WorldWideScience

Sample records for adhesive lap joints

  1. Analysis of Balanced Double Lap Joints with a Bi-Linear Softening Adhesive

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik; Schmidt, Jacob Wittrup

    2010-01-01

    of cracked concrete disks strengthened with adhesive bonded fiber reinforced polymers (FRP), or in any other structure comparable to a double lap joint with a softening interface. The present constitutive model can be changed to fit any model with the same shape of constitutive relationship, see Figure 1.......The response of a bonded symmetric balanced double lap joint under tensile loading with a bilinear softening adhesive is described with a closed form solution. Since bonded joints in concrete structures undergo softening, a versatile model to describe the response for a wide range of constitutive...

  2. Nano-modified adhesive by graphene: the single lap-joint case

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Almir; Cruz, Diego Thadeu Lopes da; Avila, Antonio Ferreira, E-mail: aavila@netuno.lcc.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica

    2013-11-01

    This paper addresses the performance study on, low viscosity, nano-modified adhesives by graphene. For achieving this goal, single-lap joints following ASTM D 5868-01 were manufactured and tested. X-ray diffraction, scanning electron microscopy and nanoindentation were employed for graphene based nanostructures characterization. The increase on joint strength was around 57% when compared against the control group. Furthermore, all failures for the nano-modified adhesive were cohesive failure for the carbon fibre/epoxy composites indicating that the adhesive was tested. X-ray diffractions signatures indicate formation of nano-structures with 17-19 nm diameters. Moreover, nanoindentation tests revealed a homogeneous dispersion of graphene. (author)

  3. Creep analysis of adhesively bonded single lap joint using finite element method

    International Nuclear Information System (INIS)

    Zehsaz, Mohammad; Vakilitahami, Tahami Farid; Saeimisadigh, Mohammad Ali

    2014-01-01

    Adhesive joints are being used widely in engineering industries due to the increasing demand for designing lightweight structures. Because of the physical properties of the most adhesives, they creep even at room temperature. Therefore, the creep behavior of a single lap adhesive joint is studied in this paper. For this purpose, using the experimental data, creep constitutive equations for the adhesive has been obtained. Then, these equations have been employed to investigate the creep behavior of the joint. The results show that due to the creep straining, the stresses in the joint corners, decrease. However, creep strain accumulates in these areas which this in turn may lead to separation of adhesive from adherent. In order to eliminate the effect of strain accumulation, two modifying methods have been proposed in this paper: increasing the layer thickness and using filleted joints.

  4. Strength and Failure Mechanism of Composite-Steel Adhesive Bond Single Lap Joints

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2018-01-01

    Full Text Available Carbon fiber-reinforced plastics- (CFRP- steel single lap joints with regard to tensile loading with two levels of adhesives and four levels of overlap lengths were experimentally analyzed and numerically simulated. Both joint strength and failure mechanism were found to be highly dependent on adhesive type and overlap length. Joints with 7779 structural adhesive were more ductile and produced about 2-3 kN higher failure load than MA830 structural adhesive. Failure load with the two adhesives increased about 147 N and 176 N, respectively, with increasing 1 mm of the overlap length. Cohesion failure was observed in both types of adhesive joints. As the overlap length increased, interface failure appeared solely on the edge of the overlap in 7779 adhesive joints. Finite element analysis (FEA results revealed that peel and shear stress distributions were nonuniform, which were less severe as overlap length increased. Severe stress concentration was observed on the overlap edge, and shear failure of the adhesive was the main reason for the adhesive failure.

  5. Reliability Analysis for Adhesive Bonded Composite Stepped Lap Joints Loaded in Fatigue

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Sørensen, John Dalsgaard; Lund, Erik

    2012-01-01

    -1, where partial safety factors are introduced together with characteristic values. Asymptotic sampling is used to estimate the reliability with support points generated by randomized Sobol sequences. The predicted reliability level is compared with the implicitly required target reliability level defined......This paper describes a probabilistic approach to calculate the reliability of adhesive bonded composite stepped lap joints loaded in fatigue using three- dimensional finite element analysis (FEA). A method for progressive damage modelling is used to assess fatigue damage accumulation and residual...... by the wind turbine standard IEC 61400-1. Finally, an approach for the assessment of the reliability of adhesive bonded composite stepped lap joints loaded in fatigue is presented. The introduced methodology can be applied in the same way to calculate the reliability level of wind turbine blade components...

  6. Analysis of an adhesively bonded single lap joint subjected to eccentric loading

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, N. G.

    2013-01-01

    is benchmarking of computational tools. The test is based on a Single Lap Joint subjected to Eccentric Loading (SLJ-EL). The basic concept that lies behind this configuration is that the applied in-plane tensile load leads the adhesive layer to develop normal stresses, in-plane and out-of-plane shear stresses...

  7. Lap Shear Testing of Candidate Radiator Panel Adhesives

    Science.gov (United States)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  8. Effect of Abrasive Waterjet Peening Surface Treatment of Steel Plates on the Strength of Single-Lap Adhesive Joints

    Directory of Open Access Journals (Sweden)

    Kamil Anasiewicz

    2017-09-01

    Full Text Available The paper presents results of comparative study of shear strength of single–lap adhesive joints, depending on the method of surface preparation of steel plates with increased corrosion resistance. The method of preparing adherend surfaces is often one of the most important factors determining the strength of adhesive joints. Appropriate geometric surface development and cleaning of the surface enhances adhesion forces between adherend material and adhesive. One of the methods of shaping engineering materials is waterjet cutting, which in the AWJP – abrasive waterjet peening variant, serves to shape flat surfaces of the material by changing the roughness and introducing stresses into the surface layer. These changes are valuable when preparing adhesive joints. In the study, surface roughness parameters obtained with AWJP treatment, were analyzed in direct relation to the strength of the adhesive joint. As a consequence of the experimental results analysis, the increase in the strength of the adhesive joints was observed in a certain range of parameters used for AWJP treatment. A decrease in shear strength of adhesive joint with the most modified topography of overlap surface was observed.

  9. Environmental influence on the usage of adhesive single lap joints in nuclear industry applications

    International Nuclear Information System (INIS)

    Amorim, Felipe do C.; Reis, João M.L. dos; Souza, João F.B. de; Costa, Gilberto T. de P.; Moura, Jorge C. de; Universidade Federal Fluminense; Comissao Nacional de Energia Nuclear

    2017-01-01

    Despite of some polymeric compounds vulnerability to different types of radiation, high polymer, as epoxy adhesives, had prospered in the nuclear industry because their mechanical properties to high doses of ionizing radiation is maintained. Because of this, epoxy adhesives are widely used in nuclear applications: nuclear power plants, aerospace components, radioactive sealed sources to medicine, radioactive waste immobilization. In the present work, the performance of a diglycidyl ether of bisphenol ether A (DGEBA) was analyzed. Tensile tests of adhesive single lap joints bonded with epoxy were performed. The environmental effect of ultraviolet (UV) exposure was observed in the mechanical reaction of PolyAnchor 4100 HT. In particular, maximum load decreases slightly in aggressive environment. It is possible to conclude the material is proper to use in internal and external areas, mainly due to the easy application when compared to welded joints with similar strength. The easy application reduces the workers exposure time to ionizing radiation. (author)

  10. Environmental influence on the usage of adhesive single lap joints in nuclear industry applications

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Felipe do C.; Reis, João M.L. dos; Souza, João F.B. de; Costa, Gilberto T. de P.; Moura, Jorge C. de, E-mail: felipe.amorim@cefet-rj.br, E-mail: jreis@id.uff.br, E-mail: joaofellipe@id.uff.br, E-mail: gilberto.costa@cnen.gov.br, E-mail: jcmoura@cnen.gov.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Itaguai, RJ (Brazil). Departamento de Engenharia Mecanica; Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Laboratorio de Mecania Teorica e Aplicada; Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Divisão de Controle de Rejeitos e Transporte de Materiais Radioativos

    2017-07-01

    Despite of some polymeric compounds vulnerability to different types of radiation, high polymer, as epoxy adhesives, had prospered in the nuclear industry because their mechanical properties to high doses of ionizing radiation is maintained. Because of this, epoxy adhesives are widely used in nuclear applications: nuclear power plants, aerospace components, radioactive sealed sources to medicine, radioactive waste immobilization. In the present work, the performance of a diglycidyl ether of bisphenol ether A (DGEBA) was analyzed. Tensile tests of adhesive single lap joints bonded with epoxy were performed. The environmental effect of ultraviolet (UV) exposure was observed in the mechanical reaction of PolyAnchor 4100 HT. In particular, maximum load decreases slightly in aggressive environment. It is possible to conclude the material is proper to use in internal and external areas, mainly due to the easy application when compared to welded joints with similar strength. The easy application reduces the workers exposure time to ionizing radiation. (author)

  11. Fatigue behavior of thick composite single lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.H.; Sridhar, I.; Srikanth, N. [Nanyang Technological Univ., Singapore (Singapore)

    2012-07-01

    In consideration of bondline thickness variability, in bonded joints where thick adherend is adopted, relative thick adhesive layer (2-5 mm) is preferable. This paper aims to give some insight in fatigue strength of adhesively bonded structures involving thick adherend coupled with thick adhesive layer. Single lap joints with nominal adherend thickness of 8 mm and two different nominal thicknesses (2.5 mm and 5.5 mm) were made and tested under fatigue loading. The failure mode exhibits always a tendency for interfacial initiation, followed by interlaminar separation. Fatigue strength for higher adhesive thickness is found to be lower. (Author)

  12. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    Science.gov (United States)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  13. Review on failure prediction techniques of composite single lap joint

    Energy Technology Data Exchange (ETDEWEB)

    Ab Ghani, A.F., E-mail: ahmadfuad@utem.edu.my; Rivai, Ahmad, E-mail: ahmadrivai@utem.edu.my [Faculty of Mechanical Engineering, Locked Bag 1200, Hang Tuah Jaya, 75450 Ayer Keroh, Melaka (Malaysia)

    2016-03-29

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint. The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.

  14. Review on failure prediction techniques of composite single lap joint

    International Nuclear Information System (INIS)

    Ab Ghani, A.F.; Rivai, Ahmad

    2016-01-01

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint. The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.

  15. Effects of composite adherend properties on stresses in double lap bonded joints

    International Nuclear Information System (INIS)

    Mokhtari, M.; Madani, K.; Belhouari, M.; Touzain, S.; Feaugas, X.; Ratwani, M.

    2013-01-01

    Highlights: ► We analysis the maximal stresses distribution in the adhesive and the adherend for double lap joint. ► We modified the mechanical properties of adherend layer to decreases the stresses in adhesive layer. ► Then, we analysis the influence of modifying the types of fibers on maximal stresses distributions. ► We analysis the thickness modifications of some layers on maximal stresses distribution. ► In last, we analysis the combination of different modifications on maximal stresses distribution. -- Abstract: The effects of composite layer stiffness, thickness and ply orientations on stresses in the adhesive layer of a double lap bonded joint are investigated using three-dimensional finite element analysis code ABAQUS. A special 3-layer modelling technique is used in the finite element analysis. The non-linear behaviour of adhesive is also considered. Six composite laminates with different ply orientations are used in the lap-joint analysis. The composite materials considered in the analysis are – carbon epoxy, boron epoxy, T300/934 graphite-epoxy, and aramid epoxy. The analysis results indicate that the maximum stress in the adhesive can be significantly reduced by changing the stiffness and fibre orientations in the composite layer. Also, the use of hybrid composite (changing the nature of the fibres in two layers which are near the adhesive layer) results in reducing adhesive shear stresses.

  16. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Habibah; Ye, Lin [Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Zhang, Ming-Qiu [Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Zhongshan University, Guangzhou 510275 (China)

    2016-03-09

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  17. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    International Nuclear Information System (INIS)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    2016-01-01

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  18. Impact damage response of natural stitched single lap-joint in composite structures

    International Nuclear Information System (INIS)

    Ghasemnejad, H.; Argentiero, Y.; Tez, T.A.; Barrington, P.E.

    2013-01-01

    Highlights: • To study the impact resistance of single lap-joints in composite structures. • To improve the impact resistance of stitched single lap joints using natural Flax yarn. • To investigate the effect of stitching on the damage process of composite materials. • To develop FE techniques to model the impact process of composite structures using LSDYNA. - Abstract: In this paper the damage behaviour of natural stitched composite single lap-joints are investigated under low velocity impact loading conditions. For this study, the laminated hybrid composite beams were pinned using Flax yarns before curing process. The Charpy impact test was chosen to study the energy absorbing capability of single lap composite joints. Composite beams were fabricated from combination of glass/epoxy and carbon/epoxy composites. It was shown that composite beams which are stitched through the thickness are able to absorb more energy in comparison with adhesive bonded composite joints in the hybrid composite beams. The Charpy impact test of stitched composite single lap joint was also simulated by finite element analysis using software LS-DYNA and the results verified with relevant experimental data

  19. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    Directory of Open Access Journals (Sweden)

    Song Chunsheng

    2017-01-01

    Full Text Available The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhesive layer was achieved by finite element software ABAQUS. The fiber Bragg grating was embedded in the adherend between the first and second layers at the end of the adhesive layer to calculate the reflection spectrum of fiber Bragg grating sensor region with improved T-matrix method for reconstruction of the adherend strain profile of fiber Bragg grating sensing area with the help of genetic algorithm. According to the reconstruction results, the maximum error between the ideal and reconstructed strain profile under different tension loads did not exceed 7.43%, showing a good coincidence degree. The monitoring method of the stiffness degradation evolution of adhesive layer of the carbon fiber–reinforced plastic single-lap joint based on the reconstruction of the adherend strain profile of fiber Bragg grating sensing area thus was figured out.

  20. Experimental Study on Steel to FRP Bonded Lap Joints in Marine Applications

    Directory of Open Access Journals (Sweden)

    Çiçek Özes

    2015-01-01

    Full Text Available Steel structures coated with fiber-reinforced polymer (FRP composites have gained wide acceptance in marine industry due to their high strength-to-weight ratio, good protection from environmental degradation, and impact loads. In this study, adhesive bonding performance of single-lap bonded joints composed of steel coated with FRP has been investigated experimentally for three different surface roughness and two epoxy types. Single-lap bonded joints have been tested under tensile loading. The adhesive bonding performance has been evaluated by calculating the strain energy values. The results reveal that the surface roughness of steel has a significant effect on the bonding performance of steel to FRP combinations and the performance of the resin can be improved by using the primer in an economical way.

  1. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    OpenAIRE

    Song Chunsheng; Zhang Jiaxiang; Yang Mo; Shang Erwei; Zhang Jinguang

    2017-01-01

    The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhes...

  2. Fatigue strength of a single lap joint SPR-bonded

    International Nuclear Information System (INIS)

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-01-01

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints.The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  3. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG

    International Nuclear Information System (INIS)

    Ning, Xiaoguang; Murayama, Hideaki; Kageyama, Kazuro; Wada, Daichi; Kanai, Makoto; Ohsawa, Isamu; Igawa, Hirotaka

    2014-01-01

    In this study, the dynamic strain distribution measurement of an adhesive-bonded single-lap joint was carried out in a cyclic load test using a fiber Bragg grating (FBG) sensor embedded into the adhesive/adherend interface along the overlap length direction. Unidirectional carbon fiber reinforced plastic (CFRP) substrates were bonded by epoxy resin to form the joint, and the FBG sensor was embedded into the surface of one substrate during its curing. The measurement was carried out with a sampling rate of 5 Hz by the sensing system, based on the optical frequency domain reflectometry (OFDR) throughout the test. A finite element analysis (FEA) was performed for the measurement evaluation using a three-dimensional model, which included the embedded FBG sensor. The crack detection method, based on the longitudinal strain distribution measurement, was introduced and performed to estimate the cracks that occurred at the adhesive/adherend interface in the test. (paper)

  4. Fatigue properties of dissimilar metal laser welded lap joints

    Science.gov (United States)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  5. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams...

  6. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    Science.gov (United States)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  7. Adhesives: Test Method, Group Assignment, and Categorization Guide for High-Loading-Rate Applications Preparation and Testing of Single Lap Joints (Ver. 2.2, Unlimited)

    Science.gov (United States)

    2016-04-01

    the characteristics of these data and relationships among their corresponding entities, supporting one or more application areas.”2 Digital...application, and cure) of an adhesive with unfamiliar handling characteristics . Fig. 2 Surface treating the lap-joint coupon panel using the acetone...bonding surface. It is crucial to not touch the treated tabs (specifically, the bonding area), even with gloves, after treatment is completed. Bake

  8. Single-Lap-Joint Screening of Hysol EA 9309NA Epoxy Adhesive

    Science.gov (United States)

    2017-05-01

    Acknowledgments This research was supported in part by the US Army Education Outreach Programs (Science and Engineering Apprentice Program and College...useful for estimating downstream logistical phase- out risk based on current and pending environmental regulations . Second-tier testing consists of...was used to ensure that the breaking load of single-lap-joint samples fell between 15% and 85% of the cell’s full-scale capacity. A crosshead speed

  9. Effect of epoxy resin and hardener containing microcapsules on healing efficiency of epoxy adhesive based metal joints

    International Nuclear Information System (INIS)

    Khan, Nazrul Islam; Halder, Sudipta; Goyat, M.S.

    2016-01-01

    Dual component microcapsules of epoxy resin and polyamine hardener with polymethyl methacrylate (PMMA) shell were synthesized using a water-oil-water emulsion solvent evaporation method. The high concentration of sodium dodecyl sulfate (SDS) was used to reduce the thickness of shell wall of dual component microcapsules. The dual microcapsules of 1:1 weight ratio were introduced in the epoxy adhesive to study the healing effect. The morphology, chemical structure and thermal characteristics of the microcapsules were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. The insertion of dual component microcapsules in epoxy matrix reduced the lap shear strength of adhesive joints, which may be attributed to the generation of stress concentration cites because of micron sized capsules. However, the extension and absorbed failure energy of adhesive joints under uniaxial loading increased with the increase of concentration of dual microcapsules. The viscoelastic nature of the dual microcapsules may be responsible for this enhancement. Significant enhancement in the healing efficiency (90.93%) of the joints was achieved for 10 wt% of dual microcapsules. The crack pinning and crack blunting mechanisms at the vicinity of the crack path adjacent to the microcapsules were found responsible for significant enhancement in the healing efficiency of the adhesive joints. - Highlights: • High SDS concentration was used to control the dual component microcapsules shell wall thickness. • Self-healing performance of dual component microcapsules reinforced epoxy adhesive based single lap joints was studied. • 90.93% of the damage healing was achieved for self-healing adhesive based single lap joints. • Increase in concentration of microcapsules reduces the lap shear properties of the self-healing joints.

  10. Effect of epoxy resin and hardener containing microcapsules on healing efficiency of epoxy adhesive based metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nazrul Islam [Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam (India); Halder, Sudipta, E-mail: shalder@nits.ac.in [Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam (India); Goyat, M.S. [Department of Physics, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007 (India)

    2016-03-01

    Dual component microcapsules of epoxy resin and polyamine hardener with polymethyl methacrylate (PMMA) shell were synthesized using a water-oil-water emulsion solvent evaporation method. The high concentration of sodium dodecyl sulfate (SDS) was used to reduce the thickness of shell wall of dual component microcapsules. The dual microcapsules of 1:1 weight ratio were introduced in the epoxy adhesive to study the healing effect. The morphology, chemical structure and thermal characteristics of the microcapsules were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. The insertion of dual component microcapsules in epoxy matrix reduced the lap shear strength of adhesive joints, which may be attributed to the generation of stress concentration cites because of micron sized capsules. However, the extension and absorbed failure energy of adhesive joints under uniaxial loading increased with the increase of concentration of dual microcapsules. The viscoelastic nature of the dual microcapsules may be responsible for this enhancement. Significant enhancement in the healing efficiency (90.93%) of the joints was achieved for 10 wt% of dual microcapsules. The crack pinning and crack blunting mechanisms at the vicinity of the crack path adjacent to the microcapsules were found responsible for significant enhancement in the healing efficiency of the adhesive joints. - Highlights: • High SDS concentration was used to control the dual component microcapsules shell wall thickness. • Self-healing performance of dual component microcapsules reinforced epoxy adhesive based single lap joints was studied. • 90.93% of the damage healing was achieved for self-healing adhesive based single lap joints. • Increase in concentration of microcapsules reduces the lap shear properties of the self-healing joints.

  11. Degradation of Epoxy-Steel Single Lap Joints Immersed in Water

    DEFF Research Database (Denmark)

    Goglio, L; Rezaei, Mohsen

    2015-01-01

    Exposure to environmental factors, especially moisture, is recognized as the major cause of degradation of adhesive joints. In this work, complementing a previous study on exposure to moisture, single lap joints were subjected to immersion in water, up to five weeks, at room temperature and 50 °C....... The material of the adherends was mild steel, and the adhesive was a bi-component epoxy. The specimens were fabricated using the open-face technique. Mechanical testing at the end of the relevant period of immersion showed an initial loss of ultimate load, after one week at 50 °C or two at room temperature......; then, the strength remained practically constant over the remaining time. The loss was more accentuated after immersion at 50 °C, about 70%, than at room temperature, about 30%. Also a reduction in stiffness of the joints was measured, again dramatic (about 70%) after immersion at 50 °C, moderate...

  12. THE EFFECT OF DEGREASING ON ADHESIVE JOINT STRENGTH

    Directory of Open Access Journals (Sweden)

    Anna Rudawska

    2017-03-01

    Full Text Available The paper investigates the effect of degreasing, a surface preparation methods in adhesive bonding, on adhesive joint strength. 5 types of degreasing agents were used in the study: acetone, extraction naphtha, Ultramyt, Wiko and Loctite 7061. The degreasing operation was performed by three methods: rubbing, spraying and immersion. Strength tests were performed on single-lap adhesive joints of hot-dip galvanized metal sheets made with Loctite 9466 adhesive according to the above variants of surface preparation. The experimental results demonstrate that adhesive joint strength is significantly affected by the applied degreasing agent. Moreover, the method of application of the degreasing agent is crucial, too. The results of strength testing reveal that the most effective degreasing method for hot-dip galvanized metal sheet adhesive joints is spraying using extraction naphtha. Thereby degreased samples have the highest immediate strength and shear strength. The use of extraction naph-tha is also effective in combination with degreasing by rubbing; however, it is not effective when used in combi-nation with immersion, as reflected in the lowest strength results.

  13. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors

    Science.gov (United States)

    Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha

    2016-01-01

    Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496

  14. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    Science.gov (United States)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  15. Reliability Analysis of Adhesive Bonded Scarf Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik

    2012-01-01

    element analysis (FEA). For the reliability analysis a design equation is considered which is related to a deterministic code-based design equation where reliability is secured by partial safety factors together with characteristic values for the material properties and loads. The failure criteria......A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... are formulated using a von Mises, a modified von Mises and a maximum stress failure criterion. The reliability level is estimated for the scarfed lap joint and this is compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. A convergence study is performed to validate...

  16. Riveted Lap Joints in Aircraft Fuselage Design, Analysis and Properties

    CERN Document Server

    Skorupa, Andrzej

    2012-01-01

    Fatigue of the pressurized fuselages of transport aircraft is a significant problem all builders and users of aircraft have to cope with for reasons associated with assuring a sufficient lifetime and safety, and formulating adequate inspection procedures. These aspects are all addressed in various formal protocols for creating and maintaining airworthiness, including damage tolerance considerations. In most transport aircraft, fatigue occurs in lap joints, sometimes leading to circumstances that threaten safety in critical ways. The problem of fatigue of lap joints has been considerably enlarged by the goal of extending aircraft lifetimes. Fatigue of riveted lap joints between aluminium alloy sheets, typical of the pressurized aircraft fuselage, is the major topic of the present book. The richly illustrated and well-structured chapters treat subjects such as: structural design solutions and loading conditions for fuselage skin joints; relevance of laboratory test results for simple lap joint specimens to rive...

  17. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    International Nuclear Information System (INIS)

    Kwon, Oh Yang; Kim, Tae Hyun

    1999-01-01

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  18. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Kwon Oh Yang [Dept. of Mechanical Engineering, Inje Univesity, Kimhae (Korea, Republic of)

    1999-05-15

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E{sub 0}) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  19. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Yang; Kim, Tae Hyun [Inha University, Incheon (Korea, Republic of)

    1999-12-15

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  20. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    International Nuclear Information System (INIS)

    Kim, Tae Hyun; Kwon Oh Yang

    1999-01-01

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E 0 ) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  1. Creep simulation of adhesively bonded joints using modified generalized time hardening model

    Energy Technology Data Exchange (ETDEWEB)

    Sadigh, Mohammad Ali Saeimi [Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2016-04-15

    Creep behavior of double lap adhesively bonded joints was investigated using experimental tests and numerical analysis. Firstly, uniaxial creep tests were carried out to obtain the creep characteristics and constitutive parameters of the adhesive at different stress and temperature levels. Generalized time hardening model was used to predict the creep behavior of the adhesive. This model was modified to simulate the creep behavior at different stress and temperature levels. Secondly, the developed model was used to simulate the creep behavior of bonded joints using finite element based numerical analysis. Creep deformations of the joints were measured experimentally and good agreement was observed in comparison with the results obtained using numerical simulation. Afterward, stress redistribution due to the creep along the adhesively bonded joint was obtained numerically. It was observed that temperature level had a significant effect on the stress redistribution along the adhesive thickness.

  2. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  3. A Fracture-Based Criterion for Debonding Strength of Adhesive-Bonded Double-Strap Steel Joints

    Directory of Open Access Journals (Sweden)

    Prawit Santisukpotha

    2012-01-01

    Full Text Available This paper addresses the debonding strength of adhesive-bonded double-strap steel joints. A fracture-based criterion was formulated in terms of a stress singularity parameter, i.e., the stress intensity factor, which governs the magnitude of a singular stress field near the joint ends. No existing crack was assumed. A total of 24 steel joint specimens were tested under constant amplitude fatigue loadings at stress ratio of 0.2 and frequency of 2 Hz. The joint stiffness ratio was slightly less than one to control the maximum adhesive stresses at the joint ends. To detect the debonding, a simple and practical technique was developed. The test results showed that the interfacial failure near the steel/adhesive corner was a dominant failure mode. The failure was brittle and the debonding life was governed by the crack initiation stage. The finite element analysis was employed to calculate the stress intensity factors and investigate the effects of the adhesive layer thickness, lap length and joint stiffness ratio on the debonding strength.

  4. MSD in fuselage lap joints: Requirements for inspection intervals for typical fuselage lap joint panels with Multiple Site Damage

    Science.gov (United States)

    Wit, G. P.

    1992-07-01

    Inspection of failed aircraft structures and fractography on fatigue specimens showed that after a high number of flights, cracks can appear simultaneously in riveted lap joints. When these crack tips approach each other, a mutual interaction causes an unexpected fast crack growth and new coalescence of cracks. The term Multiple Site Damage (MSD) is used when the mutual interaction of two or more damages is noticeable. A model to predict the fatigue life of a riveted lap joint and the minimum necessary inspection interval for safe aircraft operation is presented. The program was developed to simulate the fatigue process and aircraft inspection. Input for this analysis are scatter data for initiation, the stress distribution between frames and the geometry of the structure. Methods that can be used to avoid accidents due to MSD are reviewed. A test program to support the analysis is described.

  5. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    Science.gov (United States)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  6. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    Science.gov (United States)

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives.

  7. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints

    Science.gov (United States)

    Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng

    2017-10-01

    This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.

  8. Investigation of corrosion behavior of Mg-steel laser-TIG hybrid lap joints

    International Nuclear Information System (INIS)

    Liu Liming; Xu Rongzheng

    2012-01-01

    Highlights: ► Galvanic corrosion increases the corrosion rate of the Mg-steel joint. ► Fe splashes lower the corrosion resistance of the joint greatly. ► The effect of grain refinement on the corrosion behavior of the joint is slight. ► Ni or Cu interlayer could not improve the corrosion resistance of fusion zone. ► The arc-sprayed coating could enhance the reliability of weld joint. - Abstract: The paper investigates the corrosion behavior of the lap joint of AZ31 magnesium alloy to Q235 steel with salt solution immersion testing and electrochemical testing. It is demonstrated that grain refinement resulting from the welding process has little effect on the corrosion behavior of the lap joint. However, the cathodic phases formed in the welding process and the galvanic corrosion between magnesium alloy and steel decrease the corrosion resistance of the joint greatly. Besides, neither Cu nor Ni, as filler material, could improve the corrosion resistance of the joint, but the arc-sprayed Al coating acting as a protective layer could.

  9. Investigation of corrosion behavior of Mg-steel laser-TIG hybrid lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Liu Liming, E-mail: liulm@dlut.edu.cn [Key Laboratory of Liaoning Advanced Welding and Joining Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Xu Rongzheng [Key Laboratory of Liaoning Advanced Welding and Joining Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Galvanic corrosion increases the corrosion rate of the Mg-steel joint. Black-Right-Pointing-Pointer Fe splashes lower the corrosion resistance of the joint greatly. Black-Right-Pointing-Pointer The effect of grain refinement on the corrosion behavior of the joint is slight. Black-Right-Pointing-Pointer Ni or Cu interlayer could not improve the corrosion resistance of fusion zone. Black-Right-Pointing-Pointer The arc-sprayed coating could enhance the reliability of weld joint. - Abstract: The paper investigates the corrosion behavior of the lap joint of AZ31 magnesium alloy to Q235 steel with salt solution immersion testing and electrochemical testing. It is demonstrated that grain refinement resulting from the welding process has little effect on the corrosion behavior of the lap joint. However, the cathodic phases formed in the welding process and the galvanic corrosion between magnesium alloy and steel decrease the corrosion resistance of the joint greatly. Besides, neither Cu nor Ni, as filler material, could improve the corrosion resistance of the joint, but the arc-sprayed Al coating acting as a protective layer could.

  10. Comparative Analysis of Welded and Adhesive Joints Strength Made of Acid-Resistant Stainless Steel Sheets

    Directory of Open Access Journals (Sweden)

    Izabela Miturska

    2017-12-01

    Full Text Available The article presents the selected results of strength tests on the effectiveness of bonding high-alloy steel 1.4310. Sheet steel is one of the materials that are difficult to activate energy. Effective joining of it is difficult, requires selection of the appropriate bonding technology. The paper focuses on the comparative tests the shear strength of one-single lap welded and bonded joints. The welding process was performed 3 groups of samples TIG welding and argon, where the variable value of the welding process was current: 60A, 70A, 80A. The adhesion process was performed in 6 groups of samples which differed in the method of surface preparation and the type of the adhesive. Adhesive joints were made by using adhesive of epoxy resin and a hardener: Epidian 61/TFF at a mass ratio of 100:22 and Epidian 61/IDA at a mass ratio of 100:40. As a way of surface preparation applied 3 different, but simplified and environmentally friendly methods of surface preparation: degreasing with using cleaner Loctite 7061, abrasive machining with P320 and degreasing and grinding with abrasive T800 and degreasing were used. Make joints and curing the adhesive joints were carried out at ambient temperature. Analyzed the joints were tested destructive - which set out the shear strength, in accordance with DIN EN 1465 on the testing machine Zwick / Roell Z150. Based on the results of research it was found that better results were obtained for the maximum welded joints, but this result was similar to the maximum value of the strength of the adhesive bond.

  11. Effect of adhesive thickness on adhesively bonded T-joint

    International Nuclear Information System (INIS)

    Abdullah, A R; Afendi, Mohd; Majid, M S Abdul

    2013-01-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding

  12. Lap-joint testing of precoated steel materials

    Directory of Open Access Journals (Sweden)

    Chico, B.

    2003-12-01

    Full Text Available In industry, particularly in the building construction, lap-joint technology for precoated steel sheet materials has undergone rapid development. However, standars for lap-joint testing are lacking. This work analyses the behaviour of four precoated steel materials commonly used in the building industry: 55 % Al-Zn and hot dip galvanized, painted and unpainted. Two-year atmospheric exposure tests have been carried out in Madrid and Avilés (Spain, complemented by accelerated weathering tests in climatic cabinets. The latter have consisted of two salt fog/humidity/drying cycles: VDA cycle 621-415 and the "CENIM cycle", which has been designed to adequately simulate the behaviour of materials in this type of joints.

    En la industria en general y, particularmente, en la industria de la construcción, las tecnologías sobre uniones solapadas han experimentado un rápido desarrollo. Sin embargo, no son abundantes los ensayos para este tipo de uniones. Este trabajo analiza el comportamiento de cuatro materiales de acero pre-recubierto comúnmente usados en la industria de la construcción: 55 % Al-Zn y galvanizado por inmersión en caliente, con recubrimiento orgánico y sin él. Se han realizado ensayos de exposición natural durante dos años en las atmósferas de Madrid y Avilés (España, complementados con ensayos de envejecimiento acelerado en cámaras climáticas. En estos últimos se han ensayado dos ciclos de proyección niebla salina/humedad/secado: ciclo VDA 621-415 y un ciclo desarrollado en el CENIM diseñado.

  13. Microstructure and mechanical properties of friction stir lap welded Mg/Al joint assisted by stationary shoulder

    Science.gov (United States)

    Ji, Shude; Li, Zhengwei

    2017-11-01

    Using magnesium alloy as upper sheet, 3 mm-thick AZ31 magnesium alloy and 6061 aluminum alloy were joined using friction stir lap welding assisted by stationary shoulder. The effects of tool rotating speed on cross-sections, microstructure and mechanical properties of Mg/Al lap joints were mainly discussed. Results showed that stationary shoulder contributed to joint formation, by which stir zones (SZ) were characterized by big onion rings after welding. Because of the big forging force exerted by stationary shoulder, the upper region of hook was well bonded. SZ showed much higher hardness because of intermetallic compounds (IMCs). The bonding conditions at the base material (BM)/SZ interface at advancing side and the hook region played important roles on joint lap shear properties. The X-ray diffraction pattern analysis revealed that the main IMCs were Al3Mg2 and Al12Mg17.

  14. Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes

    Directory of Open Access Journals (Sweden)

    Giuseppina Barra

    2017-09-01

    Full Text Available The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs with Polyhedral Oligomeric Silsesquioxane (POSS compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS to Tetraglycidyl Methylene Dianiline (TGMDA epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA, single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints.

  15. Influence of Interface Gap on the Stress Behaviour of Smart Single Lap Joints Under Time Harmonic Load

    Directory of Open Access Journals (Sweden)

    Ivanova Jordanka

    2017-06-01

    Full Text Available Adhesive joints are frequently used in different composite structures due to their improved mechanical performance and better understanding of the failure mechanics. The application of such structures can be seen in aerospace and high technology components. The authors developed and applied modified shear lag analysis to investigate the hygrothermalpiezoelectric response of a smart single lap joint at environmental conditions (with/without an interface gap along the overlap zone and under dynamic time harmonic mechanical and electric loads. The main key is the study of the appearance of possible delamination along the interface. As illustrative examples, the analytical closed form solution of the structure shear and the axial stresses response, as well as the interface debond length, including influence of mechanical, piezoelectric, thermal characteristics and frequencies is performed and discussed. All results are presented in figures. The comparison of the shear stress and electric fields for both cases of overlap zone (continuous or with a gap is also shown in figures and discussed.

  16. Behavior of single lap composite bolted joint under traction loading: Experimental investigation

    Science.gov (United States)

    Awadhani, L. V.; Bewoor, Anand

    2018-04-01

    Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.

  17. Friction Stir Welding-assisted Diffusion Bond of Al/Zn/Mg Lap Joint

    Directory of Open Access Journals (Sweden)

    JIN Yu-hua

    2018-03-01

    Full Text Available Dissimilar materials welding between 2mm-thick AZ31B Mg alloy and 6061 Al alloy plates in overlap form was performed using the friction stir-induced diffusion bond with zinc foil as the interlayer. The microstructure and mechanical properties of the Al/Zn/Mg lap joints were analyzed by means of SEM, EPMA, XRD, tensile experiment and Vickers hardness test. The results show that diffusion layer consists of Al enrichment zone, Al5Mg11Zn4 layer and Mg-Zn eutectic zone at proper rotation speed; however, when rotation speed is low, the residual zinc interlayer remains in the diffusion layer; when rotation speed is high, the Al-Mg intermetallic compounds are present again. Due to the existence of intermetallic compounds in diffusion layer, its microhardness is significantly higher than that of base metal. The addition of zinc foil can improve the mechanical properties of Al/Mg lap joints. According to analysis on the fracture, joint failure occurs in the diffusion layer near to Al side.

  18. Functionally Graded Adhesives for Composite Joints

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  19. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration

    Science.gov (United States)

    Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan

    2012-10-01

    Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.

  20. Microstructures and mechanical properties of magnesium alloy and stainless steel weld-joint made by friction stir lap welding

    International Nuclear Information System (INIS)

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng

    2012-01-01

    Highlights: → Friction stir lap welding technology with cutting pin was successfully employed to form lap joint of magnesium and steel. → The cutting pin made the lower steel participate in deformation and the interface was no longer flat. → A saw-toothed structure formed due to a mechanical mixing of the magnesium and steel was found at the interface. → A high-strength joint was produced which fractured in the magnesium side. -- Abstract: Friction stir lap welding was conducted on soft/hard metals. A welding tool was designed with a cutting pin of rotary burr made of tungsten carbide, which makes the stirring pin possible to penetrate and cut the surface layer of the hard metal. Magnesium alloy AZ31 and stainless steel SUS302 were chosen as soft/hard base metals. The structures of the joining interface were analyzed by scanning electron microscopy (SEM). The joining strength was evaluated by tensile shear test. The results showed that flower-like interfacial morphologies were presented with steel flashes and scraps, which formed bonding mechanisms of nail effect by long steel flashes, zipper effect by saw-tooth structure and metallurgical bonding. The shear strength of the lap joint falls around the shear strength of butt joint of friction stir welded magnesium alloy.

  1. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072 (China); Fu, Li, E-mail: fuli@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072 (China); Liang, Pei; Liu, Fenjun [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072 (China)

    2017-03-15

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electron backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.

  2. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    International Nuclear Information System (INIS)

    Chen, Haiyan; Fu, Li; Liang, Pei; Liu, Fenjun

    2017-01-01

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electron backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.

  3. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  4. Dissimilar joining of galvanized high-strength steel to aluminum alloy in a zero-gap lap joint configuration by two-pass laser welding

    International Nuclear Information System (INIS)

    Ma, Junjie; Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-01-01

    Highlights: • Defect-free two-pass laser partially penetrated lap joint of galvanized steel to aluminum was achieved. • The thickness of the Al-rich intermetallic compounds could be controlled by optimal parameters. • The dynamic behavior of the molten pool and keyhole were monitored by a high speed charge-coupled device camera. • The presence of zinc in the intermetallic compounds could improve the strength of the lap joints. - Abstract: A welding procedure based on using two-pass laser scans is introduced for dissimilar joining of overlapped galvanized high-strength dual-phase (DP) steel DP590 to aluminum alloy (AA) 6061 sheets. The first pass is based on a defocused laser spot that scans across the top of the two overlapped sheets and heats the zinc coating at the faying surface to be melted and partially vaporized, while the second pass is executed with a focused laser spot in order to perform the welding. Completely defect-free galvanized steel to aluminum lap joints were obtained by using this two-pass laser welding procedure. An on-line machine vision system was applied to monitor the keyhole dynamics during the laser welding process. An energy-dispersive X-ray spectroscopy (EDS) was carried out to determine the atomic percent of zinc, aluminum, and iron in the galvanized steel to aluminum lap joints. Mechanical testing and micro-hardness test were conducted to evaluate the mechanical properties of the galvanized steel to aluminum lap joints. The experimental results showed that the lap joint of galvanized steel to aluminum obtained by the two-pass laser welding approach had a higher failure value than those joints obtained when the zinc at the faying surface was mechanically removed under the same welding speed and laser power

  5. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    Science.gov (United States)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  6. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    International Nuclear Information System (INIS)

    Okafor, A. C.; Natarajan, S.

    2007-01-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented

  7. The Effect of Wetting Gravity Regime on Shear Strength of SAC and Sn-Pb Solder Lap Joints

    Science.gov (United States)

    Sona, Mrunali; Prabhu, K. Narayan

    2017-09-01

    The failure of solder joints due to imposed stresses in an electronic assembly is governed by shear bond strength. In the present study, the effect of wetting gravity regime on single-lap shear strength of Sn-0.3Ag-0.7Cu and Sn-2.5Ag-0.5Cu solder alloys reflowed between bare copper substrates as well as Ni-coated Cu substrates was investigated. Samples were reflowed for 10 s, T gz (time corresponding to the end of gravity regime) and 100 s individually and tested for single-lap shear strength. The single-lap shear test was also carried out on eutectic Sn-Pb/Cu- and Sn-Pb/Ni-coated Cu specimens to compare the shear strength values obtained with those of lead-free alloys. The eutectic Sn-Pb showed significantly higher ultimate shear strength on bare Cu substrates when compared to Sn-Ag-Cu alloys. However, SAC alloys reflowed on nickel-coated copper substrate exhibited higher shear strength when compared to eutectic Sn-Pb/Ni-coated Cu specimens. All the substrate/solder/substrate lap joint specimens that were reflowed for the time corresponding to the end of gravity regime exhibited maximum ultimate shear strength.

  8. Bearing Stress at Failure of Double-Lap Hybrid Joints in Woven Fabric Kenaf Fiber Composite Plates under Quasi-static Loading

    Directory of Open Access Journals (Sweden)

    Lee Sim Yee

    2017-01-01

    Full Text Available The present paper is focused on the bearing stress at failure of double-lap woven fabric kenaf fiber reinforced polymer (KFRP hybrid bonded-bolted joints in experimental frameworks. The effects of different normalized plate width (plate width/hole diameter, W/d, lay-up types and bolt loads were incorporated in current study as specified in testing series. Generally, hybrid joint coupons separated within adhesive layer prior to net-tension failure or bearing/net-tension failure. The bearing stress at failure increased as W/d ratio increment, critical W/d is given as four and three in clamped and finger tight condition respectively. Lay-up types present insignificant effect to bearing stress at failure due to low volume fiber fraction in kenaf fiber composites. Combination of thicker and clamped conditions plate demonstrated greater bearing stress than equivalent finger-tight (FT conditions due to higher load transferred from friction, as expected.

  9. Bonded Joints with “Nano-Stitches”: Effect of Carbon Nanotubes on Load Capacity and Failure Modes

    Directory of Open Access Journals (Sweden)

    Henrique N. P. Oliva

    Full Text Available Abstract Carbon nanotubes were employed as adhesive reinforcement/nano-stitches to aluminum bonded joints. The CNT addition to an epoxy adhesive not only lead to an increase on load capacity but it is also the most probable cause of the mixed failure mode (adhesive/cohesive. The damage evolution was described as the stiffness decrease and the failure mixed modes were related to the load capacity. Although the presence of CNT cluster were observed, in small concentrations (< 1.0 wt. %, these clusters acted as crack stoppers and lead to an increase on lap joint shear strength. The addition of 2.0 wt. % carbon nanotubes lead to an increase on load capacity of approximately 116.2 % when the results were compared against the single lap joints without carbon nanotubes.

  10. Seawater Durability of Nano-Montmorillonite Modified Single-Lap Joining Epoxy Composite Laminates

    OpenAIRE

    ULUS, Hasan; KAYBAL, Halil Burak; DEMİR, Okan; TATAR, Ahmet Caner; SENYURT, Muhammed Ali; AVCI, Ahmet

    2018-01-01

    The objective of this study was to investigate of nano-montmorillonite modified epoxy composite single-lap bonded joints, after being exposed to seawater immersion in order to understand the effect of seawater environment on their performance. To prepare the nano adhesives, nano montmorillonite (2 wt %) was incorporated into epoxy resin. Composite bonded specimens which manufactured with VARIM (Vacuum Assisted Resin Infusion Method) were prepared accordance with ASTM D5868-01 and immersed in ...

  11. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents – Part II: Numerical simulation

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, Nicholas G.

    2013-01-01

    This work is focused on the numerical simulation of experimentally tested single lap joints, based on cohesive zone modeling techniques. Seven cases have been considered for analysis. The models were built in a 3-dimensional finite element space. The adherents were modeled with continuum elements...... the developed peel, in-plane and out-of-plane shear stresses over the adhesive area. Thus, the global measured response of all cases was justified by examining the stress fields and their variation through the loading history. © 2012 Elsevier Ltd. All rights reserved....

  12. Lap shear strength of selected adhesives (epoxy, varnish, B-stage glass cloth) in liquid nitrogen and at room temperature

    International Nuclear Information System (INIS)

    Froelich, K.J.; Fitzpatrick, C.M.

    1976-12-01

    The adhesives included several epoxy resins, a varnish, and a B-stage glass cloth (a partially cured resin in a fiberglass cloth matrix). Several parameters critical to bond strength were varied: adhesive and adherend differences, surface preparation, coupling agents, glass cloth, epoxy thickness, fillers, and bonding pressure and temperature. The highest lap shear strengths were obtained with the B-shear glass cloth at both liquid nitrogen and room temperatures with values of approximately 20 MPa (3000 psi) and approximately 25.5 MPa (3700 psi) respectively

  13. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    to be determined in several different ways. The accuracy of different ways of measuring residual stresses in the adhesive was tested by applying five different methods on a single sandwich test specimen (laminate/adhesive/laminate) that was instrumented with strain gauges and fiber Bragg gratings. Quasi...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  14. Numerical and Experimental Characterization of a Composite Secondary Bonded Adhesive Lap Joint Using the Ultrasonics method

    Science.gov (United States)

    Kumar, M. R.; Ghosh, A.; Karuppannan, D.

    2018-05-01

    The construction of aircraft using advanced composites have become very popular during the past two decades, in which many innovative manufacturing processes, such as cocuring, cobonding, and secondary bonding processes, have been adopted. The secondary bonding process has become less popular than the other two ones because of nonavailability of process database and certification issues. In this article, an attempt is made to classify the quality of bonding using nondestructive ultrasonic inspection methods. Specimens were prepared and tested using the nondestructive ultrasonic Through Transmission (TT), Pulse Echo (PE), and air coupled guided wave techniques. It is concluded that the ultrasonic pulse echo technique is the best one for inspecting composite secondary bonded adhesive joints.

  15. Mixed-mode fatigue fracture of adhesive joints in harsh environments and nonlinear viscoelastic modeling of the adhesive

    Science.gov (United States)

    Arzoumanidis, Alexis Gerasimos

    A four point bend, mixed-mode, reinforced, cracked lap shear specimen experimentally simulated adhesive joints between load bearing composite parts in automotive components. The experiments accounted for fatigue, solvent and temperature effects on a swirled glass fiber composite adherend/urethane adhesive system. Crack length measurements based on compliance facilitated determination of da/dN curves. A digital image processing technique was also utilized to monitor crack growth from in situ images of the side of the specimen. Linear elastic fracture mechanics and finite elements were used to determine energy release rate and mode-mix as a function of crack length for this specimen. Experiments were conducted in air and in a salt water bath at 10, 26 and 90°C. Joints tested in the solvent were fully saturated. In air, both increasing and decreasing temperature relative to 26°C accelerated crack growth rates. In salt water, crack growth rates increased with increasing temperature. Threshold energy release rate is shown to be the most appropriate design criteria for joints of this system. In addition, path of the crack is discussed and fracture surfaces are examined on three length scales. Three linear viscoelastic properties were measured for the neat urethane adhesive. Dynamic tensile compliance (D*) was found using a novel extensometer and results were considerably more accurate and precise than standard DMTA testing. Dynamic shear compliance (J*) was determined using an Arcan specimen. Dynamic Poisson's ratio (nu*) was extracted from strain gage data analyzed to include gage reinforcement. Experiments spanned three frequency decades and isothermal data was shifted by time-temperature superposition to create master curves spanning thirty decades. Master curves were fit to time domain Prony series. Shear compliance inferred from D* and nu* compared well with measured J*, forming a basis for finding the complete time dependent material property matrix for this

  16. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    Science.gov (United States)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-07-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included

  17. Effect of friction stir lap welding conditions on joint strength of aluminium alloy 6060

    International Nuclear Information System (INIS)

    Yazdanian, S; Chen, Z W

    2009-01-01

    Strength of lap joints made by friction stir welding (FSW) depends strongly on how material flows forming the weld nugget zone during FSW and also on how the joint is loaded during testing. Understanding of this processing-property relationship is currently inadequate. In this study, the effects of pin length, welding speed and rotation rate on weld strength using aluminium alloy 6060 were investigated. It has been found that the pin length needed to be slightly greater than the thickness of the sheet for an adequate joint to be established. However, further increase in pin length did not benefit the joint strength. The major factor affecting joint strength has been found to be the rotation speed. An increase in rotation speed resulted in lowering the joint strength. Various modes of fracture have been observed and these modes relate to the degree of hooking and softening. Explanation of how the speed values relate to heat input and material flow and then to the joint strength is given.

  18. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    Science.gov (United States)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  19. Detection of fastener loosening in simple lap joint based on ultrasonic wavefield imaging

    Science.gov (United States)

    Gooda Sahib, M. I.; Leong, S. J.; Chia, C. C.; Mustapha, F.

    2017-12-01

    Joints in aero-mechanical structures are critical elements that ensure the structural integrity but they are prone to damages. Inspection of such joints that have no prior baseline data is really challenging but it can be possibly done using the Ultrasonic Propagation Imager (UPI). The feasibility of applying UPI for detection of loosened fastener is investigated in this study. A simple lap joint specimen made by connecting two pieces of 2.5mm thick SAE304 stainless steel plates using five M6 screws and nuts has been used in this study. All fasteners are tightened to 10Nm but one of them is completely loosened to simulate the damage. The wavefield data is processed into ultrasonic wavefield propagation video and a series of spectral amplitude images. The spectral images showed noticeable amplitude difference at the loosened fastener, hence confirmed the feasibility of using UPI for structural joints inspection. A simple contrast maximization method is also introduced to improve the result.

  20. Corrosion Performance of Friction Stir Linear Lap Welded AM60B Joints

    Science.gov (United States)

    Kish, J. R.; Birbilis, N.; McNally, E. M.; Glover, C. F.; Zhang, X.; McDermid, J. R.; Williams, G.

    2017-11-01

    A corrosion investigation of friction stir linear lap welded AM60B joints used to fabricate an Mg alloy-intensive automotive front end sub-assembly was performed. The stir zone exhibited a slightly refined grain size and significant break-up and re-distribution of the divorced Mg17Al12 (β-phase) relative to the base material. Exposures in NaCl (aq) environments revealed that the stir zone was more susceptible to localized corrosion than the base material. Scanning vibrating electrode technique measurements revealed differential galvanic activity across the joint. Anodic activity was confined to the stir zone surface and involved initiation and lateral propagation of localized filaments. Cathodic activity was initially confined to the base material surface, but was rapidly modified to include the cathodically-activated corrosion products in the filament wake. Site-specific surface analyses revealed that the corrosion observed across the welded joint was likely linked to variations in Al distribution across the surface film/metal interface.

  1. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic...

  2. Polyurethane structural adhesives applied in automotive composite joints

    Directory of Open Access Journals (Sweden)

    Josue Garcia Quini

    2012-06-01

    Full Text Available In recent years structural adhesives technology has demonstrated great potential for application due to its capacity to transform complex structures into solid unitary and monolithic assemblies using different materials. Thus, seams or joints integrate these structures providing, besides a reduction in weight, a considerable increase in the mechanical resistance and stiffness. The increase in the industrial use of structural adhesives is mainly due to their ability to efficiently bond different materials in an irreversible manner, even replacing systems involving mechanical joints. In the automobile industry structural adhesives have been widely used for the bonding of metal substrates, thermoplastics and composites, frequently employing these in combination, particularly glass fiber and polyester resin composites molded using RTM and SMC processes. However, the use of urethane structural adhesives in applications involving composites and thermoplastics has been the subject of few investigations. In this study the effects of temperature and time on the shear strength of RTM, SMC and ABS joints, applying temperatures of -40, 25, 80, 120 and 177 °C and times of 20 minutes and 500 hours, were determined. The objective was to evaluate the performance under extreme conditions of use in order to assess whether these joints could be used in passenger or off-road vehicles. The results showed that the urethane structural adhesive promoted the efficient bonding of these materials, considering that due to the high adhesive strength the failures occurred in the substrates without adversely affecting the bonded area. For each test condition the joint failure modes were also determined.

  3. Data Collection Protocols for Adhesive Testing Results Using the Materials Selection and Analysis Tool

    Science.gov (United States)

    2012-06-01

    processing envelope will also be equally broad, as the Army employs thermosetting , thermoplastic, paste, and film adhesives cured using a variety of...Testing ASTM D 1002 13 was the basis standard used for the single-lap-joint testing. Aluminum adherends ( Alloy 2024-T3) were used with dimensions of...Surface Preparation of Aluminum Alloys to Be Adhesively Bonded in Honeycomb Shelter Panels." ASTM International, West Conshohocken, PA, 2001, DOI

  4. Structural assessment of a lapped scarf joint applied to historical timber constructions in central Europe

    Czech Academy of Sciences Publication Activity Database

    Kunecký, Jiří; Hasníková, Hana; Kloiber, Michal; Milch, J.; Sebera, V.; Tippner, J.

    2018-01-01

    Roč. 12, č. 4 (2018), s. 666-682 ISSN 1558-3058 R&D Projects: GA MK(CZ) DG16P02M026 Keywords : carpentry * design limit state * lap joint * numerical modeling * stiffness Subject RIV: AL - Art, Architecture, Cultural Heritage OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 1.053, year: 2016 https://www.tandfonline.com/doi/full/10.1080/15583058.2018.1442524

  5. 3D finite element analysis of stress distributions and strain energy release rates for adhesive bonded flat composite lap shear joints having pre-existing delaminations

    Energy Technology Data Exchange (ETDEWEB)

    Parida, S. K.; Pradhan, A. K. [Indian Institute of Technology, Bhubaneswar (India)

    2014-02-15

    The rate of propagation of embedded delamination in the strap adherend of lap shear joint (LSJ) made of carbon/epoxy composites has been evaluated employing three-dimensional non-linear finite elements. The delamination has been presumed to pre-exist in the thin resin layer between the first and second plies of the strap adherend. The inter-laminar peel and shear stress distributions have been studied in details and are seen to be predominantly three-dimensional in nature. The components of strain energy release rate (SERR) corresponding to the opening, sliding and cross sliding modes of delamination are significantly different at the two fronts of the embedded delamination. The sequential release of multi-point constraint (MPC) finite elements in the vicinity of the delamination fronts enables to simulate the growth of the delamination at either ends. This simulation procedure can be utilized effectively for evaluation of the status of the structural integrity of the bonded joints.

  6. Adhesion quality of glued joints from different commercial wood species

    Directory of Open Access Journals (Sweden)

    Alexandre Miguel do Nascimento

    2013-12-01

    Full Text Available The objective of this study was to determine the effect of wood density, adhesive type and gluing pressure on the shear strength of glued joints of fourteen commercial wood species. Wood pieces were classified in three density classes (Class 1: less than 0.55 g cm-3; Class 2: from 0.55 to 0.75 g cm-3; and Class 3: greater than 0.75 g cm-3 and joints bonded with two adhesives: polyvinyl acetate (PVA and urea-formaldehyde (UF, under two different pressures: 6 and 12 kgf cm-2. Glued joints bonded with PVA adhesive presented higher shear strength than those bonded with UF adhesive. For percentage of wood failure, the PVA adhesive had the best performance, however, only Classes 1 and 2 reached the values required by ASTM 3110 standard. Glued joints from Class 3, bonded with UF adhesive, did not reach the values of solid wood. The gluing pressure of 12 kgf cm-2 was more efficient for Class 3, for both shear strength and percentage of wood failure.

  7. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  8. Increasing the Strength of Adhesively Bonded Joints by Tapering the Adherends

    International Nuclear Information System (INIS)

    GUESS, TOMMY R.; METZINGER, KURT E.

    1999-01-01

    Wind turbine blades are often fabricated with composite materials. These composite blades are frequently attached to a metallic structure with an adhesive bond. For the baseline composite-to-steel joint considered in this study, failure typically occurs when the adhesive debonds from the steel adherend. Previous efforts established that the adhesive peel stresses strongly influence the strength of these joints for both single-cycle and fatigue loading. This study focused on reducing the adhesive peel stresses present in these joints by tapering the steel adherends. Several different tapers were evaluated using finite element analysis before arriving at a final design. To confirm that the selected taper was an improvement to the existing design, the baseline joint and the modified joint were tested in both compression and tension. In these axial tests, the compressive strengths of the joints with tapered adherends were greater than those of the baseline joints for both single-cycle and low-cycle fatigue. In addition, only a minor reduction in tensile strength was observed for the joints with tapered adherends when compared to the baseline joints. Thus, the modification would be expected to enhance the overall performance of this joint

  9. Study on transparency of adhesive joints of scintillation strips on the polyester basis

    International Nuclear Information System (INIS)

    Bondarenko, V.G.; Grigor'ev, V.A.; Kaplin, V.A.; Gushchin, V.V.; Prikhodchenko, N.N.; Silina, T.S.; Finashina, T.L.

    1979-01-01

    Optical transparency of adhesive joints of polyester-base scintillators is studied. To realize the optical contact between two scintillation strips of the 400x80x20 mm and 300x80x20 mm dimensions the following substances are used: KV-3 vaseline, 21-03V elastosyl adhesive and VK-14 adhesive. Using an installation for measuring adhesive joint transparency the dependence of the photomultiplier signal amplitude on the β-source coordinates is obtained. It is experimentally found that light losses on the adhesive joints were 8% for the VK-14 and elastosyl adhesives, and 10% for the VK-3 vase-line. The measurement error is +-1%. On the basis of the results obtained the conclusion is made that for adhesion of the scintillation detectors on the polyester basis the 21-03V elastosyl for detachable joints and the VK-14 adhesive - for permanent joints adhesive can be used. It is noted that while using the VK-14 adhesive it is necessary to pay attention to thorough preparation of the adhesive surfaces and provision of the necessary pressure during adhesion (not less than 2-3 kg/cm 2 ) [ru

  10. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    Science.gov (United States)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  11. Analysis on the Fracture of Al-Cu Dissimilar Materials Friction Stir Welding Lap Joint

    Science.gov (United States)

    Sun, Hongyu; Zhou, Qi; Zhu, Jun; Peng, Yong

    2017-12-01

    Friction stir welding (FWS) is regarded as a more plausible alternative to other welding methods for Al-Cu dissimilar joining. However, the structure of an FSW joint is different from others. In this study, lap joints of 6061 aluminum alloy and commercially pure copper were produced by FSW, and the effects of rotation rate on macromorphology, microstructure and mechanical properties were investigated. In addition, a fracture J integral model was used to analyze the effect of microstructure on the mechanical properties. The results revealed that the macrodefect-free joints were obtained at a feed rate of 150 mm/min and 1100 rpm and that the failure load of the joint reached as high as 4.57 kN and only reached 2.91 kN for the 900 rpm, where tunnel defects were identified. Particle-rich zones composed of Cu particles dispersed in an Al matrix, and "Flow tracks" were observed by the EDS. The J integral results showed that the microdefects on the advancing side cause serious stress concentration compared with the microdefects located on the Al-Cu interface, resulting in the fracture of the joints.

  12. The strength research of the adhesive joints of sheet structures ...

    African Journals Online (AJOL)

    The research results of stress-strained condition of constructional sheet materials are given in the article. The strength dependence on type, configuration and sizes of adhesive joints is analyzed. The research of the strength dependence was made on the samples from bakelite plywood with the main types of adhesive joints ...

  13. Accelerated Comparative Fatigue Strength Testing of Belt Adhesive Joints

    Science.gov (United States)

    Bajda, Miroslaw; Blazej, Ryszard; Jurdziak, Leszek

    2017-12-01

    Belt joints are the weakest link in the serial structure that creates an endless loop of spliced belt segments. This affects not only the lower strength of adhesive joints of textile belts in comparison to vulcanized splices, but also the replacement of traditional glues to more ecological but with other strength parameters. This is reflected in the lowered durability of adhesive joints, which in underground coal mines is nearly twice shorter than the operating time of belts. Vulcanized splices require high precision in performance, they need long time to achieve cross-linking of the friction mixture and, above all, they require specialized equipment (vulcanization press) which is not readily available and often takes much time to be delivered down, which means reduced mining output or even downtime. All this reduces the reliability and durability of adhesive joints. In addition, due to the consolidation on the Polish coal market, mines are joined into large economic units serviced by a smaller number of processing plants. The consequence is to extend the transport routes downstream and increase reliability requirements. The greater number of conveyors in the chain reduces reliability of supply and increases production losses. With high fixed costs of underground mines, the reduction in mining output is reflected in the increase in unit costs, and this at low coal prices on the market can mean substantial losses for mines. The paper describes the comparative study of fatigue strength of shortened samples of adhesive joints conducted to compare many different variants of joints (various adhesives and materials). Shortened samples were exposed to accelerated fatigue in the usually long-lasting dynamic studies, allowing more variants to be tested at the same time. High correlation between the results obtained for shortened (100 mm) and traditional full-length (3×250 mm) samples renders accelerated tests possible.

  14. Tool geometry, rotation and travel speeds effects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints

    International Nuclear Information System (INIS)

    Mohammadi, J.; Behnamian, Y.; Mostafaei, A.; Gerlich, A.P.

    2015-01-01

    Highlights: • Tool geometry, rotation and travel speeds show great effect on the microstructure stability of FSW joint. • Increasing rotation and travel speeds resulted in increasing the tensile strength and ductility of the joints. • Better intermixing between Al/Mg alloys was obtained by tapered threaded pin. • A mechanical interlocking mechanism proposed for higher ductility and superior tensile properties in FSW joints. - Abstract: Lap joint friction stir welding (FSW) between dissimilar AZ31B and Al 6061 alloys sheets was conducted using various welding parameters including tool geometry, rotation and travel speeds. Tapered threaded pin and tapered pin tools were applied to fabricate FSW joints, using different rotation and travel speeds. Metallurgical investigations including X-ray diffraction pattern (XRD), optical microscopy images (OM), scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM–EDS) and electron probe microanalysis (EPMA) were used to characterize joints microstructures made with different welding parameters. Intermetallic phases were detected in the weld zone (WZ). Various microstructures were observed in the stir zone which can be attributed to using different travel and rotation speeds. Mechanical evaluation including lap shear fracture load test and microhardness measurements indicated that by simultaneously increasing the tool rotation and travel speeds, the joint tensile strength and ductility reached a maximum value. Microhardness studies and extracted results from stress–strain curves indicated that mechanical properties were affected by FSW process. Furthermore, phase analyses by XRD indicated the presence of intermetallic compounds in the weld zone. Finally, in the Al/Mg dissimilar weld, fractography studies showed that intermetallic compounds formation in the weld zone had an influence on the failure mode

  15. Experimental characterization and numerical simulation of riveted lap-shear joints using Rivet Element

    Science.gov (United States)

    Vivio, Francesco; Fanelli, Pierluigi; Ferracci, Michele

    2018-03-01

    In aeronautical and automotive industries the use of rivets for applications requiring several joining points is now very common. In spite of a very simple shape, a riveted junction has many contact surfaces and stress concentrations that make the local stiffness very difficult to be calculated. To overcome this difficulty, commonly finite element models with very dense meshes are performed for single joint analysis because the accuracy is crucial for a correct structural analysis. Anyhow, when several riveted joints are present, the simulation becomes computationally too heavy and usually significant restrictions to joint modelling are introduced, sacrificing the accuracy of local stiffness evaluation. In this paper, we tested the accuracy of a rivet finite element presented in previous works by the authors. The structural behaviour of a lap joint specimen with a rivet joining is simulated numerically and compared to experimental measurements. The Rivet Element, based on a closed-form solution of a reference theoretical model of the rivet joint, simulates local and overall stiffness of the junction combining high accuracy with low degrees of freedom contribution. In this paper the Rivet Element performances are compared to that of a FE non-linear model of the rivet, built with solid elements and dense mesh, and to experimental data. The promising results reported allow to consider the Rivet Element able to simulate, with a great accuracy, actual structures with several rivet connections.

  16. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    Science.gov (United States)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-10-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions.

  17. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    International Nuclear Information System (INIS)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-01-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions. (paper)

  18. Experimental Investigation and Finite Element Analysis on Fatigue Behavior of Aluminum Alloy 7050 Single-Lap Joints

    Science.gov (United States)

    Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou

    2018-03-01

    The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.

  19. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rajendrana C.

    2017-01-01

    Full Text Available AA2014 aluminum alloy (Al-Cu alloy has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE, analysis of variance (ANOVA, response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  20. Environment influence on the solidity of the adhesive joint

    Directory of Open Access Journals (Sweden)

    Vladimír Válek

    2006-01-01

    Full Text Available In this paper “Environment influence on the solidity of the adhesive joint” I have dealt with the utilization of the bonding metals and practising experimental laboratory tests of adhesive joints depending on different laboratory environments and anticorrosive protection of the samples.For this laboratory tests I have chosen a universal adhesive. It is a two-component epoxy adhesive with suitable conditions for bonding metals. The samples were made from steel and were produced by the standard ČSN EN 1465. After the bonding and the cure procedure the samples were exposed in H20 environment for exact intervals (parts of the samples were painted by anticorrosive painting. After the exposition I have examinated the solidity of the adhesive joint in shearing stress on the measuring instrument Zwick 050. The samples were compared with etalon that were exposed to no environment.Results of the particular measuring were described into the graphs and were recorded the break down maximum force. When the samples were broken down I have taken a photo of it, which is in the appendix.

  1. Effects of the curing pressure on the torsional fatigue characteristics of adhesively bonded joints

    International Nuclear Information System (INIS)

    Hwang, Hui Yun; Kim, Byung Jung; Lee, Dai Gil

    2004-01-01

    Adhesive joints have been widely used for fastening thin adherends because they can distribute the load over a larger area than mechanical joints, require no hole, add very little weight to the structure and have superior fatigue resistance. However, the fatigue characteristics of adhesive joints are much affected by applied pressure during curing operation because actual curing temperature is changed by applied pressure and the adhesion characteristics of adhesives are very sensitive to manufacturing conditions. In this study, cure monitoring and torsional fatigue tests of adhesive joints with an epoxy adhesive were performed in order to investigate the effects of the applied pressure during curing operation. From the experiments, it was found that the actual curing temperature increased as the applied pressure increased, which increased residual thermal stress in the adhesive layer. Therefore, the fatigue life decreased as the applied pressure increased because the mean stress during fatigue tests increased due to the residual thermal stress

  2. Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro.

    Directory of Open Access Journals (Sweden)

    Ok Kyung Koo

    Full Text Available BACKGROUND: Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. METHODOLOGY/PRINCIPAL FINDINGS: The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (Lbp(LAP to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to Lbp(LAP for 1, 4, 15, or 24 h significantly (P<0.05 reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, Lbp(LAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. Lbp(LAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, Lbp(LAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. CONCLUSIONS/SIGNIFICANCE: Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, Lbp(LAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise

  3. Finger jointing green southern yellow pine with a soy-based adhesive

    Science.gov (United States)

    Philip H. Steele; Roland E. Kreibicha; Petrus J. Steynberg; Richard W. Hemingway

    1998-01-01

    The authors present results of laboratory tests for a soy-based adhesive to bond southern yellow pine using the finger-jointing method. There was some reason to suspect that finger jointing of southern yellow pine (SYP) with the honeymoon system using soy-based adhesive might prove more difficult than for western species. The Wood Handbook classes western species in...

  4. Fracture analysis of adhesive joints in wind turbine blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert

    2015-01-01

    Modern wind turbine rotor blades are usually made from fibre-reinforced composite subcomponents. In the final assembly stage, these subcomponents are bonded together by several adhesive joints. One important adhesive joint is situated at the trailing edge, which refers to the downstream edge where...... the air-flow rejoins and leaves the blade. Maintenance inspections of wind turbine rotor blades show that among other forms of damage, local debonding of the shells along the trailing edge is a frequent failure type. The cause of trailing edge failure in wind turbine blades is complex, and detailed...

  5. Comparison of Corner-Butt 45 (Cb-45 and Corner-Lap (Cl joints in friction stir welding

    Directory of Open Access Journals (Sweden)

    Setiawan Widia

    2018-01-01

    Full Text Available The 10 mm thick Aluminum 6061 plates have been corner joined using varied design and those were 45° Corner Butt and Corner Lap Joints (CB-45 & CL. Friction tool was hardened EMS 45. True experimental method was used with independent parameters is feed rate which varied at 10 mm/min, 15 mm/min and 30 mm/min respectively. Other parameter such as rotating speed was kept constant. Experiment results show that, CB-45 yields better properties than CL. The tensile strength of CB-45 reaches 163.7 MPa for 10 mm/min feed rate. Whilst CL produces joint with tensile strength equal 120 MPa for equal parameters. Microstructure observation showed that CB-45 produces fine and homogenous appearance of MgO compared to CL. This phenomenon is caused by the pin of CB-45 joint which fully penetrates the nugget zone which is not found in CL design. This microstructure in turn promotes higher tensile strength of CB-45.

  6. Nondestructive evaluation of adhesive joints by C-scan ultrasonic testing

    International Nuclear Information System (INIS)

    Zeighami, Mehdi; Honarvar, Farhang

    2009-01-01

    Evaluation of the quality of adhesive bonding is an important issue in many industries who incorporate adhesive joints in their products. Over the past few decades, numerous acoustical techniques have been developed for nondestructive testing (NDT) of adhesively bonded joints. Among these techniques, the ultrasonic pulse-echo method is the most promising means for inspection of adhesive bonds. In practice, due to low impedance matching between adhesive and metal, the discrimination of a good bond from a bad bond is difficult. The low impedance matching also results in low contrast between perfect and disbanded zone in a C-scan image. In this paper, the quality of the interface between aluminum and epoxy is investigated by using an in-house built ultrasonic C-scan system. Two adhesion indices are proposed for producing C-scan images. To verify the capability of these indices, an adhesively bonded sample was fabricated using aluminum plates and epoxy. An artificial defect was implanted in the first interface of the specimens. The C-scan measurement prepared based on the proposed indices was able to reveal the defect much better than the C-scan image prepared by conventional approach. (author)

  7. Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-05-01

    The effect of surface oxide layer existing at the lap-joint faying surface of magnesium sheets is investigated on the keyhole dynamics of the weld pool and weld bead qualities. It is observed that by removing the oxide layer from the faying surface of the lap joint, a high quality weld can be achieved in the laser welding process. However, the presence of an oxide layer deteriorates the quality of the weld by forming pores at the interface of the two overlapped sheets. The purpose of this paper is to identify the correlation between the integrity of the weld and the interaction between the laser and material. A spectroscopy sensor was applied to detect the spectra emitted from a plasma plume during the laser welding of AZ31B magnesium alloy in a zero-gap lap joint configuration. The electron temperature was calculated by applying a Boltzmann plot method based on the detected spectra, and the correlation between the pore formation and the spectral signals was studied. The laser molten pool and the keyhole condition were monitored in real-time by a high speed charge-coupled device (CCD) camera. A green laser was used as an illumination source in order to detect the influence of the oxide layer on the dynamic behavior of the molten pool. Results revealed that the detected spectrum and weld defects had a meaningful correlation for real-time monitoring of the weld quality during laser welding of magnesium alloys.

  8. Self Diagnostic Adhesive for Bonded Joints in Aircraft Structures

    Science.gov (United States)

    2016-10-04

    validated under the fatigue /dynamic loading condition. 3) Both SEM (Spectral Element Modeling) and FEM (Finite Element Modeling) simulation of the...between input voltage and output charge provide the real and imaginary impedance as illustrated in Figure 3. (a) Adhesive + plate (ΩS) PZT (ΩP...3 m m 0.45mm Adhesive 3.18mm dia. PZT disc (0.25mm thick) 8 Self-Diagnostic Adhesive for Bonded Joints in Aircraft Structures

  9. Shear Pressed Aligned Carbon Nanotubes and their use as Composite and Adhesive Interlayers

    Science.gov (United States)

    Stahl, James Joseph, III

    fiber nonwoven. A SPS falls into a short fiber nonwoven and is studied as a non-infused, infused, and infused functionalized interleaf in unidirectional carbon fiber composites for GIC improvement over non-interleaved samples. As with traditional interleaving studies it is possible to decrease delamination fracture toughness as well as increase, and the reasons for either are not always clear. While the SPS interleaves are promising to resist delamination, the scatter of the results make it an unreliable method of improvement. While these studies showed significant variability in effect of the interleaf, given the correct morphology of the SPS and precise measurement during the DCB testing it is possible to improve fracture toughness significantly with all SPS interleaves. A unique fabrication method is used to incorporate the SPS interleaves into lap joint and double strap joint geometries using a prepreg lay-up fabrication similar to forming the DCB specimens. This allowed study of the use of the SPS interleaf as an adhesive layer without the need to develop a SPS adhesive film that would not fail prematurely due to poor adhesion to cured composite panels. Results showed that improvement in GIC is not directly translated into improvement in joint strength. Lap joints showed a higher relationship between GIC than double strap joints likely due to the specimen geometry that results in the adhesive layer of lap joints failing in tension rather than shear.

  10. Computed vs. conventional radiography for detecting fatigue cracks in riveted lap joints of aeronautical grade hybrid fiber-metal laminate Glare

    International Nuclear Information System (INIS)

    Tarpani, J.R.; Hideki Shinohara, A.; Da Silva, R.R.; Do Val Lacerda, N.

    2007-01-01

    This study aimed at assessing the capability of three different radiographic approaches (two computed or digital, and one conventional or analogous) for imaging fatigue cracks in riveted lap joints of composite fiber-metal laminate Glare. These structural joints are unique in the sense that fatigue cracks develop mainly at the faying surfaces of Glare sheets, so that visual detection is largely prevented and nondestructive inspection becomes mandatory. For this purpose, a round-robin programme comprising several industrial and research centers that employ X-ray radiography routinely to inspect high-demanding equipments, components and structures was conducted. (authors)

  11. A feasibility study for experimentally determining dynamic force distribution in a lap joint

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Randall Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    Developing constitutive models of the physics in mechanical joints is currently stymied by inability to measure forces and displacements within the joint. The current state of the art estimates whole joint stiffness and energy loss per cycle from external measured force input and one or two acceleration responses. To validate constitutive models beyond this state requires a measurement of the distributed forces and displacements at the joint interface. Unfortunately, introducing measurement devices at the interface completely disrupts the desired physics. A feasibility study is presented for a non-intrusive method of solving for the interface dynamic forces from an inverse problem using full field measured responses. The responses come from the viewable surface of a beam. The noise levels associated with digital image correlation and continuous scanning laser Doppler velocimetry are evaluated from typical beam experiments. Two inverse problems are simulated. One utilizes the extended Sum of Weighted Accelerations Technique (SWAT). The second is a new approach dubbed the method of truncated orthogonal forces. These methods are much more robust if the contact patch geometry is well identified. Various approaches to identifying the contact patch are investigated, including ion marker tracking, Prussian blue and ultrasonic measurements. A typical experiment is conceived for a beam which has a lap joint at one end with a single bolt connecting it to another identical beam. In a virtual test using the beam finite element analysis, it appears that the SWAT inverse method requires evaluation of too many coefficients to adequately identify the force distribution to be viable. However, the method of truncated orthogonal forces appears viable with current digital image correlation (and probably other) imaging techniques.

  12. Bio-inspired design of geometrically interlocked 3D printed joints

    Science.gov (United States)

    Kumar, S.; Oliva, Noel; Kumar's Lab Team

    The morphology of the adhesive-adherend interface significantly affects the mechanical behavior of adhesive joints. As seen in some biocomposites like human skull, or the nacre of some bivalve molluscs' shells, a geometrically interlocking architecture of interfaces creates toughening and strengthening mechanisms enhancing the mechanical properties of the joint. In an attempt to characterize this mechanical interlocking mechanism, this study is focused on computational and experimental investigation of a single-lap joint with a very simple geometrically interlocked interface design in which both adherends have a square waveform configuration of the joining surfaces. This square waveform configuration contains a positive and a negative rectangular teeth per cycle in such a way that the joint is symmetric about the mid-bondlength. Both physical tests performed on 3D printed prototypes of joints and computational results indicate that the joints with square waveform design have higher strength and damage tolerance than those of joints with flat interface. In order to identify an optimal design configuration of this interface, a systematic parametric study is conducted by varying the geometric and material properties of the non-flat interface. This work was supported by Lockheed Martin (Award No: 12NZZ1).

  13. An evaluation of the lap-shear test for Sn-rich solder/Cu couples: Experiments and simulation

    Science.gov (United States)

    Chawla, N.; Shen, Y.-L.; Deng, X.; Ege, E. S.

    2004-12-01

    The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.

  14. Experimental Strength of Single-Lap Hybrid Joints on Woven Fabric Kenaf Fiber Composites Under Quasi Static Condition

    Directory of Open Access Journals (Sweden)

    Yee Lee Sim

    2016-01-01

    Full Text Available For the past decades, usage of natural fiber reinforced composites in low bearing load applications are increasing tremendously due to drawbacks concerning the use of synthetic fibers. Kenaf fibers have a good potential to be used as composite reinforcements as they possesses excellent fiber strength compared to own self-weight. Current work concentrates on mechanical properties of woven fabric kenaf composites with single-lap hybrid joints configurations. Four width to diameter ratio, (W/d of cross-ply lay-up joints as designed in testing series were tested by using quasi static mechanical testing. Experimental results showed that the failure load increased with the increasing of W/d ratios. Thinner lay-up had better bearing strength compared to thicker lay-up as found in current study.

  15. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Ruan, Hongjiang; Fan, Cunyi; Zeng, Bingfang; Wang, Chunyang; Wang, Xiang

    2010-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which extracellular signal-regulated kinase (ERK)2 is considered to be crucial. Based on these theories, we examined the effects of a lentivirus-mediated small interfering RNA (siRNA) targeting ERK2 on the suppression of joint adhesion formation in vivo. The effects were assessed in vivo from different aspects including the adhesion score, histology and joint contracture angle. We found that the adhesions in the ERK2 siRNA group became soft and weak, and were easily stretched. Accordingly, the flexion contracture angles in the ERK2 siRNA group were also reduced (P < 0.05 compared with the control group). The animals appeared healthy, with no signs of impaired wound healing. In conclusion, local delivery of a lentivirus-mediated siRNA targeting ERK2 can ameliorate joint adhesion formation effectively and safely.

  16. Impact of cold temperatures on the shear strength of Norway spruce joints glued with different adhesives

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2015-01-01

    As wood construction increasingly uses engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives used. Bondline strength is a crucial issue for engineered wood applications, especially in cold climates. In this study, Norway spruce (Picea abies) joints (150 mm...... adhesive was tested at six temperatures: 20, −20, −30, −40, −50 and −60 °C. Generally, within the temperature test range, temperature changes significantly affected the shear strength of solid wood and wood joints. As the temperature decreased, the shear strength decreased. PUR adhesive in most cases...... resulted in the strongest shear strength and MUF adhesive resulted in the weakest. MF and PRF adhesives responded to temperature changes in a similar manner to that of the PUR adhesive. The shear strengths of wood joints with PVAc and EPI adhesives were more sensitive to temperature change. At low...

  17. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading: Arcan Test Study and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-01-01

    Full Text Available The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress, and combination of both. To realize these stress states in the adhesively-bonded joint during tests, a specific loading device is developed with the capacity of providing six different loading angles, which are 0°(pure tension, 18°, 36°, 54°, 72° and 90°(pure shear. Failure modes of adhesively-bonded joints are investigated. It indicates that, for the pure shear loading, the failure mode is the cohesive failure (near the interface between the adhesive layer and the steel support in the adhesive layer. For the pure tensile and combined loading conditions, the failure mode is the combination of fiber breaking, FRP delamination and interfacial adhesion failure between the FRP sandwich deck and the adhesive layer. The load-bearing capacities of adhesive joints under combined loading are much lower than those of the pure tensile and pure shear loading conditions. According to the test results of six angle loading conditions, a tensile/shear failure criterion of the adhesively-bonded joint is obtained. By using Finite Element (FE modeling method, linear elastic simulations are performed to characterize the stress distribution throughout the adhesively-bonded joint.

  18. Possibilities of Belzona Adhesive Joints Application for Austenitic Steel Used in Ship Constructions

    Directory of Open Access Journals (Sweden)

    Wojciech Jurczak

    2017-12-01

    Adhesive joints of 304 and 2xx steel using Hysol 9466 adhesive made in laboratory conditions showed better durability properties than the ones made with the use of Belzona 1111 composite. However, in case of emergency connections the bonding strength as well as the bonding time (hardening are important factors. The use of the special Belzona 1212 (for wet surfaces gives a relatively good durability of approx. 20MPa with a much shorter (up to 20 minutes hardening time and does not require such an accurate surface preparation as the adhesive joints made with the use of Hysol 9466.

  19. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints

    Directory of Open Access Journals (Sweden)

    Davood Askari and Mehrdad N Ghasemi-Nejhad

    2012-01-01

    Full Text Available The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength using carbon nanotubes (CNTs as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  20. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints.

    Science.gov (United States)

    Askari, Davood; Ghasemi-Nejhad, Mehrdad N

    2012-08-01

    The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength) using carbon nanotubes (CNTs) as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  1. Behavior of an epoxy-polysulfide adhesive in wood joints exposed to moisture content changes

    Science.gov (United States)

    Gordon P. Krueger

    1965-01-01

    The mechanical behavior of a flexible epoxy-resin adhesive system was observed in joints of plywood to lumber. The joints were subjected to internal swelling stresses caused by an increase in moisture content. Previous experimental work at the U.S. Forest Products Laboratory has shown that this adhesive system acts as a strain-absorbing cushion and thus has a...

  2. Supramolecular Cross-Links in Poly(alkyl methacrylate) Copolymers and Their Impact on the Mechanical and Reversible Adhesive Properties.

    Science.gov (United States)

    Heinzmann, Christian; Salz, Ulrich; Moszner, Norbert; Fiore, Gina L; Weder, Christoph

    2015-06-24

    Hydrogen-bonded, side-chain-functionalized supramolecular poly(alkyl methacrylate)s were investigated as light- and temperature-responsive reversible adhesives that are useful for bonding and debonding on demand applications. Here, 2-hydroxyethyl methacrylate (HEMA) was functionalized with 2-ureido-4[1H]pyrimidinone (UPy) via a hexamethylenediisocyanate (HMDI) linker, to create a monomer (UPy-HMDI-HEMA) that serves to form supramolecular cross-links by way of forming quadruple hydrogen bonded dimers. UPy-HMDI-HEMA was copolymerized with either hexyl methacrylate or butyl methacrylate to create copolymers comprising 2.5, 5, or 10 mol % of the cross-linker. The mechanical properties of all (co)polymers were investigated with stress-strain experiments and dynamic mechanical analysis. Furthermore, the adhesive properties were studied at temperatures between 20 and 60 °C by testing single lap joints formed with stainless steel substrates. It was found that increasing the concentration of the UPy-HMDI-HEMA cross-linker leads to improved mechanical and adhesive properties at elevated temperatures. Concurrently, the reversibility of the bond formation remained unaffected, where rebonded samples displayed the same adhesive strength as regularly bonded samples. Debonding on demand abilities were also tested exemplarily for one copolymer, which for light-induced debonding experiments was blended with a UV-absorber that served as light-heat converter. Single lap joints were subjected to a constant force and heated or irradiated with UV light until debonding occurred. The necessary debonding temperature was comparable for direct heating and UV irradiation and varied between 28 and 82 °C, depending on the applied force. The latter also influenced the debonding time, which under the chosen conditions ranged from 30 s to 12 min.

  3. Abnormal accumulation of intermetallic compound at cathode in a SnAg3.0Cu0.5 lap joint during electromigration

    International Nuclear Information System (INIS)

    Li Mingyu; Chang Hong; Pang Xiaochao; Wang Ling; Fu Yonggao

    2011-01-01

    Interfacial reactions in a SnAg 3.0 Cu 0.5 /Cu lap joint for naked and encompassed specimens were investigated contrastively under electric current stressing. After applying a constant direct current at 6.5 A for 144 h, an abnormal accumulation of bulk Cu 6 Sn 5 intermetallic compound was found at the cathode for the naked specimen. But normal polarization phenomenon arose for the encompassed specimen at the same current density for 504 h. The abnormal accumulation phenomenon was explained by the mechanism that thermomigration and stress migration induced by temperature gradient dominated the migration process. A three-dimensional joint simulation model was designed to demonstrate how current crowding and temperature gradient can enhance the local atomic flux.

  4. Experimental and Numerical Investigations of Fretting Fatigue Behavior for Steel Q235 Single-Lap Bolted Joints

    Directory of Open Access Journals (Sweden)

    Yazhou Xu

    2016-01-01

    Full Text Available This work aims to investigate the fretting fatigue life and failure mode of steel Q235B plates in single-lap bolted joints. Ten specimens were prepared and tested to fit the S-N curve. SEM (scanning electron microscope was then employed to observe fatigue crack surfaces and identify crack initiation, crack propagation, and transient fracture zones. Moreover, a FEM model was established to simulate the stress and displacement fields. The normal contact stress, tangential contact stress, and relative slipping displacement at the critical fretting zone were used to calculate FFD values and assess fretting fatigue crack initiation sites, which were in good agreement with SEM observations. Experimental results confirmed the fretting fatigue failure mode for these specimens. It was found that the crack initiation resulted from wear regions at the contact surfaces between plates, and fretting fatigue cracks occurred at a certain distance away from hole edges. The proposed FFD-N relationship is an alternative approach to evaluate fretting fatigue life of steel plates in bolted joints.

  5. Debonding characteristics of adhesively bonded woven Kevlar composites

    Science.gov (United States)

    Mall, S.; Johnson, W. S.

    1988-01-01

    The fatigue damage mechanism of an adhesively bonded joint between fabric reinforced composite adherends was investigated with cracked-lap-shear specimens. Two bonded systems were studied: fabric Kevlar 49/5208 epoxy adherends bonded together with either EC 3445 or FM-300 adhesive. For each bonded system, two specimen geometries were tested. In all specimens tested, fatigue damage occurred in the form of cyclic debonding; however, the woven Kevlar specimens gave significantly slower debond growth rates and higher fracture toughness than previously found in the nonwoven adherend specimens. The surfaces for the woven adherends were not smooth; rather, they had regular crests (high spots) and troughs (low spots) due to the weave pattern. Radiographs of the specimens and examination of their failure surfaces revealed that fiber bridging occurred between the crests of the two adherends in the debonded region. The observed improvements in debond growth resistance and static fracture toughness are attributed to this bridging.

  6. Even between-lap pacing despite high within-lap variation during mountain biking.

    Science.gov (United States)

    Martin, Louise; Lambeth-Mansell, Anneliese; Beretta-Azevedo, Liane; Holmes, Lucy A; Wright, Rachel; St Clair Gibson, Alan

    2012-09-01

    Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean±SD age=27.2±5.0 y, stature=176.8±8.1 cm, mass=76.3±11.7 kg, VO2max=55.1±6.0 mL·kg(-1)·min1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. There was no significant difference in lap times (P=.99) or lap velocity (P=.65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise.

  7. Strength scaling of adhesive joints in polymer–matrix composites

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Goutianos, Stergios; Jacobsen, Torben K.

    2009-01-01

    The fracture of adhesive joints between two glass-fibre laminates was studied by testing double cantilever beam test specimens loaded by uneven bending moments. A large-scale fracture process zone, consisting of a crack tip and a fibre bridging zone, developed. The mixed mode fracture resistance...

  8. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  9. A Practical Test Method for Mode I Fracture Toughness of Adhesive Joints with Dissimilar Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Boeman, R.G.; Erdman, D.L.; Klett, L.B.; Lomax, R.D.

    1999-09-27

    A practical test method for determining the mode I fracture toughness of adhesive joints with dissimilar substrates will be discussed. The test method is based on the familiar Double Cantilever Beam (DCB) specimen geometry, but overcomes limitations in existing techniques that preclude their use when testing joints with dissimilar substrates. The test method is applicable to adhesive joints where the two bonded substrates have different flexural rigidities due to geometric and/or material considerations. Two specific features discussed are the use of backing beams to prevent substrate damage and a compliance matching scheme to achieve symmetric loading conditions. The procedure is demonstrated on a modified DCB specimen comprised of SRIM composite and thin-section, e-coat steel substrates bonded with an epoxy adhesive. Results indicate that the test method provides a practical means of characterizing the mode I fracture toughness of joints with dissimilar substrates.

  10. Numerical modelling in friction lap joining of aluminium alloy and carbon-fiber-reinforced-plastic sheets

    Science.gov (United States)

    Das, A.; Bang, H. S.; Bang, H. S.

    2018-05-01

    Multi-material combinations of aluminium alloy and carbon-fiber-reinforced-plastics (CFRP) have gained attention in automotive and aerospace industries to enhance fuel efficiency and strength-to-weight ratio of components. Various limitations of laser beam welding, adhesive bonding and mechanical fasteners make these processes inefficient to join metal and CFRP sheets. Friction lap joining is an alternative choice for the same. Comprehensive studies in friction lap joining of aluminium to CFRP sheets are essential and scare in the literature. The present work reports a combined theoretical and experimental study in joining of AA5052 and CFRP sheets using friction lap joining process. A three-dimensional finite element based heat transfer model is developed to compute the temperature fields and thermal cycles. The computed results are validated extensively with the corresponding experimentally measured results.

  11. Shear strain determination of the polymer polydimethysiloxane (PMDS) using digital image correlation in different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Brazil, Cep.: 24.210-240 (Brazil); Nunes, L C S [Laboratorio de Mecanica Teorica e Aplicada, Departamento de Engenharia Mecanica, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Brazil, Cep.: 24.210-240 (Brazil); Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Brazil, Cep.:24.210-346 (Brazil)

    2011-01-01

    In the present work a digital image correlation (DIC) method is used in order to analyze the adhesive shear modulus of poly-dimethylsiloxane (PDMS) submitted to different loads and temperatures. This is an optical-numerical full-field surface displacement measurement method. It is based on a comparison between two images of a specimen coated by a random speckled pattern in the undeformed and in the deformed states. A single lap joint testing is performed. This is a standard test specimen for characterizing adhesive properties and it is considered the simplest form of adhesive joints. For the single lap joint specimen, steel adherends are bonded using a flexible rubber elastic polymer (PDMS), which is a commercially available silicone elastic rubber.

  12. Performance of a rigid and a flexible adhesive in lumber joints subjected to moisture content changes

    Science.gov (United States)

    G. P. Krueger; R. F. Blomquist

    1964-01-01

    Experimental work was undertaken to investigate the extent and magnitude of deterioration that can occur in typical plywood-to-lumber glue joints subjected to stresses resulting from changes in the moisture content of the wood, and to compare the performance of a somewhat flexible or deformable adhesive to that of a rigid adhesive in these joints. Results showed that...

  13. Joining aluminum to titanium alloy by friction stir lap welding with cutting pin

    International Nuclear Information System (INIS)

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng; Raza, Syed Hamid

    2012-01-01

    Aluminum 1060 and titanium alloy Ti–6Al–4V plates were lap joined by friction stir welding. A cutting pin of rotary burr made of tungsten carbide was employed. The microstructures of the joining interface were observed by scanning electron microscopy. Joint strength was evaluated by a tensile shear test. During the welding process, the surface layer of the titanium plate was cut off by the pin, and intensively mixed with aluminum situated on the titanium plate. The microstructures analysis showed that a visible swirl-like mixed region existed at the interface. In this region, the Al metal, Ti metal and the mixed layer of them were all presented. The ultimate tensile shear strength of joint reached 100% of 1060Al that underwent thermal cycle provided by the shoulder. - Highlights: ► FSW with cutting pin was successfully employed to form Al/Ti lap joint. ► Swirl-like structures formed due to mechanical mixing were found at the interface. ► High-strength joints fractured at Al suffered thermal cycle were produced.

  14. PLASMA POLYMER FILMS AS ADHESION PROMOTING PRIMERS FOR ALUMINUM. PART II: STRENGTH AND DURABILITY OF LAP JOINTS

    Science.gov (United States)

    Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 A in thickness) were deposited onto 6111-T4 aluminum substrates in radio frequency and microwave powered reactors and used as primers for structural adhesive bonding. Processing variables such as substrate pre-treatment,...

  15. Sequential lineup laps and eyewitness accuracy.

    Science.gov (United States)

    Steblay, Nancy K; Dietrich, Hannah L; Ryan, Shannon L; Raczynski, Jeanette L; James, Kali A

    2011-08-01

    Police practice of double-blind sequential lineups prompts a question about the efficacy of repeated viewings (laps) of the sequential lineup. Two laboratory experiments confirmed the presence of a sequential lap effect: an increase in witness lineup picks from first to second lap, when the culprit was a stranger. The second lap produced more errors than correct identifications. In Experiment 2, lineup diagnosticity was significantly higher for sequential lineup procedures that employed a single versus double laps. Witnesses who elected to view a second lap made significantly more errors than witnesses who chose to stop after one lap or those who were required to view two laps. Witnesses with prior exposure to the culprit did not exhibit a sequential lap effect.

  16. Technological aspects of manufacturing and numerical modelling of clinch-adhesive joints

    CERN Document Server

    Sadowski, Tomasz; Golewski, Przemysław

    2015-01-01

    This short book describes the basic technological aspects involved in the creation of purely clinch and clinch-adhesive joints made of different types of adherent materials and employing different joining technologies. Basic parameters that need to be taken into account in the design process are also presented, while a comparison of experimental testing of the hybrid joint with simple clinching for a combination of different joining materials underlines the advantages of opting for hybrid joints. The book’s conclusions will facilitate the practical application of this new fastening technology.

  17. Tensile and fatigue properties of weld-bonded and adhesive-bonded magnesium alloy joints

    International Nuclear Information System (INIS)

    Xu, W.; Liu, L.; Zhou, Y.; Mori, H.; Chen, D.L.

    2013-01-01

    The microstructures, tensile and fatigue properties of weld-bonded (WB) AZ31B-H24 Mg/Mg joints with different sizes of bonding area were evaluated and compared with the adhesive-bonded (AB) Mg/Mg joints. Typical equiaxed dendritic structures containing divorced eutectic Mg 17 Al 12 particles formed in the fusion zone of both WB-1 (with a bonding area of 35 mm×35 mm) and WB-0.5 (with a bonding area of 17.5 mm×35 mm) joints. Less solidification shrinkage cracking was observed in the WB-0.5 joints than WB-1 joints. While the WB-0.5 joints exhibited a slightly lower maximum tensile shear stress than the AB-0.5 joints (with a bonding area of 17.5 mm×35 mm), the energy absorption was equivalent. Although the AB-0.5 joints exhibited a higher fatigue resistance at higher cyclic stress levels, both the AB-0.5 and WB-0.5 joints showed an equivalent fatigue resistance at lower cyclic stress levels. A higher fatigue limit was observed in the WB-0.5 joints than in the WB-1 joints owing to the presence of fewer shrinkage pores. Cohesive failure mode along the adhesive layer in conjunction with partial nugget pull-out from the weld was observed at the higher cyclic loads, and fatigue failure occurred in the base metal at the lower cyclic loads

  18. Review of research on the hygrothermal environmental durability of structural adhesively bonded joints

    Directory of Open Access Journals (Sweden)

    Xiao HAN

    2017-06-01

    Full Text Available In recent years, structural adhesive bonding technology has been widely used in many industrial fields, with many advantages over traditional mechanical connection methods, such as riveting, welding and bolt connection. Due to the adhesive characteristics of polymer materials, the environmental durability of adhesive joint becomes the key problems in engineering structure connection feasibility and long-term service reliability. On the basis of the review of the research of the hot-humid environmental durability of structural adhesive joints, the effects of temperature, moisture and coupled condition on the structural mechanical behaviour are discussed, introducing the published research progress and results both at home and abroad. The prospects are provided: the future research work can be combined with a variety of observation scales of environmental aging test and numerical simulation method, delve into sub hygroscopic, creep, thermal expansion and hygroscopic expansion aging behavior, such as the environment of model prediction method simulation in more than a variety of mechanical performance degradation behavior of coupling conditions, and provide more reliable theoretical modeling and experimental data for engineering design and application of cementing structure.

  19. Effect of Weld Bead Shape on the Fatigue Behavior of GMAW Lap Fillet Joint in GA 590 MPa Steel Sheets

    Directory of Open Access Journals (Sweden)

    Insung Hwang

    2017-09-01

    Full Text Available In this study, the effect of weld bead shape on the fatigue strength of lap fillet joints using the gas metal arc welding (GMAW process was investigated. The base material used in the experiment was 590 MPa grade galvanealed steel sheet with 2.3 mm and 2.6 mm thickness. In order to make the four types of weld beads with different shapes by factors such as length, angle, and area, the welding process, wire feeding speed, and joint shape were changed. The stress-number of cycles to failure (S–N curve and fatigue strength were obtained from the fatigue test for four types of weld bead, and the cause of the fatigue strength difference was clarified through the analysis of the geometrical factors, such as length, angle, and area of the weld bead. In addition, the relationship between weld bead shape and fatigue strength was discussed.

  20. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    Science.gov (United States)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  1. Crosslinking of fibrinogen and fibronectin by free radicals : A possible initial step in adhesion formation in osteoarthritis of the temporomandibular joint

    NARCIS (Netherlands)

    Dijkgraaf, LC; Zardeneta, G; Cordewener, FW; Liem, RSB; Schmitz, JP; de Bont, LGM; Milam, SB

    Purpose: Adhesion formation in osteoarthritis (OA) of the temporomandibular joint (TMJ) typically results in a sustained limitation of joint movement. We propose the hypothesis that free-radical-mediated crosslinking of proteins underlies this adhesion formation in affected joints. Free radicals may

  2. Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets

    International Nuclear Information System (INIS)

    Salari, Emad; Jahazi, Mohammad; Khodabandeh, Alireza; Ghasemi-Nanesa, Hadi

    2014-01-01

    Highlights: • Successful lap joint friction stir welding of AA5456 with two different tempers. • New stepped conical threaded pin for FSW of lap joints is introduced. • Investigated interactions between tool geometry and mechanical properties. • Microstructure and fracture surface analysis of dissimilar lap welds. - Abstract: Friction stir welding of AA5456 aluminum alloy in lap joint configuration is with two different tempers, T321 and O, and different thicknesses, 5 mm and 2.5 mm was investigated. The influences of tool geometry and various rotational speeds on macrostructure, microstructure and joint strength are presented. Specifically, four different tool pin profiles (a conical thread pin, a cylindrical–conical thread pin, a stepped conical thread pin and Flared Triflute pin tool) and two rotational speeds, 600 and 800 rpm, were used. The results indicated that, tool geometry influences significantly material flow in the nugget zone and accordingly control the weld mechanical properties. Of particular interest is the stepped conical threaded pin, which is introduced for the first time in the present investigation. Scanning electron microscopy investigation of the fracture location of samples was carried out and the findings correlated with tool geometry features and their influences on material flow and tension test results. The optimum microstructure and mechanical properties were obtained for the joints produced with the stepped conical thread pin profile and rotational speed of 600 rpm. The characteristics of the nugget zone microstructure, hooking height, and fracture location of the weld joints were used as criteria to quantify the influence of processing conditions on joint performance and integrity. The results are interpreted in the framework of physical metallurgy properties and compared with published literature

  3. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading : Arcan Test Study and Numerical Modeling

    NARCIS (Netherlands)

    Jiang, X.; Qiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2016-01-01

    The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress,

  4. Intra-articular injection of hyaluronic acid for the reduction in joint adhesion formation in a rabbit model of knee injury.

    Science.gov (United States)

    Wang, Min; Liu, Chao; Xiao, Wei

    2014-07-01

    Our purpose was to evaluate the effectiveness of intra-articular injections of hyaluronic acid (HA) into immobilized joints for reducing rigidity and formation of joint adhesions following surgery and prolonged joint immobilization. Twenty-four New Zealand white rabbits were randomly divided into experimental (n = 12) and control groups (n = 12). A model of knee injury was created in the right hind leg, and external plaster fixation was performed for 8 weeks. The experimental and control groups received weekly intra-articular injections of 0.3 mL HA solution or normal saline, respectively, in the knee joint. The degree of adhesions, range of motion (ROM), and collagen content of the synovium of the knee joint were observed after 8 weeks. At the end of 8 weeks, the experimental compared with control group had significantly higher mean ROM (70.3° ± 11.1° vs. 54.6° ± 11.2°, respectively; P = 0.002) and mean adhesion score. The experimental group compared with the control group had significantly lower mean adhesion score (2.2 ± 0.9 vs. 3.1 ± 0.7, respectively; P = 0.012) and collagen content (32.4 ± 4.7 vs. 39.0 ± 4.2 μg/mg, P = 0.001). In a rabbit model of knee injury, intra-articular injection of HA decreased adhesion formation and collagen content and increased ROM after prolonged immobilization. These results indicate that HA may be clinically useful to prevent adhesions and improve joint mobility in patients who require joint immobilization for up to 8 weeks.

  5. Effect of mixed adhesive joints and tapered plate on stresses in retrofitted beams bonded with a fiber-reinforced polymer plate

    International Nuclear Information System (INIS)

    Bouchikhi, A.S.; Megueni, A.; Gouasmi, S.; Boukoulda, F.B.

    2013-01-01

    Highlights: • Interface stress distribution in beams reinforced composites jointed by homogeneous adhesive. • The reduction of stresses interfaces by using the tapered plate at edges. • The reduction of stresses interfaces by using the bi-adhesive. • The reduction of stresses interfaces by combining between the tapered plate and the bi-adhesive. - Abstract: This paper focuses on the reduction of interfacial stresses when using bonded laminates in strengthening existing structures. The presence of high interfacial stresses that develop near the end of composite known as edge effect may compromise the résistance to failure of strengthened structure. It is known that the decrease of plate thickness and fitness of adhesive (Young modulus) reduces the stress concentration at plate ends. Another way to tackle the problem is proper design of the plate end shape (tapered plate) and using mixed adhesive joints (MAJs) between the adherents. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJs) and tapering plate on the interfacial stress distribution in the adhesive layer in retrofitted steel beam with fiber reinforced polymer (FRP) plate, This results indicate that using the correct combination of tapering plate at the end and mixed adhesive joints can reduce the magnitude of the interfacial stresses significantly

  6. Study of failure mechanism of double-lap joints of steel to FRP by bolt and resin

    Directory of Open Access Journals (Sweden)

    Amir Hossein Zakeri

    2017-05-01

    Full Text Available In this study, the behavior of joints in two sides of steel coat which are screwed to the composite plate, and joints of two sides of compound steel coat (bolted and bonded to the composite plate has been studied. In the standards, distance of mechanical bolts from the edges and the distance of mechanical bolts from each other have been discussed. Different distances in the range of the standards determined for the distance of screws from edges and screws from each other. In this paper, the screw joints and the combined joints with different terminal distances for screws from the edges are modeled and studied. The results showed the basic effects of the terminal distance of the screw from the connection edges on the resistance and mechanism of break of screw joints. In combined joints, the terminal distance of the screw had trivial effects in the resistance and mechanism of joint break. In addition, overlap length of the connection elements on increase of joint resistance analyzed and studied. To do so, a combined joint with configuration of two steel plates and one CFRP/GFRP composite plates which were joined by two screws and adhesive layers with different overlap were modeled. The results showed the direct relationship between increase of overlap length and increase in resistance of the joint. Finally, a design guide to be used in practice was proposed.

  7. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    Science.gov (United States)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  8. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin

    2015-10-19

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  9. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin; Alfano, Marco; Lubineau, Gilles; Buttner, Ulrich

    2015-01-01

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  10. Acousto-ultrasonic evaluation of adhesively bonded CFRP-aluminum joints

    International Nuclear Information System (INIS)

    Lee, Seung Hwan; Kwon, Oh Yang

    1997-01-01

    Correlation between the amount of artificial defects in bonded region and the acousto-ultrasonic parameters(AUPs) including signal amplitude and then the static strength of adhesively bonded joints of carbon fiber reinforced plastic(CFRP) laminates and Al6061 plates has been investigated. The effect of the frequency content and the bandwidth of input signals were studied using 200 kHz, 650 kHz, 1 MHz, 2 MHz pulses and 1 MHz tone-burst signals. With increasing fraction of defects, the signal amplitude and AUP1 were decreased whereas AUP2 was increased. This result has been attributed to the energy transfer characteristics of bonded joints with delamination-type defects and the change of spectral content due to the defects. Considering the nature of high attenuation, a pulse signal with major frequency content at the third harmonic of thickness mode resonance, 650 kHz for the dimension of specimens used in this study, has been found optimal for acousto-ultrasonic testing of CFRP-aluminum joints.

  11. IMPACTS OF DIFFERENT JOINT ANGLES AND ADHESIVES ON DIAGONAL TENSION PERFORMANCES OF BOX-TYPE FURNITURE

    Directory of Open Access Journals (Sweden)

    Musa Atar

    2010-02-01

    Full Text Available The goal of this study was to determine the effects of different joint angles and adhesives on diagonal tension performances of the box-type furniture made from solid wood and medium density fiberboard (MDF. After drilling joints of 75º, 78º, 81º, 84º, and 87º degrees on Oriental beech, European oak, Scotch pine, and MDF samples, a diagonal tensile test was applied on corners glued with polyvinyl acetate (PVAc and polyurethane (D-VTKA = Desmodur-Vinyl Trieketonol Acetate according to ASTM D 1037 standard. With reference to the obtained results, the highest tensile strength was obtained in European oak with PVAc glue and joint angle of 84º, while the lowest value was obtained in MDF with D-VTKA glue and joint angle of 75º. Considering the interaction of wood, adhesive, and joint angle, the highest tensile strength was obtained in European oak with joint angle of 81º and D-VTKA glue (1.089 N.mm-2, whereas the lowest tensile strength was determined in MDF with joint angle of 75º and PVAc glue (0.163 N.mm-2. Therefore, PVAc as glue and 81º as joint angle could be suggested to obtain some advantageous on the dovetail joint process for box-type furniture made from both solid wood and MDF.

  12. The effect of surface preparation on the behaviour of double strap adhesive joints with thick steel adherents

    DEFF Research Database (Denmark)

    Anyfantis, K.N.; Tsouvalis, N.G.

    2009-01-01

    for preparing the bonding surfaces are investigated, namely grit blasting (GB) and simple sandpaper (SP). The behaviour of the joints, in terms of the force-displacement and strains-displacement responses was monitored and compared for both cases. The joints with SP surface preparation exhibited slightly lower...... stiffness and lower strength than the joints with GB surface preparation, while the latter failed at a lower displacement. In both cases, failure initiated at the free edges of the joints and the dominating failure mode was interfacial. In addition to the above experimental measurements, results are also......One of the major factors determining the integrity of an adhesive bond is the preparation of the bonding surfaces. The present study is an experimental investigation of the effect of the surface preparation procedure on the response of a steel-to-steel double strap adhesive joint. Two procedures...

  13. Lap belt injuries in children.

    LENUS (Irish Health Repository)

    McGrath, N

    2010-07-01

    The use of adult seat belts without booster seats in young children may lead to severe abdominal, lumbar or cervical spine and head and neck injuries. We describe four characteristic cases of lap belt injuries presenting to a tertiary children\\'s hospital over the past year in addition to a review of the current literature. These four cases of spinal cord injury, resulting in significant long-term morbidity in the two survivors and death in one child, arose as a result of lap belt injury. These complex injuries are caused by rapid deceleration characteristic of high impact crashes, resulting in sudden flexion of the upper body around the fixed lap belt, and consequent compression of the abdominal viscera between the lap belt and spine. This report highlights the dangers of using lap belts only without shoulder straps. Age-appropriate child restraint in cars will prevent these injuries.

  14. Additive manufacturing of tools for lapping glass

    Science.gov (United States)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  15. The tensile strength of mechanical joint prototype of lontar fiber composite

    Science.gov (United States)

    Bale, Jefri; Adoe, Dominggus G. H.; Boimau, Kristomus; Sakera, Thomas

    2018-03-01

    In the present study, an experimental activity has been programmed to investigate the effect of joint prototype configuration on tensile strength of lontar (Borassus Flabellifer) fiber composite. To do so, a series of tests were conducted to establish the tensile strength of different joint prototype configuration specimen of lontar fiber composite. In addition, post observation of macroscope was used to map damage behavior. The analysis of lontar fiber composite is a challenge since the material has limited information than others natural fiber composites materials. The results shown that, under static tensile loading, the tensile strength of 13 MPa produced by single lap joint of lontar fiber composite is highest compare to 11 MPa of tensile strength generated by step lap joint and double lap joint where produced the lowest tensile strength of 6 MPa. It is concluded that the differences of tensile strength depend on the geometric dimensions of the cross-sectional area and stress distribution of each joint prototype configuration.

  16. Influence of nanoporous structure on mechanical strength of aluminium and aluminium alloy adhesive structural joints

    International Nuclear Information System (INIS)

    Spadaro, C; Dispenza, C; Sunseri, C

    2006-01-01

    The influence of surface treatments on the mechanical strength of adhesive joints was investigated. The attention was focused on AA2024 alloy because it is extensively used in both the automotive and aerospace industries. Adhesive joints fabricated with pure aluminium were also investigated in order to evidence possible differences in the surface features after identical treatments. Before joining with a commercial epoxy adhesive, metal substrates were subjected to different kinds of treatment and the surfaces were characterized by SEM analysis. The formation of a microporous surface in the AA2024 alloy, upon etching and anodizing, is discussed on the basis of the role of the intermetallic particles and their electrochemical behaviour with respect to the aluminium matrix. Moreover, nanostructured porous oxide layers on both type of substrate were also formed, as a consequence of the anodizing process. Differences in their morphologies were revealed as a function of both the applied voltage and the presence of alloying elements. On this basis, an explanation of the different values of fracture energy measured by means of T-peel tests carried out on the corresponding joints was attempted

  17. X-ray method for studying butt gapp distribution and spliced joints in lapped paper and plastic cables

    International Nuclear Information System (INIS)

    Muller, A.C.

    1976-01-01

    Accurate taping patterns are essential in paper and plastic lapped underground cables. A newly developed radiographic system makes it possible to examine the structure of cables and splices in a nondestructive manner. This technique appears to be an effective tool for use in both the monitoring of the accuracy of lapping techniques and as an aid in locating defective portions of existing cables. A discussion of the method and some preliminary results are reported

  18. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    Science.gov (United States)

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.

    1985-01-01

    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  19. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  20. Analytical modeling of mixed-Mode bending behavior of asymmetric adhesively bonded pultruded GFRP joints

    Czech Academy of Sciences Publication Activity Database

    Ševčík, Martin; Shahverdi, M.; Hutař, Pavel; Vassilopoulos, Anastasios P.

    2015-01-01

    Roč. 147, OCT (2015), s. 228-242 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Mixed-Mode delamination * Asymmetric joint * Adhesively bonded joint * Failure criterion * Analytical prediction * GFRP Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.024, year: 2015

  1. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...

  2. Modelling and Experimental Testing of Hybrid Joints Made of: Aluminium Adherends, Adhesive Layers and Rivets for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Sadowski T.

    2017-09-01

    Full Text Available The contemporary demands in different branches of engineering require application of new multi-component materials and structural systems. Appropriately chosen joining technology can offer significant enhancement of structural system performance in terms of effectiveness, reliability, safety and other design criteria. The modern applications of complex joints are of great technological interest as they permit to combine and to enhance the individual effects of each kind of joint. This is of great importance for modern applications in different branches of engineering: aerospace, mechanical and civil. Therefore in this paper we will focus on the analysis of mechanical response of adhesive joint of aluminium strips reinforced by rivets. The aim of the paper is to investigate experimentally the mechanical behaviour of adhesive joint of aluminium strips reinforced by rivets for industrial applications in aerospace. The considered joint was subjected to uniaxial loading. The tests in this paper were performed for: • classical adhesive joint in order to investigate material parameters for numerical modelling of the hybrid joint • hybrid joining of the structural elements in order to investigate the reinforcement effect. The experiments with application of digital image ARAMIS system allowed for on-line monitoring of the deformation process of the considered joining elements. The particular distributions of displacement fields at the joint surface were estimated for any stage of loading process. Numerical modelling was performed for experimentally investigated specimens. The materials parameters, necessary for calculation, were estimated from experiments. FEA modelling was done with the help of ABAQUS code.

  3. Environmentally friendly joining of tubes by their ends

    DEFF Research Database (Denmark)

    Silva, Carlos M.A.; Nielsen, Chris Valentin; Alves, Luis M.

    2015-01-01

    This paper proposes an environmentally friendly joining process for connecting tubes by their ends that has the potential to replace current solutions based on fastened, crimped, welded, brazed or adhesive bonded joints. The process is based on a new type of tubular lap joint produced by local...... of deformation and the process feasibility window, and destructive testing to establish the working limits of tubular lap joints under different type of loading conditions. Results demonstrate that the proposed joining process is a flexible and cost-effective technology for connecting tubes by their ends...

  4. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles R [Los Alamos National Laboratory; Gobbato, Maurizio [UCSD; Conte, Joel [UCSD; Kosmatke, John [UCSD; Oliver, Joseph A [UCSD

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  5. Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique

    International Nuclear Information System (INIS)

    Qi, Xiao-dong; Liu, Li-ming

    2012-01-01

    Highlights: → Hybrid Laser-TIG fusion welding technique was used for joining Mg to Al alloys. → Laser defocusing amount determined penetration depth inside Al alloy of joints. → The addition of Fe interlayer suppressed Mg-Al intermetallics greatly in joints. → A maximum joint strength with optimum thickness of Fe interlayer was obtained. → Excessive addition of Fe interlayer was adverse for the strength improvement. -- Abstract: AZ31B magnesium alloy and 6061-T6 aluminum alloy were lap joined together with the addition of Fe interlayer by fusion welding of hybrid laser-tungsten inert gas (TIG) technique. The influence of location of laser focal spot (LFS) on joint penetration depth and that of the depth on joint strength were investigated. The results showed that when the LFS was just on the surface of Al plate, the deepest penetration could be obtained, which contributed to the improvement of shear strength of Fe-added joints, but not to the elevation of the strength of Mg/Al direct joints. The addition of Fe interlayer suppressed massive production of Mg-Al intermetallics but produced Fe-Al intermetallics in the fusion zone of the joints, whose micro-hardness was extremely high and was also adverse for the enhancement of joint shear strength. The effect of Fe-interlayer thickness on the joint shear strength was also examined, and the maximum shear strength of Fe-added joint could achieve 100 MPa with 0.13 mm thick Fe interlayer. The fracture modes of 0.07 and 0.13 mm Fe-interlayer-added joints were both quasi-cleavage, while those of direct and 0.22 mm interlayer-added joints were completely cleavage. The theoretical shear strength of the Fe-added joints was also discussed.

  6. Adhesion science

    CERN Document Server

    Comyn, John

    1997-01-01

    The use of adhesives is widespread and growing, and there are few modern artefacts, from the simple cereal packet, to the jumbo jet, that are without this means of joining. Adhesion Science provides an illuminating account of the science underlying the use of adhesives, a branch of chemical technology which is fundamental to the science of coatings and composite materials and to the performance of all types of bonded structures. This book guides the reader through the essential basic polymer science, and the chemistry of adhesives in use at present. It discusses surface preparation for adhesive bonding, and the use of primers and coupling agents. There is a detailed chapter on contact angles and what can be predicted from them. A simple guide on stress distribution joints and how this relates to testing is included. It also examines the interaction of adhesives and the environment, including an analysis of the resistance of joints to water, oxygen and ultra-violet light. Adhesion Science provides a comprehens...

  7. Nano Enabled Thermo-Mechanical Materials in Adhesive Joints: A New Paradigm to Materials Functionality (Preprint)

    National Research Council Canada - National Science Library

    Roy, Ajit K; Ganguli, Sabyasachi; Sihn, Sangwook; Qu, Liangti; Dai, Liming

    2006-01-01

    One of the barriers in achieving adequate through-thickness thermal conductivity in composite materials and also in composite joints is the extremely low thermal conductivity of resins (polymer) or adhesives (typically 0.3 W/mK...

  8. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  9. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    International Nuclear Information System (INIS)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho; Kim, Dong-Yoon; Kang, Moon-Jin

    2017-01-01

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  10. Improving Joint Formation and Tensile Properties of Dissimilar Friction Stir Welding of Aluminum and Magnesium Alloys by Solving the Pin Adhesion Problem

    Science.gov (United States)

    Liu, Zhenlei; Ji, Shude; Meng, Xiangchen

    2018-03-01

    Friction stir welding (FSW), as a solid-state welding technology invented by TWI in 1991, has potential to join dissimilar Al/Mg alloys. In this study, the pin adhesion phenomenon affecting joint quality during FSW of 6061-T6 aluminum and AZ31B magnesium alloys was investigated. The adhesion phenomenon induced by higher heat input easily transformed the tapered-and-screwed pin into a tapered pin, which greatly reduced the tool's ability to drive the plasticized materials and further deteriorated joint formation. Under the condition without the pin adhesion, the complex intercalated interlayer at the bottom of stir zone was beneficial to mechanical interlocking of Al/Mg alloys, improving tensile properties. However, the formation of intermetallic compounds was still the main reason of the joint fracture, significantly deteriorating tensile properties. Under the welding speed of 60 mm/min without the pin adhesion phenomenon, the maximum tensile strength of 107 MPa and elongation of 1.2% were achieved.

  11. Strength and failure analysis of inverse Z joints bonded with Vinylester Atlac 580 and Flexo Tix adhesives

    International Nuclear Information System (INIS)

    Adin, Hamit; Turgut, Aydin

    2012-01-01

    In this study, the tensile strength and failure loads of the inverse Z joints were analyzed both experimentally and numerically by using two adhesives with different properties under a tensile load. Vinylester Atlac 580 and Flexo Tix were used as adhesives and the joints were prepared with two different composite materials. Initially, the mechanical properties of the adhesives were specified using bulk specimens. Then, the stress analyses were performed using three dimensional finite element method (3 D FEM) via Ansys (V.10.0.1). The experimental results were compared with the numerical results and they were found quite reasonable. According to the test results, it can be seen that when the adherend thickness is increased, the stress increases as well. The most appropriate value of the adherend thickness is identified as t = 5 mm. Furthermore, it was observed that the lowest failure load was obtained at t = 3 mm the thickness for each specimen

  12. Effect of adhesive stiffness and thickness on stress distributions in structural finger joints

    Science.gov (United States)

    Leslie H. Groom; Robert J. Leichti

    1994-01-01

    Environmental, political, and socioeconomic actions over the past several years have resulted in a decreased wood supply at a time when there is an increased demand for forest products. This combination of increased demand and decreased supply has forced more emphasis on engineered wood products, a varied category usually connected with adhesively-bonded end joints, of...

  13. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears.

    Science.gov (United States)

    Bochyńska, A I; Van Tienen, T G; Hannink, G; Buma, P; Grijpma, D W

    2016-03-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study, a series of amphiphilic copolymers based on polyethylene glycol, trimethylene carbonate and citric acid were synthesized and subsequently end-functionalized with hexamethylene diisocyanate to form reactive adhesive materials. The shear adhesive strength of the networks to bovine meniscus tissue measured in a lap-shear adhesion test ranged between 20 and 80 kPa, which was better than for fibrin glue (10 kPa). The elastic modulus of the networks depended on composition and was in the same range as that of human meniscus. Cell compatibility was assessed using Alamar Blue staining after incubation of the bovine meniscus cells with different concentrations of the glues for 7 days. Cell viability was not affected after adding up to 3mg of the adhesive/mL of medium. The proposed materials are suitable candidates to be used as resorbable tissue adhesives for meniscus repair. They have excellent mechanical and adhesive properties that can be adjusted by varying the composition of the copolymers. Meniscal tears often occur and current treatment strategies do not bring fully satisfactory results. Use of biodegradable tissue adhesives would be an interesting option, but currently available adhesives are not suited due to toxicity or poor mechanical properties. Here, we describe the development of novel biodegradable, hyper-branched, adhesive copolymers. These adhesives cure upon contact with water forming flexible networks. Their adhesion to bovine meniscus tissue was significantly better than that of clinically used fibrin glue. The tensile properties of the cured networks were in the same range of values of the human meniscus. When physiologically relevant amounts were added to

  14. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation.

    Directory of Open Access Journals (Sweden)

    René Huber

    Full Text Available The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (premonocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (posttranslational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation.

  15. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    Science.gov (United States)

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  16. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  17. Molten pool characterization of laser lap welded copper and aluminum

    International Nuclear Information System (INIS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu Jr

    2013-01-01

    A 3D finite volume simulation model for laser welding of a Cu–Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu–Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint. (paper)

  18. The effect of support springs in ends welded gap hollow YT-joint

    Directory of Open Access Journals (Sweden)

    R. F. Vieira

    Full Text Available This paper presents an analysis on the effect of support springs in an ends circular hollow sections welded into a YT joint. The overall behavior and failure of the joint were characterized under axial compression of the lap brace. Two joint failure modes were identified: chord wall plastification (Mode A and cross-sectional chord buckling (Mode F in the region below the lap brace. The system was modeled with and without support springs using the numerical finite element program Ansys. Model results were compared with experimental data in terms of principal stress in the joint intersection. The finite element model without support springs proved to be more accurate than that with support springs.

  19. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives : Focussing on Bonding Glass

    NARCIS (Netherlands)

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap

  20. Influência da Estrutura química do co-monômero nas propriedades mecânicas e adesivas de redes epoxídicas Influence of chemical structure of co-monomer on mechanical and adhesive properties of epoxy networks

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2010-06-01

    Full Text Available As propriedades mecânicas e adesivas de formulações à base do prepolímero do éter diglicidílico do bisfenol A curadas com várias aminas alifáticas foram avaliadas no estado vítreo. Ensaios de impacto do tipo Izod e compressão uniaxial foram usados para determinar a energia de impacto, o módulo de elasticidade e a tensão de escoamento. Ensaios de adesão usando substrato de aço para uniões de simples sobreposição, descascamento em T, e de impacto foram realizados. O melhor comportamento mecânico e adesivo dos polímeros foi obtido quando existe alta flexibilidade entre as cadeias e/ou alto módulo elástico. O sistema DGEBA/AEP mostrou as melhores propriedades adesivas, alta flexibilidade e maior energia de impacto nos ensaios mecânicos. No entanto, apresentou baixo modulo elástico e tensão de escoamento. Além disso, exibe incremento nos ensaios de adesão de descascamento em T e nas uniões de impacto, por outro lado, apresenta uma redução na resistência das uniões de simples sobreposição.The mechanical and adhesive properties of epoxy formulations based on diglycidyl ether of bisphenol A cured with various aliphatic amines were evaluated in the glass state. Impact and uniaxial compression tests were used to determine the impact energy, elastic modulus and yield stress, respectively. The adhesion tests were carried out in steel-steel joints using single lap shear, T-peel and impact adhesive joints geometry. The better mechanical and adhesive behavior of the networks is obtained for highly flexible chains and/or a high elastic modulus. The 1-(2-aminoethylpiperazine epoxy network presents the best adhesive properties, high flexibility, and the largest impact energy. However, it possesses low elastic modulus and yield stress. Also, it exhibits increased peel strength and impact energy with a reduction in the lap shear strength.

  1. A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, Nicholas G.

    2013-01-01

    adhesive joint configurations. The specimens have been tested under uni-axial quasi-static load and the respective force and displacement loading history have been recorded. Corresponding numerical and experimental results have been compared for each joint case, respectively. Additionally, the developed...... stress fields (peel, in-plane, and out-of-plane shear) are presented as they evolve during the loading of both joint cases. © 2012 Taylor & Francis....

  2. Machine Shop I. Learning Activity Packets (LAPs). Section A--Orientation.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "orientation and safety" instructional area of a Machine Shop I course. The two LAPs cover the following topics: orientation and general shop safety. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP; learning…

  3. Identification of parameters of cohesive elements for modeling of adhesively bonded joints of epoxy composites

    Directory of Open Access Journals (Sweden)

    Kottner R.

    2013-12-01

    Full Text Available Adhesively bonded joints can be numerically simulated using the cohesive crack model. The critical strain energy release rate and the critical opening displacement are the parameters which must be known when cohesive elements in MSC.Marc software are used. In this work, the parameters of two industrial adhesives Hunstman Araldite 2021 and Gurit Spabond 345 for bonding of epoxy composites are identified. Double Cantilever Beam (DCB and End Notched Flexure (ENF test data were used for the identification. The critical opening displacements were identified using an optimization algorithm where the tests and their numerical simulations were compared.

  4. A self-diagnostic adhesive for monitoring bonded joints in aerospace structures

    Science.gov (United States)

    Zhuang, Yitao; Li, Yu-hung; Kopsaftopoulos, Fotis; Chang, Fu-Kuo

    2016-04-01

    Bondline integrity is still one of the most critical concerns in the design of aircraft structures up to date. Due to the lack of confidence on the integrity of the bondline both during fabrication and service, the industry standards and regulations still require assembling the composite using conventional fasteners. Furthermore, current state-of-the-art non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques are incapable of offering mature solutions on the issue of bondline integrity monitoring. Therefore, the objective of this work is the development of an intelligent adhesive film with integrated micro-sensors for monitoring the integrity of the bondline interface. The proposed method makes use of an electromechanical-impedance (EMI) based method, which is a rapidly evolving approach within the SHM family. Furthermore, an innovative screen-printing technique to fabricate piezoelectric ceramic sensors with minimal thickness has been developed at Stanford. The approach presented in this study is based on the use of (i) micro screen-printed piezoelectric sensors integrated into adhesive leaving a minimal footprint on the material, (ii) numerical and analytical modeling of the EMI spectrum of the adhesive bondline, (iii) novel diagnostic algorithms for monitoring the bondline integrity based on advanced signal processing techniques, and (iv) the experimental assessment via prototype adhesively bonded structures in static (varying loads) and dynamic (fatigue) environments. The proposed method will provide a huge confidence on the use of bonded joints for aerospace structures and lead to a paradigm change in their design by enabling enormous weight savings while maximizing the economic and performance efficiency.

  5. Double fillet lap of laser welding of thin sheet AZ31B Mg alloy

    Science.gov (United States)

    Ishak, Mahadzir; Salleh, M. N. M.

    2018-05-01

    In this paper, we describe the experimental laser welding of thin sheet AZ31B using double fillet lap joint method. Laser welding is capable of producing high quality weld seams especially for small weld bead on thin sheet product. In this experiment, both edges for upper and lower sheets were subjected to the laser beam from the pulse wave (PW) mode of fiber laser. Welded sample were tested their joint strength by tensile-shear strength method and the fracture loads were studied. Strength for all welded samples were investigated and the effect of laser parameters on the joint strength and appearances were studied. Pulsed energy (EP) from laser process give higher effect on joint strength compared to the welding speed (WS) and angle of irradiation (AOI). Highest joint strength was possessed by sample with high EP with the same value of WS and AOI. The strength was low due to the crack defect at the centre of weld region.

  6. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  7. Evaluation of the quality of cyanoacrylate adhesive joints using the example of poly(methyl methacrylate and polycarbonate

    Directory of Open Access Journals (Sweden)

    Piotr Mazur

    2017-04-01

    Full Text Available Adhesive bonding is one of the simplest and most common methods used for joining materials. It is applied in both production and repair works. The most commonly used adhesives are cyanoacrylates, due to the possibility of combining various materials and short curing time. One of the ways to assess the quality of the adhesive used is testing the shear strength of bonded joints. Three adhesives commonly available on the Polish market, from various manufacturers and with different prices per gram of product were tested. The polymer materials bonded were poly(methyl methacrylate and polycabonate, since they are broadly used in the automotive industry and household equipment. The study revealed significant differences in bonding strength, reaching as much as 38% The adhesive’s price was not commensurate with the quality of the product tested in all cases.

  8. The LapSlapper

    DEFF Research Database (Denmark)

    Andresen, Mads Stenhøj; Bach, Morten; Kristensen, Kristian Ross

    2010-01-01

    The LapSlapper is an inexpensive and low-technology percussive instrument with a digital interface. In a tactile and embodied manner it allows enhanced control and promotes expressive creativity when operating with percussive elements in digital environments. By using piezo-microphones, mounted...

  9. Joint resistance measurements of pancake and terminal joints for JT-60SA EF coils

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2013-11-15

    Highlights: • To evaluate the joint fabrication technology for the JT-60SA EF coils, joint resistance measurements were conducted with a joint sample. • The joint sample was composed of pancake and terminal joints. • The measurements demonstrated that both joints fulfilled the design requirement. • Considering the measurements, the characteristics of both joints were investigated using an analytical model that represents the joints. -- Abstract: To evaluate the joint fabrication technology for the JT-60SA EF coils, joint resistance measurements were conducted using a sample consisting of pancake and terminal joints. Both joints are shake-hands lap joints composed of cable-in-conduit conductors and a pure copper saddle-shaped spacer. The measurements demonstrated that both joints fulfilled the design requirement. Considering these measurements, the characteristics of both joints were investigated using analytical models that represent the joints. The analyses indicated that the characteristics of the conductors used in the joints affect the characteristics of the joints.

  10. Dextran and gelatin based photocrosslinkable tissue adhesive.

    Science.gov (United States)

    Wang, Tao; Nie, Jun; Yang, Dongzhi

    2012-11-06

    A two-component tissue adhesive based on biocompatible and bio-degradable polymers (oxidized urethane dextran (Dex-U-AD) and gelatin) was prepared and photocrosslinked under the ultraviolet (UV) irradiation. The adhesive could adhere to surface of gelatin, which simulated the human tissue steadily. The structures of above Dex-U-AD were characterized by FTIR, (1)H NMR spectroscopy and XRD. The adhesion property of result products was evaluated by lap-shear test. The maximum adhesion strength could reach to 4.16±0.72 MPa which was significantly higher than that of fibrin glue. The photopolymerization process of Dex-U-AD/gelatin was monitored by real time infrared spectroscopy (RTIR). It took less than 5 min to complete the curing process. The cytotoxicity of Dex-U-AD/gelatin also was evaluated which indicated that Dex-U-AD/gelatin gels were nontoxic to L929 cell. The relationship between all the above-mentioned properties and degree of oxidization of Dex-U-AD was assessed. The obtained products have the potential to serve as tissue adhesive in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. New design deforming controlling system of the active stressed lap

    Science.gov (United States)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  12. Auto Mechanics I. Learning Activity Packets (LAPs). Section E--Brakes.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) that outline the study activities for the "brakes" instructional area for an Auto Mechanics I course. The two LAPs cover the following topics: brake systems and power disc brakes. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included…

  13. Preparation and testing of plant seed meal-based wood adhesives.

    Science.gov (United States)

    He, Zhongqi; Chapital, Dorselyn C

    2015-03-05

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications.

  14. [Sample German LAPS.

    Science.gov (United States)

    Rosenthal, Bianca

    Four learning activity packages (LAPS) for use in secondary school German programs contain instructional materials which enable students to improve their basic linguistic skills. The units include: (1) "Grusse," (2) "Ich Heisse...Namen," (3) "Tune into Your Career: Business Correspondence 'Auf Deutch'," and (4) "Understanding German Culture."…

  15. Fatigue de-bond growth in adhesively bonded single lap joints

    Indian Academy of Sciences (India)

    3Department of Aerospace Engineering, Indian Institute of Science,. Bangalore 560012 ... experimental work, specimens were fabricated and fatigue de-bond growth tests were conducted at a ... such as the stress intensity factor, are related to fatigue crack growth. ..... American Society for Testing and Materials, Philadelphia.

  16. Revisiting the generalized scaling law for adhesion: role of compliance and extension to progressive failure.

    Science.gov (United States)

    Mojdehi, Ahmad R; Holmes, Douglas P; Dillard, David A

    2017-10-25

    A generalized scaling law, based on the classical fracture mechanics approach, is developed to predict the bond strength of adhesive systems. The proposed scaling relationship depends on the rate of change of debond area with compliance, rather than the ratio of area to compliance. This distinction can have a profound impact on the expected bond strength of systems, particularly when the failure mechanism changes or the compliance of the load train increases. Based on the classical fracture mechanics approach for rate-independent materials, the load train compliance should not affect the force capacity of the adhesive system, whereas when the area to compliance ratio is used as the scaling parameter, it directly influences the bond strength, making it necessary to distinguish compliance contributions. To verify the scaling relationship, single lap shear tests were performed for a given pressure sensitive adhesive (PSA) tape specimens with different bond areas, number of backing layers, and load train compliance. The shear lag model was used to derive closed-form relationships for the system compliance and its derivative with respect to the debond area. Digital image correlation (DIC) is implemented to verify the non-uniform shear stress distribution obtained from the shear lag model in a lap shear geometry. The results obtained from this approach could lead to a better understanding of the relationship between bond strength and the geometry and mechanical properties of adhesive systems.

  17. Double-Lap Shear Test For Honeycomb Core

    Science.gov (United States)

    Nettles, Alan T.; Hodge, Andrew J.

    1992-01-01

    Double-lap test measures shear strength of panel made of honeycomb core with 8-ply carbon-fiber/epoxy face sheets. Developed to overcome three principal disadvantages of prior standard single-lap shear test: specimen had to be more than 17 in. long; metal face sheets had to be used; and test introduced torque, with consequent bending and peeling of face sheets and spurious tensile or compressive loading of honeycomb.

  18. Severe bony ankylosis of the temporomandibular joint on one side and contralateral adhesion: A case report

    International Nuclear Information System (INIS)

    Song, Ji Young; Kim, Seong Gon; Choi, Hang Moon; Kim, Hyun Jung

    2015-01-01

    Bony fusion between the mandibular condyle and skull base involves temporomandibular joint (TMJ) bony ankylosis. This condition might originate from trauma, infection, or systemic disease. TMJ adhesion can develop after synovial damage. Both TMJ ankylosis and adhesion lead to functional impairment and pain. Here, we present a case of a 50-year-old female who had bony ankylosis of the right TMJ and adhesion of the left TMJ. She had otitis media in the right ear. A large mass in the right TMJ was observed on computed tomograph. Magnetic resonance image showed a large fused bone mass with normal bone marrow in the right TMJ and flattening of the condyle with a thin disk in the left TMJ. Gap arthroplasty with temporal fascia was performed on the right TMJ, and discectomy, high condylectomy, and coronoidectomy were performed on the left TMJ. During a 2-year follow-up after surgery, the patient had no recurrence

  19. Severe bony ankylosis of the temporomandibular joint on one side and contralateral adhesion: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ji Young [Dept. of Oral and Maxillofacial Surgery, Jeju National University Hospital, Jeju National University School of Medicine, Jeju (Korea, Republic of); Kim, Seong Gon; Choi, Hang Moon [School of Dentistry, Gangneung-Wonju National University, Gangneung (Korea, Republic of); Kim, Hyun Jung [Dept. of Anesthesiology and Pain Medicine, Jeju National University School of Medicine, Jeju (Korea, Republic of)

    2015-06-15

    Bony fusion between the mandibular condyle and skull base involves temporomandibular joint (TMJ) bony ankylosis. This condition might originate from trauma, infection, or systemic disease. TMJ adhesion can develop after synovial damage. Both TMJ ankylosis and adhesion lead to functional impairment and pain. Here, we present a case of a 50-year-old female who had bony ankylosis of the right TMJ and adhesion of the left TMJ. She had otitis media in the right ear. A large mass in the right TMJ was observed on computed tomograph. Magnetic resonance image showed a large fused bone mass with normal bone marrow in the right TMJ and flattening of the condyle with a thin disk in the left TMJ. Gap arthroplasty with temporal fascia was performed on the right TMJ, and discectomy, high condylectomy, and coronoidectomy were performed on the left TMJ. During a 2-year follow-up after surgery, the patient had no recurrence.

  20. Adhesive Bonding and Corrosion Performance Investigated as a Function of Aluminum Oxide Chemistry and Adhesives

    NARCIS (Netherlands)

    Abrahami, S.T.; Hauffman, T.; de Kok, John M.M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    The long-term strength and durability of an adhesive bond is dependent on the stability of the oxide-adhesive interface. As such, changes in the chemistry of the oxide and/or the adhesive are expected to modify the interfacial properties and affect the joint performance in practice. The upcoming

  1. THz Properties of Adhesives

    Science.gov (United States)

    Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.

    2018-06-01

    We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.

  2. Experimental Investigation into Vibration Characteristics for Damage Minimization in a Lapping Process

    Directory of Open Access Journals (Sweden)

    J. Suwatthikul

    2016-01-01

    Full Text Available Lapping machines are used in a hard disk rough lapping process where a workpiece (a wafer row bar is locked with a robot arm and rubbed on a lap plate. In this process, the lap plate’s condition and lifetime are among important concerned factors. The lifetime can be too short due to the plate being accidentally scratched by the workpiece during lapping. This problem leads to undesired consequences such as machine downtime and excessive plate material usage. This paper presents an experimental investigation into vibration characteristics of passed and failed lapping scenarios and discusses a potential solution to minimize the serious damage so-called “plate scratch” which intermittently occurs in such process. The experimental results show that, by in situ monitoring vibration and utilizing artificial intelligence, damage minimization can be possible.

  3. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    International Nuclear Information System (INIS)

    Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Gallant, D.; Eskandarian, M.

    2012-01-01

    Highlights: ► A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. ► Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. ► Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. ► Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark

  4. Structural Performance of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2017-02-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S- N curve, providing a design curve for any joint configuration in fatigue solicitation.

  5. Machine Shop I. Learning Activity Packets (LAPs). Section C--Hand and Bench Work.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "hand and bench work" instructional area of a Machine Shop I course. The two LAPs cover the following topics: hand and bench work and pedestal grinder. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP;…

  6. Predicting Failure Initiation in Structural Adhesive Joints

    Science.gov (United States)

    2012-08-15

    Elastoplástico de Adhesivos – Modeling, characterization and simulation of the elastoplastic behavior of adhesives. Maestría en Ciencia de Materiales...adhesive and a 1018 steel”. Maestría en Ciencia de Materiales. Centro de Investigación en Materiales Avanzados S.C. May 2012.  Abstract: In the

  7. Application of Bionic Design to FRP T-Joints

    Science.gov (United States)

    Luo, Guang-Min; Kuo, Chia-Hung

    2017-09-01

    We applied the concepts of bionics to enhance the mechanical strength of fiberglass reinforced plastic T-joints. The failure modes of the designed arthrosis-like and gum-like joints were determined using three-point bending tests and numerical simulations and compared with those of normal T-joints bonded using structural adhesives. In the simulation, we used cohesive elements to simulate the adhesive interface of the structural adhesive. The experimental and simulation results show that the arthrosis-like joint can effectively delay the failure progress and enhance the bonding strength of T-joints, thus confirming that an appropriate bionic design can effectively control the bonding properties of structural adhesives.

  8. Influência da estrutura química do co-monômero nas propriedades termomecânicas e durabilidade de uniões adesivas submetidas à ação da água Influence of chemical structure of co-monomer on thermomechanical and durability of adhesive joints to the action of the water

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2011-01-01

    Full Text Available A caracterização termomecânica, assim como a durabilidade de juntas adesivas usando diferentes polímeros epoxídicos no estado vítreo foram analisadas. Os polímeros foram baseados no prepolímero do éter diglicidílico do bisfenol A (DGEBA curado com diferentes aminas alifáticas. Análises termomecânicas no modo de torção foram realizadas para monitorar o fator de perda (tan δ, o módulo de armazenamento (G', e o módulo de perda (G" em função da temperatura. Os ensaios de adesão foram realizados em uniões de simples sobreposição usando substrato de aço quando submetidas à ação da água a temperatura ambiente, e a 80 ºC, com o objetivo de avaliar a durabilidade das juntas adesivas a diferentes temperaturas. As análises termomecânicas evidenciaram diferenças significativas nos valores de tan δ, G' e G" em função da temperatura para as redes estudadas. As melhores propriedades adesivas são obtidas para uniões polímero-substrato que usam polímeros que apresentem estrutura de rede mais flexível. A durabilidade das juntas adesivas quando submetidas à ação da água causa menor prejuízo à formulação com piperidina. Este comportamento foi associado à baixa tendência de absorver água deste polímero, devido à homopolimerização dos grupos epóxi, que originam uma estrutura de rede com baixa concentração de grupos hidroxila.The thermomechanical properties, as well as the durability of adhesive joints using different epoxy polymer in the vitreous state was analyzed. The epoxy polymers based on diglycidyl ether of bisphenol A (DGEBA cured with various aliphatic amines. Rheological tests were used to determine damping (tan δ = G"/G'. The adhesion tests were carried out in steel joints using single lap shear when submit to the action of the water, at ambient temperature and at 80 ºC, with the objective of evaluating the durability of the adhesive joints at different temperature. The best adhesive properties

  9. Prediction of fracture toughness and durability of adhesively bonded composite joints with undesirable bonding conditions

    Science.gov (United States)

    Musaramthota, Vishal

    Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe

  10. 4-Point beam tensile test on a soft adhesive

    International Nuclear Information System (INIS)

    Budzik, Michal K.; Jumel, Julien; Shanahan, Martin E.R.

    2013-01-01

    Highlights: ► An adhesive butt joint with a soft bondline of variable thickness has been studied. ► We found that bondline thickness affects the stress state in soft bondlines. ► Fracture energy at crack onset is lowest for the thinnest of bondlines and becomes stable for thicker layers. ► Maximum stress decreases with increasing bondline thickness. ► We found that for optimal joint design, rate effects must be taken into account. - Abstract: An adhesive butt joint with a soft bondline has been studied. A series of experiments was conducted on test pieces constituted of aluminium adherends bonded with a low modulus epoxy adhesive, Scotch Weld™ 2216. The joint was subjected to four point bending, in tension/compression loading, under constant deflection rate, with the bondline being parallel to the applied load. The objective was to examine and evaluate crack nucleation for a range of adhesive layer thicknesses. Three criteria were used to evaluate joint efficiency. Firstly, force/stress at crack onset revealed that thinner bondlines were preferable to produce stronger and stiffer bonded structures. Secondly, fracture energy was derived, which, in the present configuration, is associated with the energy stored within the adhesive layer, rather than the substrates. This is one of originalities of the test proposed. Fracture energy data lead to the conclusion, that more energy is dissipated by the joints with lower effective rigidity, viz. thicker bondlines. Finally, we applied a criterion of non-linear, ‘pragmatic’ work of adhesion – similar to the J-integral approach. In terms of energy consumption, the third criterion yielded (quasi) independence of the adhesive thickness. From the data collected, we conclude that for optimal joint design, rate effects must be carefully taken into account

  11. Machine Shop I. Learning Activity Packets (LAPs). Section D--Power Saws and Drilling Machines.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "power saws and drilling machines" instructional area of a Machine Shop I course. The two LAPs cover the following topics: power saws and drill press. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP; learning…

  12. Fracture mechanics characterisation of medium-size adhesive joint specimens

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jacobsen, T.K.

    2004-01-01

    Medium-size specimens (glass-fibre beams bonded together by an adhesive layer were tested in four point bending to determine their load carrying capacity. Specimens having different thickness were tested. Except for onespecimen, the cracking occurred as cracking...... along the adhesive layer; initially cracking occurred along the adhesive/laminate interface, but after some crack extension the cracking took place inside the laminate (for one specimen the later part of thecracking occurred unstably along the adhesive/ laminate interface). Crack bridging by fibres...

  13. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    NARCIS (Netherlands)

    Kozowyk, P.R.B.; Langejans, G.; Poulis, J.A.

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using

  14. Fatigue Life Prediction of Self-Piercing Rivet Joints Between Magnesium and Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Kang Hong-Tae

    2018-01-01

    Full Text Available Various light materials including aluminum alloys and magnesium alloys are being used to reduce the weight of vehicle structures. Joining of dissimilar materials is always a challenging task to construct a solid structure. Self-piercing rivet (SPR joint is one of various joining methods for dissimilar materials. Front shock tower structures were constructed with magnesium alloy (AM60 joined to aluminum alloy (Al6082 by SPR joints. To evaluate the durability performance of the SPR joints in the structures, fatigue tests of the front shock tower structures were conducted with constant amplitude loadings. Furthermore, this study investigated fatigue life prediction method of SPR joints and compared the fatigue life prediction results with that of experimental results. For fatigue life prediction of the SPR joints in the front shock tower structures, lap-shear and cross-tension specimens of SPR joint were constructed and tested to characterize the fatigue properties of the SPR joint. Then, the SPR joint was represented with area contact method (ACM in finite element (FE models. The load-life curves of the lap-shear and cross-tension specimens were converted to a structural stress-life (S-N curve of the SPR joints. The S-N curve was used to predict fatigue life of SPR joints in the front shock tower structures. The test results and the prediction results were well correlated.

  15. Strength and failure analysis of composite-to-composite adhesive bonds with different surface treatments

    Science.gov (United States)

    Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan

    2018-03-01

    Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.

  16. Numerical Non-Equilibrium and Smoothing of Solutions in The Difference Method for Plane 2-Dimensional Adhesive Joints / Nierównowaga Numeryczna i Wygładzanie Rozwiazań w Metodzie Różnicowej Dla Dwuwymiarowych Połączeń Klejowych

    Directory of Open Access Journals (Sweden)

    Rapp Piotr

    2016-03-01

    Full Text Available The subject of the paper is related to problems with numerical errors in the finite difference method used to solve equations of the theory of elasticity describing 2- dimensional adhesive joints in the plane stress state. Adhesive joints are described in terms of displacements by four elliptic partial differential equations of the second order with static and kinematic boundary conditions. If adhesive joint is constrained as a statically determinate body and is loaded by a self-equilibrated loading, the finite difference solution is sensitive to kinematic boundary conditions. Displacements computed at the constraints are not exactly zero. Thus, the solution features a numerical error as if the adhesive joint was not in equilibrium. Herein this phenomenon is called numerical non-equilibrium. The disturbances in displacements and stress distributions can be decreased or eliminated by a correction of loading acting on the adhesive joint or by smoothing of solutions based on Dirichlet boundary value problem.

  17. Analysis for Behavior of Reinforcement Lap Splices in Deep Beams

    Directory of Open Access Journals (Sweden)

    Ammar Yaser Ali

    2018-03-01

    Full Text Available The present study includes an experimental and theoretical investigation of reinforced concrete deep beams containing tensile reinforcement lap splices at constant moment zone under static load. The study included two stages: in the first one, an experimental work included testing of eight simply supported RC deep beams having a total length (L = 2000 mm, overall depth (h= 600 mm and width (b = 150 mm. The tested specimens were divided into three groups to study the effect of main variables: lap length, location of splice, internal confinement (stirrups and external confinement (strengthening by CFRP laminates. The experimental results showed that the use of CFRP as external strengthening in deep beam with lap spliced gives best behavior such as increase in stiffness, decrease in deflection, delaying the cracks appearance and reducing the crack width. The reduction in deflection about (14-21 % than the unstrengthened beam and about (5-14 % than the beam with continuous bars near ultimate load. Also, it was observed that the beams with unstrengthened tensile reinforcement lap splices had three types of cracks: flexural, flexural-shear and splitting cracks while the beams with strengthened tensile reinforcement lap splices or continuous bars don’t observe splitting cracks. In the second stage, a numerical analysis of three dimensional finite element analysis was utilized to explore the behavior of the RC deep beams with tensile reinforcement lap splices, in addition to parametric study of many variables. The comparison between the experimental and theoretical results showed reasonable agreement. The average difference of the deflection at service load was less than 5%.

  18. Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer.

    Science.gov (United States)

    Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng

    2017-01-21

    To investigate the abundance and potential functions of LAP + CD4 + T cells in colorectal cancer (CRC). Proportions of LAP + CD4 + T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP - CD4 + and LAP + CD4 + T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. The proportion of LAP + CD4 + T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P CD4 + T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P CD4 + T cells and TNM stage ( P cell sorting gave an overall enrichment of LAP + CD4 + T cells (95.02% ± 2.87%), which was similar for LAP - CD4 + T cells (94.75% ± 2.76%). In contrast to LAP - CD4 + T cells, LAP + CD4 + T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 ( P CD4 + T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP - CD4 + T cells. LAP + CD4 + T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β.

  19. Effects of process parameters on microstructure and mechanical properties of friction stir lap linear welded 6061 aluminum alloy to NZ30K magnesium alloy

    Directory of Open Access Journals (Sweden)

    Shuai Tan

    2017-03-01

    Full Text Available The microstructures and lap-shear behaviors of friction stir lap linear welded as-extruded 6061 Al alloy to as-cast Mg–3.0Nd–0.2Zn–0.7Zr (wt.% (NZ30K alloy joints were examined. Various tool rotation and travel speeds were adopted to prepare the joints. The analysis of temperature field indicates that the peak temperature for each sample can reach 450 °C, which exceeds the eutectic reaction temperatures of 437 °C and 450 °C according to the binary phase diagram of Al–Mg system. The fierce intermixing can be found at the interface between Al and Mg alloys, forming the intermetallic of Al3Mg2. Welds with the rotation speed of 900 rpm and travel speed of 120 mm/min display the highest tensile shear failure load of about 2.24 kN. The value was increased by 13% after the sample was heat treated at 400 °C for 0.5 h.

  20. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud

    current study a non-destructive evaluation method based on spectroscopy is proposed to detect the presence of pores in the lap joint of laser welded AZ31B magnesium alloy. The electron temperature that is calculated by the Boltzmann plot method is correlated to the presence of pores in the weld bead. A separate series of experiments was performed to evaluate the effect of an oxide coating layer on the dynamic behavior of the molten pool in the laser welding of an AZ31B magnesium alloy in a zero-gap lap joint configuration. A high speed CCD camera assisted with a green laser as an illumination source was selected to record the weld pool dynamics. Another technique used in this study was two-pass laser welding process to join AZ31B magnesium sheet in a zero-gap, lap-shear configuration. Two groups of samples including one pass laser welding (OPLW) and two pass laser welding (TPLW) were studied. In the two pass laser welding procedure, the first pass is performed by a defocused laser beam on the top of the two overlapped sheets in order to preheat the faying surface prior to laser welding, while the second pass is applied to melt and eventually weld the samples. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. A spectrometer was also used in real-time to correlate pore formation with calculated electron temperature using the Boltzmann plot method. The results of calculated electron temperature confirmed the previous results in earlier chapter. Magnesium and aluminum are two alloys which are used in different industries mainly due to their light weight. The main use of these two alloys is in automotive industry. Since different parts of the automobiles can be manufactured with each of these two alloys, it is essential to evaluate the joining feasibility of dissimilar metals such as aluminum to magnesium. A 4 kW fiber laser is used to join AZ31B magnesium alloy to AA 6014 using an overlap joint configuration. Two

  1. Examination of pulsed eddy current for inspection of second layer aircraft wing lap-joint structures using outlier detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.M., E-mail: Dennis.Butt@forces.gc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Underhill, P.R.; Krause, T.W., E-mail: Thomas.Krause@rmc.ca [Royal Military College of Canada, Dept. of Physics, Kingston, Ontario (Canada)

    2016-09-15

    Ageing aircraft are susceptible to fatigue cracks at bolt hole locations in multi-layer aluminum wing lap-joints due to cyclic loading conditions experienced during typical aircraft operation, Current inspection techniques require removal of fasteners to permit inspection of the second layer from within the bolt hole. Inspection from the top layer without fastener removal is desirable in order to minimize aircraft downtime while reducing the risk of collateral damage. The ability to detect second layer cracks without fastener removal has been demonstrated using a pulsed eddy current (PEC) technique. The technique utilizes a breakdown of the measured signal response into its principal components, each of which is multiplied by a representative factor known as a score. The reduced data set of scores, which represent the measured signal, are examined for outliers using cluster analysis methods in order to detect the presence of defects. However, the cluster analysis methodology is limited by the fact that a number of representative signals, obtained from fasteners where defects are not present, are required in order to perform classification of the data. Alternatively, blind outlier detection can be achieved without having to obtain representative defect-free signals, by using a modified smallest half-volume (MSHV) approach. Results obtained using this approach suggest that self-calibrating blind detection of cyclic fatigue cracks in second layer wing structures in the presence of ferrous fasteners is possible without prior knowledge of the sample under test and without the use of costly calibration standards. (author)

  2. Examination of pulsed eddy current for inspection of second layer aircraft wing lap-joint structures using outlier detection methods

    International Nuclear Information System (INIS)

    Butt, D.M.; Underhill, P.R.; Krause, T.W.

    2016-01-01

    Ageing aircraft are susceptible to fatigue cracks at bolt hole locations in multi-layer aluminum wing lap-joints due to cyclic loading conditions experienced during typical aircraft operation, Current inspection techniques require removal of fasteners to permit inspection of the second layer from within the bolt hole. Inspection from the top layer without fastener removal is desirable in order to minimize aircraft downtime while reducing the risk of collateral damage. The ability to detect second layer cracks without fastener removal has been demonstrated using a pulsed eddy current (PEC) technique. The technique utilizes a breakdown of the measured signal response into its principal components, each of which is multiplied by a representative factor known as a score. The reduced data set of scores, which represent the measured signal, are examined for outliers using cluster analysis methods in order to detect the presence of defects. However, the cluster analysis methodology is limited by the fact that a number of representative signals, obtained from fasteners where defects are not present, are required in order to perform classification of the data. Alternatively, blind outlier detection can be achieved without having to obtain representative defect-free signals, by using a modified smallest half-volume (MSHV) approach. Results obtained using this approach suggest that self-calibrating blind detection of cyclic fatigue cracks in second layer wing structures in the presence of ferrous fasteners is possible without prior knowledge of the sample under test and without the use of costly calibration standards. (author)

  3. Improved metal-adhesive polymers from copper(I)-catalyzed azide-alkyne cycloaddition.

    Science.gov (United States)

    Accurso, Adrian A; Delaney, Mac; O'Brien, Jeff; Kim, Hyonny; Iovine, Peter M; Díaz Díaz, David; Finn, M G

    2014-08-18

    Electrically conductive adhesive polymers offer many potential advantages relative to Sn-Pb solders, including reduced toxicity, low cost, low processing temperatures, and the ability to make application-specific formulations. Polymers generated from the copper(I)-catalyzed cycloaddition (CuAAC) reaction between multivalent azides and alkynes have previously been identified as strong metal-binding adhesives. Herein we demonstrate that the performance of these materials can be remarkably improved by the incorporation of a flexibility-inducing difunctionalized component and a tertiary amine additive in optimized concentrations. The best formulations were identified by means of rapid adhesion testing of a library of potential candidates by using a custom-built instrument and validated in an American Society for Testing and Materials (ASTM)-standard lap-shear test. Characteristic phase transitions were identified by differential scanning calorimetry (DSC) for adhesives with and without the additives as a function of curing temperature. The incorporation of flexible components was found to more than double the strength of the adhesive. Moreover, the adhesive was made electrically conductive by the inclusion of 20 wt% silver-coated copper flakes and further improved in this regard by the incorporation of multiwalled carbon nanotubes in the formulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of a fast curing tissue adhesive for meniscus tear repair.

    Science.gov (United States)

    Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W

    2017-01-01

    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.

  5. Ability Of Mathematical Reasoning in SMK 10th Grade with LAPS- Heuristic using Performance Assessment

    Directory of Open Access Journals (Sweden)

    Aulia Nur Arivina

    2017-11-01

    Full Text Available The purposes of this research are: (1 Test the learning with LAPS-Heuristic model using performance assessment on 10th grade of Trigonometry material is complete, (2 to test the difference of students' mathematical reasoning ability on 10th grade of Trigonometry material between the learning model of LAPS-Heuristic using performance assessment, LAPS-Heuristic learning model with Expository learning model, (3 test the ability of mathematical reasoning with learning model of LAPS-Heuristik on Trigonometry material of SMK on 10th grade using performance assessment is increase. This is a quantitative research. The population is students of 10th grade of SMK 10 Semarang academic year 2016/2017 and the subject of research is selected by clustering random sampling. The results show that (1 Learning by model LAPS-Heuristic using performance assessment on 10th grade of Trigonometry material is complete (2 there are differences in students' mathematical reasoning ability on 10th grade of Trigonometry materials between LAPS-Heuristic learning model using performance assessment, LAPS-Heuristic learning model, and Expository learning model, (3 The ability of mathematical reasoning with learning model of LAPS-Heuristic on Trigonometry material of SMK class X using performance assessment increased.

  6. Laser direct joining of metal and plastic

    International Nuclear Information System (INIS)

    Katayama, Seiji; Kawahito, Yousuke

    2008-01-01

    We have developed an innovative rapid laser direct joining process of metal and plastic lap plates without adhesives or glues. The joints made between a Type 304 stainless steel plate and a polyethylene terephthalate (PET) plastic sheet of 30 mm width possessed tensile shear loads of about 3000 N. Transmission electron microscope photographs of the joint demonstrated that Type 304 and the PET were bonded on the atomic, molecular or nanostructural level through a Cr oxide film

  7. Ability Of Mathematical Reasoning in SMK 10th Grade with LAPS- Heuristic using Performance Assessment

    OpenAIRE

    Aulia Nur Arivina; Masrukan Masrukan; Ardhi Prabowo

    2017-01-01

    The purposes of this research are: (1) Test the learning with LAPS-Heuristic model using performance assessment on 10th grade of Trigonometry material is complete, (2) to test the difference of students' mathematical reasoning ability on 10th grade of Trigonometry material between the learning model of LAPS-Heuristic using performance assessment, LAPS-Heuristic learning model with Expository learning model, (3) test the ability of mathematical reasoning with learning model of LAPS-Heuristik o...

  8. Effects of adding nano-clay (montmorillonite) on performance of polyvinyl acetate (PVAc) and urea-formaldehyde (UF) adhesives in Carapa guianensis, a tropical species

    OpenAIRE

    Rodríguez-Zúñiga, Ana; Vega-Baudrit, José; Alvarez, Vera; Moya-Roque, Roger

    2015-01-01

    http://www.scopus.com/inward/record.url?eid=2-s2.0-84923601829&partnerID=40&md5=5c91a6df9afec4f33b7be09b86735a75 The aim of this study was to improve the bond strength resistance of polyvinyl acetate (PVAc) and urea-formaldehyde (UF) adhesives modified with nano-clay (montmorillonite) with a tropical species of wood known to exhibit adhesion related problems. These adhesives were evaluated with 1.0 and 1.5 wt% nano-clay concentrations with lap shear strength (SS), and the percentage of woo...

  9. Aluminum and steel adhesion with polyurethanes from castor oil adhesives submitted to gamma irradiation

    International Nuclear Information System (INIS)

    Azevedo, Elaine C.; Assumpcao, Roberto L.; Nascimento, Eduardo M. do; Claro Neto, Salvador; Soboll, Daniel S.

    2009-01-01

    Polyurethanes adhesive from castor oil is used to join aluminum and steel pieces. The effect of gamma radiation on the resistance to tension tests is investigated. The aluminum and steel pieces after being glued with the adhesive were submitted to gamma irradiation in doses of 1 kGy, 25 kGy and 100 kGy. The rupture strength of the joints after irradiation have a slightly increase or remains practically unchanged indicating that the adhesive properties is not affected by the gamma radiation. (author)

  10. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    Science.gov (United States)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  11. Effect of lapping slurry on critical cutting depth of spinel

    International Nuclear Information System (INIS)

    Wang, Zhan-kui; Wang, Zhuan-kui; Zhu, Yong-wei; Su, Jian-xiu

    2015-01-01

    Highlights: • Measured spinel wafers’ hardness and crack length in different slurries. • Evaluated the softened layer thickness in different slurries. • Discussed the effect of slurries on critical cutting depth of spinel. - Abstract: The critical cutting depth for lapping process is very important because it influences the mode of material removal. In this paper, a serial of microscopic indentation experiments were carried out for measuring spinel wafers’ hardness and crack length in different lapping slurries. Their critical cutting depth and fracture toughness were calculated. X-ray photoelectron spectroscopy (XPS) was also employed to study the surface chemical composition and softened layer thickness of wafers in different slurries. Experimental results indicate that the softened layers of spinel wafers are formed due to the corrosion of lapping slurries, which leads to a lower hardness and a larger fracture toughness of samples, and increases the critical cutting depth. Among them, the critical cutting depth in ethylene glycol solution is the largest and up to 21.8 nm. The increase of critical cutting depth is helpful to modify the surface quality of the work-piece being lapped via ductile removal mode instead of brittle fracture mode

  12. Learning Activity Package, Physics 124, (LAP) Studies 45, 47, and 48.

    Science.gov (United States)

    Holland, Bill

    Included are three Learning Activity Packages (LAP) studies for use in high school physics instruction: Time and Measurement Function; Force, Work, and Momentum; and Momentum, Work, and Energy. Each LAP contains a rationale for teaching the material included, student objectives (stated in behavioral terms), a list of resources (readings, problems,…

  13. Mechanical characteristics of connection for GFRP plates using tapping screws

    Science.gov (United States)

    Inoue, Yuya; Duong, Nguyen Ngoc; Satake, Chito; Matsumoto, Yukihiro

    2017-10-01

    FRP material has good characteristics such as light-weight, high-strength and high-corrosion resistance. Light-weight structure possesses some advantages over the rational constructing procedure such as self-building structures. In recent years, mechanical characteristics of FRP joints using bolts and/or rivet are investigated in detail, and they are used in many FRP structures. However, the bolts lack bearing strength compared with material strength and the joint needs the prepared bolt hole. In this paper, an alternative joint system for FRP structures using tapping screw is proposed and mechanical characteristics are investigated through experiment. Tapping screw has some advantages; easy-to-use, light-weight and high bearing strength. Then, the results of double-lapped tensile shear tests having one, four and eight tapping screws along longitudinal direction are shown. Moreover, it is shown that longitudinal stress distribution is approximately corresponding to the theoretical stress distribution of double-lapped adhesively bonded joints. Based on these, it is proposed that joint strength can be estimated by using the present calculation method.

  14. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    Science.gov (United States)

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  15. BEHAVIOR OF GLUED JOINTS OF EUCALYPTUS sp. SAWN WOOD

    Directory of Open Access Journals (Sweden)

    Octávio Barbosa Plaster

    2008-09-01

    Full Text Available This research evaluated eucalypt wood adhesion capacity. The material evaluated was a commercial sawn wood composed by a blend of species of the genus Eucalyptus. The adhesives used were resorcinol-formaldehyde and polyvinila acetate (PVAc. The wood was segregated in three density with 0% of moisture content: class 1; 2 and 3 that, when combined (class1 x class1; 2x2; 3x3; 1x2; 1x3; 2x3 resulted in six treatments. The performance of the adhesion was evaluated by the shear strength to parallel compression and by wood failure in the glue line. The obtained results allowed to conclude that the adhesion of the combinations of wood/adhesive presented satisfactory performance. The average shear strength of the joints were shown equivalent to the shear strength of the solid wood with similar performance of adhesion in the two adhesives. In general, resorcinol-formaldheyde adhesive presented higher values (74.41% for wood failure in the joints, but similar to all treatments. The adhesion of samples of higher density presented lower performance probably when only the values of wood failure are considered. The values for the strength of glued joints, in general, were similar when analyzed the results achieved with the resorcinol-formaldehyde adhesive- base 140,56 Kgf/cm2. To polyvinila acetate the values of wood failure decrease when the density increase (65.94%, but the resistance in the glue line was positively affected (140.25 Kgf/cm2. In general, the density influenced the adhesion of the joints for the employed adhesives.

  16. Adhesiveness of cold rolled steels for car body parts

    Directory of Open Access Journals (Sweden)

    Kleiner Marques Marra

    2007-09-01

    Full Text Available The aim of this work was to evaluate the adhesiveness of uncoated and zinc-electrogalvanized steel sheets used in the automotive industry. Three types of adhesives, one acrylic and two epoxy resins, were employed to join low carbon cold rolled steels, one uncoated and another electrogalvanized, both previously degreased or chemically pickled. Mechanical strength of the joints was evaluated by the T-peel and tensile strength tests. Steel grade, surface condition and heating below the cure temperatures did not influence the joints' mechanical strength. However, their shear strength decreased drastically as the test temperature increased. The exposure of the joints to an atmosphere with 90% relative humidity at 40 °C caused reduction of their shear strength. Epoxy adhesives showed higher mechanical strength, but exhibited higher degradation by humidity.

  17. Adhesive joint evaluation by ultrasonic interface and lamb waves

    Science.gov (United States)

    Rokhlin, S. I.

    1986-01-01

    Some results on the application of interface and Lamb waves for the study of curing of thin adhesive layers were summarized. In the case of thick substrates (thickness much more than the wave length) the interface waves can be used. In this case the experimental data can be inverted and the shear modulus of the adhesive film may be explicitly found based on the measured interface wave velocity. It is shown that interface waves can be used for the study of curing of structural adhesives as a function of different temperatures and other experimental conditions. The kinetics of curing was studied. In the case of thin substrates the wave phenomena are much more complicated. It is shown that for successful measurements proper selection of experimental conditions is very important. This can be done based on theoretical estimations. For correctly selected experimental conditions the Lamb waves may be a sensitive probe of adhesive bond quality and may be used or cure monitoring.

  18. Effect of hot-humid exposure on static strength of adhesive-bonded aluminum alloys

    Directory of Open Access Journals (Sweden)

    Rui Zheng

    2015-09-01

    Full Text Available The effect of hot-humid exposure (i.e., 40 °C and 98% R.H. on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.

  19. Artificial Intelligence Mechanisms on Interactive Modified Simplex Method with Desirability Function for Optimising Surface Lapping Process

    Directory of Open Access Journals (Sweden)

    Pongchanun Luangpaiboon

    2014-01-01

    Full Text Available A study has been made to optimise the influential parameters of surface lapping process. Lapping time, lapping speed, downward pressure, and charging pressure were chosen from the preliminary studies as parameters to determine process performances in terms of material removal, lap width, and clamp force. The desirability functions of the-nominal-the-best were used to compromise multiple responses into the overall desirability function level or D response. The conventional modified simplex or Nelder-Mead simplex method and the interactive desirability function are performed to optimise online the parameter levels in order to maximise the D response. In order to determine the lapping process parameters effectively, this research then applies two powerful artificial intelligence optimisation mechanisms from harmony search and firefly algorithms. The recommended condition of (lapping time, lapping speed, downward pressure, and charging pressure at (33, 35, 6.0, and 5.0 has been verified by performing confirmation experiments. It showed that the D response level increased to 0.96. When compared with the current operating condition, there is a decrease of the material removal and lap width with the improved process performance indices of 2.01 and 1.14, respectively. Similarly, there is an increase of the clamp force with the improved process performance index of 1.58.

  20. Modeling of fracture and durability of paste-bonded composite joints subjected to hygro-thermal-mechanical loading

    Science.gov (United States)

    Harris, David Lee

    The objective of the research is to characterize the behavior of composite/composite joints with paste adhesive using both experimental testing and analytical modeling. In comparison with the conventional tape adhesive, joining composites using paste adhesive provides several advantages. The carbon fiber laminate material systems employed in this study included IM7 carbon fibers and 977-3 epoxy matrix assembled in prepreg tape, and AS4 carbon fibers and 977-3 epoxy matrix as a five-harness satin weave. The adhesive employed was EA 9394 epoxy. All laminates and test specimens were fabricated and inspected by Boeing using their standard propriety procedures. Three types of test specimens were used in the program. They were bonded double-lap shear (DLS), bonded double cantilever beam (DCB) and bonded interlaminar tension (ILT) specimens. A group of specimens were conditioned at elevated temperature and humidity in an environmental chamber at Boeing's facility and their moisture absorption recorded with time. Specimens were tested at room temperature dry and elevated temperatures. DCB and DLS specimens were tested in fatigue as well as static conditions. Two-dimensional finite element models of the three configurations were developed for determining stresses and strains using the ABAQUS finite element package code. Due to symmetry, only the one-half of the specimen needed to be considered thus reducing computational time. The effect of the test fixture is not taken into account instead equivalent distributed stresses are applied directly on the composite laminates. For each of the specimen, the distribution of Mises stress and the first strain invariant J1 are obtained to identify potential failure locations within a specimen.

  1. Improvement of the T-peel Strength of Polypropylene Adhesion Joints by Surface Photografting Pre-Treatment with Methyl Methacrylate

    Science.gov (United States)

    Balart, R.; Sánchez-Nácher, L.; Balart, J.; Fombuena, V.; España, J. M.

    2010-06-01

    Although polypropylene is one of the most used polymers at industrial level due to good balanced properties, it presents some restrictions in applications that require good adhesion properties as well as coating and painting. These restrictions are related to its non polar nature which leads to low wetting properties. So that, in most cases, it is necessary a previous surface pre-treatment in order to improve adhesion properties. These surface treatments could be physical or chemical. Among the wide variety of physical processes, plasma technologies are useful from both technical and environmental points of view. If we take into account economic considerations, chemical processes are interesting due to low cost equipment and procedures. In particular, we have used photografting of methyl methacrylate (MMA) monomer on polypropylene substrates with UV radiation and initiators. This process is useful to promote chemical modification of polypropylene surface by grafting MMA monomers into polypropylene polymer chains. Due to polarity of some groups in MMA monomers, it is possible to increase surface wettability thus promoting a remarkable increase in adhesion properties of polypropylene. In this work, changes in wettability of polypropylene surfaces in terms of the exposure time to UV radiation in presence of MMA monomers and initiators has been investigated. Furthermore, chemical changes have been characterized by FTIR analysis and mechanical performance of adhesion joints has been evaluated by T-peel tests.

  2. Glenohumeral Joint Injections

    Science.gov (United States)

    Gross, Christopher; Dhawan, Aman; Harwood, Daniel; Gochanour, Eric; Romeo, Anthony

    2013-01-01

    Context: Intra-articular injections into the glenohumeral joint are commonly performed by musculoskeletal providers, including orthopaedic surgeons, family medicine physicians, rheumatologists, and physician assistants. Despite their frequent use, there is little guidance for injectable treatments to the glenohumeral joint for conditions such as osteoarthritis, adhesive capsulitis, and rheumatoid arthritis. Evidence Acquisition: We performed a comprehensive review of the available literature on glenohumeral injections to help clarify the current evidence-based practice and identify deficits in our understanding. We searched MEDLINE (1948 to December 2011 [week 1]) and EMBASE (1980 to 2011 [week 49]) using various permutations of intra-articular injections AND (corticosteroid OR hyaluronic acid) and (adhesive capsulitis OR arthritis). Results: We identified 1 and 7 studies that investigated intra-articular corticosteroid injections for the treatment of osteoarthritis and adhesive capsulitis, respectively. Two and 3 studies investigated the use of hyaluronic acid in osteoarthritis and adhesive capsulitis, respectively. One study compared corticosteroids and hyaluronic acid injections in the treatment of osteoarthritis, and another discussed adhesive capsulitis. Conclusion: Based on existing studies and their level of evidence, there is only expert opinion to guide corticosteroid injection for osteoarthritis as well as hyaluronic acid injection for osteoarthritis and adhesive capsulitis. PMID:24427384

  3. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  4. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  5. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties

    International Nuclear Information System (INIS)

    Pandiyaraj, Krishnasamy Navaneetha; Yoganand, Paramasivam; Selvarajan, Vengatasamy; Deshmukh, Rajendrasing R.; Balasubramanian, Suresh; Maruthamuthu, Sundaram

    2013-01-01

    The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.

  6. PROTECTIVE TREATMENTS FOR LAPPED PORCELAIN STONEWARE TILES AND EVALUATION OF THEIR CLEANABILITY

    Directory of Open Access Journals (Sweden)

    Elisa Rambaldi

    2017-09-01

    Full Text Available Since the arrival of lapped porcelain stoneware tiles on the market, several studies have been focused on the improvement of the technical characteristics of the surfaces of these products. Surface lapping induces aesthetical improvements, but can at the same time deteriorate the performance of porcelain stoneware tiles. To overcome this problem, it is possible to protect the lapped surface with commercial waterproofing materials. In this work, lapped commercial porcelain stoneware tiles with protective stain proofing agents (FILA PD15 and FILA 1239 Plus were evaluated. The stain resistance and chemical resistance results were correlated to the morphological surface characteristics of the products with and without protection. A systematic study of the surface porosity of the tiles was carried out. Results showed that unprotected surface pores tend to fill with dirt that is hardly removable by ordinary maintenance. If the pores are protected, the dirt from foot traffic is deposited only superficially and can be removed.

  7. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  8. Determination of withdrawal resistance of staple joints constructed with various members of upholstered furniture

    Directory of Open Access Journals (Sweden)

    saeid Kazemi Najafi

    2017-05-01

    Full Text Available The goal of this study was to investigate the effects of joints members type (oriented strand lumber, plywood and poplar wood (Populusdeltoides, penetration deeps of staple (12 and 17mm and adhesives (with and without adhesive on face and edge withdrawal resistance of joints fabricated with staple. Experimental specimens under withdrawal load test of face and edge consisted of two principal structural members, main member and a secondary member which were joined together by one staple. The results showed that joint member, penetration deeps and adhesive significantly influence on the withdrawal resistance. Staple withdrawal resistance in the face was higher than that in the edge. Staple holding resistance increased with the increase of penetration deep and the withdrawal resistance of joints fabricated by adhesive was higher than those without adhesive. The joints made by oriented strand lumber exhibited better performance than other two members and joints made with poplar wood had higher resistance than plywood joints. The highest face (2326N and edge (1265N withdrawal resistances were obtained from joints prepared from oriented strand lumber with adhesive and17mm penetration deeps.

  9. An experimental study of hafting adhesives and the implications for compound tool technology.

    Science.gov (United States)

    Zipkin, Andrew M; Wagner, Mark; McGrath, Kate; Brooks, Alison S; Lucas, Peter W

    2014-01-01

    Experimental studies of hafting adhesives and modifications to compound tool components can demonstrate the extent to which human ancestors understood and exploited material properties only formally defined by science within the last century. Discoveries of Stone Age hafting adhesives at archaeological sites in Europe, the Middle East, and Africa have spurred experiments that sought to replicate or create models of such adhesives. Most of these studies, however, have been actualistic in design, focusing on replicating ancient applications of adhesive technology. In contrast, this study tested several glues based on Acacia resin within a materials science framework to better understand the effect of each adhesive ingredient on compound tool durability. Using an overlap joint as a model for a compound tool, adhesives formulated with loading agents from a range of particle sizes and mineral compositions were tested for toughness on smooth and rough substrates. Our results indicated that overlap joint toughness is significantly increased by using a roughened joint surface. Contrary to some previous studies, there was no evidence that particle size diversity in a loading agent improved adhesive effectiveness. Generally, glues containing quartz or ochre loading agents in the silt and clay-sized particle class yielded the toughest overlap joints, with the effect of particle size found to be more significant for rough rather than smooth substrate joints. Additionally, no particular ochre mineral or mineral mixture was found to be a clearly superior loading agent. These two points taken together suggest that Paleolithic use of ochre-loaded adhesives and the criteria used to select ochres for this purpose may have been mediated by visual and symbolic considerations rather than purely functional concerns.

  10. Analysis and optimization of surface profile correcting mechanism of the pitch lap in large-aperture annular polishing

    Science.gov (United States)

    Zhang, Huifang; Yang, Minghong; Xu, Xueke; Wu, Lunzhe; Yang, Weiguang; Shao, Jianda

    2017-10-01

    The surface figure control of the conventional annular polishing system is realized ordinarily by the interaction between the conditioner and the lap. The surface profile of the pitch lap corrected by the marble conditioner has been measured and analyzed as a function of kinematics, loading conditions, and polishing time. The surface profile measuring equipment of the large lap based on laser alignment was developed with the accuracy of about 1μm. The conditioning mechanism of the conditioner is simply determined by the kinematics and fully fitting principle, but the unexpected surface profile deviation of the lap emerged frequently due to numerous influencing factors including the geometrical relationship, the pressure distribution at the conditioner/lap interface. Both factors are quantitatively evaluated and described, and have been combined to develop a spatial and temporal model to simulate the surface profile evolution of pitch lap. The simulations are consistent with the experiments. This study is an important step toward deterministic full-aperture annular polishing, providing a beneficial guidance for the surface profile correction of the pitch lap.

  11. Lap belts and three-point belts.

    NARCIS (Netherlands)

    Kampen, L.T.B. van & Edelman, A.

    1975-01-01

    Results of the swov-accident investigation prove that if there are any differences in the effectiveness of lap belts and three-point belts, these are so small that they cannot form a basis for giving preference to one type over the other. Furthermore, in spite of the results of this investigation

  12. Heat Resistance of Glued Finger Joints in Spruce Wood Constructions

    Directory of Open Access Journals (Sweden)

    Martin Sviták

    2014-10-01

    Full Text Available The heat resistance of glued spruce wood was evaluated for different joint types and adhesives. Bending strength, modulus of elasticity, and also fracture evaluation were investigated on glued spruce samples made by the finger-jointed principle. Finger-jointed samples were glued with polyurethane (PUR and melamine-urea-formaldehyde (MUF adhesives. Heat loading was realized at temperatures 60, 80, and 110 °C and compared with wood with 20 °C. A static bending test with four-point flexural test was used. Elevated temperature and adhesive type had an important influence on the bending strength. On the other hand, adhesive type had a significant influence on the modulus of elasticity, but elevated temperature had no substantial influence.

  13. Surface Modifications in Adhesion and Wetting

    Science.gov (United States)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling technique is extended to investigate the effects of chemical composition on the elastic modulus. Finally, the effect of macro-scale roughness on silane-reinforced joints is investigated

  14. Determination of face validity for the Simbionix LAP mentor virtual reality training module

    NARCIS (Netherlands)

    Ayodeji, I. D.; Schijven, M. P.; Jakimowicz, J. J.

    2006-01-01

    This study determines the expert and referent face validity of LAP Mentor, the first procedural virtual-reality (VR) trainer. After a hands-on introduction to the simulator a questionnaire was administered to 49 participants (21 expert laparoscopists and 28 novices). There was a consensus on LAP

  15. Experimental Investigation on High-Cycle Fatigue of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Turner, Daniel P.; Bocher, Philippe

    2018-04-01

    The high-cycle fatigue performance and crack growth pattern of transient liquid phase-brazed joints in a nickel-based superalloy Inconel 625 were studied. Assemblies with different geometries and types of overlaps were vacuum-brazed using the brazing paste Palnicro-36M in conditions such as to generate eutectic-free joints. This optimal microstructure provides the brazed assemblies with static mechanical strength corresponding to that of the base metal. However, eutectic micro-constituents were observed in the fillet region of the brazed assembly due to an incomplete isothermal solidification within this large volume of filler metal. The fatigue performance increased significantly with the overlap distance for single-lap joints, and the best performance was found for double-lap joints. It was demonstrated that these apparent changes in fatigue properties according to the specimen geometry can be rationalized when looking at the fatigue data as a function of the local stress state at the fillet radii. Fatigue cracks were nucleated from brittle eutectic phases located at the surface of the fillet region. Their propagation occurred through the bimodal microstructure of fillet and the diffusion region to reach the base metal. High levels of crack path tortuosity were observed, suggesting that the ductile phases found in the microstructure may act as a potential crack stopper. The fillet region must be considered as the critical region of a brazed assembly for fatigue applications.

  16. Design of mechanical joints

    CERN Document Server

    Blake, Alexander

    2018-01-01

    A cornerstone publication that covers the basic principles and practical considerations of design methodology for joints held by rivets, bolts, weld seams, and adhesive materials, Design of Mechanical Joints gives engineers the practical results and formulas they need for the preliminary design of mechanical joints, combining the essential topics of joint mechanics...strength of materials...and fracture control to provide a complete treatment of problems pertinent to the field of mechanical connections.

  17. How do liquids confined at the nanoscale influence adhesion?

    International Nuclear Information System (INIS)

    Yang, C; Tartaglino, U; Persson, B N J

    2006-01-01

    Liquids play an important role in adhesion and sliding friction. They behave as lubricants in human bodies, especially in the joints. However, in many biological attachment systems they act like adhesives, e.g. facilitating insects to move on ceilings or vertical walls. Here we use molecular dynamics to study how liquids confined at the nanoscale influence the adhesion between solid bodies with smooth and rough surfaces. We show that a monolayer of liquid may strongly affect the adhesion

  18. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  19. A novel hybrid joining methodology for composite to steel joints

    Science.gov (United States)

    Sarh, Bastian

    This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.

  20. Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.

    2018-01-01

    Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.

  1. Comparison Between Image-Guided and Landmark-Based Glenohumeral Joint Injections for the Treatment of Adhesive Capsulitis: A Cost-Effectiveness Study.

    Science.gov (United States)

    Gyftopoulos, Soterios; Abballe, Valentino; Virk, Mandeep S; Koo, James; Gold, Heather T; Subhas, Naveen

    2018-04-09

    The purpose of this study was to determine the cost-effectiveness of landmark-based and image-guided intraarticular steroid injections for the initial treatment of a population with adhesive capsulitis. A decision analytic model from the health care system perspective over a 6-month time frame for 50-year-old patients with clinical findings consistent with adhesive capsulitis was used to evaluate the incremental cost-effectiveness of three techniques for administering intraarticular steroid to the glenohumeral joint: landmark based (also called blind), ultrasound guided, and fluoroscopy guided. Input data on cost, probability, and utility estimates were obtained through a comprehensive literature search and from expert opinion. The primary effectiveness outcome was quality-adjusted life years (QALY). Costs were estimated in 2017 U.S. dollars. Ultrasound-guided injections were the dominant strategy for the base case, because it was the least expensive ($1280) and most effective (0.4096 QALY) strategy of the three options overall. The model was sensitive to the probabilities of getting the steroid into the joint by means of blind, ultrasound-guided, and fluoroscopy-guided techniques and to the costs of the ultrasound-guided and blind techniques. Two-way sensitivity analyses showed that ultrasound-guided injections were favored over blind and fluoroscopy-guided injections over a range of reasonable probabilities and costs. Probabilistic sensitivity analysis showed that ultrasound-guided injections were cost-effective in 44% of simulations, compared with 34% for blind injections and 22% for fluoroscopy-guided injections and over a wide range of willingness-to-pay thresholds. Ultrasound-guided injections are the most cost-effective option for the initial steroid-based treatment of patients with adhesive capsulitis. Blind and fluoroscopy-guided injections can also be cost-effective when performed by a clinician likely to accurately administer the medication into the

  2. Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification

    Science.gov (United States)

    Martín-Martínez, J. M.; Romero-Sánchez, M. D.

    2006-05-01

    The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally

  3. Formation of tough composite joints

    International Nuclear Information System (INIS)

    Brun, M.K.

    1997-05-01

    Joints which exhibit tough fracture behavior were formed in a composite with a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. In composites with BN coatings fibers were aligned uniaxially, while composites with Si 3 N 4 -coated fibers had a 0/90 degree architecture. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure have been proposed. Joints with a simple overlap geometry (only a few fingers) would have to be very long in order to prevent brittle failure. Typical failure in these joints is caused by a crack propagating along the interfaces between the joint fingers. Joints of the same overall length, but with geometry changed to be symmetric about the joint centerline and with an extra shear surface exhibited tough fractures accompanied with extensive fiber pullout. The initial matrix cracking of these joints was relatively low because cracks propagated easily through the ends of the fingers. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength from 9 to 25 MPa, by changing the fiber coating, increased matrix cracking and ultimate strength of the composite significantly. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints will permit building of structures containing joints with only a minor reduction of design stresses

  4. Adhesive capsulitis of the shoulder: MR arthrography

    International Nuclear Information System (INIS)

    Kim, Hyun Jeong; Han, Tae Il; Lee, Kwang Won; Choi, Youn Seon; Kim, Dae Hong; Han, Hyun Young; Song, Mun Kab; Kwon, Soon Tae

    2001-01-01

    Adhesive capsulitis is a clinical syndrome involving pain and decreased joint motion caused by thickening and contraction of the joint capsule. The purpose of this study is to describe the MR arthrographic findings of this syndrome. Twenty-nine sets of MR arthrographic images were included in the study. Fourteen patients had adhesive capsulitis diagnosed by physical examination and arthrography, and their MR arthrographic findings were compared with those of 15 subjects in the control group. The images were retrospectively reviewed with specific attention to the thickness of the joint capsule, volume of the axillary pouch (length, width, height(depth)), thinkness of the coracohumeral ligament, presence of extra-articular contrast extravasation, and contrst filling of the subcoracoid bursa. Mean capsular thickness measured at the inferior portion of the axillary pouch was 4.1 mm in patients with adhesive capsulitis and 1.5 mm in the control group. The mean width of the axillary pouch was 2.5 mm in patients and 9.5 mm in controls. In patients, the capsule was significantly thicker and the axillary pouch significantly narrower than in controls (p<0.05). Capsule thickness greater than 2.5 mm at the inferior portion of the axillary pouch (sensitivity 93%, specificity 80%) and a pouch narrower than 3.5 mm (sensitivity 93%, specificity 100%) were useful criteria for the diagnosis of adhesive capsulitis. In patients with this condition, extra-articular contrast extravasation was noted in six patients (43%) and contrast filling of the subcoracoid bursa in three (21%). The MR arthrographic findings of adhesive capsulitis are capsular thickening, a low-volume axillary pouch, extra-articular contrast extravasation, and contrast filling of the subcoracoid bursa. Capsule thickness greater than 2.5 mm at the inferior portion of the axillary pouch and a pouch width of less than 3.5 mm are useful diagnostic imaging characteristics

  5. The Fundamental Reasons Why Laptop Computers should not be Used on Your Lap

    Directory of Open Access Journals (Sweden)

    Mortazavi S. A. R.

    2016-12-01

    Full Text Available As a tendency to use new technologies, gadgets such as laptop computers are becoming more popular among students, teachers, businessmen and office workers. Today laptops are a great tool for education and learning, work and personal multimedia. Millions of men, especially those in the reproductive age, are frequently using their laptop computers on the lap (thigh. Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and Magnetic Resonance Imaging (MRI. Our own studies as well as the studies performed by other researchers indicate that using laptop computers on the lap adversely affects the male reproductive health. When it is placed on the lap, not only the heat from a laptop computer can warm men’s scrotums, the electromagnetic fields generated by laptop’s internal electronic circuits as well as the Wi-Fi Radiofrequency radiation hazards (in a Wi-Fi connected laptop may decrease sperm quality. Furthermore, due to poor working posture, laptops should not be used on the lap for long hours.

  6. The Plastic Deformation of RFSSW Joints During Tensile Tests / Deformacja Plastyczna Wybranych Połączeń RFSSW Podczas Rozciągania

    Directory of Open Access Journals (Sweden)

    Lacki P.

    2015-12-01

    Full Text Available The dynamic development of the friction stir welding (FSW technology is the basis for the design of durabe joints inter alia in the aviation industry. This technology has a prospective application, especially for the aluminum alloys. It is suitable for a broad spectrum of permanent joints. The joints obtained by FSW technology are characterized by good mechanical properties. In this paper, the friction stir spot welding joints were analysed. The example of a structure made using this technology were presented. The lap joints made of 2mm Al 6061-T6 sheets were the investigation subject. The different spot welds arrangements were analysed. The tensile test were performed with optical deformation measurement system, which allow to obtain the plastic deformation field on the sample surface. The plastic strain graphs for the characteristic line passing through the maximum deformation were registered and presented. The experimental results were compared to the FEM numerical analysis. The numerical models were built with 3D-solid elements. The boundary conditions, material properties and geometry of the joints were identical as during experimental investigation. The mechanism of deformation of welded joints during tensile test was described and explained. It has been found that the arrangement of the spot welds with respect to the tensile direction has an important influence on the behaviour and deformation of lap joint.

  7. Performance Evaluation and Durability Studies of Adhesive Bonds

    Science.gov (United States)

    Ranade, Shantanu Rajendra

    In this thesis, four test approaches were developed to characterize the adhesion performance and durability of adhesive bonds for specific applications in areas spanning from structural adhesive joints to popular confectionaries such as chewing gum. In the first chapter, a double cantilever beam (DCB) specimen geometry is proposed for combinatorial fracture studies of structural adhesive bonds. This specimen geometry enabled the characterization of fracture energy vs. bondline thickness trends through fewer tests than those required during a conventional "one at a time" characterization approach, potentially offering a significant reduction in characterization times. The second chapter investigates the adhesive fracture resistance and crack path selection in adhesive joints containing patterns of discreet localized weak interfaces created using physical vapor deposition of copper. In a DCB specimen tested under mode-I conditions, fracture energy within the patterned regions scaled according to a simple rule of mixture, while reverse R-curve and R-curve type trends were observed in the regions surrounding weak interface patterns. Under mixed mode conditions such that bonding surface with patterns is subjected to axial tension, fracture energy did not show R-curve type trends while it was observed that a crack could be made to avoid exceptionally weak interfaces when loaded such that bonding surface with defects is subjected to axial compression. In the third chapter, an adaptation of the probe tack test is proposed to characterize the adhesion behavior of gum cuds. This test method allowed the introduction of substrates with well-defined surface energies and topologies to study their effects on gum cud adhesion. This approach and reported insights could potentially be useful in developing chewing gum formulations that facilitate easy removal of improperly discarded gum cuds from adhering surfaces. In the fourth chapter we highlight a procedure to obtain insights

  8. Theoretical Analysis of Stress Distribution in Bonded Single Strap and Stiffened Joints

    Directory of Open Access Journals (Sweden)

    Behnam Ghoddous

    Full Text Available Abstract In this paper, distribution of peeling stress in two types of adhesively-bonded joints is investigated. The joints are a single strap and a stiffened joint. Theses joints are under uniform tensile load and materials are assumed orthotropic. Layers can be identical or different in mechanical or geometrical properties. A two-dimensional elasticity theory that includes the complete stress-strain and the complete strain-displacement relations for adhesive and adherends is used in this analysis. The displacement is assumed to be linear in the adhesive layer. A set of differential equations was derived and solved by using appropriate boundary conditions. Results revealed that the peak peeling stress developed within the adhesive layer is a function of geometrical and mechanical properties. FEM solution is used as the second method to verify the analytical results. A good agreement is observed between analytical and FEM solutions.

  9. Progressive Damage Modeling of Durable Bonded Joint Technology

    Science.gov (United States)

    Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.

  10. Effect of Different Connection Modes on Bolt Structural Properties of TC4 Alloy in Selective Laser Melting

    Science.gov (United States)

    Li, Xiaodan; Huang, Shuangjun; Xu, Liang; Hui, Li; Zhou, Song

    2017-12-01

    The bolt structural properties of selective laser melted (SLM) samples produced from TC4 powder metal has been investigated. Two different connection molds relative to single lap joint and bilateral lap joint as well as two different state of surface quality were considered. Samples and test procedures were designed in accordance with HB 5143 and HB 5287 standard. The results show that there is a strong influence of connection molds on the dynamic behavior of SLM produced TC4. The mechanical properties of bilateral lap joint are better than those of the single lap joint. Meanwhile the fatigue performance of the bilateral lap joint is much stronger than that of the single lap joint which it is a symmetrical structure of the two-shear test on both sides of the force evenly, while the single lap joint is a single shear sample of the uneven force. There are two kinds of fracture form most of which are broken in the first row of screw and a small part in the middle of the connecting plate.

  11. PENGEMBANGAN KARAKTER KEDISIPLINAN DAN KEMAMPUAN PEMECAHAN MASALAH MELALUI MODEL LAPS-HEURISTIK MATERI LINGKARAN KELAS-VIII

    Directory of Open Access Journals (Sweden)

    Sri Wahyuni

    2015-08-01

    Full Text Available Tujuan penelitian ini adalah untuk mengetahui (1 apakah pembelajaran dengan model pembelajaran LAPS-Heuristik pada materi lingkaran kelas-VIII dapat mengembangkan karakter kedisiplinan peserta didik, (2 apakah pembelajaran dengan model pembelajaran LAPS-Heuristik pada materi lingkaran kelas-VIII dapat meningkatkan kemampuan pemecahan masalah peserta didik, (3 apakah kemampuan pemecahan masalah matematika peserta didik yang diajar dengan model pembelajaran LAPS-Heuristik pada materi lingkaran kelas-VIII dapat mencapai kriteria ketuntasan minimal yang ditentukan. Desain penelitian ini adalah kualitatif deskriptif, artinya menggambarkan atau mendeskripsikan kejadian-kejadian yang menjadi pusat perhatian secara kualitatif dan berdasar data kualitatif. Penentuan sumber data dalam penelitian ini menggunakan teknik purposive sampling, yaitu dipilih dengan pertimbangan dan tujuan tertentu. Data diperoleh dengan observasi, wawancara, dan tes yang kemudian dianalisis menggunakan analisis kualitatif dan analisis gain untuk mengukur peningkatan. Analisis kualitatif menunjukkan karakter kedisiplinan dan kemampuan pemecahan masalah peserta didik meningkat, serta kemampuan pemecahan masalah peserta didik mencapai KKM melalui model pembelajaran LAPS-Heuristik.

  12. Small molecules targeting LapB protein prevent Listeria attachment to catfish muscle.

    Directory of Open Access Journals (Sweden)

    Ali Akgul

    Full Text Available Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listeriosis. L. monocytogenes lapB gene encodes a cell wall surface anchor protein, and mutation of this gene causes Listeria attenuation in mice. In this work, the potential role of Listeria LapB protein in catfish fillet attachment was investigated. To achieve this, boron-based small molecules designed to interfere with the active site of the L. monocytogenes LapB protein were developed, and their ability to prevent L. monocytogenes attachment to fish fillet was tested. Results indicated that seven out of nine different small molecules were effective in reducing the Listeria attachment to catfish fillets. Of these, three small molecules (SM3, SM5, and SM7 were highly effective in blocking Listeria attachment to catfish fillets. This study suggests an alternative strategy for reduction of L. monocytogenes contamination in fresh and frozen fish products.

  13. LAP TGF-Beta Subset of CD4+CD25+CD127− Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients

    Science.gov (United States)

    Islas-Vazquez, Lorenzo; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Galicia-Velasco, Miriam; Romero-Garcia, Susana; Camacho-Mendoza, Catalina; Lopez-Gonzalez, Jose Sullivan

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4+ T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP) TGF-β subset of CD4+CD25+CD127− Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4+CD25+CD127− Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells. PMID:26582240

  14. LAP TGF-Beta Subset of CD4+CD25+CD127− Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients

    Directory of Open Access Journals (Sweden)

    Lorenzo Islas-Vazquez

    2015-01-01

    Full Text Available Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4+ T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP TGF-β subset of CD4+CD25+CD127− Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4+CD25+CD127− Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells.

  15. The Effects of Temperature, Humidity and Aircraft Fluid Exposure on T800H/3900-2 Composites Bonded with AF-555M Adhesive

    Science.gov (United States)

    Miner, Gilda A.; Hou, Tan-Hung; Lowther, Sharon E.; Thibeault, Sheila A.; Connell, John W.; Blasini, Sheila Roman

    2010-01-01

    Fiber reinforced resin matrix composites and structural adhesives have found increased usage on commercial and military aircraft in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance has not been well established. In this study, single lap shear specimens (SLS) were fabricated by secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminates. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of the SLS specimen was measured to determine thickness and inspected visually using an optical microscope for voids. A three-year environmental aging plan for the SLS specimens at 82 C (180 F) and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The effect of this exposure on lap shear strength and failure modes to date is reported. In addition, the effects of water, saline water, deicing fluid, JP-5 jet fuel and hydraulic fluid on both the composite material and the adhesive bonds were investigated. The up to date results on the effects of these exposures will be discussed.

  16. Combination of TB lymphadenitis and metastatic LAP in breast cancer

    Directory of Open Access Journals (Sweden)

    Abdolhassan Talaiezadeh

    2015-06-01

    Full Text Available Tuberculosis (TB may present as pulmonary and extra-pulmonary. TB lymphadenitis is the most common presentation of extra-pulmonary TB. TB lymphadenitis should be taken into account in the differential diagnosis of different disorders such as metastatic lymphadenopathy. The reported patient was a 65-year-old lady with breast cancer and conglomerated and matted axillary lymphadenopathy who received chemotherapy. She presented with more extensive axillary LAP contrary to our expectation. Modified radical mastectomy was done and pathology analysis reported TB lymphadenitis associated with metastatic LAP. Under cover of anti-TB therapy adjuvant chemoradiation therapy was started. Accordingly, we recommend TB be ruled out in every patient who needs chemotherapy in the endemic region because chemotherapy may cause the extension of TB in the body.

  17. Fast downscaled inverses for images compressed with M-channel lapped transforms.

    Science.gov (United States)

    de Queiroz, R L; Eschbach, R

    1997-01-01

    Compressed images may be decompressed and displayed or printed using different devices at different resolutions. Full decompression and rescaling in space domain is a very expensive method. We studied downscaled inverses where the image is decompressed partially, and a reduced inverse transform is used to recover the image. In this fashion, fewer transform coefficients are used and the synthesis process is simplified. We studied the design of fast inverses, for a given forward transform. General solutions are presented for M-channel finite impulse response (FIR) filterbanks, of which block and lapped transforms are a subset. Designs of faster inverses are presented for popular block and lapped transforms.

  18. Mechanism of adhesion of epoxy resin to steel surface; Tekko hyomen to epoxy jushino secchaku mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, M. [Nippon Steel Corp., Tokyo (Japan)

    1994-08-01

    In the present research, an adhesion-breaking test and a molecular-scale model experiment were conducted to elucidate the adhesion mechanism of epoxy resin (R) to the cold rolled steel sheet (CR) and galvanized steel sheet (GI). As for the adhesive joint strength in the humid environment, the GI is inferior in residual strength to the CR. The GI joint fracture is an interfacial fracture between the plating and adhesive agent, while the CR joint fracture is a combination of cohesive fracture and interfacial fracture. It is attributable to the difference in adhesion mechanism of R and degradation due to humidity between the surface solely of zinc and iron-containing surface. The adhesion state of R to the zinc oxide and iron oxide was observed by temperature-programed desorption in an ultrahigh vacuum. On each of both oxides, the R chemically adsorbs through bond scission between the phenoxy oxide and carbon. If the water dissociatively adsorbs onto the surface, the bond is destroyed between the zinc oxide and R. The formation of interfacial chemical bond contributes to the adhesion of R to the CR and GI. In case of GI, this band is destroyed by the interfacial infiltration of water, while it is not done in case of CR. The CR excels the GI in adhesive durability. 20 refs., 8 figs., 3 tabs.

  19. Characteristics of solder joints under fatigue loads using piezomechanical actuation

    Science.gov (United States)

    Shim, Dong-Jin; Spearing, S. Mark

    2003-07-01

    Crack initiation and growth characteristics of solder joints under fatigue loads are investigated using piezomechanical actuation. Cracks in solder joints, which can cause failure in microelectronics components, are induced via piezoelectricity in piezo-ceramic bonded joints. Lead-zirconate-titanate ceramic plates and eutectic Sn-Pb solder bonded in a double-lap shear configuration are used in the investigation. Electric field across each piezo-ceramic plate is applied such that shear stresses/strains are induced in the solder joints. The experiments show that cracks initiate in the solder joints around defects such as voids and grow in length until they coalesce with other cracks from adjacent voids. These observations are compared with the similar thermal cycling tests from the literature to show feasibility and validity of the current method in investigating the fatigue characteristics of solder joints. In some specimens, cracks in the piezo-ceramic plates are observed, and failure in the specimens generally occurred due to piezo-ceramic plate fracture. The issues encountered in implementing this methodology such as low actuation and high processing temperatures are further discussed.

  20. Laps ja pere vajavad enam tähelepanu / Anne Tiko

    Index Scriptorium Estoniae

    Tiko, Anne, 1949-

    2001-01-01

    Lääne-Viru Maavalitsuse, Lastekaitse Liidu ja TPÜ sotsiaaltöö osakonna korraldatud kuuenda vabariikliku lastekaitsekonverentsi "Laps ja pere tänases Eestis" pöördumine haridus- ja sotsiaalministeeriumi poole

  1. Multi-Scale Computational Modeling of Ni-Base Superalloy Brazed Joints for Gas Turbine Applications

    Science.gov (United States)

    Riggs, Bryan

    , ductile a-Ni phase that formed at the joint interface and a hard, brittle multi-phase centerline eutectic. CrB and Ni3B type borides were identified in the eutectic region via electron probe micro-analysis, and a boron diffusion gradient was observed in the BM adjacent to the joint. The volume fraction of centerline eutectic was found to be highly dependent on the extent of the boron diffusion that occurred during brazing and therefore a function of the primary process parameters; hold time, temperature, FM/BM composition, and joint gap. Thermo-Calc(TM) and DICTRA(TM) simulations were used to model the BM dissolution, isothermal solidification and phase transformations that occurred during brazing to predict the final joint microstructure based on these process parameters. Good agreement was found between experimental and simulated joint microstructures at various joint gaps demonstrating the application of these simulations for brazed joints. However, thermodynamic/kinetic databases available for brazing FMs were limited. A variety of mechanical testing was performed to determine the mechanical properties of CMSX-4/BNi-2 and IN718/BNi-2 brazed joints including small-scale tensile tests, standard-size butt joints and lap shear tests. Small-scale tensile testing provided a novel method for studying microstructure-property relationships in brazed joints and indicated that both joint strength and ductility decrease significantly with an increase in the volume fraction of centerline eutectic. In-situ observations during small-scale testing also showed strain localization and crack initiation occurs around the hard, eutectic phases in the joint microstructure during loading. The average tensile strength for standard-size IN718/BNi-2 butt joints containing a low volume fraction of centerline eutectic was found to be 152.8 ksi approximately 90% of the BM yield strength (˜170 ksi). The average lap shear FM stress was found to decrease from 70 to 20 ksi for IN718/BNi-2 joints and

  2. Bench for mechanical cleaning of circular welded joints

    International Nuclear Information System (INIS)

    Sklifasovskij, V.M.

    1986-01-01

    A special bench for weld reinforcement removal and mechanical cleaning of the heat affected zones was designed to provide for a possibility of an ultrasonic testing of welded joints in the course of steam generator section fabrication. The bench comprises a mechanized roller support for fixing and rotating the workpiece; a lap-cutting device for external machining; milling/grinding tractor for internal machining and a delivery table for tractor approach and departure. The bench performance and overall view are presented. The operation succession is described

  3. PENINGKATAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA MELALUI MODEL PEMBELAJARAN LAPS-HEURISTIC DIKELAS X SMAN 2 BATANG ANAI

    Directory of Open Access Journals (Sweden)

    Adri Nofrianto

    2017-01-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui peningkatan kemampuan pemecahan masalah matematika siswa melalui model pembelajaran LAPS-Heuristic. Jenis penelitian ini yaitu penelitian deskriptif kualitatif. Subjek dalam penelitian ini dipilih dua siswa dari kelas penelitian yaitu kelas X SMAN 2 Batang Anai. Subjek yang dipilih dalam merupakan siswa yang memiliki kemampuan matematika tinggi. Data dikumpulkan melalui tes pemecahan masalah dan wawancara. Hal ini dilakukan sebelum dan sesudah penerapa model pembelajaran LAPS-Heuristic. Berdasarkan hasil deskripsi dan analisis data, dapat dilihat perkembangan kemampuan pemecahan masalah matematika siswa meningkat pada saat dilakukan tes akhir. Pada hasil penilaian berdasarkan rubrik pemecahan masalah matematika, diperoleh tingkat kategori sangat memuaskan dengan indikator pencapaian: memahami soal dengan benar, rencana strategi penyelesaian yang benar, mengarah pada jawaban yang benar dan adanya pengecekan kembali hasil perhitungan, sehingga dapat disimpulkan bahwa model pembelajaran LAPS-Heuristic berpengaruh terhadap kemampuan pemecahan masalah matematika siswa kelas X SMAN 2 Batag Anai. Kata kunci: kesulitan matematika, pemecahan masalah, LAPS-Heuristic This research aims to determine the increase in mathematics problem solving ability of students through learning model LAPS-Heuristic. Type of research is a qualitative descriptive study. The subjects in this study were selected two students from class research that is class X SMAN 2 Batang Anai. Subjects selected were the students who have high math skills. Data were collected through a problem-solving test and interview. This data collection was done before and after the implementation of learning model LAPS-Heuristic. Based on the description and analysis of the test, it can be seen that the development of mathematical problem solving ability of students increased at the time of the final test. The results of the assessment under the rubric of

  4. Assessment of vitamin D status and serum CrossLaps levels in adults with primary lactose malabsorption.

    Science.gov (United States)

    Enko, D; Kriegshäuser, G; Stolba, R; Mangge, H; Brandstetter, D; Mayr, N; Forstner, T; Halwachs-Baumann, G

    2016-09-01

    Primary adult-type lactose malabsorption (PALM) is a widespread inherited autosomal recessive condition, which is considered to be associated with osteoporosis. This prospective study aimed at assessing the 25-hydroxy-vitamin D (25(OH)D) status and serum CrossLaps levels in individuals with PALM and normal controls. All participants (n=210) underwent genotyping for the LCT C/T-13910 polymorphism, 25(OH)D and CrossLaps measurements and clinical examinations. In addition, the anthropometric data (that is, height, weight and body mass index) were determined. Fifty-five individuals with PALM (that is, LCT C/C-13910 homozygotes) showed lower 25(OH)D (mean: 24.95±10.04 vs 28.59±9.56 ng/ml, P=0.018) and higher CrossLaps serum levels (mean: 0.46±0.31 vs 0.43±0.49 ng/ml, P=0.251) compared with 155 normal controls (that is, LCT C/T-13910 hetero- or T/T-13910 homozygotes). Anthropometric data were similar between PALM probands and controls. Individuals with PALM were found to have lower 25(OH)D and higher CrossLaps serum levels compared with normal controls. In order to preserve life-long bone health, routine 25(OH)D and CrossLaps serum measurements should be performed in individuals with PALM.

  5. An investigation of the adhesion of gold contacts on silicon detectors of nuclear radiation as a function of the substrate temperature

    International Nuclear Information System (INIS)

    Gumnerova, L.; Mikhajlov, M.

    1981-01-01

    The dependence of the adhesion of a thin gold film to an etched single crystal silicon substrate temperature and duration of aging is investigated. N-type silicon samples of 3Ω/m specific resistivity and 0.002 m thick are used. These samples are lapped by a series of abrasive powders with a grain diameter of 40 μm to 7 μm and etched by a 1:3:0.5 (HF:HNO 3 :CH 3 COOH) etching agent. The principal schemes of the evaporation equipment and the adhesion testing device are presented. Gold contacts are deposited at substrate temperature ranging from room temperature up to 433 K. The obtained gold films on the silicon substrates are tested and the results are given. It is seen that the adhesion of the gold film to the sample heated up to 373 K is about 50 times higher than the adhesion of the fresh unheated sample. The comparison between samples subjected to aging shows that the adhesion of heated samples is about 10 times higher and does not change essentially after ageing. Some possible explanations of this phenomena are given

  6. Determination of L-AP4-bound human mGlu8 receptor amino terminal domain structure and the molecular basis for L-AP4’s group III mGlu receptor functional potency and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Schkeryantz, Jeffery M.; Chen, Qi; Ho, Joseph D.; Atwell, Shane; Zhang, Aiping; Vargas, Michelle C.; Wang, Jing; Monn, James A.; Hao, Junliang (Lilly)

    2018-02-01

    Here, L-2-Amino-4-phosphonobutyric acid (L-AP4) is a known potent and selective agonist for the Group III mGlu receptors. However, it does not show any selectivity among the individual group III mGlu subtypes. In order to understand the molecular basis for this group selectivity, we solved the first human mGlu8 amino terminal domain (ATD) crystal structures in complex with L-glu and L-AP4. In comparison with other published L-glu-bound mGlu ATD structures, we have observed L-glu binds in a significantly different manner in mGlu1. Furthermore, these new structures provided evidence that both the electronic and steric nature of the distal phosphate of L-AP4 contribute to its exquisite Group III functional agonist potency and selectivity.

  7. The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface

    DEFF Research Database (Denmark)

    Rybtke, Morten; Berthelsen, Jens; Yang, Liang

    2015-01-01

    Pseudomonas aeruginosa is a clinically relevant species involved in biofilm-based chronic infections. We provide evidence that the P. aeruginosa LapG protein functions as a periplasmic protease that can cleave the protein adhesin CdrA off the cell surface, and thereby plays a role in biofilm...... formation and biofilm dispersal. The P. aeruginosa LapG protein is shown to be a functional homolog of the Pseudomonas putida LapG protein which has previously been shown to function as a periplasmic protease that targets the surface adhesin LapA. Transposon mutagenesis and characterization of defined...... and whole-cell protein fractions showed that CdrA was retained in the whole-cell protein fraction when LapG was absent, whereas it was found in the culture supernatant when LapG was present. The finding that CdrA is a target of LapG in P. aeruginosa is surprising because CdrA has no homology to LapA....

  8. Dielectric Non-Destructive Analysis of Adhesive Bonded Structures

    National Research Council Canada - National Science Library

    Mijovic, Jovan

    2004-01-01

    .... The highlights of the research performed are: l) The defects in adhesive joints decrease the real and imaginary dielectric permittivity in the frequency domain and induce additional peaks in the time domain spectra; 2...

  9. Edge effect modeling and experiments on active lap processing.

    Science.gov (United States)

    Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian

    2014-05-05

    Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL.

  10. Polymer powder adhesion to metallic surface improvement with plasma

    International Nuclear Information System (INIS)

    Hladik, J.; Pichal, J.; Spatenka, P.; Pichal, J.; Spatenka, P.

    2008-01-01

    Useful method for corrosion prevention is coating of a base material with a suitable substance. It performs a barrier between the base material and its environment. Great attractions in this field have found polymers, among them polyethylenes (PE). Due to the low adhesion grade of unmodified polymer powder or granules the application of any modification process increasing the adhesion grade is crucial. At present there is no universal approach to polymer adhesion improvement and there have been employed various quite different techniques. Our research employed the PE adhesion improvement by plasma modification. There were used two plasma reactors - the microwave low pressure reactor and the atmospheric reactor employing dielectric barrier discharge (DBD). The adhesion of the powder was determined by measurement of strength force demanded for displacement of the PE-metal joint

  11. Investigation on the Effect of Pulsed Energy on Strength of Fillet Lap Laser Welded AZ31B Magnesium Alloys

    Science.gov (United States)

    Salleh, M. N. M.; Ishak, M.; Aiman, M. H.; Idris, S. R. A.; Romlay, F. R. M.

    2017-09-01

    AZ31B magnesium alloy have been hugely applied in the aerospace, automotive, and electronic industries. However, welding thin sheet AZ31B was challenging due to its properties which is easily to evaporated especially using conventional fusion welding method such as metal inert gas (MIG). Laser could be applied to weld this metal since it produces lower heat input. The application of fiber laser welding has been widely since this type of laser could produce better welding product especially in the automotive sectors. Low power fiber laser was used to weld this non-ferrous metal where pulse wave (PW) mode was used. Double fillet lap joint was applied to weld as thin as 0.6 mm thick of AZ31B and the effect of pulsed energy on the strength was studied. Bond width, throat length, and penetration depth also was studied related to the pulsed energy which effecting the joint. Higher pulsed energy contributes to the higher fracture load with angle of irradiation lower than 3 °

  12. Learning Activity Package, Algebra 93-94, LAPs 12-22.

    Science.gov (United States)

    Evans, Diane

    A set of 11 teacher-prepared Learning Activity Packages (LAPs) in beginning algebra, these units cover sets, properties of operations, operations over real numbers, open expressions, solution sets of equations and inequalities, equations and inequalities with two variables, solution sets of equations with two variables, exponents, factoring and…

  13. Adhesively bonded joints composed of pultruded adherends: Considerations at the upper tail of the material strength statistical distribution

    International Nuclear Information System (INIS)

    Vallee, T.; Keller, Th.; Fourestey, G.; Fournier, B.; Correia, J.R.

    2009-01-01

    The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries: however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), m-fold Weibull, a Grafted Distribution, a Birnbaum-Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions. (authors)

  14. Adhesively bonded joints composed of pultruded adherends: Considerations at the upper tail of the material strength statistical distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, T.; Keller, Th. [Ecole Polytech Fed Lausanne, CCLab, CH-1015 Lausanne, (Switzerland); Fourestey, G. [Ecole Polytech Fed Lausanne, IACS, Chair Modeling and Sci Comp, CH-1015 Lausanne, (Switzerland); Fournier, B. [CEA SACLAY ENSMP, DEN, DANS, DMN, SRMA, LC2M, F-91191 Gif Sur Yvette, (France); Correia, J.R. [Univ Tecn Lisbon, Inst Super Tecn, Civil Engn and Architecture Dept, P-1049001 Lisbon, (Portugal)

    2009-07-01

    The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries: however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), m-fold Weibull, a Grafted Distribution, a Birnbaum-Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions. (authors)

  15. Experimental investigation on the failure of T-joints at elevated temperature under unaxial loading

    Science.gov (United States)

    Bahri, N. F.; Afendi, M.; Razlan, Z. M.; Nor, A.; Baharuddin, S. A.

    2017-09-01

    In this study, the mechanical properties and maximum failure load of a bulk and T-joints subjected to tensile loading were investigated experimentally. A bulk and the T-joint specimens were fabricated and tested in order to investigate the effects of temperature conditions on the failure of the joints. The adherent and adhesive used for T-joint are 304 L stainless steel and Hysol E 214 HP with the adhesive thickness of 1.0 mm. The tensile test of the bulk specimen and adhesively T-joint were conducted by using a universal testing machine (UTM) at room temperature (RT), 55 °C, 75 °C, 100 °C and 120 °C, respectively. It was found that as the temperature increases, the failure force strength decreases for bulk and T-joint specimen. Data obtained from the tests at 120 °C showed the failure force of the bulk adhesive decreased by approximately 44 % compared to the specimen tested at RT. Next, the bulk of Hysol failure force result was compared with Araldite at RT and 100 °C. Araldite data was taken from the previous study [1]. It has also been found that the bulk for Hysol has higher failure force compared to Araldite at RT and 100 °C.

  16. iLAP: a workflow-driven software for experimental protocol development, data acquisition and analysis

    Directory of Open Access Journals (Sweden)

    McNally James

    2009-01-01

    Full Text Available Abstract Background In recent years, the genome biology community has expended considerable effort to confront the challenges of managing heterogeneous data in a structured and organized way and developed laboratory information management systems (LIMS for both raw and processed data. On the other hand, electronic notebooks were developed to record and manage scientific data, and facilitate data-sharing. Software which enables both, management of large datasets and digital recording of laboratory procedures would serve a real need in laboratories using medium and high-throughput techniques. Results We have developed iLAP (Laboratory data management, Analysis, and Protocol development, a workflow-driven information management system specifically designed to create and manage experimental protocols, and to analyze and share laboratory data. The system combines experimental protocol development, wizard-based data acquisition, and high-throughput data analysis into a single, integrated system. We demonstrate the power and the flexibility of the platform using a microscopy case study based on a combinatorial multiple fluorescence in situ hybridization (m-FISH protocol and 3D-image reconstruction. iLAP is freely available under the open source license AGPL from http://genome.tugraz.at/iLAP/. Conclusion iLAP is a flexible and versatile information management system, which has the potential to close the gap between electronic notebooks and LIMS and can therefore be of great value for a broad scientific community.

  17. L-Cysteine and L-AP4 microinjections in the rat caudal ventrolateral medulla decrease arterial blood pressure.

    Science.gov (United States)

    Takemoto, Yumi

    2014-12-01

    The thiol amino acid L-cysteine increases arterial blood pressure (ABP) when injected into the cerebrospinal fluid space in conscious rats, indicating a pressor response to centrally acting L-cysteine. A prior synaptic membrane binding assay suggests that L-cysteine has a strong affinity for the L-2-amino-4-phosphonobutyric acid (L-AP4) binding site. The central action of L-cysteine may be vial-AP4 sensitive receptors. The present study investigated cardiovascular responses to L-cysteine and L-ap4 microinjected into the autonomic area of the caudal ventrolateral medulla (CVLM) where inhibitory neurons regulate ABP via pre-sympathetic vasomotor neurons. Both the injection of L-cysteine and L-AP4 in the CVLM sites identified with L-glutamate produced the same depressor and bradycardic responses in urethane-anesthetized rats. Neither a prior antagonist microinjection of MK801 for the N-methyl-D-aspartate (NMDA) receptor nor CNQX for the non-NMDA receptor attenuated the responses to L-cysteine, but the combination of the two receptor blocking with an additional prior injection abolished the response. In contrast, either receptor blockade alone abolished the response to L-AP4, indicating distinct mechanisms between responses to L-cysteine and L-AP4 in the CVLM. The results indicate that the CVLM is a central active site for L-cysteine's cardiovascular response. Central L-cysteine's action could be independent of the L-AP4 sensitive receptors. Cardiovascular regulation may involve endogenous L-cysteine in the CVLM. Further multidisciplinary examinations are required to elaborate on L-cysteine's functional roles in the CVLM. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications

    International Nuclear Information System (INIS)

    Wagner, Torsten; Molina, Roberto; Yoshinobu, Tatsuo; Kloock, Joachim P.; Biselli, Manfred; Canzoneri, Michelangelo; Schnitzler, Thomas; Schoening, Michael J.

    2007-01-01

    The light-addressable potentiometric sensor is a promising technology platform for multi-sensor applications and lab-on-chip devices. However, many prior LAPS developments suffer from their lack in terms of non-portability, insufficient robustness, complicate handling, etc. Hence, portable and robust LAPS-based measurement devices have been investigated by the authors recently. In this work, a 'chip card'-based light-addressable potentiometric sensor system is presented. The utilisation of ordinary 'chip cards' allows an easy handling of different sensor chips for a wide range of possible applications. The integration of the electronic and the mechanical set-up into a single reader unit results in a compact design with the benefits of portability and low required space. In addition, the presented work includes a new multi-frequency measurement procedure, based on an FFT algorithm, which enables the simultaneous real-time measurement of up to 16 sensor spots. The comparison between the former batch-LAPS and the new FFT-based LAPS set-up will be presented. The immobilisation of biological cells (CHO: Chinese hamster ovary) demonstrates the possibility to record their metabolic activity with 16 measurement spots on the same chip. Furthermore, a Cd 2+ -selective chalcogenide-glass layer together with a pH-sensitive Ta 2 O 5 layer validates the use of the LAPS for chemical multi-sensor applications

  19. Effect of light aging on silicone-resin bond strength in maxillofacial prostheses.

    Science.gov (United States)

    Polyzois, Gregory; Pantopoulos, Antonis; Papadopoulos, Triantafillos; Hatamleh, Muhanad

    2015-04-01

    The aim of this study was to investigate the effect of accelerated light aging on bond strength of a silicone elastomer to three types of denture resin. A total of 60 single lap joint specimens were fabricated with auto-, heat-, and photopolymerized (n = 20) resins. An addition-type silicone elastomer (Episil-E) was bonded to resins treated with the same primer (A330-G). Thirty specimens served as controls and were tested after 24 hours, and the remaining were aged under accelerated exposure to daylight for 546 hours (irradiance 765 W/m(2) ). Lap shear joint tests were performed to evaluate bond strength at 50 mm/min crosshead speed. Two-way ANOVA and Tukey's test were carried out to detect statistical significance (p Accelerated light aging for 546 hours affects the bond strength of an addition-type silicone elastomer to three different denture resins. The bond strength significantly increased after aging for photo- and autopolymerized resins. All the bonds failed adhesively. © 2014 by the American College of Prosthodontists.

  20. Theoretical and Experimental Evaluation of the Bond Strength Under Peeling Loads

    Science.gov (United States)

    Nayeb-Hashemi, Hamid; Jawad, Oussama Cherkaoui

    1997-01-01

    Reliable applications of adhesively bonded joints require understanding of the stress distribution along the bond-line and the stresses that are responsible for the joint failure. To properly evaluate factors affecting peel strength, effects of defects such as voids on the stress distribution in the overlap region must be understood. In this work, the peel stress distribution in a single lap joint is derived using a strength of materials approach. The bonded joint is modeled as Euler-Bernoulli beams, bonded together with an adhesive. which is modeled as an elastic foundation which can resist both peel and shear stresses. It is found that for certain adhesive and adherend geometries and properties, a central void with the size up to 50 percent of the overlap length has negligible effect on the peak peel and shear stresses. To verify the solutions obtained from the model, the problem is solved again by using the finite element method and by treating the adherends and the adhesive as elastic materials. It is found that the model used in the analysis not only predicts the correct trend for the peel stress distribution but also gives rather surprisingly close results to that of the finite element analysis. It is also found that both shear and peel stresses can be responsible for the joint performance and when a void is introduced, both of these stresses can contribute to the joint failure as the void size increases. Acoustic emission (AE) activities of aluminum-adhesive-aluminum specimens with different void sizes were monitored. The AE ringdown counts and energy were very sensitive and decreased significantly with the void size. It was observed that the AE events were shifting towards the edge of the overlap where the maximum peeling and shearing stresses were occurring as the void size increased.

  1. Impaired circulating CD4+ LAP+ regulatory T cells in patients with acute coronary syndrome and its mechanistic study.

    Directory of Open Access Journals (Sweden)

    Zheng-Feng Zhu

    Full Text Available OBJECTIVE: CD4(+ latency-associated peptide (LAP(+ regulatory T cells (Tregs are a newly discovered T cell subset in humans and the role of these cells in patients with acute coronary syndrome (ACS has not been explored. We designed to investigate whether circulating frequency and function of CD4(+LAP(+ Tregs are defective in ACS. METHODS: One hundred eleven ACS patients (acute myocardial infarction and unstable angina and 117 control patients were enrolled in the study. The control patients consisted of chronic stable angina (CSA and chest pain syndrome (CPS. The frequencies of circulating CD4(+LAP(+ Tregs and the expression of the transmembrane protein glycoprotein-A repetitions predominant (GARP on CD4(+ T cells were determined by flow cytometry. The function of CD4(+LAP(+ Tregs was detected using thymidine uptake. Serum interleukin-10 (IL-10 and transforming growth factor-β protein (TGF-β levels were detected using ELISA and expression of GARP mRNA in peripheral blood mononuclear cells (PBMCs was measured by real time-polymerase chain reaction. RESULTS: We found ACS patients had a significantly lower frequency of circulating CD4(+LAP(+ Tregs, and the function of these cells was reduced compared to controls. The expression of GARP in CD4(+ T cells and the serum levels of TGF-β in ACS patients were lower than those of control patients. The serum levels of IL-10 were similar between the two cohorts. CONCLUSIONS: A novel regulatory T cell subset, defined as CD4(+LAP(+ T cells is defective in ACS patients.

  2. Face validation of the Simbionix LAP Mentor virtual reality training module and its applicability in the surgical curriculum

    NARCIS (Netherlands)

    Ayodeji, I. D.; Schijven, M.; Jakimowicz, J.; Greve, J. W.

    2007-01-01

    BACKGROUND: The goal of our study was to determine expert and referent face validity of the LAP Mentor, the first procedural virtual reality (VR) laparoscopy trainer. METHODS: In The Netherlands 49 surgeons and surgical trainees were given a hands-on introduction to the Simbionix LAP Mentor training

  3. Seismic fragility analysis of lap-spliced reinforced concrete columns retrofitted by SMA wire jackets

    International Nuclear Information System (INIS)

    Choi, Eunsoo; Park, Sun-Hee; Chung, Young-Soo; Kim, Hee Sun

    2013-01-01

    The aim of this study is to provide seismic fragility curves of reinforced concrete columns retrofitted by shape memory alloy wire jackets and thus assess the seismic performance of the columns against earthquakes, comparing them with reinforced concrete columns with lap-spliced and continuous reinforcement. For that purpose, this study first developed analytical models of the experimental results of the three types of columns, (1) lap-spliced reinforcement, (2) continuous reinforcement and (3) lap-spliced reinforcement and retrofitted by SMA wire jackets, using the OpenSEES program, which is oriented to nonlinear dynamic analysis. Then, a suite of ten recorded ground motions was used to conduct dynamic analyses of the analytical models with scaling of the peak ground acceleration from 0.1g to 1.0g in steps of 0.1g. From the static experimental tests, the column retrofitted with SMA wire jackets had a larger displacement ductility by a factor of 2.3 times that of the lap-spliced column, which was 6% larger compared with the ductility of the continuous reinforcement column. From the fragility analyses, the SMA wire jacketed column had median values of 0.162g and 0.567g for yield and collapse, respectively. For the yield damage state, the SMA wire jacketed column had a median value similar to the continuous reinforcement column. However, for the complete damage state, the SMA wire jacketed column showed a 1.33 times larger median value than the continuously reinforcement column. (paper)

  4. Push-off tests and strength evaluation of joints combining shrink fitting with bonding

    Science.gov (United States)

    Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi

    1997-03-01

    Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.

  5. The Balance of Th1/Th2 and LAP+Tregs/Th17 Cells Is Crucial for Graft Survival in Allogeneic Corneal Transplantation

    Directory of Open Access Journals (Sweden)

    Shang Li

    2018-01-01

    Full Text Available Purpose. CD4+LAP+ T cells are newly discovered regulatory T cells (Tregs. The aim of this study is to investigate the balance of Th1/Th2 and LAP+Tregs/Th17 in mice after allogeneic corneal transplantation. Methods. A total of 65 mice received orthotopic penetrating transplantation. According to the survival scores of the grafts, the mice were divided into the rejection group and the survival group 3 weeks after transplantation. Th1, Th2, Th17, and regulatory T cells in the ipsilateral drainage lymph nodes and spleens were measured with flow cytometry. The related cytokines in aqueous humor were also analyzed. Results. The frequencies of Foxp3+Tregs, GARP+Tregs, and LAP+Tregs in the survival group were significantly higher than those in the rejection group. And the expression trend of CD4+LAP+ T cells and CD4+GARP+ T cells was consistent. The level of IFN-γ, TNF, IL-6, and IL-17A markedly increased in aqueous humor during corneal allograft rejection. The ratio of Th1/Th2 and Th17/LAP+Tregs significantly increased in the rejection group at the 3rd week after corneal transplantation. Conclusion. LAP+Tregs might be regarded as substitute for Foxp3+Tregs. The balance of Th1/Th2 and LAP+Tregs/Th17 is crucial for corneal allograft survival.

  6. Mechanics of Suture Joints

    Science.gov (United States)

    Li, Yaning; Song, Juha; Ortiz, Christine; Boyce, Mary; Ortiz Group/DMSE/MIT Team; Boyce Group/ME/MIT Team

    2011-03-01

    Biological sutures are joints which connect two stiff skeletal or skeletal-like components. These joints possess a wavy geometry with a thin organic layer providing adhesion. Examples of biological sutures include mammalian skulls, the pelvic assembly of the armored fish Gasterosteus aculeatus (the three-spined stickleback), and the suture joints in the shell of the red-eared slider turtle. Biological sutures allow for movement and compliance, control stress concentrations, transmit loads, reduce fatigue stress and absorb energy. In this investigation, the mechanics of the role of suture geometry in providing a naturally optimized joint is explored. In particular, analytical and numerical micromechanical models of the suture joint are constructed. The anisotropic mechanical stiffness and strength are studied as a function of suture wavelength, amplitude and the material properties of the skeletal and organic components, revealing key insights into the optimized nature of these ubiquitous natural joints.

  7. Mechanical characterization of selected adhesives and bulk materials at liquid nitrogen and room temperatures

    International Nuclear Information System (INIS)

    Fitzpatrick, C.M.; Stoddart, W.C.T.

    1977-01-01

    This paper presents the results of a series of mechanical tests on selected adhesives and bulk materials. The materials tested are of general interest to designers of magnets for cryogenic service and include several epoxies, a varnish, a B-stage glass cloth, insulation papers, and commercially available fiber-reinforced composites. These tests were performed at room temperature (293 K) and at liquid nitrogen temperature (77 K). The tests include both simple tension tests and lap shear tests with various adherends. The parameters critical to tensile or bond strength were varied as part of the test program. The procedures used to manufacture and test these specimens and the results of the tests are reported in this paper

  8. RSRM Nozzle-to-Case Joint J-leg Development

    Science.gov (United States)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  9. Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination

    Science.gov (United States)

    Liu, M. J.; Yu, S.; Zhao, Q. Y.

    2018-03-01

    Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.

  10. Endovascular management of lap belt-related abdominal aortic injury in a 9-year-old child.

    Science.gov (United States)

    Papazoglou, Konstantinos O; Karkos, Christos D; Kalogirou, Thomas E; Giagtzidis, Ioakeim T

    2015-02-01

    Blunt abdominal aortic trauma is a rare occurrence in children with only a few patients having been reported in the literature. Most such cases have been described in the context of lap belt injuries. We report a 9-year-old boy who suffered lap belt trauma to the abdomen during a high-speed road traffic accident resulting to the well-recognized pattern of blunt abdominal injury, that is, the triad of intestinal perforation, fractures of the lumbar spine, and abdominal aortic injury. The latter presented with lower limb ischemia due to dissection of the infrarenal aorta and right common iliac artery. Revascularization was achieved by endovascular means using 2 self-expanding stents in the infrarenal aorta and the right common iliac artery. This case is one of the few reports of lap belt-related acute traumatic abdominal aortic dissection in a young child and highlights the feasibility of endovascular management in the pediatric population. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Lapped scarf joint with inclined faces and wooden dowels: Experimental and numerical analysis

    Czech Academy of Sciences Publication Activity Database

    Arciszewska-Kędzior, Anna; Kunecký, Jiří; Hasníková, Hana; Sebera, V.

    2015-01-01

    Roč. 94, July (2015), s. 1-8 ISSN 0141-0296 R&D Projects: GA MK(CZ) DF12P01OVV004 Keywords : timber joint * wooden-dowels * full-scale experiments * FEM * failure criterion Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.893, year: 2015 http://www.sciencedirect.com/science/article/pii/S0141029615001807

  12. An N-terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: A Novel Sub-family of Type I Secretion Systems.

    Science.gov (United States)

    Smith, T Jarrod; Font, Maria E; Kelly, Carolyn M; Sondermann, Holger; O'Toole, George A

    2018-02-05

    LapA of Pseudomonas fluorescens Pf0-1 belongs to a diverse family of cell surface associated bacterial adhesins that are secreted via the type-1 secretion system (T1SS). We previously reported that the periplasmic protease LapG cleaves the N-terminus of LapA at a canonical dialanine motif to release the adhesin from the cell surface under conditions unfavorable to biofilm formation, thus decreasing biofilm formation. Here, we characterize LapA as the first type 1 secreted substrate that does not follow the "one-step" rule of T1SS. Rather, a novel N-terminal element, called the retention module (RM), localizes LapA at the cell surface as a secretion intermediate. Our genetic, biochemical, and molecular modeling analysis support a model wherein LapA is tethered to the cell surface through its T1SS outer membrane TolC-like pore, LapE, until LapG cleaves LapA in the periplasm. We further demonstrate this unusual retention strategy is likely conserved among LapA-like proteins, and reveals a new subclass of T1SS ABC transporters involved in transporting this group of surface-associated, LapA-like adhesins. These studies demonstrate a novel cell surface retention strategy used throughout the Proteobacteria and highlight a previously unappreciated flexibility of function for T1SS. Importance. Bacteria have evolved multiple secretion strategies to interact with their environment. For many bacteria, the secretion of cell surface associated adhesins is key for initiating contact with a preferred substratum to facilitate biofilm formation. Our work demonstrates that P. fluorescens uses a previously unrecognized secretion strategy to retain the giant adhesin LapA at its cell surface. Further, we identify likely LapA-like adhesins in various pathogenic and commensal Proteobacteria and provide phylogenetic evidence that these adhesins are secreted by a new subclass of T1SS ABC transporters. Copyright © 2018 American Society for Microbiology.

  13. Gecko Adhesion on Wet and Dry Patterned Substrates.

    Directory of Open Access Journals (Sweden)

    Alyssa Y Stark

    Full Text Available Perhaps one of the most astounding characteristics of the gecko adhesive system is its versatility. Geckos can locomote across complex substrates in a variety of conditions with apparent ease. In contrast, many of our synthetic pressure sensitive adhesives fail on substrates that are dirty, wet or rough. Although many studies have investigated the effect of environmental challenges on performance, the interaction of multiple, potentially compromising variables is studied less often. Here we focus on substrate structure and surface water, both of which are highly relevant to the biological system and to synthetic design. To do this we utilized a highly controlled, patterned substrate (Sharklet®, by Sharklet® Technologies Inc.. This allowed us to test independently and jointly the effects of reduced surface area substrates, with a defined pattern, on adhesion in both air and water. Our results show that adhesion is not significantly impaired in air, whereas surface area and pattern significantly affect adhesion in water. These findings highlight the need to study multiple parameters that are relevant to the gecko adhesive system to further improve our understanding of the biological system and to design better, more versatile synthetics.

  14. APPLICATION PROSPECTS OF THREADED JOINT OF ARMATURE

    Directory of Open Access Journals (Sweden)

    A. V. Radkevych

    2014-06-01

    Full Text Available Purpose. One of the main technological operations of buildings construction on the basis of monolithic frame systems is the production of mesh reinforcement. The current interest is the new ways specification of advanced bonding armature techniques without reliability weakness and design of the building in whole, as well as the finding of use prospects of screw-threaded joint of armature as the most technological and economic method of re-bars joints. Methodology. Advantages and disadvantages analysis of existing rebar compound technologies was implemented by couplings of different types and constructions. The most promising vertical constructions for the vertical bars joints in frameworks were determined. Findings. Researches of existing technologies of rebar joints by the couplings of different construction were carried out. The installation method of mesh reinforcement of vertical structural elements with the use of the special catching devices was developed. It allows considerably accelerating installation of mesh reinforcement. Originality. Regularity of labor intensiveness change of mesh reinforcement installation of columns at armature joint in vertical position by threaded couplings with the help of catching devices using special construction was determined. This allows substantially reducing the labor expenditures during installation of these elements. Dependency of labor intensiveness and cost of lap welding armature joints, by tub-seam welding and by thread coupling depending on its diameter was designated. Regularity of labor intensiveness changes of installation at armature joints by different methods taking into account preparatory works was defined. Practical value. The analysis of mechanical armature joints techniques was conducted. It will allow selecting methods of armature joints to increase the speed of construction works more economical and effective.

  15. Hybrid FSWeld-bonded joint fatigue behaviour

    Science.gov (United States)

    Lertora, Enrico; Mandolfino, Chiara; Gambaro, Carla; Pizzorni, Marco

    2018-05-01

    Aluminium alloys, widely used in aeronautics, are increasingly involved in the automotive industry due to the good relationship between mechanical strength and specific weight. The lightening of the structures is the first objective, which allows the decreasing in the weight in motion. The use of aluminium alloys has also seen the introduction of the Friction Stir Welding (FSW) technique for the production of structural overlapping joints. FSW allows us to weld overlap joints free from defects, but with the presence of a structural notch further aggravated by the presence of a "hook" defect near the edge of the weld. Furthermore, FSW presents a weld penetration area connected to the tool geometry and penetration. The experimental activity will be focused on the combination of two different joining techniques, which can synergistically improve the final joint resistance. In particular, the welding and bonding process most commonly known as weld-bonding is defined as a hybrid process, as it combines two different junction processes. In this paper we analyse FSWelded AA6082 aluminium alloy overlapped joint with the aim of quantitatively evaluating the improvement provided by the presence of an epoxy adhesive between the plates. After optimising the weld-bonding process, the mechanical behaviour of welded joints will be analysed by static and dynamic tests. The presence of the adhesive should limit the negative effect of the structural notch inevitable in a FSW overlapped joint.

  16. On the water lapping of felines and the water running of lizards: A unifying physical perspective

    OpenAIRE

    Aristoff, Jeffrey M; Stocker, Roman; Reis, Pedro M; Jung, Sunghwan

    2011-01-01

    We consider two biological phenomena taking place at the air-water interface: the water lapping of felines and the water running of lizards. Although seemingly disparate motions, we show that they are intimately linked by their underlying hydrodynamics and belong to a broader class of processes called Froude mechanisms. We describe how both felines and lizards exploit inertia to defeat gravity, and discuss water lapping and water running in the broader context of water exit and water entry, r...

  17. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, J. [Department of Materials Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran 141554933 (Iran, Islamic Republic of); Behnamian, Y. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Mostafaei, A., E-mail: amir.mostafaei@gmail.com [Young Researchers and Elites Club, Tehran North Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Izadi, H. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Saeid, T. [Faculty of Materials Engineering, Sahand University of Technology, Tabriz 513351996 (Iran, Islamic Republic of); Kokabi, A.H. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran 113659466 (Iran, Islamic Republic of); Gerlich, A.P., E-mail: adrian.gerlich@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2015-03-15

    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic

  18. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    International Nuclear Information System (INIS)

    Mohammadi, J.; Behnamian, Y.; Mostafaei, A.; Izadi, H.; Saeid, T.; Kokabi, A.H.; Gerlich, A.P.

    2015-01-01

    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the microstructures of the joints welded. Intermetallic phases including Al 12 Mg 17 (γ) and Al 3 Mg 2 (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al 12 Mg 17 (γ) and Al 3 Mg 2 (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic compounds • Microstructure and chemical

  19. A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints

    Directory of Open Access Journals (Sweden)

    Evangelos I. Avgoulas

    2016-07-01

    Full Text Available There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.

  20. Construct validity of the LapVR virtual-reality surgical simulator.

    Science.gov (United States)

    Iwata, Naoki; Fujiwara, Michitaka; Kodera, Yasuhiro; Tanaka, Chie; Ohashi, Norifumi; Nakayama, Goro; Koike, Masahiko; Nakao, Akimasa

    2011-02-01

    Laparoscopic surgery requires fundamental skills peculiar to endoscopic procedures such as eye-hand coordination. Acquisition of such skills prior to performing actual surgery is highly desirable for favorable outcome. Virtual-reality simulators have been developed for both surgical training and assessment of performance. The aim of the current study is to show construct validity of a novel simulator, LapVR (Immersion Medical, San Jose, CA, USA), for Japanese surgeons and surgical residents. Forty-four subjects were divided into the following three groups according to their experience in laparoscopic surgery: 14 residents (RE) with no experience in laparoscopic surgery, 14 junior surgeons (JR) with little experience, and 16 experienced surgeons (EX). All subjects executed "essential task 1" programmed in the LapVR, which consists of six tasks, resulting in automatic measurement of 100 parameters indicating various aspects of laparoscopic skills. Time required for each task tended to be inversely correlated with experience in laparoscopic surgery. For the peg transfer skill, statistically significant differences were observed between EX and RE in three parameters, including total time and average time taken to complete the procedure and path length for the nondominant hand. For the cutting skill, similar differences were observed between EX and RE in total time, number of unsuccessful cutting attempts, and path length for the nondominant hand. According to the programmed comprehensive evaluation, performance in terms of successful completion of the task and actual experience of the participants in laparoscopic surgery correlated significantly for the peg transfer (P=0.007) and cutting skills (P=0.026). The peg transfer and cutting skills could best distinguish between EX and RE. This study is the first to provide evidence that LapVR has construct validity to discriminate between novice and experienced laparoscopic surgeons.

  1. The influence of adhesive joint characteristics of the bonded samples of PUR-foam

    Directory of Open Access Journals (Sweden)

    Josef Pacovský

    2011-01-01

    Full Text Available Upholstered chairs and upholstered furniture in general, is largely produced primarily using PUR-foams, and it largely in the form of gluing several types of foam and himself on a firm surface - usually plywood or the agglomerated material – for the qualitative increase of upholstered furniture (including seating. Work deals with properties of the bond in connection with the influence on the final properties of the finished product, or even a change of functional properties in use over time. This work deals with: The influence of the characteristics of the adhesive used on samples bonded polyurethane foams. This work deals with properties of the bond in connection with an influence on the final properties of the finished product, or changes in functional properties when used at the time. The work is focused on: Effect of glue applied to the characteristics of the bonded samples of PUR foam. To determine the effects observed were used as the basis for the methodology based on the standard EN 1957, which was further modified as necessary. The results of the tests and conclusions can be stated that the incidence of bonded joints, ultimately, has a negligible effect on the resulting observed characteristics and therefore can cut and paste samples of smaller sizes into larger blocks without a fundamental change of the original features.

  2. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    International Nuclear Information System (INIS)

    Jofre-Reche, José Antonio; Martín-Martínez, José Miguel; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh

    2016-01-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery. (paper)

  3. Extensive Characterisation of Copper-clad Plates, Bonded by the Explosive Technique, for ITER Electrical Joints

    CERN Document Server

    Langeslag, S A E; Libeyre, P; Gung, C Y

    2015-01-01

    Cable-in-conduit conductors will be extensively implemented in the large superconducting magnet coils foreseen to confine the plasma in the ITER experiment. The design of the various magnet systems imposes the use of electrical joints to connect unit lengths of superconducting coils by inter-pancake coupling. These twin-box lap type joints, produced by compacting each cable end in into a copper - stainless steel bimetallic box, are required to be highly performing in terms of electrical and mechanical prop- erties. To ascertain the suitability of the first copper-clad plates, recently produced, the performance of several plates is studied. Validation of the bonded interface is carried out by determining microstructural, tensile and shear characteristics. These measure- ments confirm the suitability of explosion bonded copper-clad plates for an overall joint application. Additionally, an extensive study is conducted on the suitability of certain copper purity grades for the various joint types.

  4. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  5. Validation of a novel basic virtual reality simulator, the LAP-X, for training basic laparoscopic skills.

    Science.gov (United States)

    Kawaguchi, Koji; Egi, Hiroyuki; Hattori, Minoru; Sawada, Hiroyuki; Suzuki, Takahisa; Ohdan, Hideki

    2014-10-01

    Virtual reality surgical simulators are becoming popular as a means of providing trainees with an opportunity to practice laparoscopic skills. The Lap-X (Epona Medical, Rotterdam, the Netherlands) is a novel VR simulator for training basic skills in laparoscopic surgery. The objective of this study was to validate the LAP-X laparoscopic virtual reality simulator by assessing the face and construct validity in order to determine whether the simulator is adequate for basic skills training. The face and content validity were evaluated using a structured questionnaire. To assess the construct validity, the participants, nine expert surgeons (median age: 40 (32-45)) (>100 laparoscopic procedures) and 11 novices performed three basic laparoscopic tasks using the Lap-X. The participants reported a high level of content validity. No significant differences were found between the expert surgeons and the novices (Ps > 0.246). The performance of the expert surgeons on the three tasks was significantly better than that of the novices in all parameters (Ps training device.

  6. Research on the design of surface acquisition system of active lap based on FPGA and FX2LP

    Science.gov (United States)

    Zhao, Hongshen; Li, Xiaojin; Fan, Bin; Zeng, Zhige

    2014-08-01

    In order to research the dynamic surface shape changes of active lap during the processing, this paper introduces a dynamic surface shape acquisition system of active lap using FPGA and USB communication. This system consists of high-precision micro-displacement sensor array, acquisition board, PC computer composition, and acquisition circuit board includes six sub-boards based on FPGA, a hub-board based on FPGA and USB communication. A sub-board is responsible for a number of independent channel sensors' data acquisition; hub-board is responsible for creating encoder simulation tools to active lap deformation control system with location information, sending synchronization information to latch the sensor data in all of the sub-boards for a time, while addressing the sub-boards to gather the sensor data in each sub-board one by one and transmitting all the sensor data together with location information via the USB chip FX2LP to the host computer. Experimental results show that the system is capable of fixing the location and speed of active lap, meanwhile the control of surface transforming and dynamic surface data acquisition at a certain location in the processing is implemented.

  7. Shear and Thermal Testing of Adhesives for VELO Upgrade

    CERN Document Server

    De Capua, Stefano; Klaver, Suzanne; Parkes, Chris; Rodriguez Perez, Pablo; Shtipliyski, Antoni; Stelmasiak, Guy James

    2016-01-01

    As part of the R&D process of the LHCb VELO Upgrade, a study has been performed on the thermal and mechanical performance of the adhesives Stycast 2850FT, 3M 9461P, and Araldite 2011. One or more of these adhesives could be used to attach the ASICs and hybrids to the microchannel cooling substrate. Samples were irradiated at up to the maximum dose expected at the upgrade. Shear tests of the samples were made and a suitable performance obtained from all glues. Some failures were encountered with Stycast 2850FT glued samples and this is attributed to the sample preparation. The relative thermal conductivities of the adhesives were also determined by measuring the relative temperature difference across a glued joint while one side is heated.

  8. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  9. Multivariate Analysis of High Through-Put Adhesively Bonded Single Lap Joints: Experimental and Workflow Protocols

    Science.gov (United States)

    2016-06-01

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Robert E Jensen, Daniel C DeSchepper, and David P Flanagan 5d. PROJECT NUMBER 5e. TASK...relational database center of operation ..................................................5 Fig. 5 Flowchart summary of the overall materials...Acknowledgments This research was supported in part by the US Army Education Outreach - Gains in the Education of Math and Science (GEMS) Program at

  10. Dual joint space arthrography in temporomandibular joint disorders: Comparison with single inferior joint space arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyung Sik; Chang, Duk Soo; Lee, Kyung Soo; Kim, Woo Sun; Sung, Jung Ho; Jun, Young Hwan [Capital Armed Forces General Hospital, Seoul (Korea, Republic of)

    1989-02-15

    The temporomandibular joint(TMJ) is really a complex of two synovial space separated by fibrocartilaginous disc. Single inferior joint space arthrography is commonly performed for evaluation of TMJ disorders, which is known to be superior in demonstrating joint dynamics. But it reveals only the inferior surface of the disc. Therefore, dual space arthrography is superior to demonstrate the soft tissue anatomic feature of the joint such as disc position and shape. Authors performed 83 TMJ arthrograms in TMJ problems. Initially, the inferior joint space was done and then the superior space was sequentially contrasted. The follow results were noted: 1. In all cases, dual space arthrography revealed accurate disc shape and positions. 2. Concordant findings between the two techniques: 68 cases (82%). Discordance between the two techniques: 15 cases (18%) 3. Possible causes of discordance between inferior and dual space arthrography. a) Normal varians of anterior recess: 3 cases b) Posterior disc displacement: 4 cases c) Influence of the patient's head position change :4 cases d) False perforation: 2 cases e) Reduction change: 2 cases 4. In 5 cases with anterior displacement, dual space arthrography gave additional findings such as adhesion within the superior space, which could not be evaluated by single inferior space.

  11. The role of haptic feedback in laparoscopic training using the LapMentor II.

    Science.gov (United States)

    Salkini, Mohamad W; Doarn, Charles R; Kiehl, Nicholai; Broderick, Timothy J; Donovan, James F; Gaitonde, Krishnanath

    2010-01-01

    Laparoscopic surgery has become the standard of care for many surgical diseases. Haptic (tactile) feedback (HFB) is considered an important component of laparoscopic surgery. Virtual reality simulation (VRS) is an alternative method to teach surgical skills to surgeons in training. Newer VRS trainers such as the Simbionix Lap Mentor II provide significantly improved tactile feedback. However, VRSs are expensive and adding HFB software adds an estimated cost of $30,000 to the commercial price. The HFB provided by the Lap Mentor II has not been validated by an independent party. We used the Simbionix Lap Mentor II in this study to demonstrate the effect of adding an HFB mechanism in the VRS trainer. The study was approved by the University of Cincinnati Institutional Review Board. Twenty laparoscopically novice medical students were enrolled. Each student was asked to perform three different tasks on the Lap Mentor II and repeat each one five times. The chosen tasks demanded significant amount of traction and counter traction. The first task was to pull leaking tubes enough and clip them. The second task was stretching a jelly plate enough to see its attachments to the floor and cut these attachments. In the third task, the trainee had to separate the gallbladder from its bed on the liver. The students were randomized into two groups to perform the tasks with and without HFB. We used accuracy, speed, and economy of movement as scales to compare the performance between the two groups. The participants also completed a simple questionnaire that highlighted age, sex, and experiences in videogame usage. The two groups were comparable in age, sex, and videogame playing. No differences in the accuracy, the economy, and the speed of hand movement were noticed. In fact, adding HFB to the Lap Mentor II simulator did not contribute to any improvement in the performance of the trainees. Interestingly, we found that videogame expert players tend to have faster and more economic

  12. Material properties of novel polymeric films

    Science.gov (United States)

    Kim, Gene

    This dissertation will study the material properties of two types of novel polymer films (polyelectrolyte multilayer films and photolithographic polymer films). The formation of polylelectrolyte multilayer films onto functionalized aluminum oxide surfaces and functionalized poly(ethylene terephthaltate) (PET) were studied. Functionalization of the aluminum oxide surfaces was achieved via silane coupling. Functionalization of PET surfaces was achieved via hydrolysis and amidation. Surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurements were used to monitor the polyelectrolyte multilayer formation. Mechanical properties of the aluminum oxide supported polyelectrolyte multilayer films were tested using a simplified peel test. XPS was used to analyze the surfaces before and after peel. Single lap shear joint specimens were constructed to test the adhesive shear strength of the PET-supported polyelectrolyte multilayer film samples with the aid of a cyanoacrylate adhesive. The adhesive shear strength and its relation with the type of functionalization, number of polyelectrolyte layers, and the effect of polyelectrolyte conformation using added salt were explored. Also, characterization on the single lap joints after adhesive failure was carried out to determine the locus of failure within the multilayers by using XPS and SEM. Two types of photolithographic polymers were formulated and tested. These two polymers (photocrosslinkable polyacrylate (PUA), and a photocrosslinkable polyimide (HRP)) were used to investigate factors that would affect the structural integrity of these particular polymers under environmental variables such as processing (time, UV cure, pressure, and temperature) and ink exposure. Thermomechanical characterization was carried out to see the behavior of these two polymers under these environmental variables. Microscopic techniques were employed to study the morphological behavior of

  13. Evaluación de la adherencia de uniones adhesivas metálicas con adhesivos epoxídicos modificados Evaluation of the adherence of bonded metallic joints with modified epoxy adhesives

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2008-03-01

    agents. The adhesive properties were investigated using the epoxy resins as independent systems as well as the modified resin. The adhesive properties of modified and unmodified epoxy resins were studied using steel alloy (ASTM A36 as adherent. The adherence has been evaluated using three geometric assays of steel-steel bonded joints. The rheological behavior of the adhesives was investigated under isothermal conditions. The rheological parameters associated with the curing reaction such as reaction rate, pot life and gel time of the pure adhesives were related to the chemical structure of the curing agents. The cloud point and the gel time of the modified adhesives were related to the morphology and the reaction rate, respectively. The morphology was characterized by scanning electronic microscopy. The adherence of the adhesive joints at different mechanical solicitations was related to the generated morphology by the dispersed phase of each modifier and the networks structures of the epoxy adhesives.

  14. Quality Assessment of Scarf Joints Considering the Acoustic Parameters: A Nondestructive Approach

    Directory of Open Access Journals (Sweden)

    Ali Yavari

    2015-07-01

    Full Text Available The present research studied the acoustic properties of 40 oak timber samples (Quercus castaneifolia: the acoustic coefficient (K and acoustic conversion efficiency (ACE in free vibration mode, using the free-free bar method with different planes of vibration, i.e., tangential (LT and radial (LR. These acoustic parameters were considered for both primary virgin wooden beams and modified beams carrying a single scarf joint in four different bonding angles (60°, 65°, 70°, and 75°, individually glued with two different adhesives (isocyanate and polyvinyl acetate. Comparing the acoustic properties of primary solid beams with scarf jointed beams of oak wood in LT and LR planes, the steeper joint angles of 70° and 75° did not result in any serious changes with polyvinyl acetate adhesive. Scarf-jointed beams with smaller joint angles (60° and 65° had significant effect on the acoustic properties relative to larger angles. Thus, beams having larger joint angles and beams glued using polyvinyl acetate may have enhanced acoustic properties.

  15. Crystallography of hornblende amphibole in LAP04840 R chondrite and implication for its metamorphic history

    International Nuclear Information System (INIS)

    Ota, Kouhei; Mikouchi, Takashi; Sugiyama, Kazumasa

    2009-01-01

    LAP04840 is an unusual R chondrite that includes abundant hornblende amphibole. LAP04840 shows a texture of equilibrated chondrite composed of 59.3% olivine, 13.5% orthopyroxene, 13.3% hornblende, 6.2% plagio-clase, 6.0% Fe-Ni sulfide, and 1.7% accessory minerals. Hornblende replaces olivine and pyroxene in both chondrules and matrices, suggesting its secondary origin. All major phases in LAP04840 are homogeneous: olivine (Fa 37 ), orthopyroxene (En 70 Wo 1 ), and plagioclase (An 8 Or 2 ). Hornblende is also nearly homogeneous, but the total sum by electron microprobe analysis is 96-98 wt%, suggesting the presence of Fe 3+ and a hydroxyl group. Synchrotron Fe-XANES analysis gives a Fe 3+ /ΣFe ratio of ∼0.6 and micro-FT-IR analysis confirms the presence of a hydroxyl group. Thus, the structural formula is (Na 0.40 K 0 . 04 ) (Ca 1.46 Mn 0.02 Fe 0.06 2+ Na 0.46 ) (Al 0.08 Fe 0.43 2+ Fe 0.75 3+ Cr 0.08 Mg 3.60 ) (Si 7.02 Al 0.98 )O 22 (OH) 2 . Single crystal X-ray diffraction of LAP04840 hornblende gives the following lattice constants: a=9.7957(9) A, b=18.0788(12) A, c=5.2949(5) A, β=104.747(3)deg. The relatively short distances of [M(1)-O=2.069 A], [M(2)-O=2.081 A], and [M(3)-O=2.058 A] suggest the feasible preference of small Fe 3+ at these sites. The mineralogy and petrology of LAP04840 are consistent with its classification as an R6 chondrite. However, the presence of hornblende and biotite is quite unique among not only R chondrites but also asteroidal meteorites in general. The presence of these hydrous minerals suggests metamorphism under high pressure and an aqueous environment probably at depth in the parent body. A thermometer using hornblende and plagioclase equilibria gives T=670-690degC. Further, a barometer using Al content in hornblende gives P=∼0.1 GPa. Although these estimates bear some uncertainties, it is likely that the size of the R chondrite parent body was large enough to induce such metamorphism. (author)

  16. Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP.

    Science.gov (United States)

    Elkord, Eyad; Abd Al Samid, May; Chaudhary, Belal

    2015-08-21

    Regulatory T cells (Tregs) are key players of immune regulation/dysregulation both in physiological and pathophysiological settings. Despite significant advances in understanding Treg function, there is still a pressing need to define reliable and specific markers that can distinguish different Treg subpopulations. Herein we show for the first time that markers of activated Tregs [latency associated peptide (LAP) and glycoprotein A repetitions predominant (GARP, or LRRC32)] are expressed on CD4+FoxP3- T cells expressing Helios (FoxP3-Helios+) in the steady state. Following TCR activation, GARP/LAP are up-regulated on CD4+Helios+ T cells regardless of FoxP3 expression (FoxP3+/-Helios+). We show that CD4+GARP+/-LAP+ Tregs make IL-10 immunosuppressive cytokine but not IFN-γ effector cytokine. Further characterization of FoxP3/Helios subpopulations showed that FoxP3+Helios+ Tregs proliferate in vitro significantly less than FoxP3+Helios- Tregs upon TCR stimulation. Unlike FoxP3+Helios- Tregs, FoxP3+Helios+ Tregs secrete IL-10 but not IFN-γ or IL-2, confirming they are bona fide Tregs with immunosuppressive characteristics. Taken together, Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP, and FoxP3+Helios+ Tregs have more suppressive characteristics, compared with FoxP3+Helios- Tregs. Our work implies that therapeutic modalities for treating autoimmune and inflammatory diseases, allergies and graft rejection should be designed to induce and/or expand FoxP3+Helios+ Tregs, while therapies against cancers or infectious diseases should avoid such expansion/induction.

  17. The Role of Mechanical Connection during Friction Stir Keyholeless Spot Welding Joints of Dissimilar Materials

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2017-06-01

    Full Text Available Contrast experiments of lap joints among dissimilar AZ31B Mg alloy, Mg99.50, zinc-coated DP600 sheet, and non-zinc-coated DP600 sheet were made by friction stir keyholeless spot welding (FSKSW and vacuum diffusion welding (VDW, respectively. Scanning electron microscopy (SEM and energy disperse spectroscopy (EDS were used to investigate the microstructures and components of the joints welded. The experimental results show that the FSKSW bonding method is a kind of compound mode that contains a mechanical connection and element diffusion fusion connection, in which mechanical connection has the main decisive function on joints of Mg/steel. Elements diffusion exists in the interfacial region of the joints and the elements diffusion extent is basically the same to that of VDW. The elements’ diffusion in Mg/steel using FSKSW is defined in the reaction between small amounts elements of the base metal and zinc-coated metals. The intermetallic compounds and composite oxide perform some reinforcement on the mechanical connection strength.

  18. Cohesive Laws and Progressive Damage Analysis of Composite Bonded Joints, a Combined Numerical/Experimental Approach

    Science.gov (United States)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2015-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations, in agreement with experimental tests, indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  19. Application of Box–Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding

    International Nuclear Information System (INIS)

    Balasubramanian, M.

    2015-01-01

    Highlights: • Diffusion bonding of Ti–6Al–4V to SS304 with silver interlayer was successful. • Hardness and shear strength increased with the increase in the bonding temperature. • Shear strength of 149 MPa and 18% strain to failure were achieved. • Joint efficiency of 80% was obtained for the Ti–6Al–4V and SS304L joints. - Abstract: Direct bonding between titanium (Ti)/titanium alloy(Ti alloy) and stainless steel (SS) promotes the formation of various Fe–Ti and Fe–Cr–Ti intermetallics in the diffusion zone, because the solid solubility of Fe, Cr, Ni and Ti in each other is limited and these intermetallics weaken the mechanical properties of the joint. The present study focuses on the titanium alloy Ti–6Al–4V diffusion bonded to AISI 304 stainless steel with silver foil as an interlayer. The process parameters were chosen appropriately and hence, the bonding is achieved without any defect. Box–Behnken design is used to decide the optimum number of experiments required to do the investigation. Microhardness measurements and the lap shear test were carried out to determine the hardness and strength of the joints respectively. The results show that atomic diffusion and migration between Ti and Fe or C are effectively prevented by adding pure Ag as the interlayer metal. The results from mechanical testing showed that shear strength values have a direct relationship with bonding time. The maximum lap shear strength of 149 MPa and 18% strain to failure was observed for joints obtained with bonding time of 60 min. However, effective bonding was not possible at 850 °C due to incomplete coalescence of mating surfaces

  20. Mechanistic Features of Nanodiamonds in the Lapping of Magnetic Heads

    Directory of Open Access Journals (Sweden)

    Xionghua Jiang

    2014-01-01

    Full Text Available Nanodiamonds, which are the main components of slurry in the precision lapping process of magnetic heads, play an important role in surface quality. This paper studies the mechanistic features of nanodiamond embedment into a Sn plate in the lapping process. This is the first study to develop mathematical models for nanodiamond embedment. Such models can predict the optimum parameters for particle embedment. From the modeling calculations, the embedded pressure satisfies p0=3/2·W/πa2 and the indentation depth satisfies δ=k1P/HV. Calculation results reveal that the largest embedded pressure is 731.48 GPa and the critical indentation depth δ is 7 nm. Atomic force microscopy (AFM, scanning electron microscopy (SEM, and Auger electron spectroscopy (AES were used to carry out surface quality detection and analysis of the disk head. Both the formation of black spots on the surface and the removal rate have an important correlation with the size of nanodiamonds. The results demonstrate that an improved removal rate (21 nm·min−1 can be obtained with 100 nm diamonds embedded in the plate.

  1. Mechanistic features of nanodiamonds in the lapping of magnetic heads.

    Science.gov (United States)

    Jiang, Xionghua; Chen, Zhenxing; Wolfram, Joy; Yang, Zhizhou

    2014-01-01

    Nanodiamonds, which are the main components of slurry in the precision lapping process of magnetic heads, play an important role in surface quality. This paper studies the mechanistic features of nanodiamond embedment into a Sn plate in the lapping process. This is the first study to develop mathematical models for nanodiamond embedment. Such models can predict the optimum parameters for particle embedment. From the modeling calculations, the embedded pressure satisfies p 0 = (3/2) · (W/πa (2)) and the indentation depth satisfies δ = k1√P/HV. Calculation results reveal that the largest embedded pressure is 731.48 GPa and the critical indentation depth δ is 7 nm. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and Auger electron spectroscopy (AES) were used to carry out surface quality detection and analysis of the disk head. Both the formation of black spots on the surface and the removal rate have an important correlation with the size of nanodiamonds. The results demonstrate that an improved removal rate (21 nm · min(-1)) can be obtained with 100 nm diamonds embedded in the plate.

  2. Learning Activity Package, Physical Science. LAP Numbers 1, 2, 3, and 4.

    Science.gov (United States)

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover measuring techniques, operations of instruments, metric system heat, matter, energy, elements, atomic numbers, isotopes, molecules, mixtures, compounds, physical and chemical properties, liquids, solids, and gases. Each unit contains…

  3. Learning Activity Package, Physical Science. LAP Numbers 8, 9, 10, and 11.

    Science.gov (United States)

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover nuclear reactions, alpha and beta particles, atomic radiation, medical use of nuclear energy, fission, fusion, simple machines, Newton's laws of motion, electricity, currents, electromagnetism, Oersted's experiment, sound, light,…

  4. Effect of the weld joint configuration on stressed components, residual stresses and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cevik, Bekir; Oezer, Alpay; Oezcatalbas, Yusuf [Gazi Univ., Ankara (Turkey)

    2014-03-01

    The effect of the weld joint configuration on components has been studied, which are under service loads, under repair or construction and the residual stresses as well as the mechanical properties of the joint have been determined. For this purpose, a horizontal positioned tensile testing device and a semi-automatic MIG welding machine have been used and then the weld joints of the plates were subjected to different elastic stresses. When the temperature of the joined elements decreased to room temperature, applied elastic stresses were released. By this means, the effects of the existing tensile stresses in the joined parts and the tensile stresses created by the welding processes were investigated. The tensile stresses occurring in the joined elements were determined by using the photo-elasticity analysis method and the hole-drilling method. Also, tensile-shear tests were applied in order to determine the effect of permanent tensile loads on the mechanical properties of the joint. Experimental results showed that the application of corner welded lap joints for components under tensile loading significantly decrease the shear strength and yielding capacities of the joint. (orig.)

  5. Triple correlation in temporomandibular joint dysfunction: MR imaging with arthrography, arthroscopy, and open surgery

    International Nuclear Information System (INIS)

    Rao, V.M.; Farole, A.; Karasick, D.

    1988-01-01

    Triple correlation of MR imaging with arthrography, arthroscopy, and open surgery was performed in 24 patients (34 temporomandibular joints) with ages ranging from 17 to 66 years. MR imaging showed disk position and morphologic features accurately in 30 joints (88%). It was false negative in one joint and false positive in three joints (9%). Degenerative changes were accurately detected with MR imaging, arthrography, and arthroscopy. Adhesions were diagnosed with arthrography in eight joints, arthroscopy in 14, and MR imaging in none. Disk perforations seen at open surgery were not detected with MR imaging. In conclusion, there is an overlap of information presented by various modalities. MR imaging is better than arthrography detecting disk morphologic features and displacement. Arthrography may add information by showing meniscal dynamics. Arthroscopy entails direct observation of superior joint space only and can detect adhesions and perforations better, but it may alter disk position and dynamics. In the more difficult cases, triple correlation may be needed, as modalities can be complementary

  6. The effect of buffer-layer on the steady-state energy release rate of a tunneling crack in a wind turbine blade joint

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn; Sørensen, Bent F.; Kildegaard, Casper

    2018-01-01

    propagation of tunneling cracks. However, for wind turbine blade relevant material combinations it is found more effective to reduce the thickness of the adhesive layer since the stiffness mismatch between the existing laminate and the adhesive is already high. The effect of material orthotropy was found......The effect of a buffer-layer on the steady-state energy release rate of a tunneling crack in the adhesive layer of a wind turbine blade joint, loaded in tension, is investigated using a parametric 2D tri-material finite element model. The idea of embedding a buffer-layer in-between the adhesive...... and the basis glass fiber laminate to improve the existing joint design is novel, but the implications hereof need to be addressed.The results show that it is advantageous to embed a buffer-layer near the adhesive with controllable thickness-and stiffness properties in order to improve the joint design against...

  7. Induction of polyploidy by nuclear fusion mechanism upon decreased expression of the nuclear envelope protein LAP2β in the human osteosarcoma cell line U2OS.

    Science.gov (United States)

    Ben-Shoshan, Shirley Oren; Simon, Amos J; Jacob-Hirsch, Jasmine; Shaklai, Sigal; Paz-Yaacov, Nurit; Amariglio, Ninette; Rechavi, Gideon; Trakhtenbrot, Luba

    2014-01-28

    Polyploidy has been recognized for many years as an important hallmark of cancer cells. Polyploid cells can arise through cell fusion, endoreplication and abortive cell cycle. The inner nuclear membrane protein LAP2β plays key roles in nuclear envelope breakdown and reassembly during mitosis, initiation of replication and transcriptional repression. Here we studied the function of LAP2β in the maintenance of cell ploidy state, a role which has not yet been assigned to this protein. By knocking down the expression of LAP2β, using both viral and non-viral RNAi approaches in osteosarcoma derived U2OS cells, we detected enlarged nuclear size, nearly doubling of DNA content and chromosomal duplications, as analyzed by fluorescent in situ hybridization and spectral karyotyping methodologies. Spectral karyotyping analyses revealed that near-hexaploid karyotypes of LAP2β knocked down cells consisted of not only seven duplicated chromosomal markers, as could be anticipated by genome duplication mechanism, but also of four single chromosomal markers. Furthermore, spectral karyotyping analysis revealed that both of two near-triploid U2OS sub-clones contained the seven markers that were duplicated in LAP2β knocked down cells, whereas the four single chromosomal markers were detected only in one of them. Gene expression profiling of LAP2β knocked down cells revealed that up to a third of the genes exhibiting significant changes in their expression are involved in cancer progression. Our results suggest that nuclear fusion mechanism underlies the polyploidization induction upon LAP2β reduced expression. Our study implies on a novel role of LAP2β in the maintenance of cell ploidy status. LAP2β depleted U2OS cells can serve as a model to investigate polyploidy and aneuploidy formation by nuclear fusion mechanism and its involvement in cancerogenesis.

  8. Lipid accumulation product (LAP) as a criterion for the identification of the healthy obesity phenotype in postmenopausal women.

    Science.gov (United States)

    Lwow, Felicja; Jedrzejuk, Diana; Milewicz, Andrzej; Szmigiero, Leszek

    2016-09-01

    Obesity and its complications constitute a major health problem in postmenopausal women. The identification of the obesity phenotype, especially that of metabolically healthy obese (MHO) patients, is a necessary part of obesity treatment protocols. There are several methods to define MHO, but unfortunately, all of them are arbitrary and inconsistent. The aim of this work was to determine whether lipid accumulation product (LAP) could be used as a marker of the MHO phenotype in postmenopausal women. A sample of 345 Polish postmenopausal women aged 50-60years old participated in the study. Participants were classified as obese when their BMI was >27. Receiver operating characteristic curve analysis was performed to estimate the best cutoff for the LAP index value to identify postmenopausal women without metabolic syndrome components. We found that the best cutoff value was LAP ≤29.9, and this value was used to define MHO individuals. With this definition, the identification of MHO individuals could be made when both of the following criteria were met: LAP index ≤29.9 and no arterial hypertension (SBPwomen identified according to the above definition, were compared with those of MHO women identified by two other methods in the literature. These methods and our definition identified similar proportions of MHO women ranging from 11.6% to 16.9%. We found that MHO women identified by all of the definitions used in this study possessed a similar metabolic status, and they did not differ in anthropometric indices or body fat distribution measurements. We concluded that the combination of LAP estimation and arterial blood pressure measurement appear to constitute a useful method for identifying the MHO phenotype in postmenopausal women. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Measurement of strain distribution in bonded joints by fiber Bragg gratings

    Science.gov (United States)

    Guemes, J. Alfredo; Diaz-Carrillo, Sebastian; Menendez, Jose M.

    1998-07-01

    Due to the small dimensions of the adhesive layer, the high non-uniformity of the strain field and the non linear elastic behavior of the adhesive material, the strain distribution at an adhesive joint can be predicted by FEM, but can not be experimentally obtained with classical approaches; only non standard procedures like Moire interferometry, or special artifacts like KGR extensometers may afford some insights on the behavior of the adhesive. Due to their small size, ensuring low perturbation of the strain field, and their innate ability to measure strain and strain gradient along the sensor, fiber Bragg gratings offer a good opportunity to solve this problem, and it is a good example of situations that may benefit from these new sensors. Fiber Bragg gratings may be placed or at the interface, within the adhesive layer, or embedded at the adherents, if these were made of composite material. Tests may be run at different temperatures, changing the adhesive characteristics from brittle to pseudoplastic without additional difficulties. When loading the joint, the strain field is obtained by analyzing the distorted spectrum of the reflected light pulse; the algorithm for doing it has already been published. A comparison with theoretical results is done, and the validity and utility of these sensors for this and similar applications is demonstrated.

  10. Interventional microadhesiolysis: A new nonsurgical release technique for adhesive capsulitis of the shoulder

    Directory of Open Access Journals (Sweden)

    Lim Tae-Kyun

    2008-01-01

    Full Text Available Abstract Background A nonsurgical intervention, interventional microadhesiolysis, was developed to release adhesions in joints and soft tissues. This paper introduces the procedure and evaluates the efficacy of the intervention for adhesive capsulitis of the shoulder. Methods Ten patients (five men and five women with primary adhesive capsulitis of the shoulder were treated at a chronic pain management center in Korea. Three specially made needles are used in interventional microadhesiolysis: the Round, Flexed Round, and Ahn's needles. A Round Needle is inserted on the skin over middle of supraspinatus and advanced under the acromion and acromioclavicular joint (subacromial release. A Flexed Round Needle is inserted two-fingers caudal to the inferior border of the scapular spine and advanced over the capsule sliding on the surface of infraspinatus muscle-tendon fascia. The capsule is released while an assistant simultaneously passively abducts the shoulder to full abduction (posteroinferior capsule release. An Ahn's Needle is inserted on the skin over the lesser tubercle and advanced under the coracoid process sliding on the surface of the subscapularis muscle (subcoracoid release. Results After the patients underwent interventional microadhesiolysis, the self-rated pain score or severity declined significantly (p p Conclusion Our findings suggest that interventional microadhesiolysis is effective for managing adhesive capsulitis of the shoulder.

  11. Mechanical testing and development of the helical field coil joint for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Bryan, W.E.; Goranson, P.L.; Warwick, J.E.

    1985-01-01

    The helical field (HF) coil set for the Advanced Toroidal Facility (ATF) is an M = 12, l = 2, constant-ratio torsatron winding consisting of 2 coils, each with 14 turns of heavy copper conductor. The coils are divided into 24 identical segments to facilitate fabrication and minimize the assembly schedule. The segments are connected across through-bolted lap joints that must carry up to 124,000 A per turn for 5 s or 62,500 A steady-state. In addition, the joints must carry the high magnetic and thermal loads induced in the conductor and still fit within the basic 140- by 30-mm copper envelope. Extensive testing and development were undertaken to verify and refine the basic joint design. Tests included assembly force and clamping force for various types of misalignment; joint resistance as a function of clamping force; clamp bolt relaxation due to thermal cycling; fatigue testing of full-size, multiturn joint prototypes; and low-cycle fatigue and tensile tests of annealed CDA102 copper. The required performance parameters and actual test results, as well as the final joint configuration, are presented. 2 refs., 9 figs., 4 tabs

  12. Study of simple CFRP-metal joint failure

    Science.gov (United States)

    Cheng, Jingquan; Rodriguez, Antonio; Emerson, Nicolas; Symmes, Arthur

    2008-07-01

    In millimeter wavelength telescope design and construction, there have been a number of mysterious failures of simple CFRF-metal joints. Telescope designers have not had satisfactory interpretations of these failures. In this paper, factors which may influence the failure of joints are discussed. These include stress concentration, material creep, joint fatigue, reasons related to chemical process and manufacture process. Extrapolation formulas for material creep, joint fatigue, and differential thermal stresses are derived in this paper. Detailed chemical and manufacturing factors are also discussed. All these issues are the causes of a number of early failures under a loading which is significantly lower than the strength of adhesives used. For ensuring reliability of a precision instrument structure joint, the designer should have a thorough understanding of all these factors.

  13. The surface modification of polystyrene

    International Nuclear Information System (INIS)

    Tremlett, C.

    2000-03-01

    Polymers have ideal bulk properties for many applications. However, adhesion to many polymers is poor without surface pretreatment. This can result, for example, in peeling paint and printing, adhesive joint failure and bio-incompatibility. In applications such as painting, printing, adhesive bonding and biocompatibility, various cleaning or surface chemical modifications may be employed. A commodity polymer where pretreatment is sometimes needed is polystyrene. This project investigated, in detail, the effects of a novel method of modification namely mediated electrochemical oxidation (MEO), as a mode of surface modification on polystyrene and a comparison was made with other polymers. The resulting modification was investigated using a range of surface analysis techniques to obtain complementary information. These included, X-ray photoelectron spectroscopy, contact angles, static secondary ion mass spectrometry, atomic force microscopy, chemical derivatization, scanning electron microscopy, attenuated total reflection Fourier Transform infrared spectroscopy and composite lap shear joint testing. It has been shown that MEO modifies the surface of polystyrene introduced oxygen mainly as hydroxyl groups, and a small number of carbonyl groups, that are positioned only on the backbone hydrocarbon chain. This modification improved adhesion, was stable and samples could be stored in aqueous media. The resulting hydroxylation was further derivatized using an amino acid to provide a specialised surface. This was very different from the multiple oxygen functionalities introduced in the comparison studies by UV/ozone and plasma treatments. (author)

  14. Microstructure and mechanical properties of resistance spot welded dissimilar thickness DP780/DP600 dual-phase steel joints

    International Nuclear Information System (INIS)

    Zhang, Hongqiang; Wei, Ajuan; Qiu, Xiaoming; Chen, Jianhe

    2014-01-01

    Highlights: • We examine changes of microstructure of dissimilar thickness DP600/DP780 joints. • The hardness profile of RSW joints can be predicted by the equation. • Failure modes, peak load and energy describes the mechanical properties of joints. • The nugget diameter is the key factor of transition between the failure modes. - Abstract: In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the microstructure and mechanical properties of single-lap joints between DP780 and DP600. The results show that the weld joints consist of three regions including base metal (BM), heat affected zone (HAZ) and fusion zone (FZ). The grain size and martensite volume fractions increase in the order of BM, HAZ and FZ. The hardness in the FZ is significantly higher than hardness of base metals. Tensile properties of the joints were described in terms of the failure modes and static load-carrying capabilities. Two distinct failure modes were observed during the tensile shear test of the joints: interfacial failure (IF) and pullout failure (PF). The FZ size plays a dominate role in failure modes of the joints

  15. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran

    2018-03-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  16. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran; Alfano, Marco; Lubineau, Gilles

    2018-01-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  17. A new design of the LAPS land surface scheme for use over and through heterogeneous and non-heterogeneous surfaces: Numerical simulations and tests

    Science.gov (United States)

    Mihailovic, Dragutin T.; Lazic, Jelena; Leśny, Jacek; Olejnik, Janusz; Lalic, Branislava; Kapor, Darko; Cirisan, Ana

    2010-05-01

    Numerical simulations and tests with the recently redesigned land-air parameterization scheme (LAPS) are presented. In all experiments, supported either by one-point micrometeorological, 1D or 3D simulations, the attention has been directed to: (1) comparison of simulation outputs, expressing the energy transfer over and through heterogeneous and non-heterogeneous surfaces, versus observations and (2) analysis of uncertainties occurring in the solution of the energy balance equation at the land-air interface. To check the proposed method for aggregation of albedo, "propagating hole" sensitivity tests with LAPS over a sandstone rock grid cell have been performed with the forcing meteorological data for July 17, 1999 in Baxter site, Philadelphia (USA). Micrometeorological and biophysical measurements from the surface experiments conducted over crops and apple orchard in Serbia, Poland, Austria and France were used to test the operation of LAPS in calculating surface fluxes and canopy environment temperatures within and above plant covers of different densities. In addition, sensitivity tests with single canopy covers over the Central Europe region and comparison against the observations taken from SYNOP data using 3D simulations were made. Validation of LAPS performances over a solid surface has been done by comparison of 2 m air temperature observations against 5-day simulations over the Sahara Desert rocky ground using 3D model. To examine how realistically the LAPS simulates surface processes over a heterogeneous surface, we compared the air temperature measured at 2 m and that predicted by the 1D model with the LAPS as the surface scheme. Finally, the scheme behaviour over urban surface was tested by runs over different parts of a hypothetical urban area. The corresponding 1D simulations were carried out with an imposed meteorological dataset collected during HAPEX-MOBILHY experiment at Caumont (France). The quantities predicted by the LAPS compare well with the

  18. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    Science.gov (United States)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  19. MRI of the internal derangement of temporomandibular joint: Comparison with arthrographic and operation

    International Nuclear Information System (INIS)

    Kim, Mi Hye; Kim, Dong Ik; Kim, Hyung Gon; Suh, Jung Ho; Jung, Tae Sub

    1993-01-01

    We retrospectively reviewed the MRI findings of 100 temporomandibular joints in 78 patients who had complained temporomandibular joint dysfunction. MRI findings were classified according to Wilke's staging criteria. And these findings were compared with arthographic findings in 22 joint and surgical findings in 44 joints. According to Wilke's staging, they were classified into 6 stages of abnormality: stage 0 (33 cases), stage I (19 cases), stage II (10 cases), stage III (18 cases), stage IV (6 cases), stage V (14 cases). Among the 22 cases in which arthography and MRI were done, both studies were well correlated in 10 joints. In 7 joints, MRI was superior to arthography, which correctly demonstrated the meniscal displacement in 2 joints and meniscal deformity in 5 joints. In 5 joints, arthography was superior to MR, which demonstrated the perforation (1 joint), adhesion (2 joints) and recapture of meniscus (2 joints). Compared with surgical findings, MRI correctly demonstrated the displacement of meniscus in all 44 joints. However, in case of the 10 meniscal perforation, MRI demonstrated the meniscal discontinuity in only 4 joints. Retrospective MR findings in 10 proven cases were the defect in posterior attachment in 4, far anterior meniscal displacement without recapture in 8, condylar spur in 4, and close bone to bone contact in 1. In conclusion, MRI as a primary diagnostic modality of temporomandibular joint derangement, is superior for the grading of displacement and deformity of meniscus but inferior for the evaluation of perforation, adhesion and recapture of meniscus to conventional arthrography. In case of the suspected meniscal perforation, arthrographic correlation is recommended preoperatively

  20. The use of embedded sensors for the monitoring of adhesive joints in marine environments

    Science.gov (United States)

    McGovern, Scott T.; Spinks, Geoffrey M.; Wallace, Gordon G.

    2005-05-01

    A copolymer incorporating polyaniline was used as a sensing medium in the construction of a resistance based humidity sensor. Aniline monomer was polymerised in the presence of poly (butyl acrylate / vinyl acetate) and a copolymer containing polyaniline emeraldine salt was obtained. The sensing medium was then developed by redissolving 1-2 w/w% of the resulting polymer residue in dichloromethane to produce a processable polymer blend solution. Some of this polymer residue was also de-doped in a solution of ammonia, and then washed with distilled water until the waste water had a neutral pH. This residue was then redissolved at 1-2 w/w% in dichloromethane to produce a second processable polymer blend this time containing polyaniline emeraldine base. The final sensor design utilised 125μm polyester insulated platinum wire as conducting electrodes that were dip coated in the emeraldine salt copolymer solution and allowed to dry in a desiccator. The sensor was then dip-coated in a protective barrier layer of the emeraldine base copolymer to prevent over-oxidation and/or de-protonation of the emeraldine salt sensing medium under this coating. The sensors had an overall final thickness of less than 150μm and showed high sensitivity to humidity, low resistance, and good reversibility without hysteresis. Sensors were monitored for 2-probe resistance changes when in contact with water. Calibration curves for each sensor were produced to convert the resistance reading to mass uptake of water. Individual sensors were embedded within Aluminium 5083 / Araldite 2015 adhesive joints to monitor mass uptake of water when exposed to marine environments. Correlations between mass uptake of water and joint strength were made. There are various advantages of such a sensor design. Polymer based thin film humidity sensors have the advantage that the high processability of the material allows for simple fabrication of a range of geometries including smaller sensor designs. The ease of

  1. Influence of friction stir welding parameters on titanium-aluminum heterogeneous lap joining configuration

    Science.gov (United States)

    Picot, Florent; Gueydan, Antoine; Hug, Éric

    2017-10-01

    Lap joining configuration for Friction Stir Welding process is a methodology mostly dedicated to heterogeneous bonding. This welding technology was applied to join pure titanium with pure aluminum by varying the rotation speed and the movement speed of the tool. Regardless of the process parameters, it was found that the maximum strength of the junction remains almost constant. Microstructural observations by means of Scanning Electron Microscopy and Energy Dispersive Spectrometry analysis enable to describe the interfacial join and reveal asymmetric Cold Lap Defects on the sides of the junction. Chemical analysis shows the presence of one exclusive intermetallic compound through the interface identified as TiAl3. This compound is responsible of the crack spreading of the junction during the mechanical loading. The original version of this article supplied to AIP Publishing contained an accidental inversion of the authors, names. An updated version of this article, with the authors names formatted correctly was published on 20 October 2017.

  2. Validation of SINERGIA as training tool: a randomized study to test the transfer of acquired basic psychomotor skills to LapMentor.

    Science.gov (United States)

    Moyano-Cuevas, J L; Sánchez-Margallo, F M; Sánchez-Peralta, L F; Pagador, J B; Enciso, S; Sánchez-González, P; Gómez-Aguilera, E J; Usón-Gargallo, J

    2011-11-01

    Laparoscopic surgery is commonly used in many surgical procedures but requires a learning process to develop the necessary skills. Virtual reality simulators play an essential role within the training curricula. This paper aims to determine whether training in SINERGIA VR simulator allows novice surgeons to improve their basic psychomotor laparoscopic skills. Forty-two people participated in this study, including 28 unexperience medical students and 14 expert surgeons who developed previously more than 100 laparoscopic procedures. Medical students made a pre-training test in LapMentor II; then, they trained in SINERGIA and they finally accomplished a post-training test in LapMentor II. Experts just made one trial in LapMentor II. A statistical analysis was carried out and results of pre- and post-training tests of novices were compared with Wilcoxon signed-rank test. Pre- and post-training tests of novices were also compared with results of experts with Mann-Whitney U test. Most metrics provided by LapMentor II and included in this study show significant differences when comparing pre- and post-training tests of novices. Analysis of pre-training test of novices and experts results show significant differences in all analyzed metrics for all studied tasks. On the other hand, LapMentor was not able to distinguish between experts and novices after training in SINERGIA for any metric in the camera manipulation task and for some metrics of the other tasks. Training in SINERGIA VR simulator allows improvement of basic psychomotor laparoscpic skills and transferring them to another virtual simulator. Therefore, it could be used in laparoscopic surgery training programs.

  3. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    Science.gov (United States)

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  4. Regulation of adipocyte 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 by CCAAT/enhancer-binding protein (C/EBP β isoforms, LIP and LAP.

    Directory of Open Access Journals (Sweden)

    Cristina L Esteves

    Full Text Available 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 catalyses intracellular regeneration of active glucocorticoids, notably in liver and adipose tissue. 11β-HSD1 is increased selectively in adipose tissue in human obesity, a change implicated in the pathogenesis of metabolic syndrome. With high fat (HF-feeding, adipose tissue 11β-HSD1 is down-regulated in mice, plausibly to counteract metabolic disease. Transcription of 11β-HSD1 is directly regulated by members of the CCAAT/enhancer binding protein (C/EBP family. Here we show that while total C/EBPβ in adipose tissue is unaltered by HF diet, the ratio of the C/EBPβ isoforms liver-enriched inhibitor protein (LIP and liver-enriched activator protein (LAP (C/EBPβ-LIP:LAP is increased in subcutaneous adipose. This may cause changes in 11β-HSD1 expression since genetically modified C/EBPβ((+/L mice, with increased C/EBPβ-LIP:LAP ratio, have decreased subcutaneous adipose 11β-HSD1 mRNA levels, whereas C/EBPβ(ΔuORF mice, with decreased C/EBPβ-LIP:LAP ratio, show increased subcutaneous adipose 11β-HSD1. C/EBPβ-LIP:LAP ratio is regulated by endoplasmic reticulum (ER stress and mTOR signalling, both of which are altered in obesity. In 3T3-L1 adipocytes, 11β-HSD1 mRNA levels were down-regulated following induction of ER stress by tunicamycin but were up-regulated following inhibition of mTOR by rapamycin. These data point to a central role for C/EBPβ and its processing to LIP and LAP in transcriptional regulation of 11β-HSD1 in adipose tissue. Down-regulation of 11β-HSD1 by increased C/EBPβ-LIP:LAP in adipocytes may be part of a nutrient-sensing mechanism counteracting nutritional stress generated by HF diet.

  5. Adhesion of materials in a space environment : a status report

    NARCIS (Netherlands)

    Salomon, G.

    1967-01-01

    This survey is based on a symposium held jointly by ASTM-ASLE, May 1967 at Toronto. The present knowledge on the adhesion of metals and the cleavage of silicates is briefly re viewed, followed by a synopsis on the concept of low friction surfaces and recent advances in the testing of friction

  6. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  7. Durability properties for adhesively bonded structural aerospace applications

    International Nuclear Information System (INIS)

    Shaffer, D.K.; Davis, G.D.; McNamara, D.K.; Shah, T.K.; Desai, A.

    1992-01-01

    This paper reports on the importance of good bond durability of adhesively joined aerospace components which has been recognized for many years. Military and civilian aircraft are exposed to harsh environments in addition to severe thermal and stress cycles during their service lives. Moisture is responsible for the majority of bond failures in the field. The presence of surface contaminants (e.g., fluoride, silicones) and the non-neutral pH of poor rinse water are common causes of adhesion problems in production environments. Honeycomb panels, stringer skins, doubler plates and core cowl assemblies are bonded joint structures that are subject to environmental- or contaminant-induced debonding. The identification and characterization of the causes of such bond failures leads to improved production quality, yield and cost reduction

  8. Lipid Accumulation Product (LAP) and Visceral Adiposity Index (VAI) as Markers of Insulin Resistance and Metabolic Associated Disturbances in Young Argentine Women with Polycystic Ovary Syndrome.

    Science.gov (United States)

    Abruzzese, Giselle A; Cerrrone, Gloria E; Gamez, Juan M; Graffigna, Mabel N; Belli, Susana; Lioy, Gustavo; Mormandi, Eduardo; Otero, Patricia; Levalle, Oscar A; Motta, Alicia B

    2017-01-01

    Polycystic ovary syndrome (PCOS) is an endocrine disorder. PCOS women are at high risk of developing insulin resistance (IR) and cardiovascular disorders since young age. We aimed to study the reliability of lipid accumulation product (LAP) and visceral adiposity index (VAI) as markers of metabolic disturbances (MD) associated with IR in young reproductive aged PCOS patients. We also evaluated the association between LAP and VAI and the presence of hyperandrogenism. In a cross-sectional study, 110 PCOS patients and 88 control women (18-35 years old) were recruited. PCOS patients were divided into 2 groups, as hyperandrogenic and non-hyperandrogenic considering the signs of hyperandrogenism (clinical or biochemical). Anthropometric measurements were taken and blood samples collected. Metabolic and anthropometric characteristics and their association with IR and associated MD were evaluated and LAP and VAI were calculated. LAP and VAI were compared with TC/HDL-c and TG/HDL-c to define the best markers of MD in this population. Independently of the phenotype, young PCOS patients showed high IR and dyslipidemia. Both LAP and VAI showed to be more effective markers to assess MD and IR in these young women than TG/HDL-c or TC/HDL-c [cut-off values: LAP: 18.24 (sensitivity: 81.43% specificity: 73.49%), positive predictive value (PPV): 75.0%, negative predictive value (NPV): 77.27%, VAI: 2.19 (sensitivity: 81.16% specificity: 72.15% PPV: 74.65% NPV: 72.22%)]. LAP and VAI are representative markers to assess MD associated with IR in young PCOS patients. All PCOS patients, independently of their androgenic condition, showed high metabolic risk. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints

    International Nuclear Information System (INIS)

    Xu, W.; Chen, D.L.; Liu, L.; Mori, H.; Zhou, Y.

    2012-01-01

    Highlights: ► Adhesive reduces shrinkage porosity and stress concentration around the weld nugget. ► Adhesive promotes the formation of intermetallic compounds during weld bonding. ► In Mg/steel joints fusion zone appears only at the Mg side with dendritic structures. ► Weld-bonded Mg/steel joints are considerably stronger than RSW Mg/steel joints. ► Fatigue strength is three-fold higher for weld-bonded joints than for RSW joints. - Abstract: The aim of this study was to evaluate microstructures, tensile and fatigue properties of weld-bonded (WB) magnesium-to-magnesium (Mg/Mg) similar joints and magnesium-to-steel (Mg/steel) dissimilar joints, in comparison with resistance spot welded (RSW) Mg/steel dissimilar joints. In the WB Mg/Mg joints, equiaxed dendritic and divorced eutectic structures formed in the fusion zone (FZ). In the dissimilar joints of RSW and WB Mg/steel, FZ appeared only at Mg side with equiaxed and columnar dendrites. At steel side no microstructure changed in the WB Mg/steel joints, while the microstructure in the RSW Mg/steel joints consisted of lath martensite, bainite, pearlite and retained austenite leading to an increased microhardness. The relatively low cooling rate suppressed the formation of shrinkage porosity but promoted the formation of MgZn 2 and Mg 7 Zn 3 in the WB Mg/steel joints. The added adhesive layer diminished stress concentration around the weld nugget. Both WB Mg/Mg and Mg/steel joints were significantly stronger than RSW Mg/steel joints in terms of the maximum tensile shear load and energy absorption, which also increased with increasing strain rate. Fatigue strength was three-fold higher for WB Mg/Mg and Mg/steel joints than for RSW Mg/steel joints. Fatigue failure in the RSW Mg/steel joints occurred from the heat-affected zone near the notch root at lower load levels, and in the mode of interfacial fracture at higher load levels, while it occurred in the Mg base metal at a maximum cyclic load up to ∼10 kN in

  10. Lap time simulation and design optimisation of a brushed DC electric motorcycle for the Isle of Man TT Zero Challenge

    Science.gov (United States)

    Dal Bianco, N.; Lot, R.; Matthys, K.

    2018-01-01

    This works regards the design of an electric motorcycle for the annual Isle of Man TT Zero Challenge. Optimal control theory was used to perform lap time simulation and design optimisation. A bespoked model was developed, featuring 3D road topology, vehicle dynamics and electric power train, composed of a lithium battery pack, brushed DC motors and motor controller. The model runs simulations over the entire ? or ? of the Snaefell Mountain Course. The work is validated using experimental data from the BX chassis of the Brunel Racing team, which ran during the 2009 to 2015 TT Zero races. Optimal control is used to improve drive train and power train configurations. Findings demonstrate computational efficiency, good lap time prediction and design optimisation potential, achieving a 2 minutes reduction of the reference lap time through changes in final drive gear ratio, battery pack size and motor configuration.

  11. Failure Surface Analysis of Polyimide/Titanium Notched Coating Adhesion Specimens

    Energy Technology Data Exchange (ETDEWEB)

    GIUNTA,RACHEL K.; KANDER,RONALD G.

    2000-12-18

    Adhesively bonded joints of LaRC{trademark} PETI-5, a phenylethynyl-terminated polyimide, with chromic acid anodized titanium were fabricated and debonded interfacially. The adhesive-substrate failure surfaces were investigated using several surface analysis techniques. From Auger spectroscopy, field emission scanning electron microscopy, and atomic force microscopy studies, polymer appears to be penetrating the pores of the anodized substrate to a depth of approximately 100 nm. From x-ray photoelectron spectroscopy data, the polymer penetrating the pores appears to be in electrical contact with the titanium substrate, leading to differential charging. These analyses confirm that the polymer is becoming mechanically interlocked within the substrate surface.

  12. Mechanism of Solder Joint Cracks in Anisotropic Conductive Films Bonding and Solutions: Delaying Hot-Bar Lift-Up Time and Adding Silica Fillers

    Directory of Open Access Journals (Sweden)

    Shuye Zhang

    2018-01-01

    Full Text Available Micron sizes solder metallurgical joints have been applied in a thin film application of anisotropic conductive film and benefited three general advantages, such as lower joint resistance, higher power handling capability, and reliability, when compared with pressure based contact of metal conductor balls. Recently, flex-on-board interconnection has become more and more popular for mobile electronic applications. However, crack formation of the solder joint crack was occurred at low temperature curable acrylic polymer resins after bonding processes. In this study, the mechanism of SnBi58 solder joint crack at low temperature curable acrylic adhesive was investigated. In addition, SnBi58 solder joint cracks can be significantly removed by increasing the storage modulus of adhesives instead of coefficient of thermal expansion. The first approach of reducing the amount of polymer rebound can be achieved by using an ultrasonic bonding method to maintain a bonding pressure on the SnBi58 solder joints cooling to room temperature. The second approach is to increase storage modulus of adhesives by adding silica filler into acrylic polymer resins to prevent the solder joint from cracking. Finally, excellent acrylic based SnBi58 solder joints reliability were obtained after 1000 cycles thermal cycling test.

  13. End-range mobilization techniques in adhesive capsulitis of the shoulder joint: a multiple-subject case report.

    NARCIS (Netherlands)

    Vermeulen, H.M.; Obermann, W.R.; Burger, B.J.; Kok, G.J.; Rozing, P.M.; Ende, C.H.M. van den

    2000-01-01

    BACKGROUND AND PURPOSE: The purpose of this case report is to describe the use of end-range mobilization techniques in the management of patients with adhesive capsulitis. CASE DESCRIPTION: Four men and 3 women (mean age=50.2 years, SD=6.0, range=41-65) with adhesive capsulitis of the glenohumeral

  14. Device for measuring hole elongation in a bolted joint

    Science.gov (United States)

    Wichorek, Gregory R. (Inventor)

    1987-01-01

    A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.

  15. Adhesion aspects of polyurethane foam sandwich panels.

    OpenAIRE

    Ng, Simon L.

    2016-01-01

    Sandwich panels, polyurethane foam sandwiched between two sheets of steel, form the walls and roofs in the construction of buildings. ArcelorMittal is a manufacturer of the steel as well as these finished panels. For this project they combined with a supplier of the polyurethane foams, Huntsman Polyurethanes, to joint-fund a research project investigating the fundamental mechanisms of adhesion, as well as the causes of failures in the product which manifests primarily in two different ways...

  16. One hundred cases of laparoscopic subtotal hysterectomy using the PK and Lap Loop systems.

    Science.gov (United States)

    Erian, John; El-Toukhy, Tarek; Chandakas, Stefanos; Theodoridis, Theo; Hill, Nicholas

    2005-01-01

    To evaluate the safety and short-term outcomes of laparoscopic subtotal hysterectomy using the PK and Lap Loop systems. Prospective observational study (Canadian Task Force classification II-2). Princess Royal University and Chelsfield Park Hospitals, Kent, UK. One hundred women who underwent laparoscopic subtotal hysterectomy for menorrhagia from February 2003 through July 2004. The procedure was performed using the Plasma Kinetic (PK) system to seal the vascular pedicles and the Lap Loop system to separate the uterus at the level of the internal os. The uterus was removed from the abdominal cavity mainly by morcellation or posterior colpotomy. Of 100 patients, 59 were operated on as outpatients. Mean patient age was 44.6 years, median parity was 2, mean body mass index was 26.8, and mean duration of symptoms was 4 years. Clinically, the uterus was enlarged in 70 patients, and preoperative ultrasound scanning suggested the presence of uterine myomas in 42 patients. In addition to hysterectomy, 47 patients had concomitant pelvic surgery. The mean total operating time was 45.5 minutes, and mean estimated blood loss was 114 mL. The overall major complication rate was 2%; two patients required blood transfusion after surgery. There were no bowel or urinary tract injuries, unintended laparotomy, return to operating room, or anesthetic complications. At follow-up, all patients were satisfied with surgery. Laparoscopic subtotal hysterectomy using the PK and Lap Loop systems for treatment of therapy-resistant menorrhagia is safe, can be performed as an outpatient procedure, and is associated with reduced operating time and high patient satisfaction.

  17. German refrigeration sytems for Hong Kong Airport Chek Lap Kok and for Bangkok. Prause and Partner construct systems for Asia; Deutsche Kaeltetechnik fuer Hong Kongs Airport Chek Lap Kok, aber auch fuer Bangkok. Prause und Partner baut taifunsicher

    Energy Technology Data Exchange (ETDEWEB)

    Weissenborn, P.

    1998-09-01

    Hong Kong`s new airport Chek Lap Kok was commissioned on 6 July 1998 and is to become a turntable of air traffic in the Asian region. Prause and Partner, Goslar, will provide catering refrigeration systems for the airport. (orig.) [Deutsch] Hong Kongs neuer Airport Chek Lap Kok wird sich nach seiner Inbetriebnahme am 6. Juli 1998 zu einer der wichtigsten Drehscheiben im Luftverkehr Asiens entwickeln. Millionen von Fluggaesten werden dann taeglich mit Bordspeisen verpflegt werden muessen, bei deren Zubereitung und Konservierung die Kaeltetechnik eine bedeutende Funktion einnimmt. Deutsches Ingenieurwesen und solide deutsche Handwerkstechnik tragen dazu bei, dass `Catering-Refrigeration made by Prause and Partner`, Goslar, auch die Airline-Logistik der LSG Hong Kong zuverlaessig stuetzt. (orig./MSK)

  18. Arthrography of the ankle joint

    International Nuclear Information System (INIS)

    Crespi Porro, R.; Zellner, A.; Puricelli, G.; Quaglia, R.; Chelazzi, G.

    1984-01-01

    Arthrography of the ankle joint was first carried out by Johnson and Palmer at the Military Hospital in Stockholm in 1940. Arthrography can be used for judging the integrity of the articular cartilage, of osteochondritis dissecans, arthritis or adhesive capsulitis. The literature shows, however, that more than 95% of the patients on whom this examination has been performed has suffered from acute trauma. (orig.) [de

  19. Improving Critical Thinking Skills Using Learning Model Logan Avenue Problem Solving (LAPS)-Heuristic

    Science.gov (United States)

    Anggrianto, Desi; Churiyah, Madziatul; Arief, Mohammad

    2016-01-01

    This research was conducted in order to know the effect of Logan Avenue Problem Solving (LAPS)-Heuristic learning model towards critical thinking skills of students of class X Office Administration (APK) in SMK Negeri 1 Ngawi, East Java, Indonesia on material curve and equilibrium of demand and supply, subject Introduction to Economics and…

  20. Multi-Track Friction Stir Lap Welding of 2024 Aluminum Alloy: Processing, Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Shengke Zou

    2016-12-01

    Full Text Available Friction stir lap welding (FSLW raises the possibility of fabricating high-performance aluminum components at low cost and high efficiency. In this study, we mainly applied FSLW to fabricate multi-track 2024 aluminum alloy without using tool tilt angle, which is important for obtaining defect-free joint but significantly increases equipment cost. Firstly, systematic single-track FSLW experiments were conducted to attain appropriate processing parameters, and we found that defect-free single-track could also be obtained by the application of two-pass processing at a rotation speed of 1000 rpm and a traverse speed of 300 mm/min. Then, multi-track FSLW experiments were conducted and full density multi-track samples were fabricated at an overlapping rate of 20%. Finally, the microstructure and mechanical properties of the full density multi-track samples were investigated. The results indicated that ultrafine equiaxed grains with the grain diameter about 9.4 μm could be obtained in FSLW samples due to the dynamic recrystallization during FSLW, which leads to a yield strength of 117.2 MPa (17.55% higher than the rolled 2024-O alloy substrate and an elongation rate of 31.05% (113.84% higher than the substrate.

  1. Stress Analysis and Strength Prediction of Adhesively Bonded Composite Joints

    National Research Council Canada - National Science Library

    Rastogi, Naveen

    1998-01-01

    .... Further, the submodeling technique available in the commercial finite element package ABAQUS is explored to study the three-dimensional stress field in the vicinity of joint edges and debond cracks...

  2. Adhesion force of staphylococcus aureus on various biomaterial surfaces.

    Science.gov (United States)

    Alam, Fahad; Balani, Kantesh

    2017-01-01

    Staphylococcus comprises of more than half of all pathogens in orthopedic implant infections and they can cause major bone infection which can result in destruction of joint and bone. In the current study, adhesion force of bacteria on the surface of various biomaterial surfaces is measured using atomic force microscope (AFM). Staphylococcus aureus was immobilized on an AFM tipless cantilever as a force probe to measure the adhesion force between bacteria and biomaterials (viz. ultra-high molecular weight poly ethylene (UHMWPE), stainless steel (SS), Ti-6Al-4V alloy, hydroxyapatite (HA)). At the contact time of 10s, UHMWPE shows weak adhesion force (~4nN) whereas SS showed strong adhesion force (~15nN) due to their surface energy and surface roughness. Bacterial retention and viability experiment (3M™ petrifilm test, agar plate) dictates that hydroxyapatite shows the lowest vaibility of bacteria, whereas lowest bacterial retention is observed on UHMWPE surface. Similar results were obtained from live/dead staining test, where HA shows 65% viability, whereas on UHMWPE, SS and Ti-6Al-4V, the bacterial viability is 78%, 94% and 97%, respectively. Lower adhesion forces, constrained pull-off distance (of bacterial) and high antibacterial resistance of bioactive-HA makes it a potential biomaterial for bone-replacement arthroplasty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  4. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints

    Science.gov (United States)

    Yang, Jingwei; Cao, Biao; Lu, Qinghua

    2017-01-01

    The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553

  5. Using quantum dots to tag subsurface damage in lapped and polished glass samples

    International Nuclear Information System (INIS)

    Williams, Wesley B.; Mullany, Brigid A.; Parker, Wesley C.; Moyer, Patrick J.; Randles, Mark H.

    2009-01-01

    Grinding, lapping, and polishing are finishing processes used to achieve critical surface parameters in a variety of precision optical and electronic components. As these processes remove material from the surface through mechanical and chemical interactions, they may induce a damaged layer of cracks, voids, and stressed material below the surface. This subsurface damage (SSD) can degrade the performance of a final product by creating optical aberrations due to diffraction, premature failure in oscillating components, and a reduction in the laser induced damage threshold of high energy optics. As these defects lie beneath the surface, they are difficult to detect, and while many methods are available to detect SSD, they can have notable limitations regarding sample size and type, preparation time, or can be destructive in nature. The authors tested a nondestructive method for assessing SSD that consisted of tagging the abrasive slurries used in lapping and polishing with quantum dots (nano-sized fluorescent particles). Subsequent detection of fluorescence on the processed surface is hypothesized to indicate SSD. Quantum dots that were introduced to glass surfaces during the lapping process were retained through subsequent polishing and cleaning processes. The quantum dots were successfully imaged by both wide field and confocal fluorescence microscopy techniques. The detected fluorescence highlighted features that were not observable with optical or interferometric microscopy. Atomic force microscopy and additional confocal microscope analysis indicate that the dots are firmly embedded in the surface but do not appear to travel deep into fractures beneath the surface. Etching of the samples exhibiting fluorescence confirmed that SSD existed. SSD-free samples exposed to quantum dots did not retain the dots in their surfaces, even when polished in the presence of quantum dots.

  6. Fracture property of double cantilever beam of aluminum foam bonded with spray adhesive

    International Nuclear Information System (INIS)

    Han, Moon Sik; Choi, Hae Kyu; Cho, Jae Ung; Cho, Chong Du

    2015-01-01

    Aluminum foam with the property of excellent impact absorption has been widely used recently. It is necessary to study fracture energy due to energy release rate by the use of adhesive joint at aluminum foam. This study aims at strength evaluation about adhesive joint on aluminum foam. Bonded DCB specimens with this material property are experimented and the fracture behavior is analyzed by simulation. These specimens are designed by differing in height on the basis of British industrial and ISO standards. As the value of height at model is higher, bonded part is separated to the end. By comparing analysis results with experimental data, these data could agree with each other. By the confirmation with experimental results, these all simulation results in this study can be applied on real composite structure with aluminum foam material effectively. The fracture behavior and its property can also be examined by this study.

  7. Playground slide-related injuries in preschool children: increased risk of lower extremity injuries when riding on laps.

    Science.gov (United States)

    Jennissen, Charles A; Koos, Maggie; Denning, Gerene

    2018-04-10

    The purpose of this study was to better understand the factors associated with playground slide-related injuries in preschool children and to test the hypothesis that riding on laps increases the likelihood of lower extremity injuries. Playground slide-related injuries (product code 1242) in children ≤5 years of age treated in emergency departments from 2002 to 2015 were identified (N = 12,686) using the U.S. Consumer Product Safety Commission's National Electronic Injury Surveillance System (NEISS). Descriptive and comparative analyses, including chi-square testing and binary logistic regression, were performed. Based on NEISS stratified national sampling estimates, over 350,000 children ≤5 years of age were injured on slides from 2002 to 2015. Overall, 59% of the children were male, and 65% were white. Almost 60% of injuries occurred in parks or other public areas. The most frequent diagnosis was a fracture (36%); lacerations were 19% of the injuries. A higher proportion of musculoskeletal injuries were seen in toddlers < 3 years old as compared to those 3-5 years of age (p < 0.001). Injuries to the lower extremities increased in frequency as age decreased, whereas injuries to the upper extremities and head/neck/face were more common in older preschoolers. Children < 3 years of age were 12 times more likely to be identified from narratives as being on another person's lap at the time of injury. Children identified as being on a lap had an increased odds of injury to the lower extremity than to other body parts (OR 43.0, 95% confidence interval (CI) 32.0-58.0), and of lower leg/ankle fracture than fractures elsewhere (OR 49.5, 95% CI 31.7-77.4). Decreasing age was associated with a higher likelihood of being identified as sliding down on another person's lap and a higher likelihood of lower extremity injuries. Healthcare providers should be mindful of the potential for these slide-related injuries as they can result in a toddler's fracture of

  8. Development of a test procedure for cryogenic adhesive tapes; Entwicklung einer Testprozedur fuer kryogene Klebebaender

    Energy Technology Data Exchange (ETDEWEB)

    Funke, Thomas; Haberstroh, Christoph [TU Dresden (Germany). Bitzer-Professur fuer Kaelte-, Kryo- und Kompressorentechnik; Mayrhofer, Robert; Stipsitz, Johannes [RUAG Space GmbH, Wien (Austria)

    2016-07-01

    At cryostats and dewars for lowest temperatures - especially in connection with liquid-helium cooling at around 4 K, as well at the most applications of the superconductivity - often joints and shutters on the base of low-temperature suited adhesive tapes are required. A current method for the thermal isolation of cold surfaces is their covering with highly reflecting aluminium foils, which are fastened by adhesive aluminium tapes. Selection, usage, and reliability estimation of presumably suited adhesive tapes respectively aluminium tapes occurs presently rather heuristically. A corresponding testing apparature for the measurement of the maximal pulling force was developed and tested by means of a series of test measurements. The testing set-up and measurement results for the validation of the measurement concept with adhesive aluminium tapes are presented in this contribution.

  9. Surface pretreatments for medical application of adhesion

    Directory of Open Access Journals (Sweden)

    Weber Michael

    2003-09-01

    Full Text Available Abstract Medical implants and prostheses (artificial hips, tendono- and ligament plasties usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m. This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body.

  10. Strength of joints brazed with two-phase solders

    International Nuclear Information System (INIS)

    Shnyakin, N.S.; Parfenova, L.V.; Ekatova, A.S.; Prilepskaya, I.V.

    1976-01-01

    Dependence of the structure and strength of soldered joints upon a gap size in case of 1Kh18N10T stainless steel soldering with a double-phase solder of Ni-Zn-Cu system is described. Butt and lap joints have been subjected to soldering with gas-flame and induction heating. The optimum conditions of the solder crystallization are determined with wedge-gap samples. The studies show that the character of distribution of a fusible β-phase in metal depends upon a gap size. With gaps up to 0.1 mm the β-phase enriched with a fusible component (zinc) runs as a continuous thin interlayer in the middle of the seam. As a result of zinc evaporation from the β-phase this interlayer becomes internally oxidized. After the sample is broken an oxidized fracture gives one the impression of a poor fusion in the middle part of the joint. The ultimate strength of butt joints is 15-20 kgf/sq.mm. A value of thermal expansion of 1Kh18N10T steel samples, 1-5 mm thick, has been experimentally determined for butt soldering. The elongation of two halves of the sample is measured by an indicator and proved to be 0.89 mm for a 50x50x2 mm sample at a soldering temperature of 1.100 deg C. The paper presents methods for the calculation of an optimal gap value for butt soldering with a local gas-flame and induction heating

  11. The Calculated and Measured Resistance for Splices between Conductors in a MICE Superconducting Coil

    International Nuclear Information System (INIS)

    Green, Michael A.; Dietderich, Dan; Higley, Hugh; Pan, Heng; Tam, Darren; Trillaud, Federic; Wang, Li; Wu, Hong; Xu, Feng Yu

    2009-01-01

    The resistance of superconducting joints within MICE coils is an important issue particularly for the coupling coils. The MICE tracker solenoids have only two superconducting joints in the three spectrometer set (end coil 1, the center coil and end coil 2). The AFC magnets may have only a single joint within the coil. The coupling coils may have as many as fifteen joints within the coil, due to relatively short piece lengths of the superconductor. LBNL and ICST looked at three types of coil joints. They are: (1) cold fusion butt joints, (2) side-by-side lap joints, and (3) up-down lap joints. A theoretical calculation of the joint resistance was done at LBNL and checked by ICST. After looking at the theoretical resistance of the three types of joints, it was decided that the cold welded butt joint was not an attractive alternative for joints within a MICE superconducting magnet coil. Side-by-side and up-down lap joints were fabricated at ICST using two types of soft solder between the conductors. These conductor joints were tested at LBNL at liquid helium temperatures over a range of magnetic fields. The joint resistance was compared with the theoretical calculations. Measurements of splice strength were also made at 300 K and 77 K.

  12. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    Science.gov (United States)

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  13. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears

    NARCIS (Netherlands)

    Bochynska, A. I.; Van Tienen, T. G.; Hannink, G.; Buma, P.; Grijpma, D. W.

    2016-01-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study,

  14. The roles of Tenascin C and Fibronectin 1 in adhesive capsulitis: a pilot gene expression study

    Directory of Open Access Journals (Sweden)

    Carina Cohen

    Full Text Available OBJECTIVES: We evaluated mRNA expression levels of genes that encode TGF-β1; the TGF-β1 receptor; the collagen-modifying enzymes LOX, PLOD1, and PLOD2; and the extracellular matrix proteins COMP, FN1, TNC and TNXB in synovial/capsule specimens from patients with idiopathic adhesive capsulitis. Possible associations between the measured mRNA levels and clinical parameters were also investigated. METHODS: We obtained glenohumeral joint synovium/capsule specimens from 9 patients with idiopathic adhesive capsulitis who had not shown improvement in symptoms after 5 months of physiotherapy. Adhesive capsulitis was confirmed in all patients by magnetic resonance imaging. We also obtained specimens from 8 control patients who had underwent surgery for acute acromioclavicular joint dislocation and who had radiological indication of glenohumeral capsule alteration based on arthroscopic evaluation. mRNA expression in the synovium/capsule specimens was analyzed by quantitative reverse transcription PCR. The B2M and HPRT1 genes were used as references to normalize target gene expression in the shoulder tissue samples. RESULTS: The synovium/capsule samples from the patients with adhesive capsulitis had significantly higher TNC and FN1 expression than those from the controls. Additionally, symptom duration directly correlated with expression of TGFβ1 receptor I. CONCLUSION: Elevated levels of TNC and FN1 expression may be a marker of capsule injury. Upregulation of TGFβ1 receptor I seems to be dependent on symptom duration; therefore, TGFβ signaling may be involved in adhesive capsulitis. As such, TNC, FN1 and TGFβ1 receptor I may also play roles in adhesive capsulitis by contributing to capsule inflammation and fibrosis.

  15. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  16. Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding

    Science.gov (United States)

    Sanderson, K. A.; Wightman, J. P.

    1985-01-01

    Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.

  17. The application of thermodynamic and spectroscopic techniques to adhesion in the polyimide/Ti 6-4 and polyphenylquinoxaline/Ti 6-4 systems

    Science.gov (United States)

    Dias, S.; Wightman, J. P.

    1984-01-01

    The results of calorimetric measurements of Ti adherend surfaces are presented. The measurements were carried out after several chemical pretreatments and after fracture of several lap shear samples aged at high temperature. The exact composition of the Ti samples was Ti(6 percent Al-4 percent V). The adhesives used were polyimides and polyphenylquinoxalines (PPQ). Each chemical pretreatment was accompanied by a unique spectroscopic feature which was characterized by XPS, SEM, and specular reflectance infrared spectroscopy. The energetics of the interaction between primer solutions and the Ti adherend were evaluated by microcalorimetry. Changes in the structure of the surface oxide layer upon heating of the adherend were deduced from immersion temperatures of the PI and PPQ solutions. The XPS and SEM data are given is a table.

  18. RILEM International Symposium on Materials and Joints in Timber Structures

    CERN Document Server

    Reinhardt, H-W; Garrecht, Harald

    2014-01-01

    This book contains the contributions from the RILEM International Symposium on Materials and Joints in Timber Structures that was held in Stuttgart, Germany from October 8 to 10, 2013. It covers recent developments in the materials and the joints used in modern timber structures. Regarding basic wooden materials, the contributions highlight the widened spectrum of products comprising cross-laminated timber, glulam and LVL from hardwoods and block glued elements. Timber concrete compounds, cement bonded wood composites and innovative light-weight constructions represent increasingly employed alternatives for floors, bridges and facades. With regard to jointing technologies, considerable advances in both mechanical connections and glued joints are presented. Self-tapping screws have created unprecedented options for reliable, strong as well as ductile joints and reinforcement technologies. Regarding adhesives, which constitute the basis of the jointing/laminating technology of modern timber products, extended o...

  19. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    José de Jesús Figueroa-Lara

    2017-09-01

    Full Text Available This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA with silica (SiO2 nanoparticles plus zirconia (ZrO2 nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO2 nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO2 nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS. The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM, and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR.

  20. Adhesion

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adhesion URL of this page: //medlineplus.gov/ency/article/001493.htm Adhesion To use the sharing features on this page, please enable JavaScript. Adhesions are bands of scar-like tissue that form between two ...

  1. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    Science.gov (United States)

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  2. Long-term, repeated dose in vitro neurotoxicity of the glutamate receptor antagonist L-AP3, demonstrated in rat hippocampal slice cultures by using continuous propidium iodide incubation

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Blaabjerg, Morten; Noraberg, Jens

    2007-01-01

    ), which is known to be toxic in vivo after subchronic, but not acute, administration. Degenerative effects were monitored by measuring the cellular uptake of propidium iodide (PI; continuously present in the medium) and lactate dehydrogenase (LDH) leakage, and by using a panel of histological stains....... Hippocampal slices, derived from 2-3 day old rats and grown for 3 weeks, were subsequently exposed for the next 3 weeks to 0, 10 or 100microM L-AP3, with PI (2microM) in the culture medium. Exposure to 100microM L-AP3 induced severe toxicity after 4-6 days, shown by massive PI uptake, LDH leakage, changes...... in MAP2 and GFAP immunostaining, and in Nissl and Timm staining. In contrast, 10microM L-AP3 did not induce detectable neuronal degeneration. Treatment with the NMDA receptor antagonist, MK-801, or the AMPA/KA receptor antagonist NBQX, together with 100microM L-AP3, reduced neurodegeneration down...

  3. Synthetic Adhesive Attachment Discs based on Spider Pyriform Silk Architecture

    Science.gov (United States)

    Jain, Dharamdeep; Sahni, Vasav; Dhinojwala, Ali

    2014-03-01

    Among the variety of silks produced by spiders, pyriform silk is used in conjunction with the dragline silk to attach webs to different surfaces. Cob weaver spiders employ different architectural patterns to utilize the pyriform silk and form attachment joints with each pattern having a characteristic adhesive performance. The staple pin architecture is a one of the strongest attachment designs employed by spiders to attach their webs. Here we use a synthetic approach to create the a similar patterned architecture attachment discs on aluminum substrate using thermoplastic polyurethane. Measurable pull off forces are generated when the synthetic discs are peeled off a surface. This innovative adhesive strategy can be a source of design in various biomedical applications. Financial Support from National Science Foundation.

  4. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts.

    Science.gov (United States)

    Perinpanayagam, H; Zaharias, R; Stanford, C; Brand, R; Keller, J; Schneider, G

    2001-11-01

    In osteoporosis, the regenerative capacity of bone is compromised, which may involve altered osteoblast (OB) activity. This could be attributed to an inappropriate synthesis and assembly of an extracellular matrix (ECM), altered cell adhesion to the ECM, or be due to inappropriate downstream activation of adhesion-mediated signaling cascades through proteins such as focal adhesion kinase (FAK). The purpose of our study was to compare early adhesion-mediated events using previously described and characterized clinically derived OBs obtained from human patients undergoing major joint arthroplasty for osteoporosis or osteoarthritis. The presence or absence of osteoporosis was established with a radiographic index. Using light microscopy and crystal violet staining, we show that OB cells derived from sites of osteoporosis do not attach and spread as well as non-osteoporotic (OP) OB cells. OP cells initially have a more rounded morphology, and show significantly less (P attachment to serum-coated tissue culture plastic over a 24 h time period. Immunofluorescent labeling after 24 h of attachment showed that OP OB focal adhesions (FAs) and stress fibers were less defined, and that the OP cells were smaller and had a more motile phenotype. When normalized protein lysates were Western blotted for phosphotyrosine (PY) a band corresponding to pp125FAK was identified. FAK tyrosine phosphorylation was evident at 6 h in both the OP and non-OP OBs, but decreased or was absent through 24 h in OP OBs. These results suggest early adhesion-mediated events, such as cell adhesion, attachment, and FAK signaling via PY may be altered in OP OBs.

  5. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  6. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) with Raman Imaging Applied to Lunar Meteorites.

    Science.gov (United States)

    Smith, Joseph P; Smith, Frank C; Booksh, Karl S

    2018-03-01

    Lunar meteorites provide a more random sampling of the surface of the Moon than do the returned lunar samples, and they provide valuable information to help estimate the chemical composition of the lunar crust, the lunar mantle, and the bulk Moon. As of July 2014, ∼96 lunar meteorites had been documented and ten of these are unbrecciated mare basalts. Using Raman imaging with multivariate curve resolution-alternating least squares (MCR-ALS), we investigated portions of polished thin sections of paired, unbrecciated, mare-basalt lunar meteorites that had been collected from the LaPaz Icefield (LAP) of Antarctica-LAP 02205 and LAP 04841. Polarized light microscopy displays that both meteorites are heterogeneous and consist of polydispersed sized and shaped particles of varying chemical composition. For two distinct probed areas within each meteorite, the individual chemical species and associated chemical maps were elucidated using MCR-ALS applied to Raman hyperspectral images. For LAP 02205, spatially and spectrally resolved clinopyroxene, ilmenite, substrate-adhesive epoxy, and diamond polish were observed within the probed areas. Similarly, for LAP 04841, spatially resolved chemical images with corresponding resolved Raman spectra of clinopyroxene, troilite, a high-temperature polymorph of anorthite, substrate-adhesive epoxy, and diamond polish were generated. In both LAP 02205 and LAP 04841, substrate-adhesive epoxy and diamond polish were more readily observed within fractures/veinlet features. Spectrally diverse clinopyroxenes were resolved in LAP 04841. Factors that allow these resolved clinopyroxenes to be differentiated include crystal orientation, spatially distinct chemical zoning of pyroxene crystals, and/or chemical and molecular composition. The minerals identified using this analytical methodology-clinopyroxene, anorthite, ilmenite, and troilite-are consistent with the results of previous studies of the two meteorites using electron microprobe

  7. Infrared monitoring of friction welds and adhesive bond curing in automotive manufacturing

    International Nuclear Information System (INIS)

    Chapman, G.B.

    2005-01-01

    The need for improving automotive assembly, energy-efficiency, performance, durability and quality is intensifying as customer demands and competitive pressures drive the industry toward unrelenting improvements in energy conservation, cost, quality and speed to market, without compromising the vehicle capacity, performance, appearance and affordability to which North Americans have become accustomed. This presentation describes the need for and the development and use of infrared detection methods to assure the joint quality of friction welds in thermoplastic assemblies and to monitor adhesive bond-joint curing in metal assemblies. Some remaining barriers to the wider applications of this technology in the quality assurance of joints in automotive body structures will also be presented as indicators of further research and development opportunities. (author)

  8. Th1-Induced CD106 Expression Mediates Leukocytes Adhesion on Synovial Fibroblasts from Juvenile Idiopathic Arthritis Patients.

    Science.gov (United States)

    Maggi, Laura; Margheri, Francesca; Luciani, Cristina; Capone, Manuela; Rossi, Maria Caterina; Chillà, Anastasia; Santarlasci, Veronica; Mazzoni, Alessio; Cimaz, Rolando; Liotta, Francesco; Maggi, Enrico; Cosmi, Lorenzo; Del Rosso, Mario; Annunziato, Francesco

    2016-01-01

    This study tested the hypothesis that subsets of human T helper cells can orchestrate leukocyte adhesion to synovial fibroblasts (SFbs), thus regulating the retention of leukocytes in the joints of juvenile idiopathic arthritis (JIA) patients. Several cell types, such as monocytes/macrophages, granulocytes, T and B lymphocytes, SFbs and osteoclasts participate in joint tissue damage JIA. Among T cells, an enrichment of classic and non-classic Th1 subsets, has been found in JIA synovial fluid (SF), compared to peripheral blood (PB). Moreover, it has been shown that IL-12 in the SF of inflamed joints mediates the shift of Th17 lymphocytes towards the non-classic Th1 subset. Culture supernatants of Th17, classic and non-classic Th1 clones, have been tested for their ability to stimulate proliferation, and to induce expression of adhesion molecules on SFbs, obtained from healthy donors. Culture supernatants of both classic and non-classic Th1, but not of Th17, clones, were able to induce CD106 (VCAM-1) up-regulation on SFbs. This effect, mediated by tumor necrosis factor (TNF)-α, was crucial for the adhesion of circulating leukocytes on SFbs. Finally, we found that SFbs derived from SF of JIA patients expressed higher levels of CD106 than those from healthy donors, resembling the phenotype of SFbs activated in vitro with Th1-clones supernatants. On the basis of these findings, we conclude that classic and non-classic Th1 cells induce CD106 expression on SFbs through TNF-α, an effect that could play a role in leukocytes retention in inflamed joints.

  9. Performance of lap splices in large-scale column specimens affected by ASR and/or DEF-extension phase.

    Science.gov (United States)

    2015-03-01

    A large experimental program, consisting of the design, construction, curing, exposure, and structural load : testing of 16 large-scale column specimens with a critical lap splice region that were influenced by varying : stages of alkali-silica react...

  10. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints

    International Nuclear Information System (INIS)

    Dudek, M.A.; Hunter, L.; Kranz, S.; Williams, J.J.; Lau, S.H.; Chawla, N.

    2010-01-01

    The volume, size, and dispersion of porosity in solder joints are known to affect mechanical performance and reliability. Most of the techniques used to characterize the three-dimensional (3D) nature of these defects are destructive. With the enhancements in high resolution computed tomography (CT), the detection limits of intrinsic microstructures have been significantly improved. Furthermore, the 3D microstructure of the material can be used in finite element models to understand their effect on microscopic deformation. In this paper we describe a technique utilizing high resolution (< 1 μm) X-ray tomography for the three-dimensional (3D) visualization of pores in Sn-3.9Ag-0.7Cu/Cu joints. The characteristics of reflow porosity, including volume fraction and distribution, were investigated for two reflow profiles. The size and distribution of porosity size were visualized in 3D for four different solder joints. In addition, the 3D virtual microstructure was incorporated into a finite element model to quantify the effect of voids on the lap shear behavior of a solder joint. The presence, size, and location of voids significantly increased the severity of strain localization at the solder/copper interface.

  11. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  12. Fabrication, testing and analysis of steel/composite DLS adhesive joints

    DEFF Research Database (Denmark)

    Nashim, S.; Nisar, J.; Tsouvalis, N.

    2009-01-01

    0/90 WR GFRP and 0/90 UD CFRP laminates and steel. The focus here is on CFRP/steel joint due to availability of test data. The thickness of the outer adherend varies from 3 mm to 6 mm. Shear overlaps of 25-200mm were considered. The overall objectives are (i) to assess the quality of the standard...

  13. Fracture Mechanics Approach to X-Ray Diffraction Method for Spot Welded Lap Joint Structure of Rolled Steel Considered Residual Stress

    International Nuclear Information System (INIS)

    Baek, Seung Yeb; Bae, Dong Ho

    2011-01-01

    Cold and hot-rolled carbon steel sheets are commonly used in railroad cars or commercial vehicles such as the automobile. The sheets used in these applications are mainly fabricated by spot welding, which is a type of electric resistance welding. However, the fatigue strength of a spot-welded joint is lower than that of the base metal because of high stress concentration at the nugget edge of the spot-welded part. In particular, the fatigue strength of the joint is influenced by not only geometrical and mechanical factors but also the welding conditions for the spot-welded joint. Therefore, there is a need for establishing a reasonable criterion for a long-life design for spot-welded structures. In this thesis, ΔP-N f relation curves have been used to determine a long-life fatigue-design criterion for thin-sheet structures. However, as these curves vary under the influence of welding conditions, mechanical conditions, geometrical factors, etc. It is very difficult to systematically determine a fatigue-design criterion on the basis of these curves. Therefore, in order to eliminate such problems, the welding residual stresses generated during welding and the stress distributions around the weld generated by external forces were numerically and experimentally analyzed on the basis of the results, reassessed fatigue strength of gas welded joints

  14. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion.

    Science.gov (United States)

    Chou, Pang-Yun; Chen, Shih-Heng; Chen, Chih-Hao; Chen, Shih-Hsien; Fong, Yi Teng; Chen, Jyh-Ping

    2017-11-01

    In this study, we aimed to assess whether thermo-responsive in-situ forming hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) could prevent post-operative peritendinous adhesion. The clinical advantages of the thermo-responsive hydrogels are acting as barrier material to block penetration of fibroblasts, providing mobility and flexibility during application and enabling injection through a small opening to fill spaces of any shape after surgery. The thermo-responsiveness of hydrogels was determined to ensure their clinic uses. By grafting hydrophilic biopolymers chitosan (CS) and hyaluronic acid (HA) to PNIPAM, the copolymer hydrogels show enhanced water retention and lubrication, while reduced volume shrinkage during phase transition. In cell culture experiments, the thermo-responsive hydrogel has good biocompatibility and reduces fibroblast penetration. In animal experiments, the effectiveness of preventing post-operative peritendinous adhesion was studied in a rabbit deep flexor tendon model. From gross examination, histology, bending angles of joints, tendon gliding excursion and pull-out force, HA-CS-PNIPAM (HACPN) was confirmed to be the best barrier material to prevent post-operative peritendinous adhesion compared to PNIPAM and CS-PNIPAM (CPN) hydrogels and a commercial barrier film Seprafilm®. There was no significant difference in the breaking strength of HACPN-treated tendons and spontaneously healed ones, indicating HACPN hydrogel application did not interfere with normal tendon healing. We conclude that HACPN hydrogel can provide the best functional outcomes to significantly prevent post-operative tendon adhesion in vivo. We prepared thermo-responsive in-situ forming hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) to prevent post-operative peritendinous adhesion. The injectable barrier hydrogel could have better anti-adhesive properties than current commercial products by acting as barrier material to block penetration of fibroblasts

  15. Effects of rework on adhesion of Pb-In soldered gold thick films

    International Nuclear Information System (INIS)

    Gehman, R.W.; Becka, G.A.; Losure, J.A.

    1982-02-01

    The feasibility of repeatedly reworking Pb-In soldered joints on gold thick films was evaluated. Nailhead adhesion tests on soldered thick films typically resulted in failure within the bulk solder (50 In-50 Pb). Average strengths increased with each rework, and the failure mode changed. An increase in metalization lift-off occurred with successive reworks. An investigation was initiated to determine why these changes occurred. Based on this work, the thick film adhesion to the substrate appeared to be lowered by indium reduction of cadmium oxide and by formation of a weak, brittle intermetallic compound, Au 9 In 4 . It was concluded that two solder reworks could be conducted without significant amounts of metallization lift-off during nailhead testing

  16. The use of acoustic emission and composite peel tests to detect weak adhesion in composite structures

    NARCIS (Netherlands)

    Teixeira De Freitas, S.; Zarouchas, D.; Poulis, J.A.

    2018-01-01

    Adhesive bonding is one of the most promising joining technologies for composite aircraft. However, to comply with current aircraft certification rules, current safety-critical bonded joints, in which at least one of the interfaces requires additional surface preparation, are always used in

  17. Denture Adhesives

    Science.gov (United States)

    ... Devices Products and Medical Procedures Dental Devices Denture Adhesives Share Tweet Linkedin Pin it More sharing options ... Wearers Reporting Problems to the FDA Background Denture adhesives are pastes, powders or adhesive pads that may ...

  18. Long-term, repeated dose in vitro neurotoxicity of the glutamate receptor antagonist L-AP3, demonstrated in rat hippocampal slice cultures by using continuous propidium iodide incubation.

    Science.gov (United States)

    Kristensen, Bjarne W; Blaabjerg, Morten; Noraberg, Jens; Zimmer, Jens

    2007-05-01

    Most in vitro models are only used to assess short-term effects of test compounds. However, as demonstrated here, hippocampal slice cultures can be used for long-term studies. The test compound used was the metabotropic glutamate receptor antagonist, L(+)-2-amino-3-phosphonopropionic acid (L-AP3), which is known to be toxic in vivo after subchronic, but not acute, administration. Degenerative effects were monitored by measuring the cellular uptake of propidium iodide (PI; continuously present in the medium) and lactate dehydrogenase (LDH) leakage, and by using a panel of histological stains. Hippocampal slices, derived from 2-3 day old rats and grown for 3 weeks, were subsequently exposed for the next 3 weeks to 0, 10 or 100microM L-AP3, with PI (2microM) in the culture medium. Exposure to 100microM L-AP3 induced severe toxicity after 4-6 days, shown by massive PI uptake, LDH leakage, changes in MAP2 and GFAP immunostaining, and in Nissl and Timm staining. In contrast, 10microM L-AP3 did not induce detectable neuronal degeneration. Treatment with the NMDA receptor antagonist, MK-801, or the AMPA/KA receptor antagonist NBQX, together with 100microM L-AP3, reduced neurodegeneration down to close to control values. It is concluded that continuous incubation of hippocampal slice cultures with PI is technically feasible for use in studies of inducible neuronal degeneration over time.

  19. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  20. Conformational co-dependence between Plasmodium berghei LCCL proteins promotes complex formation and stability.

    Science.gov (United States)

    Saeed, Sadia; Tremp, Annie Z; Dessens, Johannes T

    2012-10-01

    Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  2. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  3. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y.

    2010-01-01

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  4. The Fundamentals of Laparoscopic Surgery and LapVR evaluation metrics may not correlate with operative performance in a novice cohort

    Directory of Open Access Journals (Sweden)

    Sarah N. Steigerwald

    2015-12-01

    Full Text Available Background: Considerable resources have been invested in both low- and high-fidelity simulators in surgical training. The purpose of this study was to investigate if the Fundamentals of Laparoscopic Surgery (FLS, low-fidelity box trainer and LapVR (high-fidelity virtual reality training systems correlate with operative performance on the Global Operative Assessment of Laparoscopic Skills (GOALS global rating scale using a porcine cholecystectomy model in a novice surgical group with minimal laparoscopic experience. Methods: Fourteen postgraduate year 1 surgical residents with minimal laparoscopic experience performed tasks from the FLS program and the LapVR simulator as well as a live porcine laparoscopic cholecystectomy. Performance was evaluated using standardized FLS metrics, automatic computer evaluations, and a validated global rating scale. Results: Overall, FLS score did not show an association with GOALS global rating scale score on the porcine cholecystectomy. None of the five LapVR task scores were significantly associated with GOALS score on the porcine cholecystectomy. Conclusions: Neither the low-fidelity box trainer or the high-fidelity virtual simulator demonstrated significant correlation with GOALS operative scores. These findings offer caution against the use of these modalities for brief assessments of novice surgical trainees, especially for predictive or selection purposes.

  5. The Fundamentals of Laparoscopic Surgery and LapVR evaluation metrics may not correlate with operative performance in a novice cohort

    Science.gov (United States)

    Steigerwald, Sarah N.; Park, Jason; Hardy, Krista M.; Gillman, Lawrence; Vergis, Ashley S.

    2015-01-01

    Background Considerable resources have been invested in both low- and high-fidelity simulators in surgical training. The purpose of this study was to investigate if the Fundamentals of Laparoscopic Surgery (FLS, low-fidelity box trainer) and LapVR (high-fidelity virtual reality) training systems correlate with operative performance on the Global Operative Assessment of Laparoscopic Skills (GOALS) global rating scale using a porcine cholecystectomy model in a novice surgical group with minimal laparoscopic experience. Methods Fourteen postgraduate year 1 surgical residents with minimal laparoscopic experience performed tasks from the FLS program and the LapVR simulator as well as a live porcine laparoscopic cholecystectomy. Performance was evaluated using standardized FLS metrics, automatic computer evaluations, and a validated global rating scale. Results Overall, FLS score did not show an association with GOALS global rating scale score on the porcine cholecystectomy. None of the five LapVR task scores were significantly associated with GOALS score on the porcine cholecystectomy. Conclusions Neither the low-fidelity box trainer or the high-fidelity virtual simulator demonstrated significant correlation with GOALS operative scores. These findings offer caution against the use of these modalities for brief assessments of novice surgical trainees, especially for predictive or selection purposes. PMID:26641071

  6. Respectability, morality and disgust in the night‐time economy: exploring reactions to ‘lap dance’ clubs in England and Wales

    Science.gov (United States)

    Hubbard, Phil; Colosi, Rachela

    2015-01-01

    Abstract The night‐time economy is often described as repelling consumers fearful of the ‘undesirable Others’ imagined dominant within such time‐spaces. In this paper we explore this by describing attitudes towards, and reactions to, one particularly contentious site: the ‘lap dance’ club. Often targeted by campaigners in England and Wales as a source of criminality and anti‐sociality, in this paper we shift the focus from fear to disgust, and argue that Sexual Entertainment Venues (SEVs) are opposed on the basis of moral judgments that reflect distinctions of both class and gender. Drawing on documentary analysis, survey results and interview data collected during guided walks, we detail the concerns voiced by those anxious about the presence of lap dance or striptease clubs in their town or city, particularly the notion that they ‘lower the tone’ of particular streets or neighbourhoods. Our conclusion is that the opposition expressed to lap dance clubs is part of an attempt to police the boundaries of respectable masculinities and femininities, marginalizing the producers and consumers of sexual entertainment through ‘speech acts’ which identify such entertainment as unruly, vulgar and uncivilized. These findings are considered in the light of ongoing debates concerning the relations of morality, respectability and disgust. PMID:27708460

  7. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    Science.gov (United States)

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  8. Moisture distribution measurements in adhesive-bonded composites using the D (3He,p)4 He reaction

    International Nuclear Information System (INIS)

    Schulte, R.L.; Deiasi, R.J.

    1981-01-01

    Adhesive bonding of composite materials for many aircraft components offers a distinct advantage in weight and cost reduction compared to similar structures that have been joined by riveting. However, the long term performance of adhesive-bonded components depends on the degree and rate of moisture absorption by the adhesive in the service environment. To investigate the rate and the mechanism of water transport in adhesive-bonded composite materials, a nuclear reaction analysis method based on the D( 3 He,p) 4 He reaction is used to measure the moisture distributions. Samples of graphite/epoxy composite materials were bonded with an epoxy adhesive and isothermally conditioned in a controlled D 2 O environment at 70% relative humidity and 77 0 C for various exposure times. The moisture profiles were measured along the adhesive (adhesive scan) as well as through the thickness of the bonded joint (transverse scan). The dimensions of the probing beam were 125 μm x 125 μm for the adhesive scan and 25 μ x 200 μm for the transverse scan. Absolute deuterium concentrations were determined by comparison of the proton yield from the composite/adhesive to that from reference standards. Calculations from diffusion models of water transport based on parameters determined from bulk measurement techniques are compared to the measured profile and the agreement indicates that classical Fickian diffusion describes the transport of moisture in these materials

  9. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  10. Universal adhesives: the next evolution in adhesive dentistry?

    Science.gov (United States)

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  11. Laps olla muretuna veel / George Gordon Byron ; tlk. Minni Nurme

    Index Scriptorium Estoniae

    Byron, George Gordon

    2006-01-01

    Sisu: Laps olla muretuna veel ; Lachin y Gair ; Romantikale ; Värsid, kirjutatud pärnapuule Harrowþ kalmistu mäel ; Augustale : "Kui süngeks läks mu silmapiir..." ; Augustale : "Kuigi öö ju on varjand mu päeva..." ; Maryle ; Ela hästi! ; Nutvale neitsile ; Kirjutus albumisse ; Hüvastijätt ; Stantsid muusikast ; Muusikale ; Ta oma kauniduses käib ; Mu hing on morn ; Su elu lõppes ; Sa nutsid - pisarpärle täis... ; Unetuma päike ; Kuulsa Kreeka sõjalaulu järele ; Värsid ; Ludiidide laul ; Epigramme ; Pimedus ; Chilloni vang ; Prometheus ; Childe Haroldi palveränd ; Parisina ; Korsaar ; Byroni viimased read. Eluloolisi andmeid autori kohta lk. 327

  12. Influence of the Aluminium Alloy Type on Defects Formation in Friction Stir Lap Welding of Thin Sheets

    Directory of Open Access Journals (Sweden)

    M. I. Costa

    Full Text Available Abstract The weldability in Friction Stir Lap Welding (FSLW of heat and non-heat treatable aluminium alloys, the AA6082-T6 and the AA5754-H22 aluminium alloys, respectively, are compared. For both alloys, welds were produced in very thin sheets, using the same welding parameters and procedures, and strong differences in welds morphology were found. The strength of the welds was evaluated by performing tensile-shear tests under monotonic and cyclic loading conditions. As-welded and heat-treated samples of the AA6082- T6 were tested. It was found that the heat-treatable alloy is more sensitive to defects formation, in lap welding, than the non-heat-treatable alloy. The presence of defects has a strong influence on the monotonic and fatigue behaviour of the welds. In spite of this, for very high-applied stresses, the heat-treatable alloy welds perform better in fatigue than the non-heat-treatable alloy welds.

  13. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  14. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    International Nuclear Information System (INIS)

    Díaz Téllez, J P; Harirchian-Saei, S; Li, Y; Menon, C

    2013-01-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet–visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved. (paper)

  15. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  16. Radiation-curable adhesives

    International Nuclear Information System (INIS)

    Woods, J.G.

    1992-01-01

    Radiation-curable adhesives may be classified into two broad categories. In the first category, adhesive bonding occurs as a direct result of irradiation. The second category includes pressure-sensitive and hot-melt adhesives, which are composed of linear or lightly cross-linked polymers prepared by a radiation-induced polymerization reaction. This chapter is mainly concerned with radiation-curable adhesives of the first category. The various adhesive types are discussed and adhesive performance is examined, particularly in relation to the chemistry and chemical technology which underlies the individual materials. A description of a limited number of representative applications is included as is an outline of recent developments of curing and dispensing equipment. 268 refs., 14 figs., 13 tabs

  17. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  18. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  19. Effect of jointing work performed as an energy-saving measure

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, A

    1983-12-01

    In order to establish the effect of replacing mortar joints by plastic or elastic sealants, an investigation of a number of multistory buildings has been carried out within the framework of the Danish Energy Research Programme EFP-81. An actual heat-saving effect could be established only in a few cases after replacement of windows and joints. The condition of the sealants was good after a few years of practical exposure. A surface cracking wich was not found to have any significant importance to the life of the joints was noted. The adhesion was good to tiles, wood and PVC. It was not possible to establish any decomposition of wooden windows owing to formation of condensate behind the tight seaplants placed at the outside, i.e. as a one-stage joint. It must be underlined that the investigation has only comprised brick built buildings.

  20. Arthroscopic treatment of refractory adhesive capsulitis of the shoulder

    Directory of Open Access Journals (Sweden)

    Marcos Rassi Fernandes

    Full Text Available OBJECTIVE: to evaluate the results of arthroscopic treatment of refractory adhesive capsulitis of the shoulder associated as for improved range of motion after a minimum follow up of six years. METHODS: from August 2002 to December 2004, ten patients with adhesive capsulitis of the shoulder resistant to conservative treatment underwent arthroscopic surgery. One interscalene catheter was placed for postoperative analgesia before the procedure. All were in Phase II, with a minimum follow up of two years. The mean age was 52.9 years (39-66, predominantly female (90%, six on the left shoulder. The time between onset of symptoms and surgical treatment ranged from six to 20 months. Four adhesive capsulitis were found to be primary (40% and six secondary (60%. RESULTS: the preoperative mean of active anterior elevation was 92°, of external rotation was 10.5° of the L5 level internal rotation; the postoperative ones were 149°, 40° and T12 level, respectively. Therefore, the average gain was 57° for the anterior elevation, 29.5° for external rotation in six spinous processes. There was a significant difference in movements' gains between the pre and post-operative periods (p<0.001. By the Constant Score (range of motion, there was an increase of 13.8 (average pre to 32 points (average post. CONCLUSION: the arthroscopic treatment proved effective in refractory adhesive capsulitis of the shoulder resistant to conservative treatment, improving the range of joint movements of patients evaluated after a minimum follow up of six years.

  1. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  2. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    Directory of Open Access Journals (Sweden)

    Nicolas Lebesgue

    2016-06-01

    Full Text Available Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc versus the non-adhesive part (the stem, and also to profile the proteome of the secreted adhesive (glue. This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016 [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold, likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  3. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the

  4. Tissue adhesives for simple traumatic lacerations.

    Science.gov (United States)

    Beam, Joel W

    2008-01-01

    Farion K, Osmond MH, Hartling L, et al. Tissue adhesives for traumatic lacerations in children and adults. Cochrane Database Syst Rev. 2001(4);CD003326. What is the clinical evidence base for tissue adhesives in the management of simple traumatic lacerations? Studies were identified by searches of the following databases: Cochrane Wounds Group Specialized Trials Register (September 2003), Cochrane Central Register of Controlled Trials (CENTRAL) (CDROM 2003, issue 3), MEDLINE (1966 to September 2003, week 1), EMBASE (1988 to 2003, week 36), Web of Science Science Citation Index (1975 to September 13, 2003) and various clinical trials registers (September 2003). Investigators and product manufacturers were contacted to identify additional eligible studies. The search terms included wounds and injuries, laceration, face injury, nose injury, tissue adhesives, and acrylates. Each study fulfilled the following criteria: (1) The study was a randomized controlled trial that compared tissue adhesives with standard wound closure (SWC) (sutures, staples, adhesive strips) or tissue adhesive with tissue adhesive. (2) The wounds were acute, linear lacerations less than 12 hours old, resulting from blunt or sharp trauma. (3) The wound length, width, and depth allowed for approximation of the edges with minimal tension after deep sutures were placed, if required. Studies were included with no language or publication status restriction, with participants of any age recruited in an emergency department, outpatient clinic, walk-in clinic, or other primary care setting. Studies were excluded if the wounds were stellate lacerations, puncture wounds, mammalian bites, infected, heavily contaminated or devitalized, crossing joints or mucocutaneous junctions, in hair-bearing areas, or in patients with keloid formation or chronic illness. The characteristics of the study and participants, interventions, outcome measures, and findings were extracted by one author and verified by a second

  5. Chapter 9:Wood Adhesion and Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2013-01-01

    The recorded history of bonding wood dates back at least 3000 years to the Egyptians (Skeist and Miron 1990, River 1994a), and adhesive bonding goes back to early mankind (Keimel 2003). Although wood and paper bonding are the largest applications for adhesives, some of the fundamental aspects leading to good bonds are not fully understood. Better understanding of these...

  6. Load-Displacement Curves of Spot Welded, Bonded, and Weld-Bonded Joints for Dissimilar Materials and Thickness

    Directory of Open Access Journals (Sweden)

    E.A. Al-Bahkali

    2011-12-01

    Full Text Available Three-dimensional finite element models of spot welded, bonded and weld-bonded joints are developed using ABAQUS software. Each model consists of two strips with dissimilar materials and thickness and is subjected to an axial loading. The bonded and weld-bonded joints have specific adhesive thickness. A detailed experimental plan to define many properties and quantities such as, the elastic - plastic properties, modulus of elasticity, fracture limit, and properties of the nugget and heat affected zones are carried out. Experiments include standard testing of the base metal, the adhesive, the nugget and heat affected zone. They also include employing the indentation techniques, and ductile fracture limits criteria, using the special notch tests. Complete load-displacement curves are obtained for all joining models and a comparison is made to determine the best combination.

  7. Little dragons prefer flowers to maidens: a lizard that laps nectar and pollinates trees

    OpenAIRE

    Sazima, Ivan; Sazima, Cristina; Sazima, Marlies

    2005-01-01

    Lizards rarely visit and pollinate flowers, the few recent records being mostly restricted to island habitats. We report here on the Noronha skink (Euprepis atlanticus) seeking nectar in the flowers of the leguminous mulungu tree (Erythrina velutina) at Fernando de Noronha Archipelago, off northeast Brazil. The mulungu tree blooms during the dry season, and each flower secretes copious and diluted nectar throughout the day. The Noronha skink climbs up to the inflorescences and laps the nectar...

  8. Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages

    Science.gov (United States)

    Talebanpour, B.; Huang, Z.; Chen, Z.; Dutta, I.

    2016-01-01

    In 3-dimensional (3D) packages, a stack of dies is vertically connected to each other using through-silicon vias and very thin solder micro-bumps. The thinness of the micro-bumps results in joints with a very high volumetric proportion of intermetallic compounds (IMCs), rendering them much more brittle compared to conventional joints. Because of this, the reliability of micro-bumps, and the dependence thereof on the proportion of IMC in the joint, is of substantial concern. In this paper, the growth kinetics of IMCs in thin Sn-3Ag-0.5Cu joints attached to Cu substrates were analyzed, and empirical kinetic laws for the growth of Cu6Sn5 and Cu3Sn in thin joints were obtained. Modified compact mixed mode fracture mechanics samples, with adhesive solder joints between massive Cu substrates, having similar thickness and IMC content as actual micro-bumps, were produced. The effects of IMC proportion and strain rate on fracture toughness and mechanisms were investigated. It was found that the fracture toughness G C decreased with decreasing joint thickness ( h Joint). In addition, the fracture toughness decreased with increasing strain rate. Aging also promoted alternation of the crack path between the two joint-substrate interfaces, possibly proffering a mechanism to enhance fracture toughness.

  9. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  10. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  11. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    Science.gov (United States)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  12. Microstructure and mechanical properties of joints in sintered SiC fiber-bonded ceramics brazed with Ag-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mrityunjay [Ohio Aerospace Institute, Cleveland, OH 44142 (United States); Matsunaga, Tadashi [R and D Division, Ube Industries, Ltd., Ube-shi, Yamaguchi 755-8633 (Japan); Lin, Hua-Tay [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6068 (United States); Asthana, Rajiv, E-mail: asthanar@uwstout.edu [Department of Engineering and Technology, 326 Fryklund Hall, University of Wisconsin-Stout, Menomonie, WI 54751 (United States); Ishikawa, Toshihiro [R and D Division, Ube Industries, Ltd., Ube-shi, Yamaguchi 755-8633 (Japan)

    2012-11-15

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohex{sup Registered-Sign }) has been carried out using a Ti-containing Ag-Cu active braze alloy (Cusil-ABA{sup Registered-Sign }). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti-Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 Degree-Sign C and 750 Degree-Sign C, respectively. The fracture at the higher temperature occurred at the interface between the reaction-formed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to {mu}-FEA simulation results.

  13. Sensitivity Analysis of the Artificial Neural Network Outputs in Friction Stir Lap Joining of Aluminum to Brass

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Shojaeefard

    2013-01-01

    Full Text Available Al-Mg and CuZn34 alloys were lap joined using friction stir welding while the aluminum alloy sheet was placed on the CuZn34. In addition, the mechanical properties of each sample were characterized using shear tests. Scanning electron microscopy (SEM and X-ray diffraction analysis were used to probe chemical compositions. An artificial neural network model was developed to simulate the correlation between the Friction Stir Lap Welding (FSLW parameters and mechanical properties. Subsequently, a sensitivity analysis was performed to investigate the effect of each input parameter on the output in terms of magnitude and direction. Four methods, namely, the “PaD” method, the “Weights” method, the “Profile” method, and the “backward stepwise” method, which can give the relative contribution and/or the contribution profile of the input factors, were compared. The PaD method, giving the most complete results, was found to be the most useful, followed by the Profile method that gave the contribution profile of the input variables.

  14. Microstructure and Mechanical Properties of Ultrasonic Spot Welded Mg/Al Alloy Dissimilar Joints

    Directory of Open Access Journals (Sweden)

    He Peng

    2018-04-01

    Full Text Available Lightweight structural applications of magnesium and aluminum alloys inevitably necessitate welding and joining, especially dissimilar welding between these alloys. The objective of this study was to examine the feasibility of joining ZEK100 Mg alloy to Al6022 alloy via ultrasonic spot welding, focusing on effects of welding energy. An interface diffusion layer consisting of α-Mg and Al12Mg17 eutectic structure was observed to form, with its thickness increased from ~0.5 µm to ~30 µm with increasing welding energy from 500 J to 2000 J. The tensile lap shear peak load or strength and critical stress intensity of the welded joints first increased and then decreased with increasing welding energy, with their peak values achieved at 750 J. Fatigue life of the joints made at 750 J and 2000 J was equivalent at the lower cyclic loading levels, while it was longer for the joints made at 750 J at the higher cyclic loading levels. Fatigue fracture mode changed from interfacial failure to mainly transverse-through-thickness crack growth with decreasing cyclic loading level, which corresponded well to the bi-linear characteristic of S-N curves. Crack initiation basically occurred at the weld nugget border and at the interface between the two sheets, which can be understood via a theoretical stress analysis.

  15. Inertial and stick-slip regimes of unstable adhesive tape peeling.

    Science.gov (United States)

    Dalbe, Marie-Julie; Villey, Richard; Ciccotti, Matteo; Santucci, Stéphane; Cortet, Pierre-Philippe; Vanel, Loïc

    2016-05-18

    We present an experimental characterization of the detachment front unstable dynamics observed during the peeling of pressure sensitive adhesives. We use an experimental set-up specifically designed to control the peeling angle θ and the peeled tape length L, while peeling an adhesive tape from a flat substrate at a constant driving velocity V. High-speed imaging allows us to report the evolution of the period and amplitude of the front oscillations, as well as the relative durations of their fast and slow phases, as a function of the control parameters V, L and θ. Our study shows that, as the driving velocity or the peeling angle increases, the oscillations of the peeling front progressively evolve from genuine "stick-slip" oscillations, made of alternating long stick phases and very brief slip phases, to sinusoidal oscillations of amplitude twice the peeling velocity. We propose a model which, taking into account the peeling angle-dependent kinetic energy cost to accelerate and decelerate the peeled tape, explains the transition from the "stick-slip" to the "inertial" regime of the dynamical instability. Using independent direct measurements of the effective fracture energy of the adhesive-substrate joint, we show that our model quantitatively accounts for the two regimes of the unstable dynamics.

  16. On the Assessment of Susceptor-Assisted Induction Curing of Adhesively Bonded Joints

    NARCIS (Netherlands)

    Severijns, C.P.A.; Teixeira De Freitas, S.; Poulis, J.A.

    2016-01-01

    The autoclave/oven curing process is known to be the current manufacturing technique that provides the best quality of composite laminates and bonded joints. However, this process implies high acquisition cost and a large ecological footprint. Furthermore, with the current complete aeroplane

  17. Transcriptional regulation of miR-146b by C/EBPβ LAP2 in esophageal cancer cells

    International Nuclear Information System (INIS)

    Li, Junxia; Shan, Fabo; Xiong, Gang; Wang, Ju-Ming; Wang, Wen-Lin; Xu, Xueqing; Bai, Yun

    2014-01-01

    Highlights: • MiR-146b promotes esophageal cancer cell proliferation. • MiR-146b inhibits esophageal cancer cell apoptosis. • C/EBPβ directly binds to miR-146b promoter conserved region. • MiR-146b is up-regulated by C/EBPβ LAP2 transcriptional activation. - Abstract: Recent clinical study indicated that up-regulation of miR-146b was associated with poor overall survival of patients in esophageal squamous cell carcinoma. However, the underlying mechanism of miR-146b dysregulation remains to be explored. Here we report that miR-146b promotes cell proliferation and inhibits cell apoptosis in esophageal cancer cell lines. Mechanismly, two C/EBPβ binding motifs are located in the miR-146b promoter conserved region. Among the three isoforms of C/EBPβ, C/EBPβ LAP2 positively regulated miR-146b expression and increases miR-146b levels in a dose-dependent manner through transcription activation of miR-146b gene. Together, these results suggest a miR-146b regulatory mechanism involving C/EBPβ, which may contribute to the up-regulation of miR-146b in esophageal squamous cell carcinoma

  18. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Priscilla Coutinho ROMUALDO

    Full Text Available Abstract Bacterial endotoxin (LPS adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component, then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p0.05. There was no significant difference (p>0.05 among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025. Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  19. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    International Nuclear Information System (INIS)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun

    2016-01-01

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively

  20. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun [Andong National Univ., Andong (Korea, Republic of)

    2016-07-15

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively.

  1. Physics of adhesion

    International Nuclear Information System (INIS)

    Gerberich, W W; Cordill, M J

    2006-01-01

    Adhesion physics was relegated to the lowest echelons of academic pursuit until the advent of three seemingly disconnected events. The first, atomic force microscopy (AFM), eventually allowed fine-scale measurement of adhesive point contacts. The second, large-scale computational materials science, now permits both hierarchical studies of a few thousand atoms from first principles or of billions of atoms with less precise interatomic potentials. The third is a microelectronics industry push towards the nanoscale which has provided the driving force for requiring a better understanding of adhesion physics. In the present contribution, an attempt is made at conjoining these separate events into an updating of how theoretical and experimental approaches are providing new understanding of adhesion physics. While all material couples are briefly considered, the emphasis is on metal/semiconductor and metal/ceramic interfaces. Here, adhesion energies typically range from 1 to 100 J m -2 where the larger value is considered a practical work of adhesion. Experimental emphasis is on thin-film de-adhesion for 10 to 1000 nm thick films. For comparison, theoretical approaches from first principles quantum mechanics to embedded atom methods used in multi-scale modelling are utilized

  2. Temporomandibular joint arthrography

    International Nuclear Information System (INIS)

    Choi, Hyung Sik; Lee, Kyung Soo; Kim, Myoung Joon; Jun, Young Hwan; Chang, Duk Soo; Jung, Don Young; Jung, In Won

    1988-01-01

    The stress and occlusion disturbance are very important etiologic factors in the temporomandibular joint (TMJ) pain dysfunction syndromes. Authors performed TMJ arthrograms in the patients with TMJ problem such as pain, click sound, limited motion and locking, etc. The following results noted: 1. The arthrographic findings of 22 TMJ were analyzed. a) Normal: 6 cases b) Anterior disc displacement with rediction: 6 cases · Early reduction: 2 cases · Intermediate reduction: 3 cases · Late reduction: 1 case c) Anterior disc displacement without reduction: 6 cases · Two cases had adhesion between the posterior portion of disc and the posterior surfaces of the articular eminence. 2. Among 22 cases, the clinical findings of 16 cases (73%) were compatible with arthrographic findings. 6 cases showed disparity between them.

  3. Kinetic studies of chemical shrinkage and residual stress formation in thermoset epoxy adhesives under confined curing conditions

    Science.gov (United States)

    Schumann, M.; Geiß, P. L.

    2015-05-01

    Faultless processing of thermoset polymers in demanding applications requires a profound mastering of the curing kinetics considering both the physico-chemical changes in the transition from the liquid to the solid state and the consolidation of the polymers network in the diffusion controlled curing regime past the gel point. Especially in adhesive joints shrinkage stress occurring at an early state of the curing process under confined conditions is likely to cause defects due to local debonding and thus reduce their strength and durability1. Rheometry is considered the method of choice to investigate the change of elastic and viscous properties in the progress of curing. Drawbacks however relate to experimental challenges in accessing the full range of kinetic parameters of thermoset resins with low initial viscosity from the very beginning of the curing reaction to the post-cure consolidation of the polymer due to the formation of secondary chemical bonds. Therefore the scope of this study was to interrelate rheological data with results from in-situ measurements of the shrinkage stress formation in adhesive joints and with the change of refractive index in the progress of curing. This combination of different methods has shown to be valuable in gaining advanced insight into the kinetics of the curing reaction. The experimental results are based on a multi component thermoset epoxy-amine adhesive.

  4. Adhesive bone bonding prospects for lithium disilicate ceramic implants

    Science.gov (United States)

    Vennila Thirugnanam, Sakthi Kumar

    Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.

  5. Epoxy Adhesives for Stator Magnet Assembly in Stirling Radioisotope Generators (SRG)

    Science.gov (United States)

    Cater, George M.

    2004-01-01

    analysis was done as a function of cure time and temperatures. Adhesion bond strength was tested at various temperatures with lap shear samples using Hiperco 50 substrate to ensure that the proper adhesive is being used. To try and solve the problem of bondline thickness, micro glass beads of 0.0017" in diameter were investigated to see if any other physical properties of the epoxy were affected. Efforts will be made to develop a standard, optimized, fabrication process/procedure of sub-scale magnet-stator assemblies for various adhesive performance evaluation studies under simulated generator conditions. Also, accelerated aging testing will be done in a pressurized canister with stator assembly samples for three years to verify if any degassing or thermal degradation of the epoxy occurs. The necessity of verifying the correct epoxy adhesive system for the stator magnet in the SRG is crucial because failure of the stator assembly would jeopardize the electrical system, and thereby the entire mission itself. My work involves specimen fabrications, testing, and data analyses of the epoxy adhesive system for the stator magnet in the SRG is crucial because failure of the stator assembly would jeopardize the electrical system, and thereby the entire mission itself.

  6. Reflections about Adhesive Systems

    OpenAIRE

    de Freitas Borges, Marciano; Diesel, Pâmela Gutheil; Corrêa, Fernanda Gomez; Bernardi, Eledana; Fernandes Montagner, Anelise; Skupien, Jovito Adiel; Susin, Alexandre Henrique

    2010-01-01

    The adhesive systems are responsible for an efficient union between teeth and resin, resulting in a longevity restoration. They are organic molecules di or multifunctional that contain reactive groups that interact with dentin and with the resin monomer of composite resin. The adhesive systems are characterized by wet adhesion, which is a result of presence of hidrophylics radicals in their compositions, to promote a better bond and the best properties of the adhesion. Adhesive systems may us...

  7. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  8. Rationale and Design of the Reduce Elevated Left Atrial Pressure in Patients With Heart Failure (Reduce LAP-HF) Trial

    DEFF Research Database (Denmark)

    Hasenfuss, Gerd; Gustafsson, Finn; Kaye, David

    2015-01-01

    OBJECTIVE: Heart failure with preserved ejection fraction (HFpEF) is characterized by elevated left atrial pressure during rest and/or exercise. The Reduce LAP-HF (Reduce Elevated Left Atrial Pressure in Patients With Heart Failure) trial will evaluate the safety and performance of the Interatrial...... Shunt Device (IASD) System II, designed to directly reduce elevated left atrial pressure, in patients with HFpEF. METHODS: The Reduce LAP-HF Trial is a prospective, nonrandomized, open-label trial to evaluate a novel device that creates a small permanent shunt at the level of the atria. A minimum of 60...... patients with ejection fraction ≥40% and New York Heart Association functional class III or IV heart failure with a pulmonary capillary wedge pressure (PCWP) ≥15 mm Hg at rest or ≥25 mm Hg during supine bike exercise will be implanted with an IASD System II, and followed for 6 months to assess the primary...

  9. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  10. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  11. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  12. Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. IV. Improvement in wet peel strength

    International Nuclear Information System (INIS)

    Yamakawa, S.; Yamamoto, F.

    1980-01-01

    Adhesive joints of hydrolyzed methyl acrylate grafts, bonded with epoxy adhesives, yield extremely high peel strength (adherend failure) in dry conditions. However, when the joints are exposed to humid environments, the peel strength rapidly decreases with exposure time and then reaches a constant value (wet peel strength). Since the locus of failure changes from the adherend to the homopolymer layer with decreasing peel strength, the decrease is due to a decrease in mechanical strength of the homopolymer layer itself, which results from its swelling by water absorption. Many attempts to reduce the swelling of the homopolymer layer or to strengthen the swollen homopolymer layer were unsuccessful except (1) priming with epoxy solutions consisting of a base epoxy resin and organic solvents which can dissolve not only epoxy resins but also hydrolyzed poly(methyl acrylate) and (2) partial etching of the homopolymer layer by photo-oxidative degradation. All the results on the improvement in wet peel strength can be explained in terms of the penetration of epoxy resins into the homopolymer layer and subsequent curing of the penetrated epoxy resin. 15 figures, 1 table

  13. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  14. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells

    OpenAIRE

    Wang, Xiaomei; Su, Jin; Sherman, Alexandra; Rogers, Geoffrey L.; Liao, Gongxian; Hoffman, Brad E.; Leong, Kam W.; Terhorst, Cox; Daniell, Henry; Herzog, Roland W.

    2015-01-01

    Coadministering FIX orally and systemically induces tolerance via complex immune regulation, involving tolerogenic dendritic and T-cell subsets.Induced CD4+CD25−LAP+ regulatory T cells with increased IL-10 and TGF-β expression and CD4+CD25+ regulatory T cells suppress antibody formation against FIX.

  15. TANNIN ADHESIVES AS AN ALTENATIVE TO THE SYNTHETIC PHENOLIC ADHESIVES

    Directory of Open Access Journals (Sweden)

    Semra Çolak

    2003-04-01

    Full Text Available Recently, increasing attention has been paid industrially to the use of tannin formaldehyde adhesives in production of wood based panel products such as particleboard, fiber board and plywood. The researches on the use of tannin extracts as a wood adhesive started in 1950, however, they proceeded very slowly since the problems associated with the application of them. The idea which tannin extract can be used replace the oil-based phenolic adhesive was the base of several studies after the oil crisis of the 1970s. In the past, the economical aspects were important in the researches on the tannin-based adhesives. Nowadays, however, both economical and ecological factors should have taken into consideration in wood bonding.

  16. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  17. Novel Ambler class A beta-lactamase LAP-1 and its association with the plasmid-mediated quinolone resistance determinant QnrS1.

    Science.gov (United States)

    Poirel, Laurent; Cattoir, Vincent; Soares, Ana; Soussy, Claude-James; Nordmann, Patrice

    2007-02-01

    The plasmid-mediated quinolone resistance determinant QnrS1 was identified in non-clonally related Enterobacter cloacae isolates in association with a transferable narrow-spectrum beta-lactam resistance marker. Cloning experiments allowed the identification of a novel Ambler class A beta-lactamase, named LAP-1. It shares 62 and 61% amino acid identity with the most closely related beta-lactamases, TEM-1 and SHV-1, respectively. It has a narrow-spectrum hydrolysis of beta-lactams and is strongly inhibited by clavulanic acid and sulbactam and, to a lesser extent, by tazobactam. Association of the blaLAP-1 gene with the qnrS1 gene was identified in E. cloacae isolates from France and Vietnam. These genes were plasmid located and associated with similar insertion sequences but were not associated with sul1-type class 1 integrons, as opposed to the qnrA genes.

  18. Energetics of bacterial adhesion

    International Nuclear Information System (INIS)

    Loosdrecht, M.C.M. van; Zehnder, A.J.B.

    1990-01-01

    For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized. (author) 2 figs., 1 tab., 50 refs

  19. Morphological Evaluation of the Adhesive/Enamel interfaces of Two-step Self-etching Adhesives and Multimode One-bottle Self-etching Adhesives.

    Science.gov (United States)

    Sato, Takaaki; Takagaki, Tomohiro; Matsui, Naoko; Hamba, Hidenori; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    To evaluate the acid-base resistant zone (ABRZ) at the adhesive/enamel interface of self-etching adhesives with or without prior phosphoric acid etching. Four adhesives were used in 8 groups: Clearfil SE Bond (SEB), Optibond XTR (XTR), Scotchbond Universal Adhesive (SBU), and Clearfil BOND SE ONE (ONE) without prior phosphoric-acid etching, and each adhesive with phosphoric acid etching for 10 s (P-SEB, P-XTR, P-SBU and P-ONE, respectively). After application of self-etching adhesives on ground enamel surfaces of human teeth, a flowable composite was placed. For observation of the acid-base resistant zone (ABRZ), the bonded interface was exposed to demineralizing solution (pH 4.5) for 4.5 h, followed by 5% NaOCl with ultrasonication for 20 min. After the acid-base challenge, morphological attributes of the interface were observed using SEM. ABRZ formation was confirmed in all groups. The funnel-shaped erosion beneath the interface was present in SBU and ONE, where nearly 10 to 15 μm of enamel was dissolved. With phosphoric acid etching, the ABRZs were obviously thicker compared with no phosphoric acid etching. Enamel beneath the bonding interface was more susceptible to acid dissolution in SBU and ONE. In the case of the one-bottle self-etching adhesives and universal adhesives that intrinsically have higher pH values, enamel etching should be recommended to improve the interfacial quality.

  20. Influence of Application Time and Etching Mode of Universal Adhesives on Enamel Adhesion.

    Science.gov (United States)

    Sai, Keiichi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Ishii, Ryo; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2018-01-01

    To investigate the influence of application time and etching mode of universal adhesives on enamel adhesion. Five universal adhesives, Adhese Universal, Bondmer Lightless, Clearfil Universal Bond Quick, G-Premio Bond, and Scotchbond Universal, were used. Bovine incisors were prepared and divided into four groups of ten teeth each. SBS, Ra, and SFE were determined after the following procedures: 1. self-etch mode with immediate air blowing after application (IA); 2. self-etch mode with prolonged application time (PA); 3. etch-and-rinse mode with IA; 4. etch-and-rinse mode with PA. After 24-h water storage, the bonded assemblies were subjected to shear bond strength (SBS) tests. For surface roughness (Ra) and surface free energy (SFE) measurements, the adhesives were simply applied to the enamel and rinsed with acetone and water before the measurements were carried out. Significantly higher SBS and Ra values were obtained with etch-and-rinse mode than with self-etch mode regardless of the application time or type of adhesive. Although most adhesives showed decreased SFE values with increased application time in self-etch mode, SFE values in etch-and-rinse mode were dependent on the adhesive type and application time. Etching mode, application time, and type of adhesive significantly influenced the SBS, Ra, and SFE values.

  1. Mechanical Mounting and Adhesive Junction for Large Quartz Optics Operatng at Cryogenic Temperature

    Science.gov (United States)

    Pellizzari, M.; Mosciarello, P.

    2012-07-01

    Gaia is a global space astrometry mission, with the goal to make the largest, most precise three-dimensional map of our Galaxy. Gaia contains two optical telescopes: in front of their Focal Plane Assembly -FPA- two narrow quartz prisms are mounted for spectrophotometer science: the Blue and Red Photometer Prisms -BPP and RPP-. They are framed in a SiC structure by means of brackets and adhesive junctions between metal parts and quartz optical elements. SELEX GALILEO developed this project as subcontractor of Astrium France. The assembly has to withstand thermoelastic loads due to CTE mismatch at an operative temperature of 120 K. The mechanical mountings design to reduce the stresses due to thermal loads on the adhesive joint is described and the results of the bonding qualification process as well as the flight hardware bonding results are reported.

  2. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  3. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 0 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs

  4. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    Science.gov (United States)

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-04-01

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  5. Micro friction stir lap welding of AISI 430 ferritic stainless steel: a study on the mechanical properties, microstructure, texture and magnetic properties

    Science.gov (United States)

    Mostaan, Hossein; Safari, Mehdi; Bakhtiari, Arash

    2018-04-01

    In this study, the effect of friction stir welding of AISI 430 (X6Cr17, material number 1.4016) ferritic stainless steel is examined. Two thin sheets with dimensions of 0.4 × 50 × 200 mm3 are joined in lap configuration. Optical microscopy and field emission electron microscopy were used in order to microstructural evaluations and fracture analysis, respectively. Tensile test and microhardness measurements are employed in order to study the mechanical behaviors of welds. Also, vibrational sample magnetometry (VSM) is employed for characterizing magnetic properties of welded samples. Texture analysis is carried out in order to clarify the change mechanism of magnetic properties in the welded area. The results show that AISI 430 sheets are successfully joined considering both, the appearance of the welding bead and the strength of the welded joint. It is found that by friction stir welding of AISI 430 sheets, texture components with easy axes magnetization have been replaced by texture components with harder magnetization axes. VSM analysis showed that friction stir welding leads to increase in residual induction (Br) and coercivity (Hc). This increase is attributed to the grain refining due the friction stir welding and formation of texture components with harder axes of magnetizations.

  6. Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation

    Directory of Open Access Journals (Sweden)

    A. C. P. Galvão

    2015-09-01

    Full Text Available AbstractThe beneficiation plate process by soda-lime glass lapping in the glass industry generates, an untapped residue (waste. The waste of this material is sent to landfills, causing impact on the environment. This work aimed to characterize and evaluate the waste of soda-lime glass (GP lapping. After its acquisition, the GP was processed by grinding and sieving and further characterized by the chemical/mineralogical analysis (XRF, EDS and XRD, SEM morphology, particle size by laser diffraction, thermogravimetric analyses (TGA and DSC and thermophysical analyses. It was observed that the GP particles are irregular and micrometric with the predominant presence of Na, Si and Ca elements characteristic of amorphous soda-lime glass. The assessment of the chemical/mineralogical, morphological, thermophysical and thermal gravimetric characteristics of GP suggest its reuse as reinforcing fillers or filler in composite materials to obtain thermal insulation.

  7. Adhesion of multimode adhesives to enamel and dentin after one year of water storage.

    Science.gov (United States)

    Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2017-06-01

    This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.

  8. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  9. Bio-inspired reversible underwater adhesive.

    Science.gov (United States)

    Zhao, Yanhua; Wu, Yang; Wang, Liang; Zhang, Manman; Chen, Xuan; Liu, Minjie; Fan, Jun; Liu, Junqiu; Zhou, Feng; Wang, Zuankai

    2017-12-20

    The design of smart surfaces with switchable adhesive properties in a wet environment has remained a challenge in adhesion science and materials engineering. Despite intense demands in various industrial applications and exciting progress in mimicking the remarkable wet adhesion through the delicate control of catechol chemistry, polyelectrolyte complex, and supramolecular architectures, the full recapitulation of nature's dynamic function is limited. Here, we show a facile approach to synthesize bioinspired adhesive, which entails the reversible, tunable, and fast regulation of the wet adhesion on diverse surfaces. The smart wet adhesive takes advantage of the host-guest molecular interaction and the adhesive nature of catechol chemistry, as well as the responsive polymer, allowing for screening and activation of the interfacial interaction simply by a local temperature trigger in an on-demand manner. Our work opens up an avenue for the rational design of bioinspired adhesives with performances even beyond nature.

  10. Long-term In Vitro Adhesion of Polyalkenoate-based Adhesives to Dentin.

    Science.gov (United States)

    Sezinando, Ana; Perdigão, Jorge; Ceballos, Laura

    2017-01-01

    To study the influence of a polyalkenoate copolymer (VCP) on the immediate (24 h) and 6-month dentin bonding stability of VCP-based adhesives, using microtensile bond strength (μTBS), nanoleakage (NL), and ultramorphological analyses (FE-SEM). Eighty-four caries-free molars were randomly assigned to seven adhesives: Clearfil SE Bond (CSE, Kuraray Noritake); Adper Single Bond Plus (SB, 3M ESPE); SB without VCP (SBnoVCP, 3M ESPE); Scotchbond Universal Adhesive applied as a etch-and-rinse adhesive (SBU_ER); SBU without VCP applied as an etch-and-rinse adhesive (SBUnoVCP_ER); SBU applied as a self-etch adhesive (SBU_SE, 3M ESPE); SBU without VCP applied as a self-etch adhesive (SBUnoVCP_SE, 3M ESPE). Half of the beams were tested after 24 h, and the other half was aged in water for 6 months prior to testing. For each tooth/evaluation time, two beams were randomly selected for NL analysis. Statistical analyses of µTBS results were performed using two-way ANOVA, Tukey's post-hoc tests, and Student's t-test for paired data (α = 0.05). Nanoleakage was statistically analyzed using the Kruskal-Wallis and Mann-Whitney tests, with Wilcoxon's test for paired data. For FE-SEM, four caries-free molars were assigned to each of the seven groups. Dentin disks were restored and cross sectioned into halves. One half was observed at 24 h, and the other at 6 months. The highest 6-month mean μTBS was obtained with SBU_SE/SBUnoVCP_SE and SBUnoVCP_ER. SBUnoVCP_SE resulted in greater silver deposition at 6 months. FE-SEM observations showed that CSE and SBU_SE specimens resulted in a submicron hybrid layer without signs of degradation at 6 months. VCP may contribute to the long-term bonding stability of VCP-based adhesives.

  11. Healing of interfaces of high and ultra-high-molecular- weight polystyrene below the bulk glass transition temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    into contact to themselves below the glass transition temperature T-g of the bulk Tg-bulk, in a lap-shear joint geometry, at a constant healing temperature T-h for a healing time t(h) of 10 min to 24 h. The lap-shear strength sigma of the symmetric HMWPS-HMWPS and UHMWPS-URMWPS interfaces has been measured...

  12. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  13. Posterior indirect adhesive 
restorations: updated indications 
and the Morphology Driven 
Preparation Technique.

    Science.gov (United States)

    Veneziani, Marco

    The aim of this article is to identify the indications for adhesively cemented restorations and to provide a correct step-by-step protocol for clinicians. New cavity preparation principles are based on morphological considerations in terms of geometry (maximum profile line and inclination of cusp lines), and structure (dentin concavity and enamel convexity). In this article, we discuss previous preparation concepts that were not designed purely for adhesive restorations and were therefore not conservative enough or suitable for adhesive procedures. The novel cavity shape consists of continuous inclined plane cavity margins (hollow chamfer or concave bevel) on axial walls, whenever they are coronal to the equatorial tooth line. A 1.2 mm-thick butt-joint preparation is performed in the interproximal box and on the axial walls when the margins are apical to the equatorial line. The occlusal surface is anatomically prepared, free of slots and angles. The author's suggestion is to avoid shoulder finish line preparation around cusps, occlusal slots, and pins, as they are less conservative, incompatible with adhesive procedures, and involve unnecessary dentin exposure. The clinical advantages of this new "anatomic" preparation design are 1) improving adhesion quality (optimizing the cutting of enamel prisms, and increasing the available enamel surface); 2) minimizing dentin exposure; 3) maximizing hard tissue preservation (the cavity being designed for cementation with reinforced composite resins, improvement of flow, and removal of excess material); 4) optimization of esthetic integration due to the inclined plane design, which permits a better blending at the transition area between tooth and restoration. These preparation principles may be effectively used for all adhesively cemented restorations, both according to traditional concepts (inlay, onlay, overlay) and new ones (additional overlay, occlusal-veneer, overlay-veneer, long-wrap overlay, adhesive crown). Thus, a

  14. A fiber optic Doppler sensor and its application in debonding detection for composite structures.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro

    2010-01-01

    Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation.

  15. The impaired proprioception in Ehlers-Danlos Syndrome-Hypermobility Type/Joint hypermobility Syndrome: the rehabilitation role

    Directory of Open Access Journals (Sweden)

    Filippo Camerota

    2015-10-01

    Full Text Available Ehlers-Danlos Syndrome Hypermobility Type/Joint Hypermobility Syndrome (JHS/EDS-HT is an hereditary disorder of the connective tissue mainly manifesting with generalized joint hypermobility and skin hyperextensibility with an involvement of the connective tissue matrix proteins. Collagen alterations may influence the quality of movement in these patients but also movement has a role for the collagen quality: motion has a prevention role in the formation of contractures and adhesions. A poor sense of proprioception correlated with the collagenous connective tissues alterations could explain why people with JHS/EDS-HT become injured, having a lack of sensation of the joint at the end of the range. Rehabilitation approach may consider all these aspects.

  16. Experimental assessment of a full-scale lap scarf timber joint accompanied by a finite element analysis and digital image correlation

    Czech Academy of Sciences Publication Activity Database

    Kunecký, Jiří; Sebera, V.; Hasníková, Hana; Arciszewska-Kędzior, Anna; Tippner, J.; Kloiber, Michal

    2015-01-01

    Roč. 76, February (2015), s. 24-33 ISSN 0950-0618 R&D Projects: GA MK(CZ) DF12P01OVV004 Keywords : historicist joint * full-scale testing * finite element analysis * dowel * digital image correlation Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.421, year: 2015 http://www.sciencedirect.com/science/article/pii/S095006181401246X

  17. Gradient material model in analysis of mechanical joints of CFRP laminate

    Science.gov (United States)

    Puchała, Krzysztof; ElŻbieta, Szymczyk; Jachimowicz, Jerzy; Bogusz, Paweł

    2018-01-01

    Mechanical joints (e.g. bolted) used for decades are proved to be reliable. They can be assembled and applied in very rough conditions since they are less sensitive to environmental effects than other types of joints (e.g. adhesive). Therefore, they are still employed in aircraft design. High specific stiffness and strength of composite materials (especially CFRP) cause a continuous increase in their usage in aircraft structures. In general, composites are brittle materials and more notch sensitive than metal alloys. Hole making is a necessary stage in manufacturing of a mechanical joint. Holes vicinities are the areas of high stress concentrations and determine load capability of the whole structure. Therefore, mechanical joints of composite parts require a special focus during both a designing and a manufacturing process. The aim of the paper is analysis of potential local material weakness/deterioration caused by a drilling process and its influence on the global response of a mechanical joint. The specimen in the form of a double-shear joint was analyzed. The weakened areas were identified on the basis of NDT ultrasonic analysis. A simple gradient material model was proposed to describe the hole vicinity. Numerical simulations were performed and compared to experimental results.

  18. Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy

    Directory of Open Access Journals (Sweden)

    J. Wang

    2015-10-01

    Full Text Available When joining the aluminum alloys, one of the biggest challenges is the formation of porosity, which deteriorates mechanical properties of welds. In this study, the lap welding was conducted on an aluminum alloy 5754 metal sheets with a thickness of 2 mm. The effects of various laser welding parameters on the weld quality were investigated. The porosity content was measured by X-ray inspections. The key is to control the solidification duration of molten pool. When the solidification duration of molten pool is large enough, more bubbles can escape from the molten pool and less remain as porosity.

  19. Reversible low adhesive to high adhesive superhydrophobicity transition on ZnO nanoparticle surfaces

    International Nuclear Information System (INIS)

    Li, Jian; Jing, Zhijiao; Yang, Yaoxia; Zha, Fei; Yan, Long; Lei, Ziqiang

    2014-01-01

    Superhydrophobic ZnO surfaces with water contact angle of 162° and sliding angle of 2° were fabricated successfully by spraying hydrophobic ZnO nanoparticle suspensions without limitations the shape and size of substrates. The as-prepared superhydrophobic ZnO surfaces are low adhesive and a water droplet easily rolls off with the surface slightly tilted. However, after being irradiated by UV light through a photomask, it becomes highly adhesive, on which a water droplet is firmly pinned without any movement. Further annealing the irradiated film, water droplets can roll off the surface again. Reversible transition between the low adhesive rolling state and high adhesive pinning state can be realized simply by UV illumination and heat treatment alternately. At the same time, the maximum adhesive force between the superhydrophobic ZnO surfaces and the water droplet changes from extreme low (∼5.1 μN) to very high (∼136.1 μN). When irradiated without a photomask, the surface became hydrophilic. Additionally, a water droplet can be transfered from the low adhesive superhydrophobic ZnO surfaces to the hydrophilic ZnO surfaces using the high adhesive superhydrophobic ZnO surfaces as a mechanical hand.

  20. Macrophages adhesion rate on Ti-6Al-4V substrates: polishing and DLC coating effects

    Directory of Open Access Journals (Sweden)

    Everton Diniz dos Santos

    Full Text Available Abstract Introduction Various works have shown that diamond-like carbon (DLC coatings are able to improve the cells adhesion on prosthesis material and also cause protection against the physical wear. On the other hand there are reports about the effect of substrate polishing, in evidence of that roughness can enhance cell adhesion. In order to compare and quantify the joint effects of both factors, i.e, polishing and DLC coating, a commonly prosthesis material, the Ti-6Al-4V alloy, was used as raw material for substrates in our studies of macrophage cell adhesion rate on rough and polished samples, coated and uncoated with DLC. Methods The films were produced by PECVD technique on Ti-6Al-4V substrates and characterized by optical profilometry, scanning electron microscopy and Raman spectroscopy. The amount of cells was measured by particle analysis in IMAGE J software. Cytotoxicity tests were also carried out to infer the biocompatibility of the samples. Results The results showed that higher the surface roughness of the alloy, higher are the cells fixing on the samples surface, moreover group of samples with DLC favored the cell adhesion more than their respective uncoated groups. The cytotoxity tests confirmed that all samples were biocompatible independently of being polished or coated with DLC. Conclusion From the observed results, it was found that the rougher substrate coated with DLC showed a higher cell adhesion than the polished samples, either coated or uncoated with the film. It is concluded that the roughness of the Ti-6Al-4V alloy and the DLC coating act complementary to enhance cell adhesion.