WorldWideScience

Sample records for adhesive binding mechanism

  1. Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms

    Directory of Open Access Journals (Sweden)

    Jérôme Josse

    2017-12-01

    Full Text Available Opportunistic bacteria from the genus Staphylococcus can cause life-threatening infections such as pneumonia, endocarditis, bone and joint infections, and sepsis. This pathogenicity is closely related to their capacity to bind directly to the extracellular matrix or to host cells. Adhesion is indeed the first step in the formation of biofilm or the invasion of host cells, which protect the bacteria from the host immune system and facilitate chronic infection. Adhesion relies on the expression of a repertoire of surface proteins called adhesins, notably microbial surface components recognizing adhesive matrix molecules. In this short review, we discuss the main pathway (FnBP-Fn-α5β1 integrin, as well as alternatives, through which Staphylococcus aureus adheres to and then invades non-professional phagocytic cells. We then examine the corresponding mechanisms for coagulase negative staphylococci. There is currently a little understanding of the molecular mechanisms that lead to internalization. Filling this gap in the literature would therefore be an important step toward limiting the duration of staphylococci infections in clinical practice.

  2. Evaluation of binding strength depending on the adhesive binding methods

    OpenAIRE

    Suzana Pasanec Preprotić; Ivan Budimir; Gorana Tomić

    2015-01-01

    A book with a personal value is worth remembering since it represents specific interests of an individual - author of the book. Therefore the original is the first issue of a book which is always bound manually. Due to cost-effectiveness, adhesive binding is most commonly used in author’s edition in paperback and hardback. Adhesive binding methods differ only if a paper leaf is a binding unit in adhesive binding form. The subject of the research is the quality of book block binding for two bi...

  3. Evaluation of binding strength depending on the adhesive binding methods

    Directory of Open Access Journals (Sweden)

    Suzana Pasanec Preprotić

    2015-05-01

    Full Text Available A book with a personal value is worth remembering since it represents specific interests of an individual - author of the book. Therefore the original is the first issue of a book which is always bound manually. Due to cost-effectiveness, adhesive binding is most commonly used in author’s edition in paperback and hardback. Adhesive binding methods differ only if a paper leaf is a binding unit in adhesive binding form. The subject of the research is the quality of book block binding for two binding methods with/without mull fabric. The assumption is that double-fan adhesive binding method shows an extraordinary binding quality as compared to the rough spine method. For the needs of this research book block parameters remained unaltered: paper type, size and book volume. The results related to strength were obtained by using an experimental method of tensile strength for individual paper leaves. The rating of book block quality was conducted in accordance with FOGRA Nr.71006 guidelines for page pull-test. Furthermore, strength results for both methods were compared in order to evaluate the importance of changing the quality of adhesive binding. Statistical method ANOVA analysis of variance and Fisher’s F-test were used to evaluate the quality of book block binding.

  4. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam

    2006-01-01

    Interaction between chondrocytes and extracellular matrix is considered a key factor in the generation of grafts for matrix-associated chondrocyte transplantation. Therefore, our objective was to study the influence of differentiation status on cellular attachment. Adhesion of chondrocytes...... to collagen type II increased after removal from native cartilage up to the third day in monolayer in a dose-dependent manner. Following dedifferentiation after the second passage, adhesion to collagen types I (-84%) and II (-46%) decreased, whereas adhesion to fibrinogen (+59%) and fibronectin (+43......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...

  5. Universal binding energy relations in metallic adhesion

    Science.gov (United States)

    Ferrante, J.; Smith, J. R.; Rose, J. J.

    1984-01-01

    Rose, Smith, and Ferrante have discovered scaling relations which map the adhesive binding energy calculated by Ferrante and Smith onto a single universal binding energy curve. These binding energies are calculated for all combinations of Al(111), Zn(0001), Mg(0001), and Na(110) in contact. The scaling involves normalizing the energy by the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. Rose et al. have also found that the calculated cohesive energies of K, Ba, Cu, Mo, and Sm scale by similar simple relations, suggesting the universal relation may be more general than for the simple free electron metals for which it was derived. In addition, the scaling length was defined more generally in order to relate it to measurable physical properties. Further this universality can be extended to chemisorption. A simple and yet quite accurate prediction of a zero temperature equation of state (volume as a function of pressure for metals and alloys) is presented. Thermal expansion coefficients and melting temperatures are predicted by simple, analytic expressions, and results compare favorably with experiment for a broad range of metals.

  6. Cadherin-mediated cell sorting not determined by binding or adhesion specificity

    Science.gov (United States)

    Niessen, Carien M.; Gumbiner, Barry M.

    2002-01-01

    Cadherin adhesion molecules play important roles in the establishment of tissue boundaries. Cells expressing different cadherins sort out from each other in cell aggregation assays. To determine the contribution of cadherin binding and adhesion specificity to the sorting process, we examined the adhesion of cells to different purified cadherin proteins. Chinese hamster ovary cell lines expressing one of four different cadherins were allowed to bind to the purified cadherin extracellular domains of either human E-cadherin or Xenopus C-cadherin, and the specificity of adhesion was compared with cell-sorting assays. None of the different cadherin-expressing cells exhibited any adhesive specificity toward either of the two purified cadherin substrates, even though these cadherins differ considerably in their primary sequence. In addition, all cells exhibited similar strengthening of adhesion on both substrates. However, this lack of adhesive specificity did not determine whether different cadherin-expressing cells would sort from each other, and the tendency to sort was not predictable by the extent of sequence diversity in their extracellular domains. These results show that cadherins are far more promiscuous in their adhesive-binding capacity than had been expected and that the ability to sort out must be determined by mechanisms other than simple adhesive-binding specificity. PMID:11790800

  7. Peptides@mica: from affinity to adhesion mechanism.

    Science.gov (United States)

    Gladytz, A; John, T; Gladytz, T; Hassert, R; Pagel, M; Risselada, H J; Naumov, S; Beck-Sickinger, A G; Abel, B

    2016-09-14

    Investigating the adsorption of peptides on inorganic surfaces, on the molecular level, is fundamental for medicinal and analytical applications. Peptides can be potent as linkers between surfaces and living cells in biochips or in implantation medicine. Here, we studied the adsorption process of the positively charged pentapeptide RTHRK, a recently identified binding sequence for surface oxidized silicon, and novel analogues thereof to negatively charged mica surfaces. Homogeneous formation of monolayers in the nano- and low micromolar peptide concentration range was observed. We propose an alternative and efficient method to both quantify binding affinity and follow adhesion behavior. This method makes use of the thermodynamic relationship between surface coverage, measured by atomic force microscopy (AFM), and the concomitant free energy of adhesion. A knowledge-based fit to the autocorrelation of the AFM images was used to correct for a biased surface coverage introduced by the finite lateral resolution of the AFM. Binding affinities and mechanisms were further explored by large scale molecular dynamics (MD) simulations. The combination of well validated MD simulations with topological data from AFM revealed a better understanding of peptide adsorption processes on the atomistic scale. We demonstrate that binding affinity is strongly determined by a peptide's ability to form salt bridges and hydrogen bonds with the surface lattice. Consequently, differences in hydrogen bond formation lead to substantial differences in binding affinity despite conservation of the peptide's overall charge. Further, MD simulations give access to relative changes in binding energy of peptide variations in comparison to a lead compound.

  8. Focal adhesions, stress fibers and mechanical tension

    Energy Technology Data Exchange (ETDEWEB)

    Burridge, Keith, E-mail: Keith_Burridge@med.unc.edu [Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, 12-016 Lineberger, CB#7295, University of North Carolina, Chapel Hill, NC (United States); Guilluy, Christophe, E-mail: christophe.guilluy@univ-nantes.fr [Inserm UMR-S1087, CNRS UMR-C6291, L' institut du Thorax, and Université de Nantes, Nantes (France)

    2016-04-10

    Stress fibers and focal adhesions are complex protein arrays that produce, transmit and sense mechanical tension. Evidence accumulated over many years led to the conclusion that mechanical tension generated within stress fibers contributes to the assembly of both stress fibers themselves and their associated focal adhesions. However, several lines of evidence have recently been presented against this model. Here we discuss the evidence for and against the role of mechanical tension in driving the assembly of these structures. We also consider how their assembly is influenced by the rigidity of the substratum to which cells are adhering. Finally, we discuss the recently identified connections between stress fibers and the nucleus, and the roles that these may play, both in cell migration and regulating nuclear function. - Highlights: • The different types of stress fiber and focal adhesion are described. • We discuss the controversy about tension and assembly of these structures. • We describe the different models used to investigate assembly of these structures. • The influence of substratum rigidity is discussed. • Stress fiber connections to the nucleus are reviewed.

  9. Mechanical behaviour of adhesively bonded polyethylene tapping tees

    OpenAIRE

    Barton, Lewis; Birkett, Martin

    2016-01-01

    The mechanical properties of adhesively bonded MDPE joints were studied. The lap-shear joints were prepared using PE80 polyethylene gas pipe and four adhesive types; two acrylic and two epoxy resins. The key mechanical properties of lap shear strength and impact resistance were investigated as a function of adhesive type and surface preparation technique. Mechanical abrasion of the PE80 surface increased the strength of the bonds from 40 to 460% for the four adhesives, with the best performin...

  10. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    Science.gov (United States)

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  11. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts

    DEFF Research Database (Denmark)

    Woods, A; Longley, R L; Tumova, S

    2000-01-01

    Cell adhesion to extracellular matrix involves signaling mechanisms which control attachment, spreading and the formation of focal adhesions and stress fibers. Fibronectin can provide sufficient signals for all three processes, even when protein synthesis is prevented by cycloheximide. Primary fi...

  12. Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol

    Science.gov (United States)

    Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen

    2006-01-01

    A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...

  13. Cadherin-mediated cell sorting not determined by binding or adhesion specificity

    OpenAIRE

    Niessen, Carien M; Gumbiner, Barry M.

    2002-01-01

    Cadherin adhesion molecules play important roles in the establishment of tissue boundaries. Cells expressing different cadherins sort out from each other in cell aggregation assays. To determine the contribution of cadherin binding and adhesion specificity to the sorting process, we examined the adhesion of cells to different purified cadherin proteins. Chinese hamster ovary cell lines expressing one of four different cadherins were allowed to bind to the purified cadherin extracellular domai...

  14. Mechanisms of temporary adhesion in benthic animals

    NARCIS (Netherlands)

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention

  15. Heparin-binding EGF-like growth factor (HB-EGF) promotes cell migration and adhesion via focal adhesion kinase.

    Science.gov (United States)

    Su, Yanwei; Besner, Gail E

    2014-06-15

    Cell migration and adhesion are essential in intestinal epithelial wound healing and recovery from injury. Focal adhesion kinase (FAK) plays an important role in cell-extracellular matrix signal transduction. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) promotes intestinal epithelial cell (IEC) migration and adhesion in vitro. The present study was designed to determine whether FAK is involved in HB-EGF-induced IEC migration and adhesion. A scrape wound healing model of rat IECs was used to examine the effect of HB-EGF on FAK-dependent cell migration in vitro. Immunofluorescence and Western blot analyses were performed to evaluate the effect of HB-EGF on the expression of phosphorylated FAK (p-FAK). Cell adhesion assays were performed to determine the role of FAK in HB-EGF-induced cell adhesion on fibronectin (FN). HB-EGF significantly increased healing after scrape wounding, an effect that was reversed in the presence of an FAK inhibitor 14 (both with P HB-EGF increased p-FAK expression and induced p-FAK redistribution and actin reorganization in migrating rat IECs. Cell adhesion and spreading on FN were significantly increased by HB-EGF (P HB-EGF-induced cell adhesion and spreading on FN (both with P HB-EGF-mediated IEC migration and adhesion. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. E-selectin ligand-1 (ESL-1) is a novel adiponectin binding protein on cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hiroyasu; Kuroda, Nana; Uekita, Hiromi; Kochi, Ikoi; Matsumoto, Akane; Niinaga, Ryu [Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka (Japan); Funahashi, Tohru; Shimomura, Iichiro [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka (Japan); Kihara, Shinji, E-mail: skihara@sahs.med.osaka-u.ac.jp [Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka (Japan)

    2016-02-05

    Background: Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. Methods and Results: In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partially abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. Conclusion: Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN. - Highlights: • E-selectin ligand (ESL)-1 was identified as an adiponectin (APN)-binding protein. • ESL-1 bound to APN at its N-terminal 6th-10th amino acids. • shESL-1 reduced the suppressive effect of APN on adhesion of THP-1 cells to HUVECs. • Interaction with ESL may be involved in the anti-atherogenic effects of APN.

  17. Can retinal adhesion mechanisms determine cell-sorting patterns: a test of the differential adhesion hypothesis.

    Science.gov (United States)

    Thomas, W A; Yancey, J

    1988-05-01

    Embryonic chick neural retina cells possess two classes of adhesion mechanism, one Ca2+-independent, one Ca2+-dependent, responsible for short-term cell aggregation. This study investigates the role of these mechanisms in the long-term cell sorting potentially relevant to in vivo histogenesis. Retina cells are prepared either with both (E cells) or with only one mechanism (TC cells, CD; LTE cells, CI), respectively. The two types of cell preparations are differentially labelled using fluorescein or rhodamine isothiocyanate, mixed and allowed to aggregate in the presence or absence of cycloheximide at 0.5 microgram ml-1 to retard metabolic recovery of the removed adhesive mechanism. When observed by fluorescence and phase-contrast microscopy, the aggregates formed in cycloheximide show cell sorting, the cells with both mechanisms assuming a more interior position relative to those with a single adhesion mechanism. In parallel hanging-drop experiments, preformed aggregates of cells with a single adhesion mechanism are seen to spread upon aggregates of cells with both mechanisms. No sorting occurs amongst cells from a given stage prepared using any single dissociation protocol. The observed cell sorting would thus seem to derive exclusively from differential cell adhesiveness dependent upon the different dissociation conditions and maintained in the presence of cycloheximide. The experiments support the hypothesis that the dual CI and CD adhesion mechanisms in question can play a central role in governing cell-sorting behaviour during normal histogenesis.

  18. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics.

    Directory of Open Access Journals (Sweden)

    Donald W Lee

    Full Text Available With the development of single-particle tracking (SPT microscopy and host membrane mimics called supported lipid bilayers (SLBs, stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data

  19. Adhesive fracture mechanics. [stress analysis for bond line interface

    Science.gov (United States)

    Bennett, S. J.; Devries, K. L.; Williams, M. L.

    1974-01-01

    In studies of fracture mechanics the adhesive fracture energy is regarded as a fundamental property of the adhesive system. It is pointed out that the value of the adhesive fracture energy depends on surface preparation, curing conditions, and absorbed monolayers. A test method reported makes use of a disk whose peripheral part is bonded to a substrate material. Pressure is injected into the unbonded central part of the disk. At a certain critical pressure value adhesive failure can be observed. A numerical stress analysis involving arbitrary geometries is conducted.

  20. Converging and Unique Mechanisms of Mechanotransduction at Adhesion Sites

    NARCIS (Netherlands)

    Han, Mitchell K L; de Rooij, Johan

    The molecular mechanisms by which physical forces control tissue development are beginning to be elucidated. Sites of adhesion between both cells and the extracellular environment [extracellular matrix (ECM) or neighboring cells] contain protein complexes capable of sensing fluctuations in tensile

  1. Basic Adhesion Mechanisms in Thick and Thin Films

    Science.gov (United States)

    1974-04-30

    objects containing layered structures. Used in this way, adhesion is an engineering property - what we here will call etruatural adhesion - and, in...numerous other mechanical features. The general treatment of etructural adhesion logically falls into the province of mechanical engineering for...aji^^j^i^ ..-■■■ .....i mm ■^mw »PPP»B«Piä«»PBf!l«W(!«--WJ, WMW »iiWPW ^......^m-n u ,„ u ^mmmmmmm ■ B. ANALYSIS OF COMMERCIAL

  2. Contact mechanics, friction and adhesion with application to quasicrystals

    DEFF Research Database (Denmark)

    Persson, Bo; Carbone, Giuseppe; Samoilov, Vladimir N.

    2015-01-01

    We discuss the origin of friction and adhesion between hard solids such as quasicrystals. We emphasize the fundamental role of surface roughness in many contact mechanics problems, in particular for friction and adhesion between solid bodies. The most important property of rough surfaces...... is the surface roughness power spectrum C(q).We present surface roughness power spectra of many surfaces of practical importance, obtained from the surface height profile measured using optical methods and the Atomic Force Microscope. We show how the power spectrum determines the contact area between two solids....... We also present applications to contact mechanics and adhesion for rough surfaces, where the power spectrum enters as an important input....

  3. Adhesion forces and mechanics in mannose-mediated acanthamoeba interactions.

    Directory of Open Access Journals (Sweden)

    Steven Huth

    Full Text Available The human pathogenic amoeba Acanthamoeba castellanii (A. castellanii causes severe diseases, including acanthamoeba keratitis and encephalitis. Pathogenicity arises from the killing of target-cells by an extracellular killing mechanism, where the crucial first step is the formation of a close contact between A. castellanii and the target-cell. This process is mediated by the glycocalix of the target-cell and mannose has been identified as key mediator. The aim of the present study was to carry out a detailed biophysical investigation of mannose-mediated adhesion of A. castellanii using force spectroscopy on single trophozoites. In detail, we studied the interaction of a mannose-coated cantilever with an A. castellanii trophozoite, as mannose is the decisive part of the cellular glycocalix in mediating pathogenicity. We observed a clear increase of the force to initiate cantilever detachment from the trophozoite with increasing contact time. This increase is also associated with an increase in the work of detachment. Furthermore, we also analyzed single rupture events during the detachment process and found that single rupture processes are associated with membrane tether formation, suggesting that the cytoskeleton is not involved in mannose binding events during the first few seconds of contact. Our study provides an experimental and conceptual basis for measuring interactions between pathogens and target-cells at different levels of complexity and as a function of interaction time, thus leading to new insights into the biophysical mechanisms of parasite pathogenicity.

  4. The morphology and adhesion mechanism of Octopus vulgaris suckers.

    Science.gov (United States)

    Tramacere, Francesca; Beccai, Lucia; Kuba, Michael; Gozzi, Alessandro; Bifone, Angelo; Mazzolai, Barbara

    2013-01-01

    The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa). In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species.

  5. The morphology and adhesion mechanism of Octopus vulgaris suckers.

    Directory of Open Access Journals (Sweden)

    Francesca Tramacere

    Full Text Available The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa. In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species.

  6. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    Energy Technology Data Exchange (ETDEWEB)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA) State Univ. of New York, Buffalo (USA))

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  7. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.

    Science.gov (United States)

    Fusco, Sabato; Panzetta, Valeria; Embrione, Valerio; Netti, Paolo A

    2015-09-01

    Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Mechanical integration of actin and adhesion dynamics in cell migration.

    Science.gov (United States)

    Gardel, Margaret L; Schneider, Ian C; Aratyn-Schaus, Yvonne; Waterman, Clare M

    2010-01-01

    Directed cell migration is a physical process that requires dramatic changes in cell shape and adhesion to the extracellular matrix. For efficient movement, these processes must be spatiotemporally coordinated. To a large degree, the morphological changes and physical forces that occur during migration are generated by a dynamic filamentous actin (F-actin) cytoskeleton. Adhesion is regulated by dynamic assemblies of structural and signaling proteins that couple the F-actin cytoskeleton to the extracellular matrix. Here, we review current knowledge of the dynamic organization of the F-actin cytoskeleton in cell migration and the regulation of focal adhesion assembly and disassembly with an emphasis on how mechanical and biochemical signaling between these two systems regulate the coordination of physical processes in cell migration.

  9. Converging and Unique Mechanisms of Mechanotransduction at Adhesion Sites.

    Science.gov (United States)

    Han, Mitchell K L; de Rooij, Johan

    2016-08-01

    The molecular mechanisms by which physical forces control tissue development are beginning to be elucidated. Sites of adhesion between both cells and the extracellular environment [extracellular matrix (ECM) or neighboring cells] contain protein complexes capable of sensing fluctuations in tensile forces. Tension-dependent changes in the dynamics and composition of these complexes mark the transformation of physical input into biochemical signals that defines mechanotransduction. It is becoming apparent that, although the core constituents of these different adhesions are distinct, principles and proteins involved in mechanotransduction are conserved. Here, we discuss the current knowledge of overlapping and distinct aspects of mechanotransduction between integrin and cadherin adhesion complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Single and collective cell migration: the mechanics of adhesions

    Science.gov (United States)

    De Pascalis, Chiara; Etienne-Manneville, Sandrine

    2017-01-01

    Chemical and physical properties of the environment control cell proliferation, differentiation, or apoptosis in the long term. However, to be able to move and migrate through a complex three-dimensional environment, cells must quickly adapt in the short term to the physical properties of their surroundings. Interactions with the extracellular matrix (ECM) occur through focal adhesions or hemidesmosomes via the engagement of integrins with fibrillar ECM proteins. Cells also interact with their neighbors, and this involves various types of intercellular adhesive structures such as tight junctions, cadherin-based adherens junctions, and desmosomes. Mechanobiology studies have shown that cell–ECM and cell–cell adhesions participate in mechanosensing to transduce mechanical cues into biochemical signals and conversely are responsible for the transmission of intracellular forces to the extracellular environment. As they migrate, cells use these adhesive structures to probe their surroundings, adapt their mechanical properties, and exert the appropriate forces required for their movements. The focus of this review is to give an overview of recent developments showing the bidirectional relationship between the physical properties of the environment and the cell mechanical responses during single and collective cell migration. PMID:28684609

  11. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement

    Directory of Open Access Journals (Sweden)

    Mariana Etcheverry

    2012-06-01

    Full Text Available Glass fibers (GF are the reinforcement agent most used in polypropylene (PP based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers.

  12. The neural cell adhesion molecule binds to fibroblast growth factor receptor 2

    DEFF Research Database (Denmark)

    Christensen, Claus; Lauridsen, Jes B; Berezin, Vladimir

    2006-01-01

    The neural cell adhesion molecule (NCAM) can bind to and activate fibroblast growth factor receptor 1 (FGFR1). However, there are four major FGFR isoforms (FGFR1-FGFR4), and it is not known whether NCAM also interacts directly with the other three FGFR isoforms. In this study, we show by surface...

  13. RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover.

    Science.gov (United States)

    Goult, Benjamin T; Zacharchenko, Thomas; Bate, Neil; Tsang, Ricky; Hey, Fiona; Gingras, Alexandre R; Elliott, Paul R; Roberts, Gordon C K; Ballestrem, Christoph; Critchley, David R; Barsukov, Igor L

    2013-03-22

    Talin activates integrins, couples them to F-actin, and recruits vinculin to focal adhesions (FAs). Here, we report the structural characterization of the talin rod: 13 helical bundles (R1-R13) organized into a compact cluster of four-helix bundles (R2-R4) within a linear chain of five-helix bundles. Nine of the bundles contain vinculin-binding sites (VBS); R2R3 are atypical, with each containing two VBS. Talin R2R3 also binds synergistically to RIAM, a Rap1 effector involved in integrin activation. Biochemical and structural data show that vinculin and RIAM binding to R2R3 is mutually exclusive. Moreover, vinculin binding requires domain unfolding, whereas RIAM binds the folded R2R3 double domain. In cells, RIAM is enriched in nascent adhesions at the leading edge whereas vinculin is enriched in FAs. We propose a model in which RIAM binding to R2R3 initially recruits talin to membranes where it activates integrins. As talin engages F-actin, force exerted on R2R3 disrupts RIAM binding and exposes the VBS, which recruit vinculin to stabilize the complex.

  14. RIAM and Vinculin Binding to Talin Are Mutually Exclusive and Regulate Adhesion Assembly and Turnover*

    Science.gov (United States)

    Goult, Benjamin T.; Zacharchenko, Thomas; Bate, Neil; Tsang, Ricky; Hey, Fiona; Gingras, Alexandre R.; Elliott, Paul R.; Roberts, Gordon C. K.; Ballestrem, Christoph; Critchley, David R.; Barsukov, Igor L.

    2013-01-01

    Talin activates integrins, couples them to F-actin, and recruits vinculin to focal adhesions (FAs). Here, we report the structural characterization of the talin rod: 13 helical bundles (R1–R13) organized into a compact cluster of four-helix bundles (R2–R4) within a linear chain of five-helix bundles. Nine of the bundles contain vinculin-binding sites (VBS); R2R3 are atypical, with each containing two VBS. Talin R2R3 also binds synergistically to RIAM, a Rap1 effector involved in integrin activation. Biochemical and structural data show that vinculin and RIAM binding to R2R3 is mutually exclusive. Moreover, vinculin binding requires domain unfolding, whereas RIAM binds the folded R2R3 double domain. In cells, RIAM is enriched in nascent adhesions at the leading edge whereas vinculin is enriched in FAs. We propose a model in which RIAM binding to R2R3 initially recruits talin to membranes where it activates integrins. As talin engages F-actin, force exerted on R2R3 disrupts RIAM binding and exposes the VBS, which recruit vinculin to stabilize the complex. PMID:23389036

  15. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation

    DEFF Research Database (Denmark)

    Bax, Daniel V; Mahalingam, Yashithra; Cain, Stuart

    2007-01-01

    We have defined the molecular basis of cell adhesion to fibrillin-1, the major structural component of extracellular microfibrils that are associated with elastic fibres. Using human dermal fibroblasts, and recombinant domain swap fragments containing the Arg-Gly-Asp motif, we have demonstrated a......, and confirmed their role in focal adhesion formation. These integrin and syndecan adhesion motifs juxtaposed on fibrillin-1 are evolutionarily conserved and reminiscent of similar functional elements on fibronectin, highlighting their crucial functional importance....... a requirement for upstream domains for integrin-alpha(5)beta(1)-mediated cell adhesion and migration. An adjacent heparin-binding site, which supports focal adhesion formation, was mapped to the fibrillin-1 TB5 motif. Site-directed mutagenesis revealed two arginine residues that are crucial for heparin binding...

  16. Adhesions

    Science.gov (United States)

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  17. Enhanced cellular adhesion on titanium by silk functionalized with titanium binding and RGD peptides.

    Science.gov (United States)

    Vidal, Guillaume; Blanchi, Thomas; Mieszawska, Aneta J; Calabrese, Rossella; Rossi, Claire; Vigneron, Pascale; Duval, Jean-Luc; Kaplan, David L; Egles, Christophe

    2013-01-01

    Soft tissue adhesion on titanium represents a challenge for implantable materials. In order to improve adhesion at the cell/material interface we used a new approach based on the molecular recognition of titanium by specific peptides. Silk fibroin protein was chemically grafted with titanium binding peptide (TiBP) to increase adsorption of these chimeric proteins to the metal surface. A quartz crystal microbalance was used to quantify the specific adsorption of TiBP-functionalized silk and an increase in protein deposition by more than 35% was demonstrated due to the presence of the binding peptide. A silk protein grafted with TiBP and fibronectin-derived arginine-glycine-aspartic acid (RGD) peptide was then prepared. The adherence of fibroblasts on the titanium surface modified with the multifunctional silk coating demonstrated an increase in the number of adhering cells by 60%. The improved adhesion was demonstrated by scanning electron microscopy and immunocytochemical staining of focal contact points. Chick embryo organotypic culture also revealed strong adhesion of endothelial cells expanding on the multifunctional silk peptide coating. These results demonstrated that silk functionalized with TiBP and RGD represents a promising approach to modify cell-biomaterial interfaces, opening new perspectives for implantable medical devices, especially when reendothelialization is required. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Enhanced Cellular Adhesion on Titanium by Silk Functionalized with titanium binding and RGD peptides

    Science.gov (United States)

    Vidal, Guillaume; Blanchi, Thomas; Mieszawska, Aneta J.; Calabrese, Rossella; Rossi, Claire; Vigneron, Pascale; Duval, Jean-Luc; Kaplan, David L.; Egles, Christophe

    2012-01-01

    Soft tissue adhesion on titanium represents a challenge for implantable materials. In order to improve adhesion at the cell/material interface we used a new approach based on the molecular recognition of titanium by specific peptides. Silk fibroin protein was chemically grafted with titanium binding peptide (TiBP) to increase adsorption of these chimeric proteins to the metal surface. Quartz Crystal Microbalance was used to quantify the specific adsorption of TiBP-functionalized silk and an increase in protein deposition by more than 35% was demonstrated due to the presence of the binding peptide. A silk protein grafted with TiBP and fibronectin-derived RGD peptide was then prepared. The adherence of fibroblasts on the titanium surface modified with the multifunctional silk coating demonstrated an increase in the number of adhering cells by 60%. The improved adhesion was demonstrated by Scanning Electron Microscopy and immunocytochemical staining of focal contact points. Chick embryo organotypic culture also revealed strong adhesion of endothelial cells expanding on the multifunctional silk-peptide coating. These results demonstrated that silk functionalized with TiBP and RGD represents a promising approach to modify cell-biomaterial interfaces, opening new perspectives for implantable medical devices, especially when reendothelialization is required. PMID:22975628

  19. Work of Adhesion Measurements of Silicone Networks Using Contract Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Benkoski, J.; Emerson, J.A.; Miller, G.V.; Pearson, R.A.

    1999-04-21

    Work of adhesion (Wa) measurements are being studied for several types of polymer/metal combinations in order to obtain a better understanding of the adhesive failure mechanisms for systems containing encapsulated and bonded components. A primary concern is whether studies of model systems can be extended to systems of technological interest. One study performed in our laboratory involved the determination of Wa between silicone (PDMS) and Al surfaces in order to establish potential adhesive failure mechanisms. Our initial work with PDMS was based on Dow Corning 170 Sylgard. PDMS hemispheres were synthesized following the procedure outlined by Chaudhury and Whitesides where the filler was stripped from the commercial silicone by centrifuging. Wa between PDMS surfaces was determined using the JKR method. Our results for the Wa of PDMS were in agreement with those reported by Chaudhury and Whitesides. However, further JKR studies using these PDMS hemispheres on flat Al surfaces were fraught with difficulty. We could not discriminate hydrogen-bonding effects between Al{sub 2}O{sub 3} and hydroxyl groups in the PDMS and other possible bonding mechanisms. It was suggested that commercial systems contain inhibitors and additives that interfere with understanding the PMDS/Al interface. Therefore, the current study uses pure PDMS networks synthesized in our lab. Also, two contact mechanics methods were deployed to measure the Wa--JKR method using two hemispheres and a LEFM method using a cylinder containing a circumferential crack. This paper contains a description of the synthesis of the PDMS used for these studies and the determination of Wa between PDMS surfaces using the JKR method, contact angle measurements, and a LEFM method that consists of a cylinder containing a circumferential crack.

  20. Epigallocatechin gallate attenuates adhesion and migration of CD8+ T cells by binding to CD11b.

    Science.gov (United States)

    Kawai, Kazushige; Tsuno, Nelson H; Kitayama, Joji; Okaji, Yurai; Yazawa, Kentaro; Asakage, Masahiro; Hori, Nobukazu; Watanabe, Toshiaki; Takahashi, Koki; Nagawa, Hirokazu

    2004-06-01

    Although green tea polyphenol catechin has been reported to have antiallergic and anti-inflammatory activities, the precise mechanisms of its effect on the immune system have been poorly investigated. In this study, we aimed to elucidate the mechanisms of the anti-inflammatory effect of catechin. For this purpose, we studied the effect of 2 kinds of catechin, epigallocatechin gallate (EGCG) and epicatechin gallate, on peripheral blood CD8+ T cells, which play the key role in immune responses. Isolated peripheral blood mononuclear cells or CD8+ T cells were incubated without or with catechin, and the changes in the surface expression of integrin molecules were investigated by flow cytometry and the direct binding of catechin to CD11b molecule by competitive ELISA. Also, the effect of catechin on the ability of CD8+ T cells to bind intracellular adhesion molecule 1 and to migrate in response to chemokines was evaluated by using the adhesion and migration assays. The 2 catechins directly bound to CD11b expressed on CD8+ T cells, which caused a consequent decrease of flow-cytometric CD11b expression. The effect was more prominent with EGCG than epicatechin gallate, and the impaired expression of CD11b induced by EGCG resulted in decreased ability of CD8+ T cells to adhere intercellular adhesion molecule 1, and consequently decreased migration in response to chemokines. We concluded that catechin, especially EGCG, by downregulating CD11b expression on CD8+ T cells and, in consequence, inhibiting infiltration of these cells into the sites of inflammation, is a promising new potent anti-inflammatory agent.

  1. Rapid adhesion of nerve cells to muscle fibers from adult rats is mediated by a sialic acid-binding receptor

    OpenAIRE

    1986-01-01

    Single viable muscle fibers isolated from adult rats by collagenase digestion rapidly bind dissociated spinal neurons or PC-12 cells but not a variety of other cells tested. The adhesion process is calcium- independent, temperature-sensitive, and is not blocked by pretreating cells with inhibitors of energy metabolism or actin polymerization. Adhesion is mediated by a carbohydrate-binding protein and can be inhibited by N-acetylneuraminic acid or mucin, a glycoprotein with high sialic acids c...

  2. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  3. Adhesion molecule L1 binds to amyloid beta and reduces Alzheimer's disease pathology in mice.

    Science.gov (United States)

    Djogo, Nevena; Jakovcevski, Igor; Müller, Christian; Lee, Hyun Joon; Xu, Jin-Chong; Jakovcevski, Mira; Kügler, Sebastian; Loers, Gabriele; Schachner, Melitta

    2013-08-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common cause of elderly dementia. In an effort to contribute to the potential of molecular approaches to reduce degenerative processes we have tested the possibility that the neural adhesion molecule L1 ameliorates some characteristic cellular and molecular parameters associated with the disease in a mouse model of AD. Three-month-old mice overexpressing mutated forms of amyloid precursor protein and presenilin-1 under the control of a neuron-specific promoter received an injection of adeno-associated virus encoding the neuronal isoform of full-length L1 (AAV-L1) or, as negative control, green fluorescent protein (AAV-GFP) into the hippocampus and occipital cortex. Four months after virus injection, the mice were analyzed for histological and biochemical parameters of AD. AAV-L1 injection decreased the Aβ plaque load, levels of Aβ42, Aβ42/40 ratio and astrogliosis compared with AAV-GFP controls. AAV-L1 injected mice also had increased densities of inhibitory synaptic terminals on pyramidal cells in the hippocampus when compared with AAV-GFP controls. Numbers of microglial cells/macrophages were similar in both groups, but numbers of microglial cells/macrophages per plaque were increased in AAV-L1 injected mice. To probe for a molecular mechanism that may underlie these effects, we analyzed whether L1 would directly and specifically interact with Aβ. In a label-free binding assay, concentration dependent binding of the extracellular domain of L1, but not of the close homolog of L1 to Aβ40 and Aβ42 was seen, with the fibronectin type III homologous repeats 1-3 of L1 mediating this effect. Aggregation of Aβ42 in vitro was reduced in the presence of the extracellular domain of L1. The combined observations indicate that L1, when overexpressed in neurons and glia, reduces several histopathological hallmarks of AD in mice, possibly by reduction of Aβ aggregation. L1 thus appears to

  4. Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics

    Directory of Open Access Journals (Sweden)

    Fang Te-Hua

    2009-01-01

    Full Text Available Abstract Molecular dynamics simulations using tight-binding many body potential are carried out to study the roller imprint process of a gold single crystal. The effect of the roller tooth’s taper angle, imprint depth, imprint temperature, and imprint direction on the imprint force, adhesion, stress distribution, and strain are investigated. A two-stage roller imprint process was obtained from an imprint force curve. The two-stage imprint process included the imprint forming with a rapid increase of imprint force and the unloading stage combined with the adhesion stage. The results show that the imprint force and adhesion rapidly increase with decreasing taper angle and increasing imprint depth. The magnitude of the maximum imprint force and the time at which this maximum occurs are proportional to the imprint depth, but independent of the taper angle. In a comparison of the imprint mechanisms with a vertical imprint case, while high stress and strain regions are concentrated below the mold for vertical imprint, they also occur around the mold in the case of roller imprint. The regions were only concentrated on the substrate atoms underneath the mold in vertical imprint. Plastic flow increased with increasing imprint temperature.

  5. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion

    OpenAIRE

    Gilman, Casey A.; Imburgia, Michael J.; Bartlett, Michael D.; King, Daniel R.; Crosby, Alfred J.; Irschick, Duncan J.

    2015-01-01

    One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing ge...

  6. Fracture mechanics characterisation of medium-size adhesive joint specimens

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jacobsen, T.K.

    2004-01-01

    Medium-size specimens (adhesive layer were tested in four point bending to determine their load carrying capacity. Specimens having different thickness were tested. Except for onespecimen, the cracking occurred as cracking...... along the adhesive layer; initially cracking occurred along the adhesive/laminate interface, but after some crack extension the cracking took place inside the laminate (for one specimen the later part of thecracking occurred unstably along the adhesive/ laminate interface). Crack bridging by fibres...

  7. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  8. Staphylococcus aureus-Fibronectin Interactions with and without Fibronectin-Binding Proteins and Their Role in Adhesion and Desorption

    NARCIS (Netherlands)

    Xu, C.P.; Boks, N.P.; Vries, de J.; Kaper, H.J.; Norde, W.; Busscher, H.J.; Mei, van der H.C.

    2008-01-01

    Adhesion and residence-time-dependent desorption of two Staphylococcus aureus strains with and without fibronectin (Fn) binding proteins (FnBPs) on Fn-coated glass were compared under flow conditions. To obtain a better understanding of the role of Fn-FnBP binding, the adsorption enthalpies of Fn

  9. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...

  10. Adhesive and migratory effects of phosphophoryn are modulated by flanking peptides of the integrin binding motif.

    Directory of Open Access Journals (Sweden)

    Shigeki Suzuki

    Full Text Available Phosphophoryn (PP is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP. Gene duplications in the ancestor dentin matrix protein-1 (DMP-1 genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs. Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH. This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin

  11. Dehydroepiandrosterone (DHEA) inhibition of monocyte binding by vascular endothelium is associated with sialylation of neural cell adhesion molecule.

    Science.gov (United States)

    Curatola, Anna-Maria; Huang, Kui; Naftolin, Frederick

    2012-01-01

    Adhesion of monocytes to vascular endothelium is necessary for atheroma formation. This adhesion requires binding of endothelial neural cell adhesion molecule (NCAM) to monocyte NCAM. NCAM:NCAM binding is blocked by sialylation of NCAM (polysialylated NCAM; PSA-NCAM). Since estradiol (E2) and dihydrotestosterone (DHT) induced PSA-NCAM and decreased monocyte adhesion, in consideration of possible clinical applications we tested whether their prohormone dehydroepiandrosterone (DHEA) has similar effects. (1) DHEA was administered to cultured human coronary artery endothelial cells (HCAECs) from men and women. Monocyte binding was assessed using fluorescence-labeled monocytes. (2) HCEACs were incubated with E2, DHT, DHEA alone, or with trilostane, fulvestrant or flutamide. Expression of PSA-NCAM was assessed by immunohistochemistry and Western blotting. Dehydroepiandrosterone inhibited monocyte adhesion to HCAECs by ≥50% (P DHEA's inhibition of monocyte binding appeared to be gender dependent. The DHEA-induced expression of PSA-NCAM was completely blocked by trilostane. In these preliminary in vitro studies, DHEA increased PSA-NCAM expression and inhibited monocyte binding in an estrogen- and androgen receptor-dependent manner. Dehydroepiandrosteroneappears to act via its end metabolites, E2 and DHT. Dehydroepiandrosterone could furnish clinical prevention against atherogenesis and arteriosclerosis.

  12. The peel test in experimental adhesive fracture mechanics

    Science.gov (United States)

    Anderson, G. P.; Devries, K. L.; Williams, M. L.

    1974-01-01

    Several testing methods have been proposed for obtaining critical energy release rate or adhesive fracture energy in bond systems. These tests include blister, cone, lap shear, and peel tests. Peel tests have been used for many years to compare relative strengths of different adhesives, different surface preparation techniques, etc. The present work demonstrates the potential use of the peel test for obtaining adhesive fracture energy values.

  13. Carboxymethyl beta-glucan binds to corneal epithelial cells and increases cell adhesion to laminin and resistance to oxidative stress.

    Science.gov (United States)

    Porcu, Marco; Guarna, Francesco; Formentini, Laura; Faraco, Giuseppe; Fossati, Silvia; Mencucci, Rita; Rapizzi, Emilio; Menchini, Ugo; Moroni, Flavio; Chiarugi, Alberto

    2007-01-01

    Polysaccharides are frequently used as viscoelastic agents to improve pharmacokinetics of ophthalmic preparations. Recently, polysaccharides from yeast cell walls such as beta-glucans have emerged as bioactive molecules endowed with immunomodulatory and cytoprotective properties. In this study, we investigated the effects of carboxymethyl beta-glucan (CMG), a water-soluble derivative of yeast beta-glucan, on cultured rabbit corneal epithelial cells. We developed a fluorescein-labeled CMG to visualize its binding to corneal cells by means of digital microscopy and image deconvolution. The effects of CMG on adhesion and survival of corneal epithelial cells exposed to noxious stimuli were also studied. CMG binds defined regions scattered throughout the body of corneal cells, suggesting binding specificity. Tridimensional reconstruction of fluorescence shows that binding is localized mainly at the plasma and nuclear membranes. Interestingly, CMG binding is highly represented at the level of focal adhesion of cells spreading onto laminin. Accordingly, CMG promotes adhesion of corneal epithelial cells to laminin without affecting their proliferation rate. CMG also protects cells from oxidative stress-dependent cell death, being ineffective in preventing ultraviolet B cytotoxicity. Data show that CMG dynamically binds to corneal epithelial cells, promoting cell adhesion and resistance to oxidative stress.

  14. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    Science.gov (United States)

    Gilman, Casey A; Imburgia, Michael J; Bartlett, Michael D; King, Daniel R; Crosby, Alfred J; Irschick, Duncan J

    2015-01-01

    One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko's adhesive system (C = dΔ/dF). Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g). We also examined changes between juveniles and adults within a single species (Phelsuma grandis). We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring) of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of adhesion in

  15. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-04-14

    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially

  16. Molecular dynamics investigation of the adhesion mechanism acting between dopamine and the surface of dopamine-processed aramid fibers.

    Science.gov (United States)

    Chai, Dongliang; Xie, Zhimin; Wang, Youshan; Liu, Li; Yum, Young-Jin

    2014-10-22

    Dopamine, as a universal material for surface treatment, can effectively improve the surface performance of aramid fibers. However, directly processing the surface of aramid fibers using dopamine currently incurs a high cost. To seek dopamine substitutes, one must first explore the adhesion mechanism responsible for binding the dopamine to the surface of the fiber. In this study, we construct an all-atomic molecular dynamics model of an aramid fiber before and after surface modification using dopamine. A force field based on condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) is used. Using it, we analyze the surface adhesion mechanism of polydopamines aggregated by 21 kinds of molecular structures typically found on the surface of aramid fibers. The results show that a clear and smooth interface is formed between the polydopamine nanofilm layer and the surface of the aramid fiber. The high atomic density of the polydopamine in the small interface region is found to be conducive to noncovalent bonds of polydopamines with the surface of the aramid fiber. In addition, we investigate the works of adhesion of the 21 molecular structures typically found on the surface of aramid fibers. The results suggest that the work of adhesion of 5,6-indolequinone is the highest, followed by annular eumelanin molecules with annular planar structure. Straight-chain shaped dimers proved to be the molecules with the highest adhesion ability of the dihydroxyindole chain oligomers. Therefore, there is reason to suppose that more molecular structures (as above) can be formed by processing the surface of aramid fibers using dopamine by controlling the processing conditions. These molecular structures help improve the adhesion ability of the dopamine on the surface of the aramid fiber. Additionally, if these polydopamine molecules with high adhesion ability can be synthesized on a large scale, then new surface-processing materials are possible.

  17. A sequential binding mechanism in a PDZ domain

    DEFF Research Database (Denmark)

    Chi, Celestine N; Bach, Anders; Engström, Åke

    2009-01-01

    of interaction, in particular for single-domain proteins. Here, we found that the PDZ2 domain of SAP97 binds its ligand via a sequential (induced fit) mechanism. We performed binding experiments using SAP97 PDZ2 and peptide ligands and observed biphasic kinetics with the stopped-flow technique, indicating...... that ligand binding involves at least a two-step process. By using an ultrarapid continuous-flow mixer, we then detected a hyperbolic dependence of binding rate constants on peptide concentration, corroborating the two-step binding mechanism. Furthermore, we found a similar dependence of the rate constants...

  18. Mechanisms of adhesion and subsequent actions of a haematopoietic stem cell line, HPC-7, in the injured murine intestinal microcirculation in vivo.

    Directory of Open Access Journals (Sweden)

    Dean P J Kavanagh

    Full Text Available Although haematopoietic stem cells (HSCs migrate to injured gut, therapeutic success clinically remains poor. This has been partially attributed to limited local HSC recruitment following systemic injection. Identifying site specific adhesive mechanisms underpinning HSC-endothelial interactions may provide important information on how to enhance their recruitment and thus potentially improve therapeutic efficacy. This study determined (i the integrins and inflammatory cyto/chemokines governing HSC adhesion to injured gut and muscle (ii whether pre-treating HSCs with these cyto/chemokines enhanced their adhesion and (iii whether the degree of HSC adhesion influenced their ability to modulate leukocyte recruitment.Adhesion of HPC-7, a murine HSC line, to ischaemia-reperfused (IR injured mouse gut or cremaster muscle was monitored intravitally. Critical adhesion molecules were identified by pre-treating HPC-7 with blocking antibodies to CD18 and CD49d. To identify cyto/chemokines capable of recruiting HPC-7, adhesion was monitored following tissue exposure to TNF-α, IL-1β or CXCL12. The effects of pre-treating HPC-7 with these cyto/chemokines on surface integrin expression/clustering, adhesion to ICAM-1/VCAM-1 and recruitment in vivo was also investigated. Endogenous leukocyte adhesion following HPC-7 injection was again determined intravitally.IR injury increased HPC-7 adhesion in vivo, with intestinal adhesion dependent upon CD18 and muscle adhesion predominantly relying on CD49d. Only CXCL12 pre-treatment enhanced HPC-7 adhesion within injured gut, likely by increasing CD18 binding to ICAM-1 and/or CD18 surface clustering on HPC-7. Leukocyte adhesion was reduced at 4 hours post-reperfusion, but only when local HPC-7 adhesion was enhanced using CXCL12.This data provides evidence that site-specific molecular mechanisms govern HPC-7 adhesion to injured tissue. Importantly, we show that HPC-7 adhesion is a modulatable event in IR injury and

  19. Regulation of T-lymphocyte motility, adhesion and de-adhesion by a cell surface mechanism directed by low density lipoprotein receptor-related protein 1 and endogenous thrombospondin-1

    Science.gov (United States)

    Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta

    2014-01-01

    T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130 000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1–calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion. PMID:24877199

  20. Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system

    Science.gov (United States)

    Bae, Won-Gyu; Kim, Doogon; Suh, Kahp-Yang

    2013-11-01

    Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the climbing behaviour of gecko lizards. The adhesive shows strong normal attachment (~30 N cm-2) as well as easy and fast detachment within 0.5 s without involving complex dynamic mechanisms or specific stimulus-responsive materials. The fabrication of the bridged micropillars consists of replica moulding of polydimethylsiloxane (PDMS) micropillars, transfer of the PDMS precursor to the heads of the micropillars, and inverse placement on an inert Teflon-coated surface. Owing to the spontaneous interconnections of low viscosity PDMS precursor, bridged micropillars with a uniform capping nanomembrane (~800 nm thickness) are formed over a large area. Interestingly, macroscopic adhesion in the normal direction can be immediately switched between on and off states by changing the two detachment modes of pulling and peeling, respectively. To prove the potential of the fibrillar adhesive for practical use, an automated transportation system is demonstrated for lifting and releasing a mass of stacked glass slides over 1000 cycles of attachment and detachment.Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the

  1. Dennexin peptides modeled after the homophilic binding sites of the neural cell adhesion molecule (NCAM) promote neuronal survival, modify cell adhesion and impair spatial learning

    DEFF Research Database (Denmark)

    Køhler, Lene B; Christensen, Claus; Rossetti, Clara

    2010-01-01

    Neural cell adhesion molecule (NCAM)-mediated cell adhesion results in activation of intracellular signaling cascades that lead to cellular responses such as neurite outgrowth, neuronal survival, and modulation of synaptic activity associated with cognitive processes. The crystal structure...... of the immunoglobulin (Ig) 1-2-3 fragment of the NCAM ectodomain has revealed novel mechanisms for NCAM homophilic adhesion. The present study addressed the biological significance of the so called dense zipper formation of NCAM. Two peptides, termed dennexinA and dennexinB, were modeled after the contact interfaces...... between Ig1 and Ig3 and between Ig2 and Ig2, respectively, observed in the crystal structure. Although the two dennexin peptides differed in amino acid sequence, they both modulated cell adhesion, reflected by inhibition of NCAM-mediated neurite outgrowth. Both dennexins also promoted neuronal survival...

  2. Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive

    OpenAIRE

    Kahraman, R.; M. Sunar; Yilbas, B.

    2007-01-01

    The objective of this study was to develop information on the influence of adhesive thickness and aluminum filler content on the mechanical performance of aluminum joints bonded by aluminum powder filled epoxy. The adhesive strength of the joints was determined by utilizing the single-lap shear test. The influence of adhesive thickness and aluminum filler content on stress distribution within the adhesive was also analyzed by finite element method (FEM). Both FEM analysis and the experimental...

  3. Interplay between the folding mechanism and binding modes in folding coupled to binding processes.

    Science.gov (United States)

    Sharma, Rajendra; De Sancho, David; Muñoz, Victor

    2017-11-01

    Proteins that fold upon binding to their partners exhibit complex binding behavior such as induced-fit. But the connections between the folding mechanism and the binding mode remain unknown. Here we focus on the high affinity complex between the physiologically and marginally unstable, fast folder PSBD and the E1 subunit of pyruvate dehydrogenase. Using coarse-grained simulations we investigate the binding to E1 of a partially disordered PSBD under two folding scenarios: two-state and downhill. Our simulations show that induced-fit binding requires that PSBD folds-unfolds in the downhill folding regime. In contrast, a two-state folding PSBD must fold completely before it binds. The reason is that effective coupling between folding and binding involves partially folded conformations, which are only sufficiently populated under the downhill folding regime. Our results establish a direct mechanistic link between complex binding and downhill folding, supporting the idea that PSBD operates functionally as a conformational rheostat.

  4. The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion

    Directory of Open Access Journals (Sweden)

    Ballivet Marc

    2007-10-01

    Full Text Available Abstract Background Cell adhesion molecules are plasma membrane proteins specialized in cell-cell recognition and adhesion. Two related adhesion molecules, Necl-1 and Necl-2/SynCAM, were recently described and shown to fulfill important functions in the central nervous system. The purpose of the work was to investigate the distribution, and the properties of Necl-3/SynCAM-2, a previously uncharacterized member of the Necl family with which it shares a conserved modular organization and extensive sequence homology. Results We show that Necl-3/SynCAM-2 is a plasma membrane protein that accumulates in several tissues, including those of the central and peripheral nervous system. There, Necl-3/SynCAM-2 is expressed in ependymal cells and in myelinated axons, and sits at the interface between the axon shaft and the myelin sheath. Several independent assays demonstrate that Necl-3/SynCAM-2 functionally and selectively interacts with oligodendrocytes. We finally prove that Necl-3/SynCAM-2 is a bona fide adhesion molecule that engages in homo- and heterophilic interactions with the other Necl family members, leading to cell aggregation. Conclusion Collectively, our manuscripts and the works on Necl-1 and SynCAM/Necl-2 reveal a complex set of interactions engaged in by the Necl proteins in the nervous system. Our work also support the notion that the family of Necl proteins fulfils key adhesion and recognition functions in the nervous system, in particular between different cell types.

  5. Evaluation of the mechanical properties of dental adhesives and glass-ionomer cements.

    Science.gov (United States)

    Magni, Elisa; Ferrari, Marco; Hickel, Reinhard; Ilie, Nicoleta

    2010-02-01

    Adhesives and lining/base materials should relieve the stresses concentrated at the tooth/restoration interface. The study aimed at comparing the mechanical properties of eight adhesives and six glass-ionomer cements (GICs). The adhesives were applied on dentin disks, whereas 2 mm x 3 mm x 2 mm GICs specimens were prepared in a teflon mold. Vicker's hardness (VH), elastic modulus (E), creep (Cr) and elastic work (We/Wtot) were measured with a micro hardness indenter. One-way ANOVA and Tukey's test were used to compare the mechanical properties within each materials' type and among the materials' classes. Enamel and dentin were used as references. Significant differences were detected within each materials' type and among the materials' classes and enamel and dentin. GICs were superior to adhesives in VH and E and showed a VH similar to dentin. GICs presented mechanical properties more similar to enamel and dentin than adhesives.

  6. IMPLICATIONS OF MICROBIAL ADHESION TO HYDROCARBONS FOR EVALUATING CELL-SURFACE HYDROPHOBICITY .2. ADHESION MECHANISMS

    NARCIS (Netherlands)

    VANDERMEI, HC; VANDEBELTGRITTER, B; BUSSCHER, HJ

    1995-01-01

    Microbial adhesion to hydrocarbons (MATH) is generally considered to be a measure of the organisms cell surface hydrophobicity. Recent observations that the zeta potentials of hydrocarbons can be highly negative in the various solutions commonly used in MATH, have suggested that MATH may measure a

  7. Nano-mechanics of Tunable Adhesion using Non Covalent Forces

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Liechti

    2012-09-08

    The objective of this program was to examine, via experiment and atomistic and continuum analysis, coordinated noncovalent bonding over a range of length scales with a view to obtaining modulated, patterned and reversible bonding at the molecular level. The first step in this project was to develop processes for depositing self-assembled monolayers (SAMs) bearing carboxylic acid and amine moieties on Si (111) surfaces and probe tips of an interfacial force microscope (IFM). This allowed the adhesive portion of the interactions between functionalized surfaces to be fully captured in the force-displacement response (force profiles) that are measured by the IFM. The interactionswere extracted in the form of traction-separation laws using combined molecular and continuum stress analyses. In this approach, the results of molecular dynamics analyses of SAMs subjected to simple stress states are used to inform continuum models of their stress-strain behavior. Continuum analyses of the IFM experiment were then conducted, which incorporate the stress-strain behavior of the SAMs and traction-separation relations that represent the interactions between the tip and functionalized Si surface. Agreement between predicted and measured force profiles was taken to imply that the traction-separation relations have been properly extracted. Scale up to larger contact areas was considered by forming Si/SAM/Si sandwiches and then separating them via fracture experiments. The mode 1 traction-separation relations have been extracted using fracture mechanics concepts under mode 1 and mixed-mode conditions. Interesting differences were noted between the three sets of traction-separation relations.

  8. An adhesion-dependent switch between mechanisms that determine motile cell shape.

    Directory of Open Access Journals (Sweden)

    Erin L Barnhart

    2011-05-01

    Full Text Available Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes.

  9. An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape

    Science.gov (United States)

    Barnhart, Erin L.; Lee, Kun-Chun; Keren, Kinneret; Mogilner, Alex; Theriot, Julie A.

    2011-01-01

    Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes. PMID:21559321

  10. Large deformation contact mechanics of a pressurized long rectangular membrane. II. Adhesive contact

    Science.gov (United States)

    Srivastava, Abhishek; Hui, Chung-Yuen

    2013-01-01

    In part I of this work, we presented a theory for adhesionless contact of a pressurized neo-Hookean plane-strain membrane to a rigid substrate. Here, we extend our theory to include adhesion using a fracture mechanics approach. This theory is used to study contact hysteresis commonly observed in experiments. Detailed analysis is carried out to highlight the differences between frictionless and no-slip contact. Membrane detachment is found to be strongly dependent on adhesion: for low adhesion, the membrane ‘pinches-off’, whereas for large adhesions, it detaches unstably at finite contact (‘pull-off’). Expressions are derived for the critical adhesion needed for pinch-off to pull-off transition. Above a threshold adhesion, the membrane exhibits bistability, two stable states at zero applied pressure. The condition for bistability for both frictionless and no-slip boundary conditions is obtained explicitly. PMID:24353472

  11. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells.

    Science.gov (United States)

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay; Smith, Joseph D

    2016-07-12

    Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. Cerebral malaria is a severe neurological complication of P. falciparum infection associated with infected erythrocyte (IE) binding in cerebral vessels. Yet little is known about the mechanisms by which parasites adhere in the brain or other microvascular sites. Here, we studied parasite lines

  12. Tissue Transglutaminase Is an Integrin-Binding Adhesion Coreceptor for Fibronectin

    National Research Council Canada - National Science Library

    Sergey S. Akimov; Dmitry Krylov; Laurie F. Fleischman; Alexey M. Belkin

    2000-01-01

    ... adhesion-dependent phosphorylation of focal adhesion kinase. These effects are specific for tissue transglutaminase and are not shared by its functional homologue, a catalytic subunit of factor XIII...

  13. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    Directory of Open Access Journals (Sweden)

    Casey A Gilman

    Full Text Available One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C is the change in extension (Δ relative to a change in force (F while loading a gecko's adhesive system (C = dΔ/dF. Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g. We also examined changes between juveniles and adults within a single species (Phelsuma grandis. We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of

  14. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion

    Science.gov (United States)

    Gilman, Casey A.; Imburgia, Michael J.; Bartlett, Michael D.; King, Daniel R.; Crosby, Alfred J.; Irschick, Duncan J.

    2015-01-01

    One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko’s adhesive system (C = dΔ/dF). Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2–100 g). We also examined changes between juveniles and adults within a single species (Phelsuma grandis). We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic “model gecko” system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring) of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of

  15. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion.

    Science.gov (United States)

    Li, Zhenhai; Lee, Hyunjung; Zhu, Cheng

    2016-11-15

    Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Influence of the Hardener Proportion on Mechanical Properties of Adhesive Bonds Used in Agriculture

    Directory of Open Access Journals (Sweden)

    Valášek P.

    2015-01-01

    Full Text Available Joining materials by adhesive bonding is used across all industrial branches. The occurrence of adhesive bonds in machine constructions is still more frequent because of the development of adhesives which are able to meet various requirements of designers. This trend is observable also in agriculture - in the construction of agricultural machines. There even exists a cooperation between the companies developing the adhesives and the agricultural machines producers. The production process of machines and equipment must consider a required production tact. Adhesives and the process of their hardening have to meet these requirements. In the sphere of agriculture, epoxy resins hardening based either on hardeners or heating are used. Mechanical properties of two-component epoxy resins depending on variable amount of the hardener starting crosslinking of these reactoplastics are described.

  17. POSS-Containing Bioinspired Adhesives with Enhanced Mechanical and Optical Properties for Biomedical Applications.

    Science.gov (United States)

    Pramudya, Irawan; Rico, Catalina G; Lee, Choogon; Chung, Hoyong

    2016-12-12

    A new terpolymer adhesive, poly(2-methoxyethyl acrylate-co-N-methacryloyl 3,4-dihydroxyl-l-phenylalanine-co-heptaisobutyl substituted polyhedral oligomeric silsesquioxane propyl methacrylate) (poly(MEA-co-MDOPA-co-MPOSS) was synthesized by thermally initiated radical polymerization. In this study, we investigated the effect of the POSS component on adhesion, mechanical, and optical properties of the catechol-group containing bioinspired adhesives. The terpolymer contains the catechol group which is known to improve the adhesion properties of polymers. Only a very small amount of the POSS-containing monomer, MPOSS, was included, 0.5 mol %. In the presence of POSS, the synthesized poly(MEA-co-MDOPA-co-MPOSS) demonstrated strong adhesion properties, 23.2 ± 6.2 J/m2 with 0.05 N preloading and 300 s holding time, compared to many previously prepared catechol-containing adhesives. The mechanical properties (Young's modulus and stress at 10% strain) of the POSS-containing terpolymer showed significant increases (6-fold higher) over the control polymer, which does not contain POSS. Optical transmittance of the synthesized terpolymer was also improved significantly in the visible light range, 450-750 nm. Cell testing with human embryonic kidney cells (HEK293A) indicates that the new terpolymer is a promising candidate in biomedical adhesives without acute cytotoxicity. The synthesized poly(MEA-co-MDOPA-co-MPOSS) is the first example of POSS-containing pressure sensitive bioinspired adhesive for biomedical applications. The study of poly(MEA-co-MDOPA-co-MPOSS) demonstrated a convenient method to enhance two important properties, mechanical and optical properties, by the addition of a very small amount of POSS. Based on this study, it was found that POSS can be used to strengthen mechanical properties of bioinspired adhesive without the need for a covalent cross-linking step.

  18. Mechanical Properties and Adhesion of a Micro Structured Polymer Blend

    Directory of Open Access Journals (Sweden)

    Brunero Cappella

    2011-07-01

    Full Text Available A 50:50 blend of polystyrene (PS and poly(n-butyl methacrylate (PnBMA has been characterized with an Atomic Force Microscope (AFM in Tapping Mode and with force-distance curves. The polymer solution has been spin-coated on a glass slide. PnBMA builds a uniform film on the glass substrate with a thickness of @200 nm. On top of it, the PS builds an approximately 100 nm thick film. The PS-film undergoes dewetting, leading to the formation of holes surrounded by about 2 µm large rims. In those regions of the sample, where the distance between the holes is larger than about 4 µm, light depressions in the PS film can be observed. Topography, dissipated energy, adhesion, stiffness and elastic modulus have been measured on these three regions (PnBMA, PS in the rims and PS in the depressions. The two polymers can be distinguished in all images, since PnBMA has a higher adhesion and a smaller stiffness than PS, and hence a higher dissipated energy. Moreover, the polystyrene in the depressions shows a very high adhesion (approximately as high as PnBMA and its stiffness is intermediate between that of PnBMA and that of PS in the rims. This is attributed to higher mobility of the PS chains in the depressions, which are precursors of new holes.

  19. Mechanical and Anti-bacterial Properties of Dental Adhesive Containing Diamond Nanoparticles

    Directory of Open Access Journals (Sweden)

    zeinab Ebadi

    2012-12-01

    Full Text Available The effect of nanoparticle diamond incorporated in an experimental dental adhesive formulation is valuated by examining the mechanical properties and shear bond strength of the system. Diamond nanoparticles were incorporated into the dentin adhesive system in different concentrations of 0, 0.05, 0.1, 0.2, 0.5, and 1.0 weight percentages. The suspensions were ultrasonicated to facilitate the nano-particle dispersion in an adhesive solution containing ethanol, bis-GMA, UDMA, TMPTMA, HEMA  and photo-initiator  system. Diametral  tensile  strength, fexural strength, fexural modulus, depth of cure and microshear bond strength of the adhesive system were measured. The adhesive-dentin interface was then observed by scanning electron microscopy. The results were analyzed using one-way ANOVA at a signifcant level of P>0.05. No signifcant difference was observed between the diametral tensile strength of the adhesive. At nanoparticle content level of 0.1% (by wt, however, 85% increase in fexural strength and 13% enhancement in fexural modulus were observed. Microshear bond strength test revealed 70% and 79% improvements of adhesion force in systems containing 0.1% and 0.2% nanoparticles, respectively. Although the neat diamond nanoparticles revealed antibacterial activity, the adhesive containing different percentages of the nano particles did not show any antibacterial activities when tested against, Staphilococcus Aureus, Staphilococcus Streptococcus, Staphilococcus ephidermidis, Saprophyticus, Enterococcus faecalis bacteries.

  20. Atomic Force Microscopy Mechanical Mapping of Micropatterned Cells Shows Adhesion Geometry-Dependent Mechanical Response on Local and Global Scales.

    Science.gov (United States)

    Rigato, Annafrancesca; Rico, Felix; Eghiaian, Frédéric; Piel, Mathieu; Scheuring, Simon

    2015-06-23

    In multicellular organisms, cell shape and organization are dictated by cell-cell or cell-extracellular matrix adhesion interactions. Adhesion complexes crosstalk with the cytoskeleton enabling cells to sense their mechanical environment. Unfortunately, most of cell biology studies, and cell mechanics studies in particular, are conducted on cultured cells adhering to a hard, homogeneous, and unconstrained substrate with nonspecific adhesion sites, thus far from physiological and reproducible conditions. Here, we grew cells on three different fibronectin patterns with identical overall dimensions but different geometries (▽, T, and Y), and investigated their topography and mechanics by atomic force microscopy (AFM). The obtained mechanical maps were reproducible for cells grown on patterns of the same geometry, revealing pattern-specific subcellular differences. We found that local Young's moduli variations are related to the cell adhesion geometry. Additionally, we detected local changes of cell mechanical properties induced by cytoskeletal drugs. We thus provide a method to quantitatively and systematically investigate cell mechanics and their variations, and present further evidence for a tight relation between cell adhesion and mechanics.

  1. Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers.

    Directory of Open Access Journals (Sweden)

    Huashan Feng

    Full Text Available The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the surface structure, adsorption movements, the muscles' distribution, physical characteristics, and the adsorption force of the leech posterior suckers by experimental investigation. Three conclusions can be drawn based on the obtained experimental results. First, the adhesion by the posterior sucker is wet adhesion, because the surface of the posterior sucker is smooth and the sealing can only be achieved on wet surfaces. Second, the deformation texture, consisting of soft collagen tissues and highly ductile epidermal tissues, plays a key role in adhering to rough surfaces. Finally, the adhesion and desorption is achieved by the synergetic operation of six muscle fibers working in different directions. Concrete saying, directional deformation of the collagen/epithermal interface driven by spatially-distributed muscle fibers facilitates the excretion of fluids in the sucker venter, thus allowing liquid sealing. Furthermore, we found that the adhesion strength is directly related to the size of the contact surface which is generated and affected by the sucker deformation. Such an underlying physical mechanism offers potential cues for developing innovative bio-inspired artificial adhesion systems.

  2. Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers.

    Science.gov (United States)

    Feng, Huashan; Chai, Ningli; Dong, Wenhao

    2015-01-01

    The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the surface structure, adsorption movements, the muscles' distribution, physical characteristics, and the adsorption force of the leech posterior suckers by experimental investigation. Three conclusions can be drawn based on the obtained experimental results. First, the adhesion by the posterior sucker is wet adhesion, because the surface of the posterior sucker is smooth and the sealing can only be achieved on wet surfaces. Second, the deformation texture, consisting of soft collagen tissues and highly ductile epidermal tissues, plays a key role in adhering to rough surfaces. Finally, the adhesion and desorption is achieved by the synergetic operation of six muscle fibers working in different directions. Concrete saying, directional deformation of the collagen/epithermal interface driven by spatially-distributed muscle fibers facilitates the excretion of fluids in the sucker venter, thus allowing liquid sealing. Furthermore, we found that the adhesion strength is directly related to the size of the contact surface which is generated and affected by the sucker deformation. Such an underlying physical mechanism offers potential cues for developing innovative bio-inspired artificial adhesion systems.

  3. [Adhesion molecules and cancer].

    Science.gov (United States)

    Pierres, A; Benoliel, A M; Bongrand, P

    1999-12-01

    This review was aimed at summarizing recent advances in the understanding of cell adhesion in order to discuss the possible relevance of new knowledge to the exploration of cancer patients and elaboration of therapeutic strategies. During the last 10 years, many adhesion molecules were identified, thus allowing to determine their tissue distribution and functional regulation. The concept of adhesiveness was refined. It is now well known that adhesive rate (i.e., the minimal contact time required for bond formation) and binding strength (i.e., the minimal force required to detach bound cells) are distinct parameters. They may be regulated independently, and influence the cell behavior in different ways. It is now possible to achieve accurate control of tumor cell adhesiveness, either by inhibiting an adhesive mechanism (through monoclonal antibodies, competitive ligands, or inhibition of receptor expression with antisense strategy or gene knock-out) or by promoting a binding mechanism (with receptor transfection or pro-inflammatory stimulation). Recent progress opens new possibilities for diagnosis and treatment. First, the interpretation of experimental data may be improved. Cell adhesive behavior is not entirely accounted for by the density of membrane adhesion receptors. Indeed, adhesion is influenced by receptor connection to the cytoskeleton and structure of the cell coat. An adhesion receptor may be anti-metastatic through an increase in tumor cohesion and cell differentiation, or pro-metastatic, through facilitation of cell migration towards a target tissue. New therapeutic strategies may include anti-adhesive procedure aimed at preventing metastasis formation. The potential importance of a better control of inflammatory processes is also emphasized in view of the influence of these processes on the expression of adhesion molecules.

  4. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  5. Biofilm formation and binding specificities of CFA/I, CFA/II and CS2 adhesions of enterotoxigenic Escherichia coli and Cfae-R181A mutant.

    Science.gov (United States)

    Liaqat, Iram; Sakellaris, Harry

    2012-07-01

    Enterotoxigenic Escherichia coli (ETEC) strains are leading causes of childhood diarrhea in developing countries. Adhesion is the first step in pathogenesis of ETEC infections and ETEC pili designated colonization factor antigens (CFAs) are believed to be important in the biofim formation, colonization and host cell adhesions. As a first step, we have determined the biofilm capability of ETEC expressing various types of pili (CFA/I, CfaE-R181A mutant/CfaE tip mutant, CFA/II and CS2). Further, enzyme-linked immunosorbent assay (ELISA) assay were developed to compare the binding specificity of CFA/I, CFA/II (CS1 - CS3) and CS2 of ETEC, using extracted pili and piliated bacteria. CFA/II strain (E24377a) as well as extracted pili exhibited significantly higher binding both in biofilm and ELISA assays compared to non piliated wild type E24377a, CFA/I and CS2 strains. This indicates that co-expression of two or more CS2 in same strain is more efficient in increasing adherence. Significant decrease in binding specificity of DH5αF'lacI (q)/∆cotD (CS2) strain and MC4100/pEU2124 (CfaE-R181A) mutant strain indicated the important contribution of tip proteins in adherence assays. However, CS2 tip mutant strain (DH5αF'lacI (q)/pEU5881) showed that this specific residue may not be important as adhesions in these strains. In summary, our data suggest that pili, their minor subunits are important for biofilm formation and adherence mechanisms. Overall, the functional reactivity of strains co expressing various antigens, particularly minor subunit antigen observed in this study suggest that fewer antibodies may be required to elicit immunity to ETEC expressing a wider array of related pili.

  6. Biofilm formation and binding specificities of CFA/I, CFA/II and CS2 adhesions of enterotoxigenic Escherichia coli and Cfae-R181A mutant

    Science.gov (United States)

    Liaqat, Iram; Sakellaris, Harry

    2012-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are leading causes of childhood diarrhea in developing countries. Adhesion is the first step in pathogenesis of ETEC infections and ETEC pili designated colonization factor antigens (CFAs) are believed to be important in the biofim formation, colonization and host cell adhesions. As a first step, we have determined the biofilm capability of ETEC expressing various types of pili (CFA/I, CfaE-R181A mutant/CfaE tip mutant, CFA/II and CS2). Further, enzyme-linked immunosorbent assay (ELISA) assay were developed to compare the binding specificity of CFA/I, CFA/II (CS1 - CS3) and CS2 of ETEC, using extracted pili and piliated bacteria. CFA/II strain (E24377a) as well as extracted pili exhibited significantly higher binding both in biofilm and ELISA assays compared to non piliated wild type E24377a, CFA/I and CS2 strains. This indicates that co-expression of two or more CS2 in same strain is more efficient in increasing adherence. Significant decrease in binding specificity of DH5αF’lacIq/∆cotD (CS2) strain and MC4100/pEU2124 (CfaE-R181A) mutant strain indicated the important contribution of tip proteins in adherence assays. However, CS2 tip mutant strain (DH5αF’lacIq/pEU5881) showed that this specific residue may not be important as adhesions in these strains. In summary, our data suggest that pili, their minor subunits are important for biofilm formation and adherence mechanisms. Overall, the functional reactivity of strains co expressing various antigens, particularly minor subunit antigen observed in this study suggest that fewer antibodies may be required to elicit immunity to ETEC expressing a wider array of related pili. PMID:24031915

  7. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  8. Physico-mechanical properties of plywood bonded with ecological adhesives from Acacia mollissima tannins and lignosulfonates

    Science.gov (United States)

    Rhazi, Naima; Oumam, Mina; Sesbou, Abdessadek; Hannache, Hassan; Charrier-El Bouhtoury, Fatima

    2017-06-01

    The objective of this research was to develop ecological adhesives for bonding plywood panels using lignosulfonates, a common waste product of the wood pulp industry, and natural tannin extracted from Moroccan bark of Acacia mollissima using different process. Natural tannin and lignin were used in wood adhesives formulation to substitute resins based on phenol and formaldehyde. To achieve this, the lignosulfonates were glyoxalated to enhance their reactivity and the used tannins obtained by three different extraction methods were compared with commercial mimosa tannin. The proportion of Acacia mollissima tannins and lignosulfonates, the pressing time, the pressing temperature, and the pressure used were studied to improve mechanical properties, and bonding quality of plywood panel. The properties of plywood panels produced with these adhesives were tested in accordance with normative tests. Thus, the tensile strength, and the shear strength were measured. The results showed that the performance of the plywood panels made using biobased tannin adhesives was influenced by physical conditions such as pressure, press temperature as well as by chemical conditions, such as the tannin-lignin ratio. It exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. This study showed that biobased adhesives formulations presented good and higher mechanical performance and no formaldehyde emission. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  9. Binding mechanism of patulin to heat-treated yeast cell.

    Science.gov (United States)

    Guo, C; Yuan, Y; Yue, T; Hatab, S; Wang, Z

    2012-12-01

    This study aims to assess the removal mechanism of patulin using heat-treated Saccharomyces cerevisiae cells and identify the role of different cell wall components in the binding process. In order to understand the binding mechanism, viable cells, heat-treated cells, cell wall and intracellular extract were performed to assess their ability to remove patulin. Additionally, the effects of chemical and enzymatic treatments of yeast on the binding ability were tested. The results showed that there was no significant difference between viable (53·28%) and heat-treated yeast cells (51·71%) in patulin binding. In addition, the cell wall fraction decreased patulin by 35·05%, and the cell extract nearly failed to bind patulin. Treatments with protease E, methanol, formaldehyde, periodate or urea significantly decreased (P patulin. Fourier transform infrared (FTIR) analysis indicated that more functional groups were involved in the binding process of heat-treated cells. Polysaccharides and protein are important components of yeast cell wall involved in patulin removal. In addition, hydrophobic interactions play a major role in binding processes. Heat-treated S. cerevisiae cells could be used to control patulin contamination in the apple juice industry. Also, our results proof that the patulin removal process is based mainly on the adsorption not degradation. © 2012 The Society for Applied Microbiology.

  10. Mechanical Characterization of Adhesive Bonded Sheet Metal Joints at Elevated Temperature

    Science.gov (United States)

    Mori, Kiyomi; Azimin, Muhd; Tanaka, Masashi; Ikeda, Takashi

    A new approach is expected for heat resisting metal joints with inorganic adhesive. In the present study, the mechanical characterization of the inorganic adhesive and the strength evaluation of metal joints are realized by an experimental procedure that includes a static test for single lap joints bonded with inorganic adhesives. The inorganic adhesive can be cured at 150°C, and the maximum temperature resistance proposed is up to 1,200°C. A tensile shear test for the joints with a nickel adherend is performed at an elevated temperature of up to 400°C. The effect of material property, overlap length, and thickness of adherend on the joint strength is discussed based on stress analysis for corresponding joint models using a Finite Element Method. It is important to confirm whether fracture occurred in the adhesive layer or at the interface between the adhesive and the adherend. Therefore, the deformation and fracture behavior of the adhesive layer is investigated microscopically by the photographs of a scanning electron microscope (SEM) for the fracture surface.

  11. Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects.

    Science.gov (United States)

    Clemente, Christofer J; Federle, Walter

    2012-12-01

    Pressure-sensitive adhesives such as tapes become easily contaminated by dust particles. By contrast, animal adhesive pads are able to self-clean and can be reused millions of times over a lifetime with little reduction in adhesion. However, the detailed mechanisms underlying this ability are still unclear. Here we test in adhesive pads of stick insects (Carausius morosus) (1) whether self-cleaning is enhanced by the liquid pad secretion, and (2) whether alternating push-pull movements aid the removal of particles. We measured attachment forces of insect pads on glass after contamination with 10 µm polystyrene beads. While the amount of fluid present on the pad showed no effect on the pads' susceptibility to contamination, the recovery of adhesive forces after contamination was faster when higher fluid levels were present. However, this effect does not appear to be based on a faster rate of self-cleaning since the number of spheres deposited with each step did not increase with fluid level. Instead, the fluid may aid the recovery of adhesive forces by filling in the gaps between contaminating particles, similar to the fluid's function on rough surfaces. Further, we found no evidence that an alternation of pushing and pulling movements, as found in natural steps, leads to a more efficient recovery of adhesion than repeated pulling slides.

  12. Monitoring in real-time focal adhesion protein dynamics in response to a discrete mechanical stimulus

    Science.gov (United States)

    von Bilderling, Catalina; Caldarola, Martín; Masip, Martín E.; Bragas, Andrea V.; Pietrasanta, Lía I.

    2017-01-01

    The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.

  13. Old and sticky-adhesive mechanisms in the living fossil Nautilus pompilius (Mollusca, Cephalopoda).

    Science.gov (United States)

    von Byern, Janek; Wani, Ryoji; Schwaha, Thomas; Grunwald, Ingo; Cyran, Norbert

    2012-02-01

    Nautiloidea is the oldest group within the cephalopoda, and modern Nautilus differs much in its outer morphology from all other recent species; its external shell and pinhole camera eye are the most prominent distinguishing characters. A further unique feature of Nautilus within the cephalopods is the lack of suckers or hooks on the tentacles. Instead, the animals use adhesive structures present on the digital tentacles. Earlier studies focused on the general tentacle morphology and put little attention on the adhesive gland system. Our results show that the epithelial parts on the oral adhesive ridge contain three secretory cell types (columnar, goblet, and cell type 1) that differ in shape and granule size. In the non-adhesive aboral epithelium, two glandular cell types (cell types 2 and 3) are present; these were not mentioned in any earlier study and differ from the cells in the adhesive area. The secretory material of all glandular cell types consists mainly of neutral mucopolysaccharide units, whereas one cell type in the non-adhesive epithelium also reacts positive for acidic mucopolysaccharides. The present data indicate that the glue in Nautilus consists mainly of neutral mucopolysaccharides. The glue seems to be a viscous carbohydrate gel, as known from another cephalopod species. De-attachment is apparently effectuated mechanically, i.e., by muscle contraction of the adhesive ridges and tentacle retraction. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Mechanical behavior of connection of pultruded glass fiber reinforced polymer plates using FRP bolts and adhesive

    Science.gov (United States)

    Nhut, Phan Viet; Matsumoto, Yukihiro; Hashimoto, Kunitaro; Kitane, Yasuo

    2017-10-01

    Pultruded Fiber Reinforced Polymers (FRPs) have been increasingly used in civil infrastructure applications due to advanced properties such as high specific strength, lightweight and especially high corrosion resistance. In highly corrosive environment such as chemical and acid environment where metallic by-products are prone to corrosion, the use of adhesive bonding in addition to FRP bolts not only decreases the structure's weight, limits the impacts of aggressive environment but also increases the ultimate strength of the connection and improves the connection stiffness. In this paper, mechanical behavior of pultruded FRP double-lap specimens combined by only FRP bolt as well as both FRP bolt and adhesive under tension tests was investigated by finite element method and experimental data. Two kinds of used adhesive were high strength adhesive and low elastic one. Results show that comparing with bolt-only specimens, connections with both FRP bolt and adhesive had the higher joint strength. Specimens with high strength adhesive had the highest joint strength but the shear out failure and delamination at FRP plates happened suddenly while the low elastic adhesive specimens witnessed the debonding failure and shear out failure alternately in the both sides of connections. Moreover, the stress distributions in the GFRP plates were also investigated and there were good agreements between finite element analysis (FEA) and experimental data achieved in this paper.

  15. Old and sticky—adhesive mechanisms in the living fossil Nautilus pompilius (Mollusca, Cephalopoda)

    Science.gov (United States)

    von Byern, Janek; Wani, Ryoji; Schwaha, Thomas; Grunwald, Ingo; Cyran, Norbert

    2012-01-01

    Nautiloidea is the oldest group within the cephalopoda, and modern Nautilus differs much in its outer morphology from all other recent species; its external shell and pinhole camera eye are the most prominent distinguishing characters. A further unique feature of Nautilus within the cephalopods is the lack of suckers or hooks on the tentacles. Instead, the animals use adhesive structures present on the digital tentacles. Earlier studies focused on the general tentacle morphology and put little attention on the adhesive gland system. Our results show that the epithelial parts on the oral adhesive ridge contain three secretory cell types (columnar, goblet, and cell type 1) that differ in shape and granule size. In the non-adhesive aboral epithelium, two glandular cell types (cell types 2 and 3) are present; these were not mentioned in any earlier study and differ from the cells in the adhesive area. The secretory material of all glandular cell types consists mainly of neutral mucopolysaccharide units, whereas one cell type in the non-adhesive epithelium also reacts positive for acidic mucopolysaccharides. The present data indicate that the glue in Nautilus consists mainly of neutral mucopolysaccharides. The glue seems to be a viscous carbohydrate gel, as known from another cephalopod species. De-attachment is apparently effectuated mechanically, i.e., by muscle contraction of the adhesive ridges and tentacle retraction. PMID:22221553

  16. Mechanical properties of new self-adhesive resin-based cement.

    Science.gov (United States)

    Nakamura, Takashi; Wakabayashi, Kazumichi; Kinuta, Soichiro; Nishida, Hisataka; Miyamae, Morihiro; Yatani, Hirofumi

    2010-04-01

    The aim of this study was to compare the bonding strength, flexural strength, elastic modulus, water absorption and the expansion after water storage of new self-adhesive resin cements to commercially available dental cements. Two types (hand-mix and auto-mix) of new self-adhesive resin cements (SAC-H and SAC-A, Kuraray Medical), one conventional resin cement (Panavia F2.0), three self-adhesive resin cements (Relyx Unicem, Maxcem and G-Cem), and two resin-modified glass-ionomer cements (Fuji Luting S and Vitremer) were used. Shear bond strengths, flexural strengths and elastic moduli (ISO 4049), water absorption (ISO 4049), and the expansion rate after water storage were investigated. Both SAC-H and SAC-A provided adhesion to enamel and dentin, and had the same bond strength to gold alloy and zirconia as conventional resin cements. SAC-H and SAC-A had greater flexural strengths (86.4-93.5MPa) than commercial self-adhesive resin cements or glass-ionomer cements. The elastic moduli of self-adhesive and glass-ionomer cements were 5.2-7.4GPa and 2.3-3.4GPa, respectively. The water absorption of SAC-H and SAC-A (26.3-27.7microg/mm(3)) were significantly lower than commercial self-adhesive resin cements. SAC-H and SAC-A showed significantly lower expansion rates (0.17-0.26%) than commercial self-adhesive cements and glass-ionomer cements after 4 weeks water storage. It is suggested that the new self-adhesive resin cements exhibited a favorable bonding capability and mechanical properties.

  17. Effect of Heat Treatment on Some Mechanical Properties of Laminated Window Profiles Manufactured Using Two Types of Adhesives

    Directory of Open Access Journals (Sweden)

    Tuncer Dilik

    2008-04-01

    Full Text Available The mechanical properties of laminated window profiles manufactured using two types of adhesives were determined. The objective of this study is to evaluate the effects of heat treatment on some mechanical properties of laminated window profiles that manufactured from Kosipo (Entandrophragma candollei Harms. using differenet type adhesives. Commercially produced polyurethane based Macroplast UR 7221 and polyvinyl acetate (PVAc adhesive were used for experiments. The overall test results were found to be comparable to those obtained in the previous studies. Both types of adhesives resulted in significant differences in their strength characteristics at 95% confidence level. Adhesive UR 7221 improved the overall properties of the samples in contrast to PVAc.

  18. Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale.

    Science.gov (United States)

    Barnes, W Jon P; Oines, Christine; Smith, Joanna M

    2006-11-01

    This allometric study of adhesion in 15 Trinidadian tree frog species investigates how relationships between length, area and mass limit the ability of adult frog species of different sizes to adhere to inclined and overhanging surfaces. Our experiments show that hylid frogs possess an area-based wet adhesive system in which larger species are lighter than expected from isometry and adhere better than expected from their toe pad area. However, in spite of these adaptations, larger species adhere less well than smaller species. In addition to these adhesive forces, tree frogs also generate significant shear forces that scale with mass, suggesting that they are frictional forces. Toe pads detach by peeling and frogs have strategies to prevent peeling from taking place while they are adhering to surfaces, including orienting themselves head-up on slopes. The scaling of tree frog adhesion is also used to distinguish between different models for adhesion, including classic formulae for capillarity and Stefan adhesion. These classic equations grossly overestimate the adhesive forces that tree frogs produce. More promising are peeling models, designed to predict the pull-off forces of adhesive tape. However, more work is required before we can qualitatively and quantitatively describe the adhesive mechanism of tree frogs.

  19. Localized mechanics of dentin self-etching adhesive system

    Directory of Open Access Journals (Sweden)

    Rodolfo Bruniera Anchieta

    2007-08-01

    Full Text Available The bond strength of composite resins (CRs to dentin is influenced by the interfacial microstructure of the hybrid layer (HL and the resin tags (TAG. The contemporary self-etching primer adhesive systems overcame the inconvenient of the etch-and-rinse protocol. Studies, however, have demonstrated that HL thickness and TAG length vary according to the wetting time and additional use of acid-etching prior to self-etching primers. This study investigated the localized stress distribution in the HL and the dentin/adhesive interface. Two HL thicknesses (3 or 6 µm, two TAG lengths (13 or 17 µm and two loading conditions (perpendicular and oblique-25º were investigated by the finite element (FE analysis. Five two-dimensional FE models (M of a dentin specimen restored with CR (38 x 64 µm were constructed: M1 - no HL and no TAG; M2 - 3 µm of HL and 13 µm of TAG; M3 - 3 µm of HL and 17 µm of TAG; M4 - 6 µm of HL and 13 µm of TAG; and M5 - 6 µm of HL and 17 µm of TAG. Two distributed loadings (L (20N were applied on CR surface: L1 - perpendicular, and L2 - oblique (25º. Fixed interfacial conditions were assigned on the border of the dentin specimen. Ansys 10.0 (Ansys®, Houston, PA, USA software was used to calculate the stress fields. The peak of von Mises (sigmavM and maximum principal stress (sigmamax was higher in L2 than in L1. Microstructures (HL and TAG had no effect on local stresses for L1. Decreasing HL decreased sigmavM and sigmamax in all structures for L2, but the TAG length had influence only on the peributular dentin. The thickness of HL had more influence on the sigmavM and sigmamax than TAG length. The peritubular dentin and its adjacent structures showed the highest sigmavM and sigmamax, mainly in the oblique loading.

  20. Bond strength of five dental adhesives using a fracture mechanics approach.

    Science.gov (United States)

    Jancar, Josef

    2011-04-01

    The adhesion tests utilized in dentistry are unable to separate the effects of adhesive composition, substrate properties, joint geometry and type of loading on the measured bond strength. This makes it difficult for the clinician to identify the most suitable adhesive for a given procedure and for the adhesive manufacturer to optimize its composition. Thus, an adhesion test protocol based on the fracture mechanics has been proposed to generate data for which separation of the effect of composition from that of the joint geometry on the shear (τ(a)) and tensile (σ(a)) bond strengths was possible for five commercial dental adhesives. Planar 40×5×5 mm(3) sections of bovine femur were used as model adherends. The adhesive thickness (h) was varied from 15 to 500 μm. Commercial adhesives with fracture toughness (K(IC)) ranging from 0.3 to 1.6 MPa m(1/2) were used. Double lap joint (DLJ) and modified compact tension (MCT) specimens were conditioned for 24 h in 37 °C distilled water, then dried in a vacuum oven at 37 °C for 24 h prior to testing. The thickness dependence of σ(a) and τ(a) was measured at constant strain rate and analyzed using the interface corner stress intensity factor model. Both τ(a) and σ(a) increased with increasing adhesive thickness, exhibiting a maximum bond strength at the optimum thickness (h(opt)). For hadhesion tests currently used in dentistry provide the geometry-dependent bond strength, and such data cannot be used either for prediction of clinical reliability of commercial dental adhesives or for development of new ones. The proposed test protocol allowed us to determine two composition-only dependent parameters determining τ(a) and σ(a). A simple proposed procedure can then be used to estimate the weakest point in clinically relevant joints always exhibiting varying adhesive thickness and, thus, to predict the locus of failure initiation. Moreover, this approach can also be used to analyze the clinical relevance of the

  1. Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers.

    Science.gov (United States)

    Jarillo, Javier; Morín, José A; Beltrán-Heredia, Elena; Villaluenga, Juan P G; Ibarra, Borja; Cao, Francisco J

    2017-01-01

    Ligands binding to polymers regulate polymer functions by changing their physical and chemical properties. This ligand regulation plays a key role in many biological processes. We propose here a model to explain the mechanical, thermodynamic, and kinetic properties of the process of binding of small ligands to long biopolymers. These properties can now be measured at the single molecule level using force spectroscopy techniques. Our model performs an effective decomposition of the ligand-polymer system on its covered and uncovered regions, showing that the elastic properties of the ligand-polymer depend explicitly on the ligand coverage of the polymer (i.e., the fraction of the polymer covered by the ligand). The equilibrium coverage that minimizes the free energy of the ligand-polymer system is computed as a function of the applied force. We show how ligands tune the mechanical properties of a polymer, in particular its length and stiffness, in a force dependent manner. In addition, it is shown how ligand binding can be regulated applying mechanical tension on the polymer. Moreover, the binding kinetics study shows that, in the case where the ligand binds and organizes the polymer in different modes, the binding process can present transient shortening or lengthening of the polymer, caused by changes in the relative coverage by the different ligand modes. Our model will be useful to understand ligand-binding regulation of biological processes, such as the metabolism of nucleic acid. In particular, this model allows estimating the coverage fraction and the ligand mode characteristics from the force extension curves of a ligand-polymer system.

  2. Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers.

    Directory of Open Access Journals (Sweden)

    Javier Jarillo

    Full Text Available Ligands binding to polymers regulate polymer functions by changing their physical and chemical properties. This ligand regulation plays a key role in many biological processes. We propose here a model to explain the mechanical, thermodynamic, and kinetic properties of the process of binding of small ligands to long biopolymers. These properties can now be measured at the single molecule level using force spectroscopy techniques. Our model performs an effective decomposition of the ligand-polymer system on its covered and uncovered regions, showing that the elastic properties of the ligand-polymer depend explicitly on the ligand coverage of the polymer (i.e., the fraction of the polymer covered by the ligand. The equilibrium coverage that minimizes the free energy of the ligand-polymer system is computed as a function of the applied force. We show how ligands tune the mechanical properties of a polymer, in particular its length and stiffness, in a force dependent manner. In addition, it is shown how ligand binding can be regulated applying mechanical tension on the polymer. Moreover, the binding kinetics study shows that, in the case where the ligand binds and organizes the polymer in different modes, the binding process can present transient shortening or lengthening of the polymer, caused by changes in the relative coverage by the different ligand modes. Our model will be useful to understand ligand-binding regulation of biological processes, such as the metabolism of nucleic acid. In particular, this model allows estimating the coverage fraction and the ligand mode characteristics from the force extension curves of a ligand-polymer system.

  3. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.

    Science.gov (United States)

    Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica

    2013-04-01

    The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  5. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  6. Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting

    NARCIS (Netherlands)

    Kruth, J.P.; Mercelis, P.; Van Vaerenbergh, J.; van Vaerenbergh, J.; Froyen, L.; Rombouts, M.

    2005-01-01

    Purpose – This paper provides an overview of the different binding mechanisms in selective laser sintering (SLS) and selective laser melting (SLM), thus improving the understanding of these processes. Design/methodology/approach – A classification of SLS/SLM processes was developed, based on the

  7. Biophysics of cadherin adhesion.

    Science.gov (United States)

    Leckband, Deborah; Sivasankar, Sanjeevi

    2012-01-01

    Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.

  8. Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme.

    Science.gov (United States)

    Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful

    2017-07-01

    The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    Science.gov (United States)

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  10. Biophysical studies on calcium and carbohydrate binding to carbohydrate recognition domain of Gal/GalNAc lectin from Entamoeba histolytica: insights into host cell adhesion.

    Science.gov (United States)

    Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando

    2016-09-01

    Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. Mechanical behaviour of adhesive joint under tensile and shear loading

    NARCIS (Netherlands)

    Jiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2013-01-01

    Due to various advantages of Fibre-Reinforced Polymer (FRP) decks, the FRP to steel composite bridge system is being increasingly used in new bridge structures as well as rehabilitation projects for old bridges. This paper focuses on the mechanical behaviours and failure modes of the

  12. Adhesion mechanism of salmon to polymer-coated can walls

    NARCIS (Netherlands)

    Dommershuijzen, H.; Hviid, L.; Hartog, den H.; Vereijken, J.

    2005-01-01

    Minimization of the amount of salmon adhering to the can wall after emptying is one of the convenience requirements of consumers of canned salmon. In order to achieve this, the mechanism by which salmon adheres to cans needs to be understood. The aim of this study was to provide such knowledge for

  13. Mechanical stretch induces clustering of beta1-integrins and facilitates adhesion.

    Science.gov (United States)

    Knies, Yvonne; Bernd, August; Kaufmann, Roland; Bereiter-Hahn, Jürgen; Kippenberger, Stefan

    2006-05-01

    Human epithelial cells are permanently stimulated by external mechanical forces. The present in vitro study suggests that keratinocytes respond to mechanical strain by a coordinated spatial and functional utilization of beta1-integrins and the epidermal growth factor receptor (EGFR) with impact to the adhesion properties. It was found that a single mechanical stretch applied to HaCaT keratinocytes elevates the substrate adhesion, in particular to fibronectin and collagen type IV but not to laminin indicating the relevance of beta1-integrins in this process. This was confirmed using a functional blocking antibody directed against beta1-integrins which reversed the stretch-induced adhesion. Furthermore, mechanical stretch gives rise to a rapid redistribution of beta1-integrins in clusters on the basal cell membrane, without changing the overall amount of this particular integrin subset. Concomitantly, the EGFR co-localizes with beta1-integrin suggesting a functional cooperation of both membrane proteins in mechano-signaling. This is corroborated by data showing that stretch-induced activation of the EGFR and the downstream element extracellular regulated kinase 1/2 (ERK1/2) is reversed by preincubation with beta1-integrin antibodies. Vice versa, blocking the EGFR using a specific inhibitor abrogates stretch-induced ERK1/2 activation. In summary, these results show a functional cooperation of beta1-integrins and EGFR in the adhesion complex supporting the transmission of stretch-induced signals.

  14. Nuclear factor kappaB-mediated down-regulation of adhesion molecules: possible mechanism for inhibitory activity of bigelovin against inflammatory monocytes adhesion to endothelial cells.

    Science.gov (United States)

    Nam, Kung-Woo; Oh, Goo Taeg; Seo, Eun-Kyoung; Kim, Kyeong Ho; Koo, Uk; Lee, Sung-Jin; Mar, Woongchon

    2009-06-22

    The flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae) are used in traditional medicine to treat asthma, chronic bronchitis, and acute pleurisy in China and Korea. However, the pharmacological actions of Inula britannica L. var. chinensis on endothelial cells and inflammatory monocytes are not clear. In this study, we investigated whether bigelovin, a sesquiterpene lactone isolated from the flowers of Inula britannica L. var. chinensis, inhibits monocyte adhesion and adhesion molecule expression in brain endothelial cells. We measured tumor necrosis factor-alpha (TNF-alpha)-enhanced Raw264.7 monocyte binding to brain endothelial cells and the levels of cell adhesion molecules, including vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial-selectin (E-selectin) on the surface of brain endothelial cells. Bigelovin significantly inhibited these in a dose-dependent manner without affecting cell viability. Furthermore, bigelovin suppressed the nuclear factor kappaB (NF-kappaB) promoter-driven luciferase activity, NF-kappaB activation, and degradation of NF-kappaB inhibitor protein alpha (IkappaBalpha). These results indicate that bigelovin inhibits inflammatory monocyte adhesion to endothelial cells and the expression of VCAM-1, ICAM-1, and E-selectin by blocking IkappaBalpha degradation and NF-kappaB activation.

  15. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Directory of Open Access Journals (Sweden)

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor-binding

  16. Atomic force microscopy studies of bioprocess engineering surfaces - imaging, interactions and mechanical properties mediating bacterial adhesion.

    Science.gov (United States)

    James, Sean A; Hilal, Nidal; Wright, Chris J

    2017-07-01

    The detrimental effect of bacterial biofilms on process engineering surfaces is well documented. Thus, interest in the early stages of bacterial biofilm formation; in particular bacterial adhesion and the production of anti-fouling coatings has grown exponentially as a field. During this time, Atomic force microscopy (AFM) has emerged as a critical tool for the evaluation of bacterial adhesion. Due to its versatility AFM offers not only insight into the topographical landscape and mechanical properties of the engineering surfaces, but elucidates, through direct quantification the topographical and biomechnical properties of the foulants The aim of this review is to collate the current research on bacterial adhesion, both theoretical and practical, and outline how AFM as a technique is uniquely equipped to provide further insight into the nanoscale world at the bioprocess engineering surface. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Bio-Inspired Swellable Microneedle Adhesive for Mechanical Interlocking with Tissue

    Science.gov (United States)

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-01-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here, inspired by the endoparasite Pomphorhynchus laevis which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~ 3.5 fold increase in adhesion strength compared to staples in skin graft fixation, and removal force of ~ 4.5 N/cm2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics. PMID:23591869

  18. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue

    Science.gov (United States)

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-04-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here inspired by the endoparasite Pomphorhynchus laevis, which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~3.5-fold increase in adhesion strength compared with staples in skin graft fixation, and removal force of ~4.5 N cm-2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics.

  19. Shape and Dynamics of Adhesive Cells: Mechanical Response of Open Systems

    Science.gov (United States)

    Yang, Yuehua; Jiang, Hongyuan

    2017-05-01

    Cell adhesion is an essential biological process. However, previous theoretical and experimental studies ignore a key variable, the changes of cellular volume and pressure, during the dynamic adhesion process. Here, we treat cells as open systems and propose a theoretical framework to investigate how the exchange of water and ions with the environment affects the shape and dynamics of cells adhered between two adhesive surfaces. We show that adherent cells can be either stable (convex or concave) or unstable (spontaneous rupture or collapse) depending on the adhesion energy density, the cell size, the separation of two adhesive surfaces, and the stiffness of the flexible surface. Strikingly, we find that the unstable states vanish when cellular volume and pressure are constant. We further show that the detachments of convex and concave cells are very different. The mechanical response of adherent cells is mainly determined by the competition between the loading rate and the regulation of the cellular volume and pressure. Finally, we show that as an open system the detachment of adherent cells is also significantly influenced by the loading history. Thus, our findings reveal a major difference between living cells and nonliving materials.

  20. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... kinetics and thermodynamics by surface plasmon resonance and isothermal titration calorimetry. We found that upain-1 changes both main-chain conformation and side-chain orientations as it binds to the protease, in particular its Trp3 residue and the surrounding backbone. The properties of upain-1...

  1. Adhesive wear mechanism under combined electric diamond grinding

    Directory of Open Access Journals (Sweden)

    Popov Vyacheslav

    2017-01-01

    Full Text Available The article provides a scientific substantiation of loading of metal-bond diamond grinding wheels and describes the mechanism of contact interaction (interlocking of wheels with tool steel as well as its general properties having an influence on combined electric diamond grinding efficiency. The study concluded that a loaded layer can be formed in a few stages different by nature. It is known, that one of the causes of grinding degradation is a continuous loading of active grits (abrasive grinding tool by workpiece chips. It all affects the diamond grinding wheels efficiency and grinding ability with a result in increase of tool pressure, contact temperature and wheels specific removal rate. Science has partially identified some various methods to minimize grinding wheel loading, however, as to loading of metal-bond diamond grinding wheels the search is still in progress. Therefore, research people have to state, that in spite of the fact that the wheels made of cubic boron nitride are of little use as applied to ceramic, ultrahard, hard-alloyed hard-to-machine and nano-materials of the time, but manufactures have to apply cubic boron nitride wheels wherein diamond ones preferable.

  2. Molecular mechanisms underlying synergistic adhesion of sickle red blood cells by hypoxia and low nitric oxide bioavailability.

    Science.gov (United States)

    Gutsaeva, Diana R; Montero-Huerta, Pedro; Parkerson, James B; Yerigenahally, Shobha D; Ikuta, Tohru; Head, C Alvin

    2014-03-20

    The molecular mechanisms by which nitric oxide (NO) bioavailability modulates the clinical expression of sickle cell disease (SCD) remain elusive. We investigated the effect of hypoxia and NO bioavailability on sickle red blood cell (sRBC) adhesion using mice deficient for endothelial NO synthase (eNOS) because their NO metabolite levels are similar to those of SCD mice but without hypoxemia. Whereas sRBC adhesion to endothelial cells in eNOS-deficient mice was synergistically upregulated at the onset of hypoxia, leukocyte adhesion was unaffected. Restoring NO metabolite levels to physiological levels markedly reduced sRBC adhesion to levels seen under normoxia. These results indicate that sRBC adherence to endothelial cells increases in response to hypoxia prior to leukocyte adherence, and that low NO bioavailability synergistically upregulates sRBC adhesion under hypoxia. Although multiple adhesion molecules mediate sRBC adhesion, we found a central role for P-selectin in sRBC adhesion. Hypoxia and low NO bioavailability upregulated P-selectin expression in endothelial cells in an additive manner through p38 kinase pathways. These results demonstrate novel cellular and signaling mechanisms that regulate sRBC adhesion under hypoxia and low NO bioavailability. Importantly, these findings point us toward new molecular targets to inhibit cell adhesion in SCD.

  3. SPH simulations of WBC adhesion to the endothelium: the role of haemodynamics and endothelial binding kinetics.

    Science.gov (United States)

    Gholami, Babak; Comerford, Andrew; Ellero, Marco

    2015-11-01

    A multiscale Lagrangian particle solver introduced in our previous work is extended to model physiologically realistic near-wall cell dynamics. Three-dimensional simulation of particle trajectories is combined with realistic receptor-ligand adhesion behaviour to cover full cell interactions in the vicinity of the endothelium. The selected stochastic adhesion model, which is based on a Monte Carlo acceptance-rejection method, fits in our Lagrangian framework and does not compromise performance. Additionally, appropriate inflow/outflow boundary conditions are implemented for our SPH solver to enable realistic pulsatile flow simulation. The model is tested against in-vitro data from a 3D geometry with a stenosis and sudden expansion. In both steady and pulsatile flow conditions, results show close agreement with the experimental ones. Furthermore we demonstrate, in agreement with experimental observations, that haemodynamics alone does not account for adhesion of white blood cells, in this case U937 monocytic human cells. Our findings suggest that the current framework is fully capable of modelling cell dynamics in large arteries in a realistic and efficient manner.

  4. Kindlin-1 mutant zebrafish as an in vivo model system to study adhesion mechanisms in the epidermis.

    Science.gov (United States)

    Postel, Ruben; Margadant, Coert; Fischer, Boris; Kreft, Maaike; Janssen, Hans; Secades, Pablo; Zambruno, Giovanna; Sonnenberg, Arnoud

    2013-09-01

    From a forward genetic screen for epidermal defects in zebrafish, we identified a loss-of-function mutation in Kindlin-1, an essential regulator of integrin function. The mutation generates a premature stop codon, deleting the integrin-binding site. The mutant zebrafish develops cell-matrix and cell-cell adhesion defects in the basal epidermis leading to progressive fin rupturing, and was therefore designated rupturing-of-fins (rof). Similar defects were observed in the epidermis of Kindler syndrome patients, carrying a loss-of-function mutation in kindlin-1. Mutational analysis and rescue experiments in zebrafish revealed that residues K610, W612, and I647 in the F3 domain are essential for Kindlin-1 function in vivo, and that Kindlin-2 can functionally compensate for the loss of Kindlin-1. The fin phenotype of rof/kindlin-1 mutants resembles that of badfin mutants, carrying a mutation in integrin α3. We show here that this mutation impairs the biosynthesis of integrin α3β1 and causes cell-matrix and cell-cell defects in vivo. Whereas both Integrin-linked kinase (Ilk) and Kindlin-1 cooperate with Integrin α3β1 to resist trauma-induced epidermal defects, Kindlin-1 and Ilk, surprisingly, do not act synergistically but in parallel. Thus, the rof/kindlin-1 mutant zebrafish provides a unique model system to study epidermal adhesion mechanisms in vivo.

  5. Mechanical characterization of a bifunctional Tetronic hydrogel adhesive for soft tissues.

    Science.gov (United States)

    Sanders, Lindsey; Stone, Roland; Webb, Kenneth; Mefford, Thompson; Nagatomi, Jiro

    2015-03-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a four-arm poly(propylene oxide)-poly(ethylene oxide) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive (Cho et al., Acta Biomater 2012;8:2223-2232; Barrett et al., Adv Health Mater 2012;1-11; Balakrishnan, Evaluating mechanical performance of hydrogel-based adhesives for soft tissue applications. Clemson University, All Theses, Paper 1574: Tiger Prints; 2013). Building on the success of these studies, this study explored bifunctionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni and bifunctional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone. Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bifunctional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of this study provided evidence that the bifunctional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. © 2014 Wiley Periodicals, Inc.

  6. Mechanical Properties and Sliding-impact Wear Resistance of Self-adhesive Resin Cements.

    Science.gov (United States)

    Furuichi, T; Takamizawa, T; Tsujimoto, A; Miyazaki, M; Barkmeier, W W; Latta, M A

    2016-01-01

    The present study determined the mechanical properties and impact-sliding wear characteristics of self-adhesive resin cements. Five self-adhesive resin cements were used: G-CEM LinkAce, BeautiCem SA, Maxcem Elite, Clearfil SA Automix, and RelyX Unicem 2. Clearfil Esthetic Cement was employed as a control material. Six specimens for each resin cement were used to determine flexural strength, elastic modulus, and resilience according to ISO specification #4049. Ten specimens for each resin cement were used to determine the wear characteristics using an impact-sliding wear testing apparatus. Wear was generated using a stainless-steel ball bearing mounted inside a collet assembly. The maximum facet depth and volume loss were determined using a noncontact profilometer in combination with confocal laser scanning microscopy. Data were evaluated using analysis of variance followed by the Tukey honestly significantly different test (α=0.05). The flexural strength of the resin cements ranged from 68.4 to 144.2 MPa; the elastic modulus ranged from 4.4 to 10.6 GPa; and the resilience ranged from 4.5 to 12.0 MJ/m(3). The results for the maximum facet depth ranged from 25.2 to 235.9 μm, and volume loss ranged from 0.0107 to 0.5258 mm(3). The flexural properties and wear resistance were found to vary depending upon the self-adhesive resin cement tested. The self-adhesive cements tended to have lower mechanical properties than the conventional resin cement. All self-adhesive resin cements, apart from G-CEM LinkAce, demonstrated significantly poorer wear resistance than did the conventional resin cement.

  7. Strong mechanical adhesion of gold electroless contacts on CdZnTe deposited by alcoholic solutions

    Science.gov (United States)

    Benassi, G.; Nasi, L.; Bettelli, M.; Zambelli, N.; Calestani, D.; Zappettini, A.

    2017-02-01

    CdZnTe crystals are nowadays employed as X-ray detectors for a number of applications, such as medical imaging, security, and environmental monitoring. One of the main difficulties connected with CdZnTe-based detector processing is the poor contact adhesion that affect bonding procedures and device long term stability. We have shown that it is possible to obtain mechanically stable contacts by common electroless deposition using alcoholic solutions instead of water solutions. The contacts show blocking current-voltage characteristic that is required for obtaining spectroscopic detectors. Nanoscale-resolved chemical analysis indicated that the improved mechanical adhesion is due to a better control of the stoichiometry of the CdZnTe layer below the contact.

  8. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  9. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    OpenAIRE

    Chazeau, Ana?l; Garcia, Mikael; Cz?nd?r, Katalin; Perrais, David; Tessier, B?atrice; Giannone, Gr?gory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and incr...

  10. Tablet mechanics depend on nano and micro scale adhesion, lubrication and structure.

    Science.gov (United States)

    Badal Tejedor, Maria; Nordgren, Niklas; Schuleit, Michael; Rutland, Mark W; Millqvist-Fureby, Anna

    2015-01-01

    Tablets are the most convenient form for drug administration. However, despite the ease of manufacturing problems such as powder adhesion occur during the production process. This study presents surface and structural characterization of tablets formulated with commonly used excipients (microcrystalline cellulose (MCC), lactose, mannitol, magnesium (Mg) stearate) pressed under different compaction conditions. Tablet surface analyses were performed with scanning electron microscopy (SEM), profilometry and atomic force microscopy (AFM). The mechanical properties of the tablets were evaluated with a tablet hardness test. Local adhesion detected by AFM decreased when Mg stearate was present in the formulation. Moreover, the tablet strength of plastically deformable excipients such as MCC was significantly decreased after addition of Mg stearate. Combined these facts indicate that Mg stearate affects the particle-particle bonding and thus elastic recovery. The MCC excipient also displayed the highest hardness which is characteristic for a highly cohesive material. This is discussed in the view of the relatively high adhesion found between MCC and a hydrophilic probe at the nanoscale using AFM. In contrast, the tablet strength of brittle materials like lactose and mannitol is unaffected by Mg stearate. Thus fracture occurs within the excipient particles and not at particle boundaries, creating new surfaces not previously exposed to Mg stearate. Such uncoated surfaces may well promote adhesive interactions with tools during manufacture. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives : Focussing on Bonding Glass

    NARCIS (Netherlands)

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap

  12. Regulation of CD4(+) T cells by pleural mesothelial cells via adhesion molecule-dependent mechanisms in tuberculous pleurisy.

    Science.gov (United States)

    Yuan, Ming-Li; Tong, Zhao-Hui; Jin, Xiao-Guang; Zhang, Jian-Chu; Wang, Xiao-Juan; Ma, Wan-Li; Yin, Wen; Zhou, Qiong; Ye, Hong; Shi, Huan-Zhong

    2013-01-01

    Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) have been demonstrated to be expressed on pleural mesothelial cells (PMCs), and to mediate leukocyte adhesion and migration; however, little is known about whether adhesion molecule-dependent mechanisms are involved in the regulation of CD4(+) T cells by PMCs in tuberculous pleural effusion (TPE). Expressions of ICAM-1 and VCAM-1 on PMCs, as well as expressions of CD11a and CD29, the counter-receptors for ICAM-1 and VCAM-1, respectively, expressed on CD4(+) T cells in TPE were determined using flow cytometry. The immune regulations on adhesion, proliferation, activation, selective expansion of CD4(+) helper T cell subgroups exerted by PMCs via adhesion molecule-dependent mechanisms were explored. Percentages of ICAM-1-positive and VCAM-1‒positive PMCs in TPE were increased compared with PMC line. Interferon-γ enhanced fluorescence intensity of ICAM-1, while IL-4 promoted VCAM-1 expression on PMCs. Percentages of CD11a(high)CD4(+) and CD29(high)CD4(+) T cells in TPE significantly increased as compared with peripheral blood. Prestimulation of PMCs with anti‒ICAM-1 or ‒VCAM-1 mAb significantly inhibited adhesion, activation, as well as effector regulatory T cell expansion induced by PMCs. Our current data showed that adhesion molecule pathways on PMCs regulated adhesion and activation of CD4(+) T cells, and selectively promoted the expansion of effector regulatory T cells.

  13. The Effect of Surface Contamination on Adhesive Forces as Measured by Contact Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    EMERSON,JOHN A.; GIUNTA,RACHEL K.; MILLER,GREGORY V.; SORENSEN,CHRISTOPHER R.; PEARSON,RAYMOND A.

    2000-12-18

    The contact adhesive forces between two surfaces, one being a soft hemisphere and the other being a hard plate, can readily be determined by applying an external compressive load to mate the two surfaces and subsequently applying a tensile load to peel the surfaces apart. The contact region is assumed the superposition of elastic Hertzian pressure and of the attractive surface forces that act only over the contact area. What are the effects of the degree of surface contamination on adhesive forces? Clean aluminum surfaces were coated with hexadecane as a controlled contaminant. The force required to pull an elastomeric hemisphere from a surface was determined by contact mechanics, via the JKR model, using a model siloxane network for the elastomeric contact sphere. Due to the dispersive nature of the elastomer surface, larger forces were required to pull the sphere from a contaminated surface than a clean aluminum oxide surface.

  14. Mechanism and Rate Constants of the Cdc42 GTPase Binding with Intrinsically Disordered Effectors

    OpenAIRE

    Pang, Xiaodong; Zhou, Huan-Xiang

    2016-01-01

    Intrinsically disordered proteins (IDPs) are often involved in signaling and regulatory functions, through binding to cellular targets. Many IDPs undergo disorder-to-order transitions upon binding. Both the binding mechanisms and the magnitudes of the binding rate constants can have functional importance. Previously we have found that the coupled binding and folding of any IDP generally follows a sequential mechanism that we term dock-and-coalesce, whereby one segment of the IDP first docks t...

  15. A peptide derived from a trans-homophilic binding site in neural cell adhesion molecule induces neurite outgrowth and neuronal survival

    DEFF Research Database (Denmark)

    Køhler, Lene B; Soroka, Vladislav; Korshunova, Irina

    2010-01-01

    The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration, and synaptic plasticity. The crystal structure of a fragment of NCAM comprising the three N-terminal immunoglobulin (Ig)-like modules indicates that the first and second Ig modules bind to each other...

  16. Mechanical Properties of 3 Ply Plywood Made from Acacia Mangium Veneers and Green Starch-based Adhesives

    Directory of Open Access Journals (Sweden)

    Chiang Liew Kang

    2016-01-01

    Full Text Available Recently, starch has attracted great consideration as a raw material on wood adhesives in the wood industry. Cassava and sago starchbased adhesive are renewable, biodegradable and environmental friendly product when compared with other petroleum-based adhesives. In this study, different starches-based adhesive has been produced. Mechanical properties of plywood made from Acacia mangium veneers with different starches-based adhesives (cassava and sago as binder cured at different curing temperatures (100°C, 120°C and 140°C has been determined. All materials (starch, vinegar, water and glycerol were cooked and stirred until the mixture reached 70°C - 80°C which become sticky and whitish. After that, starch-based adhesives were applied on the veneers by using spreader, and the plywood were pre-pressed for 30 minutes with 20 kg load before hot-press. Cassava starch-based adhesive showed the highest Modulus of Elasticity which was 12410.56 N/mm2 than sago starch-based adhesive, while Modulus of Rupture of the cassava starch-based adhesive at 100°C showed highest mean value at 74.19 N/mm2. Sago-starch based adhesive at 140°C showed the highest shear strength with 1.11 N/mm2. In short, cassava and sago starch-based adhesives gave good performance in mechanical properties such as bending for pressed temperature (100°C and 120°C, and shear at 140°C pressed temperature.

  17. Two functional reticulocyte binding-like (RBL) invasion ligands of zoonotic Plasmodium knowlesi exhibit differential adhesion to monkey and human erythrocytes.

    Science.gov (United States)

    Semenya, Amma A; Tran, Tuan M; Meyer, Esmeralda Vs; Barnwell, John W; Galinski, Mary R

    2012-07-06

    Plasmodium knowlesi is a monkey malaria species that is becoming a serious public health concern infecting hundreds and perhaps thousands of humans in Southeast Asia. Invasion of erythrocytes by merozoites entails a cascade of molecular interactions. One step involves the adhesion of Plasmodium reticulocyte binding-like (RBL) proteins. Plasmodium knowlesi merozoites express only two RBL invasion ligands, known as Normocyte Binding Proteins (PkNBPXa and PkNBPXb). Overlapping N-terminal regions of PkNBPXa and PkNBPXb were expressed in COS7 cells and tested for surface expression and adhesion to rhesus monkey erythrocytes. Subsequent tests to study specific receptor ligand interactions included adhesion to a panel of human and non-human primate erythrocytes, enzymatic treatment, and site directed mutagenesis. An N-terminal cysteine-rich region of PkNBPXb (PkNBPXb-II) exhibited specific adhesion to rhesus monkey erythrocytes. Mutation of four of five cysteines in PkNBPXb-II interfered with its surface expression on COS7 cells, suggesting disulphide bond conformation is critical for intracellular trafficking. Binding of PkNBPXb-II was abolished when rhesus erythrocytes were pre-treated with chymotrypsin, but not trypsin or neuraminidase. PkNBPXb-II also bound other Old World monkey species and gibbon erythrocytes. However, erythrocytes from other primate species including humans did not bind to PkNBPXb-II or native PkNBPXb. Importantly, unlike PkNBPXb, PkNBPXa bound human erythrocytes, and this binding was independent of the Duffy blood group determinant. The data reported here begins to clarify the functional domains of the P. knowlesi RBLs. A binding domain has been identified and characterized in PkNBPXb. Notably, this study demonstrates that unlike PkNBPXb, PkNBPXa can bind to human erythrocytes, suggesting that PkNBPXa may function as a ligand to enable the invasion of P. knowlesi merozoites into human cells.

  18. Two functional reticulocyte binding-like (RBL invasion ligands of zoonotic Plasmodium knowlesi exhibit differential adhesion to monkey and human erythrocytes

    Directory of Open Access Journals (Sweden)

    Semenya Amma A

    2012-07-01

    Full Text Available Abstract Background Plasmodium knowlesi is a monkey malaria species that is becoming a serious public health concern infecting hundreds and perhaps thousands of humans in Southeast Asia. Invasion of erythrocytes by merozoites entails a cascade of molecular interactions. One step involves the adhesion of Plasmodium reticulocyte binding-like (RBL proteins. Plasmodium knowlesi merozoites express only two RBL invasion ligands, known as Normocyte Binding Proteins (PkNBPXa and PkNBPXb. Methods Overlapping N-terminal regions of PkNBPXa and PkNBPXb were expressed in COS7 cells and tested for surface expression and adhesion to rhesus monkey erythrocytes. Subsequent tests to study specific receptor ligand interactions included adhesion to a panel of human and non-human primate erythrocytes, enzymatic treatment, and site directed mutagenesis. Results An N-terminal cysteine-rich region of PkNBPXb (PkNBPXb-II exhibited specific adhesion to rhesus monkey erythrocytes. Mutation of four of five cysteines in PkNBPXb-II interfered with its surface expression on COS7 cells, suggesting disulphide bond conformation is critical for intracellular trafficking. Binding of PkNBPXb-II was abolished when rhesus erythrocytes were pre-treated with chymotrypsin, but not trypsin or neuraminidase. PkNBPXb-II also bound other Old World monkey species and gibbon erythrocytes. However, erythrocytes from other primate species including humans did not bind to PkNBPXb-II or native PkNBPXb. Importantly, unlike PkNBPXb, PkNBPXa bound human erythrocytes, and this binding was independent of the Duffy blood group determinant. Conclusions The data reported here begins to clarify the functional domains of the P. knowlesi RBLs. A binding domain has been identified and characterized in PkNBPXb. Notably, this study demonstrates that unlike PkNBPXb, PkNBPXa can bind to human erythrocytes, suggesting that PkNBPXa may function as a ligand to enable the invasion of P. knowlesi merozoites into

  19. Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite

    Directory of Open Access Journals (Sweden)

    Gijo Raj

    2011-01-01

    Full Text Available The effect of alkali and enzymatic treatments on flax fibre morphology, mechanical, and adhesion properties was investigated. The multilength scale analysis allows for the correlation of the fibre's morphological changes induced by the treatments with mechanical properties to better explain the adherence properties between flax and PLA. The atomic force microscopy (AFM images revealed the removal of primary layers, upon treatments, down to cellulose microfibrils present in the secondary layers. The variation in mechanical properties was found to be dependent, apart from the crystalline content, on interaction between cellulose microfibrils and encrusting polysaccharides, pectins and hemicelluloses, in the secondary layers. Finally, microbond tests between the modified fibres and PLA emphasize the important role of the outer fibre's surface on the overall composite properties. It was observed here that gentle treatments of the fibres, down to the oriented microfibrils, are favourable to a better adherence with a PLA drop. This paper highlights the important role of amorphous polymers, hemicellulose and pectin, in the optimisation of the adhesion and mechanical properties of flax fibres in the biocomposite.

  20. Design and Optimal Research of a Non-Contact Adjustable Magnetic Adhesion Mechanism for a Wall-Climbing Welding Robot

    Directory of Open Access Journals (Sweden)

    Minghui Wu

    2013-01-01

    Full Text Available Wall-climbing welding robots (WCWRs can replace workers in manufacturing and maintaining large unstructured equipment, such as ships. The adhesion mechanism is the key component of WCWRs. As it is directly related to the robot's ability in relation to adsorbing, moving flexibly and obstacle-passing. In this paper, a novel non-contact adjustably magnetic adhesion mechanism is proposed. The magnet suckers are mounted under the robot's axils and the sucker and wall are in non-contact. In order to pass obstacles, the sucker and the wheel unit can be pulled up and pushed down by a lifting mechanism. The magnetic adhesion force can be adjusted by changing the height of the gap between the sucker and the wall by the lifting mechanism. In order to increase the adhesion force, the value of the sucker's magnetic energy density (MED is maximized by optimizing the magnet sucker's structure parameters with a finite element method. Experiments prove that the magnetic adhesion mechanism has enough adhesion force and that the WCWR can complete wall-climbing work within a large unstructured environment.

  1. Kinetic Mechanism and Rate-Limiting Steps of Focal Adhesion Kinase-1

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, Jessica L.; Briand, Jacques; Chen, Stephanie; Lehr, Ruth; McDevitt, Patrick; Zhao, Baoguang; Smallwood, Angela; Concha, Nestor; Oza, Khyati; Kirkpatrick, Robert; Yan, Kang; Villa, James P.; Meek, Thomas D.; Thrall, Sara H. (Chemizon); (GSKPA)

    2010-12-07

    Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH{sub 2}, FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k{sub cat} (0.052 {+-} 0.001 s{sup -1}), K{sub MgATP} (1.2 {+-} 0.1 {micro}M), K{sub iMgATP} (1.3 {+-} 0.2 {micro}M), K{sub FAK-tide} (5.6 {+-} 0.4 {micro}M), and K{sub iFAK-tide} (6.1 {+-} 1.1 {micro}M) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described by a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the {beta}{gamma}-bridge:{beta}-nonbridge positional oxygen exchange of [{gamma}-{sup 18}O{sub 4}]ATP in the presence of 1 mM [{gamma}-{sup 18}O{sub 4}]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k{sub x}/k{sub cat} = 0.14 {+-} 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k{sub cat}/K{sub FAK-tide}, while k{sub cat} and k{sub cat}/K{sub MgATP} were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k{sub cat}/K{sub m} for MgATP but not on k{sub cat}/K{sub m} for FAK-tide. From the positional isotope exchange, viscosity, and

  2. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion : A quantitative proteomics approach

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-01-01

    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After

  3. Interfacial integrity of bonded restorations with self-etching adhesives: Water storage and thermo-mechanical cycling.

    Science.gov (United States)

    Martins, Gislaine Cristine; Sánchez-Ayala, Alfonso; D'Alpino, Paulo Henrique Perlatti; Calixto, Abraham Lincoln; Gomes, João Carlos; Gomes, Osnara Maria Mongruel

    2012-04-01

    To evaluate the effect of thermo-mechanical cycling (TMC) on the microleakage (μL) and axial gap width (AG) of Class V bonded restorations in premolars using self-etching adhesive systems. The bond strength of composite restorations to dentin (μTBS) using the same adhesives was also evaluated in third molars after water storage: 24 h and 6 months. The research hypotheses were tested for the results of two self-etching adhesives in comparison when a conventional two-step adhesive was used: (1) the μL and AG would be lower, regardless of TMC; (2) the μTBS of self-etching adhesives would be higher, irrespective of evaluation times. Sixty Class V composite restorations were made in 30 premolars and bonded with Adper Single Bond 2 (ASB2), AdheSE (ASE), and Adper Prompt L-Pop (APL-P) (n=20). Dentin μL and AG were immediately measured for half of the sample. The other half was evaluated after TMC. Eighteen third molars were also selected and bonded using the same adhesives to test the μTBS to dentin. Specimens were evaluated after 24 h and 6 months of water storage. No differences in μL and AG were found among the groups (P>.05). The μTBS mean values were: ASB2>ASE>APL-P (Pconventional, two-step adhesive remains high after 6 months of water storage.

  4. Breast cancer cells compete with hematopoietic stem and progenitor cells for intercellular adhesion molecule 1-mediated binding to the bone marrow microenvironment.

    Science.gov (United States)

    Dhawan, Abhishek; Friedrichs, Jens; Bonin, Malte von; Bejestani, Elham Peshali; Werner, Carsten; Wobus, Manja; Chavakis, Triantafyllos; Bornhäuser, Martin

    2016-08-01

    Adhesion-based cellular interactions involved in breast cancer metastasis to the bone marrow remain elusive. We identified that breast cancer cells directly compete with hematopoietic stem and progenitor cells (HSPCs) for retention in the bone marrow microenvironment. To this end, we established two models of competitive cell adhesion-simultaneous and sequential-to study a potential competition for homing to the niche and displacement of the endogenous HSPCs upon invasion by tumor cells. In both models, breast cancer cells but not non-tumorigenic cells competitively reduced adhesion of HSPCs to bone marrow-derived mesenchymal stromal cells (MSCs) in a tumor cell number-dependent manner. Higher adhesive force between breast cancer cells and MSCs, as compared with HSPCs, assessed by quantitative atomic force microscopy-based single-cell force spectroscopy could partially account for tumor cell mediated reduction in HSPC adhesion to MSCs. Genetic inactivation and blockade studies revealed that homophilic interactions between intercellular adhesion molecule 1 (ICAM-1) expressed on tumor cells and MSCs, respectively, regulate the competition between tumor cells and HSPCs for binding to MSCs. Moreover, tumor cell-secreted soluble ICAM-1(sICAM-1) also impaired HSPC adhesion via blocking CD18-ICAM-1 binding between HSPCs and MSCs. Xenotransplantation studies in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice revealed reduction of human HSPCs in the bone marrow via metastatic breast cancer cells. These findings point to a direct competitive interaction between disseminated breast cancer cells and HSPCs within the bone marrow micro environment. This interaction might also have implications on niche-based tumor support. Therefore, targeting this cross talk may represent a novel therapeutic strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  6. Neuritogenic and survival-promoting effects of the P2 peptide derived from a homophilic binding site in the neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Pedersen, Martin V; Køhler, Lene B; Ditlevsen, Dorte K

    2004-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in neural development, regeneration, and plasticity. NCAM mediates adhesion and subsequent signal transduction through NCAM-NCAM binding. Recently, a peptide ligand termed P2 corresponding to a 12-amino-acid sequence in the FG loop...... lowered by P2. Finally, treatment of neurons with P2 resulted in phosphorylation of the ser/thr kinase Akt. Thus, a small peptide mimicking homophilic NCAM interaction is capable of inducing differentiation as reflected by neurite outgrowth in several neuronal cell types and inhibiting apoptosis...

  7. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-10-01

    The purpose of this study was to determine the relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. As controls, micro-hybrid and nano-hybrid resin composites were tested. The universal adhesives used were Scotchbond Universal, Adhese Universal, and G-Premio Bond. The fracture toughness and flexural properties of resin composites, and shear bond strength and shear fatigue strength of universal adhesive with resin composite using both total-etch and self-etch modes were determined. In the results, short fiber-reinforced resin composite showed significantly higher fracture toughness than did micro-hybrid and nano-hybrid resin composites. The flexural strength and modulus of short fiber-reinforced and nano-hybrid resin composites were significantly lower than were those of micro-hybrid resin composites. Regardless of etching mode, the shear bond strength of universal adhesives with short fiber-reinforced resin composite did not show any significant differences from micro-hybrid and nano-hybrid resin composites. The shear fatigue strength of universal adhesives with short fiber-reinforced resin composite and micro-hybrid resin composites were significantly higher than that of nano-hybrid resin composites. The results of this study suggest that the mechanical properties of short fiber-reinforced resin composite improve their bond durability with universal adhesive. © 2016 Eur J Oral Sci.

  8. Mycobacterial heparin-binding haemagglutinin adhesion-induced interferon & antibody for detection of tuberculosis.

    Science.gov (United States)

    Sun, Zhaogang; Nie, Lihui; Zhang, Xuxia; Li, Yan; Li, Chuanyou

    2011-04-01

    Mycobacterial heparin-binding haemagglutinin adhesin (HBHA) plays an important role in humoral and cellular immune response and is a potential diagnostic tool for tuberculosis (TB) serodiagnosis. This study was carried out to assess the usefulness of HBHA in TB clinics for differential diagnosis of pulmonary and extra-pulmonary TB (PTB, EPTB). In this study, 165 outpatients and 133 healthy volunteers were included to investigate the role of HBHA in TB diagnosis including the serodiagnostic tests and the interferon-γ release assays (IGRAs). The healthy volunteers were all without BCG vaccination including 73 subjects with purified protein derivative (PPD) (-) and 60 ones with PPD (+) (that is P-B- and P+B-). Of all the 165 outpatients 77 were PTB and 88 were EPTB. HBHA protein was used for serodiagnostic tests and IGRAs in peripheral blood mononuclear cells. HBHA-specific antibody levels in the serum of healthy subjects were significantly different from the patients with PTB or EPTB (PEPTB with limited sensitivity (77.08%; 95%CI, 62.69 to 87.97%) and specificity (87.50%; 95%CI, 74.75 to 95.27%). IFN-γ levels in the healthy (P+B- and P-B-) groups were significantly different (PEPTB subjects showed no difference in IFN-γ production. HBHA serodiagnostic test with IGRAs had the limited potential for use as auxiliary tools for the differential diagnosis of PTB and EPTB, since both methods showed low sensitivity and specificity.

  9. Protein Nanosheet Mechanics Controls Cell Adhesion and Expansion on Low-Viscosity Liquids.

    Science.gov (United States)

    Kong, Dexu; Megone, William; Nguyen, Khai D Q; Di Cio, Stefania; Ramstedt, Madeleine; Gautrot, Julien E

    2018-02-13

    Adherent cell culture typically requires cell spreading at the surface of solid substrates to sustain the formation of stable focal adhesions and assembly of a contractile cytoskeleton. However, a few reports have demonstrated that cell culture is possible on liquid substrates such as silicone and fluorinated oils, even displaying very low viscosities (0.77 cSt). Such behavior is surprising as low viscosity liquids are thought to relax much too fast (adhesions (with lifetimes on the order of minutes to hours). Here we show that cell spreading and proliferation at the surface of low viscosity liquids are enabled by the self-assembly of mechanically strong protein nanosheets at these interfaces. We propose that this phenomenon results from the denaturation of globular proteins, such as albumin, in combination with the coupling of surfactant molecules to the resulting protein nanosheets. We use interfacial rheology and atomic force microscopy indentation to characterize the mechanical properties of protein nanosheets and associated liquid-liquid interfaces. We identify a direct relationship between interfacial mechanics and the association of surfactant molecules with proteins and polymers assembled at liquid-liquid interfaces. In addition, our data indicate that cells primarily sense in-plane mechanical properties of interfaces, rather than relying on surface tension to sustain spreading, as in the spreading of water striders. These findings demonstrate that bulk and nanoscale mechanical properties may be designed independently, to provide structure and regulate cell phenotype, therefore calling for a paradigm shift for the design of biomaterials in regenerative medicine.

  10. Endothelial cell-surface tissue transglutaminase inhibits neutrophil adhesion by binding and releasing nitric oxide

    OpenAIRE

    Lai, Thung-S.; Lindberg, Robert A.; Zhou, Hua-Lin; Haroon, Zishan A.; Dewhirst, Mark W.; Hausladen, Alfred; Juang, Y.-L.; Stamler, Jonathan S.; Greenberg, Charles S.

    2017-01-01

    Nitric oxide (NO) produced by endothelial cells in response to cytokines displays anti-inflammatory activity by preventing the adherence, migration and activation of neutrophils. The molecular mechanism by which NO operates at the blood-endothelium interface to exert anti-inflammatory properties is largely unknown. Here we show that on endothelial surfaces, NO is associated with the sulfhydryl-rich protein tissue transglutaminase (TG2), thereby endowing the membrane surfaces with anti-inflamm...

  11. Regulation of CD4(+ T cells by pleural mesothelial cells via adhesion molecule-dependent mechanisms in tuberculous pleurisy.

    Directory of Open Access Journals (Sweden)

    Ming-Li Yuan

    Full Text Available BACKGROUND: Intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 have been demonstrated to be expressed on pleural mesothelial cells (PMCs, and to mediate leukocyte adhesion and migration; however, little is known about whether adhesion molecule-dependent mechanisms are involved in the regulation of CD4(+ T cells by PMCs in tuberculous pleural effusion (TPE. METHODS: Expressions of ICAM-1 and VCAM-1 on PMCs, as well as expressions of CD11a and CD29, the counter-receptors for ICAM-1 and VCAM-1, respectively, expressed on CD4(+ T cells in TPE were determined using flow cytometry. The immune regulations on adhesion, proliferation, activation, selective expansion of CD4(+ helper T cell subgroups exerted by PMCs via adhesion molecule-dependent mechanisms were explored. RESULTS: Percentages of ICAM-1-positive and VCAM-1‒positive PMCs in TPE were increased compared with PMC line. Interferon-γ enhanced fluorescence intensity of ICAM-1, while IL-4 promoted VCAM-1 expression on PMCs. Percentages of CD11a(highCD4(+ and CD29(highCD4(+ T cells in TPE significantly increased as compared with peripheral blood. Prestimulation of PMCs with anti‒ICAM-1 or ‒VCAM-1 mAb significantly inhibited adhesion, activation, as well as effector regulatory T cell expansion induced by PMCs. CONCLUSIONS: Our current data showed that adhesion molecule pathways on PMCs regulated adhesion and activation of CD4(+ T cells, and selectively promoted the expansion of effector regulatory T cells.

  12. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Energy Technology Data Exchange (ETDEWEB)

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  13. Setting characteristics and mechanical properties of self-adhesive resin luting agents.

    Science.gov (United States)

    Pilo, Raphael; Papadogiannis, Dimitris; Zinelis, Spiros; Eliades, George

    2017-03-01

    To evaluate the degree of conversion (DC%), salt yield and mechanical properties of self-adhesive luting agents (SAA) set under dual-cure (E) and self-cure (NE) modes. Three SAA (GC LinkAce/GCLA, MaxCem Elite/MXEL, Rely-X Unicem 2/RXUN) and an adhesive resin luting agent (Rely-X Ultimate/RXUL-control) were used. The properties tested under E and NE modes were a) DC% and phosphate salt yield after 10min, 1h (h) and 3 weeks (w) storage, by infrared spectroscopy; and b) the mechanical properties of 3w-stored specimens by instrumented indentation testing (Martens hardness/HM, Elastic modulus/EIT, Elastic index/ηIT) and microscopic Vickers hardness/VH. Statistical analysis was performed by 3-way ANOVA (DC%), 2-way ANOVA (salt yield) and 1-way ANOVA (mechanical properties) at an a=0.05. Significantly higher DC% was found in E, except from the 3w groups of GCLA and MXEL. Within E, no significant differences were found, but within NE, there were differences in the 3 w groups of GCLA (vs 10 min) and MXEL (vs 1h). All materials demonstrated increased salt yield in NE, with the highest values found in RXUL and RXUN. GCLA, RXUL showed the lowest HM in E and MXEL the highest in NE. The rankings of the significant differences in EIT were MXEL>GCLA,RXUN,RXUL (E) and RXUL,MXEL>GCLA,RXUN (NE), whereas for ηIT RXUL,RXUN>GCLA,MXEL (E) and GCLA>RXUL>MXEL,RXUN (NE). The results of VH measurements showed an overestimation ranging from 13% up to 38% in comparison with HM. There are significant differences in the properties tested, which may anticipate variations in the chemical, mechanical and biological performance of the products. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Selective binding and lateral clustering of α5β1 and αvβ3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly.

    Science.gov (United States)

    Schaufler, Viktoria; Czichos-Medda, Helmi; Hirschfeld-Warnecken, Vera; Neubauer, Stefanie; Rechenmacher, Florian; Medda, Rebecca; Kessler, Horst; Geiger, Benjamin; Spatz, Joachim P; Cavalcanti-Adam, E Ada

    2016-09-02

    Coordination of the specific functions of α5β1 and αvβ3 integrins is crucial for the precise regulation of cell adhesion, spreading and migration, yet the contribution of differential integrin-specific crosstalk to these processes remains unclear. To determine the specific functions of αvβ3 and α5β1 integrins, we used nanoarrays of gold particles presenting immobilized, integrin-selective peptidomimetic ligands. Integrin binding to the peptidomimetics is highly selective, and cells can spread on both ligands. However, spreading is faster and the projected cell area is greater on α5β1 ligand; both depend on ligand spacing. Quantitative analysis of adhesion plaques shows that focal adhesion size is increased in cells adhering to αvβ3 ligand at 30 and 60 nm spacings. Analysis of αvβ3 and α5β1 integrin clusters indicates that fibrillar adhesions are more prominent in cells adhering to α5β1 ligand, while clusters are mostly localized at the cell margins in cells adhering to αvβ3 ligand. αvβ3 integrin clusters are more pronounced on αvβ3 ligand, though they can also be detected in cells adhering to α5β1 ligand. Furthermore, α5β1 integrin clusters are present in cells adhering to α5β1 ligand, and often colocalize with αvβ3 clusters. Taken together, these findings indicate that the activation of αvβ3 integrin by ligand binding is dispensable for initial adhesion and spreading, but essential to formation of stable focal adhesions.

  15. Ubc9 Binds to ADAP and Is Required for Rap1 Membrane Recruitment, Rac1 Activation, and Integrin-Mediated T Cell Adhesion.

    Science.gov (United States)

    Xiong, Yiwei; Ye, Chengjin; Yang, Naiqi; Li, Madanqi; Liu, Hebin

    2017-11-10

    Although the immune adaptor adhesion and degranulation-promoting adaptor protein (ADAP) acts as a key mediator of integrin inside-out signaling leading to T cell adhesion, the regulation of this adaptor during integrin activation and clustering remains unclear. We now identify Ubc9, the sole small ubiquitin-related modifier E2 conjugase, as an essential regulator of ADAP where it is required for TCR-induced membrane recruitment of the small GTPase Rap1 and its effector protein RapL and for activation of the small GTPase Rac1 in T cell adhesion. We show that Ubc9 interacted directly with ADAP in vitro and in vivo, and the association was increased in response to anti-CD3 stimulation. The Ubc9-binding domain on ADAP was mapped to a nuclear localization sequence (aa 674-700) within ADAP. Knockdown of Ubc9 by short hairpin RNA or expression of the Ubc9-binding-deficient ADAP mutant significantly decreased TCR-induced integrin adhesion to ICAM-1 and fibronectin, as well as LFA-1 clustering, although it had little effect on the TCR proximal signaling responses and TCR-induced IL-2 transcription. Furthermore, downregulation of Ubc9 impaired TCR-mediated Rac1 activation and attenuated the membrane targeting of Rap1 and RapL, but not Rap1-interacting adaptor molecule. Taken together, our data demonstrate for the first time, to our knowledge, that Ubc9 acts as a functional binding partner of ADAP and plays a selective role in integrin-mediated T cell adhesion via modulation of Rap1-RapL membrane recruitment and Rac1 activation. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  17. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin.

    Science.gov (United States)

    Marshall, Jamie L; Oh, Jennifer; Chou, Eric; Lee, Joy A; Holmberg, Johan; Burkin, Dean J; Crosbie-Watson, Rachelle H

    2015-04-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin-glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan 'rescue' of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Role of seta angle and flexibility in the gecko adhesion mechanism

    Science.gov (United States)

    Hu, Congcong; Alex Greaney, P.

    2014-08-01

    A model is developed to describe the reversible nature of gecko dry adhesion. The central aspect of this model is that the seta can be easily peeled away from the contacting surface by a small moment at the contact tip. It is shown that this contact condition is very sensitive, but can result in robust adhesion if individual setae are canted and highly flexible. In analogy to the "cone of friction," we consider the "adhesion region"—the domain of normal and tangential forces that maintain adhesion. Results demonstrate that this adhesion region is highly asymmetric enabling the gecko to adhere under a variety of loading conditions associated with scuttling horizontally, vertically, and inverted. Moreover, under each of these conditions, there is a low energy path to de-adhesion. In this model, obliquely canted seta (as possessed by geckos) rather than vertically aligned fibers (common in synthetic dry adhesive) provides the most robust adhesion.

  19. Differential adhesion between moving particles as a mechanism for the evolution of social groups.

    Directory of Open Access Journals (Sweden)

    Thomas Garcia

    2014-02-01

    Full Text Available The evolutionary stability of cooperative traits, that are beneficial to other individuals but costly to their carrier, is considered possible only through the establishment of a sufficient degree of assortment between cooperators. Chimeric microbial populations, characterized by simple interactions between unrelated individuals, restrain the applicability of standard mechanisms generating such assortment, in particular when cells disperse between successive reproductive events such as happens in Dicyostelids and Myxobacteria. In this paper, we address the evolutionary dynamics of a costly trait that enhances attachment to others as well as group cohesion. By modeling cells as self-propelled particles moving on a plane according to local interaction forces and undergoing cycles of aggregation, reproduction and dispersal, we show that blind differential adhesion provides a basis for assortment in the process of group formation. When reproductive performance depends on the social context of players, evolution by natural selection can lead to the success of the social trait, and to the concomitant emergence of sizeable groups. We point out the conditions on the microscopic properties of motion and interaction that make such evolutionary outcome possible, stressing that the advent of sociality by differential adhesion is restricted to specific ecological contexts. Moreover, we show that the aggregation process naturally implies the existence of non-aggregated particles, and highlight their crucial evolutionary role despite being largely neglected in theoretical models for the evolution of sociality.

  20. Differential adhesion between moving particles as a mechanism for the evolution of social groups.

    Science.gov (United States)

    Garcia, Thomas; Brunnet, Leonardo Gregory; De Monte, Silvia

    2014-02-01

    The evolutionary stability of cooperative traits, that are beneficial to other individuals but costly to their carrier, is considered possible only through the establishment of a sufficient degree of assortment between cooperators. Chimeric microbial populations, characterized by simple interactions between unrelated individuals, restrain the applicability of standard mechanisms generating such assortment, in particular when cells disperse between successive reproductive events such as happens in Dicyostelids and Myxobacteria. In this paper, we address the evolutionary dynamics of a costly trait that enhances attachment to others as well as group cohesion. By modeling cells as self-propelled particles moving on a plane according to local interaction forces and undergoing cycles of aggregation, reproduction and dispersal, we show that blind differential adhesion provides a basis for assortment in the process of group formation. When reproductive performance depends on the social context of players, evolution by natural selection can lead to the success of the social trait, and to the concomitant emergence of sizeable groups. We point out the conditions on the microscopic properties of motion and interaction that make such evolutionary outcome possible, stressing that the advent of sociality by differential adhesion is restricted to specific ecological contexts. Moreover, we show that the aggregation process naturally implies the existence of non-aggregated particles, and highlight their crucial evolutionary role despite being largely neglected in theoretical models for the evolution of sociality.

  1. Ligation of the beta4 integrin triggers adhesion behavior of human keratinocytes by an "inside-out" mechanism.

    Science.gov (United States)

    Kippenberger, Stefan; Loitsch, Stefan; Müller, Jutta; Guschel, Maike; Kaufmann, Roland; Bernd, August

    2004-09-01

    Carcinogenesis is considered as a multistep process involving functional changes in the hemidesmosomal organization. In normal skin keratinocytes, expression of the alpha(6)beta(4) integrin is restricted to the proliferative basal layer and mediates stable adhesion to the underlying basement membrane. Observations in carcinoma cells show a functional and spatial dissociation of the alpha(6)beta(4) integrin from the hemidesmosomal complex, which stimulates cell migration and, therefore, may contribute to carcinoma invasion. We now have evaluated the adhesion behavior of epithelial cells at different stages of transformation in response to activation of the beta(4) integrin. It is demonstrated that ligation of the beta(4) integrin augmented adhesion of carcinoma and pre-carcinoma cells to non-modified plastic. In contrast, adhesion behavior of normal human keratinocytes was not influenced by ligation of the beta(4) integrin. In order to explain the mechanism of beta(4)-mediated adhesion, the hypothesis of an "inside-out" activation of integrins was tested. Evidence is given that for cells expressing the alpha(6)beta(4) integrin, ligation of the beta(4) integrin increased beta(1) integrin-mediated adhesion. Furthermore, ligation of the beta(4) integrin led to phosphorylation of PKB/Akt at both phosphorylation sites. Functional blocking of PKB/Akt by dominant-negative overexpression decreased cell adhesion in response to beta(4) integrin ligation. Taken together, the present data establish a link between the ligation of the beta(4) integrin and beta(1) integrin-mediated cell adhesion in carcinoma and pre-carcinoma cells. Hence, these findings provide further insight into the conversion processes during carcinogenesis and show the beta(4) integrin to be a key regulator of cellular adhesion.

  2. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    Science.gov (United States)

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines.

    Science.gov (United States)

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-03-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin-coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. © 2015 Chazeau, Garcia, Czöndör, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory

    Science.gov (United States)

    Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-01-01

    ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442

  5. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory.

    Science.gov (United States)

    Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-09-02

    The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).

  6. Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

    CERN Document Server

    Althouse, L P

    1979-01-01

    Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

  7. [Adhesion mechanism of MMA/TBBO resin containing 4-META to decalcified dentin].

    Science.gov (United States)

    Akimoto, T; Kadoma, Y; Imai, Y

    1990-11-01

    As a model experiment to understand the mechanism of adhesion of the 4-META-MMA/TBBO resin to dentin, 4-META-MMA/TBBO was polymerized in the presence of decalcified dentin sheet treated with citric acid (CA) aqueous solution containing ferric chloride (FC). Curing time of MMA/TBBO resin was reduced by the addition of 4-META to MMA. Addition of 4-META increased molecular weight of PMMA. PMMA polymerized inside the decalcified dentin sheet was insoluble in acetone. PMMA obtained from the monomer liquid used in commercial Super-Bond C & B was all insoluble and no soluble fraction was obtained. These results suggested that 4-META accelerated polymerization of MMA-TBBO resin in the presence of ferric ion and was effective to enhance molecular weight of PMMA. These effects seemed to be related to high bond strength of Super-Bond with dentin.

  8. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

    DEFF Research Database (Denmark)

    Liebscher, Ines; Ackley, Brian; Araç, Demet

    2014-01-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region....... In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF...... recent advances in understanding the biological functions, signaling mechanisms, and disease associations of the aGPCRs....

  9. Substrate Coupling Strength of Integrin-Binding Ligands Modulates Adhesion, Spreading, and Differentiation of Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Choi, Chun Kit K; Xu, Yang J; Wang, Ben; Zhu, Meiling; Zhang, Li; Bian, Liming

    2015-10-14

    mechanosensitive transcriptional regulator of stem cells. Our findings highlight the importance of the substrate coupling strength of integrin-binding ligands on regulating adhesion, spreading, and differentiation of hMSCs.

  10. Study on the mechanical behavior of adhesive interface by digital image correlation

    Science.gov (United States)

    Guo, BaoQiao; Xie, HuiMin; Zhu, JianGuo; Wang, HuaiXi; Chen, PengWan; Zhang, QingMing

    2011-04-01

    The shear modulus of the adhesive layer and the failure mode of adhesive structure on single lap joint specimens under tensile tests are investigated in this paper. The aluminum-aluminum adherends are bonded by two different adhesives: polydimethylsiloxane (PDMS) and epoxy. The full deformation fields are measured using the digital image correlation (DIC) method with the images on the middle part of the adhesive layer recorded by a high resolution microscope. Then, the shear modulus values of the two adhesives are calculated with a simple pure shear strain model. A numerical model is proposed to simulate the single lap joint structure under tensile load in comparison with the experimental results. The results show that this method can successfully estimate the shear modulus of the adhesive layer. The failure behavior of epoxy adhesive/adherend interface is also analyzed and discussed.

  11. Quantum mechanics/molecular mechanics study of oxygen binding in hemocyanin.

    Science.gov (United States)

    Saito, Toru; Thiel, Walter

    2014-05-15

    We report a combined quantum mechanics/molecular mechanics (QM/MM) study on the mechanism of reversible dioxygen binding in the active site of hemocyanin (Hc). The QM region is treated by broken-symmetry density functional theory (DFT) with spin projection corrections. The X-ray structures of deoxygenated (deoxyHc) and oxygenated (oxyHc) hemocyanin are well reproduced by QM/MM geometry optimizations. The computed relative energies strongly depend on the chosen density functional. They are consistent with the available thermodynamic data for oxygen binding in hemocyanin and in synthetic model complexes when the BH&HLYP hybrid functional with 50% Hartree-Fock exchange is used. According to the QM(BH&HLYP)/MM results, the reaction proceeds stepwise with two sequential electron transfer (ET) processes in the triplet state followed by an intersystem crossing to the singlet product. The first ET step leads to a nonbridged superoxo CuB(II)-O2(•-) intermediate via a low-barrier transition state. The second ET step is even more facile and yields a side-on oxyHc complex with the characteristic Cu2O2 butterfly core, accompanied by triplet-singlet intersystem crossing. The computed barriers are very small so that the two ET processes are expected to very rapid and nearly simultaneous.

  12. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  13. Adhesive Bond Stiffness of Staphylococcus aureus with and without Proteins That Bind to an Adsorbed Fibronectin Film

    NARCIS (Netherlands)

    Olsson, Adam L. J.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    Staphylococcus aureus is known to cause biomaterial-associated infections of implants and devices once it has breached the skin and mucosal barriers. Adhesion is the initial step in the development of a biomaterial-associated infection, and strategies to prevent staphylococcal adhesion and thus

  14. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles.

    Science.gov (United States)

    Gutiérrez, M F; Malaquias, P; Matos, T P; Szesz, A; Souza, S; Bermudez, J; Reis, A; Loguercio, A D; Farago, P V

    2017-03-01

    To evaluate the effect of addition of copper nanoparticles (CN) at different concentrations into a two-step etch-and-rinse (2-ER) adhesive on antimicrobial activity (AMA), copper release (CR), ultimate tensile strength (UTS), degree of conversion (DC), water sorption (WS), solubility (SO), as well as the immediate (IM) and 1-year resin-dentin bond strength (μTBS) and nanoleakage (NL). Seven adhesives were formulated according to the addition of CN (0, 0.0075, 0.015, 0.06, 0.1, 0.5 and 1wt%) in adhesive. The AMA was evaluated against Streptococcus mutans using agar diffusion assay. For CR, WS and SO, specimens were constructed and tested for 28 days. For UTS, specimens were tested after 24h and 28 days. For DC, specimens were constructed and tested after 24h by FTIR. After enamel removal, the ER was applied to dentin. After composite resin build-ups, specimens were sectioned to obtain resin-dentin sticks. For μTBS and NL, specimens were tested after 24h and 1-year periods. All data were submitted to statistical analysis (α=0.05). The addition of CN provided AMA to the adhesives at all concentrations. Higher CR was observed in adhesives with higher concentration of CN. UTS, DC, WS and SO were not influenced. For μTBS an increase was observed in 0.1 and 0.5% copper group. For NL, a significant decrease was observed in all groups in comparison with control group. After 1-year, no significant reductions of μTBS and no significant increases of NL were observed for copper containing adhesives compared to the control group. The addition of CN in concentrations up to 1wt% in the 2-ER adhesive may be an alternative to provide AMA and preserve the bonding to dentin, without reducing adhesives' mechanical properties evaluated. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Internal mechanical stresses and the thermodynamic and adhesion parameters of the metal condensate-single-crystal silicon system

    Science.gov (United States)

    Coman, B. P.; Juzevych, V. N.

    2012-07-01

    The kinetics of generation of internal mechanical stresses σ( d) in chromium, copper, gold, and aluminum thin films on single-crystal silicon substrates at different deposition rates has been experimentally investigated using the cantilever method. A two-step character of the variations in internal tensile stresses has been revealed. The regularities of the formation of the maximum level of mechanical stresses in the condensates under investigation have been established. The energy and adhesion parameters of chromium, copper, gold, and aluminum nanolayers on silicon, germanium, and nickel substrates have been studied using the macroscopic methods of surface physics. The interfacial energy, interfacial tension, work of adhesion, interfacial charge, and a new energy characteristic of the interfacial layer, namely, the energy of adhesive bonds, which exceeds the interfacial energy, have been determined.

  16. The muscle integrin binding protein (MIBP) interacts with alpha7beta1 integrin and regulates cell adhesion and laminin matrix deposition.

    Science.gov (United States)

    Li, Ji; Rao, Hongwei; Burkin, Dean; Kaufman, Stephen J; Wu, Chuanyue

    2003-09-01

    Integrins are alphabeta transmembrane receptors that function in key cellular processes, including cell adhesion, differentiation, and extracellular matrix deposition through interactions with extracellular, membrane, and cytoplasmic proteins. We previously identified and cloned a muscle beta1 integrin cytoplasmic binding protein termed MIBP and found that the expression level of MIBP is critical in the decision-making process of terminal myogenic differentiation. We report here that MIBP interacts with the alpha7beta1 integrin but not the alpha5beta1 integrin in C2C12 myoblasts, suggesting an important role of integrin alpha chains in the regulation of the beta1-MIBP interaction. Furthermore, consistent with its selective binding activity toward the alpha7beta1 laminin receptor, we have found that overexpression of MIBP in C2C12 myoblasts resulted in a significant reduction of cell adhesion to laminin and inhibition of laminin matrix deposition. By contrast, neither cell adhesion to fibronectin nor fibronectin matrix deposition was significantly altered in cells overexpressing MIBP. Finally, we show that both the protein level and tyrosine phosphorylation of paxillin, a key signaling molecule involved in the cellular control of myogenic differentiation, are increased by MIBP. These results suggest that MIBP functions in the control of myogenic differentiation by regulating alpha7beta1 integrin-mediated cell interactions with laminin matrix and intracellular signaling through paxillin.

  17. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.

    Science.gov (United States)

    Ilie, Nicoleta; Simon, Alexander

    2012-04-01

    Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.

  18. New insights into the molecular mechanism of E-cadherin-mediated cell adhesion by free energy calculations

    DEFF Research Database (Denmark)

    Doro, Fabio; Saladino, Giorgio; Belvisi, Laura

    2015-01-01

    swapping to mediate cell adhesion. However, despite its importance, the molecular mechanism of domain swapping is still debated. Here, we study the conformational changes that lead to activation and dimerization via domain swapping of E-cadherin. Using state-of-the-art enhanced sampling atomistic...

  19. Possible mechanism of the anti-inflammatory activity of ruscogenin: role of intercellular adhesion molecule-1 and nuclear factor-kappaB.

    Science.gov (United States)

    Huang, Ya-Lin; Kou, Jun-Ping; Ma, Li; Song, Jia-Xi; Yu, Bo-Yang

    2008-10-01

    Ruscogenin (RUS), first isolated from Ruscus aculeatus, also a major steroidal sapogenin of traditional Chinese herb Radix Ophiopogon japonicus, has been found to exert significant anti-inflammatory and anti-thrombotic activities. Our previous studies suggested that ruscogenin remarkably inhibited adhesion of leukocytes to a human umbilical vein endothelial cell line (ECV304) injured by tumor necrosis factor-alpha (TNF-alpha) in a concentration-dependent manner. Yet the underlying mechanisms remain unclear. In this study, the in vivo effects of ruscogenin on leukocyte migration and celiac prostaglandin E(2) (PGE(2)) level induced by zymosan A were studied in mice. Furthermore, the effects of ruscogenin on TNF-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression and nuclear factor-kappaB (NF-kappaB) activation were also investigated under consideration of their key roles in leukocyte recruitment. The results showed that ruscogenin significantly suppressed zymosan A-evoked peritoneal total leukocyte migration in mice in a dose-dependent manner, while it had no obvious effect on PGE(2) content in peritoneal exudant. Ruscogenin also inhibited TNF-alpha-induced over expression of ICAM-1 both at the mRNA and protein levels and suppressed NF-kappaB activation considerably by decreasing NF-kappaB p65 translocation and DNA binding activity. These findings provide some new insights that may explain the possible molecular mechanism of ruscogenin and Radix Ophiopogon japonicus for the inhibition of endothelial responses to cytokines during inflammatory and vascular disorders.

  20. Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces

    NARCIS (Netherlands)

    Sjollema, Jelmer; van der Mei, Henny C.; Hall, Connie L.; Peterson, Brandon W.; de Vries, Joop; Song, Lei; de Jong, Ed D.; Busscher, Henk J.; Swartjes, Jan J. T. M.

    2017-01-01

    Bacterial adhesion to surfaces occurs ubiquitously and is initially reversible, though becoming more irreversible within minutes after first contact with a surface. We here demonstrate for eight bacterial strains comprising four species, that bacteria adhere irreversibly to surfaces through

  1. Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials

    NARCIS (Netherlands)

    Waar, K; van der Mei, HC; Harmsen, HJM; Degener, JE; Busscher, HJ

    An important step in infections associated with biliary drains is adhesion of micro-organisms to the surface. In this study the role of three surface proteins of Enterococcus faecalis (enterococcal surface protein, aggregation substances 1 and 373) in the adhesion to silicone rubber,

  2. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2

    Directory of Open Access Journals (Sweden)

    Yan Li

    2015-04-01

    Full Text Available Cyclin-dependent kinase 2 (CDK2 is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP binding site (Site I and two non-competitive binding sites (Site II and III. In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV. All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate. In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.

  3. Contact-mechanical studies on adhesion of bio-inspired elastomeric nanofiber to stiff and soft materials

    Directory of Open Access Journals (Sweden)

    Dong Yun Lee

    2017-04-01

    Full Text Available The adhesion behavior of elastomeric nanofibers was examined by a contact-mechanical approach using a Johnson–Kendall–Roberts (JKR instrument. A nanofibrillar elastomer substrate was fabricated by replicating crosslinked polydimethylsiloxane (PDMS from an anodic aluminum oxide (AAO template. The adhesion behavior of a regular hexagonal array of PDMS nanofibers formed over a wide range was investigated using soft and stiff hemispherical probes, which were prepared using PDMS and polystyrene (PS, respectively. The intrinsic work of adhesion (W of the elastomeric nanofibrillar substrate was observed to substantially decrease, which was more prominent for the less deformable PS probe, revealing a reduction in the real contact area. Meanwhile, the adhesion energy (G in the dynamic state with increasing separation rate was greatly affected by the deformation of nanofibers. The energy-dissipation factor for the nanofibrillar surface was far larger than that for the flat surface, and this difference was more significant for the case of contact with the deformable PDMS probe. This resulted in a great increase in the adhesion energy, making it even larger than that of the flat surface, overcoming the reduction in the real contact area.

  4. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism.

    Science.gov (United States)

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-04-04

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.

  5. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    Science.gov (United States)

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-04-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.

  6. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    Science.gov (United States)

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-01-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society. PMID:24699375

  7. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interfer...

  8. Motion of an Adhesive Gel in a Swelling Gradient: A Mechanism for Cell Locomotion

    Science.gov (United States)

    Joanny, Jean-François; Jülicher, Frank; Prost, Jacques

    2003-04-01

    Motivated by the motion of nematode sperm cells, we present a model for the motion of an adhesive gel on a solid substrate. The gel polymerizes at the leading edge and depolymerizes at the rear. The motion results from a competition between a self-generated swelling gradient and the adhesion on the substrate. The resulting stress provokes the rupture of the adhesion points and allows for the motion. The model predicts an unusual force-velocity relation which depends in significant ways on the point of application of the force.

  9. Understanding Marine Mussel Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  10. Mechanism and rate constants of the Cdc42 GTPase binding with intrinsically disordered effectors.

    Science.gov (United States)

    Pang, Xiaodong; Zhou, Huan-Xiang

    2016-05-01

    Intrinsically disordered proteins (IDPs) are often involved in signaling and regulatory functions, through binding to cellular targets. Many IDPs undergo disorder-to-order transitions upon binding. Both the binding mechanisms and the magnitudes of the binding rate constants can have functional importance. Previously we have found that the coupled binding and folding of any IDP generally follows a sequential mechanism that we term dock-and-coalesce, whereby one segment of the IDP first docks to its subsite on the target surface and the remaining segments subsequently coalesce around their respective subsites. Here we applied our TransComp method within the framework of the dock-and-coalesce mechanism to dissect the binding kinetics of two Rho-family GTPases, Cdc42 and TC10, with two intrinsically disordered effectors, WASP and Pak1. TransComp calculations identified the basic regions preceding the GTPase binding domains (GBDs) of the effectors as the docking segment. For Cdc42 binding with both WASP and Pak1, the calculated docking rate constants are close to the observed overall binding rate constants, suggesting that basic-region docking is the rate-limiting step and subsequent conformational coalescence of the GBDs on the Cdc42 surface is fast. The possibility that conformational coalescence of the WASP GBD on the TC10 surface is slow warrants further experimental investigation. The account for the differences in binding rate constants among the three GTPase-effector systems and mutational effects therein yields deep physical and mechanistic insight into the binding processes. Our approach may guide the selection of mutations that lead to redesigned binding pathways. © 2016 Wiley Periodicals, Inc.

  11. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  12. A novel membrane-dependent on/off switch mechanism of talin FERM domain at sites of cell adhesion.

    Science.gov (United States)

    Song, Xianqiang; Yang, Jun; Hirbawi, Jamila; Ye, Sheng; Perera, H Dhanuja; Goksoy, Esen; Dwivedi, Pallavi; Plow, Edward F; Zhang, Rongguang; Qin, Jun

    2012-11-01

    The activation of heterodimeric (α/β) integrin transmembrane receptors by cytosolic protein talin is crucial for regulating diverse cell-adhesion-dependent processes, including blood coagulation, tissue remodeling, and cancer metastasis. This process is triggered by the coincident binding of N-terminal FERM (four-point-one-protein/ezrin/radixin/moesin) domain of talin (talin-FERM) to the inner membrane surface and integrin β cytoplasmic tail, but how these binding events are spatiotemporally regulated remains obscure. Here we report the crystal structure of a dormant talin, revealing how a C-terminal talin rod segment (talin-RS) self-masks a key integrin-binding site on talin-FERM via a large interface. Unexpectedly, the structure also reveals a distinct negatively charged surface on talin-RS that electrostatically hinders the talin-FERM binding to the membrane. Such a dual inhibitory topology for talin is consistent with the biochemical and functional data, but differs significantly from a previous model. We show that upon enrichment with phosphotidylinositol-4,5-bisphosphate (PIP2) - a known talin activator, membrane strongly attracts a positively charged surface on talin-FERM and simultaneously repels the negatively charged surface on talin-RS. Such an electrostatic "pull-push" process promotes the relief of the dual inhibition of talin-FERM, which differs from the classic "steric clash" model for conventional PIP2-induced FERM domain activation. These data therefore unravel a new type of membrane-dependent FERM domain regulation and illustrate how it mediates the talin on/off switches to regulate integrin transmembrane signaling and cell adhesion.

  13. The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning.

    Science.gov (United States)

    Decherchi, Sergio; Berteotti, Anna; Bottegoni, Giovanni; Rocchia, Walter; Cavalli, Andrea

    2015-01-27

    The study of biomolecular interactions between a drug and its biological target is of paramount importance for the design of novel bioactive compounds. In this paper, we report on the use of molecular dynamics (MD) simulations and machine learning to study the binding mechanism of a transition state analogue (DADMe-immucillin-H) to the purine nucleoside phosphorylase (PNP) enzyme. Microsecond-long MD simulations allow us to observe several binding events, following different dynamical routes and reaching diverse binding configurations. These simulations are used to estimate kinetic and thermodynamic quantities, such as kon and binding free energy, obtaining a good agreement with available experimental data. In addition, we advance a hypothesis for the slow-onset inhibition mechanism of DADMe-immucillin-H against PNP. Combining extensive MD simulations with machine learning algorithms could therefore be a fruitful approach for capturing key aspects of drug-target recognition and binding.

  14. Stage-specific adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay.

    Directory of Open Access Journals (Sweden)

    Raymond Wilson

    2010-09-01

    Full Text Available The binding of Leishmania promastigotes to the midgut epithelium is regarded as an essential part of the life-cycle in the sand fly vector, enabling the parasites to persist beyond the initial blood meal phase and establish the infection. However, the precise nature of the promastigote stage(s that mediate binding is not fully understood.To address this issue we have developed an in vitro gut binding assay in which two promastigote populations are labelled with different fluorescent dyes and compete for binding to dissected sand fly midguts. Binding of procyclic, nectomonad, leptomonad and metacyclic promastigotes of Leishmania infantum and L. mexicana to the midguts of blood-fed, female Lutzomyia longipalpis was investigated. The results show that procyclic and metacyclic promastigotes do not bind to the midgut epithelium in significant numbers, whereas nectomonad and leptomonad promastigotes both bind strongly and in similar numbers. The assay was then used to compare the binding of a range of different parasite species (L. infantum, L. mexicana, L. braziliensis, L. major, L. tropica to guts dissected from various sand flies (Lu. longipalpis, Phlebotomus papatasi, P. sergenti. The results of these comparisons were in many cases in line with expectations, the natural parasite binding most effectively to its natural vector, and no examples were found where a parasite was unable to bind to its natural vector. However, there were interesting exceptions: L. major and L. tropica being able to bind to Lu. longipalpis better than L. infantum; L. braziliensis was able to bind to P. papatasi as well as L. major; and significant binding of L. major to P. sergenti and L. tropica to P. papatasi was observed.The results demonstrate that Leishmania gut binding is strictly stage-dependent, is a property of those forms found in the middle phase of development (nectomonad and leptomonad forms, but is absent in the early blood meal and final stages (procyclic

  15. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  16. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Miao, Xiaobing; Wu, Yaxun; Wang, Yuchan; Zhu, Xinghua; Yin, Haibing; He, Yunhua; Li, Chunsun; Liu, Yushan; Lu, Xiaoyun; Chen, Yali; Shen, Rong; Xu, Xiaohong; He, Song

    2016-08-15

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1(S102) were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCL cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1(S102) nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Xiaobing; Wu, Yaxun [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); Wang, Yuchan [Department of Pathogen, Medical College, Nantong University, Nantong 226001, Jiangsu (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu (China); Zhu, Xinghua; Yin, Haibing [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); He, Yunhua [Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu (China); Li, Chunsun; Liu, Yushan; Lu, Xiaoyun; Chen, Yali; Shen, Rong [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); Xu, Xiaohong, E-mail: xuxiaohongnantong@126.com [Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); He, Song, E-mail: hesongnt@126.com [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China)

    2016-08-15

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1{sup S102} were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCL cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1{sup S102} nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. - Highlights: • The expression statuses of YB-1 and pYB-1{sup S102} are reversely correlated with outcomes of DLBCL patients. • YB-1 promotes cell proliferation by accelerating G1/S transition in DLBCL. • YB-1 confers drug resistance to mitoxantrone in DLBCL.

  18. Sequential adhesion of platelets and leukocytes from flowing whole blood onto a collagen-coated surface: requirement for a GpVI-binding site in collagen.

    Science.gov (United States)

    Butler, Lynn M; Metson-Scott, Tom; Felix, Jo; Abhyankar, Anita; Rainger, G Ed; Farndale, Richard W; Watson, Stephen P; Nash, Gerard B

    2007-05-01

    The adhesion of leukocytes to immobilised platelets may contribute to inflammatory and thrombotic responses in damaged tissue. To investigate the conditions under which platelets and leukocytes might be deposited together in vessels, we perfused fluorescently-labelled whole blood through glass capillaries coated with various collagen preparations. Video-microscopic observations of the surface showed that platelets formed numerous, individual, rolling and stationary attachments to surfaces coated with acid-soluble, monomeric collagen. However, leukocyte interactions with the deposited platelets were rare. If the blood was washed out, the adherent platelets became more activated, and many rolling adherent leukocytes were observed if a second bolus of blood was perfused over them. This suggested that platelet activation had initially been inadequate to support leukocyte capture. Next, fibrillar collagen was adsorbed to the capillaries to present an ordered array of peptide motifs to platelet receptor glycoprotein (Gp)VI and transduce an activating signal. In this case, platelets were deposited in discrete, stable aggregates and the bound platelets captured many flowing leukocytes. Alternatively, acid-soluble collagen was seeded with collagen-related peptide (CRP) known to contain a GpVI-binding motif. Again, platelet adhesion became stable, and numerous flowing leukocytes were captured. Addition of antibody against GpVI or against P-selectin greatly reduced leukocyte adhesion to the platelets. Thus, in whole blood, platelets binding to exposed collagen need to be activated through GpVI in order to expose sufficient P-selectin to allow efficient capture of flowing leukocytes to take place.

  19. Adhesion mechanisms at the interface between Y-TZP and veneering ceramic with and without modifier.

    Science.gov (United States)

    Monaco, Carlo; Tucci, Antonella; Esposito, Leonardo; Scotti, Roberto

    2014-11-01

    This study investigated the mechanism of action at the interface between a commercially available Y-TZP and its veneering ceramic after final firing. Particular attention was paid, from a microstructural point of view, to evaluating the effects of different surface treatments carried out on the zirconia. In total, 32 specimens of presintered zirconia Y-TZP (LavaFrame, 3M ESPE, Germany) were cut with a low-speed diamond blade. The specimens were divided in two major groups, for testing after fracture or after mirror finishing, and were sintered following the manufacturer's instructions. Each major group was then randomly divided into four subgroups, according to using or not using the dedicated framework modifier, with or without a preliminary silica coating (CoJet, 3M ESPE). A suitable veneering ceramic was used for each group (Lava Ceram Overlay Porcelain, 3M ESPE). A detailed microstructural study of the interfaces of the zirconia-veneering ceramic was performed using a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer to evaluate chemical variation at the interfaces. When the framework modifier was not applied on the Y-TZP surface, microdetachments, porosities, and openings in the ceramic layer were observed at the interlayers. A degree of diffusion of different elements through the interfaces from both the zirconia and veneering layers was detected. Application of the framework modifier can increase the wettability of the zirconia surfaces, allowing a continuous contact with the veneering layer. The micro-analysis performed showed the presence of a reaction area at the interface between the different materials. the increase of the wettability of the zirconia surface could improve the adhesion at interface with the veneering ceramic and reduce the clinical failure as chipping or delamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effect of Fluoride-Releasing Adhesive Systems on the Mechanical Properties of Eroded Dentin.

    Science.gov (United States)

    Guedes, Ana Paula Albuquerque; Moda, Mariana Dias; Suzuki, Thaís Yumi Umeda; Godas, André Gustavo de Lima; Sundfeld, Renato Herman; Briso, André Luiz Fraga; Santos, Paulo Henrique dos

    2016-01-01

    The aim of the study was to evaluate the effect of erosive pH cycling with solutions that simulate dental erosion on Martens hardness (HMV) and elastic modulus (Eit) of dentin restored with fluoride-releasing adhesive systems. Twenty-seven bovine dentin slabs were restored with three adhesive systems: Adper Single Bond 2 total-etch adhesive system, One Up Bond F and Clearfil SE Protect fluoride-containing self-etching adhesive systems. The restorations were made with Filtek Z250. The HMV and Eit values at distances of 10, 30, 50 and 70 µm from the interface were evaluated using a dynamic ultra microhardness tester before and after immersion in deionized water, citric acid and hydrochloric acid (n=9). Data were submitted to repeated-measures ANOVA and Fisher's PLSD tests (=0.05). After erosive cycling, HMV values of dentin decreased in all groups. For dentin restored with Adper Single Bond 2, the lowest values were found closer to the hybrid layer, while for One Up Bond F and Clearfil SE Protect, the values remained unaltered at all distances. For dentin restored with fluoride-releasing adhesive systems, a decrease in Eit was found, but after 30 µm this difference was not significant. The acid substances were able to alter HMV and Eit of the underlying dentin. For fluoride-releasing adhesives, the greater the distance from bonded interface, the lower the Eit values. The fluoride in One Up Bond F and Clearfil SE Protect was able to protect the underlying dentin closer to the materials. In this way, the fluoride from adhesive systems could have some positive effect in the early stages of erosive lesions.

  1. Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury.

    Science.gov (United States)

    West, Christopher R; Goosey-Tolfrey, Victoria L; Campbell, Ian G; Romer, Lee M

    2014-07-01

    We asked whether elastic binding of the abdomen influences respiratory mechanics during wheelchair propulsion in athletes with cervical spinal cord injury (SCI). Eight Paralympic wheelchair rugby players with motor-complete SCI (C5-C7) performed submaximal and maximal incremental exercise tests on a treadmill, both with and without abdominal binding. Measurements included pulmonary function, pressure-derived indices of respiratory mechanics, operating lung volumes, tidal flow-volume data, gas exchange, blood lactate, and symptoms. Residual volume and functional residual capacity were reduced with binding (77 ± 18 and 81 ± 11% of unbound, P respiratory mechanics with binding may benefit O2 transport capacity by an improvement in central circulatory function. Copyright © 2014 the American Physiological Society.

  2. Mechanisms of Contact, Adhesion, and Failure of Metallic Nanoasperities in the Presence of Adsorbates: Toward Conductive Contact Design.

    Science.gov (United States)

    Yang, Fan; Carpick, Robert W; Srolovitz, David J

    2017-01-24

    The properties of contacting interfaces are strongly affected not only by the bulk and surface properties of contacting materials but also by the ubiquitous presence of adsorbed contaminants. Here, we focus on the properties of single asperity contacts in the presence of adsorbates within a molecular dynamics description of metallic asperity normal contact and a parametric description of adsorbate properties. A platinum-platinum asperity contact is modeled with adsorbed oligomers with variable properties. This system is particularly tailored to the context of nanoelectromechanical system (NEMS) contact switches, but the results are generally relevant to metal-metal asperity contacts in nonpristine conditions. Even though mechanical forces can displace adsorbate out of the contact region, increasing the adsorbate layer thickness and/or adsorbate/metal adhesion makes it more difficult for metal asperity/metal surface contact to occur, thereby lowering the electrical contact conductance. Contact separation is a competition between plastic necking in the asperity or decohesion at the asperity/substrate interface. The mechanism which operates at a lower tensile stress dominates. Necking dominates when the adsorbate/metal adhesion is strong and/or the adsorbate layer thickness is small. In broad terms, necking implies larger asperity deformation and mechanical work, as compared with decohesion. Optimal NEMS switch performance requires substantial contact conductance and minimal asperity deformation; these results indicate that these goals can be achieved by balancing the quantity of adsorbates and their adhesion to the metal surface.

  3. Mechanical properties and modeling of drug release from chlorhexidine-containing etch-and-rinse adhesives.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Reis, Alessandra; Malaquias, Pamela; Pereira, Fabiane; Farago, Paulo Vitor; Meier, Marcia Margarete; Loguercio, Alessandro D

    2014-04-01

    To evaluate the effects of chlorhexidine (CHX) addition in different concentrations into simplified etch-and-rinse adhesives on the ultimate tensile strength (UTS), water sorption (WS), solubility (SO) and the rate of CHX release over time. We added CHX diacetate to Ambar [AM] (FGM) and XP Bond [XP] (Dentsply) in concentrations of 0, 0.01, 0.05, 0.1 and 0.2 wt%. For UTS (n=10 for each group), adhesive specimens were constructed in an hourglass shape metallic matrix with cross-sectional area of 0.8 mm(2). Half of specimens were tested after 24 h and the other half after 28 days of water storage in tension of 0.5 mm/min. For WS and SO (n=10 for each group), adhesive discs (5.8 mm×1.0 mm) were prepared into a mold. After desiccation, we weighed and stored the cured adhesive specimens in distilled water for evaluation of the WS, SO and the cumulative release of CHX over a 28-day period. For CHX release (n=10 for each group), spectrophotometric measurements of storage solution were performed to examine the release kinetics of CHX. We subjected data from each test to ANOVA and Tukey' test (α=0.05). XP Bond adhesive showed significantly more WS and SO and lower UTS than Ambar. In general, the addition of CHX did not alter WS, SO and UTS of the adhesives. XP showed a higher CHX release than AM (padhesives. After 28 days of water storage, approximately 20% of CHX was released from XP and 8.0-12.0% from AM. Addition of CHX to commercial adhesive is a feasible method to provide a controlled release of CHX over time without jeopardizing WS, SO and UTS of the adhesives. Manufacturers should consider adding CHX to commercial adhesives to provide a controlled release of CHX over time. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Mechanical Characterization of a Bi-functional Tetronic Hydrogel Adhesive for Soft Tissues

    Science.gov (United States)

    Sanders, Lindsey; Stone, Roland; Webb, C. Kenneth; Mefford, O. Thompson; Nagatomi, Jiro

    2014-01-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive21–23. Building on the success of these studies, the present study explored bi-functionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni- and bi-functional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bi-functional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of the present study provided evidence that the bi-functional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445

  5. Mechanical modeling and characteristic study for the adhesive contact of elastic layered media

    Science.gov (United States)

    Zhang, Yuyan; Wang, Xiaoli; Tu, Qiaoan; Sun, Jianjun; Ma, Chenbo

    2017-11-01

    This paper investigates the adhesive contact between a smooth rigid sphere and a smooth elastic layered medium with different layer thicknesses, layer-to-substrate elastic modulus ratios and adhesion energy ratios. A numerical model is established by combining elastic responses of the contact system and an equation of equivalent adhesive contact pressure which is derived based on the Hamaker summation method and the Lennard–Jones intermolecular potential law. Simulation results for hard layer cases demonstrate that variation trends of the pull-off force with the layer thickness and elastic modulus ratio are complex. On one hand, when the elastic modulus ratio increases, the pull-off force decreases at smaller layer thicknesses, decreases at first and then increases at middle layer thicknesses, while increases monotonously at larger layer thicknesses. On the other hand, the pull-off force decreases at first and then increases with the increase in the layer thickness. Furthermore, a critical layer thickness above which the introduction of hard layer cannot reduce adhesion and an optimum layer thickness under which the pull-off force reaches a minimum are found. Both the critical and optimum layer thicknesses become larger with an increase in the Tabor parameter, while they tend to decrease with the increase in the elastic modulus ratio. In addition, the pull-off force increases sublinearly with the adhesion energy ratio if the layer thickness and elastic modulus ratio are fixed.

  6. A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; McCarthy, J B; Furcht, L T

    1993-01-01

    Cell adhesion to extracellular matrix molecules such as fibronectin involves complex transmembrane signaling processes. Attachment and spreading of primary fibroblasts can be promoted by interactions of cell surface integrins with RGD-containing fragments of fibronectin, but the further process......, as synthetic peptides coupled to ovalbumin, can support cell attachment. Only three of these sequences can promote focal adhesion formation when presented as multicopy complexes, and only one of these (WQPPRARI) retains this activity as free peptide. The major activity of this peptide resides in the sequence...... PRARI. The biological response to this peptide and to the COOH-terminal fragment may be mediated through cell surface heparan sulfate proteoglycans because treatment of cells with heparinase II and III, or competition with heparin, reduces the response. Treatment with chondroitinase ABC or competition...

  7. Supramolecular Cross-Links in Poly(alkyl methacrylate) Copolymers and Their Impact on the Mechanical and Reversible Adhesive Properties.

    Science.gov (United States)

    Heinzmann, Christian; Salz, Ulrich; Moszner, Norbert; Fiore, Gina L; Weder, Christoph

    2015-06-24

    Hydrogen-bonded, side-chain-functionalized supramolecular poly(alkyl methacrylate)s were investigated as light- and temperature-responsive reversible adhesives that are useful for bonding and debonding on demand applications. Here, 2-hydroxyethyl methacrylate (HEMA) was functionalized with 2-ureido-4[1H]pyrimidinone (UPy) via a hexamethylenediisocyanate (HMDI) linker, to create a monomer (UPy-HMDI-HEMA) that serves to form supramolecular cross-links by way of forming quadruple hydrogen bonded dimers. UPy-HMDI-HEMA was copolymerized with either hexyl methacrylate or butyl methacrylate to create copolymers comprising 2.5, 5, or 10 mol % of the cross-linker. The mechanical properties of all (co)polymers were investigated with stress-strain experiments and dynamic mechanical analysis. Furthermore, the adhesive properties were studied at temperatures between 20 and 60 °C by testing single lap joints formed with stainless steel substrates. It was found that increasing the concentration of the UPy-HMDI-HEMA cross-linker leads to improved mechanical and adhesive properties at elevated temperatures. Concurrently, the reversibility of the bond formation remained unaffected, where rebonded samples displayed the same adhesive strength as regularly bonded samples. Debonding on demand abilities were also tested exemplarily for one copolymer, which for light-induced debonding experiments was blended with a UV-absorber that served as light-heat converter. Single lap joints were subjected to a constant force and heated or irradiated with UV light until debonding occurred. The necessary debonding temperature was comparable for direct heating and UV irradiation and varied between 28 and 82 °C, depending on the applied force. The latter also influenced the debonding time, which under the chosen conditions ranged from 30 s to 12 min.

  8. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment

    Science.gov (United States)

    2010-01-01

    Background Cardiovascular disease (CVD) is a leading cause of mortality in the United States as well as globally. Epidemiological studies show that regular fruit and vegetable consumption reduces CVD risk, in part, due to antioxidant activity and immunomodulation since oxidative stress and inflammation are features of atherogenesis. Accumulating evidence also shows that dietary fungi, viz., mushrooms, can protect against chronic disease by altering inflammatory environments such as those associated with CVD although most research has focused on specialty mushrooms. In this study, we tested the ability of both common and specialty mushrooms to inhibit cellular processes associated with CVD. Methods Human aortic endothelial cells (HAEC) were incubated overnight with control media with dimethylsulfoxide (DMSO) vehicle (1% v/v) or containing DMSO extracts of whole dehydrated mushrooms (0.1 mg/mL), which included Agaricus bisporus (white button and crimini), Lentinula edodes (shiitake), Pleurotus ostreatus (oyster), and Grifola frondosa (maitake). Monolayers were subsequently washed and incubated with medium alone or containing the pro-inflammatory cytokine IL-1β (5 ng/mL) for 6 h to upregulate pro-atherosclerotic adhesion molecules (AM). AM expression was assayed by ELISA and binding of U937 human monocytes pre-loaded with fluorescent dye was determined. Results White button mushrooms consistently reduced (p mushrooms significantly modulated AM expression singly, collectively, or combinatorially. All mushrooms, however, significantly reduced binding of monocytes to both quiescent and cytokine-stimulated monolayers. Conclusion These data provide evidence that dietary mushrooms can inhibit cellular processes such as adhesion molecule expression and ultimate binding of monocytes to the endothelium under pro-inflammatory conditions, which are associated with CVD. As a result, these findings support the notion that dietary mushrooms can be protective against CVD. PMID

  9. Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts

    Science.gov (United States)

    2012-01-01

    Background The central tenet of cilia function is sensing and transmitting information. The capacity to directly contact extracellular surfaces would empower primary cilia to probe the environment for information about the nature and location of nearby surfaces. It has been well established that flagella and other motile cilia perform diverse cellular functions through adhesion. We hypothesized that mammalian primary cilia also interact with the extracellular environment through direct physical contact. Methods We identified cilia in rod photoreceptors and cholangiocytes in fixed mouse tissues and examined the structures that these cilia contact in vivo. We then utilized an MDCK cell culture model to characterize the nature of the contacts we observed. Results In retina and liver tissue, we observed that cilia from nearby cells touch one another. Using MDCK cells, we found compelling evidence that these contacts are stable adhesions that form bridges between two cells, or networks between many cells. We examined the nature and duration of the cilia-cilia contacts and discovered primary cilia movements that facilitate cilia-cilia encounters. Stable adhesions form as the area of contact expands from a single point to a stretch of tightly bound, adjacent cilia membranes. The cilia-cilia contacts persisted for hours and were resistant to several harsh treatments such as proteases and DTT. Unlike many other cell adhesion mechanisms, calcium was not required for the formation or maintenance of cilia adhesion. However, swainsonine, which blocks maturation of N-linked glycoproteins, reduced contact formation. We propose that cellular control of adhesion maintenance is active because cilia adhesion did not prevent cell division; rather, contacts dissolved during mitosis as cilia were resorbed. Conclusions The demonstration that mammalian primary cilia formed prolonged, direct, physical contacts supports a novel paradigm: that mammalian primary cilia detect features of the

  10. Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts

    Directory of Open Access Journals (Sweden)

    Ott Carolyn

    2012-04-01

    Full Text Available Abstract Background The central tenet of cilia function is sensing and transmitting information. The capacity to directly contact extracellular surfaces would empower primary cilia to probe the environment for information about the nature and location of nearby surfaces. It has been well established that flagella and other motile cilia perform diverse cellular functions through adhesion. We hypothesized that mammalian primary cilia also interact with the extracellular environment through direct physical contact. Methods We identified cilia in rod photoreceptors and cholangiocytes in fixed mouse tissues and examined the structures that these cilia contact in vivo. We then utilized an MDCK cell culture model to characterize the nature of the contacts we observed. Results In retina and liver tissue, we observed that cilia from nearby cells touch one another. Using MDCK cells, we found compelling evidence that these contacts are stable adhesions that form bridges between two cells, or networks between many cells. We examined the nature and duration of the cilia-cilia contacts and discovered primary cilia movements that facilitate cilia-cilia encounters. Stable adhesions form as the area of contact expands from a single point to a stretch of tightly bound, adjacent cilia membranes. The cilia-cilia contacts persisted for hours and were resistant to several harsh treatments such as proteases and DTT. Unlike many other cell adhesion mechanisms, calcium was not required for the formation or maintenance of cilia adhesion. However, swainsonine, which blocks maturation of N-linked glycoproteins, reduced contact formation. We propose that cellular control of adhesion maintenance is active because cilia adhesion did not prevent cell division; rather, contacts dissolved during mitosis as cilia were resorbed. Conclusions The demonstration that mammalian primary cilia formed prolonged, direct, physical contacts supports a novel paradigm: that mammalian primary

  11. Crystal structures reveal the multi-ligand binding mechanism of Staphylococcus aureus ClfB.

    Directory of Open Access Journals (Sweden)

    Hua Xiang

    Full Text Available Staphylococcus aureus (S. aureus pathogenesis is a complex process involving a diverse array of extracellular and cell wall components. ClfB, an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules family surface protein, described as a fibrinogen-binding clumping factor, is a key determinant of S. aureus nasal colonization, but the molecular basis for ClfB-ligand recognition remains unknown. In this study, we solved the crystal structures of apo-ClfB and its complexes with fibrinogen α (Fg α and cytokeratin 10 (CK10 peptides. Structural comparison revealed a conserved glycine-serine-rich (GSR ClfB binding motif (GSSGXGXXG within the ligands, which was also found in other human proteins such as Engrailed protein, TCF20 and Dermokine proteins. Interaction between Dermokine and ClfB was confirmed by subsequent binding assays. The crystal structure of ClfB complexed with a 15-residue peptide derived from Dermokine revealed the same peptide binding mode of ClfB as identified in the crystal structures of ClfB-Fg α and ClfB-CK10. The results presented here highlight the multi-ligand binding property of ClfB, which is very distinct from other characterized MSCRAMMs to-date. The adherence of multiple peptides carrying the GSR motif into the same pocket in ClfB is reminiscent of MHC molecules. Our results provide a template for the identification of other molecules targeted by S. aureus during its colonization and infection. We propose that other MSCRAMMs like ClfA and SdrG also possess multi-ligand binding properties.

  12. Pressure-Sensitive Adhesives under the Influence of Relative Humidity: Inner Structure and Failure Mechanisms.

    Science.gov (United States)

    Schindler, Markus; Koller, Manuel; Müller-Buschbaum, Peter

    2015-06-17

    Model pressure-sensitive adhesive (PSA) films of the statistical copolymer P(EHA-stat-20MMA), which comprises 80% ethylhexyl acrylate (EHA) and 20% methyl methacrylate (MMA), are studied. The PSA films are stored under different relative humidities from adhesive bond are found by adjusting the relative humidity. XRR measurements evidence enrichment layers in vicinity to and at the surface depending on the provided relative humidity during the postproduction treatment, which also influence the tack performance. This finding is supported by tack measurements using punches with different roughness.

  13. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin

    DEFF Research Database (Denmark)

    Hansen, S M; Berezin, V; Bock, E

    2008-01-01

    extracellular guidance cues to intracellular events and thereby regulating neurite outgrowth. In this review, we focus on two CAMs, the neural cell adhesion molecule (NCAM) and N-cadherin, and their ability to mediate signaling associated with a neurite outgrowth response. In particular, we will focus on direct......Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact...

  14. Relationship between mechanical properties of one-step self-etch adhesives and water sorption.

    Science.gov (United States)

    Hosaka, Keiichi; Nakajima, Masatoshi; Takahashi, Masahiro; Itoh, Shima; Ikeda, Masaomi; Tagami, Junji; Pashley, David H

    2010-04-01

    The purpose of this study was to evaluate the relationship between changes in the modulus of elasticity and ultimate tensile strength of one-step self-etch adhesives, and their degree of water sorption. Five one-step self-etch adhesives, Xeno IV (Dentsply Caulk), G Bond (GC Corp.), Clearfil S3 Bond (Kuraray Medical Inc.), Bond Force (Tokuyama Dental Corp.), and One-Up Bond F Plus (Tokuyama Dental Corp.) were used. Ten dumbelled-shaped polymers of each adhesive were used to obtain the modulus of elasticity by the three-point flexural bending test and the ultimate tensile strength by microtensile testing. The modulus of elasticity and the ultimate tensile strength were measured in both dry and wet conditions before/after immersion in water for 24h. Water sorption was measured, using a modification of the ISO-4049 standard. Each result of the modulus of elasticity and ultimate tensile strength was statistically analyzed using a two-way ANOVA and the result of water sorption was statistically analyzed using a one-way ANOVA. Regression analyses were used to determine the correlations between the modulus of elasticity and the ultimate tensile strength in dry or wet states, and also the percent decrease in these properties before/after immersion of water vs. water sorption. In the dry state, the moduli of elasticity of the five adhesive polymers varied from 948 to 1530 MPa, while the ultimate tensile strengths varied from 24.4 to 61.5 MPa. The wet specimens gave much lower moduli of elasticity (from 584 to 1073 MPa) and ultimate tensile strengths (from 16.5 to 35.0 MPa). Water sorption varied from 32.1 to 105.8 g mm(-3). The moduli of elasticity and ultimate tensile strengths of the adhesives fell significantly after water-storage. Water sorption depended on the constituents of the adhesive systems. The percent decreases in the ultimate tensile strengths of the adhesives were related to water sorption, while the percent reductions in the moduli of elasticity of the

  15. Mechanism of DNA–binding loss upon single-point mutation in p53

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    understanding of protein−DNA recognition, the mechanism(s) underlying the loss in protein−DNA binding affinity/ specificity upon ... Keywords. p53 mutants; protein-DNA interactions; molecular dynamics simulations; free energy decomposition. Abbreviations ...... Garbuzynskiy S O, Melnik B S, Lobanov M Y, Finkelstein A V.

  16. Adding silanes to MMA: the effects on the water absorption, adhesive strength and mechanical properties of acrylic denture base resins.

    Science.gov (United States)

    Kanie, T; Fujii, K; Arikawa, H; Inoue, K

    2000-12-01

    The adhesive strength of porcelain artificial teeth and polymethylmethacrylates (PMMAs), which contained silanes with various number of vinyl or ethoxy groups, and the mechanical and physical properties of the PMMAs were measured. Four types of PMMAs with silanes showed high adhesive shear strength and caused fractures in the porcelain. Water absorption of the PMMAs increased with the addition of silane, but that of one type with silane was almost the same as the PMMA only type. The flexural strengths of the PMMAs with silane, except for one type, showed no significant differences compared with that of PMMA (p < 0.05). The Tg levels of all PMMAs with silane fell less than that of PMMA. From these results, it was found that PMMA with silane from three vinyl groups and one ethoxy group showed excellent chemical bonding to porcelain and low water absorption.

  17. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X F [Department of Prosthodontics, The Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing 210008 (China); Yoshida, K [Division of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588 (Japan); Gu, N, E-mail: mengsoar@nju.edu.c [Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R{sub a} and R{sub y} values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane

  18. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme.

    Science.gov (United States)

    Roeser, Dirk; Preusser-Kunze, Andrea; Schmidt, Bernhard; Gasow, Kathrin; Wittmann, Julia G; Dierks, Thomas; von Figura, Kurt; Rudolph, Markus Georg

    2006-01-03

    The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disease. The previously determined FGE crystal structure revealed two crucial cysteine residues in the active site, one of which was thought to be implicated in substrate binding. The other cysteine residue partakes in a novel oxygenase mechanism that does not rely on any cofactors. Here, we present crystal structures of the individual FGE cysteine mutants and employ chemical probing of wild-type FGE, which defined the cysteines to differ strongly in their reactivity. This striking difference in reactivity is explained by the distinct roles of these cysteine residues in the catalytic mechanism. Hitherto, an enzyme-substrate complex as an essential cornerstone for the structural evaluation of the FGly formation mechanism has remained elusive. We also present two FGE-substrate complexes with pentamer and heptamer peptides that mimic sulfatases. The peptides isolate a small cavity that is a likely binding site for molecular oxygen and could host reactive oxygen intermediates during cysteine oxidation. Importantly, these FGE-peptide complexes directly unveil the molecular bases of FGE substrate binding and specificity. Because of the conserved nature of FGE sequences in other organisms, this binding mechanism is of general validity. Furthermore, several disease-causing mutations in both FGE and sulfatases are explained by this binding mechanism.

  19. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

    NARCIS (Netherlands)

    Liebscher, Ines; Ackley, Brian; Araç, Demet; Ariestanti, Donna M.; Aust, Gabriela; Bae, Byoung-Il; Bista, Bigyan R.; Bridges, James P.; Duman, Joseph G.; Engel, Felix B.; Giera, Stefanie; Goffinet, André M.; Hall, Randy A.; Hamann, Jörg; Hartmann, Nicole; Lin, Hsi-Hsien; Liu, Mingyao; Luo, Rong; Mogha, Amit; Monk, Kelly R.; Peeters, Miriam C.; Prömel, Simone; Ressl, Susanne; Schiöth, Helgi B.; Sigoillot, Séverine M.; Song, Helen; Talbot, William S.; Tall, Gregory G.; White, James P.; Wolfrum, Uwe; Xu, Lei; Piao, Xianhua

    2014-01-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane alpha-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular

  20. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Korshunova, Irina; Berezin, Vladimir

    2006-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been...

  1. Continuum mechanics at the atomic scale : Insights into non-adhesive contacts using molecular dynamics simulations

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    2016-01-01

    Classical molecular dynamics (MD) simulations were performed to study non-adhesive contact at the atomic scale. Starting from the case of Hertzian contact, it was found that the reduced Young’s modulus E* for shallow indentations scales as a function of, both, the indentation depth and the contact

  2. Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity.

    Science.gov (United States)

    Karakostis, Konstantinos; Karakostis, Kostantinos; Costa, Caterina; Zito, Francesca; Matranga, Valeria

    2015-12-07

    Galectin family members specifically bind beta-galactoside derivatives and are involved in different cellular events, including cell communication, signalling, apoptosis, and immune responses. Here, we report a tandem-repeat type galectin from the Paracentrotus lividus sea urchin embryo, referred to as Pl-GAL-8. The 933nt sequence encodes a protein of 34.73 kDa, containing the conserved HFNPRF and WGxExR motifs in the two highly similar carbohydrate-recognition domains (CRD). The three-dimensional protein structure model of the N-CRD confirms the high evolutionary conservation of carbohydrate binding sites. The temporal gene expression is regulated during development and transcripts localize at the tip of the archenteron at gastrula stage, in a subset of the secondary mesenchyme cells that differentiate into blastocoelar (immune) cells. Functional studies using a recombinant Pl-GAL-8 expressed in bacteria demonstrate its hemo-agglutinating activity on human red blood cells through the binding to lactose, as well as its ability in inhibiting the adhesion of human Hep-G2 cells to the substrate. The recent implications in autoimmune diseases and inflammatory disorders make Gal-8 an attractive candidate for therapeutic purposes. Our results offer a solid basis for addressing the use of the new Pl-GAL-8 in functional and applicative studies, respectively in the developmental and biomedical fields.

  3. Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: Complementary experimental, molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods

    Science.gov (United States)

    Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi

    2017-10-01

    The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion

  4. Binding mechanism and dynamic conformational change of C subunit of PKA with different pathways.

    Science.gov (United States)

    Chu, Wen-Ting; Chu, Xiakun; Wang, Jin

    2017-09-19

    The catalytic subunit of PKA (PKAc) exhibits three major conformational states (open, intermediate, and closed) during the biocatalysis process. Both ATP and substrate/inhibitor can effectively induce the conformational changes of PKAc from open to closed states. Aiming to explore the mechanism of this allosteric regulation, we developed a coarse-grained model and analyzed the dynamics of conformational changes of PKAc during binding by performing molecular dynamics simulations for apo PKAc, binary PKAc (PKAc with ATP, PKAc with PKI), and ternary PKAc (PKAc with ATP and PKI). Our results suggest a mixed binding mechanism of induced fit and conformational selection, with the induced fit dominant. The ligands can drive the movements of Gly-rich loop as well as some regions distal to the active site in PKAc and stabilize them at complex state. In addition, there are two parallel pathways (pathway with PKAc-ATP as an intermediate and pathway PKAc-PKI as an intermediate) during the transition from open to closed states. By molecular dynamics simulations and rate constant analyses, we find that the pathway through PKAc-ATP intermediate is the main binding route from open to closed state because of the fact that the bound PKI will hamper ATP from successful binding and significantly increase the barrier for the second binding subprocess. These findings will provide fundamental insights of the mechanisms of PKAc conformational change upon binding.

  5. Carbohydrate mediated bacterial adhesion.

    Science.gov (United States)

    Pieters, Roland J

    2011-01-01

    In the process of adhesion, bacteria often carry proteins on their surface, adhesins, that bind to specific components of tissue cells or the extracellular matrix. In many cases these components are carbohydrate structures. The carbohydrate binding specificities of many bacteria have been uncovered over the years. The design and synthesis of inhibitors of bacterial adhesion has the potential to create new therapeutics for the prevention and possibly treatment of bacterial infections. Unfortunately, the carbohydrate structures often bind only weakly to the adhesion proteins, although drug design approaches can improve the situation. Furthermore, in some cases linking carbohydrates covalently together, to create so-called multivalent systems, can also significantly enhance the inhibitory potency. Besides adhesion inhibition as a potential therapeutic strategy, the adhesion proteins can also be used for detection. Novel methods to do this are being developed. These include the use of microarrays and glyconanoparticles. New developments in these areas are discussed.

  6. Reshaping the Energy Landscape Transforms the Mechanism and Binding Kinetics of DNA Threading Intercalation.

    Science.gov (United States)

    Clark, Andrew G; Naufer, M Nabuan; Westerlund, Fredrik; Lincoln, Per; Rouzina, Ioulia; Paramanathan, Thayaparan; Williams, Mark C

    2018-01-05

    Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.

  7. Expression of Lactobacillus reuteri Pg4 collagen-binding protein gene in Lactobacillus casei ATCC 393 increases its adhesion ability to Caco-2 cells.

    Science.gov (United States)

    Hsueh, Hsiang-Yun; Yueh, Pei-Ying; Yu, Bi; Zhao, Xin; Liu, Je-Ruei

    2010-12-08

    The collagen-binding protein gene cnb was cloned from the probiotic Lactobacillus reuteri strain Pg4. The DNA sequence of the cnb gene (792 bp) has an open reading frame encoding 263 amino acids with a calculated molecular weight of 28.5 kDa. The cnb gene was constructed so as to constitutively express under the control of the Lactococcus lactis lacA promoter and was transformed into Lactobacillus casei ATCC 393, a strain isolated from dairy products with poor ability to adhere to intestinal epithelial cells. Confocal immunofluorescence microscopic and flow cytometric analysis of the transformed strain Lb. casei pNZ-cnb indicated that Cnb was displayed on its cell surface. Lb. casei pNZ-cnb not only showed a higher ability to adhere to Caco-2 cells but also exhibited a higher competition ability against Escherichia coli O157:H7 and Listeria monocytogenes adhesion to Caco-2 cells than Lb. casei ATCC 393.

  8. Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain.

    Science.gov (United States)

    Park, Jun Kyu; Yang, Zining; Kim, Seok

    2017-09-27

    Although many recent studies demonstrate surfaces with switchable wettability under various external stimuli, a deliberate effort to self-propel liquid droplets utilizing a surface wetting mode switch between slippery lotus and adhesive rose petal states via a mechanical strain has not been made yet, which would otherwise further benefit microfluidic applications. In this work, we present a black silicon/elastomer (bSi/elastomer) composite surface which shows switchable wettability and adhesion across the two wetting modes by mechanical stretching. The composite surface is composed of a scale-like nanostructured silicon platelet array that covers an elastomer surface. The gap between the neighboring silicon platelets is reversibly changeable as a function of a mechanical strain, leading to the transition between the two wetting modes. Moreover, the composite surface is highly flexible although its wetting properties primarily originate from superhydrophobic bSi platelets. Different wetting characteristics of the composite surface in various mechanical strains are studied, and droplet manipulation such as droplet self-propulsion and pick-and-place using the composite surface is demonstrated, which highlights its potentials for microfluidic applications.

  9. Atomistic simulations to micro-mechanisms of adhesion in automotive applications

    Science.gov (United States)

    Sen, Fatih Gurcag

    This study aimed at depicting atomistic and microstructural aspects of adhesion and friction that appear in different automotive applications and manufacturing processes using atomistic simulations coupled with tribological tests and surface characterization experiments. Thin films that form at the contact interfaces due to chemical reactions and coatings that are developed to mitigate or enhance adhesion were studied in detail. The adhesion and friction experiments conducted on diamond-like carbon (DLC) coatings against Al indicated that F incorporation into DLC decreased the coefficient of friction (COF) by 30% -with respect to H-DLC that is known to have low COF and anti-adhesion properties against Al- to 0.14 owing to formation of repulsive F-F interactions at the sliding interface as shown by density functional theory (DFT) calculations. F atoms transferred to the Al surface with an increase in the contact pressure, and this F transfer led to the formation of a stable AlF3 compound at the Al surface as confirmed by XPS and cross-sectional FIB-TEM. The incorporation of Si and O in a F-containing DLC resulted in humidity independent low COF of 0.08 due to the hydration effect of the Si-O-Si chains in the carbonaceous tribolayers that resulted in repulsive OH-OH interactions at the contact interface. At high temperatures, adhesion of Al was found to be enhanced as a result of superplastic oxide fibers on the Al surface. Molecular dynamics (MD) simulations of tensile deformation of Al nanowires in oxygen carried out with ReaxFF showed that native oxide of Al has an oxygen deficient, low density structure and in O2, the oxygen diffusion in amorphous oxide healed the broken Al-O bonds during applied strain and resulted in the superplasticity. The oxide shell also provided nucleation sites for dislocations in Al crystal. In fuel cell applications, where low Pt/carbon adhesion is causing durability problems, spin-polarized DFT showed that metals with unfilled d

  10. The effect of ionic strength on oil adhesion in sandstone--the search for the low salinity mechanism.

    Science.gov (United States)

    Hilner, E; Andersson, M P; Hassenkam, T; Matthiesen, J; Salino, P A; Stipp, S L S

    2015-04-22

    Core flood and field tests have demonstrated that decreasing injection water salinity increases oil recovery from sandstone reservoirs. However, the microscopic mechanism behind the effect is still under debate. One hypothesis is that as salinity decreases, expansion of the electrical double layer decreases attraction between organic molecules and pore surfaces. We have developed a method that uses atomic force microscopy (AFM) in chemical force mapping (CFM) mode to explore the relationship between wettability and salinity. We functionalised AFM tips with alkanes and used them to represent tiny nonpolar oil droplets. In repeated measurements, we brought our "oil" close to the surface of sand grains taken from core plugs and we measured the adhesion between the tip and sample. Adhesion was constant in high salinity solutions but below a threshold of 5,000 to 8,000 ppm, adhesion decreased as salinity decreased, rendering the surface less oil wet. The effect was consistent, reproducible and reversible. The threshold for the onset of low salinity response fits remarkably well with observations from core plug experiments and field tests. The results demonstrate that the electric double layer force always contributes at least in part to the low salinity effect, decreasing oil wettability when salinity is low.

  11. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment

    Directory of Open Access Journals (Sweden)

    Martin Keith R

    2010-07-01

    Full Text Available Abstract Background Cardiovascular disease (CVD is a leading cause of mortality in the United States as well as globally. Epidemiological studies show that regular fruit and vegetable consumption reduces CVD risk, in part, due to antioxidant activity and immunomodulation since oxidative stress and inflammation are features of atherogenesis. Accumulating evidence also shows that dietary fungi, viz., mushrooms, can protect against chronic disease by altering inflammatory environments such as those associated with CVD although most research has focused on specialty mushrooms. In this study, we tested the ability of both common and specialty mushrooms to inhibit cellular processes associated with CVD. Methods Human aortic endothelial cells (HAEC were incubated overnight with control media with dimethylsulfoxide (DMSO vehicle (1% v/v or containing DMSO extracts of whole dehydrated mushrooms (0.1 mg/mL, which included Agaricus bisporus (white button and crimini, Lentinula edodes (shiitake, Pleurotus ostreatus (oyster, and Grifola frondosa (maitake. Monolayers were subsequently washed and incubated with medium alone or containing the pro-inflammatory cytokine IL-1β (5 ng/mL for 6 h to upregulate pro-atherosclerotic adhesion molecules (AM. AM expression was assayed by ELISA and binding of U937 human monocytes pre-loaded with fluorescent dye was determined. Results White button mushrooms consistently reduced (p Conclusion These data provide evidence that dietary mushrooms can inhibit cellular processes such as adhesion molecule expression and ultimate binding of monocytes to the endothelium under pro-inflammatory conditions, which are associated with CVD. As a result, these findings support the notion that dietary mushrooms can be protective against CVD.

  12. Towards atomic-level mechanics: Adhesive forces between aromatic molecules and carbon nanotubes

    Science.gov (United States)

    Lechner, Christoph; Sax, Alexander F.

    2017-10-01

    The adhesive forces for desorption of the four aromatic compounds benzene, anthracene, pyrene, and tetracene from a (8,0) carbon nanotube (CNT) are investigated and compared to the desorption from graphene. The desorption energies are found to be proportional to the size of the contact zone in the adsorbent/adsorbate complex while maximum adhesive forces are proportional to the part of the contact zone where attractive interactions are reduced when external forces pull on the adsorbate. To assess the influence of the curvature, type of CNT, and the adsorbate's orientation, the desorption processes from six zigzag CNT and four armchair CNT are studied for pyrene and tetracene. For some properties, the results are independent of the curvature of the adsorbent, whereas for others we find marked differences. Aspects of elasticity are considered as well as the influence of the Pauli exclusion principle on the equilibrium geometries in adsorbent/adsorbate complexes.

  13. Collapsed adhesion of carbon nanotubes on silicon substrates: continuum mechanics and atomistic simulations

    Science.gov (United States)

    Yuan, Xuebo; Wang, Youshan

    2018-02-01

    Carbon nanotubes (CNTs) can undergo collapse from the ordinary cylindrical configurations to bilayer ribbons when adhered on substrates. In this study, the collapsed adhesion of CNTs on the silicon substrates is investigated using both classical molecular dynamics (MD) simulations and continuum analysis. The governing equations and transversality conditions are derived based on the minimum potential energy principle and the energy-variational method, considering both the van der Waals interactions between CNTs and substrates and those inside CNTs. Closed-form solutions for the collapsed configuration are obtained which show good agreement with the results of MD simulations. The stability of adhesive configurations is investigated by analyzing the energy states. It is found that the adhesive states of single-walled CNTs (SWCNTs) (n, n) on the silicon substrates can be categorized by two critical radii, 0.716 and 0.892 nm. For SWCNTs with radius larger than 0.892 nm, they would fully collapse on the silicon substrates. For SWCNTs with radius less than 0.716 nm, the initial cylindrical configuration is energetically favorable. For SWCNTs with radius between two critical radii, the radially deformed state is metastable. The non-contact ends of all collapsed SWCNTs are identical with the same arc length of 2.38 nm. Finally, the role of number of walls on the adhesive configuration is investigated quantitatively. For multi-walled CNTs with the number of walls exceeding a certain value, the cylindrical configuration is stable due to the increasing bending stiffness. The present study can be useful for the design of CNT-based nanodevices.

  14. Mechanism of Mcl-1 Conformational Regulation Upon Small Molecule Binding Revealed by Molecular Dynamic Simulation.

    Science.gov (United States)

    Wang, Anhui; Song, Ting; Wang, Ziqian; Liu, Yubo; Fan, Yudan; Zhang, Yahui; Zhang, Zhichao

    2016-04-01

    Inhibition of interactions between Mcl-1 and proapoptotic proteins is considered to be a therapeutic strategy to induce apoptosis in cancer cells. Here, we adopted molecular dynamics simulation with molecular mechanics-Poisson Boltzmann/surface area method (MM-PB/SA) to study the inhibition mechanism of three Mcl-1 inhibitors, compounds 1, 2 and 3. Analysis of energy components shows that the better binding free energy of compound 3 than compounds 1 and 2 is attributable to the van der Waals energy (ΔEvdw ) and non-polar solvation energy (ΔGnp ) upon binding. In addition to the excellent agreement with previous experimentally determined affinities, our simulation results further show a bend of helix 4 on Mcl-1 upon compound 3 binding, which is driven by hydrophobic interaction with residue Val(253) , leading to a narrowed BH3-binding groove to impede Puma(BH) (3) binding. The computational result is consistent with our competitive isothermal titration calorimetry (ITC) assays, which shows that the competitive ability of compound 3 toward Mcl-1/Puma(BH) (3) complex is improved beyond its direct binding affinity toward Mcl-1 itself, and compound 3 exhibits much more efficiency to compete with Puma(BH) (3) than compound 2. Our study provides a new strategy to improve inhibitory activity on Mcl-1 based on the conformational dynamic change. © 2015 John Wiley & Sons A/S.

  15. A fracture mechanics analysis of adhesive failure in a single lap shear joint.

    Science.gov (United States)

    Devries, K. L.; Williams, M. L.; Chang, M. D.

    1972-01-01

    Discussion of adhesive fracture of single lap shear joints in terms of a maximum stress criterion and an energy balance. The Goland and Reissner (1944) analysis is used to determine the stress distribution in the adhesive assembly, and the results obtained are introduced into an energy balance to determine the initiation of adhesive fracture. In the stress analysis the loads at the edges of the joint are first determined. This is a problem in which the deformation of the joint sheets must be taken into account and is solved by using the finite-deflection theory of cylindrically bent plates. Then the stress in the joint due to applied loads is determined. This problem is formulated as one in plane strain consisting of two rectangular sheets of equal thickness and unit width. With the aid of this stress analysis and the stresses obtained from the conditions of equilibrium the contributions to the energy change with crack length are calculated. The analysis performed is then compared with a maximum stress criterion for a lap joint.

  16. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  17. Participation of heparin binding proteins from the surface of Leishmania (Viannia) braziliensis promastigotes in the adhesion of parasites to Lutzomyia longipalpis cells (Lulo) in vitro

    Science.gov (United States)

    2012-01-01

    Background Leishmania (V.) braziliensis is a causative agent of cutaneous leishmaniasis in Brazil. During the parasite life cycle, the promastigotes adhere to the gut of sandflies, to avoid being eliminated with the dejection. The Lulo cell line, derived from Lutzomyia longipalpis (Diptera: Psychodidae), is a suitable in vitro study model to understand the features of parasite adhesion. Here, we analyze the role of glycosaminoglycans (GAGs) from Lulo cells and proteins from the parasites in this event. Methods Flagellar (Ff) and membrane (Mf) fractions from promastigotes were obtained by differential centrifugation and the purity of fractions confirmed by western blot assays, using specific antibodies for cellular compartments. Heparin-binding proteins (HBP) were isolated from both fractions using a HiTrap-Heparin column. In addition, binding of promastigotes to Lulo cells or to a heparin-coated surface was assessed by inhibition assays or surface plasmon resonance (SPR) analysis. Results The success of promastigotes subcellular fractionation led to the obtainment of Ff and Mf proteins, both of which presented two main protein bands (65.0 and 55.0kDa) with affinity to heparin. The contribution of HBPs in the adherence of promastigotes to Lulo cells was assessed through competition assays, using HS or the purified HBPs fractions. All tested samples presented a measurable inhibition rate when compared to control adhesion rate (17 ± 2.0% of culture cells with adhered parasites): 30% (for HS 20μg/ml) and 16% (for HS 10μg/ml); HBP Mf (35.2% for 10μg/ml and 25.4% for 20μg/ml) and HBP Ff (10.0% for 10μg/ml and 31.4% for 20μg/ml). Additionally, to verify the presence of sulfated GAGs in Lulo cells surface and intracellular compartment, metabolic labeling with radioactive sulfate was performed, indicating the presence of an HS and chondroitin sulfate in both cell sections. The SPR analysis performed further confirmed the presence of GAGs ligands on L. (V

  18. The Effect of Face and Adhesive Types on Mechanical Properties of Sandwich Panels Made from Honeycomb Paper

    Directory of Open Access Journals (Sweden)

    Mohsen Saffari

    2013-11-01

    Full Text Available Sandwich panels are new kind of layered composites that usually are composed of three layers and their core layer's thickness is higher and the outer layers are determinative in determination of the products strength and stiffness. The core layer is commonly made of honeycomb paper, corrugated paper and polyurethane etc. In this study, effects of face and adhesive types on mechanical properties of sandwich panels made from honeycomb paper were investigated. The variables included three types; beech face, poplar face and hardboard (S2S face, veneer less and adhesive type (two types; epoxy and PVA. Out of experimental panels specimens were cut and tested according to DIN E 326-1 standard. Mechanical properties of panels, included modulus of elasticity as well as modulus of rupture at the edge and surface (based on DIN EN 310 standard and Impact Bending Strength (IBS of the panels (based on ASTM D 3499 standard were measured. The gathered data were analyzed as completely randomized factorial design. Highest mechanical properties were reported for panels glued with epoxy resin and containing fiberboard at the middle. According to results, optimum condition of producing sandwich panels was observed in uses of epoxy resin and fiberboard S2S face, veneer less at the middle.

  19. Exploring the binding mechanism and kinetics of Piperine with snake venom secretory Phospholipase A2.

    Science.gov (United States)

    Christian Bharathi, A; Srinivas, Sistla; Syed Ibrahim, B

    2018-01-01

    Secreted venom Phospholipase A2 is highly responsible for pharmacological effects like neurotoxicity, myotoxicity, hemolytic, anti-coagulation, and platelet aggregation. Neutralization of these pharmacological behaviors is one of the challenges existing for many decades and a potent drug compound for this is very much needed to control local effects of venom sPLA2. In this study, we investigated binding mechanism and kinetics of inhibition of Piperine (major constitute of Piper nigrum) with sPLA2 using DFT, MD simulation, MM-PBSA, and SPR method. Frontier MO properties were suggested that it procured better chemical reactivity and druglikeness and binding mode of Piperine with EcPLA2 defined that it occupied well in N-terminal hydrophobic cleft. The persistence of Piperine interactions with and without calcium ion was analyzed and confirmed by MD simulation analysis. The dPCA-based FEL shows the nature of apo- and Piperine-bound conformational behavior of EcPLA2 including intermediate forms. Further, binding energy of Piperine was calculated by high-throughput MM-PBSA which states that calcium ion presence enhances the Piperine binding by additional electrostatic interactions. Finally, kinetics of inhibition between Piperine and EcPLA2 implied that it secured better binding affinity (KD: as 1.708 pM) and the result gives clear evidence for the binding mechanism and binding energy calculated. In conclusion, Piperine was authenticated with better drug ability, entrenched binding interaction, and robust kinetics of inhibition with EcPLA2 through which it can become an exceeding drug candidate for pharmacological as well as catalytic activity of sPLA2.

  20. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    CERN Document Server

    Teif, Vladimir B

    2010-01-01

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibriums measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quant...

  1. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  2. The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination.

    Science.gov (United States)

    Beck, Jennifer N; Singh, Anirudha; Rothenberg, Ashley R; Elisseeff, Jennifer H; Ewald, Andrew J

    2013-12-01

    Metastasis begins with the escape, or dissemination, of cancer cells from the primary tumor. We recently demonstrated that tumors preferentially disseminate into collagen I and not into basement membrane protein gels (Matrigel). In this study, we used synthetic polymer systems to define material properties that could induce dissemination into Matrigel. We first specifically varied rigidity by varying the crosslinking density of poly(ethylene glycol) (PEG) networks within Matrigel scaffolds. Increased microenvironmental rigidity limited epithelial growth but did not promote dissemination. We next incorporated adhesive signals into the PEG network using peptide-conjugated cyclodextrin (α-CDYRGDS) rings. The α-CDYRGDS rings threaded along the PEG polymers, enabling independent control of matrix mechanics, adhesive peptide composition, and adhesive density. Adhesive PEG networks induced dissemination of normal and malignant mammary epithelial cells at intermediate values of adhesion and rigidity. Our data reveal that microenvironmental signals can induce dissemination of normal and malignant epithelial cells without requiring the fibrillar structure of collagen I or containing collagen I-specific adhesion sequences. Finally, the nanobiomaterials and assays developed in this study are generally useful both in 3D culture of primary mammalian tissues and in the systematic evaluation of the specific role of mechanical and adhesive inputs on 3D tumor growth, invasion, and dissemination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Longer peptide can be accommodated in the MHC class I binding site by a protrusion mechanism

    DEFF Research Database (Denmark)

    Stryhn, A; Pedersen, L O; Holm, A

    2000-01-01

    and C termini of a bound peptide interact through hydrogen bonding networks to conserved residues at either end of the class I binding site. Accordingly, it is thought that the termini are fixed and that only minor variations in peptide size are possible through a central bulging mechanism. We find...

  4. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    Science.gov (United States)

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by

  5. Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains.

    Science.gov (United States)

    Adams, Yvonne; Kuhnrae, Pongsak; Higgins, Matthew K; Ghumra, Ashfaq; Rowe, J Alexandra

    2014-03-01

    Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.

  6. Docosahexaenoic acid and eicosapentaenoic acid suppress adhesion molecule expression in human aortic endothelial cells via differential mechanisms.

    Science.gov (United States)

    Huang, Chun-Ying; Sheu, Wayne Huey-Herng; Chiang, An-Na

    2015-04-01

    Dietary PUFAs modulate the progression of cardiovascular disease, but the underlying mechanisms within vascular cells remain unclear. The aim of this study was to investigate the biological function and regulatory mechanisms of PUFAs in LPS-activated human aortic endothelial cells (HAECs). To simulate the in vivo conditions of atherosclerosis, we have established an in vitro model in which THP-1 monocytes adhere to HAECs. Our results showed that n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) remarkably attenuated the adhesion of THP-1 cells to HAECs, probably through inhibiting the expression of VCAM-1 and ICAM-1. Using lipid raft isolation and confocal microscopy, we found that DHA and EPA suppressed the translocation of TLR4 into lipid rafts. Furthermore, DHA and EPA inhibited the ubiquitination and translocation of TRAF6, and the phosphorylation of TAK1, p38, and IκBα. We demonstrated that DHA reduced the phosphorylation of PKR, but EPA increased the expression of A20. Additionally, silencing of A20 reversed the inhibitory effect of EPA on the expression of adhesion molecules. Our study revealed differential signaling pathways modulated by n-3 PUFAs in LPS-stimulated HAECs. These signaling pathways are potential targets for the prevention of atherosclerotic progression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Adhesion at metal interfaces

    Science.gov (United States)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  8. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    Science.gov (United States)

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  9. Study on the Effects of Adipic Acid on Properties of Dicyandiamide-Cured Electrically Conductive Adhesive and the Interaction Mechanism

    Science.gov (United States)

    Wang, Ling; Wan, Chao; Fu, Yonggao; Chen, Hongtao; Liu, Xiaojian; Li, Mingyu

    2014-01-01

    A small quantity of adipic acid was found to improve the performance of dicyandiamide-cured electrically conductive adhesive (ECA) by enhancing its electrical conductivity and mechanical properties. The mechanism of action of the adipic acid and its effects on the ECA were examined. The results indicated that adipic acid replaced the electrically insulating lubricant on the surface of the silver flakes, which significantly improved the electrical conductivity. Specifically, one of the acidic functional groups in adipic acid reacted with the silver flakes, and an amidation reaction occurred between the other acidic functional group in adipic acid and the dicyandiamide, which participated in the curing reaction. Therefore, adipic acid may act as a coupling agent to improve the overall ECA performance.

  10. The Effect of Nanocopper Additions in a Urea-Formaldehyde Adhesive on the Physical and Mechanical Properties of Particleboard Manufactured from Date Palm Waste

    Science.gov (United States)

    Rangavar, H.; Hoseiny fard, M. S.

    2015-03-01

    The effect of addition of copper nanoparticles to a urea-formaldehyde (UF) adhesive on the physical and mechanical properties of particleboards manufactured from date palm waste (DPW) was investigated. The variable factors in the study included copper nanoparticles in amounts of 6 and 8 wt.% of the dry mass of wood, pressing durations of 5 and 6 min, and pressing temperatures of 150 and 160°C. The physical and mechanical properties of manufactured boards were measured according to EN standards. The results showed that the addition of copper nanoparticles to the UF adhesive considerably improved the physical and mechanical properties of the boards and shortened the pressing duration. The boards manufactured with 6 wt.% copper nanoparticles in a dry mass of wood mixed with the adhesive and pressed at a temperature of 160°C for 5 min had mechanical properties exceeding the EN312-2 standard levels.

  11. Irradiation of platelets with UV-B light exposes fibrinogen binding sites via an intracellular mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Marwijk Kooy, M. van; Borghuis, L.; Prooijen, H.C. van; Aarts-Riemens, M.I.; Akkerman, J.W.N. (Rijksuniversiteit Utrecht (Netherlands). Academisch Ziekenhuis)

    1990-12-01

    This study provides evidence that UV-B induced aggregation is mediated by a Ca{sup 2+}-dependent process of fibrinogen binding to an intact glycoprotein IIb-IIIa complex on platelet membranes. Although UV-induced platelet aggregation is independent of thromboxane A{sub 2} formation and ADP secretion, it requires metabolic energy, cytosolic Ca{sup 2+} and a low cyclic-AMP level. Thus, UV-B irradiation causes platelet aggregation by exposing fibrinogen binding sites via an intracellular mechanism. Since the amount of bound fibrinogen following UVI is relatively low (about 2300 molecules/platelet) and the binding remains reversible, its effect on platelet behaviour after transfusion may be minor. (author).

  12. Unravelling the mechanism and significance of thrombin binding to platelet glycoprotein Ib.

    Science.gov (United States)

    Ruggeri, Zaverio M; Zarpellon, Alessandro; Roberts, James R; Mc Clintock, Richard A; Jing, Hua; Mendolicchio, G Loredana

    2010-11-01

    The main question concerning the mechanism of a-thrombin binding to platelet membrane glycoprotein (GP)Ib is whether it involves both thrombin exosite I and exosite II. The solution of two independent crystal structures suggests alternative explanations that may actually reflect different modes of binding with distinct pathophysiological significance. With respect to function, it is still unclear whether thrombin binding to GPIb promotes procoagulant and prothrombotic pathways of response to vascular injury or limits such responses by sequestering, at least temporarily, the active enzyme. We review here published information on these topics and touch upon ongoing studies aimed at finding definitive answers to outstanding questions relevant for a better understanding of thrombosis and haemostasis.

  13. Insights into the selective binding and toxic mechanism of microcystin to catalase

    Science.gov (United States)

    Hu, Yuandong; Da, Liangjun

    2014-03-01

    Microcystin is a sort of cyclic nonribosomal peptides produced by cyanobacteria. It is cyanotoxin, which can be very toxic for plants and animals including humans. The present study evaluated the interaction of microcystin and catalase, under physiological conditions by means of fluorescence, three-dimensional (3D) fluorescence, circular dichroism (CD), Fourier Transform infrared (FT-IR) spectroscopy, and enzymatic reactionkinetic techniques. The fluorescence data showed that microcystin could bind to catalase to form a complex. The binding process was a spontaneous molecular interaction procedure, in which electrostatic interactions played a major role. Energy transfer and fluorescence studies proved the existence of a static binding process. Additionally, as shown by the three-dimensional fluorescence, CD and FT-IR results, microcystin could lead to conformational and microenvironmental changes of the protein, which may affect the physiological functions of catalase. The work provides important insights into the toxicity mechanism of microcystin in vivo.

  14. Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling.

    Science.gov (United States)

    Hu, Shihao; Jiang, Haodan; Xia, Zhenhai; Gao, Xiaosheng

    2010-09-01

    With unique hierarchical fibrillar structures on their feet, gecko lizards can walk on vertical walls or even ceilings. Recent experiments have shown that strong binding along the shear direction and easy lifting in the normal direction can be achieved by forming unidirectional carbon nanotube array with laterally distributed tips similar to gecko's feet. In this study, a multiscale modeling approach was developed to analyze friction and adhesion behaviors of this hierarchical fibrillar system. Vertically aligned carbon nanotube array with laterally distributed segments at the end was simulated by coarse grained molecular dynamics. The effects of the laterally distributed segments on friction and adhesion strengths were analyzed, and further adopted as cohesive laws used in finite element analysis at device scale. The results show that the laterally distributed segments play an essential role in achieving high force anisotropy between normal and shear directions in the adhesives. Finite element analysis reveals a new friction-enhanced adhesion mechanism of the carbon nanotube array, which also exists in gecko adhesive system. The multiscale modeling provides an approach to bridge the microlevel structures of the carbon nanotube array with its macrolevel adhesive behaviors, and the predictions from this modeling give an insight into the mechanisms of gecko-mimicking dry adhesives.

  15. Nucleotide-binding oligomerization domain 1 regulates Porphyromonas gingivalis-induced vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression in endothelial cells through NF-κB pathway.

    Science.gov (United States)

    Wan, M; Liu, J; Ouyang, X

    2015-04-01

    Porphyromonas gingivalis has been shown to actively invade endothelial cells and induce vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) overexpression. Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular pattern recognition reporter, and its involvement in this process was unknown. This study focused on endothelial cells infected with P. gingivalis, the detection of NOD1 expression and the role that NOD1 plays in the upregulation of VCAM-1 and ICAM-1. The human umbilical vein endothelial cell line (ECV-304) was intruded by P. gingivalis W83, and cells without any treatment were the control group. Expression levels of NOD1, VCAM-1, ICAM-1, phosphorylated P65 between cells with and without treatment on both mRNA and protein levels were compared. Then we examined whether mesodiaminopimelic acid (NOD1 agonist) could increase VCAM-1 and ICAM-1 expression, meanwhile, NOD1 gene silence by RNA interference could reduce VCAM-1, ICAM-1 and phosphorylated P65 release. At last, we examined whether inhibition of NF-κB by Bay117082 could reduce VCAM-1 and ICAM- 1 expression. The mRNA levels were measured by real-time polymerase chain reaction, and protein levels by western blot or electrophoretic mobility shift assays (for phosphorylated P65). P. gingivalis invasion showed significant upregulation of NOD1, VCAM-1 and ICAM-1. NOD1 activation by meso-diaminopimelic acid increased VCAM-1 and ICAM-1 expression, and NOD1 gene silence reduced VCAM-1 and ICAM-1 release markedly. The NF-κB signaling pathway was activated by P. gingivalis, while NOD1 gene silence decreased the activation of NF-κB. Moreover, inhibition of NF-κB reduced VCAM-1 and ICAM-1 expression induced by P. gingivalis in endothelial cells. The results revealed that P. gingivalis induced NOD1 overexpression in endothelial cells and that NOD1 played an important role in the process of VCAM-1 and ICAM-1 expression in endothelial cells infected with P

  16. Heparin Binds Lamprey Angiotensinogen and Promotes Thrombin Inhibition through a Template Mechanism.

    Science.gov (United States)

    Wei, Hudie; Cai, Haiyan; Wu, Jiawei; Wei, Zhenquan; Zhang, Fei; Huang, Xin; Ma, Lina; Feng, Lingling; Zhang, Ruoxi; Wang, Yunjie; Ragg, Hermann; Zheng, Ying; Zhou, Aiwu

    2016-11-25

    Lamprey angiotensinogen (l-ANT) is a hormone carrier in the regulation of blood pressure, but it is also a heparin-dependent thrombin inhibitor in lamprey blood coagulation system. The detailed mechanisms on how angiotensin is carried by l-ANT and how heparin binds l-ANT and mediates thrombin inhibition are unclear. Here we have solved the crystal structure of cleaved l-ANT at 2.7 Å resolution and characterized its properties in heparin binding and protease inhibition. The structure reveals that l-ANT has a conserved serpin fold with a labile N-terminal angiotensin peptide and undergoes a typical stressed-to-relaxed conformational change when the reactive center loop is cleaved. Heparin binds l-ANT tightly with a dissociation constant of ∼10 nm involving ∼8 monosaccharides and ∼6 ionic interactions. The heparin binding site is located in an extensive positively charged surface area around helix D involving residues Lys-148, Lys-151, Arg-155, and Arg-380. Although l-ANT by itself is a poor thrombin inhibitor with a second order rate constant of 500 m(-1) s(-1), its interaction with thrombin is accelerated 90-fold by high molecular weight heparin following a bell-shaped dose-dependent curve. Short heparin chains of 6-20 monosaccharide units are insufficient to promote thrombin inhibition. Furthermore, an l-ANT mutant with the P1 Ile mutated to Arg inhibits thrombin nearly 1500-fold faster than the wild type, which is further accelerated by high molecular weight heparin. Taken together, these results suggest that heparin binds l-ANT at a conserved heparin binding site around helix D and promotes the interaction between l-ANT and thrombin through a template mechanism conserved in vertebrates. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast

    Science.gov (United States)

    Hoggard, Timothy; Shor, Erika; Müller, Carolin A.; Nieduszynski, Conrad A.; Fox, Catherine A.

    2013-01-01

    Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. PMID:24068963

  18. Enhancement of mechanical properties and interfacial adhesion by chemical odification of natural fibre reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Erasmus, E

    2008-11-01

    Full Text Available Natural fibres are often used for reinforcing thermoplastics, like polypropylene, to manufacture composite materials exhibiting numerous advantages such as high mechanical properties, low density and biodegradability. The mechanical properties of a...

  19. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    KAUST Repository

    Lee, Seung-Joo

    2010-03-28

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5\\'-TGGTC-3\\') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain. The Author(s) 2010. Published by Oxford University Press.

  20. Thickness influence in mechanical properties of polyurethane adhesive overlap joints; Influencia del espesor de adhesivo de poliuretano en la resistencia deuniones sometidas a cortadura

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Ledesma, R.; Onoro, J.; Amo, J. M.; Duran, M. C.; Duran, J.

    2005-07-01

    The thickness of adhesive layers in metallic bonded joints has direct influence in the performance and mechanical behaviour of these joints. The aim of this study was to analyse the strength and strain properties of steel overlap joints bonded with polyurethane adhesive layers with different thickness. The results show that the strength is maximum when the thickness of the adhesive layer is very thin, 0.1 mm. When the thickness growth to 1 mm the strength goes down rapidly. for layers from 1 to 1.5 mm the strength goes down slower and from 1.5 to 4 mm the strength is nearly constant. In other hand, the joint strain increase uniformly with adhesive layer thickness growth. (Author) 13 refs.

  1. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces.

    Science.gov (United States)

    Gutiérrez, Mario F; Malaquias, Pamela; Hass, Viviane; Matos, Thalita P; Lourenço, Lucas; Reis, Alessandra; Loguercio, Alessandro D; Farago, Paulo Vitor

    2017-06-01

    To evaluate the effect of addition of copper nanoparticles at different concentrations into an etch-and-rinse adhesive (ER) on antimicrobial activity, Knoop microhardness (KHN), in vitro and in situ degree of conversion (DC), as well as the immediate (IM) and 2-year (2Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Seven experimental ER adhesives were formulated according to the amount of copper nanoparticles incorporated into the adhesives (0 [control], 0.0075 to 1wt.%). We tested the antimicrobial activity of adhesives against Streptococcus mutans using agar diffusion assay after IM and 2Y. The Knoop microhardness and in vitro DC were tested after IM and 2Y. The adhesives were applied to flat occlusal dentine surfaces after acid etching. After resin build-ups, specimens were longitudinally sectioned to obtain beam-like resin-dentine specimens (0.8mm2), which were used for evaluation of μTBS and nanoleakage at the IM and 2Y periods. In situ DC was evaluated at the IM period in these beam-like specimens. Data were submitted to appropriate statistical analyses (α=0.05). The addition of copper nanoparticles provided antimicrobial activity to the adhesives only in the IM evaluation and slightly reduced the KHN, the in vitro and in situ DC (copper concentrations of 1wt.%). However, KHN increase for all concentrations after 2Y. After 2Y, no significant reductions of μTBS (0.06 to 1% wt.%) and increases of nanoleakage were observed for copper containing adhesives compared to the control group. Copper nanoparticles addition up to 0.5wt.% may provide antimicrobial properties to ER adhesives and prevent the degradation of the adhesive interface, without reducing the mechanical properties of the formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Molecular Binding Mechanism of TtgR Repressor to Antibiotics and Antimicrobials.

    Directory of Open Access Journals (Sweden)

    Ana Maria Fernandez-Escamilla

    Full Text Available A disturbing phenomenon in contemporary medicine is the prevalence of multidrug-resistant pathogenic bacteria. Efflux pumps contribute strongly to this antimicrobial drug resistance, which leads to the subsequent failure of clinical treatments. The TtgR protein of Pseudomonas putida is a HTH-type transcriptional repressor that controls expression of the TtgABC efflux pump, which is the main contributor to resistance against several antimicrobials and toxic compounds in this microbe. One of the main strategies to modulate the bacterial resistance is the rational modification of the ligand binding target site. We report the design and characterization of four mutants-TtgRS77A, TtgRE78A, TtgRN110A and TtgRH114A - at the active ligand binding site. The biophysical characterization of the mutants, in the presence and in the absence of different antimicrobials, revealed that TtgRN110A is the variant with highest thermal stability, under any of the experimental conditions tested. EMSA experiments also showed a different dissociation pattern from the operator for TtgRN110A, in the presence of several antimicrobials, making it a key residue in the TtgR protein repression mechanism of the TtgABC efflux pump. We found that TtgRE78A stability is the most affected upon effector binding. We also probe that one mutation at the C-terminal half of helix-α4, TtgRS77A, provokes a severe protein structure distortion, demonstrating the important role of this residue in the overall protein structure and on the ligand binding site. The data provide new information and deepen the understanding of the TtgR-effector binding mechanism and consequently the TtgABC efflux pump regulation mechanism in Pseudomonas putida.

  3. Simulation of Cell Adhesion using a Particle Transport Model

    Science.gov (United States)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  4. Interrogating the mechanism of a tight binding inhibitor of AIR carboxylase.

    Science.gov (United States)

    Firestine, Steven M; Wu, Weidong; Youn, Hasik; Davisson, V Jo

    2009-01-15

    The enzyme aminoimidazole ribonucleotide (AIR) carboxylase catalyzes the synthesis of the purine intermediate, 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). Previously, we have shown that the compound 4-nitro-5-aminoimidazole ribonucleotide (NAIR) is a slow, tight binding inhibitor of the enzyme with a Ki of 0.34 nM. The structural attributes and the slow, tight binding characteristics of NAIR implicated this compound as a transition state or reactive intermediate analog. However, it is unclear what molecular features of NAIR contribute to the mimetic properties for either of the two proposed mechanisms of AIR carboxylase. In order to gain additional information regarding the mechanism for the potent inhibition of AIR carboxylase by NAIR, a series of heterocyclic analogs were prepared and evaluated. We find that all compounds are weaker inhibitors than NAIR and that CAIR analogs are not alternative substrates for the enzyme. Surprisingly, rather subtle changes in the structure of NAIR can lead to profound changes in binding affinity. Computational investigations of enzyme intermediates and these inhibitors reveal that NAIR displays an electrostatic potential surface similar to a proposed reaction intermediate. The result indicates that AIR carboxylase is likely sensitive to the electrostatic surface of reaction intermediates and thus compounds which mimic these surfaces should possess tight binding characteristics. Given the evolutionary relationship between AIR carboxylase and N(5)-CAIR mutase, we believe that this concept extends to the mutase enzyme as well. The implications of this hypothesis for the design of selective inhibitors of the N(5)-CAIR mutase are discussed.

  5. Nudel and FAK as antagonizing strength modulators of nascent adhesions through paxillin.

    Directory of Open Access Journals (Sweden)

    Yongli Shan

    2009-05-01

    Full Text Available Adhesion and detachment are coordinated critical steps during cell migration. Conceptually, efficient migration requires both effective stabilization of membrane protrusions at the leading edge via nascent adhesions and their successful persistence during retraction of the trailing side via disruption of focal adhesions. As nascent adhesions are much smaller in size than focal adhesions, they are expected to exhibit a stronger adhesivity in order to achieve the coordination between cell front and back. Here, we show that Nudel knockdown by interference RNA (RNAi resulted in cell edge shrinkage due to poor adhesions of membrane protrusions. Nudel bound to paxillin, a scaffold protein of focal contacts, and colocalized with it in areas of active membrane protrusions, presumably at nascent adhesions. The Nudel-paxillin interaction was disrupted by focal adhesion kinase (FAK in a paxillin-binding-dependent manner. Forced localization of Nudel in all focal contacts by fusing it to paxillin markedly strengthened their adhesivity, whereas overexpression of structurally activated FAK or any paxillin-binding FAK mutant lacking the N-terminal autoinhibitory domain caused cell edge shrinkage. These results suggest a novel mechanism for selective reinforcement of nascent adhesions via interplays of Nudel and FAK with paxillin to facilitate cell migration.

  6. DNA-Based Nanostructures: Changes of Mechanical Properties of DNA upon Ligand Binding

    Science.gov (United States)

    Nechipurenko, Yury; Grokhovsky, Sergey; Gursky, Georgy; Nechipurenko, Dmitry; Polozov, Robert

    The formation of DNA-based nanostructures involves the binding of different kinds of ligands to DNA as well as the interaction of DNA molecules with each other. Complex formation between ligand and DNA can alter physicochemical properties of the DNA molecule. In the present work, the accessibility of DNA-ligand complexes to cleavage by DNase I are considered, and the exact algorithms for analysis of diagrams of DNase I footprinting for ligand-DNA complexes are obtained. Changes of mechanical properties of the DNA upon ligand binding are also demonstrated by the cleavage patterns generated upon ultrasound irradiation of cis-platin-DNA complexes. Propagation of the mechanical perturbations along DNA in the presence of bound ligands is considered in terms of a string model with a heterogeneity corresponding to the position of a bound ligand on DNA. This model can reproduce qualitatively the cleavage patterns obtained upon ultrasound irradiation of cis-platin-DNA complexes.

  7. Combination-targeting to multiple endothelial cell adhesion molecules modulates binding, endocytosis, and in vivo biodistribution of drug nanocarriers and their therapeutic cargoes.

    Science.gov (United States)

    Papademetriou, Iason; Tsinas, Zois; Hsu, Janet; Muro, Silvia

    2014-08-28

    Designing of drug nanocarriers to aid delivery of therapeutics is an expanding field that can improve medical treatments. Nanocarriers are often functionalized with elements that recognize cell-surface molecules involved in subcellular transport to improve targeting and endocytosis of therapeutics. Combination-targeting using several affinity elements further modulates this outcome. The most studied example is endothelial targeting via multiple cell adhesion molecules (CAMs), which mimics the strategy of leukocytes to adhere and traverse the vascular endothelium. Yet, the implications of this strategy on intracellular transport and in vivo biodistribution remain uncharacterized. We examined this using nanocarriers functionalized for dual- or triple-targeting to intercellular, platelet-endothelial, and/or vascular CAMs (ICAM-1, PECAM-1, VCAM-1). These molecules differ in expression level, location, pathological stimulation, and/or endocytic pathway. In endothelial cells, binding of PECAM-1/VCAM-1-targeted nanocarriers was intermediate to single-targeted counterparts and enhanced in disease-like conditions. ICAM-1/PECAM-1-targeted nanocarriers surpassed PECAM-1/VCAM-1 in control, but showed lower selectivity toward disease-like conditions. Triple-targeting resulted in binding similar to ICAM-1/PECAM-1 combination and displayed the highest selectivity in disease-like conditions. All combinations were effectively internalized by the cells, with slightly better performance when targeting receptors of different endocytic pathways. In vivo, ICAM-1/PECAM-1-targeted nanocarriers outperformed PECAM-1/VCAM-1 in control and disease-like conditions, and triple-targeted counterparts slightly enhanced this outcome in some organs. As a result, delivery of a model therapeutic cargo (acid sphingomyelinase, deficient in Niemann-Pick disease A-B) was enhanced to all affected organs by triple-targeted nanocarriers, particularly in disease-like conditions. Therefore, multi-CAM targeting

  8. A Study on Efficient Mobile IPv6 Fast Handover Scheme Using Reverse Binding Mechanism

    Science.gov (United States)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Sung-Gyu; Kim, Miso; Park, Byungjoo

    This paper proposes a solution for solving the packet handover issues of MIPv6. We propose an efficient scheme that can support fast handover effectively in standard Mobile IPv6 (MIPv6) by optimizing the associated data and the flow of signal during handover. A new signaling message Reverse Packet Binding Mechanism is defined and utilized to hasten the handover procedure by adding a buffer in access point (AP) and home agent (HA).

  9. Physiochemical properties of Caulobacter crescentus holdfast: a localized bacterial adhesive.

    Science.gov (United States)

    Berne, Cécile; Ma, Xiang; Licata, Nicholas A; Neves, Bernardo R A; Setayeshgar, Sima; Brun, Yves V; Dragnea, Bogdan

    2013-09-12

    To colonize surfaces, the bacterium Caulobacter crescentus employs a polar polysaccharide, the holdfast, located at the end of a thin, long stalk protruding from the cell body. Unlike many other bacteria which adhere through an extended extracellular polymeric network, the holdfast footprint area is tens of thousands times smaller than that of the total bacterium cross-sectional surface, making for some very demanding adhesion requirements. At present, the mechanism of holdfast adhesion remains poorly understood. We explore it here along three lines of investigation: (a) the impact of environmental conditions on holdfast binding affinity, (b) adhesion kinetics by dynamic force spectroscopy, and (c) kinetic modeling of the attachment process to interpret the observed time-dependence of the adhesion force at short and long time scales. A picture emerged in which discrete molecular units called adhesins are responsible for initial holdfast adhesion, by acting in a cooperative manner.

  10. Opsonic activity of cell adhesion proteins and beta-1,3-glucan binding proteins from two crustaceans.

    Science.gov (United States)

    Thörnqvist, P O; Johansson, M W; Söderhäll, K

    1994-01-01

    A beta-1,3-glucan binding protein (beta GBP) from the shore crab Carcinus maenas was purified from plasma by precipitation of the protein at low ionic strength. The protein had a molecular mass of 110 kDa, and was shown to affinity precipitate with laminarin, a soluble beta-1,3-glucan, and to cross-react with an antiserum directed toward beta GBP from the crayfish Pacifastacus leniusculus. Also, a protein from the haemocytes of C. maenas with a molecular mass of 80 kDa was found to mediate cell attachment and cause degranulation of crab cells, similar to the 76 kDa protein present in the haemocytes of P. leniusculus. Antibodies against the crayfish 76-kDa protein reacted with the crab 80-kDa protein present in the granular cells. No 80-kDa protein could be found in the hyaline cells. Using a method with FITC-conjugated yeast particles in a phagocytosis assay, both the beta GBP and the 80-kDa protein from C. maenas were shown to have opsonic activity as had beta GBP and 76-kDa protein from P. leniusculus, resulting in higher levels of phagocytosis by the crab hyaline cells. Treatment of the yeast particles with beta GBP previously reacted with laminarin (beta GBP-L) only resulted in a minor increase of phagocytosis. Moreover, if the phagocytic cells were preincubated with beta GBP-L or with the 80-kDa protein, the enhancement of the phagocytic activity by beta GBP or the 80-kDa protein were abolished, indicating that a saturable number of one kind of cell surface receptor seem to be involved in phagocytosis.

  11. Molecular mechanism of DNA association with single-stranded DNA binding protein.

    Science.gov (United States)

    Maffeo, Christopher; Aksimentiev, Aleksei

    2017-12-01

    During DNA replication, the single-stranded DNA binding protein (SSB) wraps single-stranded DNA (ssDNA) with high affinity to protect it from degradation and prevent secondary structure formation. Although SSB binds ssDNA tightly, it can be repositioned along ssDNA to follow the advancement of the replication fork. Using all-atom molecular dynamics simulations, we characterized the molecular mechanism of ssDNA association with SSB. Placed in solution, ssDNA-SSB assemblies were observed to change their structure spontaneously; such structural changes were suppressed in the crystallographic environment. Repeat simulations of the SSB-ssDNA complex under mechanical tension revealed a multitude of possible pathways for ssDNA to come off SSB punctuated by prolonged arrests at reproducible sites at the SSB surface. Ensemble simulations of spontaneous association of short ssDNA fragments with SSB detailed a three-dimensional map of local affinity to DNA; the equilibrium amount of ssDNA bound to SSB was found to depend on the electrolyte concentration but not on the presence of the acidic tips of the SSB tails. Spontaneous formation of ssDNA bulges and their diffusive motion along SSB surface was directly observed in multiple 10-µs-long simulations. Such reptation-like motion was confined by DNA binding to high-affinity spots, suggesting a two-step mechanism for SSB diffusion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Deciphering the combinatorial roles of geometric, mechanical, and adhesion cues in regulation of cell spreading.

    Directory of Open Access Journals (Sweden)

    Greg M Harris

    Full Text Available Significant effort has gone towards parsing out the effects of surrounding microenvironment on macroscopic behavior of stem cells. Many of the microenvironmental cues, however, are intertwined, and thus, further studies are warranted to identify the intricate interplay among the conflicting downstream signaling pathways that ultimately guide a cell response. In this contribution, by patterning adhesive PEG (polyethylene glycol hydrogels using Dip Pen Nanolithography (DPN, we demonstrate that substrate elasticity, subcellular elasticity, ligand density, and topography ultimately define mesenchymal stem cells (MSCs spreading and shape. Physical characteristics are parsed individually with 7 kilopascal (kPa hydrogel islands leading to smaller, spindle shaped cells and 105 kPa hydrogel islands leading to larger, polygonal cell shapes. In a parallel effort, a finite element model was constructed to characterize and confirm experimental findings and aid as a predictive tool in modeling cell microenvironments. Signaling pathway inhibition studies suggested that RhoA is a key regulator of cell response to the cooperative effect of the tunable substrate variables. These results are significant for the engineering of cell-extra cellular matrix interfaces and ultimately decoupling matrix bound cues presented to cells in a tissue microenvironment for regenerative medicine.

  13. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells.

    Science.gov (United States)

    Eyckmans, Jeroen; Lin, Grace L; Chen, Christopher S

    2012-11-15

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs) to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs) exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  14. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  15. Cytotoxicity and comparative binding mechanism of piperine with human serum albumin and α-1-acid glycoprotein.

    Science.gov (United States)

    Yeggoni, Daniel Pushparaju; Rachamallu, Aparna; Kallubai, Monika; Subramanyam, Rajagopal

    2015-01-01

    Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be K(piperine) = 5.7 ± .2 × 10(5) M(-1) and K(piperine) = 9.3± .25 × 10(4) M(-1) which correspond to the free energy of -7.8 and -6.71 kcal M(-1)at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA-piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA-piperine complex reaches equilibration state at around 3 ns, which prove that the HSA-piperine complex is stable in nature.

  16. Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes.

    Science.gov (United States)

    Balzarini, Jan; Van Herrewege, Yven; Vermeire, Kurt; Vanham, Guido; Schols, Dominique

    2007-01-01

    Exposure of HIV-1 to dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing B-lymphoblast Raji cells (Raji/DC-SIGN) but not to wild-type Raji/0 cells results in the capture of HIV-1 particles to the cells as measured by the quantification of cell-associated p24 antigen. Cocultivation of HIV-1-captured Raji/DC-SIGN cells with uninfected CD4+ T lymphocyte C8166 cells results in abundant formation of syncytia within 36 h after cocultivation. Short preexposure of HIV-1 to carbohydrate-binding agents (CBA) dose dependently prevents the Raji/DC-SIGN cells from efficiently binding the virus particles, and no syncytia formation occurs upon subsequent cocultivation with C8166 cells. Thus, the mannose-specific [i.e., the plant lectins Hippeastrum hybrid agglutinin (HHA), Galanthus nivalis agglutinin (GNA), Narcissus pseudonarcissus agglutinin; and Cymbidium agglutinin (CA); the procaryotic cyanovirin-N (CV-N); and the monoclonal antibody 2G12) and N-acetylglucosamine-specific (i.e., the plant lectin Urtica dioica agglutinin) CBAs efficiently abrogate the DC-SIGN-directed HIV-1 capture and subsequent transmission to T lymphocytes. In this assay, the CD4-down-regulating cyclotriazodisulfonamide derivative, the CXCR4 and CCR5 coreceptor antagonists 1-[[4-(1,4,8,11-tetrazacyclotetradec-1-ylmethyl)phenyl]methyl] - 1,4,8,11 - tetrazacyclotetradecane (AMD3100) and maraviroc, the gp41-binding enfuvirtide, and the polyanionic substances dextran sulfate (M(r) 5000), sulfated polyvinyl alcohol, and the naphthalene sulfonate polymer PRO-2000 were markedly less efficient or even completely ineffective. Similar observations were made in primary monocyte-derived dendritic cell cultures that were infected with HIV-1 particles that had been shortly pre-exposed to the CBAs CV-N, CA, HHA, and GNA and the polyanions DS-5000 and PRO-2000. The potential of CBAs, but not polyanions and other structural/functional classes of entry inhibitors, to impair

  17. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein.

    Science.gov (United States)

    Duan, Ming-Rui; Nan, Jie; Liang, Yu-He; Mao, Peng; Lu, Lu; Li, Lanfen; Wei, Chunhong; Lai, Luhua; Li, Yi; Su, Xiao-Dong

    2007-01-01

    WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signaling pathway and partially dependent on NPR1; a C-terminal domain of WRKY1, AtWRKY1-C, was constructed for structural studies. Previous investigations showed that DNA binding of the WRKY proteins was localized at the WRKY domains and these domains may define novel zinc-binding motifs. The crystal structure of the AtWRKY1-C determined at 1.6 A resolution has revealed that this domain is composed of a globular structure with five beta strands, forming an antiparallel beta-sheet. A novel zinc-binding site is situated at one end of the beta-sheet, between strands beta4 and beta5. Based on this high-resolution crystal structure and site-directed mutagenesis, we have defined and confirmed that the DNA-binding residues of AtWRKY1-C are located at beta2 and beta3 strands. These results provided us with structural information to understand the mechanism of transcriptional control and signal transduction events of the WRKY proteins.

  18. Sliding mechanics of coated composite wires and the development of an engineering model for binding.

    Science.gov (United States)

    Zufall, S W; Kusy, R P

    2000-02-01

    A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.

  19. Structural basis for lipid binding and mechanism of the Mycobacterium tuberculosis Rv3802 phospholipase.

    Science.gov (United States)

    Goins, Christopher M; Schreidah, Celine M; Dajnowicz, Steven; Ronning, Donald R

    2018-01-26

    The Mycobacterium tuberculosis rv3802c gene encodes an essential enzyme with thioesterase and phospholipase A activity. Overexpression of Rv3802 orthologs in Mycobacterium smegmatis and Corynebacterium glutamicum increases mycolate content and decreases glycerophospholipids. Although a role in modulating the lipid composition of the unique mycomembrane has been proposed, the true biological function of Rv3802 remains uncertain. In this study, we present the first M. tuberculosis Rv3802 X-ray crystal structure, solved to 1.7 Å resolution. On the basis of the binding of PEG molecules to Rv3802, we identified its lipid-binding site and the structural basis for phosphatidyl-based substrate binding and phospholipase A activity. We found that movement of the α8-helix affords lipid binding and is required for catalytic turnover through covalent tethering. We gained insights into the mechanism of acyl hydrolysis by observing differing arrangements of PEG and water molecules within the active site. This study provides structural insights into biological function and facilitates future structure-based drug design toward Rv3802.

  20. Investigations of Takeout proteins' ligand binding and release mechanism using molecular dynamics simulation.

    Science.gov (United States)

    Zhang, Huijing; Yu, Hui; Zhao, Xi; Liu, Xiaoguang; Feng, Xianli; Huang, Xuri

    2017-05-01

    Takeout (To) proteins exist in a diverse range of insect species. They are involved in many important processes of insect physiology and behaviors. As the ligand carriers, To proteins can transport the small molecule to the target tissues. However, ligand release mechanism of To proteins is unclear so far. In this contribution, the process and pathway of the ligand binding and release are revealed by conventional molecular dynamics simulation, steered molecular dynamics simulation and umbrella sampling methods. Our results show that the α4-side of the protein is the unique gate for the ligand binding and release. The structural analysis confirms that the internal cavity of the protein has high rigidity, which is in accordance with the recent experimental results. By using the potential of mean force calculations in combination with residue cross correlation calculation, we concluded that the binding between the ligand and To proteins is a process of conformational selection. Furthermore, the conformational changes of To proteins and the hydrophobic interactions both are the key factors for ligand binding and release.

  1. Acoustic Imaging of Microstructure and Evaluation of the Adhesive's Physical, Mechanical and Chemical Properties Changes at Different Cure States

    Science.gov (United States)

    Severina, I. A.; Fabre, A. J.; Maeva, E. Yu.

    Epoxy thermoset adhesives transform during cure from liquid state into the highly cross-linked solid. Cure state of the material depends on condition of the reaction (temperature, pressure, time etc.) and resin/hardener ratio. It is known that the cure degree of the adhesive correlates with adhesion strength, which is critical for structural adhesives used in automotive, aerospace and marine industries. In this work, characterization of cure process of the adhesive with acoustic methods is presented. Evolution of the acoustic and elastic properties (attenuation, sound velocity, density, elastic moduli) during cure reaction was monitored in relation to the substantial physical and chemical changes of the material. These macro parameters of the adhesive were compared with the material's microstructure obtained by high-resolution acoustic microscopy technique in frequencies range of 50-400 MHz. Development of the microstructure of the adhesive as it cures at different conditions has been investigated. Appearance and development of the granular structure on the adhesive interface during cure reaction has been demonstrated. Acoustic images were analyzed by mathematical method to quantitatively characterize distribution of the adhesive's components. Statistical analysis of such images provides an accurate quantitative measure of the degree of cure of such samples. Research results presented in this paper can be useful as a basis for non-destructive evaluation of the adhesive materials

  2. Effect of storage times and mechanical load cycling on dentin bond strength of conventional and self-adhesive resin luting cements.

    Science.gov (United States)

    Aguiar, Thaiane R; André, Carolina B; Correr-Sobrinho, Lourenço; Arrais, César A G; Ambrosano, Gláucia M B; Giannini, Marcelo

    2014-05-01

    The lack of long-term bond stability between resin cements and dentin may compromise the success of indirect restorations. The purpose of this study was to evaluate the effects of long-term storage in artificial saliva and mechanical load cycling on the microtensile bond strength of conventional and self-adhesive resin cements to dentin. The occlusal dentin surfaces of 128 human molars were exposed and flattened. The teeth were assigned to 16 groups (n=8) according to resin cement and in vitro aging strategy. Two self-adhesive resin cements (RelyX Unicem and Clearfil SA Cement) and 2 conventional cementing systems (RelyX ARC and Clearfil Esthetic Cement) were used. Resin cements were applied to prepolymerized indirect resin disks, which were bonded to the dentin surfaces and light polymerized. The control groups were represented by immediate microtensile bond strength (24 hours) and aging methods were performed with mechanical load cycling or storage in artificial saliva (1 year and 2 years). Bonded beams were tested in tension until failure. Data (MPa) were analyzed by Proc Mixed for repeated measures and the Tukey-Kramer test (α=.05). The self-adhesive resin cements exhibited higher microtensile bond strength than conventional cementing systems for all conditions studied. The microtensile bond strength of RelyX ARC and self-adhesive resin cements did not decrease after storage in artificial saliva and mechanical load cycling. The Clearfil Esthetic Cement showed the lowest microtensile bond strength and a significant reduction after 2 years of storage in artificial saliva. The storage times and mechanical load cycling did not affect the microtensile bond strength of self-adhesives and RelyX ARC resin cements. The highest microtensile bond strength was obtained for self-adhesive resin cements, with no significant difference between them. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Preparation, Characterization and Mechanical Properties of Bio-Based Polyurethane Adhesives from Isocyanate-Functionalized Cellulose Acetate and Castor Oil for Bonding Wood

    Directory of Open Access Journals (Sweden)

    Adrián Tenorio-Alfonso

    2017-04-01

    Full Text Available Nowadays, different types of natural carbohydrates such as sugars, starch, cellulose and their derivatives are widely used as renewable raw materials. Vegetable oils are also considered as promising raw materials to be used in the synthesis of high quality products in different applications, including in the adhesive field. According to this, several bio-based formulations with adhesion properties were synthesized first by inducing the functionalization of cellulose acetate with 1,6-hexamethylene diisocyanate and then mixing the resulting biopolymer with a variable amount of castor oil, from 20% to 70% (wt. These bio-based adhesives were mechanically characterized by means of small-amplitude oscillatory torsion measurements, at different temperatures, and standardized tests to evaluate tension loading (ASTM-D906 and peel strength (ASTM-D903. In addition, thermal properties and stability of the synthesized bio-polyurethane formulations were also analyzed through differential scanning calorimetry and thermal gravimetric analysis. As a result, the performance of these bio-polyurethane products as wood adhesives were compared and analyzed. Bio-polyurethane formulations exhibited a simple thermo-rheological behavior below a critical temperature of around 80–100 °C depending on the castor oil/cellulose acetate weight ratio. Formulation with medium castor oil/biopolymer weight ratio (50:50 % wt showed the most suitable mechanical properties and adhesion performance for bonding wood.

  4. Adhesive cementation of zirconia posts to root dentin: evaluation of the mechanical cycling effect

    Directory of Open Access Journals (Sweden)

    Graziela Ávila Galhano

    2008-09-01

    Full Text Available This study evaluated the effect of mechanical cycling on the bond strength of zirconia posts to root dentin. Thirty single-rooted human teeth were transversally sectioned to a length of 16 mm. The canal preparation was performed with zirconia post system drills (CosmoPost, Ivoclar to a depth of 12 mm. For post cementation, the canals were treated with total-etch, 3-steps All-Bond 2 (Bisco, and the posts were cemented with Duolink dual resin cement (Bisco. Three groups were formed (n = 10: G1 - control, no mechanical cycling; G2 - 20,000 mechanical cycles; G3 - 2,000,000 mechanical cycles. A 1.6-mm-thick punch induced loads of 50 N, at a 45° angle to the long axis of the specimens and at a frequency of 8 Hz directly on the posts. To evaluate the bond strengths, the specimens were sectioned perpendicular to the long axis of the teeth, generating 2-mm-thick slices, approximately (5 sections per teeth, which were subjected to the push-out test in a universal testing machine at a 1 mm/min crosshead speed. The push-out bond strength was affected by the mechanical cycling (1-way ANOVA, p = .0001. The results of the control group (7.7 ± 1.3 MPa were statistically higher than those of G2 (3.9 ± 2.2 MPa and G3 (3.3 ± 2.3 MPa. It was concluded that the mechanical cycling damaged the bond strength of zirconia posts to root dentin.

  5. Molecular mechanism of HIV-1 gp120 mutations that reduce CD4 binding affinity.

    Science.gov (United States)

    Kassler, Kristin; Sticht, Heinrich

    2014-01-01

    The interaction of the HIV-1 fusion protein gp120 with its cellular receptor CD4 represents a crucial step of the viral infection process, thus rendering gp120 a promising target for the intervention with anti-HIV drugs. Naturally occurring mutations of gp120, however, can decrease its affinity for anti-infective ligands like therapeutic antibodies or soluble CD4. To understand this phenomenon on a structural level, we performed molecular dynamics simulations of two gp120 variants (termed gp1203-2 and gp1202-1), which exhibit a significantly decreased binding of soluble CD4. In both variants, the exchange of a nonpolar residue by glutamate was identified as an important determinant for reduced binding. However, those glutamates are located at different sequence positions and affect different steps of the recognition process: E471 in gp1203-2 predominantly affects the CD4-bound conformation, whereas E372 in gp1202-1 mainly modulates the conformational sampling of free gp120. Despite these differences, there exists an interesting similarity between the two variants: both glutamates exert their function by modulating the conformation and interactions of glycine-rich motifs (G366-G367, G471-G473) resulting in an accumulation of binding incompetent gp120 conformations or a loss of intermolecular gp120-CD4 hydrogen bonds. Thus, the present data suggests that interference with the structure and dynamics of glycine-rich stretches might represent a more widespread mechanism, by which gp120 mutations reduce binding affinity. This knowledge should be helpful to predict the resistance of novel gp120 mutations or to design gp120-ligands with improved binding properties. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:41.

  6. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, Mikhail; Koroleva, Olga; Postnov, Dmitri; Tran, Andrew; Korolev, Sergey (St. Louis-MED)

    2011-08-25

    RecO is a recombination mediator protein (RMP) important for homologous recombination, replication repair and DNA annealing in bacteria. In all pathways, the single-stranded (ss) DNA binding protein, SSB, plays an inhibitory role by protecting ssDNA from annealing and recombinase binding. Conversely, SSB may stimulate each reaction through direct interaction with RecO. We present a crystal structure of Escherichia coli RecO bound to the conserved SSB C-terminus (SSB-Ct). SSB-Ct binds the hydrophobic pocket of RecO in a conformation similar to that observed in the ExoI/SSB-Ct complex. Hydrophobic interactions facilitate binding of SSB-Ct to RecO and RecO/RecR complex in both low and moderate ionic strength solutions. In contrast, RecO interaction with DNA is inhibited by an elevated salt concentration. The SSB mutant lacking SSB-Ct also inhibits RecO-mediated DNA annealing activity in a salt-dependent manner. Neither RecO nor RecOR dissociates SSB from ssDNA. Therefore, in E. coli, SSB recruits RMPs to ssDNA through SSB-Ct, and RMPs are likely to alter the conformation of SSB-bound ssDNA without SSB dissociation to initiate annealing or recombination. Intriguingly, Deinococcus radiodurans RecO does not bind SSB-Ct and weakly interacts with the peptide in the presence of RecR, suggesting the diverse mechanisms of DNA repair pathways mediated by RecO in different organisms.

  7. Marginal Micro-leakage of Self-etch and All-in One Adhesives to Primary Teeth, with Mechanical or Chemo-Mechanical Caries Removal.

    Science.gov (United States)

    A, Nouzari; A, Zohrei; M, Ferooz; N, Mohammadi

    2016-06-01

    Chemo-mechanical caries removal is an effective alternative to the traditional rotary drilling method. One of the factors that can influence micro-leakage is the method of caries removal. To compare the micro-leakage of resin composite in primary dentition using self-etch and all-in one adhesives following conventional and chemo-mechanical caries removal. Sixty extracted human primary anterior teeth with class III carious lesions were collected. The selected teeth were divided randomly into two groups each consisting of 30 teeth. In group1 carious lesions were removed using Carisolv multi mix gel. In group 2, caries was removed using round steel burs in a slow-speed hand piece. Then, the specimens in each group were randomly divided into two subgroups (A and B) of 15 and treated by either Clearfil SE Bond (CSEB) or Scotch bond. All prepared cavities were filled with a resin composite (Estellite). All the specimens were stored in distilled water at 37ºC for 24 hours and then thermocycled in 5ºC and 55ºC water with a dwell time of 20 seconds for 1500 cycles. The specimens were immersed in 1% methylene blue solution for 24 hours, removed, washed and sectioned mesiodistally. The sectioned splits were examined under a stereomicroscope to determine the micro-leakage scores. The data were analyzed using Kruskal-Wallis Test in SPSS version 21. There were no significant differences between micro-leakage scores among the four groups (p = 0.127). Score 0 of micro-leakage was detected for 60% of the specimens in group 1-A (Carisolv + CSEB), 73% of the group 2-A (hand piece + CSEB), 80% of the group 1-B (Carisolv + Scotch bond), and 93% of the group 2-B in which caries was removed using hand piece and bonded with Scotch bond . Although caries removal using hand piece bur along with using Scotch bond adhesive performed less micro-leakage, it would seems that the use of Carisolv doesn't adversely affect the micro-leakage of composite restorations while using self-etch or all

  8. Marginal Micro-leakage of Self-etch and All-in One Adhesives to Primary Teeth, with Mechanical or Chemo-Mechanical Caries Removal

    Science.gov (United States)

    A, Nouzari; A, Zohrei; M, Ferooz; N, Mohammadi

    2016-01-01

    Statement of Problem: Chemo-mechanical caries removal is an effective alternative to the traditional rotary drilling method. One of the factors that can influence micro-leakage is the method of caries removal. Objectives: To compare the micro-leakage of resin composite in primary dentition using self-etch and all-in one adhesives following conventional and chemo-mechanical caries removal. Materials and Methods: Sixty extracted human primary anterior teeth with class III carious lesions were collected. The selected teeth were divided randomly into two groups each consisting of 30 teeth. In group1 carious lesions were removed using Carisolv multi mix gel. In group 2, caries was removed using round steel burs in a slow-speed hand piece. Then, the specimens in each group were randomly divided into two subgroups (A and B) of 15 and treated by either Clearfil SE Bond (CSEB) or Scotch bond. All prepared cavities were filled with a resin composite (Estellite). All the specimens were stored in distilled water at 37ºC for 24 hours and then thermocycled in 5ºC and 55ºC water with a dwell time of 20 seconds for 1500 cycles. The specimens were immersed in 1% methylene blue solution for 24 hours, removed, washed and sectioned mesiodistally. The sectioned splits were examined under a stereomicroscope to determine the micro-leakage scores. The data were analyzed using Kruskal-Wallis Test in SPSS version 21. Results: There were no significant differences between micro-leakage scores among the four groups (p = 0.127). Score 0 of micro-leakage was detected for 60% of the specimens in group 1-A (Carisolv + CSEB), 73% of the group 2-A (hand piece + CSEB), 80% of the group 1-B (Carisolv + Scotch bond), and 93% of the group 2-B in which caries was removed using hand piece and bonded with Scotch bond . Conclusions: Although caries removal using hand piece bur along with using Scotch bond adhesive performed less micro-leakage, it would seems that the use of Carisolv doesn’t adversely

  9. Marginal Micro-leakage of Self-etch and All-in One Adhesives to Primary Teeth, with Mechanical or Chemo-Mechanical Caries Removal

    Directory of Open Access Journals (Sweden)

    Nouzari A

    2016-06-01

    Full Text Available Statement of Problem: Chemo-mechanical caries removal is an effective alternative to the traditional rotary drilling method. One of the factors that can influence micro-leakage is the method of caries removal. Objectives: To compare the micro-leakage of resin composite in primary dentition using self-etch and all-in one adhesives following conventional and chemo-mechanical caries removal. Materials and Methods: Sixty extracted human primary anterior teeth with class III carious lesions were collected. The selected teeth were divided randomly into two groups each consisting of 30 teeth. In group1 carious lesions were removed using Carisolv multi mix gel. In group 2, caries was removed using round steel burs in a slow–speed hand piece. Then, the specimens in each group were randomly divided into two subgroups (A and B of 15 and treated by either Clearfil SE Bond (CSEB or Scotch bond. All prepared cavities were filled with a resin composite (Estellite. All the specimens were stored in distilled water at 37ºC for 24 hours and then thermocycled in 5ºC and 55ºC water with a dwell time of 20 seconds for 1500 cycles. The specimens were immersed in 1% methylene blue solution for 24 hours, removed, washed and sectioned mesiodistally. The sectioned splits were examined under a stereomicroscope to determine the micro-leakage scores. The data were analyzed using Kruskal-Wallis Test in SPSS version 21. Results: There were no significant differences between micro-leakage scores among the four groups (p = 0.127. Score 0 of micro-leakage was detected for 60% of the specimens in group 1-A (Carisolv + CSEB, 73% of the group 2-A (hand piece + CSEB, 80% of the group 1-B (Carisolv + Scotch bond, and 93% of the group 2-B in which caries was removed using hand piece and bonded with Scotch bond . Conclusions: Although caries removal using hand piece bur along with using Scotch bond adhesive performed less micro-leakage, it would seems that the use of Carisolv

  10. A comparative analysis of molecular mechanisms for blocking polyspermy: identification of a lectin-ligand binding reaction in mammalian eggs.

    Science.gov (United States)

    Hedrick, Jerry L

    2007-01-01

    Fertilization is a critically important event to the creation of a new individual organism and to the propagation of a species. Evolutionarily conserved cellular and molecular mechanisms exist to modify the glycoproteins composing the egg extracellular matrix at fertilization. These matrix modifications regulate the cellular interactions of sperm and egg, maintain the diploid state of the nucleus after successful union of the two gametes (block to polyspermy) and control the environment for the developing embryo. Only recently have mammals been studied regarding extracellular matrix block to polyspermy mechanisms compared to the long term investigations of the same in sea urchins, fish and amphibians - knowledge of evolutionary conserved mechanisms in these animal groups can be used to predict the existence of mechanisms in mammals. Experimental evidence exists for the conservation of proteolytic, glycolytic, cross linking, conformational and binding mechanisms for establishing extracellular matrix blocks to polyspermy at fertilization. Analogous to a binding mechanism in anurans, a lectin-ligand binding mechanism for establishing an extracellular matrix block to polyspermy in mammalian eggs has been discovered. This binding mechanism involves the exocytotic release of a cortical granule lectin in the sperm-induced egg cortical reaction, diffusion and binding of the lectin to its ligand associated with the zona pellucida, and prevention of sperm-zona pellucida binding by the lectin-ligand reaction, thereby resulting in a block to polyspermy at fertilization. The glycoproteins involved in the lectin-ligand polyspermy block can potentially be used as targets for contraception.

  11. An Overview of Dental Adhesive Systems and the Dynamic Tooth-Adhesive Interface.

    Science.gov (United States)

    Bedran-Russo, Ana; Leme-Kraus, Ariene A; Vidal, Cristina M P; Teixeira, Erica C

    2017-10-01

    From the conception of resin-enamel adhesion to today's contemporary dental adhesive systems, clinicians are no longer afraid of exploring the many advantages brought by adhesive restorative concepts. To maximize the performance of adhesive-based restorative procedures, practitioners must be familiar with the mechanism of adhesion, clinical indications, proper handling, the inherent limitations of the materials and the biological challenges. This review provides an overview of the current status of restorative dental adhesives, their mechanism of adhesion, mechanisms of degradation of dental adhesive interfaces, how to maximize performance, and future trends in adhesive dentistry. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. NEDD9 stabilizes focal adhesions, increases binding to the extra-cellular matrix and differentially effects 2D versus 3D cell migration.

    Directory of Open Access Journals (Sweden)

    Jessie Zhong

    Full Text Available The speed of cell migration on 2-dimensional (2D surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics. The focal adhesion protein NEDD9 is a key signalling intermediary in mesenchymal cell migration, however whether NEDD9 plays a role in regulating focal adhesion dynamics has not previously been reported. As NEDD9 effects on 2D migration speed appear to depend on the cell type examined, in the present study we have used mouse embryo fibroblasts (MEFs from mice in which the NEDD9 gene has been depleted (NEDD9 -/- MEFs. This allows comparison with effects of other focal adhesion proteins that have previously been demonstrated using MEFs. We show that focal adhesion disassembly rates are increased in the absence of NEDD9 expression and this is correlated with increased paxillin phosphorylation at focal adhesions. NEDD9-/- MEFs have increased rates of migration on 2D surfaces, but conversely, migration of these cells is significantly reduced in 3D collagen gels. Importantly we show that myosin light chain kinase is activated in 3D in the absence of NEDD9 and is conversely inhibited in 2D cultures. Measurement of adhesion strength reveals that NEDD9-/- MEFs have decreased adhesion to fibronectin, despite upregulated α5β1 fibronectin receptor expression. We find that β1 integrin activation is significantly suppressed in the NEDD9-/-, suggesting that in the absence of NEDD9 there is decreased integrin receptor activation. Collectively our data suggest that NEDD9 may promote 3D cell migration by slowing focal adhesion disassembly, promoting integrin receptor activation and increasing adhesion force to the ECM.

  13. Structural mechanism of S-adenosyl methionine binding to catechol O-methyltransferase.

    Directory of Open Access Journals (Sweden)

    Douglas Tsao

    Full Text Available Methyltransferases possess a homologous domain that requires both a divalent metal cation and S-adenosyl-L-methionine (SAM to catalyze its reactions. The kinetics of several methyltransferases has been well characterized; however, the details regarding their structural mechanisms have remained unclear to date. Using catechol O-methyltransferase (COMT as a model, we perform discrete molecular dynamics and computational docking simulations to elucidate the initial stages of cofactor binding. We find that COMT binds SAM via an induced-fit mechanism, where SAM adopts a different docking pose in the absence of metal and substrate in comparison to the holoenzyme. Flexible modeling of the active site side-chains is essential for observing the lowest energy state in the apoenzyme; rigid docking tools are unable to recapitulate the pose unless the appropriate side-chain conformations are given a priori. From our docking results, we hypothesize that the metal reorients SAM in a conformation suitable for donating its methyl substituent to the recipient ligand. The proposed mechanism enables a general understanding of how divalent metal cations contribute to methyltransferase function.

  14. Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Backert Steffen

    2011-11-01

    Full Text Available Abstract Helicobacter pylori is a highly successful pathogen uniquely adapted to colonize humans. Gastric infections with this bacterium can induce pathology ranging from chronic gastritis and peptic ulcers to gastric cancer. More virulent H. pylori isolates harbour numerous well-known adhesins (BabA/B, SabA, AlpA/B, OipA and HopZ and the cag (cytotoxin-associated genes pathogenicity island encoding a type IV secretion system (T4SS. The adhesins establish tight bacterial contact with host target cells and the T4SS represents a needle-like pilus device for the delivery of effector proteins into host target cells such as CagA. BabA and SabA bind to blood group antigen and sialylated proteins respectively, and a series of T4SS components including CagI, CagL, CagY and CagA have been shown to target the integrin β1 receptor followed by injection of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine may also play a role in the delivery process. While substantial progress has been made in our current understanding of many of the above factors, the host cell receptors for OipA, HopZ and AlpA/B during infection are still unknown. Here we review the recent progress in characterizing the interactions of the various adhesins and structural T4SS proteins with host cell factors. The contribution of these interactions to H. pylori colonization and pathogenesis is discussed.

  15. Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori

    LENUS (Irish Health Repository)

    Backert, Steffen

    2011-11-01

    Abstract Helicobacter pylori is a highly successful pathogen uniquely adapted to colonize humans. Gastric infections with this bacterium can induce pathology ranging from chronic gastritis and peptic ulcers to gastric cancer. More virulent H. pylori isolates harbour numerous well-known adhesins (BabA\\/B, SabA, AlpA\\/B, OipA and HopZ) and the cag (cytotoxin-associated genes) pathogenicity island encoding a type IV secretion system (T4SS). The adhesins establish tight bacterial contact with host target cells and the T4SS represents a needle-like pilus device for the delivery of effector proteins into host target cells such as CagA. BabA and SabA bind to blood group antigen and sialylated proteins respectively, and a series of T4SS components including CagI, CagL, CagY and CagA have been shown to target the integrin β1 receptor followed by injection of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine may also play a role in the delivery process. While substantial progress has been made in our current understanding of many of the above factors, the host cell receptors for OipA, HopZ and AlpA\\/B during infection are still unknown. Here we review the recent progress in characterizing the interactions of the various adhesins and structural T4SS proteins with host cell factors. The contribution of these interactions to H. pylori colonization and pathogenesis is discussed.

  16. Inverse agonism of cannabinoid CB1 receptor blocks the adhesion of encephalitogenic T cells in inflamed brain venules by a protein kinase A-dependent mechanism.

    Science.gov (United States)

    Rossi, Barbara; Zenaro, Elena; Angiari, Stefano; Ottoboni, Linda; Bach, Simona; Piccio, Laura; Pietronigro, Enrica C; Scarpini, Elio; Fusco, Mariella; Leon, Alberta; Constantin, Gabriela

    2011-04-01

    that modulation of CB1 function has anti-inflammatory effects and suggests that inverse agonism of CB1 block signal transduction mechanisms controlling encephalitogenic T cells adhesion in inflamed brain venules by a PKA-dependent mechanism. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. A novel mechanism of ligand binding and release in the odorant binding protein 20 from the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Ziemba, Brian P; Murphy, Emma J; Edlin, Hannah T; Jones, David N M

    2013-01-01

    Anopheles gambiae mosquitoes that transmit malaria are attracted to humans by the odor molecules that emanate from skin and sweat. Odorant binding proteins (OBPs) are the first component of the olfactory apparatus to interact with odorant molecules, and so present potential targets for preventing transmission of malaria by disrupting the normal olfactory responses of the insect. AgamOBP20 is one of a limited subset of OBPs that it is preferentially expressed in female mosquitoes and its expression is regulated by blood feeding and by the day/night light cycles that correlate with blood-feeding behavior. Analysis of AgamOBP20 in solution reveals that the apo-protein exhibits significant conformational heterogeneity but the binding of odorant molecules results in a significant conformational change, which is accompanied by a reduction in the conformational flexibility present in the protein. Crystal structures of the free and bound states reveal a novel pathway for entrance and exit of odorant molecules into the central-binding pocket, and that the conformational changes associated with ligand binding are a result of rigid body domain motions in α-helices 1, 4, and 5, which act as lids to the binding pocket. These structures provide new insights into the specific residues involved in the conformational adaptation to different odorants and have important implications in the selection and development of reagents targeted at disrupting normal OBP function. Copyright © 2012 The Protein Society.

  18. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    Science.gov (United States)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-01

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  19. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A., E-mail: alashkov83@gmail.com [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-05-15

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  20. Multi-scale models for cell adhesion

    Science.gov (United States)

    Wu, Yinghao; Chen, Jiawen; Xie, Zhong-Ru

    2014-03-01

    The interactions of membrane receptors during cell adhesion play pivotal roles in tissue morphogenesis during development. Our lab focuses on developing multi-scale models to decompose the mechanical and chemical complexity in cell adhesion. Recent experimental evidences show that clustering is a generic process for cell adhesive receptors. However, the physical basis of such receptor clustering is not understood. We introduced the effect of molecular flexibility to evaluate the dynamics of receptors. By delivering new theory to quantify the changes of binding free energy in different cellular environments, we revealed that restriction of molecular flexibility upon binding of membrane receptors from apposing cell surfaces (trans) causes large entropy loss, which dramatically increases their lateral interactions (cis). This provides a new molecular mechanism to initialize receptor clustering on the cell-cell interface. By using the subcellular simulations, we further found that clustering is a cooperative process requiring both trans and cis interactions. The detailed binding constants during these processes are calculated and compared with experimental data from our collaborator's lab.

  1. Mechanism of Substrate and Inhibitor Binding of Rhodobacter Capsulatus Xanthine Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Dietzel, U.; Kuper, J; Doebbler, J; Schulte, A; Truglio, J; Leimkuhler, S; Kisker, C

    2009-01-01

    Rhodobacter capsulatus xanthine dehydrogenase (XDH) is an (ae)2 heterotetrameric cytoplasmic enzyme that resembles eukaryotic xanthine oxidoreductases in respect to both amino acid sequence and structural fold. To obtain a detailed understanding of the mechanism of substrate and inhibitor binding at the active site, we solved crystal structures of R. capsulatus XDH in the presence of its substrates hypoxanthine, xanthine, and the inhibitor pterin-6-aldehyde using either the inactive desulfo form of the enzyme or an active site mutant (EB232Q) to prevent substrate turnover. The hypoxanthine- and xanthine-bound structures reveal the orientation of both substrates at the active site and show the importance of residue GluB-232 for substrate positioning. The oxygen atom at the C-6 position of both substrates is oriented toward ArgB-310 in the active site. Thus the substrates bind in an orientation opposite to the one seen in the structure of the reduced enzyme with the inhibitor oxypurinol. The tightness of the substrates in the active site suggests that the intermediate products must exit the binding pocket to allow first the attack of the C-2, followed by oxidation of the C-8 atom to form the final product uric acid. Structural studies of pterin-6-aldehyde, a potent inhibitor of R. capsulatus XDH, contribute further to the understanding of the relative positioning of inhibitors and substrates in the binding pocket. Steady state kinetics reveal a competitive inhibition pattern with a Ki of 103.57 {+-} 18.96 nm for pterin-6-aldehyde.

  2. Influence of cell-adhesive peptide ligands on poly(ethylene glycol) hydrogel physical, mechanical and transport properties.

    Science.gov (United States)

    Zustiak, Silviya P; Durbal, Rohan; Leach, Jennie B

    2010-09-01

    Synthetic three-dimensional scaffolds for cell and tissue engineering routinely utilize peptide ligands to provide sites for cell adhesion and to promote cellular activity. Given the fact that recent studies have dedicated great attention to the mechanisms by which cell behavior is influenced by various ligands and scaffold material properties, it is surprising that little work to date has been carried out to investigate the influence of covalently bound ligands on hydrogel material properties. Herein we report the influence of three common ligands utilized in tissue engineering, namely RGD, YIGSR and IKVAV, on the mechanical properties of cross-linked poly(ethylene glycol) (PEG) hydrogels. The effect of the ligands on hydrogel storage modulus, swelling ratio, mesh size and also on the diffusivity of bovine serum albumin through the hydrogel were investigated in detail. We identified conditions under which these ligands strikingly influence the properties of the material. The extent of influence and whether the ligand increases or decreases a specific property is linked to ligand type and concentration. Further, we pinpoint mechanisms by which the ligands interact with the PEG network. This work thus provides specific evidence for interactions between peptide ligands and cross-linked PEG hydrogels that have a significant impact on hydrogel material and transport properties. As a result, this work may have important implications for interpreting cell experiments carried out with ligand-modified hydrogels, because the addition of ligand may affect not only the scaffold's biological properties, but also key physical properties of the system. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation

    Directory of Open Access Journals (Sweden)

    Olgun eGuvench

    2015-06-01

    Full Text Available The extracellular N-terminal hyaluronan binding domain (HABD of CD44 is a small globular domain that confers hyaluronan (HA binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA binding site from a low affinity to a high affinity state; in the partially-disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently-attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.

  4. A New Design Strategy and Diagnostic to Tailor the DNA-Binding Mechanism of Small Organic Molecules and Drugs.

    Science.gov (United States)

    Doan, Phi; Pitter, Demar R G; Kocher, Andrea; Wilson, James N; Goodson, Theodore

    2016-11-18

    The classical model for DNA groove binding states that groove binding molecules should adopt a crescent shape that closely matches the helical groove of DNA. Here, we present a new design strategy that does not obey this classical model. The DNA-binding mechanism of small organic molecules was investigated by synthesizing and examining a series of novel compounds that bind with DNA. This study has led to the emergence of structure-property relationships for DNA-binding molecules and/or drugs, which reveals that the structure can be designed to either intercalate or groove bind with calf thymus dsDNA by modifying the electron acceptor properties of the central heterocyclic core. This suggests that the electron accepting abilities of the central core play a key role in the DNA-binding mechanism. These small molecules were characterized by steady-state and ultrafast nonlinear spectroscopies. Bioimaging experiments were performed in live cells to evaluate cellular uptake and localization of the novel small molecules. This report paves a new route for the design and development of small organic molecules, such as therapeutics, targeted at DNA as their performance and specificity is dependent on the DNA-binding mechanism.

  5. Statistical-Mechanical Studies of the Collective Binding of Proteins to DNA

    Science.gov (United States)

    Zhang, Houyin

    My dissertation work focuses on the microscopic statistical-mechanical studies of DNA-protein interactions and mainly comprises of three projects. In living cells, binding of proteins to DNA controls gene expression and packaging of the genome. Single-DNA stretching and twisting experiments provide a powerful tool to detect binding of proteins, via detection of their modification of DNA mechanical properties. However, it is often difficult or impossible to determine the numbers of proteins bound in such experiments, especially when the proteins interact nonspecifically with DNA. In the first project, we developed single-molecule versions of classical thermodynamic Maxwell relations and proposed that these relations could be used to measure DNA-bound protein numbers, changes in DNA double-helix torque with force, and many other quantities which are hard to directly measure. This approach does not need any theoretical assumptions beyond the existence of thermodynamic equilibrium and has been used in single-DNA experiments. Many single-molecule experiments associated with DNA-bending proteins suggest the existence of cooperative interactions between adjacent DNA-bound proteins. In the second project, we studied a statistical-mechanical worm-like chain model including binding cooperativity effects and found that the intrinsic cooperativity of binding sharpens force-extension curves and causes enhancement of fluctuation of extension and protein occupation. This model also allows us to estimate the intrinsic cooperativity in experiments. We also analyzed force-generated cooperativity and found that the related interaction between proteins is always attractive. This suggests that tension in DNA in vivo could alter the distribution of proteins bound along DNA, causing chromosome refolding, or changes in gene expression. In the third project, we investigated the correlations along DNA-protein complexes. We found there are two different correlation lengths corrected to the

  6. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás

    2010-01-26

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent highresolution X-ray structure, we conclude that formation of the P-O bond may be achieved through a transition state (TS) with a planar PO3 - ion. Surprisingly, there is a more than 40 kJ/mol difference between barrier heights of the loose and tight binding sites of the enzyme. This indicates that even a relatively small change in active site conformation, induced by the γ-subunit rotation, may effectively block the back reaction in βTP and, thus, promote ATP. © 2009 American Chemical Society.

  7. The structural basis of the kinetic mechanism of a gap-filling X-family DNA polymerase that binds Mg(2+)-dNTP before binding to DNA.

    Science.gov (United States)

    Nakane, Shuhei; Ishikawa, Hirohito; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2012-03-30

    DNA with single-nucleotide (1-nt) gaps can arise during various DNA processing events. These lesions are repaired by X-family DNA polymerases (PolXs) with high gap-filling activity. Some PolXs can bind productively to dNTPs in the absence of DNA and fill these 1-nt gaps. Although PolXs have a crucial role in efficient gap filling, currently, little is known of the kinetic and structural details of their productive dNTP binding. Here, we show that Thermus thermophilus HB8 PolX (ttPolX) had strong binding affinity for Mg(2+)-dNTPs in the absence of DNA and that it follows a Theorell-Chance (hit-and-run) mechanism with nucleotide binding first. Comparison of the intermediate crystal structures of ttPolX in a binary complex with dGTP and in a ternary complex with 1-nt gapped DNA and Mg(2+)-ddGTP revealed that the conformation of the incoming nucleotide depended on whether or not DNA was present. Furthermore, the Lys263 residue located between two guanosine conformations was essential to the strong binding affinity of the enzyme. The ability to bind to either syn-dNTP or anti-dNTP and the involvement of a Theorell-Chance mechanism are key aspects of the strong nucleotide-binding and efficient gap-filling activities of ttPolX. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein.

    Science.gov (United States)

    Horigome, Daisuke; Satoh, Hiroyuki; Itoh, Nobue; Mitsunaga, Katsuyoshi; Oonishi, Isao; Nakagawa, Atsushi; Uchida, Akira

    2007-03-02

    A water-soluble chlorophyll-binding protein (WSCP) is the single known instance of a putative chlorophyll (Chl) carrier in green plants. Recently the photoprotective function of WSCP has been demonstrated by EPR measurements; the light-induced singlet-oxygen formation of Chl in the WSCP tetramer is about four times lower than that of unbound Chl. This paper describes the crystal structure of the WSCP-Chl complex purified from leaves of Lepidium virginicum (Virginia pepperweed) to clarify the mechanism of its photoprotective function. The WSCP-Chl complex is a homotetramer comprising four protein chains of 180 amino acids and four Chl molecules. At the center of the complex one hydrophobic cavity is formed in which all of the four Chl molecules are tightly packed and isolated from bulk solvent. With reference to the novel Chl-binding mode, we propose that the photoprotection mechanism may be based on the inhibition of physical contact between the Chl molecules and molecular oxygen.

  9. Tailoring the near-surface composition profiles of pressure-sensitive adhesive films and the resulting mechanical properties.

    Science.gov (United States)

    Diethert, Alexander; Ecker, Katharina; Peykova, Yana; Willenbacher, Norbert; Müller-Buschbaum, Peter

    2011-06-01

    We present a possibility of tailoring the near-surface composition profiles of pressure sensitive adhesive (PSA) films by an exposure to atmospheres of different relative humidities (RHs). The statistical copolymer P(EHA-stat-20MMA) with a majority of ethylhexylacrylate (EHA) and a minority of methylmethacrylate (MMA), being cast from a toluene based solution, is chosen as a model system. The near-surface composition profile is probed with X-ray reflectivity. All probed samples show an enrichment of PMMA at the sample surface; however, the near-surface PMMA content strongly increases with increasing RH. The influence of the RH on the composition profile is present down to a depth of 50 nm. Therefore the surface tensions being derived from contact angle measurements do not show any measurable humidity dependence. In contrast, in a mechanical tack test with a smooth punch surface, a strong influence is probed. This observation can be explained by considering the integrated PMMA content over an appropriate near-surface region and the resulting impact on the cavitation process. © 2011 American Chemical Society

  10. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte-Endothelial Cell Adhesion.

    Science.gov (United States)

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2015-10-01

    Cigarette smoke (CS) affects the adhesion of monocytes to endothelial cells, a critical step in atherogenesis. Using an in vitro adhesion assay together with innovative computational systems biology approaches to analyze omics data, our study aimed at investigating CS-induced mechanisms by which monocyte-endothelial cell adhesion is promoted. Primary human coronary artery endothelial cells (HCAECs) were treated for 4 h with (1) conditioned media of human monocytic Mono Mac-6 (MM6) cells preincubated with low or high concentrations of aqueous CS extract (sbPBS) from reference cigarette 3R4F for 2 h (indirect treatment, I), (2) unconditioned media similarly prepared without MM6 cells (direct treatment, D), or (3) freshly generated sbPBS (fresh direct treatment, FD). sbPBS promoted MM6 cells-HCAECs adhesion following I and FD, but not D. In I, the effect was mediated at a low concentration through activation of vascular inflammation processes promoted in HCAECs by a paracrine effect of the soluble mediators secreted by sbPBS-treated MM6 cells. Tumor necrosis factor α (TNFα), a major inducer, was actually shed by unstable CS compound-activated TNFα-converting enzyme. In FD, the effect was triggered at a high concentration that also induced some toxicity. This effect was mediated through an yet unknown mechanism associated with a stress damage response promoted in HCAECs by unstable CS compounds present in freshly generated sbPBS, which had decayed in D unconditioned media. Aqueous CS extract directly and indirectly promotes monocytic cell-endothelial cell adhesion in vitro via distinct concentration-dependent mechanisms. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Endothelial CD2AP Binds the Receptor ICAM-1 To Control Mechanosignaling, Leukocyte Adhesion, and the Route of Leukocyte Diapedesis In Vitro

    NARCIS (Netherlands)

    Schaefer, Antje; van Duijn, Trynette J.; Majolee, Jisca; Burridge, Keith; Hordijk, Peter L.

    2017-01-01

    Inflammation is driven by excessive transmigration (diapedesis) of leukocytes from the blood to the tissue across the endothelial cell monolayer that lines blood vessels. Leukocyte adhesion, crawling, and transmigration are regulated by clustering of the endothelial mechanosensitive receptor

  12. [FUNCTION OF INTERCELLULAR ADHESION A, FIBRINOGEN BINDING PROTEIN, AND ACCUMULATION-ASSOCIATED PROTEIN GENES IN FORMATION OF STAPHYLOCOCCUS EPIDERMIDIS-CANDIDA ALBICANS MIXED SPECIES BIOFILMS].

    Science.gov (United States)

    Wang, Xiaoyan; Chen, Ying; Huang, Yunchao; Zhou, Youquan; Zhao, Guangqiang; Ye, Lianhua; Lei, Yujie; Tang, Qi

    2015-01-01

    To explore the function of intercellular adhesion A (icaA), fibrinogen binding protein (fbe), and accumulation-associated protein (aap) genes in formation of Staphylococcus epidermidis-Candida albicans mixed species biofilms. The experiment was divided into 3 groups: single culture of Staphylococcus epidermidis ATCC35984 (S. epidermidis group) or Candida albicans ATCC10231 (C. albicans group), and co-culture of two strains (mixed group) to build in vitro biofilm model. Biofilm mass was detected by crystal violet semi-quantitative adherence assay at 2, 4, 6, 8, 12, 24, 48, and 72 hours after incubation. XTT assay was performed to determine the growth kinetics in the same time. Scanning electron microscopy (SEM) was used to observe the ultrastructure of the biofilms after 24 and 72 hours of incubation. The expressions of icaA, fbe, and aap genes were analyzed by real-time fluorescent quantitative PCR. Crystal violet semi-quantitative adherence assay showed that the biofilms thickened at 12 hours in the S. epidermidis and mixed groups; after co-cultured for 72 hours the thickness of biofilm in mixed group was more than that in the S. epidermidis group, and there was significant difference between 2 groups at the other time (P 0.05). In C. albicans group, the biofilm started to grow at 12 hours of cultivation, but the thickness of the biofilm was significantly lower than that in the mixed group in all the time points (P epidermidis group at 48 hours; there was no significant difference in the growth speed between the mixed groups and the S. epidermidis group in the other time points (P > 0.05) except at 12 hours (P epidermidis group at 2 and 4 hours, but no significant difference was shown (P > 0.05); the A value of mixed group was significantly higher than that of the C. albicans group after 6 hours (P epidermidis group (P Staphylococcus epidermidis or Candida albicans, which is related to increased expressions of the icaA, fbe, and aap genes of Staphylococcus

  13. Nascent Integrin Adhesions Form on All Matrix Rigidities after Integrin Activation.

    Science.gov (United States)

    Changede, Rishita; Xu, Xiaochun; Margadant, Felix; Sheetz, Michael P

    2015-12-07

    Integrin adhesions assemble and mature in response to ligand binding and mechanical factors, but the molecular-level organization is not known. We report that ∼100-nm clusters of ∼50 β3-activated integrins form very early adhesions under a wide variety of conditions on RGD surfaces. These adhesions form similarly on fluid and rigid substrates, but most adhesions are transient on rigid substrates. Without talin or actin polymerization, few early adhesions form, but expression of either the talin head or rod domain in talin-depleted cells restores early adhesion formation. Mutation of the integrin binding site in the talin rod decreases cluster size. We suggest that the integrin clusters constitute universal early adhesions and that they are the modular units of cell matrix adhesions. They require the association of activated integrins with cytoplasmic proteins, in particular talin and actin, and cytoskeletal contraction on them causes adhesion maturation for cell motility and growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Focal Adhesion Induction at the Tip of a Functionalized Nanoelectrode.

    Science.gov (United States)

    Fuentes, Daniela E; Bae, Chilman; Butler, Peter J

    2011-12-01

    Cells dynamically interact with their physical micro-environment through the assembly of nascent focal contacts and focal adhesions. The dynamics and mechanics of these contact points are controlled by transmembrane integrins and an array of intracellular adaptor proteins. In order to study the mechanics and dynamics of focal adhesion assembly, we have developed a technique for the timed induction of a nascent focal adhesion. Bovine aortic endothelial cells were approached at the apical surface by a nanoelectrode whose position was controlled with a resolution of 10s of nanometers using changes in electrode current to monitor distance from the cell surface. Since this probe was functionalized with fibronectin, a focal contact formed at the contact location. Nascent focal adhesion assembly was confirmed using time-lapse confocal fluorescent images of red fluorescent protein (RFP) - tagged talin, an adapter protein that binds to activated integrins. Binding to the cell was verified by noting a lack of change of electrode current upon retraction of the electrode. This study demonstrates that functionalized nanoelectrodes can enable precisely-timed induction and 3-D mechanical manipulation of focal adhesions and the assay of the detailed molecular kinetics of their assembly.

  15. Determination of adhesion between thermoplastic and liquid silicone rubbers in hard-soft-combinations via mechanical peeling test

    Science.gov (United States)

    Kühr, C.; Spörrer, A.; Altstädt, V.

    2014-05-01

    The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.

  16. Structural models of antibody variable fragments: A method for investigating binding mechanisms

    Science.gov (United States)

    Petit, Samuel; Brard, Frédéric; Coquerel, Gérard; Perez, Guy; Tron, François

    1998-03-01

    The value of comparative molecular modeling for elucidating structure-function relationships was demonstrated by analyzing six anti-nucleosome autoantibody variable fragments. Structural models were built using the automated procedure developed in the COMPOSER software, subsequently minimized with the AMBER force field, and validated according to several standard geometric and chemical criteria. Canonical class assignment from Chothia and Lesk's [Chottin and Lesk, J. Mol. Biol., 196 (1987) 901; Chothia et al., Nature, 342 (1989) 877] work was used as a supplementary validation tool for five of the six hypervariable loops. The analysis, based on the hypothesis that antigen binding could occur through electrostatic interactions, reveals a diversity of possible binding mechanisms of anti-nucleosome or anti-histone antibodies to their cognate antigen. These results lead us to postulate that anti-nucleosome autoantibodies could have different origins. Since both anti-DNA and anti-nculeosome autoantibodies are produced during the course of systemic lupus erythematosus, a non-organ specific autoimmune disease, a comparative structural and electrostatic analysis of the two populations of autoantibodies may constitute a way to elucidate their origin and the role of the antigen in tolerance breakdown. The present study illustrates some interests, advantages and limits of a methodology based on the use of comparative modeling and analysis of molecular surface properties.

  17. Dot1 binding induces chromatin rearrangements by histone methylation-dependent and -independent mechanisms

    Directory of Open Access Journals (Sweden)

    Stulemeijer Iris JE

    2011-02-01

    Full Text Available Abstract Background Methylation of histone H3 lysine 79 (H3K79 by Dot1 is highly conserved among species and has been associated with both gene repression and activation. To eliminate indirect effects and examine the direct consequences of Dot1 binding and H3K79 methylation, we investigated the effects of targeting Dot1 to different positions in the yeast genome. Results Targeting Dot1 did not activate transcription at a euchromatic locus. However, chromatin-bound Dot1 derepressed heterochromatin-mediated gene silencing over a considerable distance. Unexpectedly, Dot1-mediated derepression was established by both a H3K79 methylation-dependent and a methylation-independent mechanism; the latter required the histone acetyltransferase Gcn5. By monitoring the localization of a fluorescently tagged telomere in living cells, we found that the targeting of Dot1, but not its methylation activity, led to the release of a telomere from the repressive environment at the nuclear periphery. This probably contributes to the activity-independent derepression effect of Dot1. Conclusions Targeting of Dot1 promoted gene expression by antagonizing gene repression through both histone methylation and chromatin relocalization. Our findings show that binding of Dot1 to chromatin can positively affect local gene expression by chromatin rearrangements over a considerable distance.

  18. Lipin 2 binds phosphatidic acid by the electrostatic hydrogen bond switch mechanism independent of phosphorylation.

    Science.gov (United States)

    Eaton, James M; Takkellapati, Sankeerth; Lawrence, Robert T; McQueeney, Kelley E; Boroda, Salome; Mullins, Garrett R; Sherwood, Samantha G; Finck, Brian N; Villén, Judit; Harris, Thurl E

    2014-06-27

    Lipin 2 is a phosphatidic acid phosphatase (PAP) responsible for the penultimate step of triglyceride synthesis and dephosphorylation of phosphatidic acid (PA) to generate diacylglycerol. The lipin family of PA phosphatases is composed of lipins 1-3, which are members of the conserved haloacid dehalogenase superfamily. Although genetic alteration of LPIN2 in humans is known to cause Majeed syndrome, little is known about the biochemical regulation of its PAP activity. Here, in an attempt to gain a better general understanding of the biochemical nature of lipin 2, we have performed kinetic and phosphorylation analyses. We provide evidence that lipin 2, like lipin 1, binds PA via the electrostatic hydrogen bond switch mechanism but has a lower rate of catalysis. Like lipin 1, lipin 2 is highly phosphorylated, and we identified 15 phosphosites. However, unlike lipin 1, the phosphorylation of lipin 2 is not induced by insulin signaling nor is it sensitive to inhibition of the mammalian target of rapamycin. Importantly, phosphorylation of lipin 2 does not negatively regulate either membrane binding or PAP activity. This suggests that lipin 2 functions as a constitutively active PA phosphatase in stark contrast to the high degree of phosphorylation-mediated regulation of lipin 1. This knowledge of lipin 2 regulation is important for a deeper understanding of how the lipin family functions with respect to lipid synthesis and, more generally, as an example of how the membrane environment around PA can influence its effector proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Adhesion on Nanoorganized Multilayers

    Directory of Open Access Journals (Sweden)

    Yolla Kazzi

    2011-01-01

    Full Text Available Nanostructured multilayers composed of alternate organic (alkyldithiol and metallic (gold layers are grafted onto glass plates and prepared in order to modify the mechanical and local dissipative properties of a thin surface layer of the substrate. The adhesion phenomenon between a polyisoprene elastomer and these layers is presented and verified by two theories, namely, Johnson, Kendall, Roberts (JKR and linear elastic fracture mechanics. The increase in adhesion with contact time following a power law has been clearly noted.

  20. Influence of binding mechanism on labeling efficiency and luminous properties of fluorescent cellulose nanocrystals.

    Science.gov (United States)

    Ding, Qijun; Zeng, Jinsong; Wang, Bin; Gao, Wenhua; Chen, Kefu; Yuan, Zhe; Xu, Jun

    2017-11-01

    Cellulose nanocrystals (CNCs) have excellent properties, such as reproducibility, low biodegradability and a large amount of reactive hydroxyl groups on the surface. This study focused on the labeling efficiency and fluorescent properties of the fluorescent labeling of CNCs by means of electrostatic adsorption and covalent bonding. The CNCs in the sample were approximately 94.76% successfully labeled with dyes, and the number of dye molecules adsorbed by per CNC was approximately 208 by electrostatic adsorption. For the sample covalently linked, the efficiency of the fluorescent labeling was 95.51%, and the number of dye molecules attached to per CNC was 1038. The quenching mode of the fluorescent CNCs was dynamic quenching. The fluorescence lifetime and quantum yield of the fluorescent CNCs increased by 1-2 times compared to the free dye. A thorough investigation of the relation between the binding mechanism and the fluorescent properties in fluorescent CNCs was conducted. Copyright © 2017. Published by Elsevier Ltd.

  1. Vinculin Activation Is Necessary for Complete Talin Binding

    OpenAIRE

    Golji, Javad; Lam, Johnny; Mofrad, Mohammad R.K.

    2011-01-01

    Focal adhesions are critical to a number of cellular processes that involve mechanotransduction and mechanical interaction with the cellular environment. The growth and strengthening of these focal adhesions is dependent on the interaction between talin and vinculin. This study investigates said interaction and how vinculin activation influences it. Using molecular dynamics, the interaction between talin's vinculin binding site (VBS) and vinculin's domain 1 (D1) is simulated both before and a...

  2. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  3. Adhesion and nanomechanics of pili from the probiotic Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Tripathi, Prachi; Beaussart, Audrey; Alsteens, David; Dupres, Vincent; Claes, Ingmar; von Ossowski, Ingemar; de Vos, Willem M; Palva, Airi; Lebeer, Sarah; Vanderleyden, Jos; Dufrêne, Yves F

    2013-04-23

    Knowledge of the mechanisms by which bacterial pili adhere to host cells and withstand external forces is critical to our understanding of their functional roles and offers exciting avenues in biomedicine for controlling the adhesion of bacterial pathogens and probiotics. While much progress has been made in the nanoscale characterization of pili from Gram-negative bacteria, the adhesive and mechanical properties of Gram-positive bacterial pili remain largely unknown. Here, we use single-molecule atomic force microscopy to unravel the binding mechanism of pili from the probiotic Gram-positive bacterium Lactobacillus rhamnosus GG (LGG). First, we show that SpaC, the key adhesion protein of the LGG pilus, is a multifunctional adhesin with broad specificity. SpaC forms homophilic trans-interactions engaged in bacterial aggregation and specifically binds mucin and collagen, two major extracellular components of host epithelial layers. Homophilic and heterophilic interactions display similar binding strengths and dissociation rates. Next, pulling experiments on living bacteria demonstrate that LGG pili exhibit two unique mechanical responses, that is, zipper-like adhesion involving multiple SpaC molecules distributed along the pilus length and nanospring properties enabling pili to resist high force. These mechanical properties may represent a generic mechanism among Gram-positive bacterial pili for strengthening adhesion and withstanding shear stresses in the natural environment. The single-molecule experiments presented here may help us to design molecules capable of promoting or inhibiting bacterial-host interactions.

  4. Interaction of a synthetic mitochondrial presequence with isolated yeast mitochondria: mechanism of binding and kinetics of import.

    OpenAIRE

    Roise, D

    1992-01-01

    The mechanism of interaction of a presequence with isolated yeast mitochondria was examined. A synthetic peptide corresponding to a matrix-targeting signal was covalently labeled with a fluorescent probe. Binding of the presequence to the surface of the mitochondria and translocation of the presequence into the interior of the mitochondria could then be monitored directly in solution by measuring changes in the steady-state fluorescence of the attached fluorophore. The binding step was rapid ...

  5. Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators.

    Science.gov (United States)

    Perera, Inoka C; Grove, Anne

    2010-10-01

    Bacteria and archaea encode members of the large multiple antibiotic resistance regulator (MarR) family of transcriptional regulators. Generally, MarR homologs regulate activity of genes involved in antibiotic resistance, stress responses, virulence or catabolism of aromatic compounds. They constitute a diverse group of transcriptional regulators that includes both repressors and activators, and the conventional mode of regulation entails a genetic locus in which the MarR homolog and a gene under its regulation are encoded divergently; binding of the MarR homolog to the intergenic region typically represses transcription of both genes, while binding of a specific ligand to the transcription factor results in attenuated DNA binding and hence activated gene expression. For many homologs, the natural ligand is unknown. Crystal structures reveal a common architecture with a characteristic winged helix domain for DNA binding, and recent structural information of homologs solved both in the absence and presence of their respective ligands, as well as biochemical data, is finally converging to illuminate the mechanisms by which ligand-binding causes attenuated DNA binding. As MarR homologs regulate pathways that are critical to bacterial physiology, including virulence, a molecular understanding of mechanisms by which ligands affect a regulation of gene activity is essential. Specifying the position of ligand-binding pockets further has the potential to aid in identifying the ligands for MarR homologs for which the ligand remains unknown.

  6. Leveraging non-binding instruments for global health governance: reflections from the Global AIDS Reporting Mechanism for WHO reform.

    Science.gov (United States)

    Taylor, A L; Alfven, T; Hougendobler, D; Tanaka, S; Buse, K

    2014-02-01

    As countries contend with an increasingly complex global environment with direct implications for population health, the international community is seeking novel mechanisms to incentivize coordinated national and international action towards shared health goals. Binding legal instruments have garnered increasing attention since the World Health Organization adopted its first convention in 2003. This paper seeks to expand the discourse on future global health lawmaking by exploring the potential value of non-binding instruments in global health governance, drawing on the case of the 2001 United Nations General Assembly Special Session Declaration of Commitment on HIV/AIDS. In other realms of international concern ranging from the environment to human rights to arms control, non-binding instruments are increasingly used as effective instruments of international cooperation. The experience of the Global AIDS Reporting Mechanism, established pursuant to the Declaration, evidences that, at times, non-binding legal instruments can offer benefits over slower, more rigid binding legal approaches to governance. The global AIDS response has demonstrated that the use of a non-binding instrument can be remarkably effective in galvanizing increasingly deep commitments, action, reporting compliance and ultimately accountability for results. Based on this case, the authors argued that non-binding instruments deserve serious consideration by the international community for the future of global health governance, including in the context of WHO reform. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  8. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  9. A Novel Domain Cassette Identifies Plasmodium falciparum PfEMP1 Proteins Binding ICAM-1 and Is a Target of Cross-Reactive, Adhesion-Inhibitory Antibodies

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Jørgensen, Louise; Rask, Thomas Salhøj

    2013-01-01

    adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1-binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var...... genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically...

  10. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  11. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  12. VEGF₁₆₄ differentially regulates neutrophil and T cell adhesion through ItgaL- and ItgaM-dependent mechanisms.

    Science.gov (United States)

    Chidlow, John H; Glawe, John D; Alexander, J Steven; Kevil, Christopher G

    2010-12-01

    Leukocyte recruitment to inflamed tissues is the cornerstone of inflammatory responses and the driving force behind the establishment of inflammatory bowel disease, consisting of Crohn's disease and ulcerative colitis. It has been reported that angiogenic cytokines contribute to this inflammatory response that facilitates the chronic nature of disease. We have previously reported (Goebel S, Huang M, Davis WC, Jennings M, Siahaan TJ, Alexander JS, Kevil CG. Am J Physiol Gastrointest Liver Physiol 290: G648-G654, 2006) that vascular endothelial growth factor (VEGF)-A can stimulate neutrophil adhesion to colon microvascular endothelial cells in a β₂-integrin (Itgb2)-dependent manner. However, it is not known which of the specific leukocyte integrins are critical for VEGF-A-dependent neutrophil and T cell recruitment. Here we examine the differential importance of either α-integrin (Itga)L or ItgaM in governing neutrophil and T cell adhesion to VEGF-A-activated colonic endothelium. Using an in vitro parallel-plate flow chamber model, we found that genetic deficiency of ItgaM completely blunted neutrophil adhesion to VEGF-A-stimulated endothelium, whereas ItgaL deficiency only partly blocked neutrophil adhesion. Deficiency of ItgaM did significantly decrease neutrophil rolling, whereas deficiency of ItgaL did not. We found that genetic deficiency of either ItgaL or ItgaM did significantly blunt T cell adhesion to VEGF-A-stimulated colon endothelium. We also found that genetic deficiency of these Itgas significantly attenuated T cell rolling behavior. Lastly, we examined whether VEGF-A-mediated leukocyte recruitment occurred through different VEGF receptor (VEGFR) pathways and found that VEGFR2 activation regulates neutrophil recruitment, whereas both VEGFR1 and VEGFR2 modulate T cell recruitment. Together, these data identify differential molecular mechanisms of VEGF-A-mediated leukocyte recruitment.

  13. The contribution of adhesion signaling to lactogenesis.

    Science.gov (United States)

    Morrison, Bethanie; Cutler, Mary Lou

    2010-10-01

    The mammary gland undergoes hormonally controlled cycles of pubertal maturation, pregnancy, lactation, and involution, and these processes rely on complex signaling mechanisms, many of which are controlled by cell-cell and cell-matrix adhesion. The adhesion of epithelial cells to the extracellular matrix initiates signaling mechanisms that have an impact on cell proliferation, survival, and differentiation throughout lactation. The control of integrin expression on the mammary epithelial cells, the composition of the extracellular matrix and the presence of secreted matricellular proteins all contribute to essential adhesion signaling during lactogenesis. In vitro and in vivo studies, including the results from genetically engineered mice, have shed light on the regulation of these processes at the cell and tissue level and have led to increased understanding of the essential signaling components that are regulated in temporal and cell specific manner during lactogenesis. Recent studies suggest that a secreted matricellular protein, CTGF/CCN2, may play a role in lactogenic differentiation through binding to β1 integrin complexes, enhancing the production of extracellular matrix components and contributions to cell adhesion signaling.

  14. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  15. Molecular Mechanism of Mot1, a TATA-binding Protein (TBP)-DNA Dissociating Enzyme.

    Science.gov (United States)

    Viswanathan, Ramya; True, Jason D; Auble, David T

    2016-07-22

    The essential Saccharomyces cerevisiae ATPase Mot1 globally regulates transcription by impacting the genomic distribution and activity of the TATA-binding protein (TBP). In vitro, Mot1 forms a ternary complex with TBP and DNA and can use ATP hydrolysis to dissociate the TBP-DNA complex. Prior work suggested an interaction between the ATPase domain and a functionally important segment of DNA flanking the TATA sequence. However, how ATP hydrolysis facilitates removal of TBP from DNA is not well understood, and several models have been proposed. To gain insight into the Mot1 mechanism, we dissected the role of the flanking DNA segment by biochemical analysis of complexes formed using DNAs with short single-stranded gaps. In parallel, we used a DNA tethered cleavage approach to map regions of Mot1 in proximity to the DNA under different conditions. Our results define non-equivalent roles for bases within a broad segment of flanking DNA required for Mot1 action. Moreover, we present biochemical evidence for two distinct conformations of the Mot1 ATPase, the detection of which can be modulated by ATP analogs as well as DNA sequence flanking the TATA sequence. We also show using purified complexes that Mot1 dissociation of a stable, high affinity TBP-DNA interaction is surprisingly inefficient, suggesting how other transcription factors that bind to TBP may compete with Mot1. Taken together, these results suggest that TBP-DNA affinity as well as other aspects of promoter sequence influence Mot1 function in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Molecular Mechanism of Mot1, a TATA-binding Protein (TBP)-DNA Dissociating Enzyme*

    Science.gov (United States)

    Viswanathan, Ramya; True, Jason D.; Auble, David T.

    2016-01-01

    The essential Saccharomyces cerevisiae ATPase Mot1 globally regulates transcription by impacting the genomic distribution and activity of the TATA-binding protein (TBP). In vitro, Mot1 forms a ternary complex with TBP and DNA and can use ATP hydrolysis to dissociate the TBP-DNA complex. Prior work suggested an interaction between the ATPase domain and a functionally important segment of DNA flanking the TATA sequence. However, how ATP hydrolysis facilitates removal of TBP from DNA is not well understood, and several models have been proposed. To gain insight into the Mot1 mechanism, we dissected the role of the flanking DNA segment by biochemical analysis of complexes formed using DNAs with short single-stranded gaps. In parallel, we used a DNA tethered cleavage approach to map regions of Mot1 in proximity to the DNA under different conditions. Our results define non-equivalent roles for bases within a broad segment of flanking DNA required for Mot1 action. Moreover, we present biochemical evidence for two distinct conformations of the Mot1 ATPase, the detection of which can be modulated by ATP analogs as well as DNA sequence flanking the TATA sequence. We also show using purified complexes that Mot1 dissociation of a stable, high affinity TBP-DNA interaction is surprisingly inefficient, suggesting how other transcription factors that bind to TBP may compete with Mot1. Taken together, these results suggest that TBP-DNA affinity as well as other aspects of promoter sequence influence Mot1 function in vivo. PMID:27255709

  17. NMr studies of the AMP binding site and mechanism of adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kuby, S.A.; Fry, D.C.; Mildvan, A.S.

    1986-05-01

    The authors recently located by NMR the MgATP binding site on adenylate kinase correcting the proposed location for this site based on X-ray studies of the binding of salicylate. To determine the conformation and location of the other substrate, they have determined distances from Cr/sup 3 +/ AMPPCP to 6 protons and to the phosphorus atom of AMP on adenylate kinase using the paramagnetic-probe-T/sub 1/ method. They have also used time-dependent NOEs to measure five interproton distances on AMP, permitting evaluation of the conformation of enzyme-bound AMP and its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high-anti glycosyl torsional angle (X = 110/sup 0/), a 3'-endo sugar pucker (delta = 105/sup 0/), and a gauche-trans orientation about the C/sub 4/'-C/sub 5/' bond (..gamma.. = 180/sup 0/). The distance from Cr/sup 3 +/ to the phosphorus of AMP is 6.4 +/- 0.3 A, indicating a reaction coordinate distance of greater than or equal to A which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP were detected. These constraints, together with the conformation of AMP and the X-ray structure of the enzyme, suggest proximity (less than or equal to A) of AMP to leu 116, arg 171, val 173, gln 185, thr 188, and asp 191.

  18. Insights into the mercury(II) adsorption and binding mechanism onto several typical soils in China.

    Science.gov (United States)

    Ding, Xiuhong; Wang, Renqing; Li, Yuncong; Gan, Yandong; Liu, Shuwei; Dai, Jiulan

    2017-10-01

    To better understand the Hg(II) adsorption by some typical soils and explore the insights about the binding between Hg(II) and soils, a batch of adsorption and characteristic experiments was conducted. Results showed that Hg(II) adsorption was well fitted by the Langmuir and Freundlich. The maximum adsorption amount of cinnamon soil (2094.73 mg kg -1 ) was nearly tenfold as much as that of saline soil (229.49 mg kg -1 ). The specific adsorption of Hg(II) on four soil surface was confirmed by X-ray photoelectron spectroscopy (XPS) owing to the change of elemental bonding energy after adsorption. However, the specific adsorption is mainly derived from some substances in the soil. Fourier transform infrared spectroscopy (FTIR) demonstrated that multiple oxygen-containing functional groups (O-H, C=O, and C-O) were involved in the Hg(II) adsorption, and the content of oxygen functional groups determined the adsorption capacity of the soil. Meanwhile, scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS) more intuitive revealed the binding of mercury to organic matter, metal oxides, and clay minerals in the soil and fundamentally confirmed the results of XPS and FTIR to further elucidate adsorptive phenomena. The complexation with oxygen-containing functional groups and the precipitation with minerals were likely the primary mechanisms for Hg(II) adsorption on several typical soils. This study is critical in understanding the transportation of Hg(II) in different soils and discovering potential preventative measures.

  19. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin or polymeric form (F-actin. Members of the actin-depolymerizing factor (ADF/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1 in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  20. Cell Adhesion Minimization by a Novel Mesh Culture Method Mechanically Directs Trophoblast Differentiation and Self-Assembly Organization of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Okeyo, Kennedy Omondi; Kurosawa, Osamu; Yamazaki, Satoshi; Oana, Hidehiro; Kotera, Hidetoshi; Nakauchi, Hiromitsu; Washizu, Masao

    2015-10-01

    Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.

  1. Experimental and Numerical Study of the Influence of Substrate Surface Preparation on Adhesion Mechanisms of Aluminum Cold Spray Coatings on 300M Steel Substrates

    Science.gov (United States)

    Nastic, A.; Vijay, M.; Tieu, A.; Rahmati, S.; Jodoin, B.

    2017-10-01

    The effect of substrate surface topography on the creation of metallurgical bonds and mechanical anchoring points has been studied for the cold spray deposition of pure aluminum on 300M steel substrate material. The coatings adhesion strength showed a significant decrease from 31.0 ± 5.7 MPa on polished substrates to 6.9 ± 2.0 MPa for substrates with roughness of 2.2 ± 0.5 μm. Strengths in the vicinity of 45 MPa were reached for coatings deposited onto forced pulsed waterjet treated surfaces with roughnesses larger than 33.8 μm. Finite element analysis has confirmed the sole presence of mechanical anchoring in coating adhesion strength for all surface treatment except polished surfaces. Grit embedment has been shown to be non-detrimental to coating adhesion for the current deposited material combination. The particle deformation process during impacts has been studied through finite element analysis using the Preston-Tonks-Wallace (PTW) constitutive model. The obtained equivalent plastic strain (PEEQ), temperature, contact pressure and velocity vector were correlated to the particle ability to form metallurgical bonds. Favorable conditions for metallurgical bonding were found to be highest for particles deposited on polished substrates, as confirmed by fracture surface analysis.

  2. Influence of binding material of PZT coating on microresonator's electrical and mechanical properties

    Science.gov (United States)

    Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Brunius, Alfredas; Cekas, Elingas; Baltrusaitis, Valentinas; Sakalys, Rokas

    2017-06-01

    Microresonators are fundamental components integrated in hosts of MEMS applications: covering the automotive sector, the telecommunication industry, electronic equipment for surface/material characterization and motion sensing, and etc. The aim of this paper is to investigate the mechanical and electrical properties of PZT film fabricated with three binding materials: polyvinyl butyral (PVB), polymethyl methacrylate (PMMA) and polystyrene (PS) and to evaluate applicability in control of microresonators Q factor. Micro particles of PZT powder were mixed with 20% solution of PVB, PMMA and PS in benzyl alcohol. For investigation of mechanical and electrical properties multilayer cantilevers were made. Obtained PZT and polymer paste was screen printed on copper (thickness 40 μm) using polyester monofilament screen meshes (layer thickness 50 μm) and dried for 30 min at 100°C. Electric dipoles of the PZT particles in composite material were aligned using high voltage generator (5 kV) and a custom-made holder. Electric field was held for 30 min. Surfaces of the applied films were investigated by Atomic Force Microscope NanoWizard(R)3 NanoScience. Dynamic and electrical characteristics of the multilayer were investigated using laser triangular displacement sensor LK-G3000. The measured vibration amplitude and generated electrical potential was collected with USB oscilloscope PicoScope 3424. As the results showed, these cantilevers were able to transform mechanical strain energy into electric potential and, v.v. However, roughness of PZT coatings with PMMA and PS were higher, what could be the reason of the worse quality of the top electrode. However, the main advantage of the created composite piezoelectric material is the possibility to apply it on any uniform or non-uniform vibrating surface and to transform low frequency vibrations into electricity.

  3. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation

    Science.gov (United States)

    Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2016-08-01

    The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach—straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water—causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young’s modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization.

  4. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation.

    Science.gov (United States)

    Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2016-08-26

    The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach-straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water-causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young's modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization.

  5. Understanding the resistance mechanism of penicillin binding protein 1a mutant against cefotaxime using molecular dynamic simulation.

    Science.gov (United States)

    Behmard, Esmaeil; Najafi, Ali; Ahmadi, Ali

    2018-02-11

    Antibiotic resistance is a threatening challenge for global health, as the expansion of resistance to current antibiotics has made serious therapeutic problems. Genome mutations are key evolutionary mechanisms conferring antibiotic resistance in bacterial pathogens. For example, penicillin and cephalosporins resistance is mostly mediated by mutations in penicillin binding proteins to change the affinity of the drug. Accordingly, threonine point mutations were reported to develop antibiotic resistance in various bacterial infections including pneumococcal infections. In this study, conventional molecular dynamics simulations, umbrella sampling simulations and MM/GBSA free energy calculations were applied to figure out how the Threonine to Alanine mutation (T to A) at STMK motif affects the binding of cefotaxime to Penicillin Binding Protein 1a and to reveal the resistance mechanism induced by the T to A mutation. The results obtained from the computational methods demonstrate that the T to A mutation increases the flexibility of the binding pocket and changes its conformation, which leads to increased conformational entropy change (-TΔS) and attenuates the bonds between the ligand and the receptor. In brief, our findings indicate that both of the alterations of the conformational enthalpy and entropy contribute to the T to A-induced resistance in the binding of cefotaxime into penicillin binding protein 1a.

  6. The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis

    DEFF Research Database (Denmark)

    Danen, Erik H J; Sonneveld, Petra; Brakebusch, Cord

    2002-01-01

    of RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates alphavbeta3-mediated...

  7. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  8. Marginal adaptation of inlay-retained adhesive fixed partial dentures after mechanical and thermal stress: an in vitro study.

    Science.gov (United States)

    Göehring, T N; Peters, O A; Lutz, F

    2001-07-01

    There are no studies that analyze the long-term durability of minimally invasive fixed partial dentures (FPDs) by comparing different methods of adhesive bonding. This in vitro study examined the influence of cavity design and operative technique on the marginal adaptation of resin-bonded composite FPDs. Slot-inlay tooth preparations with cavity margins located in enamel were prepared in 18 maxillary canines and 18 maxillary first molars designated as abutments. The specimens were divided equally into 3 experimental groups. In all groups, butt joint tooth preparations were created in canines and molars. In group 2, canines were prepared additionally with a 1.5-mm wide palatal bevel in enamel. After pretests with modification spaces of 11 and 17 mm (length), 2 missing premolars were replaced by the ceromer Targis and reinforced with the glass-fiber material Vectris. The prostheses were inserted with Tetric Ceram with use of an ultrasonic-supported, high-viscosity technique. Restorations were selectively bonded to cavity finish lines in groups 1 and 2 ("selective bonding"). In group 3, restorations were bonded totally to the whole cavity surface ("total bonding"). The restorations were stressed in a computer-controlled masticator. Marginal quality was examined with an SEM at x 200. The percent area of optimal margins after thermomechanical loading between composite and enamel in each group was as follows: group 1, 86.2% +/- 12.3% for canines and 95.5% +/- 3.5% for molars; group 2, 95.3% +/- 2.1% for canines and 96.2% +/- 2.7% for molars; and group 3, 95% +/- 0.9% for canines and 86.4% +/- 3.2% for molars. The marginal quality for molars inserted with total bonding was significantly lower (P< or =.05). Within the limitations of this study, the selective bonding technique for slot inlay-retained fixed partial dentures resulted in a negligible loss of marginal quality after extensive mechanical and thermal stress. The selective bonding technique is recommended for box

  9. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  10. Evaluation of degree of conversion, microtensile bond strength and mechanical properties of three etch-and-rinse dental adhesives

    Directory of Open Access Journals (Sweden)

    Samantha Ariadne Alves de Freitas

    2017-09-01

    Full Text Available Abstract This study evaluated microtensile bond strength (µTBS, degree of conversion, modulus of elasticity and ultramicrohardness of three etch-and-rinse adhesives systems. The materials evaluated were: Ambar (FGM, Optibond (Kerr and Magic Bond (Vigodent. The degree of conversion was analyzed by FTIR/ATR. To evaluate bond strength (μTBS in dentin, 15 teeth (n = 5 were restored and sliced to obtain the specimens (0.8mm2. The dynamic ultra microhardness tester was used to evaluate the hardness and modulus of elasticity. The Magic Bond adhesive system showed lower µTBS than Ambar and Optibond (p <0.001. For degree of conversion, comparisons between groups of adhesive systems evaluated showed statistically significant difference (p<0.001, with higher values for Ambar and Optibond when compared a Magic Bond. For modulus of elasticity and ultramicrohardness, Ambar and Magic Bond showed lower values than Optibond. The best results in all properties evaluated were obtained by the Optibond adhesive system.

  11. DDB2 (damaged-DNA binding 2) protein: a new modulator of nanomechanical properties and cell adhesion of breast cancer cells

    Science.gov (United States)

    Barbieux, Claire; Bacharouche, Jalal; Soussen, Charles; Hupont, Sébastien; Razafitianamaharavo, Angélina; Klotz, Rémi; Pannequin, Rémi; Brie, David; Bécuwe, Philippe; Francius, Grégory; Grandemange, Stéphanie

    2016-02-01

    DDB2, known for its role in DNA repair, was recently shown to reduce mammary tumor invasiveness by inducing the transcription of IκBα, an inhibitor of NF-κB activity. Since cellular adhesion is a key event during the epithelial to mesenchymal transition (EMT) leading to the invasive capacities of breast tumor cells, the aim of this study was to investigate the role of DDB2 in this process. Thus, using low and high DDB2-expressing MDA-MB231 and MCF7 cells, respectively, in which DDB2 expression was modulated experimentally, we showed that DDB2 overexpression was associated with a decrease of adhesion abilities on glass and plastic areas of breast cancer cells. Then, we investigated cell nanomechanical properties by atomic force microscopy (AFM). Our results revealed significant changes in the Young's Modulus value and the adhesion force in MDA-MB231 and MCF7 cells, whether DDB2 was expressed or not. The cell stiffness decrease observed in MDA-MB231 and MCF7 expressing DDB2 was correlated with a loss of the cortical actin-cytoskeleton staining. To understand how DDB2 regulates these processes, an adhesion-related gene PCR-Array was performed. Several adhesion-related genes were differentially expressed according to DDB2 expression, indicating that important changes are occurring at the molecular level. Thus, this work demonstrates that AFM technology is an important tool to follow cellular changes during tumorigenesis. Moreover, our data revealed that DDB2 is involved in early events occurring during metastatic progression of breast cancer cells and will contribute to define this protein as a new marker of metastatic progression in this type of cancer.

  12. Combined modeling of cell aggregation and adhesion mediated by receptor–ligand interactions under shear flow

    Directory of Open Access Journals (Sweden)

    Yu Du

    2015-11-01

    Full Text Available Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor–ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor–ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions.

  13. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    Science.gov (United States)

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-01-01

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773

  14. Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands

    Directory of Open Access Journals (Sweden)

    Sauli Haataja

    2013-07-01

    Full Text Available Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP, was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections.

  15. NMR studies of the AMP-binding site and mechanism of adenylate kinase.

    Science.gov (United States)

    Fry, D C; Kuby, S A; Mildvan, A S

    1987-03-24

    NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase [Fry, D. C., Kuby, S. A., & Mildvan, A. S. (1985) Biochemistry 24, 4680-4694]. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr3+AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T1 method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high anti-glycosyl torsional angle (chi = 110 +/- 10 degrees), a 3'-endo,2'-exo ribose pucker (delta = 105 +/- 10 degrees), and gauche-trans orientations about the C4'-C5' bond (gamma = 180 +/- 10 degrees) and the C5'-O5' bond (beta = 170 +/- 20 degrees). The distance from Cr3+ to the phosphorus of AMP is 5.9 +/- 0.3 A, indicating a reaction coordinate distance of approximately 3 A, which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near (less than or equal to 4 A from) Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine [Kuby, S. A., Palmieri, R. H., Frischat, A., Fischer, A. H., Wu, L. H., Maland, L., & Manship, M. (1984) Biochemistry 23, 2393-2399], and chicken adenylate kinase [Kishi, F., Maruyama, M., Tanizawa, Y

  16. Binding of the chemokine CXCL12α to its natural extracellular matrix ligand heparan sulfate enables myoblast adhesion and facilitates cell motility.

    Science.gov (United States)

    Thakar, Dhruv; Dalonneau, Fabien; Migliorini, Elisa; Lortat-Jacob, Hugues; Boturyn, Didier; Albiges-Rizo, Corinne; Coche-Guerente, Liliane; Picart, Catherine; Richter, Ralf P

    2017-04-01

    The chemokine CXCL12α is a potent chemoattractant that guides the migration of muscle precursor cells (myoblasts) during myogenesis and muscle regeneration. To study how the molecular presentation of chemokines influences myoblast adhesion and motility, we designed multifunctional biomimetic surfaces as a tuneable signalling platform that enabled the response of myoblasts to selected extracellular cues to be studied in a well-defined environment. Using this platform, we demonstrate that CXCL12α, when presented by its natural extracellular matrix ligand heparan sulfate (HS), enables the adhesion and spreading of myoblasts and facilitates their active migration. In contrast, myoblasts also adhered and spread on CXCL12α that was quasi-irreversibly surface-bound in the absence of HS, but were essentially immotile. Moreover, co-presentation of the cyclic RGD peptide as integrin ligand along with HS-bound CXCL12α led to enhanced spreading and motility, in a way that indicates cooperation between CXCR4 (the CXCL12α receptor) and integrins (the RGD receptors). Our findings reveal the critical role of HS in CXCL12α induced myoblast adhesion and migration. The biomimetic surfaces developed here hold promise for mechanistic studies of cellular responses to different presentations of biomolecules. They may be broadly applicable for dissecting the signalling pathways underlying receptor cross-talks, and thus may guide the development of novel biomaterials that promote highly specific cellular responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Differential Mechanisms for SHP2 Binding and Activation Are Exploited by Geographically Distinct Helicobacter pylori CagA Oncoproteins

    Directory of Open Access Journals (Sweden)

    Takeru Hayashi

    2017-09-01

    Full Text Available Helicobacter pylori East Asian CagA is more closely associated with gastric cancer than Western CagA. Here we show that, upon tyrosine phosphorylation, the East Asian CagA-specific EPIYA-D segment binds to the N-SH2 domain of pro-oncogenic SHP2 phosphatase two orders of magnitude greater than Western CagA-specific EPIYA-C. This high-affinity binding is achieved via cryptic interaction between Phe at the +5 position from phosphotyrosine in EPIYA-D and a hollow on the N-SH2 phosphopeptide-binding floor. Also, duplication of EPIYA-C in Western CagA, which increases gastric cancer risk, enables divalent high-affinity binding with SHP2 via N-SH2 and C-SH2. These strong CagA bindings enforce enzymatic activation of SHP2, which endows cells with neoplastic traits. Mechanistically, N-SH2 in SHP2 is in an equilibrium between stimulatory “relaxed” and inhibitory “squeezed” states, which is fixed upon high-affinity CagA binding to the “relaxed” state that stimulates SHP2. Accordingly, East Asian CagA and Western CagA exploit distinct mechanisms for SHP2 deregulation.

  18. Molecular dynamics simulations of ethanol binding to the transmembrane domain of the glycine receptor: implications for the channel potentiation mechanism.

    Science.gov (United States)

    Cheng, Mary Hongying; Coalson, Rob D; Cascio, Michael

    2008-05-01

    The glycine receptor (GlyR) is potentiated by ethanol and other anesthetics. The potentiation mechanism at the molecular level is unknown and remains elusive, but mutagenic studies have shown that ethanol and other volatile anesthetics bind to a pocket between TM1, TM2, and TM3. The present study extends previous studies (Cheng et al., Proteins 2007;68:581-593) wherein we conducted homology modeling and molecular dynamics (MD) simulations to construct models of the homopentameric alpha1 subunits of the GlyR transmembrane domain in open and closed states. To understand the potentiation of GlyR by ethanol we compare the binding of ethanol molecules to the channel in these different states. We observe that ethanol stably resides inside solvent-accessible cavities found in the open state of GlyR that are formed by I229 (of TM1) in one subunit and S267 and A288 (of TM2 and TM3, respectively) in the adjacent subunit. The volume of these putative binding pockets is state-dependent. Selective binding to the open states of receptors has been proposed to explain the potentiating actions of this class of anesthetics. In accordance with this model, our MD simulations suggest that the potentiation of ethanol on GlyR may be effected through preferential binding of ethanol molecules to an inter-subunit binding pocket in the open state.

  19. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.; Andersen, John F.; (NIH)

    2009-04-07

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describe the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.

  20. Unraveling the Binding Mechanism of Trivalent Tumor Necrosis Factor Ligands and Their Receptors

    NARCIS (Netherlands)

    Reis, Carlos R.; van Assen, Aart H. G.; Quax, Wim J.; Cool, Robbert H.

    Characterization of the binding of a tumor necrosis factor (TNF) ligand to its receptor(s) is pivotal to understand how these proteins initiate signal transduction pathways. Unfortunately, kinetic elucidation of these interactions is strongly hampered by the multivalent nature of the binding

  1. Ultra-high aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity

    Science.gov (United States)

    Zeniou, A.; Ellinas, K.; Olziersky, A.; Gogolides, E.

    2014-01-01

    Room-temperature deep Si etching using time-multiplexed deep reactive ion etching (DRIE) processes is investigated to fabricate ultra-high aspect ratio Si nanowires (SiNWs) perpendicular to the silicon substrate. Nanopatterning is achieved using either top-down techniques (e.g. electron beam lithography) or colloidal polystyrene (PS) sphere self-assembly. The latter is a faster and more economical method if imperfections in diameter and position can be tolerated. We demonstrate wire radii from below 100 nm to several micrometers, and aspect ratios (ARs) above 100:1 with etching rates above 1 μm min-1 using classical mass flow controllers with pulsing rise times of seconds. The mechanical stability of these nanowires is studied theoretically and experimentally against adhesion and capillary forces. It is shown that above ARs of the order of 50:1 for spacing 1 μm, SiNWs tend to bend due to adhesion forces between them. Such large adhesion forces are due to the high surface energy of silicon. Wetting the SiNWs with water and drying also gives rise to capillary forces. We find that capillary forces may be less important for SiNW collapse/bending compared to adhesion forces of dry SiNWs, contrary to what is observed for polymeric nanowires/nanopillars which have a much lower surface energy compared to silicon. Finally we show that SiNW arrays have oleophobic and superoleophobic properties, i.e. they exhibit excellent anti-wetting properties for a wide range of liquids and oils due to the re-entrant profile produced by the DRIE process and the well-designed spacing.

  2. A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface.

    Science.gov (United States)

    Toledano, Manuel; Sauro, Salvatore; Cabello, Inmaculada; Watson, Timothy; Osorio, Raquel

    2013-08-01

    The objective of the study was to determine if zinc-doped etch-and-rinse dentin adhesive may induce therapeutic effects within the resin-dentin interface. Human acid-etched dentin was infiltrated with Adper™ Single Bond Plus (SB, 3M ESPE, St. Paul, MN, USA), SB doped with 10wt.% ZnO nanoparticles (ZnO-SB) or SB doped with 2wt.% ZnCl2 (ZnCl2-SB). AFM/nanoindentation analysis was performed on fully hydrated specimens to evaluate the nanomechanical properties (Hi: hardness; Ei: modulus of elasticity) across the resin-dentin interface after different SBF storage periods (24h, 1m, 3m). Confocal laser microscopy (CLSM) was used to evaluate the ultramorphology and micropermeability at 24h and 3m of SBF storage. SB control specimens exhibited a decrease in Hi in the hybrid layer (HL) and bottom of the hybrid layer (BHL) and a decrease in Ei in the HL after 3m of SBF storage, indicating that severe degradation occurred in the control interface. ZnO-SB bonded specimens preserved the initial Hi and Ei at the HL and BHL subsequent SBF storage; ZnCl2-SB bonded specimens showed a decrease in Ei, in the HL over time. CLSM analysis confirmed that both Zn-doped adhesives were able to preserve the integrity of the HL. Specific formulation of Zn-doped etch-and-rinse adhesives may offer the possibility to maintain the nano-mechanical properties along the dentin-bonded interface by inhibiting dentin MMPs and by protective mineral crystals formation within the resin-dentin interface. Clinical advantages may be expected by preserving and improving the integrity of the hybrid layer when Zn-doped adhesives are employed. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism.

    Science.gov (United States)

    Juengel, Eva; Afschar, Masud; Makarević, Jasmina; Rutz, Jochen; Tsaur, Igor; Mani, Jens; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-03-01

    Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation.

  4. Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions.

    Science.gov (United States)

    Bakker, Dewi P; Busscher, Henk J; van der Mei, Henny C

    2002-02-01

    Deposition onto glass in a parallel plate (PP) and in a stagnation point (SP) flow chamber of Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica, suspended in artificial seawater, was compared in order to determine the influence of methodology on bacterial adhesion mechanisms. The three strains had different cell surface hydrophobicities, with water contact angles on bacterial lawns ranging from 18 to 85 degrees. Bacterial zeta potentials in artificial seawater were essentially zero. The three strains showed different adhesion kinetics and the hydrophilic bacterium H. pacifica had the greatest affinity for hydrophilic glass. On average, initial deposition rates were two- to threefold higher in the SP than in the PP flow chamber, possibly due to the convective fluid flow toward the substratum surface in the SP flow chamber causing more intimate contact between a substratum and a bacterial cell surface than the gentle collisions in the PP flow chamber. The ratios between the experimental deposition rates and theoretically calculated deposition rates based on mass transport equations not only differed among the strains, but were also different for the two flow chambers, indicating different mechanisms under the two modes of mass transport. The efficiencies of deposition were higher in the SP flow chamber than in the PP flow chamber: 62+/-4 and 114+/-28% respectively. Experiments in the SP flow chamber were more reproducible than those in the PP flow chamber, with standard deviations over triplicate runs of 8% in the SP and 23% in the PP flow chamber. This is probably due to better-controlled convective mass transport in the SP flow chamber, as compared with the diffusion-controlled mass transport in the PP flow chamber. In conclusion, this study shows that bacterial adhesion mechanisms depend on the prevailing mass transport conditions in the experimental set-up used, which makes it essential in the design of experiments that a methodology is

  5. A dock and coalesce mechanism driven by hydrophobic interactions governs Cdc42 binding with its effector protein ACK.

    Science.gov (United States)

    Tetley, George J N; Mott, Helen R; Cooley, R Neil; Owen, Darerca

    2017-07-07

    Cdc42 is a Rho-family small G protein that has been widely studied for its role in controlling the actin cytoskeleton and plays a part in several potentially oncogenic signaling networks. Similar to most other small G proteins, Cdc42 binds to many downstream effector proteins to elicit its cellular effects. These effector proteins all engage the same face of Cdc42, the conformation of which is governed by the activation state of the G protein. Previously, the importance of individual residues in conferring binding affinity has been explored for residues within Cdc42 for three of its Cdc42/Rac interactive binding (CRIB) effectors, activated Cdc42 kinase (ACK), p21-activated kinase (PAK), and Wiskott-Aldrich syndrome protein (WASP). Here, in a complementary study, we have used our structure of Cdc42 bound to ACK via an intrinsically disordered ACK region to guide an analysis of the Cdc42 interface on ACK, creating a panel of mutant proteins with which we can now describe the complete energetic landscape of the Cdc42-binding site on ACK. Our data suggest that the binding affinity of ACK relies on several conserved residues that are critical for stabilizing the quaternary structure. These residues are centered on the CRIB region, with the complete binding region anchored at each end by hydrophobic interactions. These findings suggest that ACK adopts a dock and coalesce binding mechanism with Cdc42. In contrast to other CRIB-family effectors and indeed other intrinsically disordered proteins, hydrophobic residues likely drive Cdc42-ACK binding. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Mechanical Stimulation of C2C12 Cells Increases m-Calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann; Karlsson, Anders H

    to stretch- or load-induced signaling is now beginning to be understood as a factor which affects gene sequences, protein synthesis and an increase in Ca2+ infux in myocytes. Evidence of the involvement of Ca2+ dependent activity in myoblast fusion, cell membrane and cytoskeleton component reorganization due......Abstract Mechanical Stimulation of C2C12 Cells Increases m-calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion A. Grossi, A. H. Karlsson, M. A. Lawson; Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark...

  7. Human climbing with efficiently scaled gecko-inspired dry adhesives

    OpenAIRE

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for syn...

  8. Bridging the divide between sensory integration and binding theory: Using a binding-like neural synchronization mechanism to model sensory enhancements during multisensory interactions.

    Science.gov (United States)

    Billock, Vincent A; Tsou, Brian H

    2014-07-01

    Neural information combination problems are ubiquitous in cognitive neuroscience. Two important disciplines, although conceptually similar, take radically different approaches to these problems. Sensory binding theory is largely grounded in synchronization of neurons responding to different aspects of a stimulus, resulting in a coherent percept. Sensory integration focuses more on the influences of the senses on each other and is largely grounded in the study of neurons that respond to more than one sense. It would be desirable to bridge these disciplines, so that insights gleaned from either could be harnessed by the other. To link these two fields, we used a binding-like oscillatory synchronization mechanism to simulate neurons in rattlesnake that are driven by one sense but modulated by another. Mutual excitatory coupling produces synchronized trains of action potentials with enhanced firing rates. The same neural synchronization mechanism models the behavior of a population of cells in cat visual cortex that are modulated by auditory activation. The coupling strength of the synchronizing neurons is crucial to the outcome; a criterion of strong coupling (kept weak enough to avoid seriously distorting action potential amplitude) results in intensity-dependent sensory enhancement-the principle of inverse effectiveness-a key property of sensory integration.

  9. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  10. Denture Adhesives

    Science.gov (United States)

    ... Devices Home Medical Devices Products and Medical Procedures Dental Devices Denture Adhesives Share Tweet Linkedin Pin it More sharing options ... Manufacturers (February 23, 2011) (PDF - 22KB) More in Dental Devices Denture Adhesives Multiple-Use Dental Dispenser Devices Dental Amalgam About ...

  11. Zinc and ATP binding of the hexameric AAA-ATPase PilF from Thermus thermophilus: role in complex stability, piliation, adhesion, twitching motility, and natural transformation.

    Science.gov (United States)

    Salzer, Ralf; Herzberg, Martin; Nies, Dietrich H; Joos, Friederike; Rathmann, Barbara; Thielmann, Yvonne; Averhoff, Beate

    2014-10-31

    The traffic AAA-ATPase PilF is essential for pilus biogenesis and natural transformation of Thermus thermophilus HB27. Recently, we showed that PilF forms hexameric complexes containing six zinc atoms coordinated by conserved tetracysteine motifs. Here we report that zinc binding is essential for complex stability. However, zinc binding is neither required for pilus biogenesis nor natural transformation. A number of the mutants did not exhibit any pili during growth at 64 °C but still were transformable. This leads to the conclusion that type 4 pili and the DNA translocator are distinct systems. At lower growth temperatures (55 °C) the zinc-depleted multiple cysteine mutants were hyperpiliated but defective in pilus-mediated twitching motility. This provides evidence that zinc binding is essential for the role of PilF in pilus dynamics. Moreover, we found that zinc binding is essential for complex stability but dispensable for ATPase activity. In contrast to many polymerization ATPases from mesophilic bacteria, ATP binding is not required for PilF complex formation; however, it significantly increases complex stability. These data suggest that zinc and ATP binding increase complex stability that is important for functionality of PilF under extreme environmental conditions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate

    Energy Technology Data Exchange (ETDEWEB)

    Pazy, Y.; Motaleb, M.A.; Guarnieri, M.T.; Charon, N.W.; Zhao, R.; Silversmith, R.E. (WVU); (UNC); (Colorado); (EC Uni.)

    2010-04-05

    Two-component signal transduction systems are widespread in prokaryotes and control numerous cellular processes. Extensive investigation of sensor kinase and response regulator proteins from many two-component systems has established conserved sequence, structural, and mechanistic features within each family. In contrast, the phosphatases which catalyze hydrolysis of the response regulator phosphoryl group to terminate signal transduction are poorly understood. Here we present structural and functional characterization of a representative of the CheC/CheX/FliY phosphatase family. The X-ray crystal structure of Borrelia burgdorferi CheX complexed with its CheY3 substrate and the phosphoryl analogue BeF{sub 3}{sup -} reveals a binding orientation between a response regulator and an auxiliary protein different from that shared by every previously characterized example. The surface of CheY3 containing the phosphoryl group interacts directly with a long helix of CheX which bears the conserved (E - X{sub 2} - N) motif. Conserved CheX residues Glu96 and Asn99, separated by a single helical turn, insert into the CheY3 active site. Structural and functional data indicate that CheX Asn99 and CheY3 Thr81 orient a water molecule for hydrolytic attack. The catalytic residues of the CheX-CheY3 complex are virtually superimposable on those of the Escherichia coli CheZ phosphatase complexed with CheY, even though the active site helices of CheX and CheZ are oriented nearly perpendicular to one other. Thus, evolution has found two structural solutions to achieve the same catalytic mechanism through different helical spacing and side chain lengths of the conserved acid/amide residues in CheX and CheZ.

  13. Adhesion of Lunar Dust

    Science.gov (United States)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  14. Fatty-acid-binding protein inhibition produces analgesic effects through peripheral and central mechanisms.

    Science.gov (United States)

    Peng, Xiaoxue; Studholme, Keith; Kanjiya, Martha P; Luk, Jennifer; Bogdan, Diane; Elmes, Matthew W; Carbonetti, Gregory; Tong, Simon; Gary Teng, Yu-Han; Rizzo, Robert C; Li, Huilin; Deutsch, Dale G; Ojima, Iwao; Rebecchi, Mario J; Puopolo, Michelino; Kaczocha, Martin

    2017-01-01

    Background Fatty-acid-binding proteins (FABPs) are intracellular carriers for endocannabinoids, N-acylethanolamines, and related lipids. Previous work indicates that systemically administered FABP5 inhibitors produce analgesia in models of inflammatory pain. It is currently not known whether FABP inhibitors exert their effects through peripheral or central mechanisms. Here, we examined FABP5 distribution in dorsal root ganglia and spinal cord and examined the analgesic effects of peripherally and centrally administered FABP5 inhibitors. Results Immunofluorescence revealed robust expression of FABP5 in lumbar dorsal root ganglia. FABP5 was distributed in peptidergic calcitonin gene-related peptide-expressing dorsal root ganglia and non-peptidergic isolectin B4-expressing dorsal root ganglia. In addition, the majority of dorsal root ganglia expressing FABP5 also expressed transient receptor potential vanilloid 1 (TRPV1) and peripherin, a marker of nociceptive fibers. Intraplantar administration of FABP5 inhibitors reduced thermal and mechanical hyperalgesia in the complete Freund's adjuvant model of chronic inflammatory pain. In contrast to its robust expression in dorsal root ganglia, FABP5 was sparsely distributed in the lumbar spinal cord and intrathecal administration of FABP inhibitor did not confer analgesic effects. Administration of FABP inhibitor via the intracerebroventricular (i.c.v.) route reduced thermal hyperalgesia. Antagonists of peroxisome proliferator-activated receptor alpha blocked the analgesic effects of peripherally and i.c.v. administered FABP inhibitor while antagonism of cannabinoid receptor 1 blocked the effects of peripheral FABP inhibition and a TRPV1 antagonist blocked the effects of i.c.v. administered inhibitor. Although FABP5 and TRPV1 were co-expressed in the periaqueductal gray region of the brain, which is known to modulate pain, knockdown of FABP5 in the periaqueductal gray using adeno-associated viruses and pharmacological FABP5

  15. Plasmodium falciparum Reticulocyte Binding-Like Homologue Protein 2 (PfRH2) Is a Key Adhesive Molecule Involved in Erythrocyte Invasion

    Science.gov (United States)

    Sahar, Tajali; Reddy, K. Sony; Bharadwaj, Mitasha; Pandey, Alok K.; Singh, Shailja; Chitnis, Chetan E.; Gaur, Deepak

    2011-01-01

    Erythrocyte invasion by Plasmodium merozoites is a complex, multistep process that is mediated by a number of parasite ligand-erythrocyte receptor interactions. One such family of parasite ligands includes the P. falciparum reticulocyte binding homologue (PfRH) proteins that are homologous with the P. vivax reticulocyte binding proteins and have been shown to play a role in erythrocyte invasion. There are five functional PfRH proteins of which only PfRH2a/2b have not yet been demonstrated to bind erythrocytes. In this study, we demonstrated that native PfRH2a/2b is processed near the N-terminus yielding fragments of 220 kDa and 80 kDa that exhibit differential erythrocyte binding specificities. The erythrocyte binding specificity of the 220 kDa processed fragment of native PfRH2a/2b was sialic acid-independent, trypsin resistant and chymotrypsin sensitive. This specific binding phenotype is consistent with previous studies that disrupted the PfRH2a/2b genes and demonstrated that PfRH2b is involved in a sialic acid independent, trypsin resistant, chymotrypsin sensitive invasion pathway. Interestingly, we found that the smaller 80 kDa PfRH2a/2b fragment is processed from the larger 220 kDa fragment and binds erythrocytes in a sialic acid dependent, trypsin resistant and chymotrypsin sensitive manner. Thus, the two processed fragments of PfRH2a/2b differed with respect to their dependence on sialic acids for erythrocyte binding. Further, we mapped the erythrocyte binding domain of PfRH2a/2b to a conserved 40 kDa N-terminal region (rPfRH240) in the ectodomain that is common to both PfRH2a and PfRH2b. We demonstrated that recombinant rPfRH240 bound human erythrocytes with the same specificity as the native 220 kDa processed protein. Moreover, antibodies generated against rPfRH240 blocked erythrocyte invasion by P. falciparum through a sialic acid independent pathway. PfRH2a/2b thus plays a key role in erythrocyte invasion and its conserved receptor-binding domain

  16. The tripeptide feG inhibits leukocyte adhesion

    Directory of Open Access Journals (Sweden)

    Davison Joseph S

    2008-05-01

    Full Text Available Abstract Background The tripeptide feG (D-Phe-D-Glu-Gly is a potent anti-inflammatory peptide that reduces the severity of type I immediate hypersensitivity reactions, and inhibits neutrophil chemotaxis and adhesion to tissues. feG also reduces the expression of β1-integrin on circulating neutrophils, but the counter ligands involved in the anti-adhesive actions of the peptide are not known. In this study the effects of feG on the adhesion of rat peritoneal leukocytes and extravasated neutrophils to several different integrin selective substrates were evaluated. Results The adhesion of peritoneal leukocytes and extravasated neutrophils from rats to adhesive proteins coated to 96-well plates was dependent upon magnesium (Mg2+ ion, suggestive of integrin-mediated adhesion. feG inhibited leukocyte adhesion, but only if the cells were stimulated with PAF (10-9M, indicating that feG's actions in vitro require cell activation. In the dose range of 10-10M to 10-12M feG inhibited the adhesion of peritoneal leukocytes to fibrinogen and fibronectin, but not IgG, vitronectin or ICAM-1. feG inhibited the binding of extravasated neutrophils to heparin, IgG, fibronectin and CD16 antibody. Antigen-challenge of sensitized rats reduced the adhesion of peritoneal leukocytes to most substrates and abolished the inhibitory effects of feG. However, pretreating the animals with intraperitoneal feG (100 μg/kg 18 h before collecting the cells from the antigen-challenged animal restored the inhibition of adhesion by in vitro feG of peritoneal leukocytes and extravasated neutrophils to fibronectin. Conclusion The modulation of leukocyte adhesion by feG appears to involve actions on αMβ2 integrin, with a possible interaction with the low affinity FcγRIII receptor (CD16. The modulation of cell adhesion by feG is dual in nature. When administered in vivo, feG prevents inflammation-induced reductions in cell adhesion, as well as restoring its inhibitory effect in vitro

  17. Structures of Human Pumilio with Noncognate RNAs Reveal Molecular Mechanisms for Binding Promiscuity

    Energy Technology Data Exchange (ETDEWEB)

    Gupta,Y.; Nair, D.; Wharton, R.; Aggarwal, A.

    2008-01-01

    Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycBreverse and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, in effect, acting as a 'spacer.' The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.

  18. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  19. Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes

    OpenAIRE

    Balzarini, Jan; Van Herrewege, Yven; Vermeire, Kurt; Vanham, Guido; Schols, Dominique

    2007-01-01

    Exposure of HIV-1 to dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing B-lymphoblast Raji cells (Raji/DC-SIGN) but not to wild-type Raji/0 cells results in the capture of HIV-1 particles to the cells as measured by the quantification of cell-associated p24 antigen. Cocultivation of HIV-1-captured Raji/DC-SIGN cells with uninfected CD4+ T lymphocyte C8166 cells results in abundant formation of syncytia within 36 h after cocultivation. Short pre...

  20. Mechanism of Binding to Ebola Virus Glycoprotein by the ZMapp, ZMAb, and MB-003 Cocktail Antibodies

    OpenAIRE

    Davidson, Edgar; Bryan, Christopher; Fong, Rachel H.; Barnes, Trevor; Pfaff, Jennifer M.; Mabila, Manu; Rucker, Joseph B.; Doranz, Benjamin J.

    2015-01-01

    Cocktails of monoclonal antibodies (MAbs) that target the surface glycoprotein (GP) of Ebola virus (EBOV) are effective in nonhuman primate models and have been used under emergency compassionate-treatment protocols in human patients. However, the amino acids that form the detailed binding epitopes for the MAbs in the ZMapp, ZMAb, and the related MB-003 cocktails have yet to be identified. Other binding properties that define how each MAb functionally interacts with GP—such as affinity, epito...

  1. Operating mechanism and molecular dynamics of pheromone-binding protein ASP1 as influenced by pH.

    Directory of Open Access Journals (Sweden)

    Lei Han

    Full Text Available Odorant binding protein (OBP is a vital component of the olfactory sensation system. It performs the specific role of ferrying odorant molecules to odorant receptors. OBP helps insects and types of animal to sense and transport stimuli molecules. However, the molecular details about how OBPs bind or release its odorant ligands are unclear. For some OBPs, the systems' pH level is reported to impact on the ligands' binding or unbinding capability. In this work we investigated the operating mechanism and molecular dynamics in bee antennal pheromone-binding protein ASP1 under varying pH conditions. We found that conformational flexibility is the key factor for regulating the interaction of ASP1 and its ligands, and the odorant binds to ASP1 at low pH conditions. Dynamics, once triggered by pH changes, play the key roles in coupling the global conformational changes with the odorant release. In ASP1, the C-terminus, the N-terminus, helix α2 and the region ranging from helices α4 to α5 form a cavity with a novel 'entrance' of binding. These are the major regions that respond to pH change and regulate the ligand release. Clearly there are processes of dynamics and hydrogen bond network propagation in ASP1 in response to pH stimuli. These findings lead to an understanding of the mechanism and dynamics of odorant-OBP interaction in OBP, and will benefit chemsensory-related biotech and agriculture research and development.

  2. Binding characteristics and regulatory mechanisms of the transcription factors controlling oleate-responsive genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Karpichev, Igor V; Durand-Heredia, Jorge M; Luo, Yi; Small, Gillian M

    2008-04-18

    Transcriptional activation of many genes involved in peroxisome-related functions is regulated by the Oaf1p, Pip2p, and Adr1p transcription factors in Saccharomyces cerevisiae. We have analyzed the in vivo binding characteristics of Oaf1p-Pip2p and found that this complex is recruited to its target oleate-response element (ORE) under all growth conditions tested. In addition, this complex also binds to ORE-containing genes that do not appear to be regulated by these proteins, as well as to some genes lacking conventional OREs. The recruitment of the Oaf1p-Pip2p complex was greatly increased upon glucose derepression, possibly due to Oaf1p phosphorylation with only moderate increases upon oleate induction. Thus, this complex may receive a nutritional cue while it is already bound to DNA, suggesting that, in addition to the increase in Oaf1p-Pip2p binding, other mechanism(s) such as enhanced Adr1p association may drive the expression of highly inducible fatty acid-responsive genes. Adr1p binds to target genes in an oleate-dependent fashion and is involved in Oaf1p-Pip2p binding. In turn, the Oaf1p-Pip2p complex appears to be important for Adr1p binding to a subset of oleate-responsive genes. Adr1p is a positive regulator of ORE-containing genes, but it also acts as a negative factor in expression of some of these genes. Finally, we have also shown that Adr1p is directly involved in mediating oleate induction of Oaf1p-Pip2p target genes.

  3. The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism.

    Directory of Open Access Journals (Sweden)

    Maria Takacs

    Full Text Available BACKGROUND: PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs compared to its mode of binding to ERRα and other nuclear receptors (NRs, where it interacts directly with the two ERRγ homodimer subunits. METHODS/PRINCIPAL FINDINGS: Here, we show that PGC-1α receptor interacting domain (RID binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR. CONCLUSIONS/SIGNIFICANCE: These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.

  4. Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available α-Hemolysin (α-HL is a self-assembling, channel-forming toxin that is produced as a soluble monomer by Staphylococcus aureus strains. Until now, α-HL has been a significant virulence target for the treatment of S. aureus infection. In our previous report, we demonstrated that some natural compounds could bind to α-HL. Due to the binding of those compounds, the conformational transition of α-HL from the monomer to the oligomer was blocked, which resulted in inhibition of the hemolytic activity of α-HL. However, these results have not indicated how the binding of the α-HL inhibitors influence the conformational transition of the whole protein during the oligomerization process. In this study, we found that three natural compounds, Oroxylin A 7-O-glucuronide (OLG, Oroxin A (ORA, and Oroxin B (ORB, when inhibiting the hemolytic activity of α-HL, could bind to the "stem" region of α-HL. This was completed using conventional Molecular Dynamics (MD simulations. By interacting with the novel binding sites of α-HL, the ligands could form strong interactions with both sides of the binding cavity. The results of the principal component analysis (PCA indicated that because of the inhibitors that bind to the "stem" region of α-HL, the conformational transition of α-HL from the monomer to the oligomer was restricted. This caused the inhibition of the hemolytic activity of α-HL. This novel inhibition mechanism has been confirmed by both the steered MD simulations and the experimental data obtained from a deoxycholate-induced oligomerization assay. This study can facilitate the design of new antibacterial drugs against S. aureus.

  5. Direct binding of ledipasvir to HCV NS5A: mechanism of resistance to an HCV antiviral agent.

    Directory of Open Access Journals (Sweden)

    Hyock Joo Kwon

    Full Text Available Ledipasvir, a direct acting antiviral agent (DAA targeting the Hepatitis C Virus NS5A protein, exhibits picomolar activity in replicon cells. While its mechanism of action is unclear, mutations that confer resistance to ledipasvir in HCV replicon cells are located in NS5A, suggesting that NS5A is the direct target of ledipasvir. To date co-precipitation and cross-linking experiments in replicon or NS5A transfected cells have not conclusively shown a direct, specific interaction between NS5A and ledipasvir. Using recombinant, full length NS5A, we show that ledipasvir binds directly, with high affinity and specificity, to NS5A. Ledipasvir binding to recombinant NS5A is saturable with a dissociation constant in the low nanomolar range. A mutant form of NS5A (Y93H that confers resistance to ledipasvir shows diminished binding to ledipasvir. The current study shows that ledipasvir inhibits NS5A through direct binding and that resistance to ledipasvir is the result of a reduction in binding affinity to NS5A mutants.

  6. Direct binding of ledipasvir to HCV NS5A: mechanism of resistance to an HCV antiviral agent.

    Science.gov (United States)

    Kwon, Hyock Joo; Xing, Weimei; Chan, Katie; Niedziela-Majka, Anita; Brendza, Katherine M; Kirschberg, Thorsten; Kato, Darryl; Link, John O; Cheng, Guofeng; Liu, Xiaohong; Sakowicz, Roman

    2015-01-01

    Ledipasvir, a direct acting antiviral agent (DAA) targeting the Hepatitis C Virus NS5A protein, exhibits picomolar activity in replicon cells. While its mechanism of action is unclear, mutations that confer resistance to ledipasvir in HCV replicon cells are located in NS5A, suggesting that NS5A is the direct target of ledipasvir. To date co-precipitation and cross-linking experiments in replicon or NS5A transfected cells have not conclusively shown a direct, specific interaction between NS5A and ledipasvir. Using recombinant, full length NS5A, we show that ledipasvir binds directly, with high affinity and specificity, to NS5A. Ledipasvir binding to recombinant NS5A is saturable with a dissociation constant in the low nanomolar range. A mutant form of NS5A (Y93H) that confers resistance to ledipasvir shows diminished binding to ledipasvir. The current study shows that ledipasvir inhibits NS5A through direct binding and that resistance to ledipasvir is the result of a reduction in binding affinity to NS5A mutants.

  7. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    Science.gov (United States)

    Morando, Maria Agnese; Saladino, Giorgio; D'Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-04-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.

  8. Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifreeze proteins closely related to an Antarctic sea ice bacterium.

    Science.gov (United States)

    Banerjee, Rachana; Chakraborti, Pratim; Bhowmick, Rupa; Mukhopadhyay, Subhasish

    2015-01-01

    Antifreeze proteins or ice-binding proteins (IBPs) facilitate the survival of certain cellular organisms in freezing environment by inhibiting the growth of ice crystals in solution. Present study identifies orthologs of the IBP of Colwellia sp. SLW05, which were obtained from a wide range of taxa. Phylogenetic analysis on the basis of conserved regions (predicted as the 'ice-binding domain' [IBD]) present in all the orthologs, separates the bacterial and archaeal orthologs from that of the eukaryotes'. Correspondence analysis pointed out that the bacterial and archaeal IBDs have relatively higher average hydrophobicity than the eukaryotic members. IBDs belonging to bacterial as well as archaeal AFPs contain comparatively more strands, and therefore are revealed to be under higher evolutionary selection pressure. Molecular docking studies prove that the ice crystals form more stable complex with the bacterial as well as archaeal proteins than the eukaryotic orthologs. Analysis of the docked structures have traced out the ice-binding sites (IBSs) in all the orthologs which continue to facilitate ice-binding activity even after getting mutated with respect to the well-studied IBSs of Typhula ishikariensis and notably, all these mutations performing ice-binding using 'anchored clathrate mechanism' have been found to prefer polar and hydrophilic amino acids. Horizontal gene transfer studies point toward a strong selection pressure favoring independent evolution of the IBPs in some polar organisms including prokaryotes as well as eukaryotes because these proteins facilitate the polar organisms to acclimatize to the adversities in their niche, thus safeguarding their existence.

  9. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase.

    Science.gov (United States)

    Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J

    2015-01-22

    The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.

  10. Elucidation of the binding mechanism of renin using a wide array of computational techniques and biological assays.

    Science.gov (United States)

    Tzoupis, Haralambos; Leonis, Georgios; Avramopoulos, Aggelos; Reis, Heribert; Czyżnikowska, Żaneta; Zerva, Sofia; Vergadou, Niki; Peristeras, Loukas D; Papavasileiou, Konstantinos D; Alexis, Michael N; Mavromoustakos, Thomas; Papadopoulos, Manthos G

    2015-11-01

    We investigate the binding mechanism in renin complexes, involving three drugs (remikiren, zankiren and enalkiren) and one lead compound, which was selected after screening the ZINC database. For this purpose, we used ab initio methods (the effective fragment potential, the variational perturbation theory, the energy decomposition analysis, the atoms-in-molecules), docking, molecular dynamics, and the MM-PBSA method. A biological assay for the lead compound has been performed to validate the theoretical findings. Importantly, binding free energy calculations for the three drug complexes are within 3 kcal/mol of the experimental values, thus further justifying our computational protocol, which has been validated through previous studies on 11 drug-protein systems. The main elements of the discovered mechanism are: (i) minor changes are induced to renin upon drug binding, (ii) the three drugs form an extensive network of hydrogen bonds with renin, whilst the lead compound presented diminished interactions, (iii) ligand binding in all complexes is driven by favorable van der Waals interactions and the nonpolar contribution to solvation, while the lead compound is associated with diminished van der Waals interactions compared to the drug-bound forms of renin, and (iv) the environment (H2O/Na(+)) has a small effect on the renin-remikiren interaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption.

    Science.gov (United States)

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks.

  12. Computational studies of the binding mechanisms of fullerenes to human serum albumin.

    Science.gov (United States)

    Li, Jinyu; Jiang, Lizhi; Zhu, Xiaolei

    2015-07-01

    Fullerene and its derivatives show promising prospects for applications in a vast array of biological systems. A key aspect concerning their biomedical applications is how they interact with proteins from molecular levels, which is still poorly understood. In the current study, we investigated the structural and thermodynamic basis of the interactions between two pharmacologically relevant fullerene derivatives and human serum albumin (HSA) using molecular docking, molecular dynamics simulations, and binding free energy calculations. Our results demonstrate that fullerenes steadily bind with HSA at the interfacial cavity formed by subdomains IIA and IIIA. In agreement with available experimental data, our simulations show that the global structure of HSA becomes more compact in the presence of fullerene, while local structural dynamics of the binding cavity behaves diversely depending on the chemical properties of bound fullerenes. Binding free energy calculations confirmed that the interactions between fullerenes and HSA are dominantly stabilized by van der Waals forces and they further allowed the identification of key residues involved in fullerene binding. The structural and energetic insights obtained from this work may help for the development of fullerene-based drug delivery devices and therapeutic agents with improved biological profile.

  13. Binding mechanism of PicoGreen to DNA characterized by magnetic tweezers and fluorescence spectroscopy.

    Science.gov (United States)

    Wang, Ying; Schellenberg, Helene; Walhorn, Volker; Toensing, Katja; Anselmetti, Dario

    2017-09-01

    Fluorescent dyes are broadly used in many biotechnological applications to detect and visualize DNA molecules. However, their binding to DNA alters the structural and nanomechanical properties of DNA and, thus, interferes with associated biological processes. In this work we employed magnetic tweezers and fluorescence spectroscopy to investigate the binding of PicoGreen to DNA at room temperature in a concentration-dependent manner. PicoGreen is an ultrasensitive quinolinium nucleic acid stain exhibiting hardly any background signal from unbound dye molecules. By means of stretching and overwinding single, torsionally constrained, nick-free double-stranded DNA molecules, we acquired force-extension and supercoiling curves which allow quantifying DNA contour length, persistence length and other thermodynamical binding parameters, respectively. The results of our magnetic tweezers single-molecule binding study were well supported through analyzing the fluorescent spectra of stained DNA. On the basis of our work, we could identify a concentration-dependent bimodal binding behavior, where, apparently, PicoGreen associates to DNA as an intercalator and minor-groove binder simultaneously.

  14. Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters*

    OpenAIRE

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Claus J Loland; Javitch, Jonathan A.; Noskov, Sergei; Weinstein, Harel; Shi, Lei

    2015-01-01

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial...

  15. A Simple Model of Multivalent Adhesion and Its Application to Influenza Infection

    Science.gov (United States)

    Xu, Huafeng; Shaw, David E.

    2016-01-01

    Adhesion between biological surfaces, which is typically the result of molecular binding between receptors on one surface and ligands on another, plays a fundamental role in biology and is key to the infection mechanisms of certain viruses, including influenza. The physiological outcome of adhesion depends on both the number of bound cells (or viruses, or other biological particles) and the properties of the adhesion interface that is formed, including the equilibrium number of receptor-ligand connections. Here, we introduce a quantitative model for biological adhesion by adapting thermodynamic models developed for the related problem of multivalent molecular binding. In our model, adhesion affinity is approximated by a simple, analytical expression involving the numbers of ligands and receptors at the interface. Our model contains only two fitting parameters and is simple to interpret. When applied to the adhesion between the hemagglutinin ligands on influenza viruses and the sialic acid receptors on biosensors or on host cells, our model generates adhesion affinities consistent with experimental measurements performed over a range of numbers of receptors, and provides a semiquantitative estimate of the affinity range of the hemagglutinin-sialic acid interaction necessary for the influenza virus to successfully infect host cells. The model also provides a quantitative explanation for the experimental finding that a mutant avian virus gained transmissibility in mammals despite the mutations conferring only a less than twofold increase in the affinity of its hemagglutinin for mammalian receptors: the model predicts an order-of-magnitude improvement in adhesion to mammalian cells. We also extend our model to describe the competitive inhibition of adhesion: the model predicts that hemagglutinin inhibitors of relatively modest affinity can dramatically reduce influenza virus adhesion to host cells, suggesting that such inhibitors, if discovered, may be viable

  16. Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: Preparation, mechanism, and their antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chengli, E-mail: tcl-lily@mail.zjxu.edu.cn [College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001 (China); Hu, Dongmei [College of Mechanical Science and Engineering, Jilin University, Changchun 130022 (China); Cao, Qianqian [College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001 (China); Yan, Wei [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xing, Bo [College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001 (China)

    2017-02-01

    Highlights: • Chitosan was firstly introduced as binding agent for AgNPs loading on ACF surface. • Molecular dynamics simulation was used to explore the AgNPs loading mechanism. • Loading mechanism was proposed based on the experimental and simulation results. • Antibacterial AgNPs-loaded ACF showed use potential for water disinfection. - Abstract: The effective and strong adherence of silver nanoparticles (AgNPs) to the substrate surface is pivotal to the practical application of those AgNPs-modified materials. In this work, AgNPs were synthesized through a green and facile hydrothermal method. Chitosan was introduced as the binding agent for the effective loading of AgNPs on activated carbon fibers (ACF) surface to fabricate the antibacterial material. Apart from conventional instrumental characterizations, i. e., scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), zeta potential and Brunauer-Emmett-Teller (BET) surface area measurement, molecular dynamics simulation method was also applied to explore the loading mechanism of AgNPs on the ACF surface. The AgNPs-loaded ACF material showed outstanding antibacterial activity for S. aureus and E. coli. The combination of experimental and theoretical calculation results proved chitosan to be a promising binding agent for the fabrication of AgNPs-loaded ACF material with excellent antibacterial activity.

  17. Elucidation of the binding mechanism of coumarin derivatives with human serum albumin.

    Directory of Open Access Journals (Sweden)

    Archit Garg

    Full Text Available Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×10(5 M(-1, -7.175 Kcal M(-1 for coumarin derivative (CD enamide; 0.837±0.01×10(5 M(-1, -6.685 Kcal M(-1 for coumarin derivative (CD enoate, and 0.606±0.01×10(5 M(-1, -6.49 Kcal M(-1 for coumarin derivative methylprop (CDM enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases.

  18. Differences in Binding and Monitoring Mechanisms Contribute to Lifespan Age Differences in False Memory

    Science.gov (United States)

    Fandakova, Yana; Shing, Yee Lee; Lindenberger, Ulman

    2013-01-01

    Based on a 2-component framework of episodic memory development across the lifespan (Shing & Lindenberger, 2011), we examined the contribution of memory-related binding and monitoring processes to false memory susceptibility in childhood and old age. We administered a repeated continuous recognition task to children (N = 20, 10-12 years),…

  19. Photoactivation mechanisms of flavin-binding photoreceptors revealed through ultrafast spectroscopy and global analysis methods.

    NARCIS (Netherlands)

    Mathes, T.; van Stokkum, I.H.M.; Kennis, J.T.M.

    2014-01-01

    Flavin-binding photoreceptor proteins use the isoalloxazine moiety of flavin cofactors to absorb light in the blue/UV-A wavelength region and subsequently translate it into biological information. The underlying photochemical reactions and protein structural dynamics are delicately tuned by the

  20. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    DEFF Research Database (Denmark)

    Wong, Jaslyn E M M; Midtgaard, Søren Roi; Gysel, Kira

    2015-01-01

    of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering...

  1. Thermodynamic Switch in Binding of Adhesion/Growth Regulatory Human Galectin-3 to Tumor-Associated TF Antigen (CD176) and MUC1 Glycopeptides.

    Science.gov (United States)

    Rodriguez, Maria C; Yegorova, Svetlana; Pitteloud, Jean-Philippe; Chavaroche, Anais E; André, Sabine; Ardá, Ana; Minond, Dimitriy; Jiménez-Barbero, Jesús; Gabius, Hans-Joachim; Cudic, Mare

    2015-07-28

    A shift to short-chain glycans is an observed change in mucin-type O-glycosylation in premalignant and malignant epithelia. Given the evidence that human galectin-3 can interact with mucins and also weakly with free tumor-associated Thomsen-Friedenreich (TF) antigen (CD176), the study of its interaction with MUC1 (glyco)peptides is of biomedical relevance. Glycosylated MUC1 fragments that carry the TF antigen attached through either Thr or Ser side chains were synthesized using standard Fmoc-based automated solid-phase peptide chemistry. The dissociation constants (Kd) for interaction of galectin-3 and the glycosylated MUC1 fragments measured by isothermal titration calorimetry decreased up to 10 times in comparison to that of the free TF disaccharide. No binding was observed for the nonglycosylated control version of the MUC1 peptide. The most notable feature of the binding of MUC1 glycopeptides to galectin-3 was a shift from a favorable enthalpy to an entropy-driven binding process. The comparatively diminished enthalpy contribution to the free energy (ΔG) was compensated by a considerable gain in the entropic term. (1)H-(15)N heteronuclear single-quantum coherence spectroscopy nuclear magnetic resonance data reveal contact at the canonical site mainly by the glycan moiety of the MUC1 glycopeptide. Ligand-dependent differences in binding affinities were also confirmed by a novel assay for screening of low-affinity glycan-lectin interactions based on AlphaScreen technology. Another key finding is that the glycosylated MUC1 peptides exhibited activity in a concentration-dependent manner in cell-based assays revealing selectivity among human galectins. Thus, the presentation of this tumor-associated carbohydrate ligand by the natural peptide scaffold enhances its affinity, highlighting the significance of model studies of human lectins with synthetic glycopeptides.

  2. Studies on binding mechanism between carotenoids from sea buckthorn and thermally treated α-lactalbumin

    Science.gov (United States)

    Dumitraşcu, Loredana; Ursache, Florentina Mihaela; Stănciuc, Nicoleta; Aprodu, Iuliana

    2016-12-01

    Sea buckthorn is a natural food ingredient rich in bioactive compounds such as carotenoids, tocopherols, sterols, flavonoids, lipids, vitamins, tannins and minerals. Herein, fluorescence and UV-vis techniques were used to study the interaction of heat treated α-lactalbumin (α-LA) with carotenoids from sea buckthorn berries extract (CSB) and β-carotene. Further atomic level details on the interaction between α-LA and β-carotene were obtained by means of molecular modelling techniques. The quenching rate constants, binding constants, and number of binding sites were calculated in the presence of CSB. The emission spectral studies revealed that, CSB have the ability to bind α-LA and form a ground state complex via static quenching process. Maximum degree of quenching was reached at 100 °C, where β-carotene and CSB quenched the Trp fluorescence of α-LA by 56% and 47%, respectively. In order to reveal the interaction between CSB and α-LA, the thermodynamic parameters were determined from the van't Hoff plot based on the temperature dependence of the binding constant. In agreement with the in silico observations, the thermodynamic parameters enabled us to consider that the association between α-LA and β-carotene is a spontaneous process driven by enthalpy, dominated mainly by the van der Waals interaction, but hydrophobic interactions might also be considered. The interaction between CSB and α-LA was further confirmed by UV-vis absorption spectra, where a blue shift of position was noticed at higher temperature suggesting the complex formation. The results provided here supply a better understanding of the binding of CSB to α-LA, which can be further exploited in designing new healthy food applications.

  3. Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr

    Directory of Open Access Journals (Sweden)

    Frosst Phyllis D

    2009-10-01

    Full Text Available Abstract Background Tpr is a large protein with an extended coiled-coil domain that is localized within the nuclear basket of the nuclear pore complex. Previous studies 1 involving antibody microinjection into mammalian cells suggested a role for Tpr in nuclear export of proteins via the CRM1 export receptor. In addition, Tpr was found to co-immunoprecipitate with importins α and β from Xenopus laevis egg extracts 2, although the function of this is unresolved. Yeast Mlp1p and Mlp2p, which are homologous to vertebrate Tpr, have been implicated in mRNA surveillance to retain unspliced mRNAs in the nucleus34. To augment an understanding of the role of Tpr in nucleocytoplasmic trafficking, we explored the interactions of recombinant Tpr with the karyopherins CRM1, importin β and importin α by solid phase binding assays. We also investigated the conditions required for nuclear import of Tpr using an in vitro assay. Results We found that Tpr binds strongly and specifically to importin α, importin β, and a CRM1 containing trimeric export complex, and that the binding sites for importins α and β are distinct. We also determined that the nuclear import of Tpr is dependent on cytosolic factors and energy and is efficiently mediated by the importin α/β import pathway. Conclusion Based on the binding and nuclear import assays, we propose that Tpr is imported into the nucleus by the importin α/β heterodimer. In addition, we suggest that Tpr can serve as a nucleoporin binding site for importin β during import of importin β cargo complexes and/or importin β recycling. Our finding that Tpr bound preferentially to CRM1 in an export complex strengthens the notion that Tpr is involved in protein export.

  4. Rapid induction of neutrophil-endothelial adhesion by endothelial complement fixation.

    Science.gov (United States)

    Marks, R M; Todd, R F; Ward, P A

    1989-05-25

    The adhesion of neutrophils to vascular endothelium is an early event in their recruitment into acute inflammatory lesions. In evaluating potential neutrophil-endothelial adhesive mechanisms in acute inflammation, important considerations are that adhesion in vivo may occur very rapidly following injury and that the specificity of the reaction resides in altered endothelium. That is, neutrophils adhere only to altered endothelium adjacent to an inflammatory focus, rather than at random as would be expected if activation of neutrophils were the initiator of adhesion. We have explored a possible bridging role for complement in causing early neutrophil-endothelial cell adhesion. The complement system is involved in inflammatory processes, is capable of rapid amplification, and endothelial complement fixation at sites of inflammation could generate an endothelium-restricted signal for neutrophil adhesion. We have now developed a model in which this can be investigated without complicating factors such as immunoglobulin deposition, by constructing a novel molecule, a hybrid of the endothelial binding lectin Ulex europaeus I and of the complement activator cobra venom factor. This molecule has the capacity to cause fixation of complement on human umbilical vein endothelial cells. We show that complement fixation is a potent and rapid stimulus for neutrophil adhesion. Neutrophil adhesion requires only endothelial deposition of C3, and is mediated through the type 3 complement receptor.

  5. Scavenger Receptor C-Type Lectin Binds to the Leukocyte Cell Surface Glycan Lewis By a Novel Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, H.; Taylor, M.E.; Weis, W.I.; /Stanford U., Med. School /Imperial Coll., London

    2007-07-10

    The scavenger receptor C-type lectin (SRCL) is unique in the family of class A scavenger receptors, because in addition to binding sites for oxidized lipoproteins it also contains a C-type carbohydrate-recognition domain (CRD) that interacts with specific glycans. Both human and mouse SRCL are highly specific for the Lewis(x) trisaccharide, which is commonly found on the surfaces of leukocytes and some tumor cells. Structural analysis of the CRD of mouse SRCL in complex with Lewis(x) and mutagenesis show the basis for this specificity. The interaction between mouse SRCL and Lewis(x) is analogous to the way that selectins and DC-SIGN bind to related fucosylated glycans, but the mechanism of the interaction is novel, because it is based on a primary galactose-binding site similar to the binding site in the asialoglycoprotein receptor. Crystals of the human receptor lacking bound calcium ions reveal an alternative conformation in which a glycan ligand would be released during receptor-mediated endocytosis.

  6. Structural characterization of amorphous calcium carbonate-binding protein: an insight into the mechanism of amorphous calcium carbonate formation.

    Science.gov (United States)

    Su, Jingtan; Liang, Xiao; Zhou, Qiang; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2013-07-15

    ACC (amorphous calcium carbonate) plays an important role in biomineralization process for its function as a precursor for calcium carbonate biominerals. However, it is unclear how biomacromolecules regulate the formation of ACC precursor in vivo. In the present study, we used biochemical experiments coupled with bioinformatics approaches to explore the mechanisms of ACC formation controlled by ACCBP (ACC-binding protein). Size-exclusion chromatography, chemical cross-linking experiments and negative staining electron microscopy reveal that ACCBP is a decamer composed of two adjacent pentamers. Sequence analyses and fluorescence quenching results indicate that ACCBP contains two Ca²⁺-binding sites. The results of in vitro crystallization experiments suggest that one Ca²⁺-binding site is critical for ACC formation and the other site affects the ACC induction efficiency. Homology modelling demonstrates that the Ca²⁺-binding sites of pentameric ACCBP are arranged in a 5-fold symmetry, which is the structural basis for ACC formation. To the best of our knowledge, this is the first report on the structural basis for protein-induced ACC formation and it will significantly improve our understanding of the amorphous precursor pathway.

  7. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400 019 (India); Arunkumar, A.; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Ruzybayev, I.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Periayah, Mercy Halleluyah; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-08-30

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O{sub 2}, air and Ar + O{sub 2} for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility

  8. Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    Vivian Vasconcelos Costa

    2017-08-01

    Full Text Available Natural killer (NK cells play a protective role against dengue virus (DENV infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ, are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs, but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4 on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo, identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection.

  9. Endoglin involvement in integrin-mediated cell adhesion as a putative pathogenic mechanism in Hereditary Hemorrhagic Telangectasia type 1 (HHT1

    Directory of Open Access Journals (Sweden)

    Elisa eRossi

    2015-01-01

    Full Text Available Mutations in the endoglin gene (ENG are responsible for approximately 50% of all cases with Hereditary Hemorrhagic Telangectasia (HHT. Because of the absence of effective treatments for HHT symptoms, studies aimed at identifying novel biological functions of endoglin which could serve as therapeutic targets of the disease are needed. Endoglin is an endothelial membrane protein, whose most studied function has been its role as an auxiliary receptor in the TGF-β receptor complex. However, several lines of evidence suggest the involvement of endoglin in TGF-β-independent functions. Endoglin displays, within its zona pellucida (ZP domain, an RGD motif, which is a prototypic sequence involved in integrin-based interactions with other proteins. Indeed, we have recently described a novel role for endothelial endoglin in leukocyte trafficking and extravasation via its interaction with leukocyte integrins. In addition, functional, as well as protein and gene expression analysis have shown that ectopic endoglin represses the synthesis of several members of the integrin family and modulates integrin-mediated cell adhesions. This review focuses on the tight link between endoglin and integrins and how the role of endothelial endoglin in integrin-dependent cell adhesion processes can provide a better understanding of the pathogenic mechanisms leading to vascular lesions in endoglin haploinsufficient HHT1 patients.

  10. Comparison of the antimicrobial adhesion potential of human body fluid glycoconjugates using fucose-binding lectin (PA-IIL) of Pseudomonas aeruginosa and Ulex europaeus lectin (UEA-I).

    Science.gov (United States)

    Lerrer, Batia; Lesman-Movshovich, Efrat; Gilboa-Garber, Nechama

    2005-09-01

    Pseudomonas aeruginosa produces a fucose-binding lectin (PA-IIL) which strongly binds to human cells. This lectin was shown to be highly sensitive to inhibition by fucose-bearing human milk glycoproteins. Since the glycans of these glycoproteins mimic human cell receptors, they may function as decoys in blocking lectin-dependent pathogen adhesion to the host cells. Human saliva and seminal fluid also contain such compounds, and body fluids of individuals who are "secretors" express additional fucosylated (alpha 1,2) residues. The latter are selectively detected by Ulex europaeus lectin UEA-I. The aim of the present research was to compare the PA-IIL and UEA-I interactions with human salivas and seminal fluids of "secretors" and "nonsecretors" with those obtained with the respective milks. Using hemagglutination inhibition and Western blot analyses, we showed that PA-IIL interactions with the saliva and seminal fluid glycoproteins were somewhat weaker than those obtained with the milk and that "nonsecretor" body fluids were not less efficient than those of "secretors" in PA-IIL blocking. UEA-I, which interacted only with the "secretors" glycoproteins, was most sensitive to those of the seminal fluids.

  11. Molecular mechanism of DNA recognition by the alpha subunit of the Oxytricha telomere binding protein.

    Science.gov (United States)

    Laporte, L; Benevides, J M; Thomas, G J

    1999-01-12

    Interactions between telomeric DNA and the alpha subunit of the heterodimeric telomere binding protein of Oxytricha nova have been probed by Raman spectroscopy, CD spectroscopy, and nondenaturing gel electrophoresis. Telomeric sequences investigated include the Oxytricha 3' overhang, d(T4G4)2, and the related sequence dT6(T4G4)2, which incorporates a 5'-thymidylate leader. Corresponding nontelomeric isomers, d(TG)8 and dT6(TG)8, have also been investigated. Both d(T4G4)2 and dT6(T4G4)2 form stable hairpins that contain Hoogsteen G.G base pairs [Laporte, L., and Thomas, G. J., Jr. (1998) J. Mol. Biol. 281, 261-270]. The alpha subunit binds specifically and stoichiometrically to the dT6(T4G4)2 hairpin and alters its secondary structure by inducing conformational changes in the 5'-thymidylate leader without extensive disruption of G.G base pairing. Conversely, binding of the alpha subunit to d(T4G4)2 eliminates G.G pairing and unfolds the hairpin. DNA unfolding is accompanied by conformational changes affecting both the backbone and dG residues, as evidenced by Raman and CD spectra. Interestingly, the alpha subunit also forms complexes with the nontelomeric isomers, d(TG)8 and dT6(TG)8, evidenced by altered electrophoretic mobility in nondenaturing gels; however, Raman and CD spectra of complexes of the alpha subunit with nontelomeric DNA suggest no significant changes in backbone or deoxynucleoside conformations. Similarly, the alpha subunit binds to but does not appreciably alter the secondary structure of duplex DNA. The present results show that while the alpha subunit has the capacity to bind to Watson-Crick and different non-Watson-Crick motifs, DNA refolding is specific to the Oxytricha telomeric hairpin and the retention of G.G pairing is specific to the telomeric sequence incorporating the 5' leading sequence. A model is proposed for alpha subunit binding to telomeric DNA, and the physiological role of the alpha subunit in telomere organization is discussed.

  12. Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms

    Directory of Open Access Journals (Sweden)

    Goud Bruno

    2009-08-01

    Full Text Available Abstract Background The Golgi apparatus in mammals appears as a ribbon made up of interconnected stacks of flattened cisternae that is positioned close to the centrosome in a microtubule-dependent manner. How this organisation is achieved and retained is not well understood. GMAP210 is a long coiled-coil cis-Golgi associated protein that plays a role in maintaining Golgi ribbon integrity and position and contributes to the formation of the primary cilium. An amphipathic alpha-helix able to bind liposomes in vitro has been recently identified at the first 38 amino acids of the protein (amphipathic lipid-packing sensor motif, and an ARF1-binding domain (Grip-related Arf-binding domain was found at the C-terminus. To which type of membranes these two GMAP210 regions bind in vivo and how this contributes to GMAP210 localisation and function remains to be investigated. Results By using truncated as well as chimeric mutants and videomicroscopy we found that both the N-terminus and the C-terminus of GMAP210 are targeted to the cis-Golgi in vivo. The ALPS motif was identified as the N-terminal binding motif and appeared concentrated in the periphery of Golgi elements and between Golgi stacks. On the contrary, the C-terminal domain appeared uniformly distributed in the cis-cisternae of the Golgi apparatus. Strikingly, the two ends of the protein also behave differently in response to the drug Brefeldin A. The N-terminal domain redistributed to the endoplasmic reticulum (ER exit sites, as does the full-length protein, whereas the C-terminal domain rapidly dissociated from the Golgi apparatus to the cytosol. Mutants comprising the full-length protein but lacking one of the terminal motifs also associated with the cis-Golgi with distribution patterns similar to those of the corresponding terminal end whereas a mutant consisting in fused N- and C-terminal ends exhibits identical localisation as the endogenous protein. Conclusion We conclude that the Golgi

  13. DEVELOPMENT OF STRUCTURAL ADHESIVES,

    Science.gov (United States)

    Contents: (A) Structural adhesives for metals; development of better adhesives; development of heat resistance adhesives; development of room...temperature setting adhesives; recent investigations of metal-bonding adhesives; development of production processes and design criteria for metal adhesives... development of non-destructive inspection methods for adhesive bonded structures. (B) European papers; British developments in the field of

  14. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    Science.gov (United States)

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  15. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus. a molecular mechanics and molecular dynamics study

    DEFF Research Database (Denmark)

    da Graça Thrige, D; Buur, J R; Jørgensen, Flemming Steen

    1997-01-01

    For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate phosphatidyl......For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate...... phosphatidylcholine, in phospholipase C. This catalytically essential water molecule, after being activated by an acidic residue (Asp55), performs the nucleophilic attack on the phosphorus atom in the substrate, leading to a trigonal bipyramidal pentacoordinated intermediate (and structurally similar transition state......). The subsequent collapse of the intermediate, regeneration of the enzyme, and release of the products has to involve a not yet identified second water molecule. The catalytic mechanism reported here is based on a series of molecular mechanics calculations. First, the x-ray structure of phospholipase C from B...

  16. Binding mechanism and electrochemical properties of M13 phage-sulfur composite.

    Directory of Open Access Journals (Sweden)

    Dexian Dong

    Full Text Available Self-assembly of nanostructured materials has been proven a powerful technique in material design and synthesis. By phage display screening, M13 phage was found to strongly bind sulfur particles. Fourier transform infrared and X-ray photoelectron spectroscopy measurements indicated that the strong sulfur-binding ability of M13 phage derives from newly generated S-O and C-S bonds. Using this phage assembled sulfur composite in a lithium battery, the first discharge capacity reached 1117 mAh g(-1, which is more than twice that of the sulfur only cathode. Besides, the negative polysulfide shuttle effect in a lithium-sulfur battery was significantly suppressed.

  17. Surface binding sites (SBSs), mechanism and regulation of enzymes degrading amylopectin and α-limit dextrins

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Cockburn, Darrell; Nielsen, Jonas W.

    2013-01-01

    into barley seed α-amylase 1 (AMY1) and limit dextrinase (LD) includes i. kinetics of bi-exponential amylopectin hydrolysis by AMY1, one reaction having low Km (8 μg/mL) and high kcat (57 s-1) and the other high Km (97 μg/mL) and low kcat (23 s-1). β-Cyclodextrin (β-CD) inhibits the first reaction by binding...... with domains including CBM21 present in other proteins and involved in various molecular interactions, but no binding site identity. LD is controlled by barley limit dextrinase inhibitor (LDI) which belongs to the cereal-type inhibitor family and forms a tight 1:1 complex with LD. iii. LDI in turn is regulated...

  18. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jin [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wang, Ying [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Su, Ke [Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Liu, Min [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Hu, Peng-Chao [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Ma, Tian; Li, Jia-Xi [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wei, Lei [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zheng, Zhongliang, E-mail: biochem@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Fang, E-mail: fang-yang@whu.edu.cn [Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  19. Heme oxygenases from Arabidopsis thaliana reveal different mechanisms of carbon monoxide binding

    Science.gov (United States)

    Gisk, Björn; Molitor, Bastian; Frankenberg-Dinkel, Nicole; Kötting, Carsten

    2012-03-01

    Heme oxygenases (HO) are widely distributed enzymes involved in the degradation of heme to biliverdin, carbon monoxide and Fe2+. The model plant Arabidopsis thaliana possesses three functional HOs (HY1, HO3 and HO4) which are thus far biochemically indistinguishable. Here, we investigate binding of the reaction product and putative inhibitor CO to these three HOs with various spectroscopic techniques: Nanosecond time-resolved absorption, millisecond time-resolved multi-wavelength absorption and Fourier-transform-infrared difference spectroscopy. Kinetics of CO rebinding were found to differ substantially among the HOs. At low CO concentrations a novel intermediate was identified for HO3 and HO4, substantially slowing down rebinding. All HOs show relatively slow geminate rebinding of CO indicating the existence of an additional transient binding niche for CO. The positions found for the IR absorptions of νCO and νFeC suggest a nonpolar distal binding site for all three HOs. The frequency of the νFeC vibration was calculated by a combination band on which we report here for the first time. Another band in the FTIR difference spectrum could be assigned to a histidine residue, probably the proximal ligand of the heme-iron. The observed different rebinding kinetics among the HOs could indicate adaptation of the HOs to different environments.

  20. Mechanical stimuli on C2C12 myoblasts affect myoblast differentiation, focal adhesion kinase phosphorylation and galectin-1 expression

    DEFF Research Database (Denmark)

    Grossi, Alberto Blak; Lametsch, Rene; Karlsson, Anders H

    2011-01-01

    Mechanical forces are crucial in the regulation of cell morphology and function. At the cellular level, these forces influence myoblast differentiation and fusion. In this study we applied mechanical stimuli to embryonic muscle cells using magnetic microbeads, a method shown to apply stress...... by mechanical stimulation including Galectin-1, Annexin III, and RhoGDI. In this study we demonstrate how the combination of this method of mechanical stimuli and proteomic analysis can be a powerful tool to detect proteins that are potentially interacting in biochemical pathways or complex cellular mechanisms...... during the process of myoblast differentiation. We determined an increase in expression and changes in cellular localization of Galectin-1, in mechanically stimulated myoblasts. A potential involvement of Galectin-1 in myoblast differentiation is presented....

  1. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding

    Science.gov (United States)

    Newcomer, Rebecca L.; Fraser, LaTasha C.R.; Teschke, Carolyn M.; Alexandrescu, Andrei T.

    2015-01-01

    The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining 3JNC’ couplings transmitted through H-bonds, the temperature and urea-concentration dependence of 1HN and 15N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and 3JNC’ H-bond couplings, are identified with an accuracy of 90% by 1HN temperature coefficients. The accuracy is improved to 95% when 15N temperature coefficients are also included. In contrast, the urea dependence of 1HN and 15N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility. PMID:26682823

  2. Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion blocking antibodies

    DEFF Research Database (Denmark)

    Khunrae, Pongsak; Dahlbäck, Madeleine; Nielsen, Morten A

    2010-01-01

    in the pathogenesis of severe P. falciparum infection. In pregnant women the parasites express a single and unique member of the PfEMP1 family named VAR2CSA, which is associated with the ability of the infected erythrocytes to adhere specifically to chondroitin sulphate A (CSA) in the placenta. Several DBL domains...... yields from insect cells. Using surface plasmon resonance we demonstrate that VAR2CSA alone binds with nano-molar affinity to placental chondroitin sulphate proteoglycan (CSPG-h) and with significantly weaker affinity to other glycosaminoglycans, showing a similar specificity to that observed...

  3. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    Science.gov (United States)

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more

  4. Adhesion mechanism of polyelectrolyte cements to tooth structure--polyelectrolyte behavior of the cement polymers obtained by potentiometric titration in the presence of calcium ion.

    Science.gov (United States)

    Iioka, A; Araki, Y; Matsuda, K; Ohno, H

    1989-12-01

    Potentiomeric titration of aqueous solutions of polyacrylic acid and commercial polyelectrolyte cement polymers with sodium hydroxide solution was carried out in the presence of different concentrations of Ca2+. Polyelectrolytes all behave as weak acids without the coexisting Ca2+. However, in the presence of Ca2+, in amounts over one-half of the equivalent amount to the carboxyl group in the polymer, they have a strong acid-like behavior. This means that the carboxyl groups in the polymer chain tend to react strongly with coexisting Ca2+ as they are partially neutralized by the alkaline solution. This is also strong evidence supporting polyelectrolyte cement as an adhesion mechanism to tooth structure during cementation.

  5. Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters*

    Science.gov (United States)

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Loland, Claus J.; Javitch, Jonathan A.; Noskov, Sergei; Weinstein, Harel; Shi, Lei

    2015-01-01

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Thus, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function. PMID:25869126

  6. Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters.

    Science.gov (United States)

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Loland, Claus J; Javitch, Jonathan A; Noskov, Sergei; Weinstein, Harel; Shi, Lei

    2015-05-29

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na(+)-dependent reuptake of released neurotransmitters. Previous studies suggested that Na(+)-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na(+) binding and transport (i.e. replacing Na(+) with Li(+) or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na(+) cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na(+) dependence. Thus, the detailed AIN generated from our method is shown to connect Na(+) binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na(+) binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. An experimental study on adhesive or anti-adhesive, bio-inspired experimental nanomaterials

    National Research Council Canada - National Science Library

    Lepore, Emiliano; Pugno, Nicol

    The proposed book aims to better understand some of the most challenging and disputed topics that could be found in nature, such as adhesive, anti-adhesive or strong mechanisms in plants or animals...

  8. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption.

    Directory of Open Access Journals (Sweden)

    Wenting Li

    Full Text Available Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks.

  9. Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption

    Science.gov (United States)

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks. PMID:24312328

  10. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability--A literature review.

    Science.gov (United States)

    Frassetto, Andrea; Breschi, Lorenzo; Turco, Gianluca; Marchesi, Giulio; Di Lenarda, Roberto; Tay, Franklin R; Pashley, David H; Cadenaro, Milena

    2016-02-01

    Success in adhesive dentistry means long lasting restorations. However, there is substantial evidence that this ideal objective is not always achieved. Current research in this field aims at increasing the durability of resin-dentin bonds. The objective of this paper is to examine the fundamental processes responsible for the aging mechanisms involved in the degradation of resin-bonded interfaces and the potential approaches to prevent and counteract this degradation. PubMed searches on the hybrid layer degradation were carried out. Keywords were chosen to assess hybrid layer degradation for providing up-dated information on the basis of scientific coherence with the research objective. Approaches to prevent and counteract this degradation were also reviewed. 148 peer-review articles in the English language between 1982 and 2015 were reviewed. Literature shows that resin-dentin bond degradation is a complex process, involving the hydrolysis of both the resin and the collagen fibril phases contained within the hybrid layer. Collagen fibers become vulnerable to mechanical and hydraulic fatigue, as well as degradation by host-derived proteases with collagenolytic activity (matrix metalloproteinases and cysteine cathepsins). Inhibition of the collagenolytic activity and the use of cross-linking agents are the two main strategies to increase the resistance of the hybrid layer to enzymatic degradation. This review analyzes the issues regarding the durability of the adhesive interface, and the techniques to create stable resin-dentin bonds able to resist the collagenolytic hydrolysis that are currently studied. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Regulation of RhoA Activity by Adhesion Molecules and Mechanotransduction

    Science.gov (United States)

    Marjoram, R.J.; Lessey, E.C.; Burridge, K.

    2014-01-01

    The low molecular weight GTP-binding protein RhoA regulates many cellular events, including cell migration, organization of the cytoskeleton, cell adhesion, progress through the cell cycle and gene expression. Physical forces influence these cellular processes in part by regulating RhoA activity through mechanotransduction of cell adhesion molecules (e.g. integrins, cadherins, Ig superfamily molecules). RhoA activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) that are themselves regulated by many different signaling pathways. Significantly, the engagement of many cell adhesion molecules can affect RhoA activity in both positive and negative ways. In this brief review, we consider how RhoA activity is regulated downstream from cell adhesion molecules and mechanical force. Finally, we highlight the importance of mechanotransduction signaling to RhoA in normal cell biology as well as in certain pathological states. PMID:24467208

  12. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...

  13. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    Science.gov (United States)

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  14. Theoretical study on the chemical mechanism of enoyl-CoA hydratase and the form of inhibitor binding.

    Science.gov (United States)

    Cui, Xiaobin; He, Rongxing; Yang, Qinlei; Shen, Wei; Li, Ming

    2014-09-01

    Enoyl-CoA hydratase (ECH) catalyzes the second step in the vital β-oxidation pathway of fatty acid metabolism. This enzyme catalyzes the syn-addition of a water molecule across the double bond of 4-(N,N-dimethylamino) cinnamoyl-CoA (DAC-CoA). In this work, the reaction mechanisms of ECH were investigated using the density functional theory (DFT) methods. The different protonation states in which the important residues Glu164 and Glu144 are either neutral or ionized were considered. Four models of the active site were designed based on the X-ray crystal structure of the enzyme. The calculations gave strong support to the proposed mechanism and confirmed that both Glu164 and Glu144 are in a deprotonated state in the reaction mechanism of ECH. In addition, we constructed a model of the active site with the inhibitor acetoacetyl-CoA based on the crystal structure. Caomparison of the calculated energy barriers showed that binding of the keto-enol form of the inhibitor is more reasonable than that of the di-keto form in the inhibition process. Moreover, acetoacetyl-CoA was found to exhibit a keto-enol tautomerism when it acts as an inhibitor in the reaction. The present theoretical results indicated that both residues Glu164 and Glu144 are unprotonated in ECH with the substrate bound, while only Glu164 is unprotonated when the inhibitor binds ECH.

  15. The effect of ionic strength on oil adhesion in sandstone--the search for the low salinity mechanism

    National Research Council Canada - National Science Library

    Hilner, E; Andersson, M P; Hassenkam, T; Matthiesen, J; Salino, P A; Stipp, S L S

    2015-01-01

    .... However, the microscopic mechanism behind the effect is still under debate. One hypothesis is that as salinity decreases, expansion of the electrical double layer decreases attraction between organic molecules and pore surfaces...

  16. NMR studies of the AMP-binding site and mechanism of adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Fry, D.C.; Kuby, S.A.; Mildvan, A.S.

    1987-03-24

    NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr/sup 3 +/AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T/sub 1/ method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine.

  17. Mechanism of ferrous iron binding and oxidation by ferritin from a pennate diatom.

    Science.gov (United States)

    Pfaffen, Stephanie; Abdulqadir, Raz; Le Brun, Nick E; Murphy, Michael E P

    2013-05-24

    A novel ferritin was recently found in Pseudo-nitzschia multiseries (PmFTN), a marine pennate diatom that plays a major role in global primary production and carbon sequestration into the deep ocean. Crystals of recombinant PmFTN were soaked in iron and zinc solutions, and the structures were solved to 1.65-2.2-Å resolution. Three distinct iron binding sites were identified as determined from anomalous dispersion data from aerobically grown ferrous soaked crystals. Sites A and B comprise the conserved ferroxidase active site, and site C forms a pathway leading toward the central cavity where iron storage occurs. In contrast, crystal structures derived from anaerobically grown and ferrous soaked crystals revealed only one ferrous iron in the active site occupying site A. In the presence of dioxygen, zinc is observed bound to all three sites. Iron oxidation experiments using stopped-flow absorbance spectroscopy revealed an extremely rapid phase corresponding to Fe(II) oxidation at the ferroxidase site, which is saturated after adding 48 ferrous iron to apo-PmFTN (two ferrous iron per subunit), and a much slower phase due to iron core formation. These results suggest an ordered stepwise binding of ferrous iron and dioxygen to the ferroxidase site in preparation for catalysis and a partial mobilization of iron from the site following oxidation.

  18. Mechanism of Ferrous Iron Binding and Oxidation by Ferritin from a Pennate Diatom*

    Science.gov (United States)

    Pfaffen, Stephanie; Abdulqadir, Raz; Le Brun, Nick E.; Murphy, Michael E. P.

    2013-01-01

    A novel ferritin was recently found in Pseudo-nitzschia multiseries (PmFTN), a marine pennate diatom that plays a major role in global primary production and carbon sequestration into the deep ocean. Crystals of recombinant PmFTN were soaked in iron and zinc solutions, and the structures were solved to 1.65–2.2-Å resolution. Three distinct iron binding sites were identified as determined from anomalous dispersion data from aerobically grown ferrous soaked crystals. Sites A and B comprise the conserved ferroxidase active site, and site C forms a pathway leading toward the central cavity where iron storage occurs. In contrast, crystal structures derived from anaerobically grown and ferrous soaked crystals revealed only one ferrous iron in the active site occupying site A. In the presence of dioxygen, zinc is observed bound to all three sites. Iron oxidation experiments using stopped-flow absorbance spectroscopy revealed an extremely rapid phase corresponding to Fe(II) oxidation at the ferroxidase site, which is saturated after adding 48 ferrous iron to apo-PmFTN (two ferrous iron per subunit), and a much slower phase due to iron core formation. These results suggest an ordered stepwise binding of ferrous iron and dioxygen to the ferroxidase site in preparation for catalysis and a partial mobilization of iron from the site following oxidation. PMID:23548912

  19. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jaslyn E. M. M. [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Midtgaard, Søren Roi [University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Gysel, Kira [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J. [University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Stougaard, Jens; Thirup, Søren; Blaise, Mickaël, E-mail: mickael.blaise@cpbs.cnrs.fr [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark)

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  20. Interaction of a synthetic mitochondrial presequence with isolated yeast mitochondria: mechanism of binding and kinetics of import.

    Science.gov (United States)

    Roise, D

    1992-01-15

    The mechanism of interaction of a presequence with isolated yeast mitochondria was examined. A synthetic peptide corresponding to a matrix-targeting signal was covalently labeled with a fluorescent probe. Binding of the presequence to the surface of the mitochondria and translocation of the presequence into the interior of the mitochondria could then be monitored directly in solution by measuring changes in the steady-state fluorescence of the attached fluorophore. The binding step was rapid and reversible. Quantitation of the binding under equilibrium conditions suggested that the initial association of the presequence with the surface of the mitochondria occurred by partitioning of the presequence directly into the lipid bilayer of the outer membrane. Subsequent translocation of the bound presequence into the mitochondria was monitored by measuring the rate of disappearance of presequences sensitive to digestion by added trypsin. The efficiency of translocation was high, and the rate of the translocation was dependent on the electrical potential across the inner membrane. At physiological concentrations of presequence, the rate displayed first-order kinetics with respect to the concentration of bound presequence and had a rate constant of 0.19 min-1 at 20 degrees C. Several kinetic models for the translocation of the presequence are presented that are consistent with the experimental results.

  1. The role of the Zn(II binding domain in the mechanism of E. coli DNA topoisomerase I

    Directory of Open Access Journals (Sweden)

    Tse-Dinh Yuk-Ching

    2002-05-01

    Full Text Available Abstract Background Escherichia coli DNA topoisomerase I binds three Zn(II with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain. The 67 kDa N-terminal domain (Top67 has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism. Results Addition of purified ZD domain to Top67 partially restored the relaxation activity, demonstrating that covalent linkage between the two domains is not necessary for removal of negative supercoils from DNA. The two domains had similar affinities to ssDNA. However, only Top67 could bind dsDNA with high affinity. DNA cleavage assays showed that the Top67 had the same sequence and structure selectivity for DNA cleavage as the intact enzyme. DNA rejoining also did not require the presence of the ZD domain. Conclusions We propose that during relaxation of negatively supercoiled DNA, Top67 by itself can position the active site tyrosine near the junction of double-stranded and single-stranded DNA for cleavage. However, the interaction of the ZD domain with the passing single-strand of DNA, coupled with enzyme conformational change, is needed for removal of negative supercoils.

  2. Structural characterization of the DNA-binding mechanism underlying the copper(II)-sensing MarR transcriptional regulator.

    Science.gov (United States)

    Zhu, Rongfeng; Hao, Ziyang; Lou, Hubing; Song, Yanqun; Zhao, Jingyi; Chen, Yuqing; Zhu, Jiuhe; Chen, Peng R

    2017-07-01

    Multiple antibiotic resistance regulator (MarR) family proteins are widely conserved transcription factors that control bacterial resistance to antibiotics, environmental stresses, as well as the regulation of virulence determinants. Escherichia coli MarR, the prototype member of this family, has recently been shown to undergo copper(II)-catalyzed inter-dimer disulfide bond formation via a unique cysteine residue (Cys80) residing in its DNA-binding domain. However, despite extensive structural characterization of the MarR family proteins, the structural mechanism for DNA binding of this copper(II)-sensing MarR factor remains elusive. Here, we report the crystal structures of DNA-bound forms of MarR, which revealed a unique, concerted generation of two new helix-loop-helix motifs that facilitated MarR's DNA binding. Structural analysis and electrophoretic mobility shift assays (EMSA) show that the flexibility of Gly116 in the center of helix α5 and the extensive hydrogen-bonding interactions at the N-terminus of helix α1 together assist the reorientation of the wHTH domains and stabilize MarR's DNA-bound conformation.

  3. Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding.

    Science.gov (United States)

    Hastie, Kathryn M; Liu, Tong; Li, Sheng; King, Liam B; Ngo, Nhi; Zandonatti, Michelle A; Woods, Virgil L; de la Torre, Juan Carlos; Saphire, Erica Ollmann

    2011-11-29

    Arenaviruses cause disease in industrialized and developing nations alike. Among them, the hemorrhagic fever virus Lassa is responsible for ~300,000-500,000 infections/y in Western Africa. The arenavirus nucleoprotein (NP) forms the protein scaffold of the genomic ribonucleoprotein complexes and is critical for transcription and replication of the viral genome. Here, we present crystal structures of the RNA-binding domain of Lassa virus NP in complex with ssRNA. This structure shows, in contrast to the predicted model, that RNA binds in a deep, basic crevice located entirely within the N-terminal domain. Furthermore, the NP-ssRNA structures presented here, combined with hydrogen-deuterium exchange/MS and functional studies, suggest a gating mechanism by which NP opens to accept RNA. Directed mutagenesis and functional studies provide a unique look into how the arenavirus NPs bind to and protect the viral genome and also suggest the likely assembly by which viral ribonucleoprotein complexes are organized.

  4. Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations.

    Science.gov (United States)

    Yan, Fangfang; Liu, Xinguo; Zhang, Shaolong; Su, Jing; Zhang, Qinggang; Chen, Jianzhong

    2017-11-06

    Endocellular protein tyrosine phosphatase 1B (PTP1B) is one of the most promising target for designing and developing drugs to cure type-II diabetes and obesity. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy methods were applied to study binding differences of three inhibitors (ID: 901, 941, and 968) to PTP1B, the calculated results show that the inhibitor 901 has the strongest binding ability to PTP1B among the current inhibitors. Principal component (PC) analysis was also carried out to investigate the conformational change of PTP1B, and the results indicate that the associations of inhibitors with PTP1B generate a significant effect on the motion of the WPD-loop. Free energy decomposition method was applied to study the contributions of individual residues to inhibitor bindings, it is found that three inhibitors can generate hydrogen bonding interactions and hydrophobic interactions with different residues of PTP1B, which provide important forces for associations of inhibitors with PTP1B. This research is expected to give a meaningfully theoretical guidance to design and develop of effective drugs curing type-II diabetes and obesity.

  5. Towards understanding the E. coli PNP binding mechanism and FRET absence between E. coli PNP and formycin A.

    Science.gov (United States)

    Prokopowicz, Małgorzata; Greń, Bartosz; Cieśla, Joanna; Kierdaszuk, Borys

    2017-11-01

    The aim of this study is threefold: (1) augmentation of the knowledge of the E. coli PNP binding mechanism; (2) explanation of the previously observed 'lack of FRET' phenomenon and (3) an introduction of the correction (modified method) for FRET efficiency calculation in the PNP-FA complexes. We present fluorescence studies of the two E. coli PNP mutants (F159Y and F159A) with formycin A (FA), that indicate that the aromatic amino acid is indispensable in the nucleotide binding, additional hydroxyl group at position 159 probably enhances the strength of binding and that the amino acids pair 159-160 has a great impact on the spectroscopic properties of the enzyme. The experiments were carried out in hepes and phosphate buffers, at pH7 and 8.3. Two methods, a conventional and a modified one, that utilizes the dissociation constant, for calculations of the energy transfer efficiency (E) and the acceptor-to-donor distance (r) between FA and the Tyr (energy donor) were employed. Total difference spectra were calculated for emission spectra (λ ex 280nm, 295nm, 305nm and 313nm) for all studied systems. Time-resolved techniques allowed to conclude the existence of a specific structure formed by amino acids at positions 159 and 160. The results showed an unexpected pattern change of FRET in the mutants, when compared to the wild type enzyme and a probable presence of a structure created between 159 and 160 residue, that might influence the binding efficiency. Additionally, we confirmed the indispensable role of the modification of the FRET efficiency (E) calculation on the fraction of enzyme saturation in PNP-FA systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili: Evidence for a Novel and Heterospecific Probiotic Mechanism.

    Science.gov (United States)

    Tytgat, Hanne L P; Douillard, François P; Reunanen, Justus; Rasinkangas, Pia; Hendrickx, Antoni P A; Laine, Pia K; Paulin, Lars; Satokari, Reetta; de Vos, Willem M

    2016-10-01

    Vancomycin-resistant enterococci (VRE) have become a major nosocomial threat. Enterococcus faecium is of special concern, as it can easily acquire new antibiotic resistances and is an excellent colonizer of the human intestinal tract. Several clinical studies have explored the potential use of beneficial bacteria to weed out opportunistic pathogens. Specifically, the widely studied Lactobacillus rhamnosus strain GG has been applied successfully in the context of VRE infections. Here, we provide new insight into the molecular mechanism underlying the effects of this model probiotic on VRE decolonization. Both clinical VRE isolates and L. rhamnosus GG express pili on their cell walls, which are the key modulators of their highly efficient colonization of the intestinal mucosa. We found that one of the VRE pilus clusters shares considerable sequence similarity with the SpaCBA-SrtC1 pilus cluster of L. rhamnosus GG. Remarkable immunological and functional similarities were discovered between the mucus-binding pili of L. rhamnosus GG and those of the clinical E. faecium strain E1165, which was characterized at the genome level. Moreover, E. faecium strain E1165 bound efficiently to mucus, which may be prevented by the presence of the mucus-binding SpaC protein or antibodies against L. rhamnosus GG or SpaC. These results present experimental support for a novel probiotic mechanism, in which the mucus-binding pili of L. rhamnosus GG prevent the binding of a potential pathogen to the host. Hence, we provide a molecular basis for the further exploitation of L. rhamnosus GG and its pilins for prophylaxis and treatment of VRE infections. Concern about vancomycin-resistant Enterococcus faecium causing nosocomial infections is rising globally. The arsenal of antibiotic strategies to treat these infections is nearly exhausted, and hence, new treatment strategies are urgently needed. Here, we provide molecular evidence to underpin reports of the successful clinical application of

  7. A combined binding mechanism of nonionic ethoxylated surfactants to bovine serum albumin revealed by fluorescence and circular dichroism.

    Science.gov (United States)

    Iovescu, Alina; Băran, Adriana; Stîngă, Gabriela; Cantemir-Leontieş, Anca Ruxandra; Maxim, Monica Elisabeta; Anghel, Dan Florin

    2015-12-01

    The study systematically investigates aqueous mixtures of fixed bovine serum albumin (BSA) and various ethoxylated nonionic surfactants belonging to a homologous series or not. Mono-disperse tetra-(C12E4), hexa-(C12E6) and octa-ethyleneglycol mono-n-dodecyl ether (C12E8), and poly-disperse eicosa-ethyleneglycol mono-n-tetradecyl ether (C14EO20) are respectively employed. Fluorescence and circular dichroism measurements are performed at surfactant/protein molar ratios (rm)s lower and higher than one. We aim to get new insights into the binding mechanism of these species and to differentiate among the interaction abilities of these surfactants. The relative magnitude of the binding thermodynamic parameters by fluorescence, and the increase of α-helix prove that hydrogen bonding drives the interaction next to the hydrophobic attraction. C12En (n=4,6,8) develop more H bonds with the albumin than C14EO20 owing to a zigzag conformation of their short ethyleneoxide chains. Among the homologous surfactants, C12E6 has a slightly stronger interaction with BSA due to a maximal number of H bonds at a minimal hindering. Static fluorescence and dynamic fluorescence indicate an inter-conversion between the tryptophan (Trp) rotamers which happens around the surfactants critical micellar concentration. For C14EO20, the meander conformation of the polar group determines a less evident conversion of the Trp rotamers and smaller α-helix rise. Binding isotherms of the homologous surfactants and the fluorescence quenching mechanism by C12E6 are also provided. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quantum mechanics capacitance molecular mechanics modeling of core-electron binding energies of methanol and methyl nitrite on Ag(111) surface.

    Science.gov (United States)

    Löytynoja, T; Li, X; Jänkälä, K; Rinkevicius, Z; Ågren, H

    2016-07-14

    We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.

  9. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding.

    Science.gov (United States)

    Zimmerman, Matthew T; Bayse, Craig A; Ramoutar, Ria R; Brumaghim, Julia L

    2015-04-01

    Because sulfur and selenium antioxidants can prevent oxidative damage, numerous animal and clinical trials have investigated the ability of these compounds to prevent the oxidative stress that is an underlying cause of cardiovascular disease, Alzheimer's disease, and cancer, among others. One of the most common sources of oxidative damage is metal-generated hydroxyl radical; however, very little research has focused on determining the metal-binding abilities and structural attributes that affect oxidative damage prevention by sulfur and selenium compounds. In this review, we describe our ongoing investigations into sulfur and selenium antioxidant prevention of iron- and copper-mediated oxidative DNA damage. We determined that many sulfur and selenium compounds inhibit Cu(I)-mediated DNA damage and that DNA damage prevention varies dramatically when Fe(II) is used in place of Cu(I) to generate hydroxyl radical. Oxidation potentials of the sulfur or selenium compounds do not correlate with their ability to prevent DNA damage, highlighting the importance of metal coordination rather than reactive oxygen species scavenging as an antioxidant mechanism. Additional gel electrophoresis, mass spectrometry, and UV-visible studies confirmed sulfur and selenium antioxidant binding to Cu(I) and Fe(II). Ultimately, our studies established that both the hydroxyl-radical-generating metal ion and the chemical environment of the sulfur or selenium significantly affect DNA damage prevention and that metal coordination is an essential mechanism for these antioxidants. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.

    Science.gov (United States)

    Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf

    2016-06-30

    In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  11. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  12. Effect of Moisture Cycling on Mechanical Response of Metal-Plate Connector Joints With and Without an Adhesive Interface

    Science.gov (United States)

    Leslie H. Groom

    1995-01-01

    Wood trusses are frequently located in light-frame structures where they are subjected to significant shifts in moisture conditions. However, little is known about the effects of moisture cycling of the wood members on the mechanical behavior of metal-plate connector (MPC) joints. Thus, the primary objective of this study was to quantify the effect of wood moisture...

  13. New insights into the binding and catalytic mechanisms of Bacillus thuringiensis lactonase: insights into B. thuringiensis AiiA mechanism.

    Directory of Open Access Journals (Sweden)

    Marc N Charendoff

    Full Text Available The lactonase enzyme (AiiA produced by Bacillus thuringiensis serves to degrade autoinducer-1 (AI-1 signaling molecules in what is an evolved mechanism by which to compete with other bacteria. Bioassays have been previously performed to determine whether the AI-1 aliphatic tail lengths have any effect on AiiA's bioactivity, however, data to date are conflicting. Additionally, specific residue contributions to the catalytic activity of AiiA provide for some interesting questions. For example, it has been proposed that Y194 serves to provide an oxyanion hole to AI-1 which is curious given the fact the substrate spans two Zn(2+ ions. These ions might conceivably provide enough charge to promote both ligand stability and the carbonyl activation necessary to drive a nucleophilic attack. To investigate these questions, multiple molecular dynamics simulations were performed across a family of seven acylated homoserine lactones (AHL along with their associated intermediate and product states. Distance analyses and interaction energy analyses were performed to investigate current bioassay data. Our simulations are consistent with experimental studies showing that AiiA degrades AHLs in a tail length independent manner. However, the presence of the tail is required for activity. Also, the putative oxyanion hole function of Y194 toward the substrate is not observed in any of the reactant or product state simulation trajectories, but does seem to show efficacy in stabilizing the intermediate state. Last, we argue through ionization state analyses, that the proton shuttling necessary for catalytic activity might be mediated by both water and substrate-based intra-molecular proton transfer. Based on this argument, an alternate catalytic mechanism is proposed.

  14. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin

    DEFF Research Database (Denmark)

    Sasaki, T; Brakebusch, C; Engel, J

    1998-01-01

    Human Mac-2 binding protein (M2BP) was prepared in recombinant form from the culture medium of 293 kidney cells and consisted of a 92 kDa subunit. The protein was obtained in a native state as indicated by CD spectroscopy, demonstrating alpha-helical and beta-type structure, and by protease...... resistance and immunological analysis. It was highly modified by N- and O-glycosylation but not by glycosaminoglycans. Ultracentrifugation showed non-covalent association into oligomers with molar masses of 1000-1500 kDa. Electron microscopy showed ring-like shapes with diameters of 30-40 nm. M2BP bound...... in the extracellular matrix of several mouse tissues....

  15. Both mTORC1 and mTORC2 are involved in the regulation of cell adhesion

    Science.gov (United States)

    Chen, Long; Xu, Baoshan; Liu, Lei; Liu, Chunxiao; Luo, Yan; Chen, Xin; Barzegar, Mansoureh; Chung, Jun; Huang, Shile

    2015-01-01

    mTOR is a central controller for cell growth/proliferation and survival. Recent studies have shown that mTOR also regulates cell adhesion, yet the underlying mechanism is not known. Here we found that inhibition of mTOR by rapamycin reduced the basal or type I insulin-like growth factor (IGF-1)-stimulated adhesion of cancer cells. Further research revealed that both mTORC1 and mTORC2 were involved in the regulation of cell adhesion, as silencing expression of raptor or rictor inhibited cell adhesion. Also, PP242, an mTORC1/2 kinase inhibitor, inhibited cell adhesion more potently than rapamycin (mTORC1 inhibitor). Of interest, ectopic expression of constitutively active and rapamycin-resistant mutant of p70 kinase 1 (S6K1) or downregulation of eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) conferred resistance to rapamycin inhibition of cell adhesion, whereas expression of constitutively hypophosphorylated 4E-BP1 (4EBP1-5A) or downregulation of S6K1 suppressed cell adhesion. In contrast, neither genetic manipulation of Akt activity nor pharmacological inhibition of Akt affected cell adhesion. The results suggest that both mTORC1 and mTORC2 are involved in the regulation of cell adhesion; and mTORC1 regulates cell adhesion through S6K1 and 4E-BP1 pathways, but mTORC2 regulates cell adhesion via Akt-independent mechanism. PMID:25762619

  16. Pyocyanin and its precursor phenazine-1-carboxylic acid increase IL-8 and intercellular adhesion molecule-1 expression in human airway epithelial cells by oxidant-dependent mechanisms.

    Science.gov (United States)

    Look, Dwight C; Stoll, Lynn L; Romig, Sara A; Humlicek, Alicia; Britigan, Bradley E; Denning, Gerene M

    2005-09-15

    Pseudomonas aeruginosa secretes numerous factors that alter host cell function and may contribute to disease pathogenesis. Among recognized virulence factors is the redox-active phenazine pyocyanin. We have recently demonstrated that the precursor for pyocyanin, phenazine-1-carboxylic acid (PCA), increases oxidant formation and alters gene expression in human airway epithelial cells. We report in this work that PCA and pyocyanin increase expression of ICAM-1 both in vivo and in vitro. Moreover, phenazines enhanced cytokine-dependent increases in IL-8 and ICAM-1. Antioxidant intervention studies indicated both similarities and differences between PCA and pyocyanin. The thiol antioxidant N-acetyl cysteine, extracellular catalase, and inducible NO synthase inhibitors inhibited ICAM-1 and IL-8 increases in response to both phenazines. However, pyocyanin was significantly more sensitive to N-acetylcysteine inhibition. Interestingly, hydroxyl radical scavengers inhibited the response to pyocyanin, but not to PCA. These studies suggest that P. aeruginosa phenazines coordinately up-regulate chemokines (IL-8) and adhesion molecules (ICAM-1) by mechanisms that are, at least in part, oxidant dependent. However, results indicate that the mechanisms by which PCA and pyocyanin exert their effects are not identical, and not all antioxidant interventions are equally effective in inhibiting phenazine-mediated proinflammatory effects.

  17. Toxicity of Glutathione-Binding Metals: A Review of Targets and Mechanisms

    Directory of Open Access Journals (Sweden)

    Federico Maria Rubino

    2015-01-01

    Full Text Available Mercury, cadmium, arsenic and lead are among priority metals for toxicological studies due to the frequent human exposure and to the significant burden of disease following acute and chronic intoxication. Among their common characteristics is chemical affinity to proteins and non-protein thiols and their ability to generate cellular oxidative stress by the best-known Fenton mechanism. Their health effects are however diverse: kidney and liver damage, cancer at specific sites, irreversible neurological damages with metal-specific features. Mechanisms for the induction of oxidative stress by interaction with the cell thiolome will be presented, based on literature evidence and of experimental findings.

  18. Experimental Studies on the Bonding Strength and Fracture Behavior of Incompatible Materials Bonded by Mechanical Adhesion in Multilayer Rotational Molding

    Directory of Open Access Journals (Sweden)

    Martin Löhner

    2016-01-01

    Full Text Available Rotational molding is a plastic processing method that allows for the production of seamless, hollow parts. Defined shaping of the polymeric material only takes place on the outer surface where contact to the tooling is given. The inner surface forms by surface tension effects. By sequential adding of materials, complex multilayer build-up is possible. Besides pure, single materials, filled, or multiphase systems can be processed as well. In this work, possibilities to generate bonding between supposedly incompatible materials by adding a mix-material interlayer are investigated. Interlock mechanisms on a microscale dimension occur and result in mechanical bonding between the used materials, polyethylene (PE and thermoplastic polyurethane (TPE-U. The bonding strength between the materials was investigated to reveal the correlations between processing parameters, resulting layer build-up, and bonding strength. The failure behavior was analyzed and inferences to the influence of the varied parameters were drawn.

  19. Adhesive plasters

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  20. NMR Studies of Ligand Binding to P450eryF Provides Insight into the Mechanism of Cooperativity

    Energy Technology Data Exchange (ETDEWEB)

    Arthur G.,Roberts; M. Dolores,Díaz; Jed N.,Lampe; Laura M.,Shireman; Jeffrey S.,Grinstead; Michael J.,Dabrowski; Josh T.,Pearson; Michael K.,Bowman; William M.,Atkins; A. Patricia,Campbell

    2006-02-01

    Cytochrome P450's (P450's) catalyze the oxidative metabolism of most drugs and toxins. Although extensive studies have proven that some P450's demonstrate both homotropic and heterotropic cooperativity toward a number of substrates, the mechanistic and molecular details of P450 allostery are still not well-established. Here, we use UV/vis and heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques to study the mechanism and thermodynamics of the binding of two 9-aminophenanthrene (9-AP) and testosterone (TST) molecules to the erythromycin-metabolizing bacterial P450eryF. UV/vis absorbance spectra of P450eryF demonstrated that binding occurs with apparent negative homotropic cooperativity for TST and positive homotropic cooperativity for 9-AP with Hill-equation-derived dissociation constants of KS = 4 and 200 μM, respectively. The broadening and shifting observed in the 2D-{1H,15N}-HSQC-monitored titrations of 15N-Phe-labeled P450eryF with 9-AP and TST indicated binding on intermediate and fast chemical exhange time scales, respectively, which was consistent with the Hill-equation-derived KS values for these two ligands. Regardless of the type of spectral perturbation observed (broadening for 9-AP and shifting for TST), the 15N-Phe NMR resonances most affected were the same in each titration, suggesting that the two ligands ''contact'' the same phenylalanines within the active site of P450eryF. This finding is in agreement with X-ray crystal structures of bound P450eryF showing different ligands occupying similar active-site niches. Complex spectral behavior was additionally observed for a small collection of resonances in the TST titration, interpreted as multiple binding modes for the low-affinity TST molecule or multiple TST-bound P450eryF conformational substates. A structural and energetic model is

  1. NMR Studies of Ligand Binding to P450eryF Provides Insight into the Mechanism of Cooperativity

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Arthur G.; Diaz, Maria D.; Lampe, Jed N.; Shireman, Laura; Grinstead, Jeffrey S.; Dabrowski, Michael J.; Pearson, Josh T.; Bowman, Michael K.; Atkins, William M.; Campbell, Ann P.

    2006-02-14

    Cytochrome P450’s (P450’s) catalyze the oxidative metabolism of most drugs and toxins. Although extensive studies have proven that some P450’s demonstrate both homotropic and heterotropic cooperativity toward a number of substrates, the mechanistic and molecular details of P450 allostery are still not well-established. Here, we use UV/vis and heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques to study the mechanism and thermodynamics of the binding of two 9-aminophenanthrene (9-AP) and testosterone (TST) molecules to the erythromycin-metabolizing bacterial P450eryF. UV/vis absorbance spectra of P450eryF demonstrated that binding occurs with apparent negative homotropic cooperativity for TST and positive homotropic cooperativity for 9-AP with Hill-equation-derived dissociation constants of KS ) 4 and 200 íM, respectively. The broadening and shifting observed in the 2D-{1H,15N}-HSQC-monitored titrations of 15N-