idealized model studies of lubricated nanofriction for two crystalline sliding surfaces with an interposed thin solid crystalline lubricant layer showed that the overall relative velocity of the lubricant vlub/vslider depends only on the ratio of the lattice spacings, and retains a strictly constant value even when system parameters are varied within a wide range. This peculiar "quantized" dynamical locking was understood as due to the sliding-induced motion of misfit dislocations, or soliton structures. So far the practical relevance of this concept to realistic sliding three-dimensional crystals has not been demonstrated. In this work, by means of classical molecular dynamics simulations and theoretical considerations, we realize a realistic three-dimensional crystal-lubricant-crystal geometry. Results show that the flux of lubricant particles associated with the advancing soliton lines gives rise here too to a quantized-velocity ratio. Moreover, depending on the interface lattice spacing mismatch, both forward and backward quantized motion of the lubricant is predicted. The persistence under realistic conditions of the dynamically pinned state and quantized sliding is further investigated by varying sliding speed, temperature, load, and lubricant film thickness. The possibilities of experimental observation of quantized sliding are also discussed.

  17. Chitosan Adhesive Films for Photochemical Tissue Bonding

    Science.gov (United States)

    Lauto, Antonio; Mawad, Damia; Barton, Matthew; Piller, Sabine C.; Longo, Leonardo

    2011-08-01

    Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Materials and Methods. Adhesive films, based on chitosan and containing ˜0.1wt% RB were manufactured and bonded to calf intestine by a solid state laser (wavelength = 532 nm, Fluence ˜110 J/cm2, spot size ˜5 mm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results and Conclusion. The RB-chitosan adhesive bonded firmly to the intestine (15±2 kPa, n = 31). The adhesion strength dropped to 0.5±0.1 kPa (n = 8) when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26 °C to 32 °C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  18. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    Science.gov (United States)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  19. A Neuro-fuzzy-sliding Mode Controller Using Nonlinear Sliding Surface Applied to the Coupled Tanks System

    Institute of Scientific and Technical Information of China (English)

    Ahcene Boubakir; Fares Boudjema; Salim Labiod

    2009-01-01

    The aim of this paper is to develop a neuro-fuzzy-sliding mode controller (NFSMC) with a nonlinear sliding surface for a coupled tank system.The main purpose is to eliminate the chattering phenomenon and to overcome the problem of the equivalent control computation.A first-order nonlinear sliding surface is presented,on which the developed sliding mode controller (SMC) is based.Mathematical proof for the stability and convergence of the system is presented.In order to reduce the chattering in SMC,a fixed boundary layer around the switch surface is used.Within the boundary layer,where the fuzzy logic control is applied,the chattering phenomenon,which is inherent in a sliding mode control,is avoided by smoothing the switch signal.Outside the boundary,the sliding mode control is applied to drive the system states into the boundary layer.Moreover,to compute the equivalent controller,a feed-forward neural network (NN) is used.The weights of the net are updated such that the corrective control term of the NFSMC goes to zero.Then,this NN also alleviates the chattering phenomenon because a big gain in the corrective control term produces a more serious chattering than a small gain.Experimental studies carried out on a coupled tank system indicate that the proposed approach is good for control applications.

  20. Acute effect of scapular proprioceptive neuromuscular facilitation (PNF) techniques and classic exercises in adhesive capsulitis: a randomized controlled trial.

    Science.gov (United States)

    Balcı, Nilay Comuk; Yuruk, Zeliha Ozlem; Zeybek, Aslican; Gulsen, Mustafa; Tekindal, Mustafa Agah

    2016-04-01

    [Purpose] The aim of our study was to compare the initial effects of scapular proprioceptive neuromuscular facilitation techniques and classic exercise interventions with physiotherapy modalities on pain, scapular dyskinesis, range of motion, and function in adhesive capsulitis. [Subjects and Methods] Fifty-three subjects were allocated to 3 groups: scapular proprioceptive neuromuscular facilitation exercies and physiotherapy modalities, classic exercise and physiotherapy modalities, and only physiotherapy modalities. The intervention was applied in a single session. The Visual Analog Scale, Lateral Scapular Slide Test, range of motion and Simple Shoulder Test were evaluated before and just after the one-hour intervention in the same session (all in one session). [Results] All of the groups showed significant differences in shoulder flexion and abduction range of motion and Simple Shoulder Test scores. There were statistically significant differences in Visual Analog Scale scores in the proprioceptive neuromuscular facilitation and control groups, and no treatment method had significant effect on the Lateral Scapular Slide Test results. There were no statistically significant differences between the groups before and after the intervention. [Conclusion] Proprioceptive neuromuscular facilitation, classic exercise, and physiotherapy modalities had immediate effects on adhesive capsulitis in our study. However, there was no additional benefit of exercises in one session over physiotherapy modalities. Also, an effective treatment regimen for shoulder rehabilitation of adhesive capsulitis patients should include scapular exercises.

  1. Modification of fluorous substrates with oligo(ethylene glycol) via "click" chemistry for long-term resistance of cell adhesion.

    Science.gov (United States)

    Contreras-Caceres, Rafael; Santos, Catherine M; Li, Siheng; Kumar, Amit; Zhu, Zhiling; Kolar, Satya S; Casado-Rodriguez, Miguel A; Huang, Yongkai; McDermott, Alison; Lopez-Romero, Juan Manuel; Cai, Chengzhi

    2015-11-15

    In this work perfluorinated substrates fabricated from SiO2 glass slides are modified with oligo(ethylene glycol) (OEG) units for long-term resistance of cell adhesion purposes, based on fluorous interactions and click chemistry. Specifically, fluorous substrates, prepared by treatment of glass slides with 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane (FAS17), were coated with ethynyl-OEG-C8F17, followed by covalent attachment of an azido-OEG via copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. We demonstrate that the resultant surface avoid fibrinogen adsorption and resisted cell adhesion for over 14days. X-ray photoemission spectroscopy (XPS) analysis and contact angle goniometry measurements confirm the presence of the OEG molecules on the fluorous substrates. Bright field optical images show total absence of 3T3 fibroblast cells on the OEG modified fluorinated substrate for 1 and 5days, and a remarkably decrease of cell adhesion at 14days. PMID:26210101

  2. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bharathidasan, T. [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India); Kumar, S. Vijay; Bobji, M.S. [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560003 (India); Chakradhar, R.P.S. [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India); Basu, Bharathibai J., E-mail: bharathijbasu@gmail.com [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India)

    2014-09-30

    Highlights: • Anti-icing property is related to wettability and surface roughness. • Silicone based hydrophobic coating showed excellent ice-adhesion strength. • Superhydrophobic surfaces displayed poor anti-icing property. - Abstract: The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (τ) on silicone based hydrophobic surfaces was ∼ 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness.

  3. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Highlights: • Anti-icing property is related to wettability and surface roughness. • Silicone based hydrophobic coating showed excellent ice-adhesion strength. • Superhydrophobic surfaces displayed poor anti-icing property. - Abstract: The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (τ) on silicone based hydrophobic surfaces was ∼ 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness

  4. Functionally Graded Adhesives for Composite Joints

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  5. Anti-adhesive properties of fish tropomyosins

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Bernbom, Nete; Gram, Lone;

    2008-01-01

    Aims: We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect. Methods...... and Results: The anti-adhesive activity was assayed against Escherchia coli K-12, and bacterial adhesion was quantified by crystal violet staining and sonication methods. Proteolytic digestion, elution and fractionation experiments revealed that the anti-adhesive activity of the extract was linked...... to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein...

  6. A batch fabricated biomimetic dry adhesive

    Science.gov (United States)

    Northen, Michael T.; Turner, Kimberly L.

    2005-08-01

    The fine hair adhesive system found in nature is capable of reversibly adhering to just about any surface. This dry adhesive, best demonstrated in the pad of the gecko, makes use of a multilevel conformal structure to greatly increase inelastic surface contact, enhancing short range interactions and producing significant amounts of attractive forces. Recent work has attempted to reproduce and test the terminal submicrometre 'hairs' of the system. Here we report the first batch fabricated multi-scale conformal system to mimic nature's dry adhesive. The approach makes use of massively parallel MEMS processing technology to produce 20-150 µm platforms, supported by single slender pillars, and coated with ~2 µm long, ~200 nm diameter, organic looking polymer nanorods, or 'organorods'. To characterize the structures a new mesoscale nanoindenter adhesion test technique has been developed. Experiments indicate significantly improved adhesion with the multiscale system. Additional processing caused a hydrophilic to hydrophobic transformation of the surface and testing indicated further improvement in adhesion.

  7. The Rheological Property of Potato Starch Adhesives

    Directory of Open Access Journals (Sweden)

    Junjun Liu

    2014-02-01

    Full Text Available The main goal of this study was to use potato starch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly potato starch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of potato starch adhesives decreased with the increasing of temperature; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared within potato starch adhesives which was pseudo-plastic fluids. Potato starch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  8. Adhesive bowel obstruction? Not always

    Directory of Open Access Journals (Sweden)

    Mittapalli D

    2011-01-01

    Full Text Available A 58-year-old man presented acutely with features of post-surgical adhesive small bowel obstruction. Following an unsuccessful trial of conservative management, computed tomography (CT of the abdomen was performed. This revealed a mass in the ileocaecal region, for which he underwent a subsequent right hemicolectomy. Histology revealed diffuse B-cell Non-Hodgkin′s lymphoma of the terminal ileum. Confounding obstructive lesion of the intestine in patients with a history of previous laparotomy is extremely uncommon. Early high resolution imaging may predict diagnosis and consolidate clinical management plans.

  9. Factors influencing bacterial adhesion to contact lenses

    OpenAIRE

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The ...

  10. Syndecan-4 and focal adhesion function

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    2001-01-01

    Two groups have now reported the viability of mice that lack syndecan-4. These mice have wound healing/angiogenesis problems, and fibroblasts from these animals differ in adhesion and migration from normal. This is consistent with recent in vitro data indicating a need for signaling via syndecan-4...... for focal adhesion formation, and reports that overexpression of proteins that bind syndecan-4 can modify cell adhesion and migration....

  11. Optimal sliding guidance algorithm for Mars powered descent phase

    Science.gov (United States)

    Wibben, Daniel R.; Furfaro, Roberto

    2016-02-01

    Landing on large planetary bodies (e.g. Mars) with pinpoint accuracy presents a set of new challenges that must be addressed. One such challenge is the development of new guidance algorithms that exhibit a higher degree of robustness and flexibility. In this paper, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) optimal sliding guidance (OSG) scheme is applied to the Mars powered descent phase. This guidance algorithm has been specifically designed to combine techniques from both optimal and sliding control theories to generate an acceleration command based purely on the current estimated spacecraft state and desired final target state. Consequently, OSG yields closed-loop trajectories that do not need a reference trajectory. The guidance algorithm has its roots in the generalized ZEM/ZEV feedback guidance and its mathematical equations are naturally derived by defining a non-linear sliding surface as a function of the terms Zero-Effort-Miss and Zero-Effort-Velocity. With the addition of the sliding mode and using Lyapunov theory for non-autonomous systems, one can formally prove that the developed OSG law is globally finite-time stable to unknown but bounded perturbations. Here, the focus is on comparing the generalized ZEM/ZEV feedback guidance with the OSG law to explicitly demonstrate the benefits of the sliding mode augmentation. Results show that the sliding guidance provides a more robust solution in off-nominal scenarios while providing similar fuel consumption when compared to the non-sliding guidance command. Further, a Monte Carlo analysis is performed to examine the performance of the OSG law under perturbed conditions.

  12. Influence of composition on the adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-min; Hong, Guang; Hayashida, Kentaro; Maeda, Takeshi; Murata, Hiroshi; Sasaki, Keiichi

    2014-01-01

    To investigate the effect of composition on the initial viscosity and adhesive strength between denture adhesives and the denture base. Two types of water-soluble polymers (methoxy ethylene maleic anhydride copolymer [PVM-MA] and sodium carboxymethyl cellulose [CMC]) were used. Samples were divided into three groups. Group 1 contained only PVM-MA; Group 2 contained only CMC; and Group 3 contained PVM-MA and CMC. The initial viscosity and adhesive strength were measured. For Group 1, the initial viscosity increased significantly as PVM-MA content increased. The adhesive strength of Group 1 lasted longer than Group 2. The adhesive strength of Group 3 varied greatly. The ratio of CMC and PVM-MA has a significant effect on the initial viscosity and adhesive strength of denture adhesives. Our results suggest that it is possible to improve the durability of a denture adhesive by combining different water-soluble polymers.

  13. Adhesion of rhodium films on metallic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Marot, L. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)], E-mail: laurent.marot@unibas.ch; Covarel, G.; Tuilier, M.-H. [Laboratoire Mecanique, Materiaux et Procedes de Fabrication, Pole STIC-SPI-Math 61 rue Albert Camus, Universite de Haute-Alsace, F-68093 - Mulhouse Cedex (France); Steiner, R.; Oelhafen, P. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2008-09-01

    Rhodium coated metallic films were prepared by magnetron sputtering on metallic substrates. All films were elaborated in same conditions on copper, molybdenum and stainless steel. Adhesion strength tests were carried out by scratch test. The results reveal that the adhesion strength between the film and the substrate is influenced by the hardness of the substrate. Increase of deposition temperature improves the adhesion of the coating. In addition, pre-treatment of substrates by a filtered cathodic vacuum arc and the layer thickness have has some effects on the final adhesion strength.

  14. Sliding mode observers for automotive alternator

    Science.gov (United States)

    Chen, De-Shiou

    Estimator development for synchronous rectification of the automotive alternator is a desirable approach for estimating alternator's back electromotive forces (EMFs) without a direct mechanical sensor of the rotor position. Recent theoretical studies show that estimation of the back EMF may be observed based on system's phase current model by sensing electrical variables (AC phase currents and DC bus voltage) of the synchronous rectifier. Observer design of the back EMF estimation has been developed for constant engine speed. In this work, we are interested in nonlinear observer design of the back EMF estimation for the real case of variable engine speed. Initial back EMF estimate can be obtained from a first-order sliding mode observer (SMO) based on the phase current model. A fourth-order nonlinear asymptotic observer (NAO), complemented by the dynamics of the back EMF with time-varying frequency and amplitude, is then incorporated into the observer design for chattering reduction. Since the cost of required phase current sensors may be prohibitive, the most applicable approach in real implementation by measuring DC current of the synchronous rectifier is carried out in the dissertation. It is shown that the DC link current consists of sequential "windows" with partial information of the phase currents, hence, the cascaded NAO is responsible not only for the purpose of chattering reduction but also for necessarily accomplishing the process of estimation. Stability analyses of the proposed estimators are considered for most linear and time-varying cases. The stability of the NAO without speed information is substantiated by both numerical and experimental results. Prospective estimation algorithms for the case of battery current measurements are investigated. Theoretical study indicates that the convergence of the proposed LAO may be provided by high gain inputs. Since the order of the LAO/NAO for the battery current case is one order higher than that of the link

  15. Performance of a malaria microscopy image analysis slide reading device

    Directory of Open Access Journals (Sweden)

    Prescott William R

    2012-05-01

    Full Text Available Abstract Background Viewing Plasmodium in Romanovsky-stained blood has long been considered the gold standard for diagnosis and a cornerstone in management of the disease. This method however, requires a subjective evaluation by trained, experienced diagnosticians and establishing proficiency of diagnosis is fraught with many challenges. Reported here is an evaluation of a diagnostic system (a “device” consisting of a microscope, a scanner, and a computer algorithm that evaluates scanned images of standard Giemsa-stained slides and reports species and parasitaemia. Methods The device was challenged with two independent tests: a 55 slide, expert slide reading test the composition of which has been published by the World Health Organization (“WHO55” test, and a second test in which slides were made from a sample of consenting subjects participating in a malaria incidence survey conducted in Equatorial Guinea (EGMIS test. These subjects’ blood was tested by malaria RDT as well as having the blood smear diagnosis unequivocally determined by a worldwide panel of a minimum of six reference microscopists. Only slides with unequivocal microscopic diagnoses were used for the device challenge, n = 119. Results On the WHO55 test, the device scored a “Level 4” using the WHO published grading scheme. Broken down by more traditional analysis parameters this result was translated to 89% and 70% sensitivity and specificity, respectively. Species were correctly identified in 61% of the slides and the quantification of parasites fell within acceptable range of the validated parasitaemia in 10% of the cases. On the EGMIS test it scored 100% and 94% sensitivity/specificity, with 64% of the species correct and 45% of the parasitaemia within an acceptable range. A pooled analysis of the 174 slides used for both tests resulted in an overall 92% sensitivity and 90% specificity with 61% species and 19% quantifications correct. Conclusions In its

  16. Bioerosion by chemosynthetic biological communities on Holocene submarine slide scars

    Science.gov (United States)

    Paull, C. K.; Ussler, W.; Greene, H. G.; Barry, J.; Keaten, R.

    2005-02-01

    Geomorphic, stratigraphic, and faunal observations of submarine slide scars that occur along the flanks of Monterey Canyon in 2.0 2.5 km water depths were made to identify the processes that continue to alter the surface of a submarine landslide scar after the initial slope failure. Deep-sea chemosynthetic biological communities and small caves are common on the sediment-free surfaces of the slide scars, especially along the headwall. The chemosynthetic organisms observed on slide scars in Monterey Canyon undergo a faunal succession based in part on their ability to maintain their access to the redox boundaries in the sediment on which they depend on as an energy source. By burrowing into the seafloor, these organisms are able to follow the retreating redox boundaries as geochemical re-equilibration occurs on the sole of the slide. As these organisms dig into the seafloor on the footwall, they often generate small caves and weaken the remaining seafloor. While chemosynthetic biological communities are typically used as indicators of fluid flow, these communities may be supported by methane and hydrogen sulfide that are diffusing out of the fresh seafloor exposed at the sole of the slide by the slope failure event. If so, these chemosynthetic biological communities may simply mark sites of recent seafloor exhumation, and are not reliable fluid seepage indicators.

  17. Robust observer-based adaptive fuzzy sliding mode controller

    Science.gov (United States)

    Oveisi, Atta; Nestorović, Tamara

    2016-08-01

    In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.

  18. Mechanistic Origin of the Ultrastrong Adhesion between Graphene and a-SiO2: Beyond van der Waals.

    Science.gov (United States)

    Kumar, Sandeep; Parks, David; Kamrin, Ken

    2016-07-26

    The origin of the ultrastrong adhesion between graphene and a-SiO2 has remained a mystery. This adhesion is believed to be predominantly van der Waals (vdW) in nature. By rigorously analyzing recently reported blistering and nanoindentation experiments, we show that the ultrastrong adhesion between graphene and a-SiO2 cannot be attributed to vdW forces alone. Our analyses show that the fracture toughness of the graphene/a-SiO2 interface, when the interfacial adhesion is modeled with vdW forces alone, is anomalously weak compared to the measured values. The anomaly is related to an ultrasmall fracture process zone (FPZ): owing to the lack of a third dimension in graphene, the FPZ for the graphene/a-SiO2 interface is extremely small, and the combination of predominantly tensile vdW forces, distributed over such a small area, is bound to result in a correspondingly small interfacial fracture toughness. Through multiscale modeling, combining the results of finite element analysis and molecular dynamics simulations, we show that the adhesion between graphene and a-SiO2 involves two different kinds of interactions: one, a weak, long-range interaction arising from vdW adhesion and, second, discrete, short-range interactions originating from graphene clinging to the undercoordinated Si (≡Si·) and the nonbridging O (≡Si-O·) defects on a-SiO2. A strong resistance to relative opening and sliding provided by the latter mechanism is identified as the operative mechanism responsible for the ultrastrong adhesion between graphene and a-SiO2. PMID:27347793

  19. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  20. On Sliding Friction of PEEK Based Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    H.Liao; G.Zhang; C.Mateus; H.Li; C.Coddet

    2004-01-01

    Polyetheretherketone (PEEK) based composite materials become of great interest to applications as bearing and slider materials due to their excellent tribological performance. In present work, graphite and MoS2(7%,wt) filled PEEK coatings were prepared using serigraph technique. Employing a uniform design experiment, the friction behavior of the composite coatings was systematically investigated under dry sliding conditions on a ball-on-disc arrangement. The evolution mechanism of coating friction coefficient was discussed. Correlation of coatings friction coefficient with sliding velocity and applied load was accomplished using stepwise regression method. The results indicate that friction coefficients of PEEK+MoS2 and PEEK+graphite coating decrease while increasing applied load. Moreover, friction coefficient of PEEK+MoS2 coating increases with increasing sliding velocity.

  1. Friction Coefficient of UHMWPE During Dry Reciprocating Sliding

    Directory of Open Access Journals (Sweden)

    F. Zivic

    2014-09-01

    Full Text Available This paper deals with the friction coefficient behaviour during dry reciprocating sliding of UHMWPE in contact with alumina (Al2O3, within a range of velocities typical for hip implants. Five values of normal force (100 - 1000 mN and three values of sliding speed (4 - 12 mm/s have been observed. Real time diagrams of the friction coefficient as a function of the sliding cycles were recorded for each test. Dynamic friction coefficient curves exhibited rather uniform behavior for all test conditions. Somewhat larger values of friction coefficient could be observed during the running-in period in case of low loads (100 - 250 mN and the lowest velocity (4 mm/s. In case of high loads and speeds, friction coefficient reached steady state values shortly after the beginning of the test.

  2. Tensor product model transformation based decoupled terminal sliding mode control

    Science.gov (United States)

    Zhao, Guoliang; Li, Hongxing; Song, Zhankui

    2016-06-01

    The main objective of this paper is to propose a tensor product model transformation based decoupled terminal sliding mode controller design methodology. The methodology is divided into two steps. In the first step, tensor product model transformation is applied to the single-input-multi-output system and a parameter-varying weighted linear time-invariant system is obtained. Then, decoupled terminal sliding mode controller is designed based on the linear time-invariant systems. The main novelty of this paper is that the nonsingular terminal sliding mode control design is based on a numerical model rather than an analytical one. Finally, simulations are tested on cart-pole system and translational oscillations with a rotational actuator system.

  3. Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft

    Directory of Open Access Journals (Sweden)

    Chutiphon Pukdeboon

    2011-01-01

    Full Text Available The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.

  4. Robust antisynchronization of chaos using sliding mode control strategy

    Indian Academy of Sciences (India)

    Amit Mondal; Mitul Islam; Nurul Islam

    2015-01-01

    The paper proposes a sliding mode control strategy-based scheme for achieving anti-synchronization between two coupled non-linear chaotic systems. The method works irrespective of whether the systems under consideration possess or lack inverse symmetry. Using a linear sliding surface, a sliding mode control input and a non-linear coupling function are designed that synchronizes the systems antiphase. Finite-time convergence of the method is established. The controller is also robust to all forms of bounded perturbations and this robustness can be easily achieved by tuning of a single controller parameter and introduction of a control vector. The controller is also made chattering-free by producing a continuous analogue of the discontinuous control input. The effectiveness of the method is established by implementing it to antisynchronize chaotic Sprott systems and Rossler systems. The results are also verified through numerical simulation work.

  5. Fuzzy Sliding Mode Control for a Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Liping Fan

    2013-05-01

    Full Text Available Fuel cell powered systems have low voltage and high current output characteristics. Therefore, the output voltage of the fuel cell must be stepped up by DC-DC converter. In this paper an integrated mathematical model for proton exchange membrane fuel cell power system with DC-DC converter is described by analyzing the working mechanism of the proton exchange membrane fuel cell and the boost DC-DC converter. Fuzzy sliding mode control scheme is proposed to realize stable output voltage under different loads. Simulation operations are carried out and results are compared with fuzzy control and sliding mode control. It is shown that the use of the proposed fuzzy sliding mode controller can achieve good control effect.

  6. Sliding Friction of Al-Cu-Fe-B Quasicrystals

    Institute of Scientific and Technical Information of China (English)

    Xiying ZHOU; Peiyao LI; Junming LUO; Shiqiang QIAN; Jianhua TONG

    2004-01-01

    Dry sliding friction between the Al59Cu25.5Fe12.5B3 quasicrystals (QCs)/coating of the diamond-like carbon (DLC) was carried out by self-made tribometer under different conditions. The influences of four parameters (temperature, sliding velocity, applied load, atmosphere) on friction and wear of quasicrystal surface were studied. Microstructure of quasicrystal, morphology of worn surface, and wear debris were observed by scanning electron microscopy (SEM).The results showed that for QCs, the friction coefficient and roughness of worn surface were influenced by the parameters, especially greatly by the temperature. With rise of the applied load and sliding velocity, the friction coefficient decreased. The dominant wear mechanism at 350℃ was delamination for QCs. The cracks formed on the worn surface during the friction. Moreover, phase transformation was not observed on worn surface of QCs at 350℃. All the results are discussed and explained.

  7. On Sliding Friction of PEEK Based Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    H. Liao; G. Zhang; C. Mateus; H. Li; C. Coddet

    2004-01-01

    Polyetheretherketone (PEEK) based composite materials become of great interest to applications as bearing and slider materials due to their excellent tribological performance. In present work, graphite and MoS2 (7%, wt) filled PEEK coatings were prepared using serigraph technique. Employing a uniform design experiment, the friction behavior of the composite coatings was systematically investigated under dry sliding conditions on a ball-on-disc arrangement. The evolution mechanism of coating friction coefficient was discussed. Correlation of coatings friction coefficient with sliding velocity and applied load was accomplished usingstepwise regression method. The results indicate that friction coefficients of PEEK + MoS2 and PEEK + graphite coating decrease while increasing applied load. Moreover, friction coefficient of PEEK + MoS2 coating increases with increasing sliding velocity.

  8. Prediction of alpine glacier sliding instabilities: a new hope

    CERN Document Server

    Faillettaz, Jerome; Sornette, Didier

    2012-01-01

    Mechanical and sliding instabilities are the two processes which may lead to breaking off events of large ice masses. Mechanical instabilities mainly affect unbalanced cold hanging glaciers. For the latter case, a prediction could be achieved based on data of surface velocities and seismic activity. The case of sliding instabilities is more problematic. This phenomenon occurs on temperate glacier tongues. Such instabilities are strongly affected by the subglacial hydrology: melt water may cause (i) a lubrication of the bed and (ii) a decrease of the effective pressure and consequently a decrease of basal friction. Available data from Allalingletscher (Valais) indicate that the glacier tongue experienced an active phase during 2-3 weeks with enhanced basal motion in late summer in most years. In order to scrutinize in more detail the processes governing the sliding instabilities, a numerical model developed to investigate gravitational instabilities in heterogeneous media was applied to Allalingletscher. This ...

  9. DID A SUBMARINE SLIDE TRIGGER THE 1918 PUERTO RICO TSUNAMI?

    Directory of Open Access Journals (Sweden)

    Matthew J. Hornbach

    2008-01-01

    Full Text Available The 1918 tsunami that inundated northwest Puerto Rico with up to 6 m waves has been attributed to seafloor faulting associated with the 1918 Mona Canyon earthquake. During the earthquake a series of submarine cable breaks occurred directly off the northwest coast of Puerto Rico where the largest tsunami waves came ashore. Here, we use a recently compiled geophysical data set to reveal that a 9 km long landslide headwall exists in the region where cable breaks occurred during the 1918 earthquake. We incorporate our interpretations into a near-field tsunami wave model to evaluate whether the slide may have triggered the observed 1918 tsunami. Our analysis indicates that this slide could generate a tsunami with phase, arrival times, and run-ups similar to observations along the northwest coast of Puerto Rico. We therefore suggest that a submarine slide offers a plausible alternative explanation for generation of this large tsunami.

  10. Testing of newly developed functional surfaces under pure sliding conditions

    DEFF Research Database (Denmark)

    Godi, Alessandro; Mohaghegh, Kamran; Grønbæk, J.;

    2013-01-01

    the surfaces in an industrial context. In this paper, a number of experimental tests were performed using a novel test rig, called axial sliding test, simulating the contact of surfaces under pure sliding conditions. The aim of the experiments is to evaluate the frictional behavior of a new typology...... of textured surfaces, the so-called multifunctional surfaces, characterized by a plateau area able to bear loads and a deterministic pattern of lubricant pockets. Six surface typologies, namely three multifunctional and three machined using classical processes, were chosen to slide against a mirror....... The results comparison showed clearly how employing multifunctional surfaces can reduce friction forces up to 50 % at high normal loads compared to regularly ground or turned surfaces. Friction coefficients approximately equal to 0.12 were found for classically machined surfaces, whereas the values were 0...

  11. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions.

  12. Multiscale treatment of theoretical mechanisms for the protection of hydrogel surfaces from adhesive forces

    Science.gov (United States)

    Sokoloff, J. B.

    2014-09-01

    One role of a lubricant is to prevent wear of two surfaces in contact, which is likely to be the result of adhesive forces that cause a pair of asperities belonging to two surfaces in contact to stick together. Such adhesive sticking of asperities can occur both for sliding surfaces and for surfaces which are pressed together and then pulled apart. The latter situation, for example, is important for contact lenses, as prevention of sticking reduces possible damage to the cornea as the lenses are inserted and removed from the eye. Contact lenses are made from both neutral and polyelectrolyte hydrogels. It is demonstrated here that sticking of neutral hydrogels can be prevented by repulsive forces between asperities in contact, resulting from polymers attached to the gel surface but not linked with each other. For polyelectrolyte hydrogels, it is shown that osmotic pressure due to counterions, held at the interface between asperities in contact by the electrostatic attraction between the ions and the fixed charges in the gel, can provide a sufficiently strong repulsive force to prevent adhesive sticking of small-length-scale asperities.

  13. Creep curve measurement to support wear and adhesion modelling, using a continuously variable creep twin disc machine

    OpenAIRE

    Fletcher, D. I.; Lewis, S.

    2013-01-01

    Predictive modelling of wear and adhesion at rolling-sliding contacts such as a railway rail and wheel depends on understanding the relationship between slip and shear force at the contact surface, i.e. the creep verses force curve. This paper describes a new approach to creep curve measurement using a twin disc machine running with a continuous programmed variation of creep, enabling an entire creep curve to be defined in a single experiment. The work focuses on very low levels of creep, ran...

  14. Transitions in Wear and Friction of Carbon Fiber Reinforced Copper Matrix Composite Sliding Against AISI-1045 Steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The friction and wear properties of carbon fiber reinforced copper matrix composite in dry sliding against AISI-1045 steel was evaluated by a block-on-ring test machine. It was shown that the low frictional factor and wear rate of the composite block could be maintained when pressure or velocity was below a certain value. But when the pressure or velocity exceeded the critical value, the friction factor and wear rate tended to increase rapidly with pressure and sliding velocity. The morphologies, elemental compositions, and surface profile of worn composite surfaces at different wear stages were analyzed by means of scanning electron microscopy, energy dispersive spectrometry, and profile-meter. It was found that low values of friction and wear were due to a thin solid film forming on the surface of the composite block which includes carbon and copper at a mild wear stage. The film could impede adhesion and provide some degree of self-lubrication. When the film included more metal elements and were damaged, severe wear happened, and the wear rate increased sharply. As a result, a transition diagram in friction and wear was constructed, which provided pressure and velocity conditions of change from mild wear and low friction to severe wear and high friction for the wear-resisting design.

  15. Intercellular adhesion molecule-1 clusters during osteoclastogenesis

    NARCIS (Netherlands)

    V. Bloemen; T.J. de Vries; T. Schoenmaker; V. Everts

    2009-01-01

    Adhesion between osteoblasts and osteoclast precursors is established via an interaction involving intercellular adhesion molecule-1 (ICAM-1) on osteoblasts and leukocyte function-associated antigen-1 (LFA-1) on osteoclast precursors. The latter cells also express ICAM-1, but little is known about t

  16. Tuneable adhesion through novel binder technologies

    NARCIS (Netherlands)

    Wouters, M.E.L.; Burghoorn, M.M.A.; Ingenhut, B.; Timmer, K.; Rentrop, C.H.A.; Bots, T.L.; Oosterhuis, G.; Fischer, H.R.

    2011-01-01

    A reversible crosslinking mechanism enabling bonding and debonding of adhesives and coatings based on Diels-Alder chemistry is described. The Diels-Alder compounds form a covalently crosslinked network at low temperatures that break at elevated temperatures. As a result, the adhesive exhibits good s

  17. Synthesis of melamine-glucose resin adhesive

    Institute of Scientific and Technical Information of China (English)

    CHEN; Shuanhu; ZHANG; Lei

    2005-01-01

    The synthesis of a novel melamine-glucose adhesive that is similar to urea-formaldehyde adhesive is reported in this paper. The conditions of synthesis, such as the initial pH, the quantity of catalyst, the temperature of reaction, the percentage of each reactant and the time of reaction, were optimized by using the orthogonal experimental method.

  18. Consequences and complications of peritoneal adhesions

    NARCIS (Netherlands)

    Goor, H. van

    2007-01-01

    Consequences and complications of postsurgical intra-abdominal adhesion formation not including small bowel obstruction and secondary infertility are substantial but are under-exposed in the literature. Inadvertent enterotomy during reopening of the abdomen or subsequent adhesion dissection is a fea

  19. Pathophysiology and prevention of postoperative peritoneal adhesions

    Institute of Scientific and Technical Information of China (English)

    Willy Arung1; Michel Meurisse; Olivier Detry

    2011-01-01

    Peritoneal adhesions represent an important clinical challenge in gastrointestinal surgery. Peritoneal adhesions are a consequence of peritoneal irritation by infection or surgical trauma, and may be considered as the pathological part of healing following any peritoneal injury, particularly due to abdominal surgery. The balance between fibrin deposition and degradation is critical in determining normal peritoneal healing or adhesion formation. Postoperative peritoneal adhesions are a major cause of morbidity resulting in multiple complications, many of which may manifest several years after the initial surgical procedure. In addition to acute small bowel obstruction, peritoneal adhesions may cause pelvic or abdominal pain, and infertility. In this paper, the authors reviewed the epidemiology, pathogenesis and various prevention strategies of adhesion formation, using Medline and PubMed search. Several preventive agents against postoperative peritoneal adhesions have been investigated. Their role aims in activating fibrinolysis, hampering coagulation, diminishing the inflammatory response, inhibiting collagen synthesis or creating a barrier between adjacent wound surfaces. Their results are encouraging but most of them are contradictory and achieved mostly in animal model. Until additional findings from future clinical researches, only a meticulous surgery can be recommended to reduce unnecessary morbidity and mortality rates from these untoward effects of surgery. In the current state of knowledge, pre-clinical or clinical studies are still necessary to evaluate the effectiveness of the several proposed prevention strategies of postoperative peritoneal adhesions.

  20. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  1. Adhesive loose packings of small dry particles

    Science.gov (United States)

    Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A.

    We explore adhesive loose packings of dry small spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics. A dimensionless adhesion parameter ($Ad$) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for $Ad>1$. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes correlations between bulk and contact spheres. Our theoretical and numerical results predict: (i) An equation of state for adhesive loose packings that appears as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram; (ii) The existence of a maximal loose packing point at the coordination number $Z=2$ and packing fraction $\\phi=1/2^{3}$. Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing, which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.

  2. Switchable adhesion by chemical functionality and topography

    NARCIS (Netherlands)

    Kamperman, M.M.G.; Synytska, A.

    2012-01-01

    Progress in adhesion technology over the last few decades has led to widespread replacement of mechanical fasteners with adhesive bonds. Despite the advances, it remains challenging to produce materials that are sticky on demand. In this feature article we highlight recent efforts to develop reversi

  3. Image analysis of blood platelets adhesion.

    Science.gov (United States)

    Krízová, P; Rysavá, J; Vanícková, M; Cieslar, P; Dyr, J E

    2003-01-01

    Adhesion of blood platelets is one of the major events in haemostatic and thrombotic processes. We studied adhesion of blood platelets on fibrinogen and fibrin dimer sorbed on solid support material (glass, polystyrene). Adhesion was carried on under static and dynamic conditions and measured as percentage of the surface covered with platelets. Within a range of platelet counts in normal and in thrombocytopenic blood we observed a very significant decrease in platelet adhesion on fibrin dimer with bounded active thrombin with decreasing platelet count. Our results show the imperative use of platelet poor blood preparations as control samples in experiments with thrombocytopenic blood. Experiments carried on adhesive surfaces sorbed on polystyrene showed lower relative inaccuracy than on glass. Markedly different behaviour of platelets adhered on the same adhesive surface, which differed only in support material (glass or polystyrene) suggest that adhesion and mainly spreading of platelets depends on physical quality of the surface. While on polystyrene there were no significant differences between fibrin dimer and fibrinogen, adhesion measured on glass support material markedly differed between fibrin dimer and fibrinogen. We compared two methods of thresholding in image analysis of adhered platelets. Results obtained by image analysis of spreaded platelets showed higher relative inaccuracy than results obtained by image analysis of platelets centres and aggregates.

  4. Mechanisms of temporary adhesion in benthic animals

    NARCIS (Netherlands)

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compa

  5. Evaluation of progestogens for postoperative adhesion prevention.

    Science.gov (United States)

    Beauchamp, P J; Quigley, M M; Held, B

    1984-10-01

    Progesterone (P) has been shown to have potent antiinflammatory and immunosuppressive properties. Previous reports have suggested that the use of P decreases postoperative adhesion formation. To further evaluate the role of pharmacologic doses of progestogens in adhesion prevention, 42 mature New Zealand White rabbits underwent standardized injuries to the uterine horns, fimbriae, and pelvic peritoneum and received one of six treatments. Group S had intraperitoneal placement of normal saline (0.9%); group H received intraperitoneal placement of 32% dextran 70; group IM-P received intramuscular P-in-oil 10 days before and after laparotomy in addition to intraperitoneal saline; group IP-P had intraperitoneal placement of an aqueous P suspension; group DP received medroxyprogesterone acetate intraperitoneally; and group C received no intramuscular or intraperitoneal adhesion-prevention agents. The animals were sacrificed 6 weeks after laparotomy, and the adhesions were scored. Intraperitoneal saline (group S) significantly reduced the amount of adhesions when compared with the control group (C) (P less than 0.05). No significant difference was observed when group S was compared with group H. Intramuscular P added to saline (group IM-P) did not cause further reduction in adhesions when compared with group S. Both group IP-P and group DP had more adhesions than did group S (P less than 0.01). These data fail to support previous claims regarding adhesion prevention by the use of locally or parenterally administered progestogens. PMID:6237937

  6. Artificial neural network based inverse design method for circular sliding slopes

    Institute of Scientific and Technical Information of China (English)

    丁德馨; 张志军

    2004-01-01

    Current design method for circular sliding slopes is not so reasonable that it often results in slope sliding. As a result, artificial neural network (ANN) is used to establish an artificial neural network based inverse design method for circular sliding slopes. A sample set containing 21 successful circular sliding slopes excavated in the past is used to train the network. A test sample of 3 successful circular sliding slopes excavated in the past is used to test the trained network. The test results show that the ANN based inverse design method is valid and can be applied to the design of circular sliding slopes.

  7. A history of slide rules for blackbody radiation computations

    Science.gov (United States)

    Johnson, R. Barry; Stewart, Sean M.

    2012-10-01

    During the Second World War the importance of utilizing detection devices capable of operating in the infrared portion of the electromagnetic spectrum was firmly established. Up until that time, laboriously constructed tables for blackbody radiation needed to be used in calculations involving the amount of radiation radiated within a given spectral region or for other related radiometric quantities. To rapidly achieve reasonably accurate calculations of such radiometric quantities, a blackbody radiation calculator was devised in slide rule form first in Germany in 1944 and soon after in England and the United States. In the immediate decades after its introduction, the radiation slide rule was widely adopted and recognized as a useful and important tool for engineers and scientists working in the infrared field. It reached its pinnacle in the United States in 1970 in a rule introduced by Electro Optical Industries, Inc. With the onset in the latter half of the 1970s of affordable, hand-held electronic calculators, the impending demise of the radiation slide rule was evident. No longer the calculational device of choice, the radiation slide rule all but disappeared within a few short years. Although today blackbody radiation calculations can be readily accomplished using anything from a programmable pocket calculator upwards, with each device making use of a wide variety of numerical approximations to the integral of Planck's function, radiation slide rules were in the early decades of infrared technology the definitive "workhorse" for those involved in infrared systems design and engineering. This paper presents a historical development of radiation slide rules with many versions being discussed.

  8. 3D DEM analyses of the 1963 Vajont rock slide

    Science.gov (United States)

    Boon, Chia Weng; Houlsby, Guy; Utili, Stefano

    2013-04-01

    The 1963 Vajont rock slide has been modelled using the distinct element method (DEM). The open-source DEM code, YADE (Kozicki & Donzé, 2008), was used together with the contact detection algorithm proposed by Boon et al. (2012). The critical sliding friction angle at the slide surface was sought using a strength reduction approach. A shear-softening contact model was used to model the shear resistance of the clayey layer at the slide surface. The results suggest that the critical sliding friction angle can be conservative if stability analyses are calculated based on the peak friction angles. The water table was assumed to be horizontal and the pore pressure at the clay layer was assumed to be hydrostatic. The influence of reservoir filling was marginal, increasing the sliding friction angle by only 1.6˚. The results of the DEM calculations were found to be sensitive to the orientations of the bedding planes and cross-joints. Finally, the failure mechanism was investigated and arching was found to be present at the bend of the chair-shaped slope. References Boon C.W., Houlsby G.T., Utili S. (2012). A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Computers and Geotechnics, vol 44, 73-82, doi.org/10.1016/j.compgeo.2012.03.012. Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49-50), 4429-4443.

  9. Multibody simulation of adhesion pili

    CERN Document Server

    Zakrisson, Johan; Servin, Martin; Axner, Ove; Lacoursiere, Claude; Andersson, Magnus

    2014-01-01

    We present a coarse grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymers force-extension response. With building blocks representing individual subunits the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include both the effects of unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and the results in this work give enhanced understanding of how a pilus unwinds under action of external forces and provide new perspective of th...

  10. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  11. Critical length scale controls adhesive wear mechanisms

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  12. Dynamic analysis of two adhesively bonded rods

    Directory of Open Access Journals (Sweden)

    Kenneth L. Kuttler

    2009-07-01

    Full Text Available This work presents two models for the dynamic analysis of two rods that are adhesively bonded. The first model assumes that the adhesive is an elasto-plastic material and that complete debonding occurs when the stress reaches the yield limit. In the second model the degradation of the adhesive is described by the introduction of material damage. Failure occurs when the material is completely damaged, or the damage reaches a critical floor value. Both models are analyzed and the existence of a weak solution is established for the model with damage. In the quasistatic case, a new condition for adhesion is found as the limit of the adhesive thickness tends to zero.

  13. Preservation of Lantern Slides for Use in Today's Technology

    Science.gov (United States)

    Hillier, A. S.

    2007-10-01

    Lantern slides will keep a long time, which is a good quality for preservation. However, as I have found, they break. Unless there is a lantern slide projector available, there is no way to show these valuable assets to others. This poster will explain my project to bring these pictures to life, to use them in education projects, and to simply show a bit of history to an attentive audience. With today's technology they can be placed on computers and stored more easily and be a joy to all.

  14. The simplex method for nonlinear sliding mode control

    Directory of Open Access Journals (Sweden)

    Bartolini G.

    1998-01-01

    Full Text Available General nonlinear control systems described by ordinary differential equations with a prescribed sliding manifold are considered. A method of designing a feedback control law such that the state variable fulfills the sliding condition in finite time is based on the construction of a suitable simplex of vectors in the tangent space of the manifold. The convergence of the method is proved under an obtuse angle condition and a way to build the required simplex is indicated. An example of engineering interest is presented.

  15. Cascade Control of Magnetic Levitation with Sliding Modes

    Directory of Open Access Journals (Sweden)

    Eroğlu Yakup

    2016-01-01

    Full Text Available The effectiveness and applicability of magnetic levitation systems need precise feedback control designs. A cascade control approach consisting of sliding mode control plus sliding mode control (SMC plus SMC is designed to solve position control problem and to provide a high control performance and robustness to the magnetic levitation plant. It is shown that the SMC plus SMC cascade controller is able to eliminate the effects of the inductance related uncertainties of the electromagnetic coil of the plant and achieve a robust and precise position control. Experimental and numerical results are provided to validate the effectiveness and feasibility of the method.

  16. Estimation of drug dosage regimens with a pharmacokinetic slide rule.

    Science.gov (United States)

    Straughn, A B; Cruze, C A; Meyer, M C

    1977-02-01

    A pharmacokinetic slide rule to facilitate the computations based on relatively simple pharmacokinetic principles involved in the development of individualized drug dosage regimens is described. The calculations are based on the assumption that the body can be conceived as a one-compartment open model with drug elimination proceeding by apparent first-order kinetics. Examples are presented (1) to illustrate the clinical application of a slide rule to compute the time-course of drug in the body, (2) to calculate steady-state maximum and minimum levels, and accumulation during multiple dosage and (3) to estimate appropriate maintenance doses and intravenous infusion rates. PMID:842548

  17. Moist Potential Vorticity and Up-Sliding Slantwise Vorticity Development

    Institute of Scientific and Technical Information of China (English)

    GUI Xiao-Peng; GAO Shou-Ting; WU Guo-Xiong

    2003-01-01

    By using the moist potential vorticity equation derived from complete atmospheric equations including the effect of mass forcing, the theory of up-sliding slantwise vorticity development (USVD) is proposed based on the theory of slantwise vorticity development. When an air parcel slides up along a slantwise isentropic surface, its vertical component of relative vorticity is developed. Based on the theory of USVD, a complete vertical vorticity equation is expected with mass forcing, which explicitly includes the effect of both internal forcings and external forcings.

  18. Sliding Control with Chattering Elimination for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.;

    2012-01-01

    This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load characteri......This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load...

  19. Atomic-Scale Sliding Friction on Graphene in Water.

    Science.gov (United States)

    Vilhena, J G; Pimentel, Carlos; Pedraz, Patricia; Luo, Feng; Serena, Pedro A; Pina, Carlos M; Gnecco, Enrico; Pérez, Rubén

    2016-04-26

    The sliding of a sharp nanotip on graphene completely immersed in water is investigated by molecular dynamics (MD) and atomic force microscopy. MD simulations predict that the atomic-scale stick-slip is almost identical to that found in ultrahigh vacuum. Furthermore, they show that water plays a purely stochastic role in sliding (solid-to-solid) friction. These observations are substantiated by friction measurements on graphene grown on Cu and Ni, where, oppositely of the operation in air, lattice resolution is readily achieved. Our results promote friction force microscopy in water as a robust alternative to ultra-high-vacuum measurements. PMID:26982997

  20. Teaching Physical Based Animation via OpenGL Slides

    CERN Document Server

    Song, Miao; Grogono, Peter; 10.1145/1557626.1557647

    2009-01-01

    This work expands further our earlier poster presentation and integration of the OpenGL Slides Framework (OGLSF) - to make presentations with real-time animated graphics where each slide is a scene with tidgets - and physical based animation of elastic two-, three-layer softbody objects. The whole project is very interactive, and serves dual purpose - delivering the teaching material in a classroom setting with real running animated examples as well as releasing the source code to the students to show how the actual working things are made.

  1. Power generation from conductive droplet sliding on electret film

    Science.gov (United States)

    Yang, Zhaochu; Halvorsen, Einar; Dong, Tao

    2012-05-01

    Generating electrical power from low frequency vibration to power portable devices is a challenge that potentially can be met by nonresonant electrostatic energy harvesters. We propose a generator employing a conductive droplet sliding on a microfabricated electret film which is sputtered onto an interdigital electrode and charged already during deposition. Droplet motion causes a capacitance variation that is used to generate electric power. A prototype of the fluidic energy harvester demonstrated a peak output power at 0.18 µW with a single droplet having a diameter of 1.2 mm and sliding on a 2 -µm thick electret film.

  2. Mining Recent Frequent Itemsets in Sliding Windows over Data Streams

    OpenAIRE

    Congying Han; Lijun Xu; Guoping He

    2012-01-01

    This paper considers the problem of mining recent frequent itemsets over data streams. As the data grows without limit at a rapid rate, it is hard to track the new changes of frequent itemsets over data streams. We propose an efficient one-pass algorithm in sliding windows over data streams with an error bound guarantee. This algorithm does not need to refer to obsolete transactions when they are removed from the sliding window. It exploits a compact data structure to maintain potentially fre...

  3. Induction Motor Flux Estimation using Nonlinear Sliding Observers

    Directory of Open Access Journals (Sweden)

    Hakiki Khalid

    2007-01-01

    Full Text Available A nonlinear sliding flux was proposed for an induction motor. Its dynamic observation errors converge asymptotically to zero, independently from the inputs. The aim of this work was to study the robustness of this observer with respect to the variation of the rotor resistance known to be a crucial parameter for the control. The dynamic performance of this sliding observer was compared to that of Verghese observer via a simulation of an IM driven by U/F control in open loop.

  4. Adaptive robust controller based on integral sliding mode concept

    Science.gov (United States)

    Taleb, M.; Plestan, F.

    2016-09-01

    This paper proposes, for a class of uncertain nonlinear systems, an adaptive controller based on adaptive second-order sliding mode control and integral sliding mode control concepts. The adaptation strategy solves the problem of gain tuning and has the advantage of chattering reduction. Moreover, limited information about perturbation and uncertainties has to be known. The control is composed of two parts: an adaptive one whose objective is to reject the perturbation and system uncertainties, whereas the second one is chosen such as the nominal part of the system is stabilised in zero. To illustrate the effectiveness of the proposed approach, an application on an academic example is shown with simulation results.

  5. Surface tension driven shaping of adhesive microfluidic channel walls

    DEFF Research Database (Denmark)

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver

    2005-01-01

    The feasibility of making microfluidic channels with different wall geometries using adjacent lines of dispensed adhesive between substrates has been studied. Important parameters for the geometry have been identified to be: surface tension (adhesive / substrates), adhesive viscosity / thixotropy...

  6. A Multidirectional Tribo-System: Wear of UHMWPE under Sliding, Rolling, and Rotation

    Science.gov (United States)

    Patten, Elias Wolfgang

    perpendicular to the primary sliding directions. These are consistent with abrasive wear, plastic flow and adhesive wear, and fatigue wear mechanisms reported in other in vitro and in vivo wear studies. The orientations of the lamellae at the wear surfaces were not discernibly different from the lamellae of an unworn section of the disk surface. Similarly, the near-surface regions of the disk cross-section were not discernibly different from the subsurface regions. Previous studies have demonstrated orientation of the microstructure during wear using transmission electron microscopy, X-ray scattering, and Fourier transform infrared spectroscopy techniques, and such methods may be necessary for texture characterization. These results demonstrate that knee kinematics have a significant effect on the cross-shear and wear of UHMWPE and should not be neglected when designing TKR. A better theoretical understanding of how kinematics contribute to wear can lead to better UHMWPE formulations, improved computer simulations of wear, and optimized TKR designs with longer life-spans.

  7. Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii

    DEFF Research Database (Denmark)

    Gori, Klaus; Knudsen, Peter Boldsen; Nielsen, Kristian Fog;

    2011-01-01

    detected from the end of exponential phase indicating that they are potential QS molecules in D. hansenii as previously shown for other yeast species. Yields of phenylethanol and tyrosol produced by D. hansenii were, however, lower than those produced by Candida albicans and Saccharomyces cerevisiae...

  8. Experimental Study of the Rolling-Sliding Contact Conditions in a PA66/STEEL Gear Using Twin-Disc Test Rig: Friction and Wear Analysis

    Science.gov (United States)

    Mbarek, Meftah; Rhaiem, Sadok; Kharrat, Mohamed; Dammak, Maher

    2015-09-01

    This study investigates the effects of sliding ratio on the tribological response of the contact between the teeth of a metal/polymer gear in the regions close to the pitch point. For this purpose, a new twin-disc test rig was developed on the basis of two discs of different diameters rotating one above the other at the same angular speed. Two different materials were used: non-alloyed structural steel (C45) and polyamide (PA66). The effect of the slip ratio (4%, 12%, 20% and 28%) was studied at a constant pressure of 34 MPa and a constant angular speed of 300 rpm. In addition, the contact conditions were controlled with measurements of the two discs surface temperatures. The results indicate that the wear and the friction are closely related to the contact temperature generated by the sliding phenomenon. At low slip ratio (4% and 12%), the coefficient of friction and the temperature are characterized by a quasi-linear increase with time, and the wear increases slowly. At higher slip ratio (20% and 28%), the coefficient of friction and the temperature presents a steady state, and the wear increases dramatically. During the test, a film of transferred PA66 is formed on the steel surface causing the development of adhesive interactions between the contacting discs which increase the friction coefficient and the contact temperature. The high thermal conductivity of steel as compared to that of the polymer can reduce enormously the contact temperature generated by the sliding process.

  9. Design and Implementation of a Magnetic Levitation System Controller using Global Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Rudi Uswarman

    2014-07-01

    Full Text Available This paper presents global sliding mode control and conventional sliding mode control for stabilization position of a levitation object. Sliding mode control will be robusting when in sliding mode condition. However, it is not necessarily robust at attaining phase. In the global sliding mode control, the attaining motion phase was eliminated, so that the robustness of the controller can be improved. However, the value of the parameter uncertainties needs to be limited. Besides that, the common problem in sliding mode control is high chattering phenomenon. If the chattering is too large, it can make the system unstable due the limited ability of electronics component. The strategy to overcome the chattering phenomenon is needed. Based on simulation and experimental results, the global sliding mode control has better performance than conventional sliding mode control.  

  10. Excise Tax Rates On Packs Of Cigarettes PowerPoint Slides

    Data.gov (United States)

    U.S. Department of Health & Human Services — Download the current cigarette excise tax rates on packs of cigarettes slides. These slides are available in PDF and PowerPoint formats. The PDF version can be...

  11. Adhesion in ceramics and magnetic media

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1989-01-01

    When a ceramic is brought into contact with a metal or a polymeric material such as a magnetic medium, strong bonds form between the materials. For ceramic-to-metal contacts, adhesion and friction are strongly dependent on the ductility of the metals. Hardness of metals plays a much more important role in adhesion and friction than does the surface energy of metals. Adhesion, friction, surface energy, and hardness of a metal are all related to its Young's modulus and shear modulus, which have a marked dependence on the electron configuration of the metal. An increase in shear modulus results in a decrease in area of contact that is greater than the corresponding increase in surface energy (the fond energy) with shear modulus. Consequently, the adhesion and friction decrease with increasing shear modulus. For ceramics in contact with polymeric magnetic tapes, environment is extremely important. For example, a nitrogen environment reduces adhesion and friction when ferrite contacts polymeric tape, whereas a vacuum environment strengthens the ferrite-to-tape adhesion and increases friction. Adhesion and friction are strongly dependent on the particle loading of the tape. An increase in magnetic particle concentration increases the complex modulus of the tape, and a lower real area of contact and lower friction result.

  12. Extended VVER-440 reactor operation with sliding secondary loop pressure

    International Nuclear Information System (INIS)

    A specific feature of water-moderated reactors is the need for periodic unit shutdown for scheduled preventative maintenance (SPM) of equipment and fuel assembly reloading. These shutdowns are highly undesirable during the autumn-winter peak for power system electrical load. In such cases, it becomes necessary to search for methods to extend the reactor operating period. For a water-moderated reactor, this problem is solved by using the power and temperature reactivity effects. The algorithm for VVER-440 reactor operation in the extended operating period regime with sliding primary and secondary loop parameters is presented. Implementing this regime in Unit 3 of the Kol'sk nuclear plant enabled it to operate an additional 67.5 effective days (79 calendar days). It is shown that reactor operation with sliding parameters requires careful preparation of equipment operating specifications and choosing of new setpoints for protection and interlock systems operation. During preparation for operation with sliding parameters, it is shown that in this regime the criteria for safe operation are met. Inasmuch as using the operating regime with sliding parameters is economically efficient, equipment development engineers must perform work proving equipment operability and making the corresponding revisions to the operating documentation

  13. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  14. GA-Based Fuzzy Sliding Mode Controller for Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    W. L. Chiang

    2008-11-01

    Full Text Available Generally, the greatest difficulty encountered when designing a fuzzy sliding mode controller (FSMC or an adaptive fuzzy sliding mode controller (AFSMC capable of rapidly and efficiently controlling complex and nonlinear systems is how to select the most appropriate initial values for the parameter vector. In this paper, we describe a method of stability analysis for a GA-based reference adaptive fuzzy sliding model controller capable of handling these types of problems for a nonlinear system. First, we approximate and describe an uncertain and nonlinear plant for the tracking of a reference trajectory via a fuzzy model incorporating fuzzy logic control rules. Next, the initial values of the consequent parameter vector are decided via a genetic algorithm. After this, an adaptive fuzzy sliding model controller, designed to simultaneously stabilize and control the system, is derived. The stability of the nonlinear system is ensured by the derivation of the stability criterion based upon Lyapunov's direct method. Finally, an example, a numerical simulation, is provided to demonstrate the control methodology.

  15. Slide crown lengthening procedure using wide surface incisions and cyanoacrylate.

    Science.gov (United States)

    Szymaitis, Dennis W

    2011-01-01

    This article introduces the slide crown lengthening procedure (SCLP), which incorporates surgical design features to overcome present crown lengthening procedure (CLP) shortcomings. The result is a 75% decrease in required surgery on adjacent teeth and a corresponding 75% reduction in surgical time. Other advantages include a reduction in surgical morbidity, improvement in terminal esthetics, and fewer teeth subject to papillae removal and apically repositioned gingiva. The 20 to 30 degree incision forming the slide is the pivotal feature; it allows effortless flap positioning. This incision angle enables wide surface incisions to adhere flaps together by producing stronger fibrin clots, decreasing tissue retraction angles, and reforming disrupted fibrin clots as incision sides slide while maintaining contact. This enhanced fibrin clot eliminates the need for sutures. The slide produced by the 20 to 30 degree incision functions for crown lengthening on all sites (facial, lingual, or palatal). This versatile surgical design introduces a new healing dimension that adapts to and provides benefits for other dental surgeries, such as gingival grafts, endodontic surgery, implants, and extractions.

  16. Sliding joint concept for toroidal field coils of a tokamak

    International Nuclear Information System (INIS)

    A low-cost, compact, copper-coil ignition tokamak is the focus of design studies in FY85. For a minimum-cost machine, the toroidal field (TF) coils must be as compact as practical. On the other hand, smaller TF coils inhibit the assembly and maintenance of the components entrapped by the TF coils, such as the plasma vacuum vessel, limiter, poloidal field coils, etc. If the compact TF coil has at least two demountable electrical joints, removal of the outer part of the TF coil would permit servicing of the entrapped components. The vertical straight leg of a TF coil has the smallest cross-sectional area, but it experiences the largest tensile and compressive forces. The tensile load on the vertical leg can be eliminated if the demountable joints can slide. A possible sliding joint design concept is described in this paper. This sliding joint transfers only current. No forces are transferred from the outer curved leg to the straight leg of the TF coils. The outer curved leg can be separated at the sliding joint to gain access to the components inside the TF coil bore

  17. Programmed Instruction with Microfiche: Intoduction to the Slide Rule.

    Science.gov (United States)

    Wachtel, L. W.

    The use of microfiche as a means of programed self-instruction was examined in this study. Lessons adapted from a one-hour lecture on the slide rule were typed in large print in order to allow easy reading at distances normally used with microfiche readers. The 58 pages of the course were reproduced on microfilm, strips of which were then inserted…

  18. Modelling study of sliding interface contact in pipe coupling

    International Nuclear Information System (INIS)

    The Finite Element Method (FEM) results are dependent on simulation of geometry and boundary conditions. The difficulties are faced while modelling the complex structures with number of interface contact where small relative movement can not be ruled out. The paper describes the 3-D interface sliding contact modelling study for pipe coupling. (author). 3 refs., 8 figs., 2 tabs

  19. Slide rule-type color chart predicts reproduced photo tones

    Science.gov (United States)

    Griffin, J. D.

    1966-01-01

    Slide rule-type color chart determines the final reproduced gray tones in the production of briefing charts that are photographed in black and white. The chart shows both the color by drafting paint manufacturers name and mixture number, and the gray tone resulting from black and white photographic reproduction.

  20. Limitations of the Nash Logoscope or diagnostic slide rule.

    Science.gov (United States)

    Pain, R W

    1975-11-01

    The diagnostic efficacy of a commercially available diagnostic slide-rule (the Logoscope) was evaluated on 50 cases detailed in the leterature. In only 13 cases (26%) was the Logoscope of any practical assistance in diagnosis and even then it did not always indicate the entire final clinical diagnosis. Some major deficiencies of the Logoscope system are outlined. PMID:1207559

  1. Simplified atmospheric diffusion calculations with slide-rule gage points

    International Nuclear Information System (INIS)

    Gage points are given with the help of which the most commonly required atmospheric diffusion calculations can be carried out rapidly using a simple slide-rule setting; e.g. maximum ground concentration, its distance, and the corresponding effective stack height as functions of the prevailing type of meteorological condition. (author)

  2. Sliding mode control based guidance law with impact angle constraint

    Institute of Scientific and Technical Information of China (English)

    Zhao Yao; Sheng Yongzhi; Liu Xiangdong

    2014-01-01

    The terminal guidance problem for an unpowered lifting reentry vehicle against a sta-tionary target is considered. In addition to attacking the target with high accuracy, the vehicle is also expected to achieve a desired impact angle. In this paper, a sliding mode control (SMC)-based guidance law is developed to satisfy the terminal angle constraint. Firstly, a specific sliding mode function is designed, and the terminal requirements can be achieved by enforcing both the sliding mode function and its derivative to zero at the end of the flight. Then, a backstepping approach is used to ensure the finite-time reaching phase of the sliding mode and the analytic expression of the control effort can be obtained. The trajectories generated by this method only depend on the initial and terminal conditions of the terminal phase and the instantaneous states of the vehicle. In order to test the performance of the proposed guidance law in practical application, numerical simulations are carried out by taking all the aerodynamic parameters into consideration. The effec-tiveness of the proposed guidance law is verified by the simulation results in various scenarios.

  3. Discrete-Time Sliding Mode Control with a Disturbance Estimator

    NARCIS (Netherlands)

    Monsees, G.; Scherpen, J.M.A.

    2001-01-01

    This paper presents a novel output-based, discrete-time, sliding mode controller design methodology. Output based controllers with and without disturbance estimation are presented. First several existing discrete-time reaching conditions are analyzed and compared. From these methods the linear reach

  4. Sliding resistance of plates with bionic bumpy surface against soil

    Institute of Scientific and Technical Information of China (English)

    LI Jian-qiao; SUN Jiu-rong; REN Lu-quan; CHEN Bing-cong

    2004-01-01

    The non-smooth surface morphology of dung beetle, Copris ochus, was analyzed. The bulldozing plates with bionic geometric non-smooth or the chemical uneven surface were designed for the soil sliding test based on the simulation of the bumpy surface of the dung beetle. Special black metals-with different contents of alloys of manganese, silicon, chromium,copper and rare earth-were developed for making geometric non-smooth and chemical uneven surfaces by means of surface welding at the surfaces of a middle carbon steel plate. Four metals, with different surface properties including hardness and water contact angle were used to make the bulldozing plates for measuring the soil sliding resistance. Test results of soil sliding resistance indicate that all the geometric non-smooth plates and the chemical uneven plates reducing soil friction.Considering the materials and surface morphology, the bionic plate can reduce the soil sliding resistance from 18.1% up to 42.2%, compared to the traditional smooth bulldozing plate made from middle carbon steel. The test results also show that the smaller the normal load, the greater effect on resistance reduction by the bionic non-smooth surface plates.

  5. Current Status of Whole-Slide Imaging in Education.

    Science.gov (United States)

    Saco, Adela; Bombi, Jose Antoni; Garcia, Adriana; Ramírez, Jose; Ordi, Jaume

    2016-01-01

    Conventional light microscopy (CLM) has classically been the basic tool to teach histology and pathology. In recent years, whole-slide imaging (WSI), which consists of generating a high-magnification digital image of an entire histological glass slide, has emerged as a useful alternative to CLM offering a myriad of opportunities for education. Navigation through the digitized slides closely simulates viewing glass slides with a microscope and is also referred to as virtual microscopy. WSI has many advantages for education. Students feel more comfortable with its use, and it can be used in any classroom as it only requires a computer with Internet access and it allows remote access from anywhere and from any device. WSI can be used simultaneously by a large number of people, stimulating cooperation between students and improving the interaction with the teachers. It allows making marks and annotations on specific fields, which enable specific directed questions to the teacher. Finally, WSI supports are cost-effective compared with CLM. Consequently, WSI has begun to replace CLM in many institutions. WSI has shown to be an extremely useful tool for undergraduate education (medical, dental and veterinary schools), for the training of residents of pathology, tele-education and in tumor boards. PMID:27101397

  6. Measurement of deformation in rolling and sliding contacts

    NARCIS (Netherlands)

    Tasan, Yusuf Caner

    2005-01-01

    In this work, mechanisms behind micro-scale changes on the surfaces in rolling and sliding contacts are studied both experimentally and numerically. For the experimental study a wear and deformation measurement system is designed and produced. This system is composed of an interference microscope, a

  7. Efficient sliding spotlight SAR raw signal simulation of extended scenes

    Directory of Open Access Journals (Sweden)

    Huang Pingping

    2011-01-01

    Full Text Available Abstract Sliding spotlight mode is a novel synthetic aperture radar (SAR imaging scheme with an achieved azimuth resolution better than stripmap mode and ground coverage larger than spotlight configuration. However, its raw signal simulation of extended scenes may not be efficiently implemented in the two-dimensional (2D Fourier transformed domain. This article presents a novel sliding spotlight raw signal simulation approach from the wide-beam SAR imaging modes. This approach can generate sliding spotlight raw signal not only from raw data evaluated by the simulators, but also from real data in the stripmap/spotlight mode. In order to obtain the desired raw data from conventional stripmap/spotlight mode, the azimuth time-varying filtering, which is implemented by de-rotation and low-pass filtering, is adopted. As raw signal of extended scenes in the stripmap/spotlight mode can efficiently be evaluated in the 2D Fourier domain, the proposed approach provides an efficient sliding spotlight SAR simulator of extended scenes. Simulation results validate this efficient simulator.

  8. Characteristics of sliding discharge in a multi-rod reactor

    International Nuclear Information System (INIS)

    This paper is aimed at investigating the characteristics of a sliding discharge (SD) including the onset voltage (Vo), spark voltage (VS), and current-voltage (I-V) relationship in a multi-rod reactor stressed by sinusoidal AC or pulse voltage. The effects of various parameters (the voltage amplitude, frequency, gas flow rate, and voltage type) on the characteristics of the reactor sliding discharge (Vo, VS and I-V relationship) have been studied experimentally. It has been found that the DC onset and spark voltages increase with the increase of the gas flow rate, while the effect of the frequency on them is not pronounced. The onset and spark voltages of the stressed reactor for sinusoidal AC voltage are lower than those obtained under a pulse voltage of the same peak value. Subsequently, the sliding current increases with the increase of the sinusoidal AC high voltage, the frequency, and the negative DC voltage, while, it decreases with the increase of the flow rate. It is observed that stressing the reactor with sinusoidal AC voltage gives higher values of sliding current than those obtained using a pulse at the same peak voltage. Stressing the reactor with sinusoidal AC voltage gives higher values of the NO removal efficiency than those obtained using pulse voltage.

  9. Digital Sliding Mode Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    MITIC, D. B.

    2013-02-01

    Full Text Available The control of anti-lock braking system is a great challenge, because of the nonlinear and complex characteristics of braking dynamics, unknown parameters of vehicle environment and system parameter variations. Using some of robust control methods, such as sliding mode control, can be a right solution for these problems. In this paper, we introduce a novel approach to design of ABS controllers, which is based on digital sliding mode control with only input/output measurements. The relay term of the proposed digital sliding mode control is filtered through digital integrator, reducing the chattering phenomenon in that way, and the additional signal of estimated modelling error is introduced into control algorithm to enhance the system steady-state accuracy. The given solution was verified in real experimental framework and the obtained results were compared with the results of implementation of two other digital sliding mode control algorithms. It is shown that it gives better system response, higher steady-state accuracy and smaller chattering.

  10. Global Trends in Environment and Development. Presentation Set [Slides].

    Science.gov (United States)

    World Resources Inst., Washington, DC.

    This 50 slide set of presentation graphs and maps illustrates some of the major conditions and trends in population, agriculture, biodiversity, forests, water resources, energy, climate, and social and economic development that determine the state of the world's environment. Graphs and maps can be used by those in academic, professional, and…

  11. Sliding response of gravity dams including vertical seismic accelerations

    Institute of Scientific and Technical Information of China (English)

    Constantin Christopoulos; Pierre Léger; André Filiatrault

    2003-01-01

    Seismic safety assessment of gravity dams has become a major concern in many regions of the world while the effects of vertical seismic accelerations on the response of structures remain poorly understood. This paper first investigates the effect of including vertical accelerations in the sliding response analysis of gravity dams subjected to a range of historical ground motion records separated in two groups according to their source-to-site distance. Analyses showed that the incidence of vertical accelerations on the sliding response of gravity dams is significantly higher for near-source records than for farsource records. The pseudo-static 30% load combination rule, commonly used in practice to account for the non-simultaneous occurrence of the peak horizontal and vertical accelerations, yielded good approximations of the minimum safety factors against sliding computed from time-history analyses. A method for empirically estimating the vertical response spectra based on horizontal spectra, accounting for the difference in frequency content and amplitudes between the two components is investigated. Results from analyses using spectrum compatible horizontal and vertical synthetic records also approximated well the sliding response of a gravity dam subjected to series of simultaneous horizontal and vertical historical earthquake records.

  12. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  13. Adhesion of actinomyces isolates to experimental pellicles.

    Science.gov (United States)

    Steinberg, D; Kopec, L K; Bowen, W H

    1993-06-01

    The ability of oral bacteria to adhere to surfaces is associated with their pathogenicity. Actinomyces can adhere to pellicle and cells through extracellular fimbriae. Research on adhesion of actinomyces has been conducted with use of hydroxyapatite (HA) coated with mammalian-derived salivary constituents, whereas the bacterial-derived components of the acquired pellicle have been largely ignored. The influence of the cell-free bacterial enzyme, glucosyltransferase (GTF), on adhesion of human and rodent isolates of Actinomyces viscosus was examined. Cell-free GTF was adsorbed onto parotid saliva-coated hydroxyapatite (sHA). Next, A. viscosus was exposed to the pellicle following the synthesis of glucan formed in situ by GTF. Glucans formed on the pellicle served as binding sites for adhesion of a rodent strain of A. viscosus. Conversely, the presence of in situ glucans on sHA reduced the adhesion of human isolates of A. viscosus compared with their adhesion to sHA. Adhesion of the rodent strains may be facilitated through a dextran-binding protein, since the rodent strains aggregated in the presence of dextrans and mutan. The human isolates were not aggregated by dextran or mutan. Pellicle harboring A. viscosus rodent strains interfered with the subsequent adhesion of Streptococcus mutans to the bacterial-coated pellicle. In contrast, the adhesion of S. mutans to pellicle was not decreased when the pellicle was pre-exposed to a human isolate of A. viscosus. The experimental data suggest that human and the rodent isolates of A. viscosus have distinct glucan adhesion properties.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8496474

  14. Adaptive Tracking and Obstacle Avoidance Control for Mobile Robots With Unknown Sliding

    OpenAIRE

    Mingyue Cui; Dihua Sun; Weining Liu; Min Zhao; Xiaoyong Liao

    2012-01-01

    An adaptive control approach is proposed for trajectory tracking and obstacle avoidance for mobile robots with consideration given to unknown sliding. A kinematic model of mobile robots is established in this paper, in which both longitudinal and lateral sliding are considered and processed as three time‐varying parameters. A sliding model observer is introduced to estimate the sliding parameters online. A stable tracking control law for this nonholonomic system is proposed to compensate the ...

  15. Application of High Resolution Multispectral Imagery for Levee Slide Detection and Monitoring

    Science.gov (United States)

    Hossain, A. K. M. Azad; Easson, Greg

    2007-01-01

    The objective is to develop methods to detect and monitor levee slides using commercially available high resolution multispectral imagery. High resolution multispectral imagery like IKONOS and QuickBird are suitable for detecting and monitoring levee slides. IKONOS is suitable for visual inspection, image classification and Tasseled Cap transform based slide detection. Tasseled Cap based model was found to be the best method for slide detection. QuickBird was suitable for visual inspection and image classification.

  16. Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization

    Directory of Open Access Journals (Sweden)

    Mansour Bazregar

    2013-12-01

    Full Text Available Both fuzzy logic and sliding mode can compensate the steady-state error of proportional-derivative (PD method. This paper presents parallel sliding mode optimization for fuzzy PD management. The asymptotic stability of fuzzy PD management with first-order sliding mode optimization in the parallel structure is proven. For the parallel structure, the finite time convergence with a super-twisting second-order sliding-mode is guaranteed.

  17. Stable Fuzzy PD Control with Parallel Sliding Mode Compensation with Application to Rigid Manipulator

    Directory of Open Access Journals (Sweden)

    Farzin Piltan

    2013-06-01

    Full Text Available Both fuzzy logic and sliding mode can compensate the steady-state error of proportional-derivative (PD control. This paper presents parallel sliding mode compensations for fuzzy PD controllers. The asymptotic stability of fuzzy PD control with first-order sliding mode compensation in the parallel structure is proven. For the parallel structure, the finite time convergence with a super-twisting second-order sliding-mode is guaranteed.

  18. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao;

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  19. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao;

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  20. Adhesion Between Poly(dimethylsiloxane) Layers

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    Different adhesion methods of poly(dimethylsiloxane) (PDMS) layers were studied with respect to adhesional force and the resulting rheology of the two-layered PDMS films were investigated. The role of adhesion between PDMS layers on the performances of two-layer structures was studied with peel...... strength test and by SEM pictures. The rheology of the double-layered compared to the monolayer films changed in some cases which indicates that the adhesion process needs to be carefully introduced in order not to alter the final properties....

  1. Whole slide imaging of unstained tissue using lensfree microscopy

    Science.gov (United States)

    Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Cioni, Olivier; Delon, Antoine; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric

    2016-04-01

    Pathologist examination of tissue slides provides insightful information about a patient's disease. Traditional analysis of tissue slides is performed under a binocular microscope, which requires staining of the sample and delays the examination. We present a simple cost-effective lensfree imaging method to record 2-4μm resolution wide-field (10 mm2 to 6 cm2) images of unstained tissue slides. The sample processing time is reduced as there is no need for staining. A wide field of view (10 mm2) lensfree hologram is recorded in a single shot and the image is reconstructed in 2s providing a very fast acquisition chain. The acquisition is multispectral, i.e. multiple holograms are recorded simultaneously at three different wavelengths, and a dedicated holographic reconstruction algorithm is used to retrieve both amplitude and phase. Whole tissue slides imaging is obtained by recording 130 holograms with X-Y translation stages and by computing the mosaic of a 25 x 25 mm2 reconstructed image. The reconstructed phase provides a phase-contrast-like image of the unstained specimen, revealing structures of healthy and diseased tissue. Slides from various organs can be reconstructed, e.g. lung, colon, ganglion, etc. To our knowledge, our method is the first technique that enables fast wide-field lensfree imaging of such unlabeled dense samples. This technique is much cheaper and compact than a conventional phase contrast microscope and could be made portable. In sum, we present a new methodology that could quickly provide useful information when a rapid diagnosis is needed, such as tumor margin identification on frozen section biopsies during surgery.

  2. An Evaluation of the Effectiveness of Stereo Slides in Teaching Geomorphology.

    Science.gov (United States)

    Giardino, John R.; Thornhill, Ashton G.

    1984-01-01

    Provides information about producing stereo slides and their use in the classroom. Describes an evaluation of the teaching effectiveness of stereo slides using two groups of 30 randomly selected students from introductory geomorphology. Results from a pretest/postttest measure show that stereo slides significantly improved understanding. (JM)

  3. High temperature tribological behaviour of carbon based (B{sub 4}C and DLC) coatings in sliding contact with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Gharam, A. Abou, E-mail: abougha@uwindsor.c [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada); Lukitsch, M.J.; Balogh, M.P. [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, 30500 Mound Road, Warren, MI 48090-9055 (United States); Alpas, A.T. [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada)

    2010-12-30

    Carbon based coatings, particularly diamond-like carbon (DLC) films are known to resist aluminum adhesion and reduce friction at room temperature. This attractive tribological behaviour is useful for applications such as tool coatings used for aluminum forming and machining. However, for those operations that are performed at elevated temperatures (e.g. hot forming) or that generate frictional heat during contact (e.g. dry machining) the suitable coatings are required to maintain their tribological properties at high temperatures. Candidates for these demanding applications include boron carbide (B{sub 4}C) and DLC coatings. An understanding of the mechanisms of friction, wear and adhesion of carbon based coatings against aluminum alloys at high temperatures will help in designing coatings with improved high temperature tribological properties. With this goal in mind, this study focused on B{sub 4}C and a hydrogenated DLC coatings sliding against a 319 grade cast aluminum alloy by performing pin-on-disk experiments at temperatures up to 400 {sup o}C. Experimental results have shown that the 319 Al/B{sub 4}C tribosystem generated coefficient of friction (COF) values ranging between 0.42 and 0.65, in this temperature range. However, increased amounts of aluminum adhesion were detected in the B{sub 4}C wear tracks at elevated temperatures. Focused ion beam (FIB) milled cross sections of the wear tracks revealed that the coating failed due to shearing along the columnar grain boundaries of the coating. The 319 Al/DLC tribosystem maintained a low COF (0.15-0.06) from room temperature up to 200 {sup o}C. This was followed by an abrupt increase to 0.6 at 400 {sup o}C. The deterioration of friction behaviour at T > 200 {sup o}C was attributed to the exhaustion of hydrogen and hydroxyl passivants on the carbon transfer layer formed on the Al pin.

  4. High temperature tribological behaviour of carbon based (B4C and DLC) coatings in sliding contact with aluminum

    International Nuclear Information System (INIS)

    Carbon based coatings, particularly diamond-like carbon (DLC) films are known to resist aluminum adhesion and reduce friction at room temperature. This attractive tribological behaviour is useful for applications such as tool coatings used for aluminum forming and machining. However, for those operations that are performed at elevated temperatures (e.g. hot forming) or that generate frictional heat during contact (e.g. dry machining) the suitable coatings are required to maintain their tribological properties at high temperatures. Candidates for these demanding applications include boron carbide (B4C) and DLC coatings. An understanding of the mechanisms of friction, wear and adhesion of carbon based coatings against aluminum alloys at high temperatures will help in designing coatings with improved high temperature tribological properties. With this goal in mind, this study focused on B4C and a hydrogenated DLC coatings sliding against a 319 grade cast aluminum alloy by performing pin-on-disk experiments at temperatures up to 400 oC. Experimental results have shown that the 319 Al/B4C tribosystem generated coefficient of friction (COF) values ranging between 0.42 and 0.65, in this temperature range. However, increased amounts of aluminum adhesion were detected in the B4C wear tracks at elevated temperatures. Focused ion beam (FIB) milled cross sections of the wear tracks revealed that the coating failed due to shearing along the columnar grain boundaries of the coating. The 319 Al/DLC tribosystem maintained a low COF (0.15-0.06) from room temperature up to 200 oC. This was followed by an abrupt increase to 0.6 at 400 oC. The deterioration of friction behaviour at T > 200 oC was attributed to the exhaustion of hydrogen and hydroxyl passivants on the carbon transfer layer formed on the Al pin.

  5. Controllable and switchable capillary adhesion mechanism for bio-adhesive pads: Effect of micro patterns

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiangJun; LIU Yuan; LIU YongHe; AHMED S.I.-U.

    2009-01-01

    Some insects and animals, such as bugs, grasshoppers and tree frogs, realize their efficient adhesion mechanism to glass surface, wall and ceiling by injecting a wetting liquid thin film into the pad-substrate contact area. Their ability to control adhesion (attaching or detaching from a surface) is in many cases connected to the contact geometry and surface patterns of their attachment pads. This paper focuses on the dependence of the capillary adhesion (wet adhesion) on the micro patterns of the bio-adhesive pads. The objective is to reveal the possible mechanism for a bio-adhesive pad to control capillary force through adjusting its micro-scale surface pattern and topography. A capillary adhesion force model is built up taking account of the combined role of micro-dimple geometry as well as the wetting behavior of the confined liquid thin film. Calculated results of the apparent contact angle on the regularly micro-dimpled surfaces are compared with and in good agreement with the experimental measurements. Simulation of the capillary adhesion force reveals that it is controllable in a large mag-nitude by adjusting a dimensionless surface pattern parameter k defined as a/(a+b), where a is the dia-meter of micro dimple, and (a+b) is the side length of one pattern cell. When adjusting the parameter k more than 0.75, the capillary adhesion force could be switchable from attractive to repulsive. This effect of micro patterns on the interfacial capillary force is proved to be dominant when the pad-substrate clearance decreases to the nano/micrometer scale. These results indicate that a controllable and switchable capillary adhesive mechanism might be utilized by a living insect or animal to realize its stable adhesion and quick releasing movement through adjusting the micro-pattern topography of its bio-adhesive pad.

  6. A randomized control clinical trial of fissure sealant retention: Self etch adhesive versus total etch adhesive

    OpenAIRE

    Nadia Aman; Farhan Raza Khan; Aisha Salim; Huma Farid

    2015-01-01

    Context: There are limited studies on comparison of Total etch (TE) and Self etch (SE) adhesive for placement of sealants. Aims: The aim of the study was to compare the retention of fissure sealants placed using TE adhesive to those sealants placed using SE (seventh generation) adhesive. Settings and Design: The study was conducted in the dental section, Aga Khan University Hospital. This study was a randomized single blinded trial with a split mouth design. Materials and Methods:...

  7. Adhesion between Polydimethylsiloxane Layers by Crosslinking

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    2013-01-01

    Adhesion between two surfaces may be strongly improved by chemical crosslinking of the interfaces. Polydimethylsiloxane (PDMS) is a widely used polymer that has received considerable attention due to its unique properties, such as relatively low price, biocompatibility, flexibility, high thermal...

  8. ENHANCING ADHESION OF TETRAHEDRAL AMORPHOUS CARBON FILMS

    Institute of Scientific and Technical Information of China (English)

    Zhao Yuqing; Lin Yi; Wang Xiaoyan; Wang Yanwu; Wei Xinyu

    2005-01-01

    Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method, scratch method, heating and shaking method as well as boiling salt solution method is used to test the adhesion of the TAC films on various material substrates. Results The test results show that the adhesion is increased as the ion bombardment energy increases. However, if the bombardment energy were over the corresponding optimum value, the adhesion would be enhanced very slowly for the harder material substrates and drops quickly, for the softer ones. Conclusion The optimum values of the ion bombardment energy are larger for the harder materials than that for the softer ones.

  9. Ice adhesions in relation to freeze stress.

    Science.gov (United States)

    Olien, C R; Smith, M N

    1977-10-01

    In freezing, competitive interaction between ice and hydrophilic plant substances causes an energy of adhesion to develop through the interstitial liquid. The thermodynamic basis for the adhesion energy is discussed, with estimates of the energies involved. In this research, effects of adhesion energy were observed microscopically in conjunction with energies of crystallization and frost desiccation. The complex character of ice in intact crown tissue of winter barley (Hordeum vulgare L.) and the problems of sectioning frozen tissue without producing artifacts led to an alternative study of single barley cells in a mesh of ice and cell wall polymers. Adhesions between ice, cell wall polymers, and the plasmalemma form a complexly interacting system in which the pattern of crystallization is a major factor in determination of stress and injury. PMID:16660124

  10. Micropatterning cell adhesion on polyacrylamide hydrogels.

    Science.gov (United States)

    Zhang, Jian; Guo, Wei-Hui; Rape, Andrew; Wang, Yu-Li

    2013-01-01

    Cell shape and substrate rigidity play critical roles in regulating cell behaviors and fate. Controlling cell shape on elastic adhesive materials holds great promise for creating a physiologically relevant culture environment for basic and translational research and clinical applications. However, it has been technically challenging to create high-quality adhesive patterns on compliant substrates. We have developed an efficient and economical method to create precise micron-scaled adhesive patterns on the surface of a hydrogel (Rape et al., Biomaterials 32:2043-2051, 2011). This method will facilitate the research on traction force generation, cellular mechanotransduction, and tissue engineering, where precise controls of both materials rigidity and adhesive patterns are important. PMID:23955741

  11. The adhesive revolution of restorative dentistry

    OpenAIRE

    Barnes, IE; Newsome, PRH

    1996-01-01

    In many countries, the incidence of dental decay in the young is decreasing, and Hong Kong is no exception. However, there remains in the region, a number of restorative dental problems of some significance. These are tooth discolouration, fracture, and root surface decay. This article discusses these problems and the way in which their treatment is increasingly being undertaken by means of minimalԸ?intervention adhesive techniques. The formulation of dental adhesive systems that are effectiv...

  12. Relationships between water wettability and ice adhesion.

    Science.gov (United States)

    Meuler, Adam J; Smith, J David; Varanasi, Kripa K; Mabry, Joseph M; McKinley, Gareth H; Cohen, Robert E

    2010-11-01

    Ice formation and accretion may hinder the operation of many systems critical to national infrastructure, including airplanes, power lines, windmills, ships, and telecommunications equipment. Yet despite the pervasiveness of the icing problem, the fundamentals of ice adhesion have received relatively little attention in the scientific literature and it is not widely understood which attributes must be tuned to systematically design "icephobic" surfaces that are resistant to icing. Here we probe the relationships between advancing/receding water contact angles and the strength of ice adhesion to bare steel and twenty-one different test coatings (∼200-300 nm thick) applied to the nominally smooth steel discs. Contact angles are measured using a commercially available goniometer, whereas the average strengths of ice adhesion are evaluated with a custom-built laboratory-scale adhesion apparatus. The coatings investigated comprise commercially available polymers and fluorinated polyhedral oligomeric silsesquioxane (fluorodecyl POSS), a low-surface-energy additive known to enhance liquid repellency. Ice adhesion strength correlates strongly with the practical work of adhesion required to remove a liquid water drop from each test surface (i.e., with the quantity [1 + cos θ(rec)]), and the average strength of ice adhesion was reduced by as much as a factor of 4.2 when bare steel discs were coated with fluorodecyl POSS-containing materials. We argue that any further appreciable reduction in ice adhesion strength will require textured surfaces, as no known materials exhibit receding water contact angles on smooth/flat surfaces that are significantly above those reported here (i.e., the values of [1 + cos θ(rec)] reported here have essentially reached a minimum for known materials). PMID:20949900

  13. Hierarchical Nanopatterns for Cell Adhesion Studies

    OpenAIRE

    Schwieder, Marco

    2008-01-01

    Hierarchical nanopatterned interfaces are an intriguing tool to study clustering processes of proteins like for example integrins that mediate cell adhesion. The aim of this work is the development of innovative methods for the fabrication of hierarchical micro-nanopatterned surfaces and the use of such systems as platforms to study cell adhesion. In the first part of this work different approaches are presented which are suitable for preparing micro-nanopatterned interfaces at a large scale ...

  14. Particle diameter influences adhesion under flow.

    OpenAIRE

    Shinde Patil, V R; Campbell, C. J.; Yun, Y.H.; Slack, S M; Goetz, D J

    2001-01-01

    The diameter of circulating cells that may adhere to the vascular endothelium spans an order of magnitude from approximately 2 microm (e.g., platelets) to approximately 20 microm (e.g., a metastatic cell). Although mathematical models indicate that the adhesion exhibited by a cell will be a function of cell diameter, there have been few experimental investigations into the role of cell diameter in adhesion. Thus, in this study, we coated 5-, 10-, 15-, and 20-microm-diameter microspheres with ...

  15. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  16. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin.

    Science.gov (United States)

    Oh, Jaeho; Edwards, Erin E; McClatchey, P Mason; Thomas, Susan N

    2015-10-15

    Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell-cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner.

  17. Evolutions of friction properties and acoustic emission source parameters associated with large sliding

    Science.gov (United States)

    Yabe, Y.; Tsuda, H.; Iida, T.

    2015-12-01

    It was demonstrated by Yabe (2002) that friction properties and AE (acoustic emission) activities evolve with accumulation of sliding. However, large sliding distances of ~65 mm in his experiments were achieved by recurring ~10 mm sliding on the same fault. The evolution of friction coefficient was discontinuous, when rock samples were reset. Further, normal stress was not kept constant. To overcome these problems and to reexamine the evolutions of friction properties and AE activities with continuous large sliding under a constant normal stress, we developed a rotary shear apparatus. The evolutions of friction and AE up to ~80 mm sliding under a normal stress of 5 MPa were investigated. Rate dependence of friction was the velocity strengthening (a-b>0 in rate and state friction law) at the beginning. The value of a-b gradually decreased with sliding to negative (velocity weakening). Then, it took a constant negative value, when the sliding reached a critical distance. The m-value of Ishimoto-Iida's relation of AE activity increased with sliding at the beginning and converged to a constant value at the critical sliding distance. The m-value showed a negative rate dependence at the beginning, but became neutral after sliding of the critical distance. The sliding distances required to converge the a-b value, the m-value and the rate dependence of the m-value are almost identical to one another. These results are the same as those by Yabe (2002), suggesting the intermission of sliding little affected the evolutions. We, then, examined evolutions of AE source parameters such as source radii and stress drops. The average source radius was constant over the whole sliding distance, while the average stress drop decreased at the beginning of sliding, and converged to a constant value. The sliding distance required to the conversion was the same as that for the above mentioned evolutions of friction property or AE activity.

  18. Properties characterization of carbon fibre reinforced pantograph sliding plate%碳纤维增强受电弓滑板的性能表征

    Institute of Scientific and Technical Information of China (English)

    袁华; 王成国; 卢文博; 于美杰; 陈旸; 乔琨

    2011-01-01

    The carbon fibre reinforced pantograph sliding plates were fabricated by heated pressing,with modified phenolic resin as bonder,the continuous carbon fibre/short fibre is a reinforcing phase,the copper is electric conductive phase and graphite is lubricating phase. The impact toughness,electric resistance and wear resistance of the slide plate were tested. Wear surface and impact fracture were examined by scanning electron microscope (SEM). The results show that the continuous carbon fibre reinforced pantograph sliding plate has superior impact toughness and wear resistance than that of short carbon' fibre reinforced one. Mechanical properties are largely affected by carbon fibre fraction. The interface bond between fibre and resin is good. In addition,adhesion wear,abrasive wear and oxidation wear are the main wear form of pantograph slide plates.%采用改性酚醛树脂为粘结剂,连续碳纤维和短切纤维为增强相,铜为导电相,石墨为润滑相,利用热压技术制备碳纤维增强受电弓滑板.对试样进行电阻测试、冲击试验以及磨损试验,利用SEM对冲击断面和磨损形貌进行观察.结果表明,连续碳纤维增强滑板的冲击性能和耐磨性明显优于短切纤维增强滑板;碳纤维含量对滑板的机械性能影响较大;纤维与树脂界面结合良好;受电弓滑板在摩擦过程中最主要的机械磨损形式是磨拉磨损、粘着磨损和氧化磨损.

  19. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pressure-sensitive adhesives. 175.125 Section 175...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives....

  20. Surface tension driven shaping of adhesive microfluidic channel walls

    DEFF Research Database (Denmark)

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver

    2005-01-01

    The feasibility of making microfluidic channels with different wall geometries using adjacent lines of dispensed adhesive between substrates has been studied. Important parameters for the geometry have been identified to be: surface tension (adhesive / substrates), adhesive viscosity / thixotropy....... The studied adhesives are DYMAX 9-20318-F, 3070, 9001 version 3.5, and Sylgard 184 PDMS....

  1. 21 CFR 878.3750 - External prosthesis adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External prosthesis adhesive. 878.3750 Section 878...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3750 External prosthesis adhesive. (a) Identification. An external prosthesis adhesive is a silicone-type adhesive intended to...

  2. FINITE ELEMENT ANALYSIS OF WOOD ADHESIVE JOINTS

    Directory of Open Access Journals (Sweden)

    Thomas GEREKE

    2016-03-01

    Full Text Available Engineered wood products such as glulam or cross-laminated timber are widely established in the construction industry. Their structural behaviour and reliability clearly bases on the adhesive bonding. In order to understand and improve the performance of glued wood members a finite element modelling of standard single lap shear samples was carried out. A three-dimensional model of a longitudinal tensile-shear specimen with quasi-centric load application was developed. The main influences of wood and adhesive parameters on structural performance were identified. Therefore, variations of the elasticity, the annual ring angle, fibre angle, and the interface zone and their effect on the occurring stresses in the adhesive bond line were investigated numerically. The adhesive bond line is most significantly sensitive to the Young´s modulus of the adhesive itself. A variation of the fibre angle of the glued members in the standard test is an essential criterion and to be considered when preparing lap shear specimens. A model with representation of early- and latewood gives a more detailed insight into wooden adhesive joints.

  3. Controlled Adhesion of Silicone Elastomer Surfaces

    Science.gov (United States)

    Owen, Michael

    2000-03-01

    Opportunities exist for controllably enhancing the adhesion of silicone surfaces, ranging from modest enhancement of release force levels of pressure-sensitive adhesive (PSA) release liners by incorporation of adhesion promoters known as high release additives (HRA), to permanent bonding of silicone elastomers using surface modification techniques such as plasma or corona treatment. Although only a part of the complex interaction of factors contributing to adhesion, surface properties such as wettability are a critical component in the understanding and control of release and adhesion phenomena. Surface characterization studies of low-surface-energy silicones before and after various adhesion modification strategies are reviewed. The silicones include polydimethylsiloxane (PDMS) and fluorosiloxane elastomers and coatings. Techniques used include contact angle, the Johnson, Kendall and Roberts (JKR) contact mechanics approach, scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Topics addressed are: use of HRA in PDMS release liners, the interaction of PDMS PSAs with polytetrafluoroethylene (PTFE), and the effect of plasma treatment on PDMS and fluorosiloxane surfaces.

  4. Yielding elastic tethers stabilize robust cell adhesion.

    Directory of Open Access Journals (Sweden)

    Matt J Whitfield

    2014-12-01

    Full Text Available Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds.

  5. Preparation and Properties of Cornstarch Adhesives

    Directory of Open Access Journals (Sweden)

    Li Yang

    2013-08-01

    Full Text Available The main goal of this study was to use cornstarch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly cornstarch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of cornstarch adhesives increased and then decreased with the increasing of temperature and the maximum value was obtained at 10oC; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared wither cornstarch adhesives which was pseudo-plastic fluids. Cornstarch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  6. Virtual slides in peer reviewed, open access medical publication

    Directory of Open Access Journals (Sweden)

    Kayser Klaus

    2011-12-01

    Full Text Available Abstract Background Application of virtual slides (VS, the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication. Approach Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM are a tool to increase the scientific value of microscopic images. Technology and Performance The open access journal Diagnostic Pathology http://www.diagnosticpathology.org has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier. The first articles that include VS were published in March 2011. Results and Perspectives Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding

  7. Atomistic simulations to micro-mechanisms of adhesion in automotive applications

    Science.gov (United States)

    Sen, Fatih Gurcag

    This study aimed at depicting atomistic and microstructural aspects of adhesion and friction that appear in different automotive applications and manufacturing processes using atomistic simulations coupled with tribological tests and surface characterization experiments. Thin films that form at the contact interfaces due to chemical reactions and coatings that are developed to mitigate or enhance adhesion were studied in detail. The adhesion and friction experiments conducted on diamond-like carbon (DLC) coatings against Al indicated that F incorporation into DLC decreased the coefficient of friction (COF) by 30% -with respect to H-DLC that is known to have low COF and anti-adhesion properties against Al- to 0.14 owing to formation of repulsive F-F interactions at the sliding interface as shown by density functional theory (DFT) calculations. F atoms transferred to the Al surface with an increase in the contact pressure, and this F transfer led to the formation of a stable AlF3 compound at the Al surface as confirmed by XPS and cross-sectional FIB-TEM. The incorporation of Si and O in a F-containing DLC resulted in humidity independent low COF of 0.08 due to the hydration effect of the Si-O-Si chains in the carbonaceous tribolayers that resulted in repulsive OH-OH interactions at the contact interface. At high temperatures, adhesion of Al was found to be enhanced as a result of superplastic oxide fibers on the Al surface. Molecular dynamics (MD) simulations of tensile deformation of Al nanowires in oxygen carried out with ReaxFF showed that native oxide of Al has an oxygen deficient, low density structure and in O2, the oxygen diffusion in amorphous oxide healed the broken Al-O bonds during applied strain and resulted in the superplasticity. The oxide shell also provided nucleation sites for dislocations in Al crystal. In fuel cell applications, where low Pt/carbon adhesion is causing durability problems, spin-polarized DFT showed that metals with unfilled d

  8. Sliding without slipping under Coulomb friction: opening waves and inversion of frictional force

    CERN Document Server

    Yastrebov, Vladislav A

    2015-01-01

    An elastic layer slides on a rigid flat governed by Coulomb's friction law. We demonstrate that if the coefficient of friction is high enough, the sliding localizes within stick-slip pulses, which transform into opening waves propagating at intersonic speed in the direction of sliding or, for high Poisson's ratios, at supersonic speed in the opposite one. This sliding mode, characterized by small frictional dissipation, rapidly relaxes the shear elastic energy via stress waves and enables the contact surface slide ahead of the top one, resulting in inversion of the frictional force direction.

  9. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  10. Application of the Blister Test in Study of Epoxy Adhesive

    Institute of Scientific and Technical Information of China (English)

    Fei Xiong; Ingegerd Annergren

    2000-01-01

    Shaft-loaded blister test technique is used as an effective quantitative tool to measure adhesion strength. Investigation on conductive adhesive was done by modified blister test. It is found that shaftloaded blister test can be a good solution for the debonding of thin film adhesion. The intrinsic stable interface debonding process has been proved an attractive alternative to the conventional adhesion measurement techniques. In our study, epoxy matrix adhesive was studied using blister test technique in comparison with the traditional test-lap shear test. Adhesion strength was studied as a function of surface treatment and the metallization of substrate. It was found that surface conditions of substrate have significant impact on adhesion behaviour. The oxidation of surface is responsible for the poor adhesion. Activating chemical treatment and Plasma cleaning on substrate surface has been found to be a way of dreamatically improving adhesion strength of electronic conductive adhesive.

  11. Slide Valves for Single-Screw Expanders Working Under Varied Operating Conditions

    Directory of Open Access Journals (Sweden)

    Yuting Wu

    2016-06-01

    Full Text Available This paper fully describes the working principle of slide valves in single-screw expanders (SSEs. A geometric analysis of suction and volume ratio slide valves is presented to determine the relations between volume ratio, suction closure volume, discharge opening volume and slide valves displacement. An organic Rankine cycle (ORC thermodynamic model with SSE integrated with slide valves is developed to analyze the power output of SSE and the net power output of ORC system and variation law of slide valves displacement. Analysis of a typical ORC system under changing operating conditions shows that the power output of the expander and the net output power of the ORC system with slide valves are much better than those without slide valves. When the condensing temperature is 40 °C and the waste availability is 80 kW, the increase in output power and net output power are approximately 3.4 kW and 5 kW, respectively. The presented geometric analysis of slide valves and the thermodynamic model integrated with slide valves can be used to provide a theoretical and technical basis for designing the slide valves of SSEs and the control strategies of slide valves under varied operating conditions.

  12. Pressure-sensitive adhesives for transdermal drug delivery systems.

    Science.gov (United States)

    Tan; Pfister

    1999-02-01

    Adhesives are a critical component in transdermal drug delivery (TDD) devices. In addition to the usual requirements of functional adhesive properties, adhesives for TDD applications must have good biocompatibility with the skin, chemical compatibility with the drug, various components of the formulation, and provide consistent, effective delivery of the drug. This review discusses the three most commonly used adhesives (polyisobutylenes, polyacrylates and silicones) in TDD devices, and provides an update on recently introduced TDD products and recent developments of new adhesives. PMID:10234208

  13. Characteristics of the adhesive determinants of Lactobacillus fermentum 104.

    OpenAIRE

    Henriksson, A; Szewzyk, R.; Conway, P L

    1991-01-01

    The adhesion of Lactobacillus fermentum 104-R and the variant strain 104-S to porcine gastric squamous epithelium was investigated. An epithelium-specific adhesion was detected for strain 104-S; however, strain 104-R expressed enhanced adhesion capacity to the control surfaces of polystyrene and bovine serum albumin. To characterize the adhesive determinants, the bacterial cells were exposed to various treatments. The adhesion pattern of bacterial cells in buffers of pH values ranging from 2 ...

  14. Sliding rule-homogram for calculation of a shield from extended radioisotope gamma sources

    International Nuclear Information System (INIS)

    Arrangement of sliding rule-nomogram, intended for calculation of side protection in radial direction from γ-radiation of extended radioisotopic sources (60Co and 137Cs) is described. The sliding rule-nomogram comprises rule itself (body) with monograms plotted on it, first slide independently moving along the body of the rule, and second slide with sighting line independently sliding along the first slide perpendicular to its movement. The principle of operation of the slide rule-nomogram is considered in detail. Calculation examples of protective device by means of the rule-nomogram are presented. The rule is suitable and simple in operation. Any of the radiation parameters (protection thickness, protection material, activity, source energy, air gap) can be operatively determined by means of this rule

  15. Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles

    Science.gov (United States)

    Feldmann, Michael; Dietzel, Dirk; Tekiel, Antoni; Topple, Jessica; Grütter, Peter; Schirmeisen, André

    2016-07-01

    The term "contact aging" refers to the temporal evolution of the interface between a slider and a substrate usually resulting in increasing friction with time. Current phenomenological models for multiasperity contacts anticipate that such aging is not only the driving force behind the transition from static to sliding friction, but at the same time influences the general dynamics of the sliding friction process. To correlate static and sliding friction on the nanoscale, we show experimental evidence of stick-slip friction for nanoparticles sliding on graphite over a wide dynamic range. We can assign defined periods of aging to the stick phases of the particles, which agree with simulations explicitly including contact aging. Additional slide-hold-slide experiments for the same system allow linking the sliding friction results to static friction measurements, where both friction mechanisms can be universally described by a common aging formalism.

  16. Morphological Transitions of Sliding Drops -- Dynamics and Bifurcations

    CERN Document Server

    Engelnkemper, Sebastian; Gurevich, Svetlana V; Thiele, Uwe

    2016-01-01

    We study fully three-dimensional droplets that slide down an incline employing a thin-film equation that accounts for capillarity, wettability and a lateral driving force in small-gradient (or long-wave) approximation. In particular, we focus on qualitative changes in the morphology and behavior of stationary sliding drops. We employ the inclination angle of the substrate as control parameter and use continuation techniques to analyze for several fixed droplet sizes the bifurcation diagram of stationary droplets, their linear stability and relevant eigenmodes. The obtained predictions on existence ranges and instabilities are tested via direct numerical simulations that are also used to investigate a branch of time-periodic behavior (corresponding to pearling-coalescence cycles) which emerges at a global instability, the related hysteresis in behavior and a period-doubling cascade. The non-trivial oscillatory behavior close to a Hopf bifurcation of drops with a finite-length tail is also studied. Finally, it ...

  17. Advances and applications in sliding mode control systems

    CERN Document Server

    Zhu, Quanmin

    2015-01-01

    This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.    

  18. Maximum Power Point Tracking Based on Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Nimrod Vázquez

    2015-01-01

    Full Text Available Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.

  19. Sliding contact fracture of dental ceramics: Principles and validation.

    Science.gov (United States)

    Ren, Linlin; Zhang, Yu

    2014-07-01

    Ceramic prostheses are subject to sliding contact under normal and tangential loads. Accurate prediction of the onset of fracture at two contacting surfaces holds the key to greater long-term performance of these prostheses. In this study, building on stress analysis of Hertzian contact and considering fracture criteria for linear elastic materials, a constitutive fracture mechanics relation was developed to incorporate the critical fracture load with the contact geometry, coefficient of friction and material fracture toughness. Critical loads necessary to cause fracture under a sliding indenter were calculated from the constitutive equation, and compared with the loads predicted from elastic stress analysis in conjunction with measured critical load for frictionless normal contact-a semi-empirical approach. The major predictions of the models were calibrated with experimentally determined critical loads of current and future dental ceramics after contact with a rigid spherical slider. Experimental results conform with the trends predicted by the models.

  20. Robust output LQ optimal control via integral sliding modes

    CERN Document Server

    Fridman, Leonid; Bejarano, Francisco Javier

    2014-01-01

    Featuring original research from well-known experts in the field of sliding mode control, this monograph presents new design schemes for implementing LQ control solutions in situations where the output system is the only information provided about the state of the plant. This new design works under the restrictions of matched disturbances without losing its desirable features. On the cutting-edge of optimal control research, Robust Output LQ Optimal Control via Integral Sliding Modes is an excellent resource for both graduate students and professionals involved in linear systems, optimal control, observation of systems with unknown inputs, and automatization. In the theory of optimal control, the linear quadratic (LQ) optimal problem plays an important role due to its physical meaning, and its solution is easily given by an algebraic Riccati equation. This solution turns out to be restrictive, however, because of two assumptions: the system must be free from disturbances and the entire state vector must be kn...

  1. Frictional sliding of biotite gouge under hydrothermal conditions

    Science.gov (United States)

    Lu, Z.; He, C.

    2012-12-01

    In order to understand the origin of compositionally-weak fault and the mechanical behavior of fault zone composed of biotite-rich rocks in general, this work investigated the frictional sliding behavior of biotite gouge under hydrothermal conditions by shearing 1-mm-thick biotite gouge layers sandwiched between saw-cut driver blocks, using a triaxial testing system with argon gas as confining medium. Experiments were conducted under effective normal stress of 200MPa, with pore pressure of 30MPa, temperatures from room temperature to 600°C, and shear displacement rate were stepped with our standard (0.0001-0.001mm/s) and slow velocity steps (0.00004-0.0002mm/s). The results show that the coefficient of friction of biotite is on the order of 0.29 in the low temperature range (25 to 100°C), and varies around 0.35 for temperatures over 200°C. The overall average of friction coefficient from room temperature up to 600°C is ca. 0.33, evidently weaker than framework minerals such as quartz and feldspar and also weaker than muscovite in the mica group. Within the sliding displacement up to 4mm in our experiments, velocity strengthening occurred at temperatures of 25-200°C, with steady-state rate dependence ranging from 0.001 to 0.006. Weak velocity weakening was found at 300°C, with steady-state rate dependence similar to neutral. At 400°C, the deformation behavior changed radically and very strong velocity strengthening occurred, with steady-state rate dependence ranging from 0.012 to 0.112. At 500 and 600°C, the experiments show strong velocity dependence in the early stage of sliding, but the sliding behavior gradually evolves to stick-slip as the shearing deformation proceeds, indicating strong velocity-weakening behavior. The strongest velocity dependence occurred at 400°C in the early stage of sliding, with stress exponent similar to that of power-law creep, but the confining pressure dependence of shear strength suggests that such a behavior is semi

  2. A comparative study of input devices for digital slide navigation.

    Science.gov (United States)

    Molin, Jesper; Lundström, Claes; Fjeld, Morten

    2015-01-01

    This paper describes work presented at the Nordic Symposium on Digital Pathology 2014, Linköping, Sweden. Quick and seamless integration between input devices and the navigation of digital slides remains a key barrier for many pathologists to "go digital." To better understand this integration, three different input device implementations were compared in terms of time to diagnose, perceived workload and users' preferences. Six pathologists reviewed in total nine cases with a computer mouse, a 6 degrees-of-freedom (6DOF) navigator and a touchpad. The participants perceived significantly less workload (P input device used on the time to diagnose was observed. Five out of six pathologists preferred the 6DOF navigator, while the touchpad was the least preferred device. While digital slide navigation is often designed to mimic microscope interaction, the results of this study demonstrate that in order to minimize workload there is reason to let the digital interaction move beyond the familiar microscope tradition.

  3. Recent advances in sliding modes from control to intelligent mechatronics

    CERN Document Server

    Efe, Mehmet

    2015-01-01

    This volume is dedicated to Professor Okyay Kaynak to commemorate his life time impactful research and scholarly achievements and outstanding services to profession. The 21 invited chapters have been written by leading researchers who, in the past, have had association with Professor Kaynak as either his students and associates or colleagues and collaborators. The focal theme of the volume is the Sliding Modes covering a broad scope of topics from theoretical investigations to their significant applications from Control to Intelligent Mechatronics.  

  4. Sliding functor and polarization functor for multigraded modules

    CERN Document Server

    Yanagawa, Kohji

    2010-01-01

    We define "sliding functors", which are exact endofunctors of the category of multi-graded modules over a polynomial ring. They preserve several invariants of modules, especially the (usual) depth and Stanley depth. In a similar way, we can also define the "polarization functor". While this idea has appeared in papers of Bruns-Herzog and Sbarra, we give slightly different approach. Keeping these functors in mind, we treat simplicial spheres of Bier-Murai type.

  5. Sliding mode control of a magnetic levitation system

    Directory of Open Access Journals (Sweden)

    N. F. Al-Muthairi

    2004-01-01

    Full Text Available Sliding mode control schemes of the static and dynamic types are proposed for the control of a magnetic levitation system. The proposed controllers guarantee the asymptotic regulation of the statesof the system to their desired values. Simulation results of the proposed controllers are given to illustrate the effectiveness of them. Robustness of the control schemes to changes in the parameters of the system is also investigated.

  6. Suitable Friction Sliding Materials for Base Isolation of Masonry Buildings

    OpenAIRE

    Radhikesh P. Nanda; Pankaj Agarwal; Manish Shrikhande

    2012-01-01

    A feasibility study of friction base isolation system for seismic protection has been performed. Four different sliding interfaces, namely, green marble/High Density Poly Ethylene (HDPE), green marble/green marble, green marble/geosynthetic, and green marble/ rubber layers have been studied through experimental and analytical investigations. The experimental investigations show that the coefficient of friction values of these interfaces lies in the desirable range for seismic protection, i.e....

  7. The use of virtual slides in the EUROPALS examination

    OpenAIRE

    Bosman Fred T; van den Tweel Jan G

    2011-01-01

    Abstract Background The only realistic way to improve harmonisation of European pathology training is to define the generally accepted competencies and to test them periodically during the training programme (progress test). The European Association of Pathology Chairs and Program Directors therefore decided to implement an annual on-line test using virtual slides in addition to static jpeg images and theoretical MCQ’s. The EU supported this endeavour as EUROPALS (EUROpean Pathology Assesseme...

  8. Stability notions and Lyapunov functions for sliding mode control systems

    OpenAIRE

    Polyakov, Andrey; Fridman, Leonid

    2014-01-01

    The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis an...

  9. Self-Organization during Friction of Slide Bearing Antifriction Materials

    Directory of Open Access Journals (Sweden)

    Iosif S. Gershman

    2015-12-01

    Full Text Available This article discusses the peculiarities of self-organization behavior and formation of dissipative structures during friction of antifriction alloys for slide bearings against a steel counterbody. It shows that during self-organization, the moment of friction in a tribosystem may be decreasing with the load growth and in the bifurcations of the coefficient of friction with respect to load. Self-organization and the formation of dissipative structures lead to an increase in the seizure load.

  10. Study of the Flow Induced by a Sliding Discharge

    OpenAIRE

    Sosa, Roberto; Arnaud, Elise; Memin, Etienne; Artana, Guillermo

    2009-01-01

    International audience In this work, we report on electrical and fluid-dynamics studies concerning the flow induced by a sliding discharge (SD). This kind of discharge was created with a three electrode system configuration: one excited with ac and the others with a dc negative voltage. The SD was activated on a quiescent fluid at atmospheric pressure. The flow field induced by the SD was analysed by measurements undertaken with Pitot probes and Schlieren Image Velocimetry. Under the condi...

  11. A high performance switching audio amplifier using sliding mode control

    OpenAIRE

    Pillonnet, Gael; Cellier, Rémy; Abouchi, Nacer; Chiollaz, Monique

    2008-01-01

    International audience The switching audio amplifiers are widely used in various portable and consumer electronics due to their high efficiency, but suffers from low audio performances due to inherent nonlinearity. This paper presents an integrated class D audio amplifier with low consumption and high audio performances. It includes a power stage and an efficient control based on sliding mode technique. This monolithic class D amplifier is capable of delivering up to 1W into 8Ω load at les...

  12. A slide-rule for assessment of venous admixture.

    Science.gov (United States)

    Zetterström, H

    1989-04-01

    Determination of venous admixture (physiological shunt, Qva/Qt) requires analysis of both arterial and mixed venous blood. When a pulmonary arterial catheter is not in use, the pulmonary oxygenating capacity may be assessed from arterial blood gas data, the fraction of inspired oxygen (FIO2) and an assumed value of the arterial-mixed venous oxygen content difference. To facilitate this process, a slide-rule based on the "virtual shunt" concept is presented. It permits rapid assessment of Qva/Qt from known values of arterial oxygen tension (PaO2) or saturation (SaO2) and FIO2 and may promote the choice of appropriate FIO2. The limitations of the slide-rule were studied theoretically and its validity was tested by comparing 100 determinations of virtual shunt with the corresponding Qva/Qt values. The slide-rule was found to estimate Qva/Qt more accurately than commonly used oxygenation indices such as the PaO2/FIO2 ratio. PMID:2499154

  13. Analytical investigation on tsunamis generated by submarine slides

    Directory of Open Access Journals (Sweden)

    E. Bortolucci

    2000-06-01

    Full Text Available Tsunamis induced by landslides are a topic on which growing attention is being paid especially under the pressure of recent events in which movement of underwater masses have been recognised to be the certain or likely cause of the observed tsunami. Here analytical methods and idealised cases are used to investigate tsunami generation by submarine slides that undergo negligible deformation during their motion, such as slumps. The general solution of the 1D Cauchy linear problem for long water waves is specialised to deal with rigid bodies and is used systematically to explore the main characteristics of the generated waves. Relationships between body motion, that is prescribed in terms of the slide Froude number, and wave pattern, wave amplitude and wave energy are studied in dimensionless space. Wave generation in various flow conditions (from subcritical to supercritical is handled, though most attention is given to analysing tsunamis induced by submarine slides at subcritical speed which are by far the most common cases. From numerical experiments it is found that good estimates of the tsunami wave amplitude can be calculated by means of simple expressions based on the maximum value and on the average value of the Froude number during the main generation phase.

  14. Experimental Measurements of Prestressed Masonry with using Sliding Joint

    Directory of Open Access Journals (Sweden)

    Stara Marie

    2014-06-01

    Full Text Available Contribution deals with experimental measurements of deformations in the place exposed to local load caused by additional pre-stressing. The measurements are made at the masonry corner built in the laboratory equipment. The laboratory equipment was designed at Faculty of Civil Engineering VŠB-Technical University of Ostrava for measurement tri-axial stress-strain conditions in masonry. In this masonry corner two pre-stressing bars are placed. These bars are in different height and are anchored to the anchor plates, which transfer pre-stressing forces to the masonry. The specimen for laboratory testing is performed in the proportion to the reality of 1:1. In the bottom part masonry is inserted asphalt strip. It operates in the masonry like a sliding joint and reduces the shear stress at interface between concrete and masonry structures. The results are compared with the results of masonry without the use of sliding joints, including comment on the effect of sliding joints on the pre-stressing masonry structures.

  15. Fuzzy optimization of pneumatic half-floating slide ways

    Institute of Scientific and Technical Information of China (English)

    李宇鹏; 高殿荣; 单彦霞; 张海青

    2008-01-01

    Dynamic modeling was carried on by combining the dynamic of machinery with composite triology, and the critical condition in which the ways would not produce composite-friction self-excited vibration was obtained. The movement regularity and characteristic of the airflow in exhaust gas slit were analyzed, and the relationship between pressure lost and geometry parameters of exhaust gas slit was obtained. A dynamic model and a mathematical model were established for pneumatic half-floating slide ways by combining the dynamics of machinery with hydrokinetics. The objective function for the optimization of slide ways was established based on the fuzzy optimization theory. The membership function of fuzzy constraint was deduced, the fuzzy constraint limit was established by amplification coefficient method, and the optimal value was resolved by the multilevel fuzzy comprehensive evaluation method. By combining the internal penalty function method with the variable metric method, the fuzzy optimization design program of ways was designed based on the Matlab platform. The validation was carried on by an example, and ideal results of fuzzy optimization design of slide ways were obtained.

  16. A sliding cell technique for diffusion measurements in liquid metals

    Directory of Open Access Journals (Sweden)

    Yongliang Geng

    2014-03-01

    Full Text Available The long capillary and shear cell techniques are the usual methods for diffusion measurements in liquid metals. Here we present a new “sliding cell technique” to measure interdiffusion in liquid alloys, which combines the merits of these two methods. Instead of a number of shear cells, as used in the shear cell method, only one sliding cell is designed to separate and join the liquid diffusion samples. Using the sliding cell technique, the influence of the heating process (which affects liquid diffusion measurements in the conventional long capillary method can be eliminated. Time-dependent diffusion measurements at the same isothermal temperature were carried out in Al-Cu liquids. Compared with the previous results measured by in-situ X-ray radiography, the obtained liquid diffusion coefficient in this work is believed to be influenced by convective flow. The present work further supports the idea that to obtain accurate diffusion constants in liquid metals, the measurement conditions must be well controlled, and there should be no temperature gradients or other disturbances.

  17. Fatigue resistant carbon coatings for rolling/sliding contacts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harpal; Ramirez, Giovanni; Eryilmaz, Osman; Greco, Aaron; Doll, Gary; Erdemir, Ali

    2016-06-01

    The growing demands for renewable energy production have recently resulted in a significant increase in wind plant installation. Field data from these plants show that wind turbines suffer from costly repair, maintenance and high failure rates. Often times the reliability issues are linked with tribological components used in wind turbine drivetrains. The primary failure modes in bearings and gears are associated with micropitting, wear, brinelling, scuffing, smearing and macropitting all of which occur at or near the surface. Accordingly, a variety of surface engineering approaches are currently being considered to alter the near surface properties of such bearings and gears to prevent these tribological failures. In the present work, we have evaluated the tribological performance of compliant highly hydrogenated diamond like carbon coating developed at Argonne National Laboratory, under mixed rolling/sliding contact conditions for wind turbine drivetrain components. The coating was deposited on AISI 52100 steel specimens using a magnetron sputter deposition system. The experiments were performed on a PCS Micro-Pitting-Rig (MPR) with four material pairs at 1.79 GPa contact stress, 40% slide to roll ratio and in polyalphaolefin (PAO4) basestock oil (to ensure extreme boundary conditions). The post-test analysis was performed using optical microscopy, surface profilometry, and Raman spectroscopy. The results obtained show a potential for these coatings in sliding/rolling contact applications as no failures were observed with coated specimens even after 100 million cycles compared to uncoated pair in which they failed after 32 million cycles, under the given test conditions.

  18. Improved method using a bubble-free adhesion technique for the preparation of semi-serial undecalcified histologic sections containing dental implants.

    Science.gov (United States)

    Kihara, A; Morimoto, K; Suetsugu, T

    1989-01-01

    The preparation technique, with the minimum of artifacts for the semi-serial undecalcified histologic sections containing dental implants, is presented in this study. The sections enabled finer light-microscopic observations to be made. A formalin-fixed tissue block containing a dental implant was dehydrated in ethanol and acetone, and then embedded in polyester resin under 76 cm Hg reduced pressure. The embedded block was trimmed by a cutter and ground by abrasive paper. In a 1.5 Kg f/cm2 pressurized chamber, its polished surface was bonded to a methacrylate slide by means of ethylcyanoacrylate used in an adhesion loading device. This meant that no bubbles could arise in the interface between the slide and the block. The slide-block was then attached to an adsorptive specimen-holder of a hard-tissue cutting machine and cut to a thickness of approximately 50 microns, with use of a diamond blade. The slide-section was ground to 15-40 microns with wet-type abrasive paper and film on a polishing table. Etching with weak acid and surface staining with toluidine blue and methylene blue/basic fuchsin/light green were performed on the section. PMID:2701107

  19. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points.

    Science.gov (United States)

    Lüdecke, Claudia; Roth, Martin; Yu, Wenqi; Horn, Uwe; Bossert, Jörg; Jandt, Klaus D

    2016-09-01

    Microbial adhesion to natural and synthetic materials surfaces is a key issue e.g. in food industry, sewage treatment and most importantly in the biomedical field. The current development and progress in nanoscale structuring of materials surfaces to control microbial adhesion requires an advanced understanding of the microbe-material-interaction. This study aimed to investigate the nanostructure of the microbe-material-interface and link it to microbial adhesion kinetics as function of titanium surface nanoroughness to gain new insight into controlling microbial adhesion via materials' surface nanoroughness. Adhesion of Escherichia coli and Staphylococcus aureus was statistically significantly reduced (p≤0.05) by 55.6 % and 40.5 %, respectively, on physical vapor deposited titanium thin films with a nanoroughness of 6nm and the lowest surface peak density compared to 2nm with the highest surface peak density. Cross-sectioning of the microbial cells with a focused ion beam (FIB) and SEM imaging provided for the first time direct insight into the titanium-microbe-interface. High resolution SEM micrographs gave evidence that the surface peaks are the loci of initial contact between the microbial cells and the material's surface. In a qualitative model we propose that the initial microbial adhesion on nanorough surfaces is controlled by the titanium surface peak density via nano adhesion points. This new understanding will help towards the design of materials surfaces for controlling microbial adhesion. PMID:27288816

  20. New impact specimen for adhesives: optimization of high-speed-loaded adhesive joints

    NARCIS (Netherlands)

    Bezemer, A.A.; Guyt, C.B.; Vlot, A.

    1998-01-01

    A new kind of joint specimen has been developed to load the adhesive in pure shear on impact. The specimen is tested with three adhesives at five layer thicknesses, and at three test speeds. From these tests it can be concluded that the rod-ring specimen is suitable for use in impact tests at high s

  1. Characterization of adhesion at solid surfaces: Development of an adhesion-testing device

    NARCIS (Netherlands)

    Oláh, Attila; Vancso, G. Julius

    2005-01-01

    A custom-built adhesion-testing device (ATD) is described in this paper, which was developed to study energetics of various solid (polymeric) interfaces. A review is also given of the main techniques of adhesion and adherence measurements, including non-destructive and destructive methods, with majo

  2. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a weigh

  3. Cadherin-11 localizes to focal adhesions and promotes cell–substrate adhesion

    Science.gov (United States)

    Langhe, Rahul P.; Gudzenko, Tetyana; Bachmann, Michael; Becker, Sarah F.; Gonnermann, Carina; Winter, Claudia; Abbruzzese, Genevieve; Alfandari, Dominique; Kratzer, Marie-Claire; Franz, Clemens M.; Kashef, Jubin

    2016-01-01

    Cadherin receptors have a well-established role in cell–cell adhesion, cell polarization and differentiation. However, some cadherins also promote cell and tissue movement during embryonic development and tumour progression. In particular, cadherin-11 is upregulated during tumour and inflammatory cell invasion, but the mechanisms underlying cadherin-11 stimulated cell migration are still incompletely understood. Here, we show that cadherin-11 localizes to focal adhesions and promotes adhesion to fibronectin in Xenopus neural crest, a highly migratory embryonic cell population. Transfected cadherin-11 also localizes to focal adhesions in different mammalian cell lines, while endogenous cadherin-11 shows focal adhesion localization in primary human fibroblasts. In focal adhesions, cadherin-11 co-localizes with β1-integrin and paxillin and physically interacts with the fibronectin-binding proteoglycan syndecan-4. Adhesion to fibronectin mediated by cadherin-11/syndecan-4 complexes requires both the extracellular domain of syndecan-4, and the transmembrane and cytoplasmic domains of cadherin-11. These results reveal an unexpected role of a classical cadherin in cell–matrix adhesion during cell migration. PMID:26952325

  4. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition.

    Science.gov (United States)

    Takashima, Yoshinori; Sahara, Taiga; Sekine, Tomoko; Kakuta, Takahiro; Nakahata, Masaki; Otsubo, Miyuki; Kobayashi, Yuichiro; Harada, Akira

    2014-10-01

    Supramolecular materials based on host-guest interactions should exhibit high selectivity and external stimuli-responsiveness. Among various stimuli, redox and photo stimuli are useful for its wide application. An external stimuli-responsive adhesive system between CD host-gels (CD gels) and guest molecules modified glass substrates (guest Sub) is focused. Here, the selective adhesion between host gels and guest substrates where adhesion depends on molecular complementarity is reported. Initially, it is thought that adhesion of a gel material onto a hard material might be difficult unless many guest molecules modified linear polymers immobilize on the surface of hard materials. However, reversible adhesion of the CD gels is observed by dissociating and re-forming inclusion complex in response to redox and photo stimuli.

  5. BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement.

    Science.gov (United States)

    Maier, Greg P; Rapp, Michael V; Waite, J Herbert; Israelachvili, Jacob N; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (E(ad) ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a "one-two punch," whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.

  6. Dynamic instabilities of frictional sliding at a bimaterial interface

    Science.gov (United States)

    Brener, Efim A.; Weikamp, Marc; Spatschek, Robert; Bar-Sinai, Yohai; Bouchbinder, Eran

    2016-04-01

    Understanding the dynamic stability of bodies in frictional contact steadily sliding one over the other is of basic interest in various disciplines such as physics, solid mechanics, materials science and geophysics. Here we report on a two-dimensional linear stability analysis of a deformable solid of a finite height H, steadily sliding on top of a rigid solid within a generic rate-and-state friction type constitutive framework, fully accounting for elastodynamic effects. We derive the linear stability spectrum, quantifying the interplay between stabilization related to the frictional constitutive law and destabilization related both to the elastodynamic bi-material coupling between normal stress variations and interfacial slip, and to finite size effects. The stabilizing effects related to the frictional constitutive law include velocity-strengthening friction (i.e. an increase in frictional resistance with increasing slip velocity, both instantaneous and under steady-state conditions) and a regularized response to normal stress variations. We first consider the small wave-number k limit and demonstrate that homogeneous sliding in this case is universally unstable, independent of the details of the friction law. This universal instability is mediated by propagating waveguide-like modes, whose fastest growing mode is characterized by a wave-number satisfying kH ∼ O(1) and by a growth rate that scales with H-1. We then consider the limit kH → ∞ and derive the stability phase diagram in this case. We show that the dominant instability mode travels at nearly the dilatational wave-speed in the opposite direction to the sliding direction. In a certain parameter range this instability is manifested through unstable modes at all wave-numbers, yet the frictional response is shown to be mathematically well-posed. Instability modes which travel at nearly the shear wave-speed in the sliding direction also exist in some range of physical parameters. Previous results

  7. Spiders Tune Glue Viscosity to Maximize Adhesion.

    Science.gov (United States)

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.

  8. Fabrication of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using electrolysis plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin [School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049 (China)

    2015-04-15

    An anti-adhesion surface with a water contact angle of 167° was fabricated on aluminium samples of rubber plastic moulds by electrolysis plasma treatment using mixed electrolytes of C{sub 6}H{sub 5}O{sub 7}(NH{sub 4}){sub 3} and Na{sub 2}SO{sub 4}, followed by fluorination. To optimise the fabrication conditions, several important processing parameters such as the discharge voltage, discharge time, concentrations of supporting electrolyte and stearic acid ethanol solution were examined systematically. Using scanning electron microscopy (SEM) to analyse surfaces morphology, micrometer scale pits, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro/nano-scale structures, which are similar to the micro-structures of soil-burrowing animals, play a critical role in achieving low adhesion properties. Otherwise, the anti-adhesion behaviours of the resulting samples were analysed by the atomic force microscope (AFM), Fourier-transform infrared spectrophotometer (FTIR), electrons probe micro-analyzer (EPMA), optical contact angle meter, digital Vickers microhardness (Hv) tester, and electronic universal testing. The results show that the electrolysis plasma treatment does not require complex processing parameters, using a simple device, and is an environment-friendly and effective method. Under the optimised conditions, the contact angle (CA) for the modified anti-adhesion surface is up to 167°, the sliding angle (SA) is less than 2°, roughness of the sample surface is only 0.409μm. Moreover, the adhesion force and H{sub v} are 0. 9KN and 385, respectively.

  9. Stick-slip at soft adhesive interfaces mediated by slow frictional waves.

    Science.gov (United States)

    Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan

    2016-06-28

    Stick-slip is a friction instability that governs diverse phenomena from squealing automobile brakes to earthquakes. At soft adhesive interfaces, this instability has long been attributed to Schallamach waves, which are a type of slow frictional wave. We use a contact configuration capable of isolating single wave events, coupled with high speed in situ imaging, to demonstrate the existence of two new stick-slip modes. It is shown that these modes also correspond to the passage of slow waves-separation pulse and slip pulse-with distinct nucleation and propagation characteristics. The slip pulse, characterized by a sharp stress front, propagates in the same direction as the Schallamach wave. In contrast, the separation pulse, involving local interface detachment and resembling a tensile neck, travels in exactly the opposite direction. A change in the stick-slip mode from the separation to the slip pulse is effected simply by increasing the normal force. Taken together, the three waves constitute all possible stick-slip modes in low-velocity sliding. The detailed observations enable us to present a phase diagram delineating the domains of occurrence of these waves. We suggest a direct analogy between the observed slow frictional waves and well known muscular locomotory waves in soft bodied organisms. Our work answers basic questions about adhesive mechanisms of frictional instabilities in natural and engineered systems, with broader implications for slow surface wave phenomena.

  10. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    Science.gov (United States)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  11. Stick-slip at soft adhesive interfaces mediated by slow frictional waves.

    Science.gov (United States)

    Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan

    2016-06-28

    Stick-slip is a friction instability that governs diverse phenomena from squealing automobile brakes to earthquakes. At soft adhesive interfaces, this instability has long been attributed to Schallamach waves, which are a type of slow frictional wave. We use a contact configuration capable of isolating single wave events, coupled with high speed in situ imaging, to demonstrate the existence of two new stick-slip modes. It is shown that these modes also correspond to the passage of slow waves-separation pulse and slip pulse-with distinct nucleation and propagation characteristics. The slip pulse, characterized by a sharp stress front, propagates in the same direction as the Schallamach wave. In contrast, the separation pulse, involving local interface detachment and resembling a tensile neck, travels in exactly the opposite direction. A change in the stick-slip mode from the separation to the slip pulse is effected simply by increasing the normal force. Taken together, the three waves constitute all possible stick-slip modes in low-velocity sliding. The detailed observations enable us to present a phase diagram delineating the domains of occurrence of these waves. We suggest a direct analogy between the observed slow frictional waves and well known muscular locomotory waves in soft bodied organisms. Our work answers basic questions about adhesive mechanisms of frictional instabilities in natural and engineered systems, with broader implications for slow surface wave phenomena. PMID:27118236

  12. ROLE OF ADHESIVES IN TRANSDERMAL DRUG DELIVERY: A REVIEW

    Directory of Open Access Journals (Sweden)

    Arshad bashir Khan et al

    2012-10-01

    Full Text Available Transdermal drug delivery systems (TDDS also commonly known as “patches” are dosage forms designed to deliver a therapeutically effective amount of drug across a patient’s skin. The therapeutic performance of a transdermal delivery system (TDS can be affected by the quality of contact between the patch and the skin. The adhesion of the TDS to the skin is obtained by using pressure-sensitive adhesives (PSAs, which are defined as adhesives capable of bonding to surfaces with the application of light pressure. This article provides an overview of types of transdermal, the anatomical considerations and role of adhesion, the possible adhesion failure modes and how adhesion can be measured. Several in vitro techniques have been used to monitor adhesive performance such as peel adhesion, tack and shear strength. This article provides a frame work for further discussion and scientific work to improve transdermal adhesive performance.

  13. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    Science.gov (United States)

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand.

  14. User attitudes in analyzing digital slides in a quality control test bed: a preliminary study.

    Science.gov (United States)

    Della Mea, Vincenzo; Demichelis, Francesca; Viel, Federico; Dalla Palma, Paolo; Beltrami, Carlo Alberto

    2006-05-01

    The pathologist examines suitably stained glass slides through a bright field microscope in order to render histopathological or cytological diagnosis by looking at tissues and cells. Glass slides serve as a permanent record of the patient disease. Over the course of a patient's treatment slides may need to be reviewed at other institutions before treatment can commence. Due to their fragile nature a transportable permanent digital facsimile of the glass slide would be ideal. A digital slide is a set of digital images representing the whole slide normally used by the pathologist, or a significant part of it; it is usually made by a large amount of images, up to thousands, which makes its management difficult. The present paper provides a description of the requirements needed to reproduce glass slides and of the available technological equipment, then the features of the two systems we implemented on different hardware are described, together with those of the digital slide viewer. The viewer was evaluated in two experimental test phases, during which user behaviour and diagnostic reports were measured. Digital slides used in the two experiments were acquired with either system. Possible applications of digital slides are then discussed, including undergraduate and professional education, quality control, and image analysis on full samples as well as on tissue microarrays.

  15. Comparing approaches for numerical modelling of tsunami generation by deformable submarine slides

    Science.gov (United States)

    Smith, Rebecca C.; Hill, Jon; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.; Parkinson, Samuel D.; Wilson, Cian

    2016-04-01

    Tsunami generated by submarine slides are arguably an under-considered risk in comparison to earthquake-generated tsunami. Numerical simulations of submarine slide-generated waves can be used to identify the important factors in determining wave characteristics. Here we use Fluidity, an open source finite element code, to simulate waves generated by deformable submarine slides. Fluidity uses flexible unstructured meshes combined with adaptivity which alters the mesh topology and resolution based on the simulation state, focussing or reducing resolution, when and where it is required. Fluidity also allows a number of different numerical approaches to be taken to simulate submarine slide deformation, free-surface representation, and wave generation within the same numerical framework. In this work we use a multi-material approach, considering either two materials (slide and water with a free surface) or three materials (slide, water and air), as well as a sediment model (sediment, water and free surface) approach. In all cases the slide is treated as a viscous fluid. Our results are shown to be consistent with laboratory experiments using a deformable submarine slide, and demonstrate good agreement when compared with other numerical models. The three different approaches for simulating submarine slide dynamics and tsunami wave generation produce similar waveforms and slide deformation geometries. However, each has its own merits depending on the application. Mesh adaptivity is shown to be able to reduce the computational cost without compromising the accuracy of results.

  16. Apparatus for Removing Remaining Adhesives of Filter

    International Nuclear Information System (INIS)

    A Large amount of ventilation filter was used at radiation areas not only in nuclear power plants but also in nuclear facilities. These spent ventilation filters are generated as radioactive waste and composed of a steel frame, glass fiber media and aluminum separator. When treated, the spent filter is separated into filter media for air purification and frame. After separation, while the filter media is collected using steel drum for reducing internal exposure, the filter frame is treated further to remove adhesives for recycling the frame as many as possible in order to reduce waste and cost and improve working conditions. Usually, the adhesives are separated from the filter frame manually. As a result, a lot of time and labor is required. So, the objective of this study is to develop a motor-driven apparatus for removing adhesives efficiently

  17. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    Science.gov (United States)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  18. Posterior adhesive composite resin: a historic review.

    Science.gov (United States)

    Fusayama, T

    1990-11-01

    Since development of the BIS-GMA composite resin, there have been many innovations to improve the physical properties for posterior use. Subsequent development of a caries detector and chemically adhesive composite resin has further revolutionally raised the value of composite resin restoration, replacing the traditional restorative system of mechanical approach by the new system of biological approach. In this system only the infected irreversibly deteriorated insensitive tissue, stainable with the caries detector, is removed painlessly. The cavity is immediately filled with the composite resin with no further tissue reduction for retention or resistance form or extension for prevention. Both enamel and dentin walls are etched by a single etchant without lining. The chemical adhesion to the cavity margin and wall minimizes the marginal failure in size and prevalence and prevents secondary caries penetration along the wall. The chemically adhesive composite resin is thus a useful restorative material much kinder to teeth than amalgam.

  19. Molecular mechanics of mussel adhesion proteins

    Science.gov (United States)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  20. Mechanical Behaviour of Adhesive Joints in Cartonboard for Packaging

    OpenAIRE

    Korin, Christer

    2009-01-01

    A cartonboard package is often sealed and closed with an adhesive – either a hot-melt adhesive (adhesives that are applied in a molten state on the cartonboard) or a dispersion adhesive (adhesives that are applied as water-based dispersions). This thesis focuses on the process of hot-melt gluing, and how material properties and process conditions affect the performance of the adhesive joint. Requirements vary depending on how the package is to be used. A package that is only supposed to prote...

  1. Study on Modification of Octyl-α-Cyanoacrylate Medical Adhesive

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective:In order that the adhesive character could be improved to modify the octyl-α-cyanoacrylate(OCA) medical adhesive.Methods:Suitable modifiers involving polycaprolactone(PCL),dibutyl phthalate (DBP),dioctyl phthalate(DOP) and poly octyl methacrylat(POMA) have been chosen to modify the OCA adhesive,then tensile shear strength and adhesive strength are tested to evaluate the bond character of adhesives.Results:The PCL group's tensile shear strength and adhesive strength in normal temperature are descen...

  2. Physics of cell elasticity, shape and adhesion

    Science.gov (United States)

    Safran, S. A.; Gov, N.; Nicolas, A.; Schwarz, U. S.; Tlusty, T.

    2005-07-01

    We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and

  3. Coatings against corrosion and microbial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Telegdi, J.; Szabo, T.; Al-Taher, F.; Pfeifer, E.; Kuzmann, E.; Vertes, A. [Chemical Research Center, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59/67 (Hungary)

    2010-12-15

    A systematic study on anti-corrosion and anti-fouling effect of hydrophobic Langmuir-Blodgett and self-assembled molecular layers deposited on metal surfaces, as well as anti-microbial adhesion properties of coatings with biocide is presented. Both types of efficiencies produced by LB films are enhanced by Fe{sup 3+} ions built in the molecular film. The quaternary ammonium type biocide embedded into the cross-linked gelatin decreased significantly the microbial adhesion, the biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Adhesion of PBO Fiber in Epoxy Composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The high mechanical and thermal performance of poly p-phenylene- 2, 6-benzobisoxazole ( PBO ) fiber provides great potential applications as reinforcement fibers for composites. A composite of PBO fiber and epoxy resin has excellent electrical insulation properties, therefore, it is considered to be the best choice for the reinforcement in high magnetic field coils for pulsed magnetic fields up to 100 T.However, poor adhesion between PBO fiber and matrix is found because of the chemically inactive and/or relatively smooth surface of the reinforcement fiber preventing efficient chemical bonding in the interface, which is a challenging issue to improve mechanical properties. Here, we report the surface modification of PBO fibers by ultraviolet (UV)irradiation, O2 and NH3 plasma, as well as acidic treatments. The interfacial adhesion strength values of all the treatments show the similar level as determined for aramid fibers by pull-out tests, a significant impact on fibermatrix-adhesion was not achieved. The surface free energy and roughness are increased for both sized and extracted fibers after plasma treatments together with maleic anhydride grafting. The sized fiber shows marginal improvement in adhesion strength and no change in fiber tensile strength because of the barrier effect of the finish.For the extracted fiber, different surface treatments either show no apparent effect or cause reduction in adhesion strength. Atomic force microscopy (AFM) topography analysis of the fracture surfaces proved adhesive failure at the fiber surface. The fiber surface roughness is increased and more surface flaws are induced, which could result in coarse interface structures when the treated fiber surface has no adequate wetting and functional groups. The adhesion failure is further confirmed by similar adhesion strength and compression shear strength values when the fiber was embedded in various epoxy resins with different temperature behavior. The tensile strength of fiber

  5. Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae

    Science.gov (United States)

    Bullock, James M. R.; Federle, Walter

    2011-05-01

    Leaf beetles are able to climb on smooth and rough surfaces using arrays of micron-sized adhesive hairs (setae) of varying morphology. We report the first in vivo adhesive force measurements of individual setae in the beetle Gastrophysa viridula, using a smooth polystyrene substrate attached to a glass capillary micro-cantilever. The beetles possess three distinct adhesive pads on each leg which differ in function and setal morphology. Visualisation of pull-offs allowed forces to be measured for each tarsal hair type. Male discoidal hairs adhered with the highest forces (919 ± 104 nN, mean ± SE), followed by spatulate (582 ± 59 nN) and pointed (127 ± 19 nN) hairs. Discoidal hairs were stiffer in the normal direction (0.693 ± 0.111 N m-1) than spatulate (0.364 ± 0.039 N m-1) or pointed (0.192 ± 0.044 N m-1) hairs. The greater adhesion on smooth surfaces and the higher stability of discoidal hairs help male beetles to achieve strong adhesion on the elytra of females during copulation. A comparison of pull-off forces measured for single setae and whole pads (arrays) revealed comparable levels of adhesive stress. This suggests that beetles are able to achieve equal load sharing across their adhesive pads so that detachment through peeling is prevented.

  6. Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling.

    Science.gov (United States)

    Hu, Shihao; Jiang, Haodan; Xia, Zhenhai; Gao, Xiaosheng

    2010-09-01

    With unique hierarchical fibrillar structures on their feet, gecko lizards can walk on vertical walls or even ceilings. Recent experiments have shown that strong binding along the shear direction and easy lifting in the normal direction can be achieved by forming unidirectional carbon nanotube array with laterally distributed tips similar to gecko's feet. In this study, a multiscale modeling approach was developed to analyze friction and adhesion behaviors of this hierarchical fibrillar system. Vertically aligned carbon nanotube array with laterally distributed segments at the end was simulated by coarse grained molecular dynamics. The effects of the laterally distributed segments on friction and adhesion strengths were analyzed, and further adopted as cohesive laws used in finite element analysis at device scale. The results show that the laterally distributed segments play an essential role in achieving high force anisotropy between normal and shear directions in the adhesives. Finite element analysis reveals a new friction-enhanced adhesion mechanism of the carbon nanotube array, which also exists in gecko adhesive system. The multiscale modeling provides an approach to bridge the microlevel structures of the carbon nanotube array with its macrolevel adhesive behaviors, and the predictions from this modeling give an insight into the mechanisms of gecko-mimicking dry adhesives.

  7. A randomized control clinical trial of fissure sealant retention: Self etch adhesive versus total etch adhesive

    Directory of Open Access Journals (Sweden)

    Nadia Aman

    2015-01-01

    Full Text Available Context: There are limited studies on comparison of Total etch (TE and Self etch (SE adhesive for placement of sealants. Aims: The aim of the study was to compare the retention of fissure sealants placed using TE adhesive to those sealants placed using SE (seventh generation adhesive. Settings and Design: The study was conducted in the dental section, Aga Khan University Hospital. This study was a randomized single blinded trial with a split mouth design. Materials and Methods: The study included 37 patients, 101 teeth were included in both study groups. The intervention arm was treated with SE Adhesive (Adper Easy One, 3M ESPE, US. Control arm received TE adhesive (Adper Single Bond 2, 3M ESPE, US before sealant application. The patients were followed after 6 months for assessment of sealant retention. Statistical analysis used: Interexaminer agreement for outcome assessment was assessed by Kappa Statistics and outcome in intervention group was assessed by McNemar′s test. Results: Ninety-one pairs of molar (90% were reevaluated for sealant retention. Complete retention was 56% in TE arm and 28% in SE arm with an odds ratio (OR of 3.7. Conclusions: Sealants applied with TE adhesives show higher rate of complete sealant retention than SE adhesive.

  8. Is the lag screw sliding effective in the intramedullary nailing in A1 and A2 AO-OTA intertrochanteric fractures? A prospective study of Sliding and None-sliding lag screw in Gamma-III nail

    Directory of Open Access Journals (Sweden)

    Zhu Yi

    2012-09-01

    Full Text Available Abstract Object To compare the Sliding with Non-sliding lag screw of a gamma nail in the treatment of A1 and A2 AO-OTA intertrochanteric fractures. Materials and methods 80 patients were prospectively collected. In each group, AO/OTA 31-A were classified into group A. AO/OTA 31-A2.1 was classified as group B. We classified the A2.2 and A2.3 as group C. According to the set-screw locking formation of Gamma-III, the cases were randomly allocated to Sliding subgroup and Non-sliding subgroup in A, B and C groups. Follow-ups were performed 1, 3, 6 and 12 months postoperatively. Results In the Sliding group, the bone healing rate 3, 6, 12 months postoperatively reached 85.00%, 97.50%, 100% in group A, B and C. Meanwhile, in Non-sliding group, postoperatively, bone healing rate were 90.00%, 95.00% and 97.50% in group A, B and C, respectively. Both differences were not significant. Lower limb discrepancy between Sliding and Non-sliding pattern was significantly different in group C which represent fracture types of AO/OTA 31-A2.2 and A2.3 (0.573 ± 0.019 mm in Non-sliding group, 0.955 mm ± 0.024 mm in Sliding group, P Conclusions As a result, we can conclude that the sliding distance is minimal in Gamma nails and it is related to the comminuted extent of the intertrochanteric area in A1 and A2 AO-OTA intertrochanteric fractures. For treating these kinds of fractures, the sliding of the lag screw of an Gamma nail does not improve any clinical results and in certain cases, such as highly comminuted A1 and A2 fractures, can therefore even benefit from a locked lag screw by tightening the set-screw.

  9. Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications.

    Science.gov (United States)

    Hu, Shihao; Xia, Zhenhai; Gao, Xiaosheng

    2012-04-01

    The adhesion and friction coupling of hierarchical carbon nanotube arrays was investigated with a hierarchical multiscale modeling approach. At device level, vertically aligned carbon nanotube (VA-CNT) arrays with laterally distributed segments on top were analyzed via finite element methods to determine the macroscopic adhesion and friction force coupling. At the nanoscale, molecular dynamics simulation was performed to explore the origin of the adhesion enhancement due to the existence of the laterally distributed CNTs. The results show interfacial adhesion force is drastically promoted by interfacial friction force when a single lateral CNT is being peeled from an amorphous carbon substrate. By fitting with experiments, we find that under shearing loadings the maximum interfacial adhesion force is increased by a factor of ~5, compared to that under normal loadings. Pre-existing surface asperities of the substrate have proven to be the source of generating large interfacial friction, which in turn results in an enhanced adhesion. The critical peeling angles derived from the continuum and nano- levels are comparable to those of geckos and other synthetic adhesives. Our analysis indicates that the adhesion enhancement factor of the hierarchically structured VA-CNT arrays could be further increased by uniformly orienting the laterally distributed CNTs on top. Most importantly, a significant buckling of the lateral CNT at peeling front is captured on the molecular level, which provides a basis for the fundamental understanding of local deformation, and failure mechanisms of nanofibrillar structures. This work gives an insight into the durability issues that prevent the success of artificial dry adhesives.

  10. Influence of fluid pore pressure on chaotic sliding of tectonic faults

    Science.gov (United States)

    Turuntaev, Sergey; Riga, Vasily

    2016-04-01

    The problem of permeable rock pore pressure variation influence on tectonic fault sliding and generation of seismic events was studied in the scope of rate-and-state friction model with two-parametric friction law. The coupled problem of pore-elasticity and fault sliding governed by two-parametric rate-and-state equation was studied numerically. The main modes of the fault sliding were found, and transitions from one mode to another due to the fluid pore pressure change were observed. The conditions for transition from stable to chaotic sliding (considered as an analog of seismic event generations) were found. It was shown, that chaotic sliding has features of Poincare stability and can be characterized by finite values of correlation integral and embedding dimension, which depend on critical shear stresses. Change of the effective critical stresses by the pore pressure variation will result in change of the tectonic fault sliding mode and consequently change of the seismic regime.

  11. Robust fuzzy control for stochastic Markovian jumping systems via sliding mode method

    Science.gov (United States)

    Chen, Bei; Jia, Tinggang; Niu, Yugang

    2016-07-01

    This paper considers the problem of sliding mode control for stochastic Markovian jumping systems by means of fuzzy method. The Takagi-Sugeno (T-S) fuzzy stochastic model subject to state-dependent noise is presented. A key feature in this work is to remove the restricted condition that each local system model had to share the same input channel, which is usually assumed in some existing results. The integral sliding surface is constructed for every mode and the connections among various sliding surfaces are established via a set of coupled matrices. Moreover, the present sliding mode controller including the transition rates of modes can cope with the effect of Markovian switching. It is shown that both the reachability of sliding surfaces and the stability of sliding mode dynamics can be ensured. Finally, numerical simulation results are given.

  12. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  13. Stability analysis of concrete gravity dam on complicated foundation with multiple slide planes

    Directory of Open Access Journals (Sweden)

    Xu-hua REN

    2008-09-01

    Full Text Available A key problem in gravity dam design is providing enough stability to prevent slide, and the difficulty increases if there are several weak structural planes in the dam foundation. Overload and material weakening were taken into account, and a finite difference strength reserve method with partial safety factors based on the reliability method was developed and used to study the anti-slide stability of a concrete gravity dam on a complicated foundation with multiple slide planes. Possible slide paths were obtained, and the stability of the foundation with possible failure planes was evaluated through analysis of the stress distribution characteristics. The results reveal the mechanism and process of sliding due to weak structural planes and their deformations, and provide a reference for anti-slide stability analysis of gravity dams in complicated geological conditions.

  14. Stability analysis of concrete gravity dam on complicated foundation with multiple slide planes

    Institute of Scientific and Technical Information of China (English)

    Ren Xuhua; Shu Jiaqing; Ben Nenghui; Ren Hongyun

    2008-01-01

    A key problem in gravity dam design is providing enough stability to prevent slide, and the difficulty increases if there are several weak structural planes in the dam foundation. Overload and material weakening were taken into account, and a finite difference strength reserve method with partial safety factors based on the reliability method was developed and used to study the anti-slide stability of a concrete gravity dam on a complicated foundation with multiple slide planes. Possible slide paths were obtained, and the stability of the foundation with possible failure planes was evaluated through analysis of the stress distribution characteristics. The results reveal the mechanism and process of sliding due to weak structural planes and their deformations, and provide a reference for anti-slide stability analysis of gravity dams in complicated geological conditions.

  15. Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Yundi Chu

    2015-01-01

    Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

  16. Adaptive Tracking and Obstacle Avoidance Control for Mobile Robots With Unknown Sliding

    Directory of Open Access Journals (Sweden)

    Mingyue Cui

    2012-11-01

    Full Text Available An adaptive control approach is proposed for trajectory tracking and obstacle avoidance for mobile robots with consideration given to unknown sliding. A kinematic model of mobile robots is established in this paper, in which both longitudinal and lateral sliding are considered and processed as three time‐varying parameters. A sliding model observer is introduced to estimate the sliding parameters online. A stable tracking control law for this nonholonomic system is proposed to compensate the unknown sliding effect. From Lyapunov‐stability analysis, it is proved, regardless of unknown sliding, that tracking errors of the controlled closed‐loop system are asymptotically stable, the tracking errors converge to zero outside the obstacle detection region and obstacle avoidance is guaranteed inside the obstacle detection region. The efficiency and robustness of the proposed control system are verified by simulation results.

  17. Automated grading of renal cell carcinoma using whole slide imaging

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Yeh

    2014-01-01

    Full Text Available Introduction: Recent technology developments have demonstrated the benefit of using whole slide imaging (WSI in computer-aided diagnosis. In this paper, we explore the feasibility of using automatic WSI analysis to assist grading of clear cell renal cell carcinoma (RCC, which is a manual task traditionally performed by pathologists. Materials and Methods: Automatic WSI analysis was applied to 39 hematoxylin and eosin-stained digitized slides of clear cell RCC with varying grades. Kernel regression was used to estimate the spatial distribution of nuclear size across the entire slides. The analysis results were correlated with Fuhrman nuclear grades determined by pathologists. Results: The spatial distribution of nuclear size provided a panoramic view of the tissue sections. The distribution images facilitated locating regions of interest, such as high-grade regions and areas with necrosis. The statistical analysis showed that the maximum nuclear size was significantly different (P < 0.001 between low-grade (Grades I and II and high-grade tumors (Grades III and IV. The receiver operating characteristics analysis showed that the maximum nuclear size distinguished high-grade and low-grade tumors with a false positive rate of 0.2 and a true positive rate of 1.0. The area under the curve is 0.97. Conclusion: The automatic WSI analysis allows pathologists to see the spatial distribution of nuclei size inside the tumors. The maximum nuclear size can also be used to differentiate low-grade and high-grade clear cell RCC with good sensitivity and specificity. These data suggest that automatic WSI analysis may facilitate pathologic grading of renal tumors and reduce variability encountered with manual grading.

  18. Reading virtual slide using web viewers: results of subjective experience with three different solutions

    OpenAIRE

    González Jesús; Murillo Cristina; Peces Carlos; González Lucía; Gallardo Antonio J; Rojo Marcial; Sacristán Jose

    2008-01-01

    Abstract Background Virtual slides are viewed using interactive software that enables the user to simulate the behaviour of a conventional optical microscope, like adjusting magnifications and navigating to any portion of the image. Nowadays, information about the performance and features of web-based solutions for reading slides in real environments is still scarce. The objective of this study is analyzing the subjective experience of pathologists with virtual slides, comparing the time need...

  19. Artificial Chattering Free on-line Modified Sliding Mode Algorithm: Applied in Continuum Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Ebrahimi

    2013-11-01

    Full Text Available In this research, an artificial chattering free adaptive fuzzy modified sliding mode control design and application to continuum robotic manipulator has proposed in order to design high performance nonlinear controller in the presence of uncertainties. Regarding to the positive points in sliding mode controller, fuzzy logic controller and online tuning method, the output improves. Each method by adding to the previous controller has covered negative points. The main target in this research is design of model free estimator on-line sliding mode fuzzy algorithm for continuum robot manipulator to reach an acceptable performance. Continuum robot manipulators are highly nonlinear, and a number of parameters are uncertain, therefore design model free controller by both analytical and empirical paradigms are the main goal. Although classical sliding mode methodology has acceptable performance with known dynamic parameters such as stability and robustness but there are two important disadvantages as below: chattering phenomenon and mathematical nonlinear dynamic equivalent controller part. To solve the chattering fuzzy logic inference applied instead of dead zone function. To solve the equivalent problems in classical sliding mode controller this paper focuses on applied on-line tuning method in classical controller. This algorithm works very well in certain and uncertain environment. The system performance in sliding mode controller is sensitive to the sliding function. Therefore, compute the optimum value of sliding function for a system is the next challenge. This problem has solved by adjusting sliding function of the on-line method continuously in real-time. In this way, the overall system performance has improved with respect to the classical sliding mode controller. This controller solved chattering phenomenon as well as mathematical nonlinear equivalent part by applied modified PID supervisory method in modified fuzzy sliding mode controller and

  20. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    Science.gov (United States)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  1. Sliding mode control applied in trajectory-tracking of WMRs and autonomous vehicles

    OpenAIRE

    Solea, Razvan Constantin

    2009-01-01

    The thesis is structured as follows: • Chapter 2: Trajectory tracking problems are summarized. • Chapter 3: Kinematic and dynamic modeling of theWMRs and car-like robots are presented. • Chapter 4: The concept of sliding mode are first introduced. Then the fundamentals of SMC are summarized, including basic definitions, methods of sliding surface and control law design, robustness properties and the methods on handling chattering problems. New sliding-mode trajectory-tracking and sli...

  2. Design Intelligent PID like Fuzzy Sliding Mode Controller for Spherical Motor

    OpenAIRE

    Farzin Matin; Farzin Piltan; Hamid Cheraghi; Nasim Sobhani; Maryam Rahmani

    2014-01-01

    The minimum rule base Proportional Integral Derivative (PID) Fuzzy Sliding Mode Controller (SMC) with application to spherical motor is presented in this research. The popularity of PID Fuzzy Sliding Mode Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy Sliding Mode Controller can be determined as an optimization task. Over the years, use of intelligent strategies for...

  3. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    OpenAIRE

    Tao Li; Weiming Zhang; Ming Jiang; Zhengyang Li

    2013-01-01

    A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...

  4. Shifting gears higher - digital slides in graduate education - 4 years experience at Semmelweis University

    Directory of Open Access Journals (Sweden)

    Molnár Béla

    2010-11-01

    Full Text Available Abstract Background The spreading of whole slide imaging or digital slide systems in pathology as an innovative technique seems to be unstoppable. Successful introduction of digital slides in education has played a crucial role to reach this level of acceptance. Practically speaking there is no university institute where digital materials are not built into pathology education. At the 1st. Department of Pathology and Experimental Cancer Research, Semmelweis University optical microscopes have been replaced and for four years only digital slides have been used in education. The aim of this paper is to summarize our experiences gathered with the installation of a fully digitized histology lab for graduate education. Methods We have installed a digital histology lab with 40 PCs, two slide servers - one for internal use and one with external internet access. We have digitized hundreds of slides and after 4 years we use a set of 126 slides during the pathology course. A Student satisfaction questionnaire and a Tutor satisfaction questionnaire have been designed, both to be completed voluntarily to have feed back from the users. The page load statistics of the external slide server were evaluated. Results The digital histology lab served ~900 students and ~1600 hours of histology practice. The questionnaires revealed high satisfaction with digital slides. The results also emphasize the importance of the tutors' attitude towards digital microscopy as a factor influencing the students' satisfaction. The constantly growing number of page downloads from the external server confirms this satisfaction and the acceptance of digital slides. Conclusions We are confident, and have showed as well, that digital slides have got numerous advantages over optical slides and are more suitable in education.

  5. RESEARCH OF A HIGH EFFICIENCY SLIDING SCREW DRIVER

    Institute of Scientific and Technical Information of China (English)

    Hu Xiaowei; Lu Huailiang; Huang Shuhuai

    2004-01-01

    A high efficiency sliding screw driver is introduced. It can improve driving efficiency obviously. As the material strength of the nut in this structure is low and the nut is the most dangerous part, so it is important to master the structure's characters of deformation and stress. The deformation and stress of this structure are researched by finite element method(FEM), and the changing law of stress concentration coefficient of the structure is gained. So the exact stress of nut teeth with highest load can be calculated directly based on this result.

  6. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial knowledge of the so-called balloon model describing the hemodynamic behavior of the brain. To overcome this difficulty, a High Order Sliding Mode observer is applied to the balloon system, where the unknown coupling is considered as an internal perturbation. The effectiveness of the proposed method is illustrated through a set of synthetic data that mimic fMRI experiments.

  7. Linear stability analysis reveals exclusion zone for sliding bed transport

    Directory of Open Access Journals (Sweden)

    Talmon Arnold M.

    2015-06-01

    Full Text Available A bend or any another pipe component disturbs solids transport in pipes. Longitudinal pressure profiles downstream of such a component may show a stationary transient harmonic wave, as revealed by a recent settling slurry laboratory experiment. Therefore the fundamental transient response of the two-layer model for fully stratified flow is investigated as a first approach. A linear stability analysis of the sliding bed configuration is conducted. No stationary transient harmonic waves are found in this analysis, but adaptation lengths for exponential recovery are quantified. An example calculation is given for a 0.1 m diameter pipeline.

  8. Robust Sliding Mode Fuzzy Control of a Car Suspension System

    Directory of Open Access Journals (Sweden)

    Ayman A. Aly

    2013-07-01

    Full Text Available Different characteristics can be considered in a suspension system design like: ride comfort, body travel, road handling and suspension travel. No suspension system can optimize all these parameters together but a better tradeoff among these parameters can be achieved in active suspension system.Objective of this paper is to establish a robust control technique of the active suspension system for a quarter-car model. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. A comparison of robust suspension sliding fuzzy control and passive control is shown using MATLAB simulations.

  9. Limitations of the time slide method of background estimation

    International Nuclear Information System (INIS)

    Time shifting the output of gravitational wave detectors operating in coincidence is a convenient way of estimating the background in a search for short-duration signals. In this paper, we show how non-stationary data affect the background estimation precision. We present a method of measuring the fluctuations of the data and computing its effects on a coincident search. In particular, we show that for fluctuations of moderate amplitude, time slides larger than the fluctuation time scales can be used. We also recall how the false alarm variance saturates with the number of time shifts.

  10. Limitations of the time slide method of background estimation

    Energy Technology Data Exchange (ETDEWEB)

    Was, Michal; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Leroy, Nicolas; Robinet, Florent; Vavoulidis, Miltiadis, E-mail: mwas@lal.in2p3.f [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France)

    2010-10-07

    Time shifting the output of gravitational wave detectors operating in coincidence is a convenient way of estimating the background in a search for short-duration signals. In this paper, we show how non-stationary data affect the background estimation precision. We present a method of measuring the fluctuations of the data and computing its effects on a coincident search. In particular, we show that for fluctuations of moderate amplitude, time slides larger than the fluctuation time scales can be used. We also recall how the false alarm variance saturates with the number of time shifts.

  11. Adaptive second-order sliding mode control with uncertainty compensation

    Science.gov (United States)

    Bartolini, G.; Levant, A.; Pisano, A.; Usai, E.

    2016-09-01

    This paper endows the second-order sliding mode control (2-SMC) approach with additional capabilities of learning and control adaptation. We present a 2-SMC scheme that estimates and compensates for the uncertainties affecting the system dynamics. It also adjusts the discontinuous control effort online, so that it can be reduced to arbitrarily small values. The proposed scheme is particularly useful when the available information regarding the uncertainties is conservative, and the classical `fixed-gain' SMC would inevitably lead to largely oversized discontinuous control effort. Benefits from the viewpoint of chattering reduction are obtained, as confirmed by computer simulations.

  12. Geant4 2005 10. user conference and collaboration workshop. Slides

    International Nuclear Information System (INIS)

    Originally developed for the simulation of large scale particle physics experiments, the field of applications of the conferences Geant4 is growing fast worldwide especially at the physics medicine biology frontier. In this framework the 2005 Geant4 conference was dedicated to simulations with a strong interest at the physics medicine biology frontier. In particular the following topics were discussed: review of simulation applications for medicine, validation of Geant4 models for medical physics, simulation of radiotherapy and irradiation setups, treatment planning in radiotherapy, dosimetry, parallelization, imaging techniques, data handling, related GRID developments and applications and the Geant4 DNA project with related Monte Carlo tools. Slides are provided. (A.L.B.)

  13. Experimental prototype for PWM – Based Sliding Mode Boost Converter

    Directory of Open Access Journals (Sweden)

    R. A. Abdulhalem

    2011-06-01

    Full Text Available The paper dells with a modified experimental prototype for pulse-width modulation (PWM sliding mode control (SMC applied to a DC-to-DC-boost converter operated in continuous conduction mode (CCM. Experimental results show that the proposed control schme provides good voltage regulation and is suitable for common DC-to-DC conversion purposes. The prototype and its implementation are given in detail. The static and dynamic performances of the The static and dynamic performances of the experimental system are recorded. Experimental results show that the proposed control scheme provides good voltage regulation and is suitable for common DC-to-DC conversion purposes.

  14. Interpolating sliding mode observer for a ball and beam system

    Science.gov (United States)

    Luai Hammadih, Mohammad; Hosani, Khalifa Al; Boiko, Igor

    2016-09-01

    A principle of interpolating sliding mode observer is introduced in this paper. The observer incorporates multiple linear observers through interpolation of multiple estimates, which is treated as a type of adaptation. The principle is then applied to the ball and beam system for observation of the slope of the beam from the measurement of the ball position. The linearised model of the ball and beam system using multiple linearisation points is developed. The observer dynamics implemented in Matlab/Simulink Real Time Workshop environment. Experiments conducted on the ball and beam experimental setup demonstrate excellent performance of the designed novel interpolating (adaptive) observer.

  15. Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2014-01-01

    Full Text Available This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.

  16. Risk Analysis for Unintentional Slide Deployment During Airline Operations.

    Science.gov (United States)

    Ayra, Eduardo S; Insua, David Ríos; Castellanos, María Eugenia; Larbi, Lydia

    2015-09-01

    We present a risk analysis undertaken to mitigate problems in relation to the unintended deployment of slides under normal operations within a commercial airline. This type of incident entails relevant costs for the airline industry. After assessing the likelihood and severity of its consequences, we conclude that such risks need to be managed. We then evaluate the effectiveness of various countermeasures, describing and justifying the chosen ones. We also discuss several issues faced when implementing and communicating the proposed measures, thus fully illustrating the risk analysis process.

  17. Geant4 2005 10. user conference and collaboration workshop. Slides

    Energy Technology Data Exchange (ETDEWEB)

    Maire, M.; Amako, K.; Agapov, I.; Allison, J.; Amako, K.; Anah, J.; Apostolakis, J.; Asai, M.; Aso, T.; Barrand, G.; Becheva, E.; Berthoumieux, E.; Bongrand, M.; Boudard, A.; Canchel, G.; Capra, R.; Carlier, Th.; Chambon, P.; Chipaux, R.; Cognet, M.A.; Cornelius, I.; Cosmo, G.; Beenhouwer, J. de; Derreumaux, S.; Desbree, A.; Descourt, P.; Dridi, W.; Ersmark, T.; Faddegon, B.; Ferrer, L.; Flacco, A.; Folger, G.; Francis, S.; Giovinazzo, J.; Glinec, Y.; Godart, J.; Goncalves, P.; Gottschlag, H.; Grichine, V.; Guatelli, S.; Gudowska, I.; Guemnie Tafo, A.; Gueye, P.; Gumplinger, P.; Gurriaran, R.; Hannachi, F.; Heikkinen, A.; Hill, D.; Honore, P.F.; Howard, A.; Hrivnacova, I.; Hubert, X.; Incerti, S.; Ivanchenko, V.; Jacquemier, J.; Jones, F.; Kerhoas-Cavata, S.; Klem, J.; Koi, T.; Kosov, M.; Labalme, M.; Lang, N.; Lemercier, M.; Lemiere, Y.; Leroy, P.; Link, O.; Liu, B.; Lydon, J.; Maire, M.; Marchand, D.; Marquet, Ch.; Mascialino, B.; Matea, I.; Mccormick, J.; Mclaren, I.; Merchant, M.; Miceli, A.; Mine, Ph.; Moretto, Ph.; Mount, R.; Murakami, K.; Nachab, H.; Nehmeh, S.; Nieminen, P.; Paganetti, H.; Pallon, J.; Pandola, L.; Perl, J.; Perrot, F.; Pia Maria, G.; Piqueras, I.; Pouthier, Th.; Pshenichnov, I.; Raaijmakers, A.; Raaymakers, B.; Reuillon, R.; Ribon, A.; Rodrigues, P.; Rogel, G.; Salehzahi, F.; Santin, G.; Sasaki, T.; Schubert, M.; Seznec, H.; Shipley, D.; Skaza, F.; Thiam Cheick, O.; Tome, B.; Traneus, E.; Trindade, A.; Truscott, P.; Vacanti, G.; Verderi, M.; Watase, Y.; Wright, D.; Yarba, J.; Yoshida, H.; Zacharatou-Jarlskog, Ch.; Zhang, Q

    2005-07-01

    Originally developed for the simulation of large scale particle physics experiments, the field of applications of the conferences Geant4 is growing fast worldwide especially at the physics medicine biology frontier. In this framework the 2005 Geant4 conference was dedicated to simulations with a strong interest at the physics medicine biology frontier. In particular the following topics were discussed: review of simulation applications for medicine, validation of Geant4 models for medical physics, simulation of radiotherapy and irradiation setups, treatment planning in radiotherapy, dosimetry, parallelization, imaging techniques, data handling, related GRID developments and applications and the Geant4 DNA project with related Monte Carlo tools. Slides are provided. (A.L.B.)

  18. Rolling motion: experiments and simulations focusing on sliding friction forces

    Science.gov (United States)

    Onorato, Pasquale; Malgieri, Massimiliano; De Ambrosis, Anna

    2016-05-01

    The paper presents an activity sequence aimed at elucidating the role of sliding friction forces in determining/shaping the rolling motion. The sequence is based on experiments and computer simulations and it is devoted both to high school and undergraduate students. Measurements are carried out by using the open source Tracker Video Analysis software, while interactive simulations are realized by means of Algodoo, a freeware 2D-simulation software. Data collected from questionnaires before and after the activities, and from final reports, show the effectiveness of combining simulations and Video Based Analysis experiments in improving students' understanding of rolling motion.

  19. Bedrock erosion by sliding wear in channelized granular flow

    Science.gov (United States)

    Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.

    2014-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of

  20. Observer Based Sliding Mode Attitude Control: Theoretical and Experimental Results

    Directory of Open Access Journals (Sweden)

    U. Jørgensen

    2011-07-01

    Full Text Available In this paper we present the design of a sliding mode controller for attitude control of spacecraft actuated by three orthogonal reaction wheels. The equilibrium of the closed loop system is proved to be asymptotically stable in the sense of Lyapunov. Due to cases where spacecraft do not have angular velocity measurements, an estimator for the generalized velocity is derived and asymptotic stability is proven for the observer. The approach is tested on an experimental platform with a sphere shaped Autonomous Underwater Vehicle SATellite: AUVSAT, developed at the Norwegian University of Science and Technology.