WorldWideScience

Sample records for adhesion tissue tension

  1. Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization.

    Science.gov (United States)

    Dzamba, Bette J; Jakab, Karoly R; Marsden, Mungo; Schwartz, Martin A; DeSimone, Douglas W

    2009-03-01

    In this study we demonstrate that planar cell polarity signaling regulates morphogenesis in Xenopus embryos in part through the assembly of the fibronectin (FN) matrix. We outline a regulatory pathway that includes cadherin adhesion and signaling through Rac and Pak, culminating in actin reorganization, myosin contractility, and tissue tension, which, in turn, directs the correct spatiotemporal localization of FN into a fibrillar matrix. Increased mechanical tension promotes FN fibril assembly in the blastocoel roof (BCR), while reduced BCR tension inhibits matrix assembly. These data support a model for matrix assembly in tissues where cell-cell adhesions play an analogous role to the focal adhesions of cultured cells by transferring to integrins the tension required to direct FN fibril formation at cell surfaces.

  2. Mechanosensing in cell–matrix adhesions – Converting tension into chemical signals

    International Nuclear Information System (INIS)

    Hytönen, Vesa P.; Wehrle-Haller, Bernhard

    2016-01-01

    Cell-matrix adhesions have since long been recognized to be critical for the survival and proliferation of cells. In fact, these adhesive structures do not only physically anchor cells, but they also induce vital intracellular signaling at cell-matrix adhesion sites. Recent progress in the cell adhesion field is now starting to provide data and ideas how this so far enigmatic signaling process is induced and regulated by intracellular acto-myosin tension, or stiffness of the extracellular matrix. Understanding how cells are using this mechanosignaling system will be key to control biological processes such as development, cancer growth, metastasis formation and tissue regeneration. In this review, we illustrate and discuss the mechanosignaling mechanisms important in the regulation of cell-matrix adhesions at the molecular level.

  3. Mechanosensing in cell–matrix adhesions – Converting tension into chemical signals

    Energy Technology Data Exchange (ETDEWEB)

    Hytönen, Vesa P. [BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere (Finland); Fimlab Laboratories, Biokatu 4, FI-33520 Tampere (Finland); Wehrle-Haller, Bernhard [University of Geneva, Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1. Rue Michel-Servet, 1211 Geneva 4 (Switzerland); University of Geneva, Diabetes Center, Medical Faculty, 1211 Geneva 4 (Switzerland)

    2016-04-10

    Cell-matrix adhesions have since long been recognized to be critical for the survival and proliferation of cells. In fact, these adhesive structures do not only physically anchor cells, but they also induce vital intracellular signaling at cell-matrix adhesion sites. Recent progress in the cell adhesion field is now starting to provide data and ideas how this so far enigmatic signaling process is induced and regulated by intracellular acto-myosin tension, or stiffness of the extracellular matrix. Understanding how cells are using this mechanosignaling system will be key to control biological processes such as development, cancer growth, metastasis formation and tissue regeneration. In this review, we illustrate and discuss the mechanosignaling mechanisms important in the regulation of cell-matrix adhesions at the molecular level.

  4. Focal adhesions, stress fibers and mechanical tension

    Energy Technology Data Exchange (ETDEWEB)

    Burridge, Keith, E-mail: Keith_Burridge@med.unc.edu [Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, 12-016 Lineberger, CB#7295, University of North Carolina, Chapel Hill, NC (United States); Guilluy, Christophe, E-mail: christophe.guilluy@univ-nantes.fr [Inserm UMR-S1087, CNRS UMR-C6291, L' institut du Thorax, and Université de Nantes, Nantes (France)

    2016-04-10

    Stress fibers and focal adhesions are complex protein arrays that produce, transmit and sense mechanical tension. Evidence accumulated over many years led to the conclusion that mechanical tension generated within stress fibers contributes to the assembly of both stress fibers themselves and their associated focal adhesions. However, several lines of evidence have recently been presented against this model. Here we discuss the evidence for and against the role of mechanical tension in driving the assembly of these structures. We also consider how their assembly is influenced by the rigidity of the substratum to which cells are adhering. Finally, we discuss the recently identified connections between stress fibers and the nucleus, and the roles that these may play, both in cell migration and regulating nuclear function. - Highlights: • The different types of stress fiber and focal adhesion are described. • We discuss the controversy about tension and assembly of these structures. • We describe the different models used to investigate assembly of these structures. • The influence of substratum rigidity is discussed. • Stress fiber connections to the nucleus are reviewed.

  5. Membrane tension controls adhesion positioning at the leading edge of cells.

    Science.gov (United States)

    Pontes, Bruno; Monzo, Pascale; Gole, Laurent; Le Roux, Anabel-Lise; Kosmalska, Anita Joanna; Tam, Zhi Yang; Luo, Weiwei; Kan, Sophie; Viasnoff, Virgile; Roca-Cusachs, Pere; Tucker-Kellogg, Lisa; Gauthier, Nils C

    2017-09-04

    Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells. © 2017 Pontes et al.

  6. Soft-tissue tension total knee arthroplasty.

    Science.gov (United States)

    Asano, Hiroshi; Hoshino, Akiho; Wilton, Tim J

    2004-08-01

    It is far from clear how best to define the proper strength of soft-tissue tensioning in total knee arthroplasty (TKA). We attached a torque driver to the Monogram balancer/tensor device and measured soft-tissue tension in full extension and 90 degrees flexion during TKA. In our surgical procedure, when we felt proper soft-tissue tension was being applied, the mean distraction force was noted to be 126N in extension and 121N in flexion. There was no significant correlation between soft-tissue tension and the postoperative flexion angle finally achieved. To the best of our knowledge, this is the first study to assess the actual distraction forces in relation to soft-tissue tension in TKA. Further study may reveal the most appropriate forces to achieve proper soft-tissue tension in the wide variety of circumstances presenting at knee arthroplasty.

  7. Tissue adhesives for simple traumatic lacerations.

    Science.gov (United States)

    Beam, Joel W

    2008-01-01

    Farion K, Osmond MH, Hartling L, et al. Tissue adhesives for traumatic lacerations in children and adults. Cochrane Database Syst Rev. 2001(4);CD003326. What is the clinical evidence base for tissue adhesives in the management of simple traumatic lacerations? Studies were identified by searches of the following databases: Cochrane Wounds Group Specialized Trials Register (September 2003), Cochrane Central Register of Controlled Trials (CENTRAL) (CDROM 2003, issue 3), MEDLINE (1966 to September 2003, week 1), EMBASE (1988 to 2003, week 36), Web of Science Science Citation Index (1975 to September 13, 2003) and various clinical trials registers (September 2003). Investigators and product manufacturers were contacted to identify additional eligible studies. The search terms included wounds and injuries, laceration, face injury, nose injury, tissue adhesives, and acrylates. Each study fulfilled the following criteria: (1) The study was a randomized controlled trial that compared tissue adhesives with standard wound closure (SWC) (sutures, staples, adhesive strips) or tissue adhesive with tissue adhesive. (2) The wounds were acute, linear lacerations less than 12 hours old, resulting from blunt or sharp trauma. (3) The wound length, width, and depth allowed for approximation of the edges with minimal tension after deep sutures were placed, if required. Studies were included with no language or publication status restriction, with participants of any age recruited in an emergency department, outpatient clinic, walk-in clinic, or other primary care setting. Studies were excluded if the wounds were stellate lacerations, puncture wounds, mammalian bites, infected, heavily contaminated or devitalized, crossing joints or mucocutaneous junctions, in hair-bearing areas, or in patients with keloid formation or chronic illness. The characteristics of the study and participants, interventions, outcome measures, and findings were extracted by one author and verified by a second

  8. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype

    DEFF Research Database (Denmark)

    Bayer, Monika L; Schjerling, Peter; Herchenhan, Andreas

    2014-01-01

    Mechanical loading of tendon cells results in an upregulation of mechanotransduction signaling pathways, cell-matrix adhesion and collagen synthesis, but whether unloading removes these responses is unclear. We investigated the response to tension release, with regard to matrix proteins, pro......-inflammatory mediators and tendon phenotypic specific molecules, in an in vitro model where tendon-like tissue was engineered from human tendon cells. Tissue sampling was performed 1, 2, 4 and 6 days after surgical de-tensioning of the tendon construct. When tensile stimulus was removed, integrin type collagen receptors...... were upregulated. Stimulation with the cytokine TGF-β1 had distinct effects on some tendon-related genes in both tensioned and de-tensioned tissue. These findings indicate an important role of mechanical loading for cellular and matrix responses in tendon, including that loss of tension leads...

  9. Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law

    Science.gov (United States)

    Zhu, Xinyao; Xu, Wei

    2018-02-01

    The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.

  10. Effect of pre-tension on the peeling behavior of a bio-inspired nano-film and a hierarchical adhesive structure

    Science.gov (United States)

    Peng, Zhilong; Chen, Shaohua

    2012-10-01

    Inspired by the reversible adhesion behaviors of geckos, the effects of pre-tension in a bio-inspired nano-film and a hierarchical structure on adhesion are studied theoretically. In the case with a uniformly distributing pre-tension in a spatula-like nano-film under peeling, a closed-form solution to a critical peeling angle is derived, below or above which the peel-off force is enhanced or reduced, respectively, compared with the case without pre-tension. The effects of a non-uniformly distributing pre-tension on adhesion are further investigated for both a spatula-like nano-film and a hierarchical structure-like gecko's seta. Compared with the case without pre-tension, the pre-tension, no matter uniform or non-uniform, can increase the adhesion force not only for the spatula-like nano-film but also for the hierarchical structure at a small peeling angle, while decrease it at a relatively large peeling angle. Furthermore, if the pre-tension is large enough, the effective adhesion energy of a hierarchical structure tends to vanish at a critical peeling angle, which results in spontaneous detachment of the hierarchical structure from the substrate. The present theoretical predictions can not only give some explanations on the existing experimental observation that gecko's seta always detaches at a specific angle and no apparent adhesion force can be detected above the critical angle but also provide a deep understanding for the reversible adhesion mechanism of geckos and be helpful to the design of biomimetic reversible adhesives.

  11. Sliding-induced non-uniform pre-tension governs robust and reversible adhesion: a revisit of adhesion mechanisms of geckos.

    Science.gov (United States)

    Cheng, Q H; Chen, B; Gao, H J; Zhang, Y W

    2012-02-07

    Several mechanisms have been proposed in the literature to explain the robust attachment and rapid, controllable detachment of geckos' feet on vertical walls or ceilings, yet, it is still debatable, which one is ultimately responsible for geckos' extraordinary capabilities for robust and reversible adhesion. In this paper, we re-examine some of the key movements of geckos' spatula pads and seta hairs during attachment and detachment, and propose a sequence of simple mechanical steps that would lead to the extraordinary properties of geckos observed in experiments. The central subject under study here is a linear distribution of pre-tension along the spatula pad induced by its sliding motion with respect to a surface. The resulting pre-tension, together with a control of setae's pulling force and angle, not only allows for robust and strong attachment, but also enables rapid and controllable detachment. We perform computational modelling and simulations to validate the following key steps of geckos' adhesion: (i) creation of a linear distribution of pre-tension in spatula through sliding, (ii) operation of an instability envelope controlled by setae's pulling force and angle, (iii) triggering of an adhesion instability leading to partial decohesion along the interface, and (iv) complete detachment of spatula through post-instability peeling. The present work not only reveals novel insights into the adhesion mechanism of geckos, but also develops a powerful numerical simulation approach as well as additional guidelines for bioinspired materials and devices.

  12. Cellular control of connective tissue matrix tension.

    Science.gov (United States)

    Langevin, Helene M; Nedergaard, Maiken; Howe, Alan K

    2013-08-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function, and cancer. Copyright © 2013 Wiley Periodicals, Inc.

  13. Adhesion of tissue glues to different biological substrates

    NARCIS (Netherlands)

    Bochynska, A. I.; Hannink, G.; Buma, P.; Grijpma, D. W.

    2017-01-01

    Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly

  14. Adhesion of tissue glues to different biological substrates

    NARCIS (Netherlands)

    Bochynska, Agnieszka; Hannink, G.; Buma, P.; Grijpma, Dirk W.

    2016-01-01

    Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly

  15. Advances in biomaterials for preventing tissue adhesion.

    Science.gov (United States)

    Wu, Wei; Cheng, Ruoyu; das Neves, José; Tang, Jincheng; Xiao, Junyuan; Ni, Qing; Liu, Xinnong; Pan, Guoqing; Li, Dechun; Cui, Wenguo; Sarmento, Bruno

    2017-09-10

    Adhesion is one of the most common postsurgical complications, occurring simultaneously as the damaged tissue heals. Accompanied by symptoms such as inflammation, pain and even dyskinesia in particular circumstances, tissue adhesion has substantially compromised the quality of life of patients. Instead of passive treatment, which involves high cost and prolonged hospital stay, active intervention to prevent the adhesion from happening has been accepted as the optimized strategy against this complication. Herein, this paper will cover not only the mechanism of adhesion forming, but also the biomaterials and medicines used in its prevention. Apart from acting as a direct barrier, biomaterials also show promising anti-adhesive bioactivity though their intrinsic physical and chemical are still not completely unveiled. Considering the diversity of human tissue organization, it is imperative that various biomaterials in combination with specific medicine could be tuned to fit the microenvironment of targeted tissues. With the illustration of different adhesion mechanism and solutions, we hope this review can become a beacon and further inspires the development of anti-adhesion biomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Chitosan adhesive for laser tissue repair

    Science.gov (United States)

    Lauto, A.; Stoodley, M.; Avolio, A.; Foster, L. J. R.

    2006-02-01

    Background. Laser tissue repair usually relies on haemoderivate solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited repair strength, high solubility, brittleness and viral transmission. Furthermore, the solder activation temperature (65-70 °C) can induce significant damage to tissue. In this study, a new laser-activated biomaterial for tissue repair was developed and tested in vitro and in vivo to overcome some of the shortcomings of traditional solders. Materials and Methods. Flexible and insoluble strips of chitosan adhesive (surface area ~34 mm2, thickness ~20 μm) were developed and bonded on sheep intestine with a laser fluence and irradiance of 52 +/- 2 J/cm2 and ~15 W/cm2 respectively. The temperature between tissue and adhesive was measured using small thermocouples. The strength of repaired tissue was tested by a calibrated tensiometer. The adhesive was also bonded in vivo to the sciatic nerve of rats to assess the thermal damage induced by the laser (fluence = 65 +/- 11 J/cm2, irradiance = 15 W/cm2) four days post-operatively. Results. Chitosan adhesives successfully repaired intestine tissue, achieving a repair strength of 0.50 +/- 0.15 N (shear stress = 14.7 +/- 4.7 KPa, n=30) at a temperature of 60-65 °C. The laser caused demyelination of axons at the operated site; nevertheless, the myelinated axons retained their normal morphology proximally and distally.

  17. Degradable Adhesives for Surgery and Tissue Engineering.

    Science.gov (United States)

    Bhagat, Vrushali; Becker, Matthew L

    2017-10-09

    This review highlights the research on degradable polymeric tissue adhesives for surgery and tissue engineering. Included are a comprehensive listing of specific uses, advantages, and disadvantages of different adhesive groups. A critical evaluation of challenges affecting the development of next generation materials is also discussed, and insights into the outlook of the field are explored.

  18. Dextran and gelatin based photocrosslinkable tissue adhesive.

    Science.gov (United States)

    Wang, Tao; Nie, Jun; Yang, Dongzhi

    2012-11-06

    A two-component tissue adhesive based on biocompatible and bio-degradable polymers (oxidized urethane dextran (Dex-U-AD) and gelatin) was prepared and photocrosslinked under the ultraviolet (UV) irradiation. The adhesive could adhere to surface of gelatin, which simulated the human tissue steadily. The structures of above Dex-U-AD were characterized by FTIR, (1)H NMR spectroscopy and XRD. The adhesion property of result products was evaluated by lap-shear test. The maximum adhesion strength could reach to 4.16±0.72 MPa which was significantly higher than that of fibrin glue. The photopolymerization process of Dex-U-AD/gelatin was monitored by real time infrared spectroscopy (RTIR). It took less than 5 min to complete the curing process. The cytotoxicity of Dex-U-AD/gelatin also was evaluated which indicated that Dex-U-AD/gelatin gels were nontoxic to L929 cell. The relationship between all the above-mentioned properties and degree of oxidization of Dex-U-AD was assessed. The obtained products have the potential to serve as tissue adhesive in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Role of cellular adhesions in tissue dynamics spectroscopy

    Science.gov (United States)

    Merrill, Daniel A.; An, Ran; Turek, John; Nolte, David

    2014-02-01

    Cellular adhesions play a critical role in cell behavior, and modified expression of cellular adhesion compounds has been linked to various cancers. We tested the role of cellular adhesions in drug response by studying three cellular culture models: three-dimensional tumor spheroids with well-developed cellular adhesions and extracellular matrix (ECM), dense three-dimensional cell pellets with moderate numbers of adhesions, and dilute three-dimensional cell suspensions in agarose having few adhesions. Our technique for measuring the drug response for the spheroids and cell pellets was biodynamic imaging (BDI), and for the suspensions was quasi-elastic light scattering (QELS). We tested several cytoskeletal chemotherapeutic drugs (nocodazole, cytochalasin-D, paclitaxel, and colchicine) on three cancer cell lines chosen from human colorectal adenocarcinoma (HT-29), human pancreatic carcinoma (MIA PaCa-2), and rat osteosarcoma (UMR-106) to exhibit differences in adhesion strength. Comparing tumor spheroid behavior to that of cell suspensions showed shifts in the spectral motion of the cancer tissues that match predictions based on different degrees of cell-cell contacts. The HT-29 cell line, which has the strongest adhesions in the spheroid model, exhibits anomalous behavior in some cases. These results highlight the importance of using three-dimensional tissue models in drug screening with cellular adhesions being a contributory factor in phenotypic differences between the drug responses of tissue and cells.

  20. The adhesion of pacemaker skin wounds with Histoacryl tissue adhesive: an analysis of its efficacy and cost

    International Nuclear Information System (INIS)

    Zhou Yong; Jiang Haibin; Qin Yongwen; Chen Shaoping

    2011-01-01

    Objective: To evaluate the clinical efficacy and cost of Histoacryl tissue adhesive in adhering the pacemaker skin wounds. Methods: During the period from April 2010 to October 2010, permanent cardiac pacemaker implantation was performed in 112 patients in authors' hospital. The patients were divided into tissue adhesive group (n=64) and conventional suture group (n=48). Histoacryl tissue adhesive was employed in patients of tissue adhesive group. The extent of wound healing, the post-procedure hospitalization days and the hospitalization cost were recorded, and the results were compared between the two groups. Results: The clinical baselines of the two groups were compatible with each other. Primary closure of wounds was achieved in all patients of two groups. The mean post-procedure hospitalization time in tissue adhesive group and in conventional suture group was (4.4±1.4) days and (6.2±1.3) days respectively, the difference between the two groups was statistically significant (P<0.01). If the costs of pacemaker equipment, surgery and DSA were not included, the mean medical expenses in tissue adhesive group and in conventional suture group were (4383.39±792.40) and (4199.81±1059.93) Chinese Yuan respectively, and no significant difference in medical expenses existed between the two groups (P=0.651). Conclusion: Histoacryl tissue adhesive can effectively adhere pacemaker wounds tissue. Compared to the use of conventional suture, the use of Histoacryl tissue adhesive can reduce the post-procedure hospitalization days although the medical expenses are quite the same as that using conventional suture treatment. (authors)

  1. Physically based principles of cell adhesion mechanosensitivity in tissues

    International Nuclear Information System (INIS)

    Ladoux, Benoit; Nicolas, Alice

    2012-01-01

    The minimal structural unit that defines living organisms is a single cell. By proliferating and mechanically interacting with each other, cells can build complex organization such as tissues that ultimately organize into even more complex multicellular living organisms, such as mammals, composed of billions of single cells interacting with each other. As opposed to passive materials, living cells actively respond to the mechanical perturbations occurring in their environment. Tissue cell adhesion to its surrounding extracellular matrix or to neighbors is an example of a biological process that adapts to physical cues. The adhesion of tissue cells to their surrounding medium induces the generation of intracellular contraction forces whose amplitude adapts to the mechanical properties of the environment. In turn, solicitation of adhering cells with physical forces, such as blood flow shearing the layer of endothelial cells in the lumen of arteries, reinforces cell adhesion and impacts cell contractility. In biological terms, the sensing of physical signals is transduced into biochemical signaling events that guide cellular responses such as cell differentiation, cell growth and cell death. Regarding the biological and developmental consequences of cell adaptation to mechanical perturbations, understanding mechanotransduction in tissue cell adhesion appears as an important step in numerous fields of biology, such as cancer, regenerative medicine or tissue bioengineering for instance. Physicists were first tempted to view cell adhesion as the wetting transition of a soft bag having a complex, adhesive interaction with the surface. But surprising responses of tissue cell adhesion to mechanical cues challenged this view. This, however, did not exclude that cell adhesion could be understood in physical terms. It meant that new models and descriptions had to be created specifically for these biological issues, and could not straightforwardly be adapted from dead matter

  2. Development and characterization of a novel hydrogel adhesive for soft tissue applications

    Science.gov (United States)

    Sanders, Lindsey Kennedy

    With laparoscopic and robotic surgical techniques advancing, the need for an injectable surgical adhesive is growing. To be effective, surgical adhesives for internal organs require bulk strength and compliance to avoid rips and tears, and adhesive strength to avoid leakage at the application site, while not hindering the natural healing process. Although a number of tissue adhesives and sealants approved by the FDA for surgical use are currently available, attaining a useful balance in all of these qualities has proven difficult, particularly when considering applications involving highly expandable tissue, such as bladder and lung. The long-term goal of this project is to develop a hydrogel-based tissue adhesive that provides proper mechanical properties to eliminate the need for sutures in various soft tissue applications. Tetronic (BASF), a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, has been selected as the base material for the adhesive hydrogel system. Solutions of Tetronic T1107 can support reverse thermal gelation at physiological temperatures, which can be combined with covalent crosslinking to achieve a "tandem gelation" process making it ideal for use as a tissue adhesive. The objective of this doctoral thesis research is to improve the performance of the hydrogel based tissue adhesive developed previously by Cho and co-workers by applying a multi-functionalization of Tetronic. Specifically, this research aimed to improve bonding strength of Tetronic tissue adhesive using bi-functional modification, incorporate hemostatic function to the bi-functional Tetronic hydrogel, and evaluate the safety of bi-functional Tetronic tissue adhesive both in vitro and in vivo. In summary, we have developed a fast-curing, mechanically strong hemostatic tissue adhesive that can control blood loss in wet conditions during wound treatment applications (bladder, liver and muscle). Specifically, the bi-functional Tetronic adhesive (TAS) with a

  3. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue

    Science.gov (United States)

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-04-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here inspired by the endoparasite Pomphorhynchus laevis, which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~3.5-fold increase in adhesion strength compared with staples in skin graft fixation, and removal force of ~4.5 N cm-2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics.

  4. Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.

    Science.gov (United States)

    Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf

    2017-08-22

    Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Mechanical tension as a driver of connective tissue growth in vitro.

    Science.gov (United States)

    Wilson, Cameron J; Pearcy, Mark J; Epari, Devakara R

    2014-07-01

    We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous "scaffold" that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in

  6. A novel injectable tissue adhesive based on oxidized dextran and chitosan.

    Science.gov (United States)

    Balakrishnan, Biji; Soman, Dawlee; Payanam, Umashanker; Laurent, Alexandre; Labarre, Denis; Jayakrishnan, Athipettah

    2017-04-15

    A surgical adhesive that can be used in different surgical situations with or without sutures is a surgeons' dream and yet none has been able to fulfill many such demanding requirements. It was therefore a major challenge to develop an adhesive biomaterial that stops bleeding and bond tissues well, which at the same time is non-toxic, biocompatible and yet biodegradable, economically viable and appealing to the surgeon in terms of the simplicity of application in complex surgical situations. With this aim, we developed an in situ setting adhesive based on biopolymers such as chitosan and dextran. Dextran was oxidized using periodate to generate aldehyde functions on the biopolymer and then reacted with chitosan hydrochloride. Gelation occurred instantaneously upon mixing these components and the resulting gel showed good tissue adhesive properties with negligible cytotoxicity and minimal swelling in phosphate buffered saline (PBS). Rheology analysis confirmed the gelation process by demonstrating storage modulus having value higher than loss modulus. Adhesive strength was in the range 200-400gf/cm 2 which is about 4-5 times more than that of fibrin glue at comparable setting times. The adhesive showed burst strength in the range of 400-410mm of Hg which should make the same suitable as a sealant for controlling bleeding in many surgical situations even at high blood pressure. Efficacy of the adhesive as a hemostat was demonstrated in a rabbit liver injury model. Histological features after two weeks were comparable to that of commercially available BioGlue®. The adhesive also demonstrated its efficacy as a drug delivery vehicle. The present adhesive could function without the many toxicity and biocompatibility issues associated with such products. Though there are many tissue adhesives available in market, none are free of shortcomings. The newly developed surgical adhesive is a 2-component adhesive system based on time-tested, naturally occurring polysaccharides

  7. Hemodynamic parameters change earlier than tissue oxygen tension in hemorrhage.

    Science.gov (United States)

    Pestel, Gunther J; Fukui, Kimiko; Kimberger, Oliver; Hager, Helmut; Kurz, Andrea; Hiltebrand, Luzius B

    2010-05-15

    Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Thermal gelation and tissue adhesion of biomimetic hydrogels

    International Nuclear Information System (INIS)

    Burke, Sean A; Ritter-Jones, Marsha; Lee, Bruce P; Messersmith, Phillip B

    2007-01-01

    Marine and freshwater mussels are notorious foulers of natural and manmade surfaces, secreting specialized protein adhesives for rapid and durable attachment to wet substrates. Given the strong and water-resistant nature of mussel adhesive proteins, significant potential exists for mimicking their adhesive characteristics in bioinspired synthetic polymer materials. An important component of these proteins is L-3,4-dihydroxylphenylalanine (DOPA), an amino acid believed to contribute to mussel glue solidification through oxidation and crosslinking reactions. Synthetic polymers containing DOPA residues have previously been shown to crosslink into hydrogels upon the introduction of oxidizing reagents. Here we introduce a strategy for stimuli responsive gel formation of mussel adhesive protein mimetic polymers. Lipid vesicles with a bilayer melting transition of 37 0 C were designed from a mixture of dipalmitoyl and dimyristoyl phosphatidylcholines and exploited for the release of a sequestered oxidizing reagent upon heating from ambient to physiologic temperature. Colorimetric studies indicated that sodium-periodate-loaded liposomes released their cargo at the phase transition temperature, and when used in conjunction with a DOPA-functionalized poly(ethylene glycol) polymer gave rise to rapid solidification of a crosslinked polymer hydrogel. The tissue adhesive properties of this biomimetic system were determined by in situ thermal gelation of liposome/polymer hydrogel between two porcine dermal tissue surfaces. Bond strength measurements showed that the bond formed by the adhesive hydrogel (mean = 35.1 kPa, SD = 12.5 kPa, n = 11) was several times stronger than a fibrin glue control tested under the same conditions. The results suggest a possible use of this biomimetic strategy for repair of soft tissues

  9. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.

    Science.gov (United States)

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G

    2016-07-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in

  10. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears.

    Science.gov (United States)

    Bochyńska, A I; Van Tienen, T G; Hannink, G; Buma, P; Grijpma, D W

    2016-03-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study, a series of amphiphilic copolymers based on polyethylene glycol, trimethylene carbonate and citric acid were synthesized and subsequently end-functionalized with hexamethylene diisocyanate to form reactive adhesive materials. The shear adhesive strength of the networks to bovine meniscus tissue measured in a lap-shear adhesion test ranged between 20 and 80 kPa, which was better than for fibrin glue (10 kPa). The elastic modulus of the networks depended on composition and was in the same range as that of human meniscus. Cell compatibility was assessed using Alamar Blue staining after incubation of the bovine meniscus cells with different concentrations of the glues for 7 days. Cell viability was not affected after adding up to 3mg of the adhesive/mL of medium. The proposed materials are suitable candidates to be used as resorbable tissue adhesives for meniscus repair. They have excellent mechanical and adhesive properties that can be adjusted by varying the composition of the copolymers. Meniscal tears often occur and current treatment strategies do not bring fully satisfactory results. Use of biodegradable tissue adhesives would be an interesting option, but currently available adhesives are not suited due to toxicity or poor mechanical properties. Here, we describe the development of novel biodegradable, hyper-branched, adhesive copolymers. These adhesives cure upon contact with water forming flexible networks. Their adhesion to bovine meniscus tissue was significantly better than that of clinically used fibrin glue. The tensile properties of the cured networks were in the same range of values of the human meniscus. When physiologically relevant amounts were added to

  11. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry

    NARCIS (Netherlands)

    Danov, Krassimir D.; Stanimirova, Rumyana D.; Kralchevsky, Peter A.; Marinova, Krastanka G.; Stoyanov, Simeon D.; Blijdenstein, Theodorus B.J.; Cox, Andrew R.; Pelan, Eddie G.

    2016-01-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are

  12. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures

    Science.gov (United States)

    Shin, Kwangsoo; Choi, Jin Woo; Ko, Giho; Baik, Seungmin; Kim, Dokyoon; Park, Ok Kyu; Lee, Kyoungbun; Cho, Hye Rim; Han, Sang Ihn; Lee, Soo Hong; Lee, Dong Jun; Lee, Nohyun; Kim, Hyo-Cheol; Hyeon, Taeghwan

    2017-07-01

    Tissue adhesives have emerged as an alternative to sutures and staples for wound closure and reconnection of injured tissues after surgery or trauma. Owing to their convenience and effectiveness, these adhesives have received growing attention particularly in minimally invasive procedures. For safe and accurate applications, tissue adhesives should be detectable via clinical imaging modalities and be highly biocompatible for intracorporeal procedures. However, few adhesives meet all these requirements. Herein, we show that biocompatible tantalum oxide/silica core/shell nanoparticles (TSNs) exhibit not only high contrast effects for real-time imaging but also strong adhesive properties. Furthermore, the biocompatible TSNs cause much less cellular toxicity and less inflammation than a clinically used, imageable tissue adhesive (that is, a mixture of cyanoacrylate and Lipiodol). Because of their multifunctional imaging and adhesive property, the TSNs are successfully applied as a hemostatic adhesive for minimally invasive procedures and as an immobilized marker for image-guided procedures.

  13. Biocompatibility of a novel cyanoacrylate based tissue adhesive: cytotoxicity and biochemical property evaluation.

    Directory of Open Access Journals (Sweden)

    Young Ju Lee

    Full Text Available Cyanoacrylate (CA is most widely used as a medical and commercial tissue adhesive because of easier wound closure, good cosmetic results and little discomfort. But, CA-based tissue adhesives have some limitations including the release of cytotoxic chemicals during biodegradation. In previous study, we made prepolymerized allyl 2-CA (PACA based tissue adhesive, resulting in longer chain structure. In this study, we investigated a biocompatibility of PACA as alternative tissue adhesive for medical application, comparing with that of Dermabond® as commercial tissue adhesive. The biocompatibility of PACA was evaluated for short-term (24 hr and long-term (3 and 7 days using conventional cytotoxicity (WST, neutral red, LIVE/DEAD and TUNEL assays, hematoxylin-eosin (H&E and Masson trichrome (MT staining. Besides we examined the biochemical changes in cells and DNA induced by PACA and Dermabond® utilizing Raman spectroscopy which could observe the denaturation and conformational changes in protein, as well as disintegration of the DNA/RNA by cell death. In particular, we analyzed Raman spectrum using the multivariate statistical methods including principal component analysis (PCA and support vector machine (SVM. As a result, PACA and Dermabond® tissue adhesive treated cells and tissues showed no difference of the cell viability values, histological analysis and Raman spectral intensity. Also, the classification analysis by means of PCA-SVM classifier could not discriminate the difference between the PACA and Dermabond® treated cells and DNA. Therefore we suggest that novel PACA might be useful as potential tissue adhesive with effective biocompatibility.

  14. Design of Xylose-Based Semisynthetic Polyurethane Tissue Adhesives with Enhanced Bioactivity Properties.

    Science.gov (United States)

    Balcioglu, Sevgi; Parlakpinar, Hakan; Vardi, Nigar; Denkbas, Emir Baki; Karaaslan, Merve Goksin; Gulgen, Selam; Taslidere, Elif; Koytepe, Suleyman; Ates, Burhan

    2016-02-01

    Developing biocompatible tissue adhesives with high adhesion properties is a highly desired goal of the tissue engineering due to adverse effects of the sutures. Therefore, our work involves synthesis, characterization, adhesion properties, protein adsorption, in vitro biodegradation, in vitro and in vivo biocompatibility properties of xylose-based semisynthetic polyurethane (NPU-PEG-X) bioadhesives. Xylose-based semisynthetic polyurethanes were developed by the reaction among 4,4'-methylenebis(cyclohexyl isocyanate) (MCI), xylose and polyethylene glycol 200 (PEG). Synthesized polyurethanes (PUs) showed good thermal stability and high adhesion strength. The highest values in adhesion strength were measured as 415.0 ± 48.8 and 94.0 ± 2.8 kPa for aluminum substrate and muscle tissue in 15% xylose containing PUs (NPU-PEG-X-15%), respectively. The biodegradation of NPU-PEG-X-15% was also determined as 19.96 ± 1.04% after 8 weeks of incubation. Relative cell viability of xylose containing PU was above 86%. Moreover, 10% xylose containing NPU-PEG-X (NPU-PEG-X-10%) sample has favorable tissue response, and inflammatory reaction between 1 and 6 weeks implantation period. With high adhesiveness and biocompatibility properties, NPU-PEG-X can be used in the medical field as supporting materials for preventing the fluid leakage after abdominal surgery or wound closure.

  15. Tension pneumothorax, is it a really life-threatening condition?

    Science.gov (United States)

    2013-01-01

    Background Tension pneumothorax is a life-threatening occurrence that is infrequently the consequence of spontaneous pneumothorax. The aim of this study was to identify the risk factors for the development of tension pneumothorax and its effect on clinical outcomes. Methods We reviewed patients who were admitted with spontaneous pneumothorax between August 1, 2003 and December 31, 2011. Electronic medical records and the radiological findings were reviewed with chest x-ray and high-resolution computed tomography scans that were retrieved from the Picture Archiving Communication System. Results Out of the 370 patients included in this study, tension pneumothorax developed in 60 (16.2%). The bullae were larger in patients with tension pneumothorax than in those without (23.8 ± 16.2 mm vs 16.1 ± 19.1 mm; P = 0.007). In addition, the incidence of tension pneumothorax increased with the lung bulla size. Fibrotic adhesion was more prevalent in the tension pneumothorax group than in that without (P = 0.000). The bullae were large in patients with fibrotic adhesion than in those without adhesion (35.0 ± 22.3 mm vs 10.4 ± 11.5 mm; P = 0.000). On multivariate analysis, the size of bullae (odds ratio (OR) = 1.03, P = 0.001) and fibrotic adhesion (OR = 10.76, P = 0.000) were risk factors of tension pneumothorax. Hospital mortality was 3.3% in the tension pneumothorax group and it was not significantly different from those patients without tension pneunothorax (P = 0.252). Conclusions Tension pneumothorax is not uncommon, but clinically fatal tension pneumothorax is extremely rare. The size of the lung bullae and fibrotic adhesion contributes to the development of tension pneumothorax. PMID:24128176

  16. In vitro synthesis of tensioned synoviocyte bioscaffolds for meniscal fibrocartilage tissue engineering.

    Science.gov (United States)

    Warnock, Jennifer J; Baker, Lindsay; Ballard, George A; Ott, Jesse

    2013-12-03

    Meniscal injury is a common cause of lameness in the dog. Tissue engineered bioscaffolds may be a treatment option for meniscal incompetency, and ideally would possess meniscus- like extracellular matrix (ECM) and withstand meniscal tensile hoop strains. Synovium may be a useful cell source for meniscal tissue engineering because of its natural role in meniscal deficiency and its in vitro chondrogenic potential. The objective of this study is to compare meniscal -like extracellular matrix content of hyperconfluent synoviocyte cell sheets ("HCS") and hyperconfluent synoviocyte sheets which have been tensioned over wire hoops (tensioned synoviocyte bioscaffolds, "TSB") and cultured for 1 month. Long term culture with tension resulted in higher GAG concentration, higher chondrogenic index, higher collagen concentration, and type II collagen immunoreactivity in TSB versus HCS. Both HCS and TSB were immunoreactive for type I collagen, however, HCS had mild, patchy intracellular immunoreactivity while TSB had diffuse moderate immunoreactivity over the entire bisocaffold. The tissue architecture was markedly different between TSB and HCS, with TSB containing collagen organized in bands and sheets. Both HCS and TSB expressed alpha smooth muscle actin and displayed active contractile behavior. Double stranded DNA content was not different between TSB and HCS, while cell viability decreased in TSB. Long term culture of synoviocytes with tension improved meniscal- like extra cellular matrix components, specifically, the total collagen content, including type I and II collagen, and increased GAG content relative to HCS. Future research is warranted to investigate the potential of TSB for meniscal tissue engineering.

  17. Development of a fast curing tissue adhesive for meniscus tear repair.

    Science.gov (United States)

    Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W

    2017-01-01

    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.

  18. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion

    Science.gov (United States)

    Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui

    2018-01-01

    The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.

  19. Micro-mechanical model for the tension-stabilized enzymatic degradation of collagen tissues

    Science.gov (United States)

    Nguyen, Thao; Ruberti, Jeffery

    We present a study of how the collagen fiber structure influences the enzymatic degradation of collagen tissues. Experiments of collagen fibrils and tissues show that mechanical tension can slow and halt enzymatic degradation. Tissue-level experiments also show that degradation rate is minimum at a stretch level coincident with the onset of strain-stiffening in the stress response. To understand these phenomena, we developed a micro-mechanical model of a fibrous collagen tissue undergoing enzymatic degradation. Collagen fibers are described as sinusoidal elastica beams, and the tissue is described as a distribution of fibers. We assumed that the degradation reaction is inhibited by the axial strain energy of the crimped collagen fibers. The degradation rate law was calibrated to experiments on isolated single fibrils from bovine sclera. The fiber crimp and properties were fit to uniaxial tension tests of tissue strips. The fibril-level kinetic and tissue-level structural parameters were used to predict tissue-level degradation-induced creep rate under a constant applied force. We showed that we could accurately predict the degradation-induce creep rate of the pericardium and cornea once we accounted for differences in the fiber crimp structure and properties.

  20. In vivo evaluation of defined polished titanium surfaces to prevent soft tissue adhesion.

    Science.gov (United States)

    Hayes, Jessica S; Welton, Joanne L; Wieling, Ronald; Richards, R Geoff

    2012-04-01

    Soft tissue-implant adhesion is often required for implant integration into the body; however, in some situations, the tissue is required to glide freely over an implant. In the case of distal radius fracture treatment, current literature describes how titanium and its alloys tend to lead to more intra-tendon inflammatory reactions compared with stainless steel. This leads to tendon-implant adhesion and damage possibly causing limited palmar flexion and even tendon rupture. The goal of this study was to analyze the effect of different surface polishings of titanium and titanium molybdenum implants on soft tissue reactions in vivo, with the aim to prevent direct soft tissue adhesion. Using a nonfracture model, to allow for study of the soft-tissue-implant surface interactions only, six surface variants of the same plate design were implanted onto the tibia of 24 New Zealand white rabbits and left in situ for 12 weeks. Results indicate that paste polished commercially pure titanium and titanium molybdenum alloy had the least soft tissue adhesion, with the concomitant development of a soft tissue capsule. Surface topography did not appear influence the thickness of the connective tissue surrounding the plate. Therefore, suitable surface polishing could be applied to plates for clinical use, where free gliding of tissues is required. Copyright © 2012 Wiley Periodicals, Inc.

  1. Soft yet Sharp Interfaces in a Vertex Model of Confluent Tissue

    Science.gov (United States)

    Sussman, Daniel M.; Schwarz, J. M.; Marchetti, M. Cristina; Manning, M. Lisa

    2018-01-01

    How can dense biological tissue maintain sharp boundaries between coexisting cell populations? We explore this question within a simple vertex model for cells, focusing on the role of topology and tissue surface tension. We show that the ability of cells to independently regulate adhesivity and tension, together with neighbor-based interaction rules, lets them support strikingly unusual interfaces. In particular, we show that mechanical- and fluctuation-based measurements of the effective surface tension of a cellular aggregate yield different results, leading to mechanically soft interfaces that are nevertheless extremely sharp.

  2. Cerebral interstitial tissue oxygen tension, pH, HCO3, CO2.

    Science.gov (United States)

    Charbel, F T; Hoffman, W E; Misra, M; Hannigan, K; Ausman, J I

    1997-10-01

    There are many techniques for monitoring the injured brain following trauma, subarachnoid hemorrhage, or surgery. It is thought that the major determinants for recovery of injured cerebral tissue are oxygen, glucose delivery, and the clearance of metabolites. These factors, at optimal levels, are probably responsible for the regaining of neuronal functions. These parameters are in turn dependent on the tissue's blood flow and metabolism. We have been using a single, compact, polyethylene sensor, the Paratrend 7 for the measurement of cerebral oxygen tension, CO2, pH, and temperature. This sensor is designed for continuous blood gas analysis to aid in monitoring neurosurgical patients, both during surgery and in the intensive care unit. Using the Paratrend 7 sensor, we found the normal range of values to be: PO2 33 +/- 11 mm Hg; PCO2 48 +/- 7 mm Hg; pH 7.19 +/- 0.11. Critical measurements are considered to be tissue PO2 60 mm Hg, and pH effective method of measuring tissue cerebral oxygen tension, along with carbon dioxide levels, pH, and temperature.

  3. Active tension network model suggests an exotic mechanical state realized in epithelial tissues

    Science.gov (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streichan, Sebastian J.; Shraiman, Boris I.

    2017-12-01

    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behaviour remains an open problem. Here we formulate and analyse the active tension network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodelling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal--`isogonal'--deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.

  4. "Tissue oxygen tension, a determinant of resistance to infection and ...

    African Journals Online (AJOL)

    "Tissue oxygen tension, a determinant of resistance to infection and healing" - An Inaugural Lecture. K Jönsson. Abstract. An Inaugural Lecture Given in the University of Zimbabwe on 21 June 2001. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  5. Radiotherapy- and chemotherapy-induced normal tissue damage. The role of cytokines and adhesion molecules

    International Nuclear Information System (INIS)

    Plevova, P.

    2002-01-01

    Background. Ionising radiation and cytostatic agents used in cancer therapy exert damaging effects on normal tissues and induce a complex response at the cellular and molecular levels. Cytokines and adhesion molecules are involved in this response. Methods. Published data on the given topic have been reviewed. Results and conclusions. Various cytokines and adhesion molecules, including tumor necrosis factor α, interleukins- 1,-2,-4, and -6, interferon γ, granulocyte macrophage- and macrophage- colony stimulating factors, transforming growth factor β, platelet-derived growth factor, insulin-like growth factor I, fibroblast and epidermal growth factors, platelet-activating factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E- and P-selectins are involved in the response of normal tissues to ionizing radiation- and chemotherapy- induced normal tissues damage and are co-responsible for some side effects of these treatment modalities, including fever, anorexia and fatigue, suppression of hematopoiesis, both acute and late local tissue response. (author)

  6. Evaluation of novel biodegradable three-armed- and hyper-branched tissue adhesives in a meniscus explant model.

    Science.gov (United States)

    Bochyńska, A I; Hannink, G; Verhoeven, R; Grijpma, D W; Buma, P

    2017-05-01

    Current treatment methods to repair meniscal tears do not bring fully satisfactory results. Tissue adhesives are considered promising alternatives, since they are easy to apply and cause minimal tissue trauma. The first aim of this study was to analyze the adhesive properties of and tissue response to two recently developed biodegradable block copolymeric three-armed- and hyper-branched tissue adhesives. The second aim was to investigate if tissue surface modification with collagenase improves the attachment of the adhesives and increases the healing potential of the tissue. Cylindrical explants were harvested from bovine menisci. The central core of the explants was removed and glued back into the defect, with or without incubation in collagenase solution prior to gluing, using one of the novel glues, Dermabond® or fibrin glue. The repair constructs were cultured in vitro for 1 and 28 days. Adhesion tests and histology were performed to analyze the effects of the glue in combination with the additional treatment. The adhesive strength of the novel glues was 40-50 kPa, which was significantly higher than that of fibrin glue (15 kPa). Cells were present in direct contact with the glues, and the tissue remained vital during the whole culture period. Increased cellularity around the tear in the collagenase treated explants was observed after 1 day. The two newly developed tissue adhesives are attractive materials to be used for repair of meniscal tears. The beneficial influence of collagenase treatment in treating meniscal tears with glues still needs to be confirmed in more clinical relevant studies. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1405-1411, 2017. © 2017 Wiley Periodicals, Inc.

  7. In vitro evaluation of tissue adhesives composed of hydrophobically modified gelatins and disuccinimidyl tartrate

    Directory of Open Access Journals (Sweden)

    Miyuki Matsuda

    2012-01-01

    Full Text Available The effect of the hydrophobic group content in gelatin on the bonding strength of novel tissue–penetrating tissue adhesives was evaluated. The hydrophobic groups introduced into gelatin were the saturated hexanoyl, palmitoyl, and stearoyl groups, and the unsaturated oleoyl group. A collagen casing was employed as an adherend to model soft tissue for the in vitro determination of bonding strength of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. The adhesive composed of stearoyl-modified gelatin (7.4% stearoyl; 10Ste and disuccinimidyl tartrate showed the highest bonding strength. The bonding strength of the adhesives decreased as the degree of substitution of the hydrophobic groups increased. Cell culture experiments demonstrated that fluorescein isothiocyanate-labeled 10Ste was integrated onto the surface of smooth muscle cells and showed no cytotoxicity. These results suggest that 10Ste interacted with the hydrophobic domains of collagen casings, such as hydrophobic amino acid residues and cell membranes. Therefore, 10Ste–disuccinimidyl tartrate is a promising adhesive for use in aortic dissection.

  8. Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4

    DEFF Research Database (Denmark)

    Pakideeri Karat, Sandeep Gopal; Multhaupt, Hinke A B; Pocock, Roger

    2017-01-01

    Cell-extracellular matrix (ECM) and cell-cell junctions that employ microfilaments are sites of tension. They are important for tissue repair, morphogenetic movements and can be emblematic of matrix contraction in fibrotic disease and the stroma of solid tumors. One cell surface receptor, syndecan...... calcium. While it is known that cell-ECM and cell-cell junctions may be linked, possible roles for syndecans in this process are not understood. Here we show that wild type primary fibroblasts and those lacking syndecan-4 utilize different cadherins in their adherens junctions and that tension is a major...... factor in this differential response. This corresponds to the reduced ability of fibroblasts lacking syndecan-4 to exert tension on the ECM and we now show that this may extend to reduced tension in cell-cell adhesion....

  9. Co-micellized Pluronic mixture with thermo-sensitivity and residence stability as an injectable tissue adhesion barrier hydrogel.

    Science.gov (United States)

    Oh, Se Heang; Kang, Jun Goo; Lee, Jin Ho

    2018-01-01

    Although the tissue adhesion which leads to various complications frequently occurs after surgery, the development of an ideal tissue adhesion barrier is still a challenge. In this study, a thermo-sensitive hydrogel, which can fulfill the essential requirements of tissue adhesion barrier (that is, ease of handling for surgeon, flowing down prevention after application, stable residence on the injury during wound healing, and no use of toxic additives), was developed using biocompatible polyethylene glycol-polypropylene glycol copolymers (Pluronic F127/F68/P123 mixture). From the in vitro cell culture and in vivo animal study, it was observed that the Pluronic mixtures showed sol-gel transition at approximately body temperature (for easy injection or coating on the injury site and flowing down prevention after application) and prolonged residence stability in aqueous environment (> ∼7 days for stable protection of injury tissues/organs during wound healing), and thus was highly effective for the prevention of tissue adhesion without adverse tissue responses. Based on these results, the Pluronic F127/F68/P123 mixture itself (without any additives) can be a good candidate as an injectable or coatable tissue adhesion barrier hydrogel applicable to various injury tissues in terms of ease of use, effectiveness, and safety. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 172-182, 2018. © 2016 Wiley Periodicals, Inc.

  10. Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly(ethylene glycol) diacrylate.

    Science.gov (United States)

    Nakayama, Y; Matsuda, T

    1999-01-01

    This article presents a novel photochemically driven surgical tissue adhesive technology using photoreactive gelatins and a water-soluble difunctional macromer (poly(ethylene glycol) diacrylate: PEGDA).The gelatins were partially derivatized with photoreactive groups, such as ultraviolet light (UV)-reactive benzophenone and visible light-reactive xanthene dye (e.g., fluorescein sodium salt, eosin Y, and rose bengal). A series of the prepared photocurable tissue adhesive glues, consisting of the photoreactive gelatin, PEGDA, and a saline solution with or without ascorbic acid as a reducing agent, were viscous solutions under warming, and their effectiveness was evaluated as hemostasis- and anastomosis-aid in cardiovascular surgery. Regardless of the type of photoreactive groups, the irradiation of the photocurable tissue adhesive glues by UV or visible light within 1 min produced water-swollen gels, which had a high adhesive strength to wet collagen film. These were due to the synergistic action of photoreactive group-initiated photo-cross-linking and photograft polymerization. An increase in the irradiation time resulted in increased gel yield and reduced water swellability. A decrease in the molecular weight of PEGDA and an increase in concentration of both gelatin and PEGDA resulted in reduced water swellability and increased tensile and burst strengths of the resultant gels. In rats whose livers were injured with a trephine in laparotomy, the bleeding spots were coated with the photocurable adhesive glue and irradiated through an optical fiber. The coated solution was immediately converted to a swollen gel. The gel was tightly adhered to the liver tissue presumably by interpenetration, and concomitantly hemostasis was completed. The anastomosis treatment with the photocurable glue in the canine abdominal or thoracic aortas incised with a knife resulted in little bleeding under pulsatile flow after declamping. Histological examination showed that the glues

  11. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.; Arkesteijn, I.T.M.; Wessling, Matthias; Poot, Andreas A.; Stamatialis, Dimitrios

    2013-01-01

    Optimal cell interaction with biomaterial scaffolds is one of the important requirements for the development of successful in vitro tissue-engineered tissues. Fast, efficient and spatially uniform cell adhesion can improve the clinical potential of engineered tissue. Three-dimensional (3-D) solid

  12. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Science.gov (United States)

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  13. Adhesive protein interactions with chitosan: consequences for valve endothelial cell growth on tissue-engineering materials.

    Science.gov (United States)

    Cuy, Janet L; Beckstead, Benjamin L; Brown, Chad D; Hoffman, Allan S; Giachelli, Cecilia M

    2003-11-01

    Stable endothelialization of a tissue-engineered heart valve is essential for proper valve function, although adhesive characteristics of the native valve endothelial cell (VEC) have rarely been explored. This research evaluated VEC adhesive qualities and attempted to enhance VEC growth on the biopolymer chitosan, a novel tissue-engineering scaffold material with promising biological and chemical properties. Aortic VEC cultures were isolated and found to preferentially adhere to fibronectin, collagen types IV and I over laminin and osteopontin in a dose-dependent manner. Seeding of VEC onto comparison substrates revealed VEC growth and morphology to be preferential in the order: tissue culture polystyrene > gelatin, poly(DL-lactide-co-glycolide), chitosan > poly(hydroxy alkanoate). Adhesive protein precoating of chitosan did not significantly enhance VEC growth, despite equivalent protein adsorption as to polystyrene. Initial cell adhesion to protein-precoated chitosan, however, was higher than for polystyrene. Composite chitosan/collagen type IV films were investigated as an alternative to simple protein precoatings, and were shown to improve VEC growth and morphology over chitosan alone. These findings suggest potential manipulation of chitosan properties to improve amenability to valve tissue-engineering applications. Copyright 2003 Wiley Periodicals, Inc.

  14. Active Tension Network model reveals an exotic mechanical state realized in epithelial tissues

    Science.gov (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streicha, Sebastian; Shraiman, Boris

    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that mechanical balance of cells is dominated by cortical tension and introduces tension dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties: i) ATN behaves as a fluid at short times, but at long times it supports external tension, like a solid; ii) its mechanical equilibrium state has extensive degeneracy associated with a discrete conformal - ''isogonal'' - deformation of cells. ATN model predicts a constraint on equilibrium cell geometry, which we demonstrate to hold in certain epithelial tissues. We further show that isogonal modes are observed in a fruit fly embryo, accounting for the striking variability of apical area of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, understanding which helps understand biological phenomena.

  15. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  16. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears

    NARCIS (Netherlands)

    Bochynska, A. I.; Van Tienen, T. G.; Hannink, G.; Buma, P.; Grijpma, D. W.

    2016-01-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study,

  17. A Method for Combined Retinal Vascular and Tissue Oxygen Tension Imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Tan, Michael R; Blair, Norman P; Shahidi, Mahnaz

    2017-09-06

    The retina requires adequate oxygenation to maintain cellular metabolism and visual function. Inner retinal oxygen metabolism is directly related to retinal vascular oxygen tension (PO 2 ) and inner retinal oxygen extraction fraction (OEF), whereas outer retinal oxygen consumption (QO 2 ) relies on oxygen availability by the choroid and is contingent upon retinal tissue oxygen tension (tPO 2 ) gradients across the retinal depth. Thus far, these oxygenation and metabolic parameters have been measured independently by different techniques in separate animals, precluding a comprehensive and correlative assessment of retinal oxygenation and metabolism dynamics. The purpose of the current study is to report an innovative optical system for dual oxyphor phosphorescence lifetime imaging to near-simultaneously measure retinal vascular PO 2 and tPO 2 in rats. The use of a new oxyphor with different spectral characteristics allowed differentiation of phosphorescence signals from the retinal vasculature and tissue. Concurrent measurements of retinal arterial and venous PO 2 , tPO 2 through the retinal depth, inner retinal OEF, and outer retinal QO 2 were demonstrated, permitting a correlative assessment of retinal oxygenation and metabolism. Future application of this method can be used to investigate the relations among retinal oxygen content, extraction and metabolism under pathologic conditions and thus advance knowledge of retinal hypoxia pathophysiology.

  18. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Mathiesen, Line; Heno, Kristine K

    2016-01-01

    placental tissue. RESULTS: The ex vivo placental perfusion model was modified to study adhesion of infected erythrocytes binding to CSA, endothelial protein C receptor (EPCR) or a transgenic parasite where P. falciparum erythrocyte membrane protein 1 expression had been shut down. Infected erythrocytes......, such as binding to immunoglobulins. Furthermore, other parasite antigens have been associated with placental malaria. These findings have important implications for placental malaria vaccine design. The objective of this study was to adapt and describe a biologically relevant model of parasite adhesion in intact...... expressing VAR2CSA accumulated in perfused placental tissue whereas the EPCR binding and the transgenic parasite did not. Soluble CSA and antibodies specific against VAR2CSA inhibited binding of infected erythrocytes. CONCLUSION: The ex vivo model provides a novel way of studying receptor-ligand interactions...

  19. Surface tension driven shaping of adhesive microfluidic channel walls

    DEFF Research Database (Denmark)

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver

    2005-01-01

    , line height and distance, and temperature. Focus of the work has been on predicting the equilibrium geometries with FEM simulations using as input measured adhesive wetting angles, different adhesive line distances and height. The studied substrates are glass microscope slides, PEEK and PMMA...

  20. Adhesion studies by instrumental indentation testing

    NARCIS (Netherlands)

    Hangen, U.D.; Downs, S.; Kranenburg, J.M.; Hoogenboom, R.; Schubert, U.S.

    2006-01-01

    The miniaturization of devices and the advances in nanotechnol.-enabled products has led to the requirement of an increased understanding of the various interactions present in nanoscale contacts - including adhesion and surface tension. It is well known that adhesion plays an important role in the

  1. Management of a Small Paracentral Corneal Perforation Using Iatrogenic Iris Incarceration and Tissue Adhesive

    Directory of Open Access Journals (Sweden)

    Akira Kobayashi

    2012-07-01

    Full Text Available Background: Surgical intervention for corneal perforation is indicated when the anterior chamber does not reform within a short period of time. Herein, we report the successful management of a small paracentral corneal perforation using autologous iris incarceration and tissue adhesive. Case: A 41-year-old man developed a small paracentral corneal perforation (0.5 mm in size in the right eye, while the treating physician attempted to remove the residual rust ring after removal of a piece of metallic foreign body. Observations: The eye was initially managed with a bandage soft contact lens to ameliorate the aqueous leakage; however, without success. Iatrogenic iris incarceration of the wound was first induced, followed by application of cyanoacrylate tissue adhesive to the perforated site. As a result, the anterior chamber was immediately reformed and maintained. Complete corneal epithelialization of the perforation was achieved in 2 months without visual compromises. Conclusions: Cyanoacrylate tissue adhesive with iatrogenic incarceration of the autologous iris was effective in treating this type of small corneal perforation. This technique is simple and potentially useful for small paracentral corneal perforations outside the visual axis and without good apposition.

  2. Ostomy creation with fewer sutures using tissue adhesives (cyanoacrylates) in inflammatory bowel disease: a pilot study.

    Science.gov (United States)

    Uchino, M; Ikeuchi, H; Bando, T; Sasaki, H; Chohno, T; Horio, Y; Takesue, Y

    2018-03-01

    Introduction Fistula formation around the ostomy site is a stoma-related complication often requiring surgical intervention. This complication may be caused by sutures or may develop as a complication of inflammatory bowel disease. Before conducting a clinical trial, we set out to investigate the safety of ostomy creation with fewer sutures using tissue adhesives in this pilot study. Methods Patients with inflammatory bowel disease who required surgery with ostomy creation at the Hyogo College of Medicine between January 2014 and December 2015 were enrolled. Safety was assessed by evaluating the incidence of stoma-related complications. Ostomy was restricted to loop ileostomy and was created with two sutures and tissue adhesives. Results A total of 14 patients were enrolled. Mean body mass index was 18.9 ± 2.0 kg/m 2 . There were no cases of ostomy retraction and no severe adverse events were observed. Conclusions This pilot study demonstrates that ostomy creation using tissue adhesives is safe. Although retraction and adverse events were not observed, even in patients with inflammatory bowel disease who generally exhibit delayed wound healing, the body mass index was extremely low in this series. This study does not strongly recommend ostomy creation with tissue adhesives; further studies are needed to clarify the efficacy and safety of the procedure.

  3. IMPACTS OF DIFFERENT JOINT ANGLES AND ADHESIVES ON DIAGONAL TENSION PERFORMANCES OF BOX-TYPE FURNITURE

    Directory of Open Access Journals (Sweden)

    Musa Atar

    2010-02-01

    Full Text Available The goal of this study was to determine the effects of different joint angles and adhesives on diagonal tension performances of the box-type furniture made from solid wood and medium density fiberboard (MDF. After drilling joints of 75º, 78º, 81º, 84º, and 87º degrees on Oriental beech, European oak, Scotch pine, and MDF samples, a diagonal tensile test was applied on corners glued with polyvinyl acetate (PVAc and polyurethane (D-VTKA = Desmodur-Vinyl Trieketonol Acetate according to ASTM D 1037 standard. With reference to the obtained results, the highest tensile strength was obtained in European oak with PVAc glue and joint angle of 84º, while the lowest value was obtained in MDF with D-VTKA glue and joint angle of 75º. Considering the interaction of wood, adhesive, and joint angle, the highest tensile strength was obtained in European oak with joint angle of 81º and D-VTKA glue (1.089 N.mm-2, whereas the lowest tensile strength was determined in MDF with joint angle of 75º and PVAc glue (0.163 N.mm-2. Therefore, PVAc as glue and 81º as joint angle could be suggested to obtain some advantageous on the dovetail joint process for box-type furniture made from both solid wood and MDF.

  4. In Vitro and In Vivo Characterization of Biodegradable Reactive Isocyanate-Terminated Three-Armed- and Hyperbranched Block Copolymeric Tissue Adhesives

    NARCIS (Netherlands)

    Bochynska, Agnieszka I.; Hannink, Gerjon; Rongen, Jan J.; Grijpma, Dirk W.; Buma, Pieter

    2017-01-01

    Tissue adhesives are an attractive class of biomaterials, which can serve as a treatment for meniscus tears. In this study, physicochemical and adhesive properties of novel biodegradable three-armed- and hyperbranched block copolymeric adhesives are evaluated. Additionally, their degradation in

  5. Adhesion

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adhesion URL of this page: //medlineplus.gov/ency/article/001493.htm Adhesion To use the sharing features on this page, please enable JavaScript. Adhesions are bands of scar-like tissue that form between two ...

  6. Aluminum and steel adhesion with polyurethanes from castor oil adhesives submitted to gamma irradiation

    International Nuclear Information System (INIS)

    Azevedo, Elaine C.; Assumpcao, Roberto L.; Nascimento, Eduardo M. do; Claro Neto, Salvador; Soboll, Daniel S.

    2009-01-01

    Polyurethanes adhesive from castor oil is used to join aluminum and steel pieces. The effect of gamma radiation on the resistance to tension tests is investigated. The aluminum and steel pieces after being glued with the adhesive were submitted to gamma irradiation in doses of 1 kGy, 25 kGy and 100 kGy. The rupture strength of the joints after irradiation have a slightly increase or remains practically unchanged indicating that the adhesive properties is not affected by the gamma radiation. (author)

  7. Methodology for dynamic biaxial tension testing of pregnant uterine tissue.

    Science.gov (United States)

    Manoogian, Sarah; Mcnally, Craig; Calloway, Britt; Duma, Stefan

    2007-01-01

    Placental abruption accounts for 50% to 70% of fetal losses in motor vehicle crashes. Since automobile crashes are the leading cause of traumatic fetal injury mortality in the United States, research of this injury mechanism is important. Before research can adequately evaluate current and future restraint designs, a detailed model of the pregnant uterine tissues is necessary. The purpose of this study is to develop a methodology for testing the pregnant uterus in biaxial tension at a rate normally seen in a motor vehicle crash. Since the majority of previous biaxial work has established methods for quasi-static testing, this paper combines previous research and new methods to develop a custom designed system to strain the tissue at a dynamic rate. Load cells and optical markers are used for calculating stress strain curves of the perpendicular loading axes. Results for this methodology show images of a tissue specimen loaded and a finite verification of the optical strain measurement. The biaxial test system dynamically pulls the tissue to failure with synchronous motion of four tissue grips that are rigidly coupled to the tissue specimen. The test device models in situ loading conditions of the pregnant uterus and overcomes previous limitations of biaxial testing. A non-contact method of measuring strains combined with data reduction to resolve the stresses in two directions provides the information necessary to develop a three dimensional constitutive model of the material. Moreover, future research can apply this method to other soft tissues with similar in situ loading conditions.

  8. INFLUENCE OF SOLUBLE PLACENTAL TISSUE-DERIVED MOLECULES UPON EXPRESSION OF ADHESION MOLECULES BY EA.HY926 ENDOTHELIAL CELLS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2011-01-01

    Full Text Available Abstract.  Leukocyte  recruitment  to  placental  tissue  is  an  important  factor  of  its  development.  In  this respect, adhesion molecules at the endothelial cell surface represent a key determining factor of leukocyte adhesion and their trans-endothelial migration. The goal of investigation was to evaluate changed expression of adhesion molecules on the endothelial cells induced by supernates of placental tissue cultures. Placental tissue supernatants produced by the first- and third-trimester placental tissue from normal pregnancy, as well as from women with gestosis, induced higher expression of CD31, CD9, CD62E, CD62P, CD34, CD54, CD51/61, CD49d  and  integrin  β7  expression  by  endothelial  cells,  as  compared  with  their  baseline  levels.  However, the  supernates  from  pre-eclamptic  placental  tissue (3rd  trimester  caused  an  increased  CD9  expression by  endothelial  cells,  as  compared  with  effects  of placental  supernates  from  eclampsia-free  cases.  Our data  contribute  to  understanding  a  possible  role  of endothelial cell adhesion molecules in recruitment of leukocytes to placental tissue and possible participation of adhesion molecules in pathogenesis of pre-eclampsia. The work was supported by a grant from Russian Ministry of Education and Science ГК №02.740.11.0711 and Presidential grant № НШ-3594.2010.7 and МД-150.2011.7. (Med. Immunol., 2011, vol. 13, N 6, pp 589-596

  9. Tensile and shear strength of adhesives

    Science.gov (United States)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  10. Effect of Paste Flux Concentration on Adhesion Behavior

    Directory of Open Access Journals (Sweden)

    DU Quan-bin

    2017-11-01

    Full Text Available In view of the problem that paste flux is difficult to spread uniformly on the surface of filler metal, the adhesion behavior of the different concentrations of paste flux on the surface of filler metal was studied by the equipment of OM, wetting angle tester and surface tensiometer. The results show that adhesive layer is gradually thickened with the increase of the concentration of paste flux. A small amount of shrinkage appears in the thin adhesive layer. however, mass paste flux slides off filler metal when adhesive layer is thicker, accompanying by severe aggregation and shrinkage. For the ideal surface, the adhesive tension of paste flux with different concentrations of paste flux is the same. For the actual surface, the stripe groove additional pressure is formed when paste flux wets stripe groove, and the additional pressure is the main reason for the lagging phenomenon of the shrinkage of the adhesive layer. With the increase of paste flux concentration, the additional pressure decreases, the hysteresis resistance decreases, and the shrinkage increases. A relationship is satisfied when the shrinkage takes place in thin adhesive layer, this is ΔWC ≥ A+ΔP. Whether the shrinkage occurs mainly depends on the adhesion tension and the additional pressure.

  11. Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics

    Science.gov (United States)

    Zmurchok, Cole; Bhaskar, Dhananjay; Edelstein-Keshet, Leah

    2018-07-01

    Regulators of the actin cytoskeleton such Rho GTPases can modulate forces developed in cells by promoting actomyosin contraction. At the same time, through mechanosensing, tension is known to affect the activity of Rho GTPases. What happens when these effects act in concert? Using a minimal model (1 GTPase coupled to a Kelvin–Voigt element), we show that two-way feedback between signaling (‘RhoA’) and mechanical tension (stretching) leads to a spectrum of cell behaviors, including contracted or relaxed cells, and cells that oscillate between these extremes. When such ‘model cells’ are connected to one another in a row or in a 2D sheet (‘epithelium’), we observe waves of contraction/relaxation and GTPase activity sweeping through the tissue. The minimal model lends itself to full bifurcation analysis, and suggests a mechanism that explains behavior observed in the context of development and collective cell behavior.

  12. Influence of Various Pulp Properties on the Adhesion Between Tissue Paper and Yankee Cylinder Surface

    Directory of Open Access Journals (Sweden)

    Jonna Boudreau

    2014-02-01

    Full Text Available The strength of the adhesion between the paper and the drying Yankee cylinder is of great importance with respect to the final properties of a tissue paper product. Therefore, the effects of a few potentially important pulp properties have been evaluated in laboratory experiments. Four highly different kraft pulps were used, and the adhesion strength was measured by means of the force required when scraping off a paper from a metal surface with a specifically designed knife mounted on a moving cart. The adhesion strength was observed to increase with increasing grammage and increasing degree of beating of the pulp. It was also found that pulps containing more fines, or with higher hemicellulose content, gave rise to higher adhesion strength.

  13. Diet-induced weight loss decreases adipose tissue oxygen tension with parallel changes in adipose tissue phenotype and insulin sensitivity in overweight humans

    NARCIS (Netherlands)

    Vink, R.G.; Roumans, N.J.; Čajlaković, M.; Cleutjens, J.P.M.; Boekschoten, M.V.; Fazelzadeh, P.; Vogel, M.A.A.; Blaak, E.E.; Mariman, E.C.; Baak, van M.A.; Goossens, G.H.

    2017-01-01

    Background/objectives: Although adipose tissue (AT) hypoxia is present in rodent models of obesity, evidence for this in humans is limited. Here, we investigated the effects of diet-induced weight loss (WL) on abdominal subcutaneous AT oxygen tension (pO 2), AT blood flow (ATBF), AT capillary

  14. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression

    DEFF Research Database (Denmark)

    Laklai, Hanane; Miroshnikova, Yekaterina A.; Pickup, Michael W.

    2016-01-01

    by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were......Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop...... stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression...

  15. Adhesion between coating layers based on epoxy and silicone

    DEFF Research Database (Denmark)

    Svendsen, Jacob R.; Kontogeorgis, Georgios; Kiil, Søren

    2007-01-01

    The adhesion between a silicon tie-coat and epoxy primers, used in marine coating systems, has been studied in this work. Six epoxy coatings (with varying chain lengths of the epoxy resins), some of which have shown problems with adhesion to the tie-coat during service life, have been considered....... The experimental investigation includes measurements of the surface tension of the tie-coat and the critical surface tensions of the epoxies, topographic investigation of the surfaces of cured epoxy coatings via atomic force microscopy (AFM), and pull-off tests for investigating the strength of adhesion...... to the silicon/epoxy systems. Calculations for determining the roughness factor of the six epoxy coatings (based on the AFM topographies) and the theoretical work of adhesion have been carried out. The coating surfaces are also characterized based on the van Oss-Good theory. Previous studies on the modulus...

  16. Bonding and fusion of meniscus fibrocartilage using a novel chondroitin sulfate bone marrow tissue adhesive.

    Science.gov (United States)

    Simson, Jacob A; Strehin, Iossif A; Allen, Brian W; Elisseeff, Jennifer H

    2013-08-01

    The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.

  17. Tuneable nanoparticle-nanofiber composite substrate for improved cellular adhesion.

    Science.gov (United States)

    Nicolini, Ariana M; Toth, Tyler D; Yoon, Jeong-Yeol

    2016-09-01

    This work presents a novel technique using a reverse potential electrospinning mode for fabricating nanoparticle-embedded composites that can be tailored to represent various fiber diameters, surface morphologies, and functional groups necessary for improved cellular adhesion. Polycaprolactone (PCL) nanofibers were electrospun in both traditional positive (PP) and reverse potential (RP) electrical fields. The fibers were incorporated with 300nm polystyrene (PS) fluorescent particles, which contained carboxyl, amine groups, and surfactants. In the unconventional RP, the charged colloidal particles and surfactants were shown to have an exaggerated effect on Taylor cone morphology and fiber diameter caused by the changes in charge density and surface tension of the bulk solution. The RP mode was shown to lead to a decrease in fiber diameter from 1200±100nm (diameter±SE) for the nanofibers made with PCL alone to 440±80nm with the incorporation of colloidal particles, compared to the PP mode ranging from 530±90nm to 350±50nm, respectively. The nanoparticle-nanofiber composite substrates were cultured with human umbilical vein endothelial cells (HUVECs) and evaluated for cellular viability and adhesion for up to 5 days. Adhesion to the nanofibrous substrates was improved by 180±10% with the addition of carboxylated particles and by 480±60% with the functionalization of an RGD ligand compared to the PCL nanofibers. The novel approach of electrospinning in the RP mode with the addition of colloids in order to alter charge density and surface tension could be utilized towards many applications, one being implantable biomaterials and tissue engineered scaffolds as demonstrated in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluation of tensile strength of tissue adhesives and sutures for clear corneal incisions using porcine and bovine eyes, with a novel standardized testing platform

    Directory of Open Access Journals (Sweden)

    Kaja S

    2012-02-01

    Full Text Available Simon Kaja, Daryl L Goad, Fatima Ali, Ashley Abraham, R Luke Rebenitsch, Savak Teymoorian, Rohit Krishna, Peter KoulenVision Research Center and Department of Ophthalmology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USABackground: Tissue adhesives for ophthalmologic applications were proposed almost 50 years ago, yet to date no adequate tissue glues have been identified that combine strong sealing properties with adequate safety and absence of postsurgical side effects. In recent years, cataract surgeries and Descemet's stripping with endothelial keratoplasty procedures have significantly increased the number of clear corneal incisions performed. One of the obstacles to discovery and development of novel tissue adhesives has been the result of nonstandardized testing of potential tissue glues.Methods: We developed an instrument capable of controlling intraocular pressure in explanted porcine and bovine eyes in order to evaluate sealants, adhesives, and surgical closure methods used in ophthalmic surgery in a controlled, repeatable, and validated fashion. We herein developed and validated our instrument by testing the adhesive properties of cyanoacrylate glue in both porcine and bovine explant eyes.Results: The instrument applied and maintained intraocular pressure through a broad range of physiological intraocular pressures. Cyanoacrylate-based glues showed significantly enhanced sealing properties of clear corneal incisions compared with sutured wounds.Conclusion: This study shows the feasibility of our instrument for reliable and standardized testing of tissue adhesive for ophthalmological surgery.Keywords: manometer, intraocular pressure, applanation tonometry, clear corneal incision, tissue adhesive, ocular surgery

  19. Photodynamic tissue adhesion with chlorin(e6) protein conjugates.

    Science.gov (United States)

    Khadem, J; Veloso, A A; Tolentino, F; Hasan, T; Hamblin, M R

    1999-12-01

    To test the hypothesis that a photodynamic laser-activated tissue solder would perform better in sealing scleral incisions when the photosensitizer was covalently linked to the protein than when it was noncovalently mixed. Conjugates and mixtures were prepared between the photosensitizer chlorin(e6) and various proteins (albumin, fibrinogen, and gelatin) in different ratios and used to weld penetrating scleral incisions made in human cadaveric eyes. A blue-green (488-514 nm) argon laser activated the adhesive, and the strength of the closure was measured by increasing the intraocular pressure until the wound showed leakage. Both covalent conjugates and noncovalent mixtures showed a light dose-dependent increase in leaking pressure. A preparation of albumin chlorin(e6) conjugate with additional albumin added (2.5 protein to chlorin(e6) molar ratio) showed significantly higher weld strength than other protein conjugates and mixtures. This is the first report of dye-protein conjugates as tissue solders. These conjugates may have applications in ophthalmology.

  20. Superselective embolisation in the urogenital tract with tissue adhesives

    International Nuclear Information System (INIS)

    Guenther, R.; Klose, K.; Thelen, M.; Jacobi, G.; Mainz Univ.

    1981-01-01

    The tissue adhesive butyl-2-cyanoacrylate mixed with lipiodol and tantulum powder is an excellent agent for superselective catheter embolisation of small vessels. The mixture is low viscous and can be injected through fine catheters. Occlusion is independent of blood clotting and is permanent. A coaxial catheter technique is recommended or, in cases of difficulty, a ballon catheter can be floated in. Superselective embolisation was used in 15 patients, in seven for the kidney in eight for the pelvis. Indications were bleeding from the kidney, partial defunctioning of the kidney, tumours in single kidneys and bleeding from carcinomas in the bladder, prostate or cervix. (orig.) [de

  1. Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Maria P. Sousa

    2017-10-01

    Full Text Available Mussels are marine organisms that have been mimicked due to their exceptional adhesive properties to all kind of surfaces, including rocks, under wet conditions. The proteins present on the mussel’s foot contain 3,4-dihydroxy-l-alanine (DOPA, an amino acid from the catechol family that has been reported by their adhesive character. Therefore, we synthesized a mussel-inspired conjugated polymer, modifying the backbone of hyaluronic acid with dopamine by carbodiimide chemistry. Ultraviolet–visible (UV–Vis spectroscopy and nuclear magnetic resonance (NMR techniques confirmed the success of this modification. Different techniques have been reported to produce two-dimensional (2D or three-dimensional (3D systems capable to support cells and tissue regeneration; among others, multilayer systems allow the construction of hierarchical structures from nano- to macroscales. In this study, the layer-by-layer (LbL technique was used to produce freestanding multilayer membranes made uniquely of chitosan and dopamine-modified hyaluronic acid (HA-DN. The electrostatic interactions were found to be the main forces involved in the film construction. The surface morphology, chemistry, and mechanical properties of the freestanding membranes were characterized, confirming the enhancement of the adhesive properties in the presence of HA-DN. The MC3T3-E1 cell line was cultured on the surface of the membranes, demonstrating the potential of these freestanding multilayer systems to be used for bone tissue engineering.

  2. Adhesion-governed buckling of thin-film electronics on soft tissues

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2016-01-01

    Full Text Available Stretchable/flexible electronics has attracted great interest and attention due to its potentially broad applications in bio-compatible systems. One class of these ultra-thin electronic systems has found promising and important utilities in bio-integrated monitoring and therapeutic devices. These devices can conform to the surfaces of soft bio-tissues such as the epidermis, the epicardium, and the brain to provide portable healthcare functionalities. Upon contractions of the soft tissues, the electronics undergoes compression and buckles into various modes, depending on the stiffness of the tissue and the strength of the interfacial adhesion. These buckling modes result in different kinds of interfacial delamination and shapes of the deformed electronics, which are very important to the proper functioning of the bio-electronic devices. In this paper, detailed buckling mechanics of these thin-film electronics on elastomeric substrates is studied. The analytical results, validated by experiments, provide a very convenient tool for predicting peak strain in the electronics and the intactness of the interface under various conditions.

  3. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  4. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  5. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways

    NARCIS (Netherlands)

    Braunstahl, G. J.; Overbeek, S. E.; Kleinjan, A.; Prins, J. B.; Hoogsteden, H. C.; Fokkens, W. J.

    2001-01-01

    BACKGROUND: Allergic rhinitis (AR) and asthma are characterized by means of a similar inflammatory process in which eosinophils are important effector cells. The migration of eosinophils from the blood into the tissues is dependent on adhesion molecules. OBJECTIVE: To analyze the aspects of

  6. Soft tissue adhesion of polished versus glazed lithium disilicate ceramic for dental applications.

    Science.gov (United States)

    Brunot-Gohin, C; Duval, J-L; Azogui, E-E; Jannetta, R; Pezron, I; Laurent-Maquin, D; Gangloff, S C; Egles, C

    2013-09-01

    Ceramics are widely used materials for prosthesis, especially in dental fields. Despite multiple biomedical applications, little is known about ceramic surface modifications and the resulting cell behavior at its contact. The aim of this study is to evaluate the biological response of polished versus glazed surface treatments on lithium disilicate dental ceramic. We studied a lithium disilicate ceramic (IPS e.max(®) Press, Ivoclar Vivadent) with 3 different surface treatments: raw surface treatment, hand polished surface treatment, and glazed surface treatment (control samples are Thermanox(®), Nunc). In order to evaluate the possible modulation of cell response at the surface of ceramic, we compared polished versus glazed ceramics using an organotypic culture model of chicken epithelium. Our results show that the surface roughness is not modified as demonstrated by equivalent Ra measurements. On the contrary, the contact angle θ in water is very different between polished (84°) and glazed (33°) samples. The culture of epithelial tissues allowed a very precise assessment of histocompatibility of these interfaces and showed that polished samples increased cell adhesion and proliferation as compared to glazed samples. Lithium disilicate polished ceramic provided better adhesion and proliferation than lithium disilicate glazed ceramic. Taken together, our results demonstrate for the first time, how it is possible to use simple surface modifications to finely modulate the adhesion of tissues. Our results will help dental surgeons to choose the most appropriate surface treatment for a specific clinical application, in particular for the ceramic implant collar. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Failure of Sengstaken balloon tamponade for rebleeding after tissue adhesive injection in a fundic varix

    NARCIS (Netherlands)

    Nieuwenhuis, JA; Peters, FTM; Sanders, J; Van der Werf, TS; Zijlstra, JG

    A 61-year-old man developed a huge fundic varix due to portal hypertension in alcoholic liver cirrhosis. After a third injection therapy session with tissue adhesive (Histoacryl(R)) massive hemorrhage developed. Sengstaken (gastric) balloon tamponade failed. Autopsy showed a huge, solid varix with a

  8. Towards a Tissue-Engineered Ligament: Design and Preliminary Evaluation of a Dedicated Multi-Chamber Tension-Torsion Bioreactor

    Directory of Open Access Journals (Sweden)

    Cédric P. Laurent

    2014-02-01

    Full Text Available Tissue engineering may constitute a promising alternative to current strategies in ligament repair, providing that suitable scaffolds and culture conditions are proposed. The objective of the present contribution is to present the design and instrumentation of a novel multi-chamber tension-torsion bioreactor dedicated to ligament tissue engineering. A preliminary biological evaluation of a new braided scaffold within this bioreactor under dynamic loading is reported, starting with the development of a dedicated seeding protocol validated from static cultures. The results of these preliminary biological characterizations confirm that the present combination of scaffold, seeding protocol and bioreactor may enable us to head towards a suitable ligament tissue-engineered construct.

  9. Localized increase of tissue oxygen tension by magnetic targeted drug delivery

    Science.gov (United States)

    Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro

    2014-07-01

    Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg-1) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to

  10. Treatment of tension-type headache with articulatory and suboccipital soft tissue therapy: A double-blind, randomized, placebo-controlled clinical trial.

    Science.gov (United States)

    Espí-López, Gemma V; Gómez-Conesa, Antonia; Gómez, Anna Arnal; Martínez, Josep Benítez; Pascual-Vaca, Angel Oliva; Blanco, Cleofás Rodríguez

    2014-10-01

    This study researches the effectiveness of two manual therapy treatments focused on the suboccipital region for tension-type headache. A randomized double-blind clinical trial was conducted over a period of four weeks with a follow-up at one month. Eighty-four patients with a mean age of 39.7 years (SD 11.4) with tension-type headache were assigned to 4 groups which included the following manual therapy treatment: suboccipital soft tissue inhibition; occiput-atlas-axis global manipulation; combination of both techniques; and a control group. The primary assessment consisted of collecting socio-demographic data and headache characteristics in a one-month base period, data such as age, gender, severity of pain, intensity and frequency of headache, among other. Outcome secondary assessment were: impact of headache, disability, ranges of motion of the craniocervical junction, frequency and intensity of headache, and pericranial tenderness. In the month prior to the study, average pain intensity, was rated at 6.49 (SD 1.69), and 66.7% subjects suffered headaches of moderate intensity. After 8 weeks, statistically significant improvements were noted. OAA manipulative treatment and combined therapy treatments proved to be more effective than suboccipital soft tissue inhibition for tension-type headache. The treatment with suboccipital soft tissue inhibition, despite producing less significant results, also has positive effects on different aspects of headache. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Performance of Universal Adhesive in Primary Molars After Selective Removal of Carious Tissue: An 18-Month Randomized Clinical Trial.

    Science.gov (United States)

    Lenzi, Tathiane Larissa; Pires, Carine Weber; Soares, Fabio Zovico Maxnuck; Raggio, Daniela Prócida; Ardenghi, Thiago Machado; de Oliveira Rocha, Rachel

    2017-09-15

    To evaluate the 18-month clinical performance of a universal adhesive, applied under different adhesion strategies, after selective carious tissue removal in primary molars. Forty-four subjects (five to 10 years old) contributed with 90 primary molars presenting moderately deep dentin carious lesions on occlusal or occluso-proximal surfaces, which were randomly assigned following either self-etch or etch-and-rinse protocol of Scotchbond Universal Adhesive (3M ESPE). Resin composite was incrementally inserted for all restorations. Restorations were evaluated at one, six, 12, and 18 months using the modified United States Public Health Service criteria. Survival estimates for restorations' longevity were evaluated using the Kaplan-Meier method. Multivariate Cox regression analysis with shared frailty to assess the factors associated with failures (Padhesion strategy did not influence the restorations' longevity (P=0.06; 72.2 percent and 89.7 percent with etch-and-rinse and self-etch mode, respectively). Self-etch and etch-and-rinse strategies did not influence the clinical behavior of universal adhesive used in primary molars after selective carious tissue removal; although there was a tendency for better outcome of the self-etch strategy.

  12. Effect of transcervical resection of adhesion combined with low-dose aspirin on uterine artery blood flow and Smad2/3 in endometrial tissue

    Directory of Open Access Journals (Sweden)

    Qian-Wen Chen

    2016-11-01

    Full Text Available Objective: To study the effect of transcervical resection of adhesion combined with lowdose aspirin on uterine artery blood flow and Smad2/3 in endometrial tissue. Methods: A total of 78 patients with severe intrauterine adhesions who received transcervical resection of adhesion in our hospital between June 2012 and October 2014 were prospectively studied and randomly divided into two groups, observation group received postoperative estrogenprogestogen combined with low-dose aspirin therapy, and control group received postoperative estrogen-progestogen therapy. Ultrasound examination was conducted before and after treatment to determine uterine artery and endometrial blood flow parameters, intrauterine adhesion tissue was collected to detect the expression levels of Smad2 and Smad3 as well as downstream molecules, and serum was collected to determine the levels of cytokines. Results: On the ovulation day after 3 cycles of treatment, uterine artery RI and PI of observation group were significantly lower than those of control group, and endometrial VI, FI and VFI were significantly higher than those of control group; uPA expression level in intrauterine adhesion tissue of observation group was significantly higher than that of control group, Smad2, Smad3, PAI-1, ADAM15 and ADAM17 expression levels were significantly lower than those of control group, and serum TGF-β, VEGF, CTGF, IGF-I and TNF-α levels were significantly lower than those of control group. Conclusions: Transcervical resection of adhesion combined with low-dose aspirin therapy can improve the postoperative uterine artery and endometrial blood flow state, inhibit extracellular matrix deposition mediated by Smad2/3 signaling pathway and prevent intrauterine re-adhesion in patients with intrauterine adhesions.

  13. Dynamic surface tension measurement for the screening of biosurfactants produced by Lactobacillus plantarum subsp. plantarum PTCC 1896.

    Science.gov (United States)

    Bakhshi, Nafiseh; Soleimanian-Zad, Sabihe; Sheikh-Zeinoddin, Mahmoud

    2017-06-01

    Currently, screening of microbial biosurfactants (BSs) is based on their equilibrium surface tension values obtained using static surface tension measurement. However, a good surfactant should not only have a low equilibrium surface tension, but its dynamic surface tension (DST) should also decrease rapidly with time. In this study, screening of BSs produced by Lactobacillus plantarum subsp. plantarum PTCC 1896 (probiotic) was performed based on their DST values measured by Wilhelmy plate tensiometry. The relationship between DST and structural and functional properties (anti-adhesive activity) of the BSs was investigated. The results showed that the changes in the yield, productivity and structure of the BSs were growth medium and incubation time dependent (p<0.05). Structurally different BSs produced exhibited identical equilibrium surface tension values. However, differences among the structure/yield of the BSs were observed through the measurement of their DST. The considerable dependence of DST on the concentration and composition of the BS proteins was observed (p<0.05). Moreover, the anti-adhesive activity of the BS was found to be positively correlated with its DST. The results suggest that the DST measurement could serve as an efficient method for the clever screening of BSs producer/production condition, and consequently, for the investigation of probiotic features of bacteria, since the anti-adhesive activity is an important criterion of probiotics. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effectiveness and biocompatibility of a novel biological adhesive application for repair of meniscal tear on the avascular zone

    Science.gov (United States)

    Inoue, Takahito; Taguchi, Tetsushi; Imade, Shinji; Kumahashi, Nobuyuki; Uchio, Yuji

    2012-12-01

    We have investigated the effectiveness and safety of a newly developed biological adhesive for repair of meniscal tear. The adhesive was composed of disuccinimidyl tartrate (DST) as a crosslinker and human serum albumin (HSA) as a hardener. To determine adequate concentration, bonding strength was measured using a tensiometer 5 min after applying the adhesive on the avascular zone tear of porcine meniscus; it was compared with the strengths of commercially available cyanoacrylate-based and fibrin-based adhesives. In vivo examination was performed using Japanese white rabbits, creating longitudinal tears on the avascular zone of meniscus and applying DST-HSA adhesive. Three months after operation the rabbits were sacrificed and tension test and histological evaluation were performed. Bonding strength was measured in three porcine meniscus groups: (i) only suturing, (ii) suturing after applying the adhesive on surface and (iii) suturing using an adhesive-soaked suture. The optimum concentrations were 0.1 mmol of DST and 42 w/v% of HAS. Bonding strength was greatest with cyanoacrylate-based adhesive, followed by DST-HSA adhesive, and fibrin-based adhesive. No inflammation was observed in the synovium or surrounding tissues 3 months after using the DST-HSA adhesive. Bonding strength was greatest with DST-HSA adhesive-soaked suturing group (77 ± 6 N), followed by suturing only group (61 ± 5 N) and surface adhesive application group (60 ± 8 N). The newly developed DST-HSA adhesive is considered safe and may be effective in enforcement of bonding of avascular zone tear of the meniscus.

  15. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus

    2014-01-01

    The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale...... preferentially as ion pairs at solution-calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70, converting...

  16. Leukocyte adhesion deficiencies

    NARCIS (Netherlands)

    van de Vijver, Edith; van den Berg, Timo K.; Kuijpers, Taco W.

    2013-01-01

    During inflammation, leukocytes play a key role in maintaining tissue homeostasis through elimination of pathogens and removal of damaged tissue. Leukocytes migrate to the site of inflammation by crawling over and through the blood vessel wall, into the tissue. Leukocyte adhesion deficiencies (ie,

  17. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  18. Bacterial adhesion to host tissues : mechanisms and consequences

    National Research Council Canada - National Science Library

    Wilson, Michael, 1947

    2002-01-01

    "This book is about the adhesion of bacteria to their human hosts. Although adhesion is essential for maintaining members of the normal microflora in/on their host, it is also the crucial first stage in any infectious disease...

  19. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  20. Dissipative particle dynamics simulations for biological tissues: rheology and competition

    International Nuclear Information System (INIS)

    Basan, Markus; Prost, Jacques; Joanny, Jean-François; Elgeti, Jens

    2011-01-01

    In this work, we model biological tissues using a simple, mechanistic simulation based on dissipative particle dynamics. We investigate the continuum behavior of the simulated tissue and determine its dependence on the properties of the individual cell. Cells in our simulation adhere to each other, expand in volume, divide after reaching a specific size checkpoint and undergo apoptosis at a constant rate, leading to a steady-state homeostatic pressure in the tissue. We measure the dependence of the homeostatic state on the microscopic parameters of our model and show that homeostatic pressure, rather than the unconfined rate of cell division, determines the outcome of tissue competitions. Simulated cell aggregates are cohesive and round up due to the effect of tissue surface tension, which we measure for different tissues. Furthermore, mixtures of different cells unmix according to their adhesive properties. Using a variety of shear and creep simulations, we study tissue rheology by measuring yield stresses, shear viscosities, complex viscosities as well as the loss tangents as a function of model parameters. We find that cell division and apoptosis lead to a vanishing yield stress and fluid-like tissues. The effects of different adhesion strengths and levels of noise on the rheology of the tissue are also measured. In addition, we find that the level of cell division and apoptosis drives the diffusion of cells in the tissue. Finally, we present a method for measuring the compressibility of the tissue and its response to external stress via cell division and apoptosis

  1. A method for volumetric retinal tissue oxygen tension imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Teng, Pang-Yu; Blair, Norman P; Shahidi, Mahnaz

    2018-01-01

    Inadequate retinal oxygenation occurs in many vision-threatening retinal diseases, including diabetic retinopathy, retinal vascular occlusions, and age-related macular degeneration. Therefore, techniques that assess retinal oxygenation are necessary to understand retinal physiology in health and disease. The purpose of the current study is to report a method for the three-dimensional (3D) imaging of retinal tissue oxygen tension (tPO 2 ) in rats. Imaging was performed in Long Evans pigmented rats under systemic normoxia (N = 6) or hypoxia (N = 3). A vertical laser line was horizontally scanned on the retina and a series of optical section phase-delayed phosphorescence images were acquired. From these images, phosphorescence volumes at each phase delay were constructed and a 3D retinal tPO 2 volume was generated. Retinal tPO 2 volumes were quantitatively analyzed by generating retinal depth profiles of mean tPO 2 (M tPO2 ) and the spatial variation of tPO 2 (SV tPO2 ). The effects of systemic condition (normoxia/hypoxia) and retinal depth on M tPO2 and SV tPO2 were determined by mixed linear model. Each 3D retinal tPO 2 volume was approximately 500 × 750 × 200 μm (horizontal × vertical × depth) and consisted of 45 en face tPO 2 images through the retinal depth. M tPO2 at the chorioretinal interface was significantly correlated with systemic arterial oxygen tension (P = 0.007; N = 9). There were significant effects of both systemic condition and retinal depth on M tPO2 and SV tPO2 , such that both were lower under hypoxia than normoxia and higher in the outer retina than inner retina (P < 0.001). For the first time, 3D imaging of retinal tPO 2 was demonstrated, with potential future application for assessment of physiological alterations in animal models of retinal diseases.

  2. The adhesion behavior of carbon coating studied by re-indentation during in situ TEM nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xue; Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn

    2016-01-30

    Graphical abstract: Nanoscale adhesion induced response in terms of re-indentation was directly observed. During unloading (start from B), the re-indentation phenomenon with the displacement sudden drop and the external loading force change from tension (C) to compression (D) within 0.1 s was captured by in situ TEM nanoindentation. - Highlights: • In situ TEM nanoindentation was performed on carbon coating. • Adhesion induced nano-response of re-indentation was directly observed. • Adhesive forces were measured from the load–displacement curves. • Adhesion energies released for re-indentation were quantitatively analyzed. • Carbon coating reduced the impact of adhesion for silicon substrate. - Abstract: We report a nanoscale adhesion induced nano-response in terms of re-indentation during in situ transmission electron microscope (TEM) nanoindentation on the carbon coating with silicon substrate. The adhesive force generated with nanoindentation was measured, and re-indentation phenomenon during unloading with displacement sudden drop and external loading force change from tension to compression was found. The occurrence of re-indentation during unloading was ascribed to the adhesive force of the contact interface between the indenter and the coating surface. Adhesion energies released for re-indentation processes were quantitatively analyzed from the re-indentation load–displacement curves, and carbon coating reduced the impact of adhesion for silicon substrate. The adhesion induced nano-response of contact surfaces would affect the reliability and performance of nano devices.

  3. Evaluation of Fibrin Sealants and Tissue Adhesives in Oral Surgery for Patients with Bleeding Disorders

    Directory of Open Access Journals (Sweden)

    Gülsüm Ak

    2012-03-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the efficiency of two local haemostatic agents administered together with preoperative dose of replacement therapy for oral surgical procedures in patients with bleeding disorders METHODS: Twenty-one patients were divided into three groups randomly. Patients in Group 1 (n=7 received preoperative replacement therapy with postoperative fibrin sealant application in the surgical site. Patients in Group 2 (n=7 received preoperative replacement therapy with postoperative tissue adhesive application in the surgical site. Patients in Group 3 (n=7 were given total dose of replacement therapy pre- and postoperatively. RESULTS: No postoperative bleeding was observed in 17 patients including five patients in Group 1 (71.42%, six patients in Group 2 (85.71% and six patients in Group 3 (85.71%. Haemorrhagic complication was observed in only four patients among all groups. CONCLUSION: We conclude that utilization of fibrin sealants and tissue adhesives in oral surgery is beneficial due to the lessened amount of factor concentrates used for replacement therapy and the rapid haemostasis at the operation side to perform serial surgical procedures in the same session.

  4. Micromorphological characterization of adhesive interface of sound dentin and total-etch and self-etch adhesives.

    Science.gov (United States)

    Drobac, Milan; Stojanac, Igor; Ramić, Bojana; Premović, Milica; Petrović, Ljubomir

    2015-01-01

    The ultimate goal in restorative dentistry has always been to achieve strong and permanent bond between the dental tissues and filling materials. It is not easy to achieve this task because the bonding process is different for enamel and dentin-dentin is more humid and more organic than enamel. It is moisture and organic nature of dentin that make this hard tissue very complex to achieve adhesive bond. One of the first and most widely used tools for examining the adhesive bond between hard dental tissues and composite restorative materials is scanning electron microscopy. The aim of this study was scanning electron microscopy analyzes the interfacial micro morphology of total-etch and self-etch adhesives. Micro morphological characteristics of interface between total-etch adhesive (Prime & Bond NT) in combination with the corresponding composite (Ceram X Mono) were compared with those of self-etching adhesive (AdheSE One) in, combination with the corresponding composite (Tetric EvoCeram). The specimens were observed under 1000 x magnification of scanning electron microscopy (JEOL, JSM-6460 Low Vacuum). Measurement of the thickness of the hybrid layer of the examined com posite systems was performed with the software of the device used (NIH Image Analyser). Micromorphological analysis of interface showed that the hybrid layer in sound dentin was well formed, its average thickness being 2.68 microm, with a large number of resin tags and a large amount of lateral branches for specimens with a composite system Prime & Bond NT-Ceram X Mono. However, the specimens' with composite systems Adhese One-Tetric EvoCeram did not show the presence of hybrid layer and the resin tags were poorly represented. The results of this study suggest that total-etch adhesives bond better with sound dentin than self-etch adhesive.

  5. Surface tension in microsystems engineering below the capillary length

    CERN Document Server

    Lambert, Pierre

    2014-01-01

    This book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent. The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom. It provides a comprehensive approach to various applications, such as capillary adhesion (axial force), centering force in packaging and micro-assembly (lateral force) and recent developments such as a capillary motor (torque). It devises how surface tension can be used to provide mechanical functions such as actuation (bubble-actuated compliant table), sealing and tightness, energy harvesting, nanodispending.

  6. Using Magnets and Magnetic Beads to Dissect Signaling Pathways Activated by Mechanical Tension Applied to Cells

    Science.gov (United States)

    Marjoram, R.J.; Guilluy, C; Burridge, K.

    2015-01-01

    Cellular tension has implications in normal biology and pathology. Membrane adhesion receptors serve as conduits for mechanotransduction that lead to cellular responses. Ligand-conjugated magnetic beads are a useful tool in the study of how cells sense and respond to tension. Here we detail methods for their use in applying tension to cells and strategies for analyzing the results. We demonstrate the methods by analyzing mechanotransduction through VE-cadherin on endothelial cells using both permanent magnets and magnetic tweezers. PMID:26427549

  7. Prevention of intra-abdominal adhesion by bi-layer electrospun membrane.

    Science.gov (United States)

    Jiang, Shichao; Wang, Wei; Yan, Hede; Fan, Cunyi

    2013-06-04

    The aim of this study was to compare the anti-adhesion efficacy of a bi-layer electrospun fibrous membrane consisting of hyaluronic acid-loaded poly(ε-caprolactone) (PCL) fibrous membrane as the inner layer and PCL fibrous membrane as the outer layer with a single-layer PCL electrospun fibrous membrane in a rat cecum abrasion model. The rat model utilized a cecal abrasion and abdominal wall insult surgical protocol. The bi-layer and PCL membranes were applied between the cecum and the abdominal wall, respectively. Control animals did not receive any treatment. After postoperative day 14, a visual semiquantitative grading scale was used to grade the extent of adhesion. Histological analysis was performed to reveal the features of adhesion tissues. Bi-layer membrane treated animals showed significantly lower adhesion scores than control animals (p compared with the PCL membrane. Histological analysis of the bi-layer membrane treated rat rarely demonstrated tissue adhesion while that of the PCL membrane treated rat and control rat showed loose and dense adhesion tissues, respectively. Bi-layer membrane can efficiently prevent adhesion formation in abdominal cavity and showed a significantly decreased adhesion tissue formation compared with the control.

  8. Objective measurement of tissue tension in myofascial trigger point areas before and during the administration of anesthesia with complete blocking of neuromuscular transmission.

    Science.gov (United States)

    Buchmann, Johannes; Neustadt, Beate; Buchmann-Barthel, Katharina; Rudolph, Soeren; Klauer, Thomas; Reis, Olaf; Smolenski, Ulrich; Buchmann, Hella; Wagner, Klaus F; Haessler, Frank

    2014-03-01

    Myofascial trigger points (MTPs) are extremely frequent in the human musculoskeletal system. Despite this, little is known about their etiology. Increased muscular tension in the trigger point area could be a major factor for the development of MTPs. To investigate the impact of muscular tension in the taut band with an MTP and thereby, the spinal excitability of associated segmental neurons, we objectively measured the tissue tension in MTPs before and during the administration of anesthesia using a transducer. Three target muscles (m. temporalis, upper part of m. trapezius, and m. extensor carpi radialis longus) with an MTP and 1 control muscle without an MTP were examined in 62 patients scheduled for an operation. We found significant 2-way interactions (ANOVA, Pspinal segmental excitability. In line with this, we assume a predominant, but not unique, impact of increased spinal excitability resulting in an augmented tension of segmental-associated muscle fibers for the etiology of MTP. Consequently, postisometric relaxation might be a promising therapeutic option for MTPs.

  9. Universal adhesives: the next evolution in adhesive dentistry?

    Science.gov (United States)

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  10. Collective cell streams in epithelial monolayers depend on cell adhesion

    International Nuclear Information System (INIS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-01-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell–cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns. (paper)

  11. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Priscilla Coutinho ROMUALDO

    Full Text Available Abstract Bacterial endotoxin (LPS adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component, then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p0.05. There was no significant difference (p>0.05 among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025. Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  12. The role of tissue oxygen tension in the control of local blood flow in the microcirculation of skeletal muscles

    DEFF Research Database (Denmark)

    Ngo, Thuc Anh

    2010-01-01

    In the microcirculation blood flow is highly regulated dependent on the metabolic activity of the tissues. Among several mechanisms, mechanisms involved in the coupling of changes in tissue oxygen tension due to changes in the metabolic activity of the tissue play an important role. In the systemic...... (inhibitor of KATP channels) in the superfusate abolished both vasodilatation and constriction to low and high oxygen superfusate, indicating that KATP channels are involved in both hypoxic vasodilatation and hyperoxic vasoconstriction. Red blood cells (RBCs) have been proposed to release ATP and...... as in the intact blood-perfused arteriole. This indicates that RBCs are not essential for hypoxic vasodilatation. In addition several potential pathways were evaluated. Application of DPCPX (inhibitor of adenosine A1 and A2 receptors) and L-NAME (inhibitor of NO-synthase) did not affect vasomotor responses to low...

  13. Tracheal anastomosis with the diode laser and fibrin tissue adhesive: an in vitro and in vivo investigation.

    Science.gov (United States)

    Gleich, L L; Wang, Z; Pankratov, M M; Aretz, H T; Shapshay, S M

    1995-05-01

    Absorbable sutures have been advocated for tracheal anastomosis to reduce fibrosis and foreign body reaction leading to recurrent stenosis. Fibrin tissue adhesive (FTA) and diode laser welding with indocyanine green-dyed fibrinogen were evaluated in tracheal anastomosis to reduce the number of sutures and to improve healing. In vitro studies demonstrated strong anastomoses with a combination of laser welding and FTA with minimal tissue damage. In a controlled in vivo study, circumferential resections of canine tracheas were repaired with laser welding and FTA augmented with a few stay sutures. These anastomoses had less fibrosis and tissue damage than anastomoses in control animals repaired with sutures alone. This study supports investigation of laser welding and FTA in human beings for tracheal anastomosis and other procedures in which suturing may be difficult.

  14. Microencapsulation of 2-octylcyanoacrylate tissue adhesive for self-healing acrylic bone cement.

    Science.gov (United States)

    Brochu, Alice B W; Chyan, William J; Reichert, William M

    2012-10-01

    Here, we report the first phase of developing self-healing acrylic bone cement: the preparation and characterization of polyurethane (PUR) microcapsules containing a medical cyanoacrylate tissue adhesive. Capsules were prepared by interfacial polymerization of a toluene-2,4-diisocyanate-based polyurethane prepolymer with 1,4-butanediol to encapsulate 2-octylcyanoacrylate (OCA). Various capsule characteristics, including: resultant morphology, average size and size distribution, shell thickness, content and reactivity of encapsulated agent, and shelf life are investigated and their reliance on solvent type and amount, surfactant type and amount, temperature, pH, agitation rate, reaction time, and mode of addition of the oil phase to the aqueous phase are presented. Capsules had average diameters ranging from 74 to 222 μm and average shell thicknesses ranging from 1.5 to 6 μm. The capsule content was determined via thermogravimetric analysis and subsequent analysis of the capsules following up to 8 weeks storage revealed minimal loss of core contents. Mechanical testing of OCA-containing capsules showed individual capsules withstood compressive forces up to a few tenths of Newtons, and the contents released from crushed capsules generated tensile adhesive forces of a few Newtons. Capsules were successfully mixed into the poly(methyl methacrylate) bone cement, surviving the mixing process, exposure to methyl methacrylate monomer, and the resulting exothermic matrix curing. Copyright © 2012 Wiley Periodicals, Inc.

  15. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Science.gov (United States)

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  16. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-08-01

    Full Text Available Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.

  17. Surface science. Adhesion and friction in mesoscopic graphite contacts.

    Science.gov (United States)

    Koren, Elad; Lörtscher, Emanuel; Rawlings, Colin; Knoll, Armin W; Duerig, Urs

    2015-05-08

    The weak interlayer binding in two-dimensional layered materials such as graphite gives rise to poorly understood low-friction characteristics. Accurate measurements of the adhesion forces governing the overall mechanical stability have also remained elusive. We report on the direct mechanical measurement of line tension and friction forces acting in sheared mesoscale graphite structures. We show that the friction is fundamentally stochastic in nature and is attributable to the interaction between the incommensurate interface lattices. We also measured an adhesion energy of 0.227 ± 0.005 joules per square meter, in excellent agreement with theoretical models. In addition, bistable all-mechanical memory cell structures and rotational bearings have been realized by exploiting position locking, which is provided solely by the adhesion energy. Copyright © 2015, American Association for the Advancement of Science.

  18. Compression properties and dissolution of bioactive glass S53P4 and n-butyl-2 cyanoacrylate tissue adhesive-composite.

    Science.gov (United States)

    Sarin, Jussi; Hiltunen, Markus; Hupa, Leena; Pulkkinen, Jaakko; Vallittu, Pekka K

    2016-09-28

    Bioactive glass (BG)-containing fiber-reinforced composite implants, typically screw-retained, have started to be used clinically. In this study, we tested the mechanical strength of composites formed by a potential implant adhesive of n-butyl-2-cyanoacrylate glue and BG S53P4 particles. Water immersion for 3, 10 or 30 days had no adverse effect on the compression strength. When cyanoacrylate glue-BG-composites were subjected to simulated body fluid immersion, the average pH rose to 7.52 (SD 0.066) from the original value of 7.35 after 7 days, and this pH increment was smaller compared to BG particle-group or fibrin glue-BG-composite group. Based on these results n-butyl-2 cyanoacrylate glue, by potentially producing a strong adhesion, might be considered a possible alternative for fixation of BG S53P4 containing composite implants. However, the mechanical and solubility properties of the cyanoacrylate glue may not encourage the use of this tissue adhesive with BG particles.

  19. Effects of Rhodomyrtus tomentosa Leaf Extract on Staphylococcal Adhesion and Invasion in Bovine Udder Epidermal Tissue Model

    Directory of Open Access Journals (Sweden)

    Auemphon Mordmuang

    2015-10-01

    Full Text Available Bovine mastitis is one of the most important infectious diseases in dairy herds, and staphylococci are the most important etiologic agents of this disease. Antibiotics and chemical agents used in livestock for prevention and cure of the disease can accumulate in milk and give rise to food safety concerns. Rhodomyrtus tomentosa leaf extract was studied as an alternative approach to reduce the bacterial infections. The ethanolic extract of this plant demonstrated antibacterial activity with minimum inhibitory concentration (MIC values as low as 16–64 μg/mL against staphylococcal isolates. In addition, the extract had an effect on the bacterial cell surface properties by increasing its hydrophobicity in a concentration dependent manner. To further extend the antibacterial efficacy, silver nanoparticles synthesized with the extract, a pure rhodomyrtone, and liposomal encapsulated rhodomyrtone were applied and their inhibitory effects on bacterial adhesion and invasion were determined by ex vivo study in a bovine udder epidermal tissue model. These agents exerted remarkable antibacterial activity against staphylococci and decreased the adhesion of the bacterial cells to the tissues. These results supported that R. tomentosa ethanolic extract could be applied as an alternative agent for bovine udder care in dairy farms.

  20. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction

    Science.gov (United States)

    Wu, Yu; Yuan, Liu; Sheng, Nai-an; Gu, Zi-qi; Feng, Wen-hao; Yin, Hai-yue; Morsi, Yosry; Mo, Xiu-mei

    2017-09-01

    Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (ASA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.

  1. Lobule separator prosthesis to prevent adhesion of reconstructed ear lobe

    Directory of Open Access Journals (Sweden)

    Lokendra Gupta

    2016-01-01

    Full Text Available An adhesion is a band of scar tissue that binds two parts of the tissue together, which develops when the body's repair mechanisms respond to any tissue disturbance, such as surgery, infection, trauma, or radiation. Prevention of unwanted scar bands is of utmost importance to develop esthetic and healthy tissue. This article describes a technique to prevent the adhesion of the surgically reconstructed ear lobule with facial skin, using novel lobule separator prosthesis.

  2. Therapeutically Targeting the Inflammasome Product in a Chimeric Model of Endometriosis-Related Surgical Adhesions.

    Science.gov (United States)

    Stocks, Meredith M; Crispens, Marta A; Ding, Tianbing; Mokshagundam, Shilpa; Bruner-Tran, Kaylon L; Osteen, Kevin G

    2017-08-01

    Development of adhesions commonly occurs in association with surgery for endometriosis. Even in the absence of surgery, women with endometriosis appear to be at an enhanced risk of developing adhesions. In the current study, we utilized a chimeric mouse model of experimental endometriosis in order to examine the role of inflammasome activation in the development of postsurgical adhesions. Mice were randomized to receive peritoneal injections of human endometrial tissue fragments or endometrial tissue conditioned media (CM) from women with or without endometriosis 16 hours after ovariectomy and placement of an estradiol-releasing silastic capsule. A subset of mice receiving CM was also treated with interleukin (IL) 1 receptor antagonist (IL-1ra). Our studies demonstrate that peritoneal injection of endometrial tissue fragments near the time of surgery resulted in extensive adhesive disease regardless of tissue origin. However, adhesion scores were significantly higher in mice receiving CM from tissues acquired from patients with endometriosis compared to control tissue CM ( P = .0001). Cytokine bead array analysis of endometrial CM revealed enhanced expression of IL-1β from patients with endometriosis compared to controls ( P endometriosis as a potential causal factor in their increased susceptibility of developing postsurgical adhesions. Thus, targeting inflammasome activation may be an effective strategy for the prevention of surgical adhesions in patients with endometriosis.

  3. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    Science.gov (United States)

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering.

  4. Pathomechanisms of sciatica in lumbar disc herniation: effect of periradicular adhesive tissue on electrophysiological values by an intraoperative straight leg raising test.

    Science.gov (United States)

    Kobayashi, Shigeru; Takeno, Kenichi; Yayama, Takafumi; Awara, Kousuke; Miyazaki, Tsuyoshi; Guerrero, Alexander; Baba, Hisatoshi

    2010-10-15

    This study is aimed to investigate the changes of nerve root functions during the straight leg raising (SLR) test in vivo. To investigate the relationship between nerve root movement and the electrophysiological values during an intraoperative SLR test. The SLR test is one of the most significant signs for making a clinical diagnosis of lumbar disc herniation. A recent study showed that intraradicular blood flow apparently decreased during the SLR test in patients with disc herniation. The study included 32 patients who underwent microdiscectomy. During the surgery, the nerve root motion affected by the hernia was observed during the SLR test. The patients' legs were allowed to hang down to the angle at which sciatica had occurred and the change of nerve root action potentials was measured. After removal of the hernia, a similar procedure was repeated. The periradicular specimens collected during surgery were examined by light and electron microscope. In all patients intraoperative microscopy revealed that the hernia was adherent to the dura mater of the nerve roots. During the SLR test, the limitation of nerve root movement occurred by periradicular adhesive tissue and amplitude of action potential showed a sharp decrease at the angle that produced sciatica. After removal of the hernia, all the patients showed smooth gliding of the nerve roots during the test, and there was no marked decrease of amplitude. Our data suggest that temporary ischemic changes in the nerve root cause transient conduction disturbances. Pathologic examination showed that the periradicular tissue consisted of the granulation with vascularization and many inflammatory cell infiltrations. The presence of periradicular fibrosis will compound the nerve root pain by fixing the nerve in one position, thereby increasing the susceptibility of the nerve root to tension or compression.

  5. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  6. Gene expression profiles of cell adhesion molecules, matrix metalloproteinases and their tissue inhibitors in canine oral tumors.

    Science.gov (United States)

    Pisamai, Sirinun; Rungsipipat, Anudep; Kalpravidh, Chanin; Suriyaphol, Gunnaporn

    2017-08-01

    Perturbation of cell adhesion can be essential for tumor cell invasion and metastasis, but the current knowledge on the gene expression of molecules that mediate cell adhesion in canine oral tumors is limited. The present study aimed to investigate changes in the gene expression of cell adhesion molecules (E-cadherin or CDH1, syndecan 1 or SDC1, NECTIN2 and NECTIN4), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), in canine oral tumors, including benign tumors, oral melanoma (OM) and non-tonsillar oral squamous cell carcinoma (OSCC), by quantitative real-time reverse transcription PCR. When compared with the normal gingival controls, decreased CDH1, SDC1 and NECTIN4 expression levels were observed in OSCC and OM, reflecting a possible role as cell adhesion molecules and tumor suppressors in canine oral cancers in contrast to the upregulation of MMP2 expression. Downregulated MMP7 was specifically revealed in the OM group. In the late-stage OM, the positive correlation of MMP7 and CDH1 expression was noticed as well as that of SDC1 and NECTIN4. Enhanced TIMP1 expression was shown in all tumor groups with prominent expression in the benign tumors and the early-stage OM. MMP14 expression was notable in the early-stage OM. Higher MMP9 and TIMP1 expression was observed in the acanthomatous ameloblastoma. In conclusion, this study revealed that the altered expression of cell adhesion molecules, MMP7 and MMP2 was correlated with clinicopathologic features in canine oral cancers whereas TIMP1 and MMP14 expression was probably associated with early-stage tumors; therefore, these genes might serve as molecular markers for canine oral tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Frictional and elastic energy in gecko adhesive detachment.

    Science.gov (United States)

    Gravish, Nick; Wilkinson, Matt; Autumn, Kellar

    2008-03-06

    Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1 m s(-1). Climbing presents a significant challenge for an adhesive since it requires both strong attachment and easy, rapid removal. Conventional pressure-sensitive adhesives are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). We discovered that the energy required to detach adhering tokay gecko setae (W(d)) is modulated by the angle (theta) of a linear path of detachment. Gecko setae resist detachment when dragged towards the animal during detachment (theta = 30 degrees ) requiring W(d) = 5.0+/-0.86(s.e.) J m(-2) to detach, largely due to frictional losses. This external frictional loss is analogous to viscous internal frictional losses during detachment of pressure-sensitive adhesives. We found that, remarkably, setae possess a built-in release mechanism. Setae acted as springs when loaded in tension during attachment and returned elastic energy when detached along the optimal path (theta=130 degrees ), resulting in W(d) = -0.8+/-0.12 J m(-2). The release of elastic energy from the setal shaft probably causes spontaneous release, suggesting that curved shafts may enable easy detachment in natural, and synthetic, gecko adhesives.

  8. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Yeon; Kim, Hyung Joon; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2017-01-01

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-induced monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.

  9. Connective tissue growth factor inhibits gastric cancer peritoneal metastasis by blocking integrin α3β1-dependent adhesion.

    Science.gov (United States)

    Chen, Chiung-Nien; Chang, Cheng-Chi; Lai, Hong-Shiee; Jeng, Yung-Ming; Chen, Chia-I; Chang, King-Jeng; Lee, Po-Huang; Lee, Hsinyu

    2015-07-01

    Connective tissue growth factor (CTGF) plays important roles in normal and pathological conditions. The aim of this study was to investigate the role of CTGF in peritoneal metastasis as well as the underlying mechanism in gastric cancer progression. CTGF expression levels for wild-type and stable overexpression clones were determined by Western blotting and quantitative polymerase chain reaction (Q-PCR). Univariate and multivariate analyses, immunohistochemistry, and survival probability analyses were performed on gastric cancer patients. The extracellular matrix components involved in CTGF-regulated adhesion were determined. Recombinant CTGF was added to cells or coinoculated with gastric cancer cells into mice to evaluate its therapeutic potential. CTGF overexpression and treatment with the recombinant protein significantly inhibited cell adhesion. In vivo peritoneal metastasis demonstrated that CTGF-stable transfectants markedly decreased the number and size of tumor nodules in the mesentery. Statistical analysis of gastric cancer patient data showed that patients expressing higher CTGF levels had earlier TNM staging and a higher survival probability after the surgery. Integrin α3β1 was the cell adhesion molecule mediating gastric cancer cell adhesion to laminin, and blocking of integrin α3β1 prevented gastric cancer cell adhesion to recombinant CTGF. Coimmunoprecipitation results indicated that CTGF binds to integrin α3. Coinoculation of recombinant CTGF and gastric cancer cell lines in mice showed effective inhibition of peritoneal dissemination. Our results suggested that gastric cancer peritoneal metastasis is mediated through integrin α3β1 binding to laminin, and CTGF effectively blocks the interaction by binding to integrin α3β1, thus demonstrating the therapeutic potential of recombinant CTGF in gastric cancer patients.

  10. Effect of pneumatic tourniquet on muscle oxygen tension.

    Science.gov (United States)

    Santavirta, S; Höckerstedt, K; Niinikoski, J

    1978-10-01

    Recent investigations suggest that circulation in a limb can be reduced with a tourniquet to less than 1 per cent of the control limb, or even completely occluded. The development of tissue oxygen tonometry with implanted silastic tubes has provided new possibilities for assessing muscle tissue oxygen tension. In the present work, this method was employed to register the effect of tourniquet blackade on the lower limb muscle PO2 in rabbits. The duration of the tourniquet blockade was 60, 120 and 180 minutes. The baseline muscle PO2 in the tibialis anterior muscle was 22.6 +/- 0.6 mmHg. During the tourniquet blockade the oxygen tension dropped to minimal values between 9.2 +/- 0.5 and 10.7 +/- 0.6 mmHg in these experimental groups, but the tissue microclimate never reached fully anoxic conditions. The rapid response of muscle PO2 to oxygen breathing after release of the blockade suggests that limb microcirculation tolerates tourniquet occlusion well.

  11. Agentes hemostáticos locais e adesivos teciduais Topical haemostatic agents and tissue adhesives

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius H. de Carvalho

    2013-02-01

    Full Text Available Nos últimos dez anos os agentes hemostáticos e os adesivos teciduais têm sido usados frequentemente e são uma alternativa positiva para evitar a perda sanguínea excessiva. O objetivo dessa revisão é discutir as características de cada um desses agentes para facilitar a decisão do cirurgião na escolha do produto mais adequado para cada tipo de sangramento e natureza da hemorragia. Uma pesquisa da literatura sobre o assunto, nas línguas inglesa e portuguesa, foi conduzida usando o PubMed (www.pubmed.com e Google (www.google.com.br para encontrar artigos recentes sobre o tema. Com base nestes estudos, os autores fizeram uma revisão didática sobre os agentes hemostáticos e adesivos teciduais e concluem que existe um agente hemostático a ser usado em cada cenário específico.In the last ten years the hemostatic agents and tissue adhesives have been frequently used and they are positive alternatives to prevent excessive blood loss. The objective of this review is to discuss the characteristics of each of these agents to facilitate the surgeon's decision when choosing the most suitable product for every type of bleeding and nature of hemorrhage. A survey of the literature on the subject, in English and in Portuguese, was conducted using PubMed (www.pubmed.com and Google (www.google.com.br to find recent articles on the topic. Based on these studies, the authors conducted a didactic review on the hemostatic agents and tissue adhesives and concluded that there is a hemostatic agent to be used in each specific scenario.

  12. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

    Czech Academy of Sciences Publication Activity Database

    Šmít, Daniel; Fouquet, C.; Pincet, F.; Zápotocký, Martin; Trembleau, A.

    2017-01-01

    Roč. 6, Apr 19 (2017), č. článku e19907. ISSN 2050-084X R&D Projects: GA ČR(CZ) GA14-16755S; GA MŠk(CZ) 7AMB12FR002 Institutional support: RVO:67985823 Keywords : biophysics * cell adhesion * coarsening * developmental biology * mathematical model * mechanical tension * axon guidance Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 7.725, year: 2016

  13. CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†

    OpenAIRE

    Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan

    2013-01-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occur...

  14. CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†

    Science.gov (United States)

    Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan

    2013-01-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function and cancer. PMID:23444198

  15. EB application in pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Hisashi Itoh; Ichiro Enomoto

    1999-01-01

    Two kinds of pressure sensitive adhesives (PSA's), that were formulations of radiation cross-linkable styrene-isoprene block copolymer (SIS) and complete hydrogenated aliphatic tackifying resin or non-hydrogenated, were prepared and the electron beam (EB) irradiation effect on these PSA performances such as peel strength against some kinds of adherends was studied. The results from measuring of PSA performance exhibit the close correlation between EB irradiation effect of these and the miscibility of the tackifying resin against SIS. Further it was clarified that PSA performance was influenced by the surface tension of adherends

  16. Expression of neural cell adhesion molecules and neurofilament protein isoforms in Ewing's sarcoma of bone and soft tissue sarcomas of other than rhabdomyosarcoma

    NARCIS (Netherlands)

    Molenaar, W.M.; Muntinghe, F.L.H.

    1999-01-01

    In a previous study, it was shown that rhabdomyosarcomas widely express "neural" markers, such as neural cell adhesion molecules (N-CAM) and neurofilament protein isoforms, In the current study, a series of Ewing's sarcomas of bone and soft tissue sarcomas other than rhabdomyosarcoma was probed for

  17. Lewis basicity, adhesion thermodynamic work and coordinating ability on aminated silicon surfaces

    International Nuclear Information System (INIS)

    Sánchez, M. Alejandra; Paniagua, Sergio A.; Borge, Ignacio; Viales, Christian; Montero, Mavis L.

    2014-01-01

    Highlights: • Silicon(1 0 0) surfaces with diamines followed by anchoring of copper complexes over the diamine layer, an approach that could be used for advanced functionalization of semiconducting surfaces. • Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. • Higher basicity and thermodynamic work correlate with selective copper acetate monolayer grow. The cyclic voltammetry studies confirm the confined copper redox activity. - Abstract: Silicon(1 0 0) surfaces have been modified with three different amines (aniline, benzylamine and dodecylamine) and diamines (4-aminopyridine, 4-aminomethylpyridine, 1,12-dodecyldiamine). The surface energy was measured by contact angle technique. For Si-diamine surfaces, Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. We related these data, the amine/diamine nature and their geometry on the surface (via DFT calculations) with the consequent ability to coordinate copper(II) acetate. Finally, copper(II) acetate monolayers behavior was studied by cyclic voltammetry

  18. Tenomodulin expression in the periodontal ligament enhances cellular adhesion.

    Directory of Open Access Journals (Sweden)

    Yuske Komiyama

    Full Text Available Tenomodulin (Tnmd is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain.

  19. Motility-driven glass and jamming transitions in biological tissues

    Science.gov (United States)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2017-01-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi (SPV) model that simultaneously captures polarized cell motility and multi-body cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solid-like state to a fluid-like state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum Soft Glassy Rheology model precisely captures this transition in the limit of small persistence times, and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with Epithelial-to-Mesenchymal transition in these tissues. PMID:28966874

  20. Myosin II dynamics are regulated by tension in intercalating cells.

    Science.gov (United States)

    Fernandez-Gonzalez, Rodrigo; Simoes, Sérgio de Matos; Röper, Jens-Christian; Eaton, Suzanne; Zallen, Jennifer A

    2009-11-01

    Axis elongation in Drosophila occurs through polarized cell rearrangements driven by actomyosin contractility. Myosin II promotes neighbor exchange through the contraction of single cell boundaries, while the contraction of myosin II structures spanning multiple pairs of cells leads to rosette formation. Here we show that multicellular actomyosin cables form at a higher frequency than expected by chance, indicating that cable assembly is an active process. Multicellular cables are sites of increased mechanical tension as measured by laser ablation. Fluorescence recovery after photobleaching experiments show that myosin II is stabilized at the cortex in regions of increased tension. Myosin II is recruited in response to an ectopic force and relieving tension leads to a rapid loss of myosin, indicating that tension is necessary and sufficient for cortical myosin localization. These results demonstrate that myosin II dynamics are regulated by tension in a positive feedback loop that leads to multicellular actomyosin cable formation and efficient tissue elongation.

  1. Fibrochondrogenic potential of synoviocytes from osteoarthritic and normal joints cultured as tensioned bioscaffolds for meniscal tissue engineering in dogs

    Directory of Open Access Journals (Sweden)

    Jennifer J. Warnock

    2014-09-01

    Full Text Available Meniscal tears are a common cause of stifle lameness in dogs. Use of autologous synoviocytes from the affected stifle is an attractive cell source for tissue engineering replacement fibrocartilage. However, the diseased state of these cells may impede in vitro fibrocartilage formation. Synoviocytes from 12 osteoarthritic (“oaTSB” and 6 normal joints (“nTSB” were cultured as tensioned bioscaffolds and compared for their ability to synthesize fibrocartilage sheets. Gene expression of collagens type I and II were higher and expression of interleukin-6 was lower in oaTSB versus nTSB. Compared with nTSB, oaTSB had more glycosaminoglycan and alpha smooth muscle staining and less collagen I and II staining on histologic analysis, whereas collagen and glycosaminoglycan quantities were similar. In conclusion, osteoarthritic joint—origin synoviocytes can produce extracellular matrix components of meniscal fibrocartilage at similar levels to normal joint—origin synoviocytes, which makes them a potential cell source for canine meniscal tissue engineering.

  2. Inference of Cell Mechanics in Heterogeneous Epithelial Tissue Based on Multivariate Clone Shape Quantification

    Science.gov (United States)

    Tsuboi, Alice; Umetsu, Daiki; Kuranaga, Erina; Fujimoto, Koichi

    2017-01-01

    Cell populations in multicellular organisms show genetic and non-genetic heterogeneity, even in undifferentiated tissues of multipotent cells during development and tumorigenesis. The heterogeneity causes difference of mechanical properties, such as, cell bond tension or adhesion, at the cell–cell interface, which determine the shape of clonal population boundaries via cell sorting or mixing. The boundary shape could alter the degree of cell–cell contacts and thus influence the physiological consequences of sorting or mixing at the boundary (e.g., tumor suppression or progression), suggesting that the cell mechanics could help clarify the physiology of heterogeneous tissues. While precise inference of mechanical tension loaded at each cell–cell contacts has been extensively developed, there has been little progress on how to distinguish the population-boundary geometry and identify the cause of geometry in heterogeneous tissues. We developed a pipeline by combining multivariate analysis of clone shape with tissue mechanical simulations. We examined clones with four different genotypes within Drosophila wing imaginal discs: wild-type, tartan (trn) overexpression, hibris (hbs) overexpression, and Eph RNAi. Although the clones were previously known to exhibit smoothed or convoluted morphologies, their mechanical properties were unknown. By applying a multivariate analysis to multiple criteria used to quantify the clone shapes based on individual cell shapes, we found the optimal criteria to distinguish not only among the four genotypes, but also non-genetic heterogeneity from genetic one. The efficient segregation of clone shape enabled us to quantitatively compare experimental data with tissue mechanical simulations. As a result, we identified the mechanical basis contributed to clone shape of distinct genotypes. The present pipeline will promote the understanding of the functions of mechanical interactions in heterogeneous tissue in a non-invasive manner. PMID

  3. EXPERIENCE WITH THE OPEN TENSION-FREE HERNIA REPAIR

    Directory of Open Access Journals (Sweden)

    Slavko Rakovec

    2002-03-01

    Full Text Available Background. All old techniques of herniorrhaphy involve approximation of tissues under tension, which accounts for their unreliability. Therefore the recovery time is long and the recurrence rate unacceptably high. The new methods using a mesh patch of polypropylene allow for a tensionfree repair, which is much more reliable. So they are associated with a shorter recovery time and carry a low probability of recurrence. The tension-free repair can be accomplished in an open manner, by placing the mesh through an open incision, or by the endoscopic technique, which involves placing the mesh from within by laparoscopic instruments. The open tension-free procedures can be performed with the use of stitches (according to Lichtenstein or without them (sutureless techniques. Stitching the mesh may cause problems due to maldistribution of tension between the mesh and the patient’s tissues, the occurrence of neuralgia or the development of inflammatory granuloma. Therefore sutureless procedures are increasingly performed. They usually require, besides the use of a mesh patch, also the use of a dart plug made of the same material.Methods. The open tension-free methods of hernia repair have been used at our Department since 1994. The first 77 operations were performed by Lichtenstein technique. The mean postoperative hospital stay was 3.4 days and the mean work restriction period was 3 weeks. In the middle of the year 1995, we shifted to suturless technique. By the end of the year 2000, we had performed 768 operations. The average postoperative hospital stay was 1.2 days and the average recovery time was 10 days.Results. In the first group of 77 hernia repairs performed by the Lichtenstein procedure serious complications were noted in six patients: bleeding in one, long-lasting neuralgia in two, and purulent granuloma, appearing long after discharge from the hospital, in three. There were no recurrences. In the second group of 768 hernia repairs

  4. Effectiveness of a Treatment Involving Soft Tissue Techniques and/or Neural Mobilization Techniques in the Management of Tension-Type Headache: A Randomized Controlled Trial.

    Science.gov (United States)

    Ferragut-Garcías, Alejandro; Plaza-Manzano, Gustavo; Rodríguez-Blanco, Cleofás; Velasco-Roldán, Olga; Pecos-Martín, Daniel; Oliva-Pascual-Vaca, Jesús; Llabrés-Bennasar, Bartomeu; Oliva-Pascual-Vaca, Ángel

    2017-02-01

    To evaluate the effects of a protocol involving soft tissue techniques and/or neural mobilization techniques in the management of patients with frequent episodic tension-type headache (FETTH) and those with chronic tension-type headache (CTTH). Randomized, double-blind, placebo-controlled before and after trial. Rehabilitation area of the local hospital and a private physiotherapy center. Patients (N=97; 78 women, 19 men) diagnosed with FETTH or CTTH were randomly assigned to groups A, B, C, or D. (A) Placebo superficial massage; (B) soft tissue techniques; (C) neural mobilization techniques; (D) a combination of soft tissue and neural mobilization techniques. The pressure pain threshold (PPT) in the temporal muscles (points 1 and 2) and supraorbital region (point 3), the frequency and maximal intensity of pain crisis, and the score in the Headache Impact Test-6 (HIT-6) were evaluated. All variables were assessed before the intervention, at the end of the intervention, and 15 and 30 days after the intervention. Groups B, C, and D had an increase in PPT and a reduction in frequency, maximal intensity, and HIT-6 values in all time points after the intervention as compared with baseline and group A (P<.001 for all cases). Group D had the highest PPT values and the lowest frequency and HIT-6 values after the intervention. The application of soft tissue and neural mobilization techniques to patients with FETTH or CTTH induces significant changes in PPT, the characteristics of pain crisis, and its effect on activities of daily living as compared with the application of these techniques as isolated interventions. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Self-assembled Nano-layering at the Adhesive interface.

    Science.gov (United States)

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  6. Control and prevention of peritoneal adhesions in gynecologic surgery.

    Science.gov (United States)

    2006-11-01

    Postoperative adhesion formation is a natural consequence of surgical tissue trauma and healing and may result in infertility, pain, and bowel obstruction. Microsurgical principles and minimally invasive surgery may help decrease adhesion formation, but anti-inflammatory agents and peritoneal instillates have no demonstrable benefit. Although some surgical barriers are effective for reducing postoperative adhesions, none has been shown to improve fertility or to decrease pain or the incidence of postoperative bowel obstruction.

  7. Glue from the Sea:Biomedical Adhesives Inspired by Algal Polymers

    Institute of Scientific and Technical Information of China (English)

    H.Bianco-Peled; R.Bitton; P.Potin

    2007-01-01

    1 Introduction Tissue repair following surgery or trauma has been dominated by sutures,staples and wiring.Although these techniques are well established and widely used,their application often involves pain,unaesthetic results,or bleeding. These limitations emphasize the need for adhesive products to be available to surgeons.2 ResultsA challenging aspect of developing new tissue adhesive is to create a material that can glue wet surfaces.The success of synthetic glues under such an environment is very ...

  8. Multifunctional Hydrogel with Good Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining Diels-Alder Click Reaction and Acylhydrazone Bond.

    Science.gov (United States)

    Yu, Feng; Cao, Xiaodong; Du, Jie; Wang, Gang; Chen, Xiaofeng

    2015-11-04

    Hydrogel, as a good cartilage tissue-engineered scaffold, not only has to possess robust mechanical property but also has to have an intrinsic self-healing property to integrate itself or the surrounding host cartilage. In this work a double cross-linked network (DN) was designed and prepared by combining Diels-Alder click reaction and acylhydrazone bond. The DA reaction maintained the hydrogel's structural integrity and mechanical strength in physiological environment, while the dynamic covalent acylhydrazone bond resulted in hydrogel's self-healing property and controlled the on-off switch of network cross-link density. At the same time, the aldehyde groups contained in hydrogel further promote good integration of the hydrogel to surrounding tissue based on aldehyde-amine Schiff-base reaction. This kind of hydrogel has good structural integrity, autonomous self-healing, and tissue-adhesive property and simultaneously will have a good application in tissue engineering and tissue repair field.

  9. ADHESION AND SPREADING OF HUMAN FIBROBLASTS ON SUPERHYDROPHOBIC FEP-TEFLON

    NARCIS (Netherlands)

    BUSSCHER, HJ; STOKROOS, [No Value; GOLVERDINGEN, JG; SCHAKENRAAD, JM

    1991-01-01

    Adhesion and spreading of human fibroblasts was studied on hydrophobized and hydrophilized FEP-Teflon, and compared with adhesion and spreading on untreated FEP-Teflon and Tissue culture polystyrene (TCPS). Superhydrophobic FEP-Teflon was prepared by ion etching followed by oxygen glow-discharge.

  10. The role of muscles in tension-type headache

    DEFF Research Database (Denmark)

    Bendtsen, Lars; Fernández-de-la-Peñas, César

    2011-01-01

    The tenderness of pericranial myofascial tissues and number of myofascial trigger points are considerably increased in patients with tension-type headache (TTH). Mechanisms responsible for the increased myofascial pain sensitivity have been studied extensively. Peripheral activation...... to prolonged nociceptive stimuli from pericranial myofascial tissues seem to be responsible for the conversion of episodic to chronic TTH. Treatment directed toward muscular factors include electromyography biofeedback, which has a documented effect in patients with TTH, as well as physiotherapy and muscle...

  11. Self-degradation of tissue adhesive based on oxidized dextran and poly-L-lysine.

    Science.gov (United States)

    Matsumura, Kazuaki; Nakajima, Naoki; Sugai, Hajime; Hyon, Suong-Hyu

    2014-11-26

    We have developed a low-toxicity bioadhesive based on oxidized dextran and poly-L-lysine. Here, we report that the mechanical properties and degradation of this novel hydrogel bioadhesive can be controlled by changing the extent of oxidation of the dextran and the type or concentration of the anhydride species in the acylated poly-L-lysine. The dynamic moduli of the hydrogels can be controlled from 120 Pa to 20 kPa, suggesting that they would have mechanical compatibility with various tissues, and could have applications as tissue adhesives. Development of the hydrogel color from clear to brown indicates that the reaction between the dextran aldehyde groups and the poly-L-lysine amino groups may be induced by a Maillard reaction via Schiff base formation. Degradation of the aldehyde dextran may begin by reaction of the amino groups in the poly-L-lysine. The gel degradation can be ascribed to degradation of the aldehyde dextran in the hydrogel, although the aldehyde dextran itself is relatively stable in water. The oxidized dextran and poly-L-lysine, and the degraded hydrogel showed low cytotoxicities. These findings indicate that a hydrogel consisting of oxidized dextran and poly-L-lysine has low toxicity and a well-controlled degradation rate, and has potential clinical applications as a bioadhesive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Humidity influence on the adhesion of SU-8 polymer from MEMS applications

    Directory of Open Access Journals (Sweden)

    Birleanu Corina

    2017-01-01

    Full Text Available In this paper, the adhesion behaviors of SU-8 polymer thin film from MEMS application were investigated as a function of relative humidity. The adhesion test between the AFM tip and SU-8 polymer have been extensively studied using the atomic force microscope (AFM, for a relative humidity (RH varying between 20 and 90%. The samples for tests are SU-8 polymers hard baked at different temperatures. The hard bake temperature changes the tribo-mechanical properties of polymers. The paper reports the measurements and the modeling of adhesion forces versus humidity in controlled ranges between 20 to 90%RH. To investigate the effect of relative humidity on adhesion for SU-8 polymer hard baked we used an analytical method which encompasses the effect of capillarity as well as the solid-to-solid interaction. While the capillary force expression is considered to be the sum of the superficial tension and the Laplace force for the solid-solid interaction is expressed by the Derjagin, Muller and Toropov (DMT model of solids adhesion. The analytical results obtained are in accordance with those obtained experimentally.

  13. Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation.

    Science.gov (United States)

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M I; David, Robert; Winklbauer, Rudolf; Neumann, A Wilhelm

    2009-02-18

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion.

  14. Mechanically Reinforced Catechol-Containing Hydrogels with Improved Tissue Gluing Performance

    Directory of Open Access Journals (Sweden)

    Jun Feng

    2017-11-01

    Full Text Available In situ forming hydrogels with catechol groups as tissue reactive functionalities are interesting bioinspired materials for tissue adhesion. Poly(ethylene glycol (PEG–catechol tissue glues have been intensively investigated for this purpose. Different cross-linking mechanisms (oxidative or metal complexation and cross-linking conditions (pH, oxidant concentration, etc. have been studied in order to optimize the curing kinetics and final cross-linking degree of the system. However, reported systems still show limited mechanical stability, as expected from a PEG network, and this fact limits their potential application to load bearing tissues. Here, we describe mechanically reinforced PEG–catechol adhesives showing excellent and tunable cohesive properties and adhesive performance to tissue in the presence of blood. We used collagen/PEG mixtures, eventually filled with hydroxyapatite nanoparticles. The composite hydrogels show far better mechanical performance than the individual components. It is noteworthy that the adhesion strength measured on skin covered with blood was >40 kPa, largely surpassing (>6 fold the performance of cyanoacrylate, fibrin, and PEG–catechol systems. Moreover, the mechanical and interfacial properties could be easily tuned by slight changes in the composition of the glue to adapt them to the particular properties of the tissue. The reported adhesive compositions can tune and improve cohesive and adhesive properties of PEG–catechol-based tissue glues for load-bearing surgery applications.

  15. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation.

    Science.gov (United States)

    Mih, Justin D; Marinkovic, Aleksandar; Liu, Fei; Sharif, Asma S; Tschumperlin, Daniel J

    2012-12-15

    The stiffness of the extracellular matrix exerts powerful effects on cell proliferation and differentiation, but the mechanisms transducing matrix stiffness into cellular fate decisions remain poorly understood. Two widely reported responses to matrix stiffening are increases in actomyosin contractility and cell proliferation. To delineate their relationship, we modulated cytoskeletal tension in cells grown across a physiological range of matrix stiffnesses. On both synthetic and naturally derived soft matrices, and across a panel of cell types, we observed a striking reversal of the effect of inhibiting actomyosin contractility, switching from the attenuation of proliferation on rigid substrates to the robust promotion of proliferation on soft matrices. Inhibiting contractility on soft matrices decoupled proliferation from cytoskeletal tension and focal adhesion organization, but not from cell spread area. Our results demonstrate that matrix stiffness and actomyosin contractility converge on cell spreading in an unexpected fashion to control a key aspect of cell fate.

  16. Measurement and monitoring of electrocardiogram belt tension in premature infants for assessment of respiratory function

    Directory of Open Access Journals (Sweden)

    Hegyi Thomas

    2007-04-01

    Full Text Available Abstract Background Monitoring of the electrocardiogram (ECG in premature infants with conventional adhesive-backed electrodes can harm their sensitive skin. Use of an electrode belt prevents skin irritation, but the effect of belt pressure on respiratory function is unknown. A strain gauge sensor is described which measures applied belt tension. Method The device frame was comprised of an aluminum housing and slide to minimize the device weight. Velcro tabs connected housing and slide to opposite tabs located at the electrode belt ends. The slide was connected to a leaf spring, to which were bonded two piezoresistive transducers in a half-bridge circuit configuration. The device was tested for linearity and calibrated. The effect on infant respiratory function of constant belt tension in the normal range (30 g–90 g was determined. Results The mechanical response to a step input was second order (fn = 401 Hz, ζ = 0.08. The relationship between applied tension and output voltage was linear in the range 25–225 gm of applied tension (r2 = 0.99. Measured device sensitivity was 2.18 mV/gm tension using a 5 V bridge excitation voltage. When belt tension was increased in the normal range from 30 gm to 90 gm, there was no significant change in heart rate and most respiratory functions during monitoring. At an intermediate level of tension of 50 gm, pulmonary resistance and work of breathing significantly decreased. Conclusion The mechanical and electrical design of a device for monitoring electrocardiogram electrode belt tension is described. Within the typical range of application tension, cardiovascular and respiratory function are not substantially negatively affected by electrode belt force.

  17. Measurement and monitoring of electrocardiogram belt tension in premature infants for assessment of respiratory function.

    Science.gov (United States)

    Ciaccio, Edward J; Hiatt, Mark; Hegyi, Thomas; Drzewiecki, Gary M

    2007-04-19

    Monitoring of the electrocardiogram (ECG) in premature infants with conventional adhesive-backed electrodes can harm their sensitive skin. Use of an electrode belt prevents skin irritation, but the effect of belt pressure on respiratory function is unknown. A strain gauge sensor is described which measures applied belt tension. The device frame was comprised of an aluminum housing and slide to minimize the device weight. Velcro tabs connected housing and slide to opposite tabs located at the electrode belt ends. The slide was connected to a leaf spring, to which were bonded two piezoresistive transducers in a half-bridge circuit configuration. The device was tested for linearity and calibrated. The effect on infant respiratory function of constant belt tension in the normal range (30 g-90 g) was determined. The mechanical response to a step input was second order (fn = 401 Hz, zeta = 0.08). The relationship between applied tension and output voltage was linear in the range 25-225 gm of applied tension (r2 = 0.99). Measured device sensitivity was 2.18 mV/gm tension using a 5 V bridge excitation voltage. When belt tension was increased in the normal range from 30 gm to 90 gm, there was no significant change in heart rate and most respiratory functions during monitoring. At an intermediate level of tension of 50 gm, pulmonary resistance and work of breathing significantly decreased. The mechanical and electrical design of a device for monitoring electrocardiogram electrode belt tension is described. Within the typical range of application tension, cardiovascular and respiratory function are not substantially negatively affected by electrode belt force.

  18. Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells

    Science.gov (United States)

    Farzi, Bahman; Cetinkaya, Cetin

    2017-09-01

    The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330  ±  70 kHz and two breathing resonance frequencies of 1.53  ±  0.12 and 2.02  ±  0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20  ±  2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the

  19. Segment-Specific Adhesion as a Driver of Convergent Extension

    Science.gov (United States)

    Vroomans, Renske M. A.; Hogeweg, Paulien; ten Tusscher, Kirsten H. W. J.

    2015-01-01

    Convergent extension, the simultaneous extension and narrowing of tissues, is a crucial event in the formation of the main body axis during embryonic development. It involves processes on multiple scales: the sub-cellular, cellular and tissue level, which interact via explicit or intrinsic feedback mechanisms. Computational modelling studies play an important role in unravelling the multiscale feedbacks underlying convergent extension. Convergent extension usually operates in tissue which has been patterned or is currently being patterned into distinct domains of gene expression. How such tissue patterns are maintained during the large scale tissue movements of convergent extension has thus far not been investigated. Intriguingly, experimental data indicate that in certain cases these tissue patterns may drive convergent extension rather than requiring safeguarding against convergent extension. Here we use a 2D Cellular Potts Model (CPM) of a tissue prepatterned into segments, to show that convergent extension tends to disrupt this pre-existing segmental pattern. However, when cells preferentially adhere to cells of the same segment type, segment integrity is maintained without any reduction in tissue extension. Strikingly, we demonstrate that this segment-specific adhesion is by itself sufficient to drive convergent extension. Convergent extension is enhanced when we endow our in silico cells with persistence of motion, which in vivo would naturally follow from cytoskeletal dynamics. Finally, we extend our model to confirm the generality of our results. We demonstrate a similar effect of differential adhesion on convergent extension in tissues that can only extend in a single direction (as often occurs due to the inertia of the head region of the embryo), and in tissues prepatterned into a sequence of domains resulting in two opposing adhesive gradients, rather than alternating segments. PMID:25706823

  20. Tension Headache

    Science.gov (United States)

    ... tight band around your head. A tension headache (tension-type headache) is the most common type of headache, and ... Headache after a head injury, especially if the headache gets worse ... tension or stress. But research suggests muscle contraction isn't the ...

  1. Clinical evaluation of three denture cushion adhesives by complete denture wearers.

    Science.gov (United States)

    Koronis, Spyros; Pizatos, Evangelos; Polyzois, Gregory; Lagouvardos, Panagiotis

    2012-06-01

    The aim of this study was the clinical evaluation of three denture cushion adhesives and whether the results were correlated to Kapur Index for denture-supporting tissues. Various types of denture adhesives are used among denture patients. However, information on the clinical behaviour of denture cushions is limited. Thirty edentulous patients had their denture-supporting tissues scored by Kapur Index and their old dentures replaced. They received three brands of denture cushion adhesives (Fittydent(®) , Protefix(®) and Seabond(®)) and were instructed to use them in a sequence according to the group they were randomly assigned to. Each brand of adhesive was used for 48 h on the lower denture according to the manufacturer's suggestions. After each brand was used, participants spent 24 h without applying any sort of adhesive. Finally, a questionnaire evaluating and comparing the performance of each brand was filled out. Denture adhesives generally improved patient satisfaction and masticatory ability, especially in participants with poor Kapur Index and those who reported a poor retention of their old dentures. Fittydent(®) was the most preferred adhesive, showing the best retention and the longest duration of its effect, but also reported as difficult to remove from the denture-bearing area. © 2010 The Gerodontology Society and John Wiley & Sons A/S.

  2. Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair.

    Science.gov (United States)

    Soucy, Jonathan R; Shirzaei Sani, Ehsan; Portillo Lara, Roberto; Diaz, David; Dias, Felipe; Weiss, Anthony S; Koppes, Abigail N; Koppes, Ryan A; Annabi, Nasim

    2018-05-09

    Suturing peripheral nerve transections is the predominant therapeutic strategy for nerve repair. However, the use of sutures leads to scar tissue formation, hinders nerve regeneration, and prevents functional recovery. Fibrin-based adhesives have been widely used for nerve reconstruction, but their limited adhesive and mechanical strength and inability to promote nerve regeneration hamper their utility as a stand-alone intervention. To overcome these challenges, we engineered composite hydrogels that are neurosupportive and possess strong tissue adhesion. These composites were synthesized by photocrosslinking two naturally derived polymers, gelatin-methacryloyl (GelMA) and methacryloyl-substituted tropoelastin (MeTro). The engineered materials exhibited tunable mechanical properties by varying the GelMA/MeTro ratio. In addition, GelMA/MeTro hydrogels exhibited 15-fold higher adhesive strength to nerve tissue ex vivo compared to fibrin control. Furthermore, the composites were shown to support Schwann cell (SC) viability and proliferation, as well as neurite extension and glial cell participation in vitro, which are essential cellular components for nerve regeneration. Finally, subcutaneously implanted GelMA/MeTro hydrogels exhibited slower degradation in vivo compared with pure GelMA, indicating its potential to support the growth of slowly regenerating nerves. Thus, GelMA/MeTro composites may be used as clinically relevant biomaterials to regenerate nerves and reduce the need for microsurgical suturing during nerve reconstruction.

  3. Increasing the Strength of Adhesively Bonded Joints by Tapering the Adherends

    International Nuclear Information System (INIS)

    GUESS, TOMMY R.; METZINGER, KURT E.

    1999-01-01

    Wind turbine blades are often fabricated with composite materials. These composite blades are frequently attached to a metallic structure with an adhesive bond. For the baseline composite-to-steel joint considered in this study, failure typically occurs when the adhesive debonds from the steel adherend. Previous efforts established that the adhesive peel stresses strongly influence the strength of these joints for both single-cycle and fatigue loading. This study focused on reducing the adhesive peel stresses present in these joints by tapering the steel adherends. Several different tapers were evaluated using finite element analysis before arriving at a final design. To confirm that the selected taper was an improvement to the existing design, the baseline joint and the modified joint were tested in both compression and tension. In these axial tests, the compressive strengths of the joints with tapered adherends were greater than those of the baseline joints for both single-cycle and low-cycle fatigue. In addition, only a minor reduction in tensile strength was observed for the joints with tapered adherends when compared to the baseline joints. Thus, the modification would be expected to enhance the overall performance of this joint

  4. 4-Point beam tensile test on a soft adhesive

    International Nuclear Information System (INIS)

    Budzik, Michal K.; Jumel, Julien; Shanahan, Martin E.R.

    2013-01-01

    Highlights: ► An adhesive butt joint with a soft bondline of variable thickness has been studied. ► We found that bondline thickness affects the stress state in soft bondlines. ► Fracture energy at crack onset is lowest for the thinnest of bondlines and becomes stable for thicker layers. ► Maximum stress decreases with increasing bondline thickness. ► We found that for optimal joint design, rate effects must be taken into account. - Abstract: An adhesive butt joint with a soft bondline has been studied. A series of experiments was conducted on test pieces constituted of aluminium adherends bonded with a low modulus epoxy adhesive, Scotch Weld™ 2216. The joint was subjected to four point bending, in tension/compression loading, under constant deflection rate, with the bondline being parallel to the applied load. The objective was to examine and evaluate crack nucleation for a range of adhesive layer thicknesses. Three criteria were used to evaluate joint efficiency. Firstly, force/stress at crack onset revealed that thinner bondlines were preferable to produce stronger and stiffer bonded structures. Secondly, fracture energy was derived, which, in the present configuration, is associated with the energy stored within the adhesive layer, rather than the substrates. This is one of originalities of the test proposed. Fracture energy data lead to the conclusion, that more energy is dissipated by the joints with lower effective rigidity, viz. thicker bondlines. Finally, we applied a criterion of non-linear, ‘pragmatic’ work of adhesion – similar to the J-integral approach. In terms of energy consumption, the third criterion yielded (quasi) independence of the adhesive thickness. From the data collected, we conclude that for optimal joint design, rate effects must be carefully taken into account

  5. [The application of universal adhesives in dental bonding].

    Science.gov (United States)

    Guo, Jingmei; Lei, Wenlong; Yang, Hongye; Huang, Cui

    2016-03-01

    The bonding restoration has become an important clinical technique for the development of dental bonding technology. Because of its easy operation and the maximum preservation of tooth tissues, bonding repair is widely used in dental restoration. The recent multi-mode universal adhesives have brought new progress in dental bonding restoration. In this article the universal adhesives were reviewed according to its definition, development, improvement, application features and possible problems.

  6. DETERMINATION OF ADHESIVE STRENGTH LAYER’S ROLLER COMPACTED CONCRETE THE METHOD AXIAL EXTENSION

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-07-01

    Full Text Available Roller compacted concrete for the construction of hydraulic and hydroelectric buildings is a composite material, which consists of a binder, fine aggregate (sand, coarse aggregate (gravel or crushed stone, water and special additives that provide the desired concrete workability and impart the required concrete performance properties. Concrete mixture is prepared at from concrete mixing plants strictly metered quantities of cement, water, additives and graded aggregates, whereupon they are delivered to the site laying Mixer Truck and sealing layers with each stack layer. The advantages of roller compaction technology should include the reduction of construction time, which allows fast commissioning construction projects, as well as reduce the amount of investment required. One of the main problems encountered in the process of roller compaction of the concrete mix is the need to provide the required adhesion strength between layers of concrete. This paper presents a method for determining the strength of adhesion between the concrete layers of different ages roller compacted concrete using axial tension. This method makes it possible to obtain objective and accurate results with a total thickness of layers of compacted concrete of up to 300…400 mm. Results from this method, studies have shown that the value of strength between the concrete layers in addition to the composition of the concrete and adhesion depends on the quality and the parallel end surfaces of the cylinder-models, which are mounted steel plates for axial tension, as well as the state of the contact surfaces of the concrete layer. The method can be used to determine the strength of interlayer adhesion in roller compacted concrete, which are used in the construction of dams and other hydraulic structures.

  7. Surgical adhesives in ophthalmology: history and current trends.

    Science.gov (United States)

    Guhan, Samantha; Peng, Si-Liang; Janbatian, Hrag; Saadeh, Stephanie; Greenstein, Stephen; Al Bahrani, Faisal; Fadlallah, Ali; Yeh, Tsai-Chu; Melki, Samir A

    2018-03-26

    Tissue adhesives are gaining popularity in ophthalmology, as they could potentially reduce the complications associated with current surgical methods. An ideal tissue adhesive should have superior tensile strength, be non-toxic and anti-inflammatory, improve efficiency and be cost-effective. Both synthetic and biological glues are available. The primary synthetic glues include cyanoacrylate and the recently introduced polyethylene glycol (PEG) derivatives, while most biological glues are composed of fibrin. Cyanoacrylate has a high tensile strength, but rapidly polymerises upon contact with any fluid and has been associated with histotoxicity. Fibrin induces less toxic and inflammatory reactions, and its polymerisation time can be controlled. Tensile strength studies have shown that fibrin is not as strong as cyanoacrylate. While more research is needed, PEG variants currently appear to have the most promise. These glues are non-toxic, strong and time-effective. Through MEDLINE and internet searches, this paper presents a systematic review of the current applications of surgical adhesives to corneal, glaucoma, retinal, cataract and strabismus surgeries. Our review suggests that surgical adhesives have promise to reduce problems in current ophthalmic surgical procedures. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Coupling between apical tension and basal adhesion allow epithelia to collectively sense and respond to substrate topography over long distances.

    Science.gov (United States)

    Broaders, Kyle E; Cerchiari, Alec E; Gartner, Zev J

    2015-12-01

    Epithelial sheets fold into complex topographies that contribute to their function in vivo. Cells can sense and respond to substrate topography in their immediate vicinity by modulating their interfacial mechanics, but the extent to which these mechanical properties contribute to their ability to sense substrate topography across length scales larger than a single cell has not been explored in detail. To study the relationship between the interfacial mechanics of single cells and their collective behavior as tissues, we grew cell-sheets on substrates engraved with surface features spanning macroscopic length-scales. We found that many epithelial cell-types sense and respond to substrate topography, even when it is locally nearly planar. Cells clear or detach from regions of local negative curvature, but not from regions with positive or no curvature. We investigated this phenomenon using a finite element model where substrate topography is coupled to epithelial response through a balance of tissue contractility and adhesive forces. The model correctly predicts the focal sites of cell-clearing and epithelial detachment. Furthermore, the model predicts that local tissue response to substrate curvature is a function of the surrounding topography of the substrate across long distances. Analysis of cell-cell and cell-substrate contact angles suggests a relationship between these single-cell interfacial properties, epithelial interfacial properties, and collective epithelial response to substrate topography. Finally, we show that contact angles change upon activation of oncogenes or inhibition of cell-contractility, and that these changes correlate with collective epithelial response. Our results demonstrate that in mechanically integrated epithelial sheets, cell contractility can be transmitted through multiple cells and focused by substrate topography to affect a behavioral response at distant sites.

  9. Nanofibers and nanoparticles from the insect-capturing adhesive of the Sundew (Drosera for cell attachment

    Directory of Open Access Journals (Sweden)

    Zhang Mingjun

    2010-08-01

    Full Text Available Abstract Background The search for naturally occurring nanocomposites with diverse properties for tissue engineering has been a major interest for biomaterial research. In this study, we investigated a nanofiber and nanoparticle based nanocomposite secreted from an insect-capturing plant, the Sundew, for cell attachment. The adhesive nanocomposite has demonstrated high biocompatibility and is ready to be used with minimal preparation. Results Atomic force microscopy (AFM conducted on the adhesive from three species of Sundew found that a network of nanofibers and nanoparticles with various sizes existed independent of the coated surface. AFM and light microscopy confirmed that the pattern of nanofibers corresponded to Alcian Blue staining for polysaccharide. Transmission electron microscopy identified a low abundance of nanoparticles in different pattern form AFM observations. In addition, energy-dispersive X-ray spectroscopy revealed the presence of Ca, Mg, and Cl, common components of biological salts. Study of the material properties of the adhesive yielded high viscoelasticity from the liquid adhesive, with reduced elasticity observed in the dried adhesive. The ability of PC12 neuron-like cells to attach and grow on the network of nanofibers created from the dried adhesive demonstrated the potential of this network to be used in tissue engineering, and other biomedical applications. Conclusions This discovery demonstrates how a naturally occurring nanofiber and nanoparticle based nanocomposite from the adhesive of Sundew can be used for tissue engineering, and opens the possibility for further examination of natural plant adhesives for biomedical applications.

  10. Visualizing the interior architecture of focal adhesions with high-resolution traction maps.

    Science.gov (United States)

    Morimatsu, Masatoshi; Mekhdjian, Armen H; Chang, Alice C; Tan, Steven J; Dunn, Alexander R

    2015-04-08

    Focal adhesions (FAs) are micron-sized protein assemblies that coordinate cell adhesion, migration, and mechanotransduction. How the many proteins within FAs are organized into force sensing and transmitting structures is poorly understood. We combined fluorescent molecular tension sensors with super-resolution light microscopy to visualize traction forces within FAs with <100 nm spatial resolution. We find that αvβ3 integrin selectively localizes to high force regions. Paxillin, which is not generally considered to play a direct role in force transmission, shows a higher degree of spatial correlation with force than vinculin, talin, or α-actinin, proteins with hypothesized roles as force transducers. These observations suggest that αvβ3 integrin and paxillin may play important roles in mechanotransduction.

  11. Micro/Nanostructured Films and Adhesives for Biomedical Applications.

    Science.gov (United States)

    Lee, Jungkyu K; Kang, Sung Min; Yang, Sung Ho; Cho, Woo Kyung

    2015-12-01

    The advanced technologies available for micro/nanofabrication have opened new avenues for interdisciplinary approaches to solve the unmet medical needs of regenerative medicine and biomedical devices. This review highlights the recent developments in micro/nanostructured adhesives and films for biomedical applications, including waterproof seals for wounds or surgery sites, drug delivery, sensing human body signals, and optical imaging of human tissues. We describe in detail the fabrication processes required to prepare the adhesives and films, such as tape-based adhesives, nanofilms, and flexible and stretchable film-based electronic devices. We also discuss their biomedical functions, performance in vitro and in vivo, and the future research needed to improve the current systems.

  12. Measurement and monitoring of electrocardiogram belt tension in premature infants for assessment of respiratory function

    OpenAIRE

    Hegyi Thomas; Hiatt Mark; Ciaccio Edward J; Drzewiecki Gary M

    2007-01-01

    Abstract Background Monitoring of the electrocardiogram (ECG) in premature infants with conventional adhesive-backed electrodes can harm their sensitive skin. Use of an electrode belt prevents skin irritation, but the effect of belt pressure on respiratory function is unknown. A strain gauge sensor is described which measures applied belt tension. Method The device frame was comprised of an aluminum housing and slide to minimize the device weight. Velcro tabs connected housing and slide to op...

  13. Effect of tetracycline on the bond performance of etch-and-rinse adhesives to dentin

    Directory of Open Access Journals (Sweden)

    Rodrigo Stanislawczuk

    2011-10-01

    Full Text Available This study evaluated the effect of modified tetracycline on the resin-dentin bond strength (µTBS, silver nitrate uptake (SNU and solution homogeneity (SH of two adhesives. Dentin surfaces were treated with phosphoric acid, rinsed off and either rewetted with water (control group - CO, 2% minocycline (MI, 2% doxycyline (DO or 2% chlorhexidine (CH. Adhesive systems (Adper Single Bond 2 and Prime Bond NT and composite were applied and light-polymerized. Specimens were sectioned to obtain bonded sticks (0.8 mm² to test under tension at 0.5 mm/min. For SNU, specimens were immersed in silver nitrate and analyzed by EDX-SEM. SH was qualitatively analyzed after mixing the adhesives with different solvent-based solutions containing MI, DO and CH. Lower µTBS values were observed in the DO group compared with MI and CH (p = 0.01. Lower SNU was observed for MI and CH. The lowest µTBS for both adhesives was observed for the DO group (p = 0.01. Signs of phase separation were observed for DO with both adhesives. MI or CH used as rewetting solutions after acid etching did not affect the µTBS and hybrid layer quality.

  14. Update on biomaterials for prevention of epidural adhesion after lumbar laminectomy

    Directory of Open Access Journals (Sweden)

    Huailan Wang

    2018-04-01

    Full Text Available Summary: Lumbar laminectomy often results in failed back surgery syndrome. Most scholars support the three-dimensional theory of adhesion: Fibrosis surrounding the epidural tissues is based on the injured sacrospinalis behind, fibrous rings and posterior longitudinal ligaments. Approaches including using the minimally invasive technique, drugs, biomaterial and nonbiomaterial barriers to prevent the postoperative epidural adhesion were intensively investigated. Nevertheless, the results are far from satisfactory. Our review is based on various implant biomaterials that are used in clinical applications or are under study. We show the advantages and disadvantages of each method. The summary will help us to figure out ideas towards new techniques.The translational potential of this article: This review summarises recent biomaterials-related clinical and basic research that focuses on prevention of epidural adhesion after lumbar laminectomy. We also propose a novel possible translational method where a soft scaffold acts as a physical barrier in the early stage, engineered adipose tissue acts as a biobarrier in the later stage in the application of biomaterials and adipose-derived mesenchymal stem cells are used for prevention of epidural adhesion. Keywords: Adhesion, Biomaterials, Fibrosis, Implant, Laminectomy

  15. Local and systemic effects of fibrin and cyanoacrylate adhesives on lung lesions in rabbits

    Directory of Open Access Journals (Sweden)

    Marcus V.H. Carvalho

    Full Text Available OBJECTIVES: Tissue adhesives can be used to prevent pulmonary air leaks, which frequently occur after lung interventions. The objective of this study is to evaluate local and systemic effects of fibrin and cyanoacrylate tissue adhesives on lung lesions in rabbits. METHODS: Eighteen rabbits were submitted to videothoracoscopy + lung incision alone (control or videothoracoscopy + lung incision + local application of fibrin or cyanoacrylate adhesive. Blood samples were collected and assessed for leukocyte, neutrophil and lymphocyte counts and interleukin-8 levels preoperatively and at 48 hours and 28 days post-operatively. After 28 days, the animals were euthanized for gross examination of the lung surface, and lung fragments were excised for histopathological analysis. RESULTS: Fibrin and cyanoacrylate produced similar adhesion scores of the lung to the parietal pleura. Microscopic analysis revealed uniform low-cellular tissue infiltration in the fibrin group and an intense tissue reaction characterized by dense inflammatory infiltration of granulocytes, giant cells and necrosis in the cyanoacrylate group. No changes were detected in the leukocyte, neutrophil or lymphocyte count at any time-point, while the interleukin-8 levels were increased in the fibrin and cyanoacrylate groups after 48 hours compared with the pre-operative control levels (p<0.01. CONCLUSION: Both adhesive agents promoted normal tissue healing, with a more pronounced local inflammatory reaction observed for cyanoacrylate. Among the serum markers of inflammation, only the interleukin-8 levels changed post-operatively, increasing after 48 hours and decreasing after 28 days to levels similar to those of the control group in both the fibrin and cyanoacrylate groups.

  16. Selective propensity of bovine jugular vein material to bacterial adhesions: An in-vitro study.

    Science.gov (United States)

    Jalal, Zakaria; Galmiche, Louise; Lebeaux, David; Villemain, Olivier; Brugada, Georgia; Patel, Mehul; Ghigo, Jean-Marc; Beloin, Christophe; Boudjemline, Younes

    2015-11-01

    Percutaneous pulmonary valve implantation (PPVI) using Melody valve made of bovine jugular vein is safe and effective. However, infective endocarditis has been reported for unclear reasons. We sought to assess the impact of valvular substrates on selective bacterial adhesion. Three valved stents (Melody valve, homemade stents with bovine and porcine pericardium) were tested in-vitro for bacterial adhesion using Staphylococcus aureus and Streptococcus sanguinis strains. Bacterial adhesion was higher on bovine jugular venous wall for S. aureus and on Melody valvular leaflets for S. sanguinis in control groups and significantly increased in traumatized Melody valvular leaflets with both bacteria (traumatized vs non traumatized: p=0.05). Bacterial adhesion was lower on bovine pericardial leaflets. Selective adhesion of S. aureus and S. sanguinis pathogenic strains to Melody valve tissue was noted on healthy tissue and increased after implantation procedural steps. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Hunter [School of Packaging, Michigan State University, East Lansing, Michigan (United States); Li, Yana [Mechanical Engineering College, Wuhan Polytechnic University (China); Almenar, Eva, E-mail: ealmenar@msu.edu [School of Packaging, Michigan State University, East Lansing, Michigan (United States)

    2015-03-30

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  18. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    International Nuclear Information System (INIS)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-01-01

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film

  19. Coulomb string tension, asymptotic string tension, and the gluon chain

    OpenAIRE

    Greensite, Jeff; Szczepaniak, Adam P.

    2014-01-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  20. Performance Evaluation and Durability Studies of Adhesive Bonds

    Science.gov (United States)

    Ranade, Shantanu Rajendra

    In this thesis, four test approaches were developed to characterize the adhesion performance and durability of adhesive bonds for specific applications in areas spanning from structural adhesive joints to popular confectionaries such as chewing gum. In the first chapter, a double cantilever beam (DCB) specimen geometry is proposed for combinatorial fracture studies of structural adhesive bonds. This specimen geometry enabled the characterization of fracture energy vs. bondline thickness trends through fewer tests than those required during a conventional "one at a time" characterization approach, potentially offering a significant reduction in characterization times. The second chapter investigates the adhesive fracture resistance and crack path selection in adhesive joints containing patterns of discreet localized weak interfaces created using physical vapor deposition of copper. In a DCB specimen tested under mode-I conditions, fracture energy within the patterned regions scaled according to a simple rule of mixture, while reverse R-curve and R-curve type trends were observed in the regions surrounding weak interface patterns. Under mixed mode conditions such that bonding surface with patterns is subjected to axial tension, fracture energy did not show R-curve type trends while it was observed that a crack could be made to avoid exceptionally weak interfaces when loaded such that bonding surface with defects is subjected to axial compression. In the third chapter, an adaptation of the probe tack test is proposed to characterize the adhesion behavior of gum cuds. This test method allowed the introduction of substrates with well-defined surface energies and topologies to study their effects on gum cud adhesion. This approach and reported insights could potentially be useful in developing chewing gum formulations that facilitate easy removal of improperly discarded gum cuds from adhering surfaces. In the fourth chapter we highlight a procedure to obtain insights

  1. Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus.

    Science.gov (United States)

    Mizrachi, Eshchar; Maloney, Victoria J; Silberbauer, Janine; Hefer, Charles A; Berger, Dave K; Mansfield, Shawn D; Myburg, Alexander A

    2015-06-01

    Tension wood has distinct physical and chemical properties, including altered fibre properties, cell wall composition and ultrastructure. It serves as a good system for investigating the genetic regulation of secondary cell wall biosynthesis and wood formation. The reference genome sequence for Eucalyptus grandis allows investigation of the global transcriptional reprogramming that accompanies tension wood formation in this global wood fibre crop. We report the first comprehensive analysis of physicochemical wood property changes in tension wood of Eucalyptus measured in a hybrid (E. grandis × Eucalyptus urophylla) clone, as well as genome-wide gene expression changes in xylem tissues 3 wk post-induction using RNA sequencing. We found that Eucalyptus tension wood in field-grown trees is characterized by an increase in cellulose, a reduction in lignin, xylose and mannose, and a marked increase in galactose. Gene expression profiling in tension wood-forming tissue showed corresponding down-regulation of monolignol biosynthetic genes, and differential expression of several carbohydrate active enzymes. We conclude that alterations of cell wall traits induced by tension wood formation in Eucalyptus are a consequence of a combination of down-regulation of lignin biosynthesis and hemicellulose remodelling, rather than the often proposed up-regulation of the cellulose biosynthetic pathway. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.

  2. Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers.

    Directory of Open Access Journals (Sweden)

    Huashan Feng

    Full Text Available The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the surface structure, adsorption movements, the muscles' distribution, physical characteristics, and the adsorption force of the leech posterior suckers by experimental investigation. Three conclusions can be drawn based on the obtained experimental results. First, the adhesion by the posterior sucker is wet adhesion, because the surface of the posterior sucker is smooth and the sealing can only be achieved on wet surfaces. Second, the deformation texture, consisting of soft collagen tissues and highly ductile epidermal tissues, plays a key role in adhering to rough surfaces. Finally, the adhesion and desorption is achieved by the synergetic operation of six muscle fibers working in different directions. Concrete saying, directional deformation of the collagen/epithermal interface driven by spatially-distributed muscle fibers facilitates the excretion of fluids in the sucker venter, thus allowing liquid sealing. Furthermore, we found that the adhesion strength is directly related to the size of the contact surface which is generated and affected by the sucker deformation. Such an underlying physical mechanism offers potential cues for developing innovative bio-inspired artificial adhesion systems.

  3. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

    Science.gov (United States)

    Lee, Ted T.; García, José R.; Paez, Julieta I.; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J.

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  4. Manual Physical Therapy for Non-Surgical Treatment of Adhesion-Related Small Bowel Obstructions: Two Case Reports

    Directory of Open Access Journals (Sweden)

    Amanda D. Rice

    2013-02-01

    Full Text Available Background: Adhesion formation is a widely acknowledged risk following abdominal or pelvic surgery. Adhesions in the abdomen or pelvis can cause or contribute to partial or total small bowel obstruction (SBO. These adhesions deter or prevent the passage of nutrients through the digestive tract, and may bind the bowel to the peritoneum, or other organs. Small bowel obstructions can quickly become life-threatening, requiring immediate surgery to resect the bowel, or lyse any adhesions the surgeon can safely access. Bowel repair is an invasive surgery, with risks including bowel rupture, infection, and peritonitis. An additional risk includes the formation of new adhesions during the healing process, creating the potential for subsequent adhesiolysis or SBO surgeries. Objective: Report the use of manual soft tissue physical therapy for the reversal of adhesion-related partial SBOs, and create an initial inquiry into the possibility of nonsurgical lysis of adhesions. Case Reports: Two patients presenting with SBO symptoms due to abdominal adhesions secondary to abdominal and pelvic surgery were treated with manual soft tissue physical therapy focused on decreasing adhesions. Conclusions: Successful treatment with resolution of symptom presentation of partial SBO and sustained results were observed in both patients treated.

  5. Studying cytokinesis in Drosophila epithelial tissues.

    Science.gov (United States)

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Chemical functionalization of bioceramics to enhance endothelial cells adhesion for tissue engineering.

    Science.gov (United States)

    Borcard, Françoise; Staedler, Davide; Comas, Horacio; Juillerat, Franziska Krauss; Sturzenegger, Philip N; Heuberger, Roman; Gonzenbach, Urs T; Juillerat-Jeanneret, Lucienne; Gerber-Lemaire, Sandrine

    2012-09-27

    To control the selective adhesion of human endothelial cells and human serum proteins to bioceramics of different compositions, a multifunctional ligand containing a cyclic arginine-glycine-aspartate (RGD) peptide, a tetraethylene glycol spacer, and a gallate moiety was designed, synthesized, and characterized. The binding of this ligand to alumina-based, hydroxyapatite-based, and calcium phosphate-based bioceramics was demonstrated. The conjugation of this ligand to the bioceramics induced a decrease in the nonselective and integrin-selective binding of human serum proteins, whereas the binding and adhesion of human endothelial cells was enhanced, dependent on the particular bioceramics.

  7. Drosophila Big bang regulates the apical cytocortex and wing growth through junctional tension.

    Science.gov (United States)

    Tsoumpekos, Giorgos; Nemetschke, Linda; Knust, Elisabeth

    2018-03-05

    Growth of epithelial tissues is regulated by a plethora of components, including signaling and scaffolding proteins, but also by junctional tension, mediated by the actomyosin cytoskeleton. However, how these players are spatially organized and functionally coordinated is not well understood. Here, we identify the Drosophila melanogaster scaffolding protein Big bang as a novel regulator of growth in epithelial cells of the wing disc by ensuring proper junctional tension. Loss of big bang results in the reduction of the regulatory light chain of nonmuscle myosin, Spaghetti squash. This is associated with an increased apical cell surface, decreased junctional tension, and smaller wings. Strikingly, these phenotypic traits of big bang mutant discs can be rescued by expressing constitutively active Spaghetti squash. Big bang colocalizes with Spaghetti squash in the apical cytocortex and is found in the same protein complex. These results suggest that in epithelial cells of developing wings, the scaffolding protein Big bang controls apical cytocortex organization, which is important for regulating cell shape and tissue growth. © 2018 Tsoumpekos et al.

  8. Keratinocyte Growth Factor Combined with a Sodium Hyaluronate Gel Inhibits Postoperative Intra-Abdominal Adhesions

    Directory of Open Access Journals (Sweden)

    Guangbing Wei

    2016-09-01

    Full Text Available Postoperative intra-abdominal adhesion is a very common complication after abdominal surgery. One clinical problem that remains to be solved is to identify an ideal strategy to prevent abdominal adhesions. Keratinocyte growth factor (KGF has been proven to improve the proliferation of mesothelial cells, which may enhance fibrinolytic activity to suppress postoperative adhesions. This study investigated whether the combined administration of KGF and a sodium hyaluronate (HA gel can prevent intra-abdominal adhesions by improving the orderly repair of the peritoneal mesothelial cells. The possible prevention mechanism was also explored. The cecum wall and its opposite parietal peritoneum were abraded after laparotomy to induce intra-abdominal adhesion formation. Animals were randomly allocated to receive topical application of HA, KGF, KGF + HA, or normal saline (Control. On postoperative day 7, the adhesion score was assessed with a visual scoring system. Masson’s trichrome staining, picrosirius red staining and hydroxyproline assays were used to assess the magnitude of adhesion and tissue fibrosis. Cytokeratin, a marker of the mesothelial cells, was detected by immunohistochemistry. The levels of tissue plasminogen activator (tPA, interleukin-6 (IL-6, and transforming growth factor β1 (TGF-β1 in the abdominal fluid were determined using enzyme-linked immunosorbent assays (ELISAs. Western blotting was performed to examine the expression of the TGF-β1, fibrinogen and α-smooth muscle actin (α-SMA proteins in the rat peritoneal adhesion tissue. The combined administration of KGF and HA significantly reduced intra-abdominal adhesion formation and fibrin deposition and improved the orderly repair of the peritoneal mesothelial cells in the rat model. Furthermore, the combined administration of KGF and HA significantly increased the tPA levels but reduced the levels of IL-6, tumor necrosis factor α (TNF-α and TGF-β1 in the abdominal fluid. The

  9. Continuum-level modelling of cellular adhesion and matrix production in aggregates.

    Science.gov (United States)

    Geris, Liesbet; Ashbourn, Joanna M A; Clarke, Tim

    2011-05-01

    Key regulators in tissue-engineering processes such as cell culture and cellular organisation are the cell-cell and cell-matrix interactions. As mathematical models are increasingly applied to investigate biological phenomena in the biomedical field, it is important, for some applications, that these models incorporate an adequate description of cell adhesion. This study describes the development of a continuum model that represents a cell-in-gel culture system used in bone-tissue engineering, namely that of a cell aggregate embedded in a hydrogel. Cell adhesion is modelled through the use of non-local (integral) terms in the partial differential equations. The simulation results demonstrate that the effects of cell-cell and cell-matrix adhesion are particularly important for the survival and growth of the cell population and the production of extracellular matrix by the cells, concurring with experimental observations in the literature.

  10. Axisymmetric Drop Shape Analysis for Estimating the Surface Tension of Cell Aggregates by Centrifugation

    OpenAIRE

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M.I.; David, Robert; Winklbauer, Rudolf; Neumann, A. Wilhelm

    2009-01-01

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates ...

  11. Necessary Tension in Marine Risers Tension des colonnes montantes en mer

    Directory of Open Access Journals (Sweden)

    Lubinski A.

    2006-11-01

    Full Text Available The tension governing transverse static and dynamic deflections in a riser is not the actual tension but the so-called « effective tension » The concept of effective tension and effective compression is thoroughly explained, and means for calculating effective forces are given. Numerical examples are worked out for risers whose length is between 152 m (520 ft and 920 m (3020 ft. The reciprocal of maximum bending moment of the vicinity of the hall joint is plotted versus the effective tension of the ball joint. Bending moments used were obtained through use of static and dynamic computer programs applied ta a variety of conditions of wave loading, use or non-use of buoyant moterial sleeves, etc. The most important parameters affecting riser performance are the effective La tension régissant les déflections transversales statiques et dynamiques d'une colonne montante n'est pas la tension réelle mais ce qu'on appelle « la tension effective ». Le concept de tension ou de compression effective est expliqué en détail et la façon de calculer les forces effectives est indiquée dans cet article. Des exemples numériques sont développés pour des colonnes montantes de longueur comprise entre 152 m (520 ft et 920 m (3 020 ft. On a tracé la courbe de l'inverse du moment fléchissant en fonction de la tension effective à l'articulation. Les moments fléchissants utilisés ont été calculés par ordinateur en utilisant des programmes dynamiques et statiques pour des conditions variées d'action des vagues, la colonne montante étant ou non munie de manchettes de flottabilité, etc. Les deux paramètres les plus importants qui affectent le bon comportement d'une colonne montante sont la tension effective et la charge latérale.

  12. AN ANALYTICAL STUDY IN ADHESIVE BOWEL OBSTRUCTION

    Directory of Open Access Journals (Sweden)

    Gerald Anand Raja

    2017-04-01

    Full Text Available BACKGROUND Peritoneal adhesions can be defined as abnormal fibrous bands between organs or tissues or both in the abdominal cavity that are normally separated. Adhesions may be acquired or congenital; however, most are acquired as a result of peritoneal injury, the most common cause of which is abdominopelvic surgery. Less commonly, adhesions may form as the result of inflammatory conditions, intraperitoneal infection or abdominal trauma. The extent of adhesion formation varies from one patient to another and is most dependent on the type and magnitude of surgery performed as well as whether any postoperative complications develop. Fortunately, most patients with adhesions do not experience any overt clinical symptoms. For others, adhesions may lead to any one of a host of problems and can be the cause of significant morbidity and mortality. MATERIALS AND METHODS This is a retrospective study of 50 patients admitted in Government Royapettah Hospital with adhesive bowel obstruction between September 2008 to September 2010. All patients were admitted and managed either conservatively or surgically. RESULTS 1. Adhesive bowel disease is the most common cause for bowel obstruction followed by hernias. 2. Increased incidence is noted in females. 3. Increased incidence of adhesions was documented in gynaecological and colorectal surgeries. 4. Below umbilical incisions have higher propensity for adhesion formation. 5. Laparotomies done for infective aetiology have higher adhesion risks. 6. Most of adhesive obstructions can be managed conservatively. 7. Adhesiolysis preferably laparoscopic can be done. For gangrenous bowel resection and anastomosis or ostomy done. 8. Given the above risk factors, adhesive bowel disease can be prevented to a certain extent. CONCLUSION The formation of peritoneal adhesions continues to plague patients, surgeons and society. Although, research in this area is ongoing, there is currently no method that is 100% effective in

  13. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  14. Interference of functional monomers with polymerization efficiency of adhesives.

    Science.gov (United States)

    Hanabusa, Masao; Yoshihara, Kumiko; Yoshida, Yasuhiro; Okihara, Takumi; Yamamoto, Takatsugu; Momoi, Yasuko; Van Meerbeek, Bart

    2016-04-01

    The degree of conversion (DC) of camphorquinone/amine-based adhesives is affected by acidic functional monomers as a result of inactivation of the amine co-initiator through an acid-base reaction. During bonding, functional monomers of self-etch adhesives chemically interact with hydroxyapatite (HAp). Here, we tested in how far the latter interaction of functional monomers with HAp counteracts the expected reduction in DC of camphorquinone/amine-based adhesives. The DC of three experimental adhesive formulations, containing either of the two functional monomers [10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) or 4-methacryloxyethyl trimellitic acid anhydride (4-META)] or no functional monomer (no-FM; control), was measured with and without HAp powder added to the adhesive formulations. Both the variables 'functional monomer' and 'HAp' were found to be significant, with the functional monomer reducing the DC and HAp counteracting this effect. It is concluded that the functional monomers 10-MDP and 4-META interfere with the polymerization efficiency of adhesives. This interference is less prominent in the presence of HAp, which would clinically correspond to when these two functional monomers of the adhesive simultaneously interact with HAp in tooth tissue. © 2016 Eur J Oral Sci.

  15. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    International Nuclear Information System (INIS)

    Rodríguez-Rigueiro, Teresa; Valladares-Ayerbes, Manuel; Haz-Conde, Mar; Aparicio, Luis A; Figueroa, Angélica

    2011-01-01

    The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The

  16. Characterization of poly (L-co-D,L Lactic Acid and a study of polymer-tissue interaction in subcutaneous implants in wistar rats

    Directory of Open Access Journals (Sweden)

    Giuliano Serafino Ciambelli

    2012-01-01

    Full Text Available Poly (L-co-D,L lactic acid (PLDLA is an important biomaterial because of its biocompatibility properties that promote cellular regeneration and growth. The aim of this study was to evaluate the polymer-tissue interaction of PLDLA implants in the dorsal subcutaneous tissue of male Wistar rats at various intervals (2, 7, 15, 30, 60 and 90 days after implantation. Physical properties such as the glass transition point (Tg, degradation behavior and other mechanical properties were characterized by differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, gel permeation chromatography (GPC, scanning electron microscopy (SEM and tension tests. Analysis of the degradation of PLDLA membranes in vitro showed that the polymer became crystalline as a function of the degradation time. Mechanical tension tests showed that the polymer behaved like a ductile material: when subjected to constant tension it initially suffered deformation, then elongation and finally ruptured. TGA/MEV provided evidence of PLDLA membrane degradation. For histological analysis, samples from each group were processed in xylol/paraffin, except for the 60 - and 90 - day samples. Each of the latter samples was divided in two: one half was treated with xylol/paraffin and the other with historesin. Light microscopy showed the adhesion of cells to the biomaterial, the formation of a conjunctive capsule around the implant, the presence of epithelioid cells, the formation of foreign body giant cells and angiogenesis. During degradation, the polymer showed a 'lace' - like appearance when processed in xylol/paraffin compared to the formation of "centripetal cracks in the form of glove fingers" when embedded in historesin.

  17. Does penile tourniquet application alter bacterial adhesion to rat urethral cells: an in vitro study.

    Science.gov (United States)

    Boybeyi-Turer, Ozlem; Kacmaz, Birgul; Arat, Esra; Atasoy, Pınar; Kisa, Ucler; Gunal, Yasemin Dere; Aslan, Mustafa Kemal; Soyer, Tutku

    2018-04-01

    To investigate the effects of penile tourniquet (PT) application on bacterial adhesion to urothelium. Fifty-six rats were allocated into control group (CG), sham group (SG), PT group (PTG). No intervention was applied in CG. A 5mm-length urethral repair was performed in SG and PTG. In PTG, a 10-min duration of PT was applied during the procedure and the tissue oxygenation monitor was used to adjust the same degree of ischemia in all subjects. Samples were examined for wound healing parameters and tissue levels of inflammatory markers, eNOS, e-selectin, and ICAM-1antibodies. The adhesion of Escherichia coli to urothelium was investigated with in vitro adhesion assay. Inflammation was higher and wound healing was worse in SG than CG and in PTG in comparison to CG and SG (pcaused endothelial corruption and prevented cell proliferation in cell culture. The PT application does not improve wound healing and increases bacterial adhesion molecules in penile tissue. The in vitro assays showed that PT causes severe endothelial damage and inhibits endothelial cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Bonding characteristics of self-etching adhesives to intact versus prepared enamel.

    Science.gov (United States)

    Perdigão, Jorge; Geraldeli, Saulo

    2003-01-01

    This study tested the null hypothesis that the preparation of the enamel surface would not affect the enamel microtensile bond strengths of self-etching adhesive materials. Ten bovine incisors were trimmed with a diamond saw to obtain a squared enamel surface with an area of 8 x 8 mm. The specimens were randomly assigned to five adhesives: (1) ABF (Kuraray), an experimental two-bottle self-etching adhesive; (2) Clearfil SE Bond (Kuraray), a two-bottle self-etching adhesive; (3) One-Up Bond F (Tokuyama), an all-in-one adhesive; (4) Prompt L-Pop (3M ESPE), an all-in-one adhesive; and (5) Single Bond (3M ESPE), a two-bottle total-etch adhesive used as positive control. For each specimen, one half was roughened with a diamond bur for 5 seconds under water spray, whereas the other half was left unprepared. The adhesives were applied as per manufacturers' directions. A universal hybrid composite resin (Filtek Z250, 3M ESPE) was inserted in three layers of 1.5 mm each and light-cured. Specimens were sectioned in X and Y directions to obtain bonded sticks with a cross-sectional area of 0.8 +/- 0.2 mm2. Sticks were tested in tension in an Instron at a cross-speed of 1 mm per minute. Statistical analysis was carried out with two-way analysis of variance and Duncan's test at p adhesive, resulted in statistically higher microtensile bond strength than any of the other adhesives regardless of the enamel preparation (unprepared = 31.5 MPa; prepared = 34.9 MPa, not statistically different at p adhesives resulted in higher microtensile bond strength when enamel was roughened than when enamel was left unprepared. However, for ABF and for Clearfil SE Bond this difference was not statistically significant at p > .05. When applied to ground enamel, mean bond strengths of Prompt L-Pop were not statistically different from those of Clearfil SE Bond and ABF. One-Up Bond F did not bond to unprepared enamel. Commercial self-etching adhesives performed better on prepared enamel than on

  19. Adhesion profile and differentiation capacity of human adipose tissue derived mesenchymal stem cells grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite nano-coated surfaces.

    Science.gov (United States)

    Bostancioglu, R Beklem; Gurbuz, Mevlut; Akyurekli, Ayse Gul; Dogan, Aydin; Koparal, A Savas; Koparal, A Tansu

    2017-07-01

    Accelerated Mesenchymal Stem Cells (MSCs) condensation and robust MSC-matrix and MSC-MSC interactions on nano-surfaces may provide critical factors contributing to such events, likely through the orchestrated signal cascades and cellular events modulated by the extracellular matrix. In this study, human adipose tissue derived mesenchymal stem cells (hMSC)', were grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite (HAP) nano-coated surfaces. These metal ions are known to have different chemical and surface properties; therefore we investigated their respective contributions to cell viability, cellular behavior, osteogenic differentiation capacity and substrate-cell interaction. Nano-powders were produced using a wet chemical process. Air spray deposition was used to accumulate the metal ion doped HAP films on a glass substrate. Cell viability was determined by MTT, LDH and DNA quantitation methods Osteogenic differentiation capacity of hMSCs was analyzed with Alizarin Red Staining and Alkaline Phosphatase Specific Activity. Adhesion of the hMSCs and the effect of cell adhesion on biomaterial biocompatibility were explored through cell adhesion assay, immunofluorescence staining for vinculin and f-actin cytoskeleton components, SEM and microarray including 84 known extracellular matrix proteins and cell adhesion pathway genes, since, adhesion is the first step for good biocompability. The results demonstrate that the viability and osteogenic differentiation of the hMSCs (in growth media without osteogenic stimulation) and cell adhesion capability are higher on nanocoated surfaces that include Zn, Ag and/or Cu metal ions than commercial HAP. These results reveal that Zn, Ag and Cu metal ions contribute to the biocompatibility of exogenous material. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    DEFF Research Database (Denmark)

    Brown, Alan; Turner, Louise; Christoffersen, Stig

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria....... The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from......, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLß domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1...

  1. Ex Vivo and In Vivo Mice Models to Study Blastocystis spp. Adhesion, Colonization and Pathology: Closer to Proving Koch's Postulates.

    Directory of Open Access Journals (Sweden)

    Sitara S R Ajjampur

    Full Text Available Blastocystis spp. are widely prevalent extra cellular, non-motile anerobic protists that inhabit the gastrointestinal tract. Although Blastocystis spp. have been associated with gastrointestinal symptoms, irritable bowel syndrome and urticaria, their clinical significance has remained controversial. We established an ex vivo mouse explant model to characterize adhesion in the context of tissue architecture and presence of the mucin layer. Using confocal microscopy with tissue whole mounts and two axenic isolates of Blastocystis spp., subtype 7 with notable differences in adhesion to intestinal epithelial cells (IEC, isolate B (ST7-B and isolate H (more adhesive, ST7-H, we showed that adhesion is both isolate dependent and tissue trophic. The more adhesive isolate, ST7-H was found to bind preferentially to the colon tissue than caecum and terminal ileum. Both isolates were also found to have mucinolytic effects. We then adapted a DSS colitis mouse model as a susceptible model to study colonization and acute infection by intra-caecal inoculation of trophic Blastocystis spp.cells. We found that the more adhesive isolate ST7-H was also a better colonizer with more mice shedding parasites and for a longer duration than ST7-B. Adhesion and colonization was also associated with increased virulence as ST7-H infected mice showed greater tissue damage than ST7-B. Both the ex vivo and in vivo models used in this study showed that Blastocystis spp. remain luminal and predominantly associated with mucin. This was further confirmed using colonic loop experiments. We were also successfully able to re-infect a second batch of mice with ST7-H isolates obtained from fecal cultures and demonstrated similar histopathological findings and tissue damage thereby coming closer to proving Koch's postulates for this parasite.

  2. The effect of Kombucha on post-operative intra-abdominal adhesion formation in rats.

    Science.gov (United States)

    Maghsoudi, Hemmat; Mohammadi, Hussein Benagozar

    2009-04-01

    Peritoneal adhesions are fibrous bands of tissues formed between organs that are normally separated and/or between organs and the internal body wall after peritoneal injury. The aim of the study was to investigate the effect of intra-peritoneal administration of Kombucha on intra-peritoneal adhesions. Eighty Wistar rats were subjected to standardized lesion by scraping model and were randomly divided into two groups. Group I received no treatment, and Group II received 15 ml of Kombucha solution intra-peritoneally. On the post-operative 14th day adhesion intensity score, inflammatory cell reaction and number of adhesion bands were determined. In the control group, there were no rats with grade 0 and I adhesions. In the group II, there were 26 rats (78.8%) with grade 0-2 adhesions. Adhesion intensity was significantly less in group II (PKombucha might be useful for preventing peritoneal adhesions.

  3. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  4. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading: Arcan Test Study and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-01-01

    Full Text Available The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress, and combination of both. To realize these stress states in the adhesively-bonded joint during tests, a specific loading device is developed with the capacity of providing six different loading angles, which are 0°(pure tension, 18°, 36°, 54°, 72° and 90°(pure shear. Failure modes of adhesively-bonded joints are investigated. It indicates that, for the pure shear loading, the failure mode is the cohesive failure (near the interface between the adhesive layer and the steel support in the adhesive layer. For the pure tensile and combined loading conditions, the failure mode is the combination of fiber breaking, FRP delamination and interfacial adhesion failure between the FRP sandwich deck and the adhesive layer. The load-bearing capacities of adhesive joints under combined loading are much lower than those of the pure tensile and pure shear loading conditions. According to the test results of six angle loading conditions, a tensile/shear failure criterion of the adhesively-bonded joint is obtained. By using Finite Element (FE modeling method, linear elastic simulations are performed to characterize the stress distribution throughout the adhesively-bonded joint.

  5. A Histopathological Study of Direct Pulp Capping with Adhesive Resins

    Directory of Open Access Journals (Sweden)

    J. Salhenejad

    2004-12-01

    Full Text Available Statement of Problem: Recently, it has been proposed that different adhesive materials can be used for direct pulp capping. Previous studies have demonstrated that multi steps dentin adhesives could form reparative dentin similar to calcium hydroxide (CH.Purpose: The aim of this study was to evaluate the histological pulp response of ninety mechanically exposed cat pulps to two adhesive resins (Scotch Bond MP and Single Bond 3M were compared with a calcium hydroxide cement (Dycal, Dentsply.Materials and Methods : Class V facial cavities with similar pulpal exposures were prepared in canines. In the experimental groups phosphoric acid was used to etch the enamel and dentin and pulp exposure, and after it dentin adhesives was applied. The exposure point of the control group was capped with Dycal then the remainder of the cavities was etched and a dentin adhesive (single bond was applied. All of the cavities were restored with a composite resin (Z 100 in usual manner. The animals were scarified after 7, 30 and 60 days (n=30, and the pulp evaluated histologically, statistical analysis was carried out with Kruskal- Wallis test (a=0.05.Results: The data showed that most of the cases had mild inflammation of pulp tissue.There was no significant difference in inflammatory reaction of pulp by Dycal and two adhesive systems, severe inflammatory reaction of pulp was observed only in most of the 30- day Single Bond group. Soft tissue organization of dentin bridge was less than ScotchBond and Dycal groups, the differentiation of dentin bridge was less than Scotch Bond group after 7 days.Conclusion: Slight inflammatory cell infiltration was the main reaction of exposed pulp when two commercially available adhesive resins were placed directly on the exposed pulp.There was no significant difference in inflammatory reaction of pulp between Dycal and two adhesive systems after 7 days and 60 days. After 7 days most of the specimens showed an amount of predentin

  6. Smooth muscle cell rigidity and extracellular matrix organization influence endothelial cell spreading and adhesion formation in coculture.

    Science.gov (United States)

    Wallace, Charles S; Strike, Sophie A; Truskey, George A

    2007-09-01

    Efforts to develop functional tissue-engineered blood vessels have focused on improving the strength and mechanical properties of the vessel wall, while the functional status of the endothelium within these vessels has received less attention. Endothelial cell (EC) function is influenced by interactions between its basal surface and the underlying extracellular matrix. In this study, we utilized a coculture model of a tissue-engineered blood vessel to evaluate EC attachment, spreading, and adhesion formation to the extracellular matrix on the surface of quiescent smooth muscle cells (SMCs). ECs attached to and spread on SMCs primarily through the alpha(5)beta(1)-integrin complex, whereas ECs used either alpha(5)beta(1)- or alpha(v)beta(3)-integrin to spread on fibronectin (FN) adsorbed to plastic. ECs in coculture lacked focal adhesions, but EC alpha(5)beta(1)-integrin bound to fibrillar FN on the SMC surface, promoting rapid fibrillar adhesion formation. As assessed by both Western blot analysis and quantitative real-time RT-PCR, coculture suppressed the expression of focal adhesion proteins and mRNA, whereas tensin protein and mRNA expression were elevated. When attached to polyacrylamide gels with similar elastic moduli as SMCs, focal adhesion formation and the rate of cell spreading increased relative to ECs in coculture. Thus, the elastic properties are only one factor contributing to EC spreading and focal adhesion formation in coculture. The results suggest that the softness of the SMCs and the fibrillar organization of FN inhibit focal adhesions and reduce cell spreading while promoting fibrillar adhesion formation. These changes in the type of adhesions may alter EC signaling pathways in tissue-engineered blood vessels.

  7. Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior

    Directory of Open Access Journals (Sweden)

    Julia Brasch

    2018-05-01

    Full Text Available Summary: Type II cadherins are cell-cell adhesion proteins critical for tissue patterning and neuronal targeting but whose molecular binding code remains poorly understood. Here, we delineate binding preferences for type II cadherin cell-adhesive regions, revealing extensive heterophilic interactions between specific pairs, in addition to homophilic interactions. Three distinct specificity groups emerge from our analysis with members that share highly similar heterophilic binding patterns and favor binding to one another. Structures of adhesive fragments from each specificity group confirm near-identical dimer topology conserved throughout the family, allowing interface residues whose conservation corresponds to specificity preferences to be identified. We show that targeted mutation of these residues converts binding preferences between specificity groups in biophysical and co-culture assays. Our results provide a detailed understanding of the type II cadherin interaction map and a basis for defining their role in tissue patterning and for the emerging importance of their heterophilic interactions in neural connectivity. : Type II cadherins are a family of vertebrate cell adhesion proteins expressed primarily in the CNS. Brasch et al. measure binding between adhesive fragments, revealing homophilic and extensive selective heterophilic binding with specificities that define groups of similar cadherins. Structures reveal common adhesive dimers, with residues governing cell-adhesive specificity. Keywords: cell adhesion, crystal structure, hemophilic specificity, heterophilic specificity, neural patterning, synaptic targeting, cadherin

  8. Scalable robotic biofabrication of tissue spheroids

    International Nuclear Information System (INIS)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V; Brown, J; Beaver, W; Da Silva, J V L

    2011-01-01

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  9. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  10. Adhesive coatings based on melanin-like nanoparticles for surgical membranes.

    Science.gov (United States)

    Scognamiglio, Francesca; Travan, Andrea; Turco, Gianluca; Borgogna, Massimiliano; Marsich, Eleonora; Pasqua, Mattia; Paoletti, Sergio; Donati, Ivan

    2017-07-01

    Adhesive coatings for implantable biomaterials can be designed to prevent material displacement from the site of implant. In this paper, a strategy based on the use of melanin-like nanoparticles (MNPs) for the development of adhesive coatings for polysaccharidic membranes was devised. MNPs were synthesized in vitro and characterized in terms of dimensions and surface potential, as a function of pH and ionic strength. The in vitro biocompatibility of MNPs was investigated on fibroblast cells, while the antimicrobial properties of MNPs in suspension were evaluated on E. coli and S. aureus cultures. The manufacturing of the adhesive coatings was carried out by spreading MNPs over the surface of polysaccharidic membranes; the adhesive properties of the nano-engineered coating to the target tissue (intestinal serosa) were studied in simulated physiological conditions. Overall, this study opens for novel approaches in the design of naturally inspired nanostructured adhesive systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  12. In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yan Huang [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)], E-mail: luxy@seu.edu.cn; Ma Jingwu [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Nan Huang [Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: nhuang@263.com

    2008-11-15

    The aim of this paper was to study the surface properties, protein adsorption and platelet adhesion behaviors of diamond-like carbon (DLC) and titanium (Ti) films. The surface energy and microstructures of these films were characterized by contact angle measurement and atomic force microscopy (AFM). A modified Coomassie brilliant blue (CBB) protein assay was used to study the amount of adsorbed proteins. Platelet adhesion was assessed by scanning electron microscopy (SEM). The AFM results show that the DLC film is smoother than Ti. Protein adsorption results from CBB protein assay show that the ratio of adsorbed albumin (Alb) to IgG (R{sub A/I}) on DLC is larger than Ti, which coincide with the sequence of the ratio of interfacial tension between solid surface and Alb ({gamma}{sub S,Alb}) to interfacial tension between surface and IgG ({gamma}{sub S,IgG}) ({gamma}{sub S,Alb}/{gamma}{sub S,IgG}). The DLC film has a preferential adsorption for Alb. The results suggest that the ratio of {gamma}{sub S,Alb}/{gamma}{sub S,IgG} may indicate an Alb/IgG affinity ratio of materials. More platelets adhere on Ti film than on DLC, which may correspond to the surface roughness of materials. The conclusion is the blood compatibility of DLC seems to be better than Ti.

  13. Adhesion protein protocols [Methods in molecular biology, v. 96

    National Research Council Canada - National Science Library

    Dejana, Elisabetta; Corada, Monica

    1999-01-01

    .... By illuminating these adhesive molecules and the possibilities for manipulating them, the new experimental strategies collected here will have considerable clinical potential for the regulation of immunity, inflammation, tissue remodeling, and embryonic development" [publisher's web site].

  14. Adhesive capsulitis of the shoulder: evaluation with MR arthrography

    International Nuclear Information System (INIS)

    Jung, Joon-Yong; Jee, Won-Hee; Chun, Ho Jong; Kim, Yang-Soo; Chung, Yang Guk; Kim, Jung-Man

    2006-01-01

    The purpose of this study was to determine the usefulness of magnetic resonance (MR) arthrography for diagnosing adhesive capsulitis. Shoulder MR images of 28 patients with (n=14) and without (n=14) adhesive capsulitis were retrospectively analyzed. MR images were assessed for capsule and synovium thickness as well as the width of the axillary recess on oblique coronal fat-suppressed T1-weighted images and T2-weighted images, respectively. On oblique sagittal fat-suppressed T1-weighted images, the width of the rotator interval and the presence of abnormal tissue in the interval were evaluated. Significant differences were found between the two groups in capsule and synovium thickness on both sides of the recess on oblique coronal T2-weighted images (P=0.000), whereas thickness on the humeral aspect showed no significant difference on oblique coronal fat-suppressed T1-weighted images (P=0.109). On oblique coronal T2-weighted images, a cut-off value of 3-mm thickness gave the highest diagnostic accuracy for adhesive capsulitis with sensitivity, specificity, and accuracy of 79% (11/14), 100% (14/14), and 89% (25/28) at the humeral side and 93% (13/14), 86% (12/14), and 89% (25/28) at the glenoid side, respectively. There were significant differences in rotator interval width, presence of abnormal tissue in the rotator interval, and axillary recess width between the two groups (P<0.05). Thickness of capsule and synovium of the axillary recess greater than 3 mm is a practical MR criterion for diagnosing adhesive capsulitis when measured on oblique coronal T2-weighted MR arthrography images without fat suppression. The presence of abnormal tissue in the rotator interval showed high sensitivity but rather low specificity. (orig.)

  15. Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal.

    Science.gov (United States)

    Cho, Woo Kyung; Ankrum, James A; Guo, Dagang; Chester, Shawn A; Yang, Seung Yun; Kashyap, Anurag; Campbell, Georgina A; Wood, Robert J; Rijal, Ram K; Karnik, Rohit; Langer, Robert; Karp, Jeffrey M

    2012-12-26

    North American porcupines are well known for their specialized hairs, or quills that feature microscopic backward-facing deployable barbs that are used in self-defense. Herein we show that the natural quill's geometry enables easy penetration and high tissue adhesion where the barbs specifically contribute to adhesion and unexpectedly, dramatically reduce the force required to penetrate tissue. Reduced penetration force is achieved by topography that appears to create stress concentrations along regions of the quill where the cross sectional diameter grows rapidly, facilitating cutting of the tissue. Barbs located near the first geometrical transition zone exhibit the most substantial impact on minimizing the force required for penetration. Barbs at the tip of the quill independently exhibit the greatest impact on tissue adhesion force and the cooperation between barbs in the 0-2 mm and 2-4 mm regions appears critical to enhance tissue adhesion force. The dual functions of barbs were reproduced with replica molded synthetic polyurethane quills. These findings should serve as the basis for the development of bio-inspired devices such as tissue adhesives or needles, trocars, and vascular tunnelers where minimizing the penetration force is important to prevent collateral damage.

  16. Failure in a composite resin-dentin adhesive bond

    Energy Technology Data Exchange (ETDEWEB)

    Rezgui, B. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia)); Abdennagi, H. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia)); Sahtout, S. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia) Dept. d' Odontologie, Faculte de Chirurgie Dentaire de Monastir (Tunisia)); Belkhir, M.S. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia) Dept. d' Odontologie, Faculte de Chirurgie Dentaire de Monastir (Tunisia))

    1993-11-01

    Composites are drawing more and more attention as preferred materials for teeth restoration. The success of teeth restoration has been generally limited by the Composite Resin-Dentin bond strength. A testing device has been developped to allow a satisfactory testing method for evaluating bonding strength in tension and shear, which led to reproducible results. A comparaison between different bond systems has shown no significant difference in the tensile and the shear strength as well as in the fracture behavior. Moreover, results showed difference between tensile and shear strength, when considering one same bond system. Failure mode examination turned out to be, either cohesive (composite rupture), or adhesive (interface rupture) or both (mixed rupture). (orig.).

  17. [Current issues, problems and prospects of tension-free hernioplasty (review)].

    Science.gov (United States)

    2014-01-01

    In the present study there are discussed modern methods of the tension free hernioplastics, the complications associated with them and technical difficulties, up-to-date views and the perspectives of the issue development in terms of avoiding infectious complications, positioning of implants and their fixation. Hernia is one of the widespread surgical pathologies as it is found in 4% of the population and its share among the inpatient surgical diseases is about 18-30%. Consequently annually up to 20-21 mln hernioplasties are carried out worldwide. Despite of many years of experience in the field of hernia surgical treatment there still exist many unsolved problems such as safe closure of defects of abdominal cavity wall. Up to 200 methods of hernioplastics, various implantations and application of synthetic materials refer to lack of the optimal surgical strategy. In modern herniology priorities are given to tension free plastics. The merge of the synthetic implants and "tension free hernioplastics" concepts enabled sharp reduction of the side effects list, making it possible to perform successful surgeries in that contingent whose treatment by the method of tissue-plasty was related with high risk of lethality. Large scale introduction of tension free hernioplastics caused intensification of the associated problems such as migration, dissection and shortening of the net.

  18. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Science.gov (United States)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  19. The sticky business of adhesion prevention in minimally invasive gynecologic surgery.

    Science.gov (United States)

    Han, Esther S; Scheib, Stacey A; Patzkowsky, Kristin E; Simpson, Khara; Wang, Karen C

    2017-08-01

    The negative impact of postoperative adhesions has long been recognized, but available options for prevention remain limited. Minimally invasive surgery is associated with decreased adhesion formation due to meticulous dissection with gentile tissue handling, improved hemostasis, and limiting exposure to reactive foreign material; however, there is conflicting evidence on the clinical significance of adhesion-related disease when compared to open surgery. Laparoscopic surgery does not guarantee the prevention of adhesions because longer operative times and high insufflation pressure can promote adhesion formation. Adhesion barriers have been available since the 1980s, but uptake among surgeons remains low and there is no clear evidence that they reduce clinically significant outcomes such as chronic pain or infertility. In this article, we review the ongoing magnitude of adhesion-related complications in gynecologic surgery, currently available interventions and new research toward more effective adhesion prevention. Recent literature provides updated epidemiologic data and estimates of healthcare costs associated with adhesion-related complications. There have been important advances in our understanding of normal peritoneal healing and the pathophysiology of adhesions. Adhesion barriers continue to be tested for safety and effectiveness and new agents have shown promise in clinical studies. Finally, there are many experimental studies of new materials and pharmacologic and biologic prevention agents. There is great interest in new adhesion prevention technologies, but new agents are unlikely to be available for clinical use for many years. High-quality effectiveness and outcomes-related research is still needed.

  20. Embryonic cell-cell adhesion: a key player in collective neural crest migration.

    Science.gov (United States)

    Barriga, Elias H; Mayor, Roberto

    2015-01-01

    Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration. © 2015 Elsevier Inc. All rights reserved.

  1. A naturally occurring nanomaterial from the Sundew (Drosera) for tissue engineering

    International Nuclear Information System (INIS)

    Lenaghan, S C; Xia, L; He, W; Zhang, M; Serpersu, K

    2011-01-01

    In recent years advances have been made in the design of novel materials for tissue engineering through the use of polysaccharides. This study evaluated the ability of a naturally secreted polysaccharide adhesive from the Sundew (Drosera capensis) as a support for cell growth. The Sundew adhesive has several advantages including its high elasticity and antibiotic nature. By coating glass cover slips with the Sundew adhesive, a network of nanofibers was generated that was capable of promoting attachment and differentiation of a model neuronal cell line, PC-12. We also demonstrated the potential of this material for repairing bone and soft tissue injuries, by testing attachment of osteoblasts and endothelial cells. Finally, it was determined that the Sundew biomaterial was stable through testing by atomic force microscopy and prolonged cell growth. This work has proven the capabilities of using a nanomaterial derived from the Sundew adhesive for the purpose of tissue engineering.

  2. Cell adhesion to textured silicone surfaces : The influence of time of adhesion and texture on focal contact and fibronectin fibril formation

    NARCIS (Netherlands)

    van Kooten, TG; von Recum, AF

    Cell adhesion and spreading on biomaterials is a key issue in the study of cell-biomaterial interactions. With the development of new disciplines within biomaterials research such as tissue engineering and cellular therapy, information at molecular and structural levels is needed in order to

  3. Adhesive sealing of dentin surfaces in vitro: A review

    Science.gov (United States)

    Abu-Nawareg, Manar M; Zidan, Ahmed Z; Zhou, Jianfeng; Agee, Kelli; Chiba, Ayaka; Tagami, Jungi; Pashley, David H

    2016-01-01

    Purpose The purpose of this review is to describe the evolution of the use of dental adhesives to form a tight seal of freshly prepared dentin to protect the pulp from bacterial products, during the time between crown preparation and final cementum of full crowns. The evolution of these “immediate dentin sealants” follows the evolution of dental adhesives, in general. That is, they began with multiple-step, etch-and-rinse adhesives, and then switched to the use of simplified adhesives. Methods Literature was reviewed for evidence that bacteria or bacterial products diffusing across dentin can irritate pulpal tissues before and after smear layer removal. Smear layers can be solubilized by plaque organisms within 7–10 days if they are directly exposed to oral fluids. It is likely that smear layers covered by temporary restorations may last more than one month. As long as smear layers remain in place, they can partially seal dentin. Thus, many in vitro studies evaluating the sealing ability of adhesive resins use smear layer-covered dentin as a reference condition. Surprisingly, many adhesives do not seal dentin as well as do smear layers. Results Both in vitro and in vivo studies show that resin-covered dentin allows dentinal fluid to cross polymerized resins. The use of simplified single bottle adhesives to seal dentin was a step backwards. Currently, most authorities use either 3-step adhesives such as Scotchbond Multi-Purposea or OptiBond FLb or two-step self-etching primer adhesives, such as Clearfil SEc, Unifil Bondd or AdheSEe, respectfully. PMID:26846037

  4. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    Directory of Open Access Journals (Sweden)

    Janice Kal Van Tam, Koichiro Uto, Mitsuhiro Ebara, Stefania Pagliari, Giancarlo Forte and Takao Aoyagi

    2012-01-01

    Full Text Available The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell–matrix interaction, using poly-ε-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  5. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  6. Thermomechanical and adhesive properties of radiation-modified polymer composites for thermosetting products

    International Nuclear Information System (INIS)

    Kalkis, V.; Maksimov, R.D.; Kalnins, M.; Zicans, J.; Bocoka, T.; Revjakin, O.

    2000-01-01

    The gamma-irradiated blends of polyethylene (PE) with ethylene / propylene / diene copolymer (Epdm) and thermotropic liquid crystalline polymer (LCP) are investigated. The radiation dose absorbed does not exceed 150 kGy (10 kGy=1 Mrad). It is shown that the even small amounts of LCP added to PE improve the mechanical and operational properties of composites and the thermosetting products made of them. The temperature dependences of the elastics modulus, tension diagrams at a temperature above the PE melting point, and recovery curves of the oriented specimens are presented. The kinetics of thermorelaxation and residual setting stresses upon isometric heating and cooling of the previously oriented composites is studied. The data on the influence of LCP on the adhesion interaction of the blend with steel are obtained. The features of thermomechanical and adhesive properties are discussed and the results of morphological and calorimetric tests are given. (author)

  7. Endothelial cell adhesion to ion implanted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Kusakabe, M [SONY Corp., Tokyo (Japan); Lee, J S; Kaibara, M; Iwaki, M; Sasabe, H [RIKEN (Inst. of Physical and Chemical Research), Saitama (Japan)

    1992-03-01

    The biocompatibility of ion implanted polymers has been studied by means of adhesion measurements of bovine aorta endothelial cells in vitro. The specimens used were polystyrene (PS) and segmented polyurethane (SPU). Na{sup +}, N{sub 2}{sup +}, O{sub 2}{sup +} and Kr{sup +} ion implantations were performed at an energy of 150 keV with fluences ranging from 1x10{sup 15} to 3x10{sup 17} ions/cm{sup 2} at room temperature. The chemical and physical structures of ion-implanted polymers have been investigated in order to analyze their tissue compatibility such as improvement of endothelial cell adhesion. The ion implanted SPU have been found to exhibit remarkably higher adhesion and spreading of endothelial cells than unimplanted specimens. By contrast, ion implanted PS demonstrated a little improvement of adhesion of cells in this assay. Results of FT-IR-ATR showed that ion implantation broke the original chemical bond to form new radicals such as OH, ....C=O, SiH and condensed rings. The results of Raman spectroscopy showed that ion implantation always produced a peak near 1500 cm{sup -1}, which indicated that these ion implanted PS and SPU had the same carbon structure. This structure is considered to bring the dramatic increase in the extent of cell adhesion and spreading to these ion implanted PS and SPU. (orig.).

  8. Lotus-leaf-like structured chitosan–polyvinyl pyrrolidone films as an anti-adhesion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jin Ik; Kang, Min Ji; Lee, Woo-Kul, E-mail: leewo@dankook.ac.kr

    2014-11-30

    Highlights: • Improved mechanical properties by hydrogen bond between chitosan and PVP chains. • Improved anti-adhesion effect by lotus-leaf-like structured chitosan–PVP (L-chitosan–PVP) film. • L-Chitosan–PVP film as a blood/tissue anti-adhesion barrier for post-surgical treatment. - Abstract: For postsurgical anti-adhesion barrier applications, lotus-leaf-like structured chitosan–PVP films were prepared using a solution casting method with dodecyltrichloro-immobilized SiO{sub 2} nanoparticles. We evaluated whether the lotus-leaf-like structured chitosan–PVP films (L-chitosan–PVP) could be applied as postsurgical anti-adhesion barriers. A recovery test using a tensile strength testing machine and measurement of crystallinity using X-ray diffraction indicated that films with 75% PVP were the optimal composition of the chitosan–PVP films. Also, dodecyltrichloro-immobilized SiO{sub 2} nanoparticles were synthesized and sprayed on the film after pretreatment with the instant bio-glue. Analysis of cell adhesion, proliferation, and anti-thrombus efficiency were performed via a WST assay, field emission scanning electron microscopy, and hemacytometry. The contact angle with the lotus-leaf-like surface was of approximately 150°. Furthermore, the L-chitosan–PVP film yielded a lower cell and platelet adhesion rate (around less than 4%) than that yielded by the untreated film. These results indicate that the lotus-leaf-like structure has a unique property and that this novel L-chitosan–PVP film can be applied as a blood/tissue-compatible, biodegradable material for implantable medical devices that need an anti-adhesion barrier.

  9. Lotus-leaf-like structured chitosan–polyvinyl pyrrolidone films as an anti-adhesion barrier

    International Nuclear Information System (INIS)

    Lim, Jin Ik; Kang, Min Ji; Lee, Woo-Kul

    2014-01-01

    Highlights: • Improved mechanical properties by hydrogen bond between chitosan and PVP chains. • Improved anti-adhesion effect by lotus-leaf-like structured chitosan–PVP (L-chitosan–PVP) film. • L-Chitosan–PVP film as a blood/tissue anti-adhesion barrier for post-surgical treatment. - Abstract: For postsurgical anti-adhesion barrier applications, lotus-leaf-like structured chitosan–PVP films were prepared using a solution casting method with dodecyltrichloro-immobilized SiO 2 nanoparticles. We evaluated whether the lotus-leaf-like structured chitosan–PVP films (L-chitosan–PVP) could be applied as postsurgical anti-adhesion barriers. A recovery test using a tensile strength testing machine and measurement of crystallinity using X-ray diffraction indicated that films with 75% PVP were the optimal composition of the chitosan–PVP films. Also, dodecyltrichloro-immobilized SiO 2 nanoparticles were synthesized and sprayed on the film after pretreatment with the instant bio-glue. Analysis of cell adhesion, proliferation, and anti-thrombus efficiency were performed via a WST assay, field emission scanning electron microscopy, and hemacytometry. The contact angle with the lotus-leaf-like surface was of approximately 150°. Furthermore, the L-chitosan–PVP film yielded a lower cell and platelet adhesion rate (around less than 4%) than that yielded by the untreated film. These results indicate that the lotus-leaf-like structure has a unique property and that this novel L-chitosan–PVP film can be applied as a blood/tissue-compatible, biodegradable material for implantable medical devices that need an anti-adhesion barrier

  10. Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion.

    Science.gov (United States)

    Ronan, William; Deshpande, Vikram S; McMeeking, Robert M; McGarry, J Patrick

    2014-04-01

    Numerous experimental studies have established that cells can sense the stiffness of underlying substrates and have quantified the effect of substrate stiffness on stress fibre formation, focal adhesion area, cell traction, and cell shape. In order to capture such behaviour, the current study couples a mixed mode thermodynamic and mechanical framework that predicts focal adhesion formation and growth with a material model that predicts stress fibre formation, contractility, and dissociation in a fully 3D implementation. Simulations reveal that SF contractility plays a critical role in the substrate-dependent response of cells. Compliant substrates do not provide sufficient tension for stress fibre persistence, causing dissociation of stress fibres and lower focal adhesion formation. In contrast, cells on stiffer substrates are predicted to contain large amounts of dominant stress fibres. Different levels of cellular contractility representative of different cell phenotypes are found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent material-interface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the inter-dependent biomechanical processes regulating stress fibre and focal adhesion formation.

  11. An Adhesive Patch-Based Skin Biopsy Device for Molecular Diagnostics and Skin Microbiome Studies.

    Science.gov (United States)

    Yao, Zuxu; Moy, Ronald; Allen, Talisha; Jansen, Burkhard

    2017-10-01

    A number of diagnoses in clinical dermatology are currently histopathologically confirmed and this image recognition-based confirmation generally requires surgical biopsies. The increasing ability of molecular pathology to corroborate or correct a clinical diagnosis based on objective gene expression, mutation analysis, or molecular microbiome data is on the horizon and would be further supported by a tool or procedure to collect samples non-invasively. This study characterizes such a tool in form of a 'bladeless' adhesive patch-based skin biopsy device. The performance of this device was evaluated through a variety of complementary technologies including assessment of sample biomass, electron microscopy demonstrating the harvesting of layers of epidermal tissue, and isolation of RNA and DNA from epidermal skin samples. Samples were obtained by application of adhesive patches to the anatomical area of interest. Biomass assessment demonstrated collection of approximately 0.3mg of skin tissue per adhesive patch and electron microscopy confirmed the nature of the harvested epidermal skin tissue. The obtained tissue samples are stored in a stable fashion on adhesive patches over a wide range of temperatures (-80oC to +60oC) and for extended periods of time (7 days or more). Total human RNA, human genomic DNA and microbiome DNA yields were 23.35 + 15.75ng, 27.72 + 20.71ng and 576.2 + 376.8pg, respectively, in skin samples obtained from combining 4 full patches collected non-invasively from the forehead of healthy volunteers. The adhesive patch skin sampling procedure is well tolerated and provides robust means to obtain skin tissue, RNA, DNA, and microbiome samples without involving surgical biopsies. The non-invasively obtained skin samples can be shipped cost effectively at ambient temperature by mail or standard courier service, and are suitable for a variety of molecular analyses of the skin microbiome as well as of keratinocytes, T cells, dendritic cells

  12. Mechanical analysis of the strains generated by water tension in plant stems. Part II: strains in wood and bark and apparent compliance.

    Science.gov (United States)

    Alméras, Tancrède

    2008-10-01

    Tree stems shrink in diameter during the day and swell during the night in response to changes in water tension in the xylem. Stem shrinkage can easily be measured in a nondestructive way, to derive continuous information about tree water status. The relationship between the strain and the change in water tension can be evaluated by empirical calibrations, or can be related to the structure of the plant. A mechanical analysis was performed to make this relationship explicit. The stem is modeled as a cylinder made of multiple layers of tissues, including heartwood, sapwood, and inner and outer bark. The effect of changes in water tension on the apparent strain at the surface of a tissue is quantified as a function of parameters defining stem anatomy and the mechanical properties of the tissues. Various possible applications in the context of tree physiology are suggested.

  13. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex

    NARCIS (Netherlands)

    Gloerich, Martijn; Bianchini, Julie M.; Siemers, Kathleen A.; Cohen, Daniel J.; Nelson, W. James

    2017-01-01

    Both cell-cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell-cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is

  14. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    Science.gov (United States)

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  15. Mutant matrix metalloproteinase-9 reduces postoperative peritoneal adhesions in rats.

    Science.gov (United States)

    Atta, Hussein; El-Rehany, Mahmoud; Roeb, Elke; Abdel-Ghany, Hend; Ramzy, Maggie; Gaber, Shereen

    2016-02-01

    Postoperative peritoneal adhesions continue to be a major source of morbidity and occasional mortality. Studies have shown that matrix metalloproteinase-9 (MMP-9) levels are decreased postoperatively which may limits matrix degradation and participate in the development of peritoneal adhesions. In this proof-of-principle study, we evaluated the effect of gene therapy with catalytically inactive mutant MMP-9 on postoperative peritoneal adhesions in rats. Adenovirus encoding mutant MMP-9 (Ad-mMMP-9) or saline was instilled in the peritoneal cavity after cecal and parietal peritoneal injury in rats. Expression of mutant MMP-9 transcript was verified by sequencing. Adenovirus E4 gene expression, adhesion scores, MMP-9, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) expression were evaluated at sacrifice one week after treatment. Both mutant MMP-9 transcripts and adenovirus E4 gene were expressed in Ad-mMMP-9 treated adhesions. Adhesions severity decreased significantly (p = 0.036) in the Ad-mMMP-9-treated compared with saline-treated adhesions. Expression of MMP-9 mRNA and protein were elevated (p = 0.001 and p = 0.029, respectively) in the Ad-mMMP-9-treated adhesions compared with saline-treated adhesions. While tPA levels were increased (p = 0.02) in Ad-mMMP-9 treated adhesions compared with saline-treated adhesions, TGF-β1 and PAI-1 levels were decreased (p = 0.017 and p = 0.042, respectively). No difference in mortality were found between groups (p = 0.64). Mutant MMP-9 gene therapy effectively transduced peritoneal adhesions resulting in reduction of severity of primary peritoneal adhesions. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  16. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Handgretinger Rupert

    2010-01-01

    Full Text Available Abstract Background Human multipotent mesenchymal stromal cells (MSC can be isolated from various tissues including bone marrow. Here, MSC participate as bone lining cells in the formation of the hematopoietic stem cell niche. In this compartment, the oxygen tension is low and oxygen partial pressure is estimated to range from 1% to 7%. We analyzed the effect of low oxygen tensions on human MSC cultured with platelet-lysate supplemented media and assessed proliferation, morphology, chromosomal stability, immunophenotype and plasticity. Results After transferring MSC from atmospheric oxygen levels of 21% to 1%, HIF-1α expression was induced, indicating efficient oxygen reduction. Simultaneously, MSC exhibited a significantly different morphology with shorter extensions and broader cell bodies. MSC did not proliferate as rapidly as under 21% oxygen and accumulated in G1 phase. The immunophenotype, however, was unaffected. Hypoxic stress as well as free oxygen radicals may affect chromosomal stability. However, no chromosomal abnormalities in human MSC under either culture condition were detected using high-resolution matrix-based comparative genomic hybridization. Reduced oxygen tension severely impaired adipogenic and osteogenic differentiation of human MSC. Elevation of oxygen from 1% to 3% restored osteogenic differentiation. Conclusion Physiologic oxygen tension during in vitro culture of human MSC slows down cell cycle progression and differentiation. Under physiological conditions this may keep a proportion of MSC in a resting state. Further studies are needed to analyze these aspects of MSC in tissue regeneration.

  17. Biodegradable and thermosensitive monomethoxy poly(ethylene glycol)-poly(lactic acid) hydrogel as a barrier for prevention of post-operative abdominal adhesion.

    Science.gov (United States)

    Fu, Shao Zhi; Li, Zhi; Fan, Jun Ming; Meng, Xiao Hang; Shi, Kun; Qu, Ying; Yang, Ling Lin; Wu, Jing Bo; Fan, Juan; Luot, Feng; Qian, Zhi Yong

    2014-03-01

    Post-operative peritoneal adhesions are serious consequences of abdominal or pelvic surgery and cause severe bowel obstruction, chronic pelvic pain and infertility. In this study, a novel nano-hydrogel system based on a monomethoxy poly(ethylene glycol)-poly(lactic acid) (MPEG-PLA) di-block copolymer was studied for its ability to prevent abdominal adhesion in rats. The MPEG-PLA hydrogel at a concentration of 40% (w/v) was injected and was able to adhere to defect sites at body temperature. The ability of the hydrogel to inhibit adhesion of post-operative tissues was evaluated by utilizing a rat model of abdominal sidewall-cecum abrasion. It was possible to heal wounded tissue through regeneration of neo-peritoneal tissues ten days after surgery. Our data showed that this hydrogel system is equally as effective as current commercialized anti-adhesive products.

  18. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  19. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    DEFF Research Database (Denmark)

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham

    2009-01-01

    OBJECTIVES: Leukocyte adhesion deficiency is a rare primary immune disorder caused by defects of the CD18 beta-integrin molecule on immune cells. The condition usually presents in early infancy and is characterized by deep tissue infections, leukocytosis with impaired formation of pus, and delayed...... of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International......, with full donor engraftment in 17 cases, mixed multilineage chimerism in 7 patients, and mononuclear cell-restricted chimerism in an additional 3 cases. CONCLUSIONS: Hematopoietic stem-cell transplantation offers long-term benefit in leukocyte adhesion deficiency and should be considered as an early...

  20. The preventive effect of Rofecoxib in postoperative intraperitoneal adhesions.

    Science.gov (United States)

    Aldemir, M; Oztürk, H; Erten, C; Büyükbayram, H

    2004-02-01

    Previous studies showed that nonsteroidal anti-inflammatory (NSAI) drugs suppressed prostaglandin synthesis and were able to prevent adhesion formation following surgical trauma to the peritoneum. The selective suppression inflammatory cascade may prevent adhesion formation. Therefore, we planned this study to experimentally evaluate the effects of Rofecoxib, the selective cyclo-oxygenase-2 inhibitor, in postoperative intraperitoneal adhesions in an animal model. Male Sprague-Dawley rats were divided into three groups of 10. All rats underwent midline laparotomy under ketamine anaesthesia (25 mg/kg im). In group 1 (n = 10), the sham operation group (SG); abdominal walls were closed without any process after 2 minutes. In Group 2 (n = 10), the control group (CG); standard serosal damage was constituted and the abdominal wall was closed. In group 3 (n = 10), the COX-2 group (COXG), after serosal damage, the abdominal wall was closed. A 12 mg/kg/day dose of was given orally to the rats during one week. On the 7th postoperative day, all rats were sacrificed and intra-abdominal adhesions were evaluated both macroscopically and microscopically. Macroscopically, no serious adhesion formations were seen in the SG. Multiple adhesion formations of the CG were significantly more than those of the SG (p < 0.0001). It was determined that adhesions of the COXG diminished (p < 0.0001) when macromorphological adhesion scale results of the COXG were compared with those of the CG. The adhesion scores of the CG were compared microscopically with those of the COXG and granulation tissue formation and fibrosis in the COXG were found to be significantly less than those of the CG (respectively p = 0.002, p < 0.0001). We were of the opinion that Rofecoxib, the selective cyclo-oxygenase inhibitor, was effective in the prevention of postoperative peritoneal adhesions.

  1. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    Science.gov (United States)

    Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S

    2015-03-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.

  2. Adhesion of epoxy primer to hydrotalcite conversion coated AA2024

    Science.gov (United States)

    Leggat, Robert Benton, III

    Hydrotalcite-based (HT) conversion coatings are being developed as an environmentally benign alternative to chromate conversion coatings (CCC). Accelerated exposure tests were conducted on epoxy primed, HT-modified AA2024 to gauge service performance. HT-based conversion coatings did not perform as well as the CCC when used with an epoxy primer. The current HT chemistries are optimized for stand-alone corrosion protection, however additional research into the primer/HT interactions is necessary before they can be implemented within a coating scheme. The relative contribution of mechanical and physico-chemical interactions in controlling adhesion has been investigated in this study. Practical adhesion tests were used to assess the dry and wet bond strength of epoxy primer on HT coatings using the pull-off tensile strength (POTS) as the figure of merit. The practical adhesion of HT coated samples generally fell between that observed for the CCC and bare AA2024. Laboratory testing was done to assess the physical and chemical properties of HT coatings. Contact angle measurements were performed using powders representative of different HT chemistries to evaluate the dispersive and acid-base character of the surface. The wet POTS correlated with the electrodynamic (dipole + dispersive) parameter of the surface tension. The HT surfaces were found to be predominantly basic. Given the basicity of epoxy, these results indicate that increasing the acidic character of HT coatings may increase the adhesion performance. This was supported by electrokinetic measurements in which the dry POTS was found to increase with decreasing conversion coating iso-electric point. The correlations with the dry and wet state adhesion are interpreted as indicating that dry state adhesion is optimized by minimizing unfavorable polar interactions between the basic epoxy and HT interfaces. Wet state adhesion, where polar interactions are disrupted, is dictated by non-polar bonding. FTIR

  3. An adult case of giant bronchogenic cyst mimicking tension pneumothorax.

    Science.gov (United States)

    Yalcinkaya, Serhat; Vural, A Hakan; Ozal, Hasan

    2010-10-01

    Bronchogenic cysts are usually discovered only incidentally in the adult. A giant bronchogenic cyst in a 19-year-old woman presenting with pain and shortness of breath was mistaken for tension pneumothorax and initially treated with tube thoracostomy. Giant bullae were diagnosed by computed tomography. Bullae resection was undertaken, but the remaining lung tissue required pneumonectomy. Pathologic examination of the specimen confirmed bronchogenic cyst.

  4. Combinational Effect of Cell Adhesion Biomolecules and Their Immobilized Polymer Property to Enhance Cell-Selective Adhesion

    Directory of Open Access Journals (Sweden)

    Rio Kurimoto

    2016-01-01

    Full Text Available Although surface immobilization of medical devices with bioactive molecules is one of the most widely used strategies to improve biocompatibility, the physicochemical properties of the biomaterials significantly impact the activity of the immobilized molecules. Herein we investigate the combinational effects of cell-selective biomolecules and the hydrophobicity/hydrophilicity of the polymeric substrate on selective adhesion of endothelial cells (ECs, fibroblasts (FBs, and smooth muscle cells (SMCs. To control the polymeric substrate, biomolecules are immobilized on thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide (poly(NIPAAm-co-CIPAAm-grafted glass surfaces. By switching the molecular conformation of the biomolecule-immobilized polymers, the cell-selective adhesion performances are evaluated. In case of RGDS (Arg-Gly-Asp-Ser peptide-immobilized surfaces, all cell types adhere well regardless of the surface hydrophobicity. On the other hand, a tri-Arg-immobilized surface exhibits FB-selectivity when the surface is hydrophilic. Additionally, a tri-Ile-immobilized surface exhibits EC-selective cell adhesion when the surface is hydrophobic. We believe that the proposed concept, which is used to investigate the biomolecule-immobilized surface combination, is important to produce new biomaterials, which are highly demanded for medical implants and tissue engineering.

  5. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Rainey, Stephanie M.; Veland, Iben Rønn

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most...... role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border....

  6. Adhesive capsulitis: role of MR imaging in differential diagnosis

    International Nuclear Information System (INIS)

    Connell, David; Padmanabhan, Ravi; Buchbinder, Rachelle

    2002-01-01

    The purpose of this study was to describe and characterize the MR imaging findings in a group of patients who underwent surgery for adhesive capsulitis. Twenty-four MR imaging studies in 24 consecutive patients with clinical evidence of adhesive capsulitis were performed prior to arthroscopic capsulotomy. There were 17 women and 7 men with a mean age of 53.5 years. Images were scrutinised for changes in the synovium particularly in the rotator interval, around the biceps anchor and axillary pouch. Intravenous gadolinium was given routinely. We also examined a control group of 22 patients who underwent the same MR imaging protocol after referral for rotator cuff pathology. Soft tissue density showing variable enhancement after gadolinium administration was visible in the rotator interval in 22 of 24 studies on MR imaging. Seventeen patients showed soft tissue density partially encasing the biceps anchor. Ten patients showed thickening and gadolinium enhancement of the axillary pouch. Three patients from the study cohort had partial tears of the supraspinatus tendon. All the patients subsequently had surgery which confirmed fibrovascular scar tissue in the rotator interval, around the biceps anchor and a variable degree of synovial inflammation of the glenohumeral capsule. Two patients from a control group with suspected rotator cuff pathology showed abnormal intensity in the rotator interval on MR imaging. Magnetic resonance imaging can identify changes in the shoulder joint that correspond to abnormalities seen at surgery. This may be useful for discriminating adhesive capsulitis from other causes of shoulder pain. (orig.)

  7. Gallic Acid Attenuates Postoperative Intra-Abdominal Adhesion by Inhibiting Inflammatory Reaction in a Rat Model

    Science.gov (United States)

    Wei, Guangbing; Wu, Yunhua; Gao, Qi; Shen, Cong; Chen, Zilu; Wang, Kang; Yu, Junhui

    2018-01-01

    Background Intra-abdominal adhesion is one of the most common complications after abdominal surgery. The efficacy of current treatments for intra-abdominal adhesion is unsatisfactory. In this study, we investigated the effect of gallic acid on the prevention and treatment of intra-abdominal adhesions after abdominal surgery using an intra-abdominal adhesion rat model. Material/Methods The experimental rats were randomly divided into the sham operation group, the control group, the chitosan group, and 3 gallic acid groups of different concentrations. All rats except those in the sham operation group received cecal abrasion to induce adhesion. From the first postoperative day, the rats in the gallic acid groups were administered different concentrations of gallic acid in a 2-ml gavage daily. All rats were sacrificed on postoperative day 7, and the degree of intra-abdominal adhesion was evaluated by the naked eye. The amount of collagen deposited between the injured peritoneal tissues was assessed by Sirius red staining. Serum levels of interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and transforming growth factor-β (TGF-β) were measured by ELISA. Western blot was used to detect the level of NF-κB phosphorylation in the injured peritoneal or adhesion tissues of the rats. Results Compared with the control group, the scores of intra-abdominal adhesions in the rats treated with larger doses of gallic acid were significantly decreased, and the degree of inflammation and fibrosis was also significantly decreased. Gallic acid significantly reduced IL-6, TNF-α, and TGF-β1 serum levels. NF-κB phosphorylation in the higher gallic acid groups was significantly reduced. Conclusions Gallic acid inhibits the formation of postoperative intra-abdominal adhesions in rats by inhibiting the inflammatory reaction and fibrogenesis. Gallic acid is a promising drug for preventing intra-abdominal adhesions. PMID:29429982

  8. Reactor vessel stud tensioner

    International Nuclear Information System (INIS)

    Malandra, L.J.; Beer, R.W.; Salton, R.B.; Spiegelman, S.R.; Cognevich, M.L.

    1982-01-01

    A quick-acting stud tensioner, for facilitating the loosening or tightening of a stud nut on a reactor vessel stud, has gripper jaws which when the tensioner is lowered into engagement with the upper end of the stud are moved inwards to grip the upper end and which when the tensioner is lifted move outward to release the upper end. (author)

  9. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate

    Directory of Open Access Journals (Sweden)

    Erika Kitakami

    2014-01-01

    Full Text Available Human periodontal ligament (PDL cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate (PMEA is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate and poly[(2-methacryloyloxyethyl phosphorylcholine-co-(n-butyl methacrylate]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET. In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment.

  10. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  11. Inverse Regulation of Early and Late Chondrogenic Differentiation by Oxygen Tension Provides Cues for Stem Cell-Based Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sophie Portron

    2015-01-01

    Full Text Available Background/Aims: Multipotent stem/stromal cells (MSC are considered promising for cartilage tissue engineering. However, chondrogenic differentiation of MSC can ultimately lead to the formation of hypertrophic chondrocytes responsible for the calcification of cartilage. To prevent the production of this calcified matrix at the articular site, the late hypertrophic differentiation of MSCs must be carefully controlled. Given that articular cartilage is avascular, we hypothesized that in addition to its stimulatory role in the early differentiation of chondrogenic cells, hypoxia may prevent their late hypertrophic conversion. Methods: Early and late chondrogenic differentiation were evaluated using human adipose MSC and murine ATDC5 cells cultured under either normoxic (21%O2 or hypoxic (5%O2 conditions. To investigate the effect of hypoxia on late chondrogenic differentiation, the transcriptional activity of hypoxia-inducible factor-1alpha (HIF-1α and HIF-2α were evaluated using the NoShift DNA-binding assay and through modulation of their activity (chemical inhibitor, RNA interference. Results: Our data demonstrate that low oxygen tension not only stimulates the early chondrogenic commitment of two complementary models of chondrogenic cells, but also inhibits their hypertrophic differentiation. Conclusion: These results suggest that hypoxia can be used as an instrumental tool to prevent the formation of a calcified matrix in MSC-based cartilage tissue engineering.

  12. Failure in cartilaginous tissues

    NARCIS (Netherlands)

    Huyghe, J.M.R.J.; Talen-Jongeneelen, C.J.M.; Schroeder, Y.; Kraaijeveld, F.; Borst, de R.; Baaijens, F.P.T.

    2007-01-01

    Cartilaginous tissues high load bearing capacity is explained by osmotic prestressing putting the collagen fiber reinforcement under tension and the proteoglycan gel under compression. The osmotic forces are boosted by a further 50 % by the affinity of the collagen with the aquous solution. The high

  13. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  14. Capillary adhesion between elastic solids with randomly rough surfaces

    International Nuclear Information System (INIS)

    Persson, B N J

    2008-01-01

    I study how the contact area and the work of adhesion between two elastic solids with randomly rough surfaces depend on the relative humidity. The surfaces are assumed to be hydrophilic, and capillary bridges form at the interface between the solids. For elastically hard solids with relatively smooth surfaces, the area of real contact and therefore also the sliding friction are maximal when there is just enough liquid to fill out the interfacial space between the solids, which typically occurs for d K ∼3h rms , where d K is the height of the capillary bridge and h rms the root-mean-square roughness of the (combined) surface roughness profile. For elastically soft solids, the area of real contact is maximal for very low humidity (i.e. small d K ), where the capillary bridges are able to pull the solids into nearly complete contact. In both cases, the work of adhesion is maximal (and equal to 2γcosθ, where γ is the liquid surface tension and θ the liquid-solid contact angle) when d K >> h rms , corresponding to high relative humidity

  15. Loss of intercellular adhesion leads to differential accumulation of hypericin in bladder cancer

    Science.gov (United States)

    Lucky, S. Sasidharan; Bhuvaneswari, Ramaswamy; Chin, William W. L.; Lau, Weber K. O.; Olivo, Malini C. D.

    2009-06-01

    Photodynamic diagnosis (PDD) exploits the photoactive nature of certain compounds, namely photosensitizers, in order to enhance the visual demarcation between normal and neoplastic tissue. Hypericin is one such potent photosensitizer that preferentially accumulate in neoplastic tissue, and fluoresce in the visible spectrum when illuminated with light of an appropriate wavelength. In our study, we investigated the role of E-cadherin in the selective permeation of hypericin in bladder cancer tissues. Clinical studies were done on a series of 43 histologically graded bladder cancer biopsy specimens, obtained from 28 patients who received intravesical instillations with 8μM hypericin solution for at least 2 hours. Immunohistochemical staining was used to assess the expression of E-cadherin, in the cryosectioned tissues. Hypericin uptake was examined by fluorescence microscopy. Immunohistochemical staining showed a clear expression of E-cadherin along the urothelial lining of the normal and pre-malignant tissues. Partial expression of these cell adhesion molecules were still observed in malignant tissues, however there was a loss of expression to variable extends along the urothelium. Thus, loss of intercellular adhesion can be associated with enhanced hypericin permeation through paracellular diffusion.

  16. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  17. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides

    Directory of Open Access Journals (Sweden)

    Annj Zamuner

    2017-09-01

    Full Text Available Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP mapped on [351–359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.

  18. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides.

    Science.gov (United States)

    Zamuner, Annj; Brun, Paola; Scorzeto, Michele; Sica, Giuseppe; Castagliuolo, Ignazio; Dettin, Monica

    2017-09-01

    Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP) mapped on [351-359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.

  19. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    Energy Technology Data Exchange (ETDEWEB)

    Shotorbani, Behnaz Banimohamad [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Alizadeh, Effat, E-mail: Alizadehe@tbzmed.ac.ir [Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Salehi, Roya [Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Barzegar, Abolfazl [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2017-02-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  20. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    International Nuclear Information System (INIS)

    Shotorbani, Behnaz Banimohamad; Alizadeh, Effat; Salehi, Roya; Barzegar, Abolfazl

    2017-01-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  1. Adhesion science

    CERN Document Server

    Comyn, John

    1997-01-01

    The use of adhesives is widespread and growing, and there are few modern artefacts, from the simple cereal packet, to the jumbo jet, that are without this means of joining. Adhesion Science provides an illuminating account of the science underlying the use of adhesives, a branch of chemical technology which is fundamental to the science of coatings and composite materials and to the performance of all types of bonded structures. This book guides the reader through the essential basic polymer science, and the chemistry of adhesives in use at present. It discusses surface preparation for adhesive bonding, and the use of primers and coupling agents. There is a detailed chapter on contact angles and what can be predicted from them. A simple guide on stress distribution joints and how this relates to testing is included. It also examines the interaction of adhesives and the environment, including an analysis of the resistance of joints to water, oxygen and ultra-violet light. Adhesion Science provides a comprehens...

  2. Longevity of Self-etch Dentin Bonding Adhesives Compared to Etch-and-rinse Dentin Bonding Adhesives: A Systematic Review.

    Science.gov (United States)

    Masarwa, Nader; Mohamed, Ahmed; Abou-Rabii, Iyad; Abu Zaghlan, Rawan; Steier, Liviu

    2016-06-01

    A systematic review and meta-analysis were performed to compare longevity of Self-Etch Dentin Bonding Adhesives to Etch-and-Rinse Dentin Bonding Adhesives. The following databases were searched for PubMed, MEDLINE, Web of Science, CINAHL, the Cochrane Library complemented by a manual search of the Journal of Adhesive Dentistry. The MESH keywords used were: "etch and rinse," "total etch," "self-etch," "dentin bonding agent," "bond durability," and "bond degradation." Included were in-vitro experimental studies performed on human dental tissues of sound tooth structure origin. The examined Self-Etch Bonds were of two subtypes; Two Steps and One Step Self-Etch Bonds, while Etch-and-Rinse Bonds were of two subtypes; Two Steps and Three Steps. The included studies measured micro tensile bond strength (μTBs) to evaluate bond strength and possible longevity of both types of dental adhesives at different times. The selected studies depended on water storage as the aging technique. Statistical analysis was performed for outcome measurements compared at 24 h, 3 months, 6 months and 12 months of water storage. After 24 hours (p-value = 0.051), 3 months (p-value = 0.756), 6 months (p-value=0.267), 12 months (p-value=0.785) of water storage self-etch adhesives showed lower μTBs when compared to the etch-and-rinse adhesives, but the comparisons were statistically insignificant. In this study, longevity of Dentin Bonds was related to the measured μTBs. Although Etch-and-Rinse bonds showed higher values at all times, the meta-analysis found no difference in longevity of the two types of bonds at the examined aging times. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Adhesion and migration of cells responding to microtopography.

    Science.gov (United States)

    Estévez, Maruxa; Martínez, Elena; Yarwood, Stephen J; Dalby, Matthew J; Samitier, Josep

    2015-05-01

    It is known that cells respond strongly to microtopography. However, cellular mechanisms of response are unclear. Here, we study wild-type fibroblasts responding to 25 µm(2) posts and compare their response to that of FAK(-/-) fibroblasts and fibroblasts with PMA treatment to stimulate protein kinase C (PKC) and the small g-protein Rac. FAK knockout cells modulated adhesion number and size in a similar way to cells on topography; that is, they used more, smaller adhesions, but migration was almost completely stalled demonstrating the importance of FAK signaling in contact guidance and adhesion turnover. Little similarity, however, was observed to PKC stimulated cells and cells on the topography. Interestingly, with PKC stimulation the cell nuclei became highly deformable bringing focus on these surfaces to the study of metastasis. Surfaces that aid the study of cellular migration are important in developing understanding of mechanisms of wound healing and repair in aligned tissues such as ligament and tendon. © 2014 Wiley Periodicals, Inc.

  4. Tension and Elasticity Contribute to Fibroblast Cell Shape in Three Dimensions.

    Science.gov (United States)

    Brand, Christoph A; Linke, Marco; Weißenbruch, Kai; Richter, Benjamin; Bastmeyer, Martin; Schwarz, Ulrich S

    2017-08-22

    The shape of animal cells is an important regulator for many essential processes such as cell migration or division. It is strongly determined by the organization of the actin cytoskeleton, which is also the main regulator of cell forces. Quantitative analysis of cell shape helps to reveal the physical processes underlying cell shape and forces, but it is notoriously difficult to conduct it in three dimensions. Here we use direct laser writing to create 3D open scaffolds for adhesion of connective tissue cells through well-defined adhesion platforms. Due to actomyosin contractility in the cell contour, characteristic invaginations lined by actin bundles form between adjacent adhesion sites. Using quantitative image processing and mathematical modeling, we demonstrate that the resulting shapes are determined not only by contractility, but also by elastic stress in the peripheral actin bundles. In this way, cells can generate higher forces than through contractility alone. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Mouse lung adhesion assay for Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Burns, K A; Freer, J H [Department of Microbiology, Alexander Stone Building, Bearsden, Glasgow, Scotland

    1982-03-01

    The ability of Bordetella pertussis to adhere to cell surfaces has been demonstrated by adhesion to tissue culture cells and adhesion to chicken, hamster or rabbit trachea in organ culture. In this report a mouse lung assay for adhesion is described and the results obtained using two virulent strains of B. pertussis and their avirulent counterparts. These were a C modulation of one of the original virulent strains and a phase IV variant of the other virulent strain. Organisms were radiolabelled by adding 1 ..mu..Ci (37 K Bq) of (/sup 14/C)glutamic acid per 10 ml of culture medium before inoculation and incubation for 5 days. The lungs were washed by perfusion in situ with at least two volumes (1 ml) of sterile 1% (w/v) casamino acids. The percentage of the inoculated organisms retained in the lungs was determined, after removal of the lungs, by one of the following two methods: viable count or radioactive count. Results for both methods were expressed as the percentage of the inoculum retained in the lungs plus or minus one standard deviation.

  6. Mouse lung adhesion assay for Bordetella pertussis

    International Nuclear Information System (INIS)

    Burns, K.A.; Freer, J.H.

    1982-01-01

    The ability of Bordetella pertussis to adhere to cell surfaces has been demonstrated by adhesion to tissue culture cells and adhesion to chicken, hamster or rabbit trachea in organ culture. In this report a mouse lung assay for adhesion is described and the results obtained using two virulent strains of B. pertussis and their avirulent counterparts. These were a C modulation of one of the original virulent strains and a phase IV variant of the other virulent strain. Organisms were radiolabelled by adding 1 μCi (37 K Bq) of [ 14 C]glutamic acid per 10 ml of culture medium before inoculation and incubation for 5 days. The lungs were washed by perfusion in situ with at least two volumes (1 ml) of sterile 1% (w/v) casamino acids. The percentage of the inoculated organisms retained in the lungs was determined, after removal of the lungs, by one of the following two methods: viable count or radioactive count. Results for both methods were expressed as the percentage of the inoculum retained in the lungs plus or minus one standard deviation. (Auth.)

  7. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  8. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; Maeztu, Miguel Ángel de

    2014-01-01

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm 2 ) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  9. Denture Adhesives

    Science.gov (United States)

    ... Devices Products and Medical Procedures Dental Devices Denture Adhesives Share Tweet Linkedin Pin it More sharing options ... Wearers Reporting Problems to the FDA Background Denture adhesives are pastes, powders or adhesive pads that may ...

  10. Cancer cell metastasis; perspectives from the focal adhesion

    Directory of Open Access Journals (Sweden)

    Lefteris C Zacharia

    2015-10-01

    Full Text Available In almost all cancers, most patients die from metastatic disease and not from the actual primary tumor. That is why addressing the problem of metastasis is of utmost importance for the successful treatment and improved survival of cancer patients. Metastasis is a complex process that ultimately leads to cancer cells spreading from the tumor to distant sites of the body. During this process, cancer cells tend to lose contact with the extracellular matrix (ECM and neighboring cells within the primary tumor, and are thus able to invade surrounding tissues. Hence, ECM, and the ECM-associated adhesion proteins play a critical role in the metastatic process. This review will focus on recent literature regarding interesting and novel molecules at the cell-ECM adhesion sites, namely migfilin, mitogen-inducible gene-2 (Mig-2 and Ras suppressor-1 (RSU-1, that are also critically involved in cancer cell metastasis, emphasizing on data from experiments performed in vitro in breast cancer and hepatocellular carcinoma cell lines as well as human breast cancer tissue samples.

  11. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    OpenAIRE

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-01-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at ...

  12. From adhesion to wetting of a soft particle

    Science.gov (United States)

    Salez, Thomas; Benzaquen, Michael; Raphael, Elie

    2014-03-01

    Since the seminal works of Hertz, Johnson, Kendall, and Roberts (JKR), and Derjaguin, Muller, and Toporov (DMT), the contact of adhesive elastic solids has been widely studied. This area of research is of tremendous importance: the range of applications now spreads from biology to engineering, as shown by the recent developments on latex particles, biological cells or micro-patterned substrates, to name a few. Using a thermodynamical approach [Salez et al., Soft Matter 9 10699 (2013)], we calculate the adhesion-induced deformation of a spherical elastic particle placed on a rigid substrate, under zero external load, and including an ingredient of importance in soft matter: the interfacial tension of the cap. First, we limit the study to small deformation. In contrast with previous works, we obtain an expression for the free energy that precisely contains the JKR and Young-Dupré asymptotic regimes, and which establishes a continuous bridge between them. Then, we consider the large deformation case, which is relevant for future comparison with numerical simulations and experiments on very soft materials. Using a fruitful analogy with fracture mechanics, we derive the free energy of the problem and thus obtain the equilibrium state for any given choice of physical parameters.

  13. A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis.

    Directory of Open Access Journals (Sweden)

    Xuejun Chen

    2009-12-01

    Full Text Available Paraxial protocadherin (PAPC and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3 are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion.We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain.PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular "governor" to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.

  14. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  15. Cell migration through connective tissue in 3-D

    Science.gov (United States)

    Fabry, Ben

    2008-03-01

    A prerequisite for metastasis formation is the ability of tumor cells to invade and migrate through connective tissue. Four key components endow tumor cells with this ability: secretion of matrix-degrading enzymes, firm but temporary adhesion onto connective tissue fibers, contractile force generation, and rapid remodeling of cytoskeletal structures. Cell adhesion, contraction, and cytoskeletal remodeling are biomechanical parameter that can be measured on single cells using a panel of biophysical methods. We use 2-D and 3-D traction microscopy to measure contractile forces; magnetic tweezer microrheology to estimate adhesion strengths, cytoskeletal stiffness and molecular turn-over rates; and nanoscale particle tracking to measure cytoskeletal remodeling. On a wide range of tumor cell lines we could show that cell invasiveness correlates with increased expression of integrin adhesion receptors, increased contractile force generation, and increased speed of cytoskeletal reorganization. Each of those biomechanical parameters, however, varied considerably between cell lines of similar invasivity, suggesting that tumor cells employ multiple invasion strategies that cannot be unambiguously characterized using a single assay.

  16. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  17. Mechanical properties and modeling of drug release from chlorhexidine-containing etch-and-rinse adhesives.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Reis, Alessandra; Malaquias, Pamela; Pereira, Fabiane; Farago, Paulo Vitor; Meier, Marcia Margarete; Loguercio, Alessandro D

    2014-04-01

    To evaluate the effects of chlorhexidine (CHX) addition in different concentrations into simplified etch-and-rinse adhesives on the ultimate tensile strength (UTS), water sorption (WS), solubility (SO) and the rate of CHX release over time. We added CHX diacetate to Ambar [AM] (FGM) and XP Bond [XP] (Dentsply) in concentrations of 0, 0.01, 0.05, 0.1 and 0.2 wt%. For UTS (n=10 for each group), adhesive specimens were constructed in an hourglass shape metallic matrix with cross-sectional area of 0.8 mm(2). Half of specimens were tested after 24 h and the other half after 28 days of water storage in tension of 0.5 mm/min. For WS and SO (n=10 for each group), adhesive discs (5.8 mm×1.0 mm) were prepared into a mold. After desiccation, we weighed and stored the cured adhesive specimens in distilled water for evaluation of the WS, SO and the cumulative release of CHX over a 28-day period. For CHX release (n=10 for each group), spectrophotometric measurements of storage solution were performed to examine the release kinetics of CHX. We subjected data from each test to ANOVA and Tukey' test (α=0.05). XP Bond adhesive showed significantly more WS and SO and lower UTS than Ambar. In general, the addition of CHX did not alter WS, SO and UTS of the adhesives. XP showed a higher CHX release than AM (p<0.05) in all concentrations and the final amount of CHX release was directly proportional to the initial CHX concentration added to the adhesives. After 28 days of water storage, approximately 20% of CHX was released from XP and 8.0-12.0% from AM. Addition of CHX to commercial adhesive is a feasible method to provide a controlled release of CHX over time without jeopardizing WS, SO and UTS of the adhesives. Manufacturers should consider adding CHX to commercial adhesives to provide a controlled release of CHX over time. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Connective tissue growth factor is a positive regulator of epithelial-mesenchymal transition and promotes the adhesion with gastric cancer cells in human peritoneal mesothelial cells.

    Science.gov (United States)

    Jiang, Cheng-Gang; Lv, Ling; Liu, Fu-Rong; Wang, Zhen-Ning; Na, Di; Li, Feng; Li, Jia-Bin; Sun, Zhe; Xu, Hui-Mian

    2013-01-01

    Connective tissue growth factor (CTGF) is involved in human cancer development and progression. Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. In this study, we wished to investigate the role of CTGF in EMT of peritoneal mesothelial cells and the effects of CTGF on adhesion of gastric cancer cells to mesothelial cells. Human peritoneal mesothelial cells (HPMCs) were cultured with TGF-β1 or various concentrations of CTGF for different time. The EMT process was monitored by morphology. Real-time RT-PCR and Western blot were used to evaluate the expression of vimentin, α-SMA , E-cadherin and β-catenin. RNA interference was used to achieve selective and specific knockdown of CTGF. We demonstrated that CTGF induced EMT of mesothelial cells in a dose- and time-dependent manner. HPMCs were exposed to TGF-β1 also underwent EMT which was associated with the induction of CTGF expression. Transfection with CTGF siRNA was able to reverse the EMT partially after treatment of TGF-β1. Moreover, the induced EMT of HPMCs was associated with an increased adhesion of gastric cancer cells to mesothelial cells. These findings suggest that CTGF is not only an important mediator but a potent activator of EMT in peritoneal mesothelial cells, which in turn promotes gastric cancer cell adhesion to peritoneum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. General definition of gravitational tension

    International Nuclear Information System (INIS)

    Harmark, T.; Obers, N.A.

    2004-01-01

    In this note we give a general definition of the gravitational tension in a given asymptotically translationally-invariant spatial direction of a space-time. The tension is defined via the extrinsic curvature in analogy with the Hawking-Horowitz definition of energy. We show the consistency with the ADM tension formulas for asymptotically-flat space-times, in particular for Kaluza-Klein black hole solutions. Moreover, we apply the general tension formula to near-extremal branes, constituting a check for non-asymptotically flat space-times. (author)

  20. Structural design significance of tension-tension fatigue data on composites

    Science.gov (United States)

    Grimes, G. C.

    1977-01-01

    Constant cycle tension-tension fatigue and related static tension data have been generated on six single composite material/orientation combinations and twenty-one hybrid composite material/orientation combinations. Anomalies are related to the temperature rise and stopped interval creep, whereas endurance limit stresses (runouts) are associated with static proportional limit values, when they occur, and internal damage. The significance of these room temperature-dry data on the design allowables and weight of aerodynamic structueres is discussed. Such structures are helicopter rotor blades and wing and horizontal stabilizer lower surfaces. Typical criteria for turning these data into preliminary allowables are shown, as are examples of such allowables developed from the data. These values are then compared to those that might be used if the structures were made of metal.

  1. Tension type headache

    Directory of Open Access Journals (Sweden)

    Debashish Chowdhury

    2012-01-01

    Full Text Available Tension type headaches are common in clinical practice. Earlier known by various names, the diagnosis has had psychological connotations. Recent evidence has helped clarify the neurobiological basis and the disorder is increasingly considered more in the preview of neurologists. The classification, clinical features, differential diagnosis and treatment of tension type headache are discussed in this paper.

  2. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  3. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y.

    2010-01-01

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  4. Comparison of Arterial Repair through the Suture, Suture with Fibrin or Cyanoacrylate Adhesive in Ex-Vivo Porcine Aortic Segment

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius H. de Carvalho

    Full Text Available Abstract Introduction: Tissue adhesives can be used as adjacent to sutures to drop or avoid bleeding in cardiovascular operations. Objective: To verify the efficiency of fibrin and cyanoacrylate adhesive to seal arterial sutures and if the adhesives penetrate through suture line to the inner of arteries. Methods: 20 abdominal aorta segments of pigs were divided into two groups according to the adhesive which would be used as adjacent to the suture. In every arterial segment an arteriotomy was done, followed by a conventional artery closure. Afterwards a colloidal fluid was injected inside the arterial segment with a simultaneous intravascular pressure monitoring up to a fluid leakage through the suture. This procedure was repeated after application of one of the adhesives on the suture in order to check if the bursting pressure increases. The inner aorta segments also were analyzed in order to check if there was intraluminal adhesive penetration. Results: In Suture 1 group, the mean arterial pressure sustained by the arterial suture reached 86±5.35 mmHg and after the fibrin adhesive application reached 104±11.96 (P<0.002. In the Suture 2 group, the mean arterial pressure sustained by the suture reached 83±2.67 mmHg and after the cyanoacrylate adhesive application reached 152±14.58 mmHg (P<0.002. Intraluminal adhesive penetration has not been noticed. Conclusion: There was a significant rise in the bursting pressure when tissue adhesives were used as adjacent to arterial suture, and this rise was higher if the cyanoacrylate adhesive was used. In addition, the adhesives do not penetrate through the suture line into the arteries.

  5. Axons Pull on the Brain, But Tension Does Not Drive Cortical Folding

    Science.gov (United States)

    Xu, Gang; Knutsen, Andrew K.; Dikranian, Krikor; Kroenke, Christopher D.; Bayly, Philip V.; Taber, Larry A.

    2011-01-01

    During human brain development, the cerebral cortex undergoes substantial folding, leading to its characteristic highly convoluted form. Folding is necessary to accommodate the expansion of the cerbral cortex; abnormal cortical folding is linked to various neurological disorders, including schizophrenia, epilepsy, autism and mental retardation. Although this process requires mechanical forces, the specific force-generating mechanisms that drive folding remain unclear. The two most widely accepted hypotheses are (1) folding is caused by differential growth of the cortex and (2) folding is caused by mechanical tension generated in axons. Direct evidence supporting either theory, however, is lacking. Here we show that axons are indeed under considerable tension in the developing ferret brain, but the patterns of tissue stress are not consistent with a causal role for axonal tension. In particular, microdissection assays reveal that significant tension exists along axons aligned circumferentially in subcortical white matter tracts, as well as those aligned radially inside developing gyri (outward folds). Contrary to previous speculation, however, axonal tension is not directed across developing gyri, suggesting that axon tension does not drive folding. On the other hand, using computational (finite element) models, we show that differential cortical growth accompanied by remodeling of the subplate leads to outward folds and stress fields that are consistent with our microdissection experiments, supporting a mechanism involving differential growth. Local perturbations, such as temporal differences in the initiation of cortical growth, can ensure consistent folding patterns. This study shows that a combination of experimental and computational mechanics can be used to evaluate competing hypotheses of morphogenesis, and illuminate the biomechanics of cortical folding. PMID:20590291

  6. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    Science.gov (United States)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  7. Analysis of a vinculin homolog in a sponge (phylum Porifera) reveals that vertebrate-like cell adhesions emerged early in animal evolution.

    Science.gov (United States)

    Miller, Phillip W; Pokutta, Sabine; Mitchell, Jennyfer M; Chodaparambil, Jayanth V; Clarke, D Nathaniel; Nelson, William; Weis, William I; Nichols, Scott A

    2018-06-07

    The evolution of cell adhesion mechanisms in animals facilitated the assembly of organized multicellular tissues. Studies in traditional animal models have revealed two predominant adhesion structures, the adherens junction (AJ) and focal adhesions (FAs), which are involved in the attachment of neighboring cells to each other and to the secreted extracellular matrix (ECM), respectively. The AJ (containing cadherins and catenins) and FAs (comprising integrins, talin, and paxillin) differ in protein composition, but both junctions contain the actin-binding protein vinculin. The near ubiquity of these structures in animals suggests that AJ and FAs evolved early, possibly coincident with multicellularity. However, a challenge to this perspective is that previous studies of sponges-a divergent animal lineage-indicate that their tissues are organized primarily by an alternative, sponge-specific cell adhesion mechanism called "aggregation factor." In this study, we examined the structure, biochemical properties, and tissue localization of a vinculin ortholog in the sponge Oscarella pearsei ( Op ). Our results indicate that Op vinculin localizes to both cell-cell and cell-ECM contacts and has biochemical and structural properties similar to those of vertebrate vinculin. We propose that Op vinculin played a role in cell adhesion and tissue organization in the last common ancestor of sponges and other animals. These findings provide compelling evidence that sponge tissues are indeed organized like epithelia in other animals and support the notion that AJ- and FA-like structures extend to the earliest periods of animal evolution. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence.

    Science.gov (United States)

    Freires, Irlan A; Avilés-Reyes, Alejandro; Kitten, Todd; Simpson-Haidaris, P J; Swartz, Michael; Knight, Peter A; Rosalen, Pedro L; Lemos, José A; Abranches, Jacqueline

    2017-01-02

    In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.

  9. Effect of Irradiation on the Shear Bond Strength of Self-adhesive ...

    African Journals Online (AJOL)

    2016-02-05

    Feb 5, 2016 ... changes in the crystalline structure of dental hard tissues. Keywords: Bond strength, irradiation, self-adhesive luting cement. Effect of Irradiation on the .... The metal ring was connected with the cross-head and loaded (speed 1 ...

  10. Dystroglycan versatility in cell adhesion: a tale of multiple motifs

    Directory of Open Access Journals (Sweden)

    Winder Steve J

    2010-02-01

    Full Text Available Abstract Dystroglycan is a ubiquitously expressed heterodimeric adhesion receptor. The extracellular α-subunit makes connections with a number of laminin G domain ligands including laminins, agrin and perlecan in the extracellular matrix and the transmembrane β-subunit makes connections to the actin filament network via cytoskeletal linkers including dystrophin, utrophin, ezrin and plectin, depending on context. Originally discovered as part of the dystrophin glycoprotein complex of skeletal muscle, dystroglycan is an important adhesion molecule and signalling scaffold in a multitude of cell types and tissues and is involved in several diseases. Dystroglycan has emerged as a multifunctional adhesion platform with many interacting partners associating with its short unstructured cytoplasmic domain. Two particular hotspots are the cytoplasmic juxtamembrane region and at the very carboxy terminus of dystroglycan. Regions which between them have several overlapping functions: in the juxtamembrane region; a nuclear localisation signal, ezrin/radixin/moesin protein, rapsyn and ERK MAP Kinase binding function, and at the C terminus a regulatory tyrosine governing WW, SH2 and SH3 domain interactions. We will discuss the binding partners for these motifs and how their interactions and regulation can modulate the involvement of dystroglycan in a range of different adhesion structures and functions depending on context. Thus dystroglycan presents as a multifunctional scaffold involved in adhesion and adhesion-mediated signalling with its functions under exquisite spatio-temporal regulation.

  11. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.

    Science.gov (United States)

    Lee, Min Kyung; Rich, Max H; Lee, Jonghwi; Kong, Hyunjoon

    2015-07-01

    Bioactive hydrogels have been extensively studied as a platform for 3D cell culture and tissue regeneration. One of the key desired design parameters is the ability to control spatial organization of biomolecules and cells and subsequent tissue in a 3D matrix. To this end, this study presents a simple but advanced method to spatially organize microchanneled, cell adherent gel blocks and non-adherent ones in a single construct. This hydrogel system was prepared by first fabricating a bimodal hydrogel in which the microscale, alginate gel blocks modified with cell adhesion peptides containing Arg-Gly-Asp sequence (RGD peptides), and those free of RGD peptides, were alternatingly presented. Then, anisotropically aligned microchannels were introduced by uniaxial freeze-drying of the bimodal hydrogel. The resulting gel system could drive bone marrow stromal cells to adhere to and differentiate into neuron and glial cells exclusively in microchannels of the alginate gel blocks modified with RGD peptides. Separately, the bimodal gel loaded with microparticles releasing vascular endothelial growth factor stimulated vascular growth solely into microchannels of the RGD-alginate gel blocks in vivo. These results were not attained by the bimodal hydrogel fabricated to present randomly oriented micropores. Overall, the bimodal gel system could regulate spatial organization of nerve-like tissue or blood vessels at sub-micrometer length scale. We believe that the hydrogel assembly demonstrated in this study will be highly useful in developing a better understanding of diverse cellular behaviors in 3D tissue and further improve quality of a wide array of engineered tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Differences of optic disc appearance between normal tension and high tension glaucoma patients

    Directory of Open Access Journals (Sweden)

    Stojčić Milan

    2011-01-01

    Full Text Available Introduction. The term glaucoma is used to cover a wide range of diseases, whose main feature is optic neuropathy. According to the level of intraocular pressure (IOP, the open angle glaucoma is arbitrarily divided into high tension glaucoma (HTG and normal tension glaucoma (NTG. Objective. The aim of this study was to investigate the differences of optic disc cup appearance between patients with NTG and HTG. Methods. Prospective study included 30 patients (60 eyes with NTG and 30 patients (60 eyes with HTG. IOP was measured by Goldmann applanation tonometry. Examination of optic disc head was performed by indirect ophthalmoscopy with Volk 90 D superfield lens through a dilated pupil to observe qualitative and quantitative parameters. Visual fields were examined in all patients with the Octopus program G1, full threshold strategy (Octopus 500 EZ, Interzeag, Switzerland. Results. Vertical form of optic disc cup was present in 11 eyes with NTG (18.3% and three eyes with HTG (5% (p<0.05. A disc with localized tissue loss (polar notching on the inferior pole was observed in eight eyes with NTG (13.3% and in one eye with HTG (1.7% (p<0.01. Uniformly enlarged, round cup was more frequent in patients with HTG than NTG: 93.3% and 68.3% respectively (p<0.05. Conclusion. The perceived differences indicate a complex multifactorial nature of glaucoma disease and a possible existence of two pathophysiological ways of optic disc changes within the same basic disease.

  13. Investigations of surface-tension effects due to small-scale complex boundaries

    Science.gov (United States)

    Feng, Jiansheng

    In this Ph.D. dissertation, we have investigated some important surface-tension phenomena including capillarity, wetting, and wicking. We mainly focus on the geometric aspects of these problems, and to learn about how structures affect properties. . In the first project (Chapter 2), we used numerical simulations and experiments to study the meniscus of a fluid confined in capillaries with complicated cross-sectional geometries. In the simulations, we computed the three-dimensional shapes of the menisci formed in polygonal and star-shaped capillaries with sharp or rounded corners. Height variations across the menisci were used to quantify the effect of surface tension. Analytical solutions were derived for all the cases where the cross-sectional geometry was a regular polygon or a regular star-shape. Power indices that characterize the effects of corner rounding were extracted from simulation results. These findings can serve as guide for fabrications of unconventional three-dimensional structures in Capillary Force Lithography experiments. Experimental demonstrations of the working principle was also performed. Although quantitative matching between simulation and experimental results was not achieved due to the limitation of material properties, clear qualitative trends were observed and interesting three-dimensional nano-structures were produced. A second project (Chapter 3) focused on developing techniques to produce three-dimensional hierarchically structured superhydrophobic surfaces with high aspect ratios. We experimented with two different high-throughput electron-beam-lithography processes featuring single and dual electron-beam exposures. After a surface modification procedure with a hydrophobic silane, the structured surfaces exhibited two distinct superhydrophobic behaviors---high and low adhesion. While both types of superhydrophobic surfaces exhibited very high (approximately 160° water advancing contact angles, the water receding contact angles on

  14. Effects of chlorhexidine-containing adhesives on the durability of resin-dentine interfaces.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Pereira, Fabiane; Muñoz, Miguel Angel; Luque, Issis; Farago, Paulo Vitor; Reis, Alessandra; Loguercio, Alessandro D

    2014-01-01

    This study evaluated the effect of addition of diacetate CHX in different concentrations into two simplified etch-and-rinse (ER) adhesive systems (XP Bond [XP] and Ambar {AM}) on the ultimate tensile strength (UTS), degree of conversion (DC), 60-day cumulative water sorption (WS), solubility (SO) and CHX release (CR) as well as the immediate (IM) and 1-year (1Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Ten experimental adhesive systems were formulated according to the addition of CHX diacetate (0 [control], 0.01, 0.05, 0.1 and 0.2%) in the two ER. For UTS and DC, specimens were constructed and tested after 24h. For WS, SO and CR, after specimens build-up, they were stored in water and the properties measured after 60 days. The occlusal enamel of fifty molars was removed and the adhesives were applied in dentine surface after 37% phosphoric acid etching. After composite resin build-ups, specimens were longitudinally sectioned to obtain resin-dentine bonded sticks (0.8mm(2)). Specimens were tested in tension at 0.5mm/min in the IM or 1Y. For NL, 2 bonded sticks from each tooth were prepared and analyzed under SEM. The data were submitted to appropriate statistical analysis (α=0.05). The addition of CHX did not influence UTS, DC, WS and SO (padhesives with higher concentration of CHX (padhesives or it was less pronounced than the control (XP) regardless of the CHX concentration. The addition of CHX diacetate in concentrations until 0.2% in the simplified ER adhesive systems may be an alternative to increase the long-term stability of resin-dentine interfaces, without jeopardizing the adhesives' mechanical properties evaluated. Copyright © 2013. Published by Elsevier Ltd.

  15. Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow

    DEFF Research Database (Denmark)

    Kristensen, M F; Zeng, G; Neu, T R

    2017-01-01

    caries or medical device-related infections. It further investigated if OPN's effect on adhesion is caused by blocking the accessibility of glycoconjugates on bacterial surfaces. Bacterial adhesion was determined in a shear-controlled flow cell system in the presence of different concentrations of OPN......The bovine milk protein osteopontin (OPN) may be an efficient means to prevent bacterial adhesion to dental tissues and control biofilm formation. This study sought to determine to what extent OPN impacts adhesion forces and surface attachment of different bacterial strains involved in dental......, and interaction forces of single bacteria were quantified using single-cell force spectroscopy before and after OPN exposure. Moreover, the study investigated OPN's effect on the accessibility of cell surface glycoconjugates through fluorescence lectin-binding analysis. OPN strongly affected bacterial adhesion...

  16. Pathogenesis, consequences, and control of peritoneal adhesions in gynecologic surgery: a committee opinion.

    Science.gov (United States)

    2013-05-01

    Postoperative adhesions are a natural consequence of surgical tissue trauma and healing and may result in infertility, pain, and bowel obstruction. Adherence to microsurgical principles and minimally invasive surgery may help to decrease postoperative adhesions. Some surgical barriers have been demonstrated effective for reducing postoperative adhesions, but there is no substantial evidence that their use improves fertility, decreases pain, or reduces the incidence of postoperative bowel obstruction. This document replaces the document of the same name last published in 2008 (Fertil Steril 2008;90[5 Suppl]:S144-9). Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Measurement uncertainty evaluation of cellular spheroids surface tension in compressing tests using Young-Laplace equation

    Science.gov (United States)

    Beatrici, Anderson; Santos Baptista, Leandra; Mauro Granjeiro, José

    2018-03-01

    Regenerative Medicine comprises the Biotechnology, Tissue Engineering and Biometrology for stem cell therapy. Starting from stem cells extracted from the patient, autologous implant, these cells are cultured and differentiated into other tissues, for example, articular cartilage. These cells are reorganized into microspheres (cell spheroids). Such tissue units are recombined into functional tissues constructs that can be implanted in the injured region for regeneration. It is necessary the biomechanical characterization of these constructed to determine if their properties are similar to native tissue. In this study was carried out the modeling of the calculation of uncertainty of the surface tension of cellular spheroids with the use of the Young-Laplace equation. We obtained relative uncertainties about 10%.

  18. On relation between the quark-gluon bag surface tension and the colour tube string tension

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Zinovjev, G.M.

    2010-01-01

    We revisit the bag phenomenology of deconfining phase transition aiming to replenish it by introducing systematically the bag surface tension. Comparing the free energies of such bags and the strings confining the static quark-antiquark pair, we express the string tension in terms of the bag surface tension and the bulk pressure in order to estimate the bag characteristics using the lattice QCD (LQCD) data. Our analysis of the bag entropy density demonstrates that the surface tension coefficient is amazingly negative at the cross-over (continuous transition). The approach developed allows us to naturally account for an origin of a pronounced maximum (observed in the LQCD studies) in the behaviour of heavy quark-antiquark pair entropy. The vicinity of the (tri-)critical endpoint is also analyzed to clarify the meaning of vanishing surface tension coefficient.

  19. Gradual conversion of cellular stress patterns into pre-stressed matrix architecture during in vitro tissue growth.

    Science.gov (United States)

    Bidan, Cécile M; Kollmannsberger, Philip; Gering, Vanessa; Ehrig, Sebastian; Joly, Pascal; Petersen, Ansgar; Vogel, Viola; Fratzl, Peter; Dunlop, John W C

    2016-05-01

    The complex arrangement of the extracellular matrix (ECM) produced by cells during tissue growth, healing and remodelling is fundamental to tissue function. In connective tissues, it is still unclear how both cells and the ECM become and remain organized over length scales much larger than the distance between neighbouring cells. While cytoskeletal forces are essential for assembly and organization of the early ECM, how these processes lead to a highly organized ECM in tissues such as osteoid is not clear. To clarify the role of cellular tension for the development of these ordered fibril architectures, we used an in vitro model system, where pre-osteoblastic cells produced ECM-rich tissue inside channels with millimetre-sized triangular cross sections in ceramic scaffolds. Our results suggest a mechanical handshake between actively contracting cells and ECM fibrils: the build-up of a long-range organization of cells and the ECM enables a gradual conversion of cell-generated tension to pre-straining the ECM fibrils, which reduces the work cells have to generate to keep mature tissue under tension. © 2016 The Author(s).

  20. Influence of Nd:YAG laser on the bond strength of self-etching and conventional adhesive systems to dental hard tissues.

    Science.gov (United States)

    Marimoto, A K; Cunha, L A; Yui, K C K; Huhtala, M F R L; Barcellos, D C; Prakki, A; Gonçalves, S E P

    2013-01-01

    The aim of this study was to investigate the influence of Nd:YAG laser on the shear bond strength to enamel and dentin of total and self-etch adhesives when the laser was applied over the adhesives, before they were photopolymerized, in an attempt to create a new bonding layer by dentin-adhesive melting. One-hundred twenty bovine incisors were ground to obtain flat surfaces. Specimens were divided into two substrate groups (n=60): substrate E (enamel) and substrate D (dentin). Each substrate group was subdivided into four groups (n=15), according to the surface treatment accomplished: X (Xeno III self-etching adhesive, control), XL (Xeno III + laser Nd:YAG irradiation at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental), S (acid etching + Single Bond conventional adhesive, Control), and SL (acid etching + Single Bond + laser Nd:YAG at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental). The bonding area was delimited with 3-mm-diameter adhesive tape for the bonding procedures. Cylinders of composite were fabricated on the bonding area using a Teflon matrix. The teeth were stored in water at 37°C/48 h and submitted to shear testing at a crosshead speed of 0.5 mm/min in a universal testing machine. Results were analyzed with three-way analysis of variance (ANOVA; substrate, adhesive, and treatment) and Tukey tests (α=0.05). ANOVA revealed significant differences for the substrate, adhesive system, and type of treatment: lased or unlased (penamel groups were X=20.2 ± 5.61, XL=23.6 ± 4.92, S=20.8 ± 4.55, SL=22.1 ± 5.14 and for the dentin groups were X=14.1 ± 7.51, XL=22.2 ± 6.45, S=11.2 ± 5.77, SL=15.9 ± 3.61. For dentin, Xeno III self-etch adhesive showed significantly higher shear bond strength compared with Single Bond total-etch adhesive; Nd:YAG laser irradiation showed significantly higher shear bond strength compared with control (unlased). Nd:YAG laser application prior to photopolymerization of adhesive systems

  1. The role of adhesive molecules in endometrial cancer: part II

    Directory of Open Access Journals (Sweden)

    Andrzej Malinowski

    2010-12-01

    Full Text Available The carcinogenesis is a result of both functional and structural disorders in the tissue. It initiates as a mutationin a gene encoding protein that is essential for cellular function. The subsequent cascade of eventsleads to accumulation of mutations and loss of cellular function. The cell loses its tissue-specific morphology,disconnects from other cells and extracellular matrix and migrates – the invasion begins. It is now clear thatadhesive molecules are a key player in this cascade. These proteins of the cell membrane surface are responsiblefor attachment of the cells to each other and to the extracellular matrix. These interactions are crucial forboth structural and functional tissue organization. Lack of this homeostasis destroys the tissue architectureand impairs its function and results in invasion. Abnormal expression of adhesive molecules was reported in allexamined cancers, including endometrial cancer.Endometrial cancer is the most common gynaecological cancer in developed countries. Although in many casesdiagnosed and treated in early stages, and thus with good results, some patients cannot be cured. Completeknowledge of the pathogenesis of the disease will be helpful in identifying the patients with negative prognosticfactors, increased risk of recurrence and, perhaps, to find other therapeutic options. In the paper we are trying tosum up the up-to-date knowledge of the role of adhesive molecules in pathogenesis of endometrial cancer.

  2. Hybrid Carbon-Based Scaffolds for Applications in Soft Tissue Reconstruction

    Science.gov (United States)

    Lafdi, Khalid; Joseph, Robert M.; Tsonis, Panagiotis A.

    2012-01-01

    Current biomedical scaffolds utilized in surgery to repair soft tissues commonly fail to meet the optimal combination of biomechanical and tissue regenerative properties. Carbon is a scaffold alternative that potentially optimizes the balance between mechanical strength, durability, and function as a cell and biologics delivery vehicle that is necessary to restore tissue function while promoting tissue repair. The goals of this study were to investigate the feasibility of fabricating hybrid fibrous carbon scaffolds modified with biopolymer, polycaprolactone and to analyze their mechanical properties and ability to support cell growth and proliferation. Environmental scanning electron microscopy, micro-computed tomography, and cell adhesion and cell proliferation studies were utilized to test scaffold suitability as a cell delivery vehicle. Mechanical properties were tested to examine load failure and elastic modulus. Results were compared to an acellular dermal matrix scaffold control (GraftJacket® [GJ] Matrix), selected for its common use in surgery for the repair of soft tissues. Results indicated that carbon scaffolds exhibited similar mechanical maximums and capacity to support fibroblast adhesion and proliferation in comparison with GJ. Fibroblast adhesion and proliferation was collinear with carbon fiber orientation in regions of sparsely distributed fibers and occurred in clusters in regions of higher fiber density and low porosity. Overall, fibroblast adhesion and proliferation was greatest in lower porosity carbon scaffolds with highly aligned fibers. Stepwise multivariate regression showed that the variability in maximum load of carbon scaffolds and controls were dependent on unique and separate sets of parameters. These finding suggested that there were significant differences in the functional implications of scaffold design and material properties between carbon and dermis derived scaffolds that affect scaffold utility as a tissue replacement

  3. Circulating vascular cell adhesion molecule-1 in pre-eclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in pre-eclampsia.

    Science.gov (United States)

    Higgins, J R; Papayianni, A; Brady, H R; Darling, M R; Walshe, J J

    1998-08-01

    Our purpose was to investigate circulating levels of vascular cell adhesion molecule-1 in the peripheral and uteroplacental circulations during normotensive and hypertensive pregnancies. This prospective observational study involved 2 patient groups. Group 1 consisted of 22 women with pre-eclampsia and 30 normotensive women followed up longitudinally through pregnancy and post partum. There were an additional 13 women with established gestational hypertension. Group 2 consisted of 20 women with established pre-eclampsia and 19 normotensive control subjects undergoing cesarean delivery. Plasma levels of vascular cell adhesion molecule-1 were measured in blood drawn from the antecubital vein (group 1) and from both the antecubital and uterine veins (group 2). Data were analyzed by analysis of variance. In group 1 vascular cell adhesion molecule-1 levels did not change significantly throughout normal pregnancy and post partum. Women with established pre-eclampsia had increased vascular cell adhesion molecule-1 levels compared with the normotensive pregnancy group (P = .01). Vascular cell adhesion molecule-1 levels were not elevated in women with established gestational hypertension. In group 2 significantly higher levels of vascular cell adhesion molecule-1 were detected in the uteroplacental (P post partum, is not a feature of nonproteinuric gestational hypertension, and is not observed with other major leukocyte adhesion molecules. Induction of vascular cell adhesion molecule-1 expression in pre-eclampsia may contribute to leukocyte-mediated tissue injury in this condition or may reflect perturbation of other, previously unrecognized, functions of this molecule in pregnancy.

  4. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    International Nuclear Information System (INIS)

    Díaz Téllez, J P; Harirchian-Saei, S; Li, Y; Menon, C

    2013-01-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet–visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved. (paper)

  5. A Method To Determine Adhesion Of Suppository Mass On Excised ...

    African Journals Online (AJOL)

    A method to determine adhesion of suppository mass to intestinal tissue was developed using excised pig intestine. The method which employs the principe of drainage unto and subsequent detachment from the mucosa, of an adherent suppository mass is simple, inexpensive and accurate. Fully optimised, it can be used ...

  6. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  7. Surface characterization of retinal tissues for the enhancement of vitreoretinal surgical methods

    Science.gov (United States)

    Valentin-Rodriguez, Celimar

    Diabetic retinopathy is the most common ophthalmic complication of diabetes and the leading cause of blindness among adults, ages 30 to 70. Surgery to remove scar tissue in the eye is the only corrective treatment once the retina is affected. Visual recovery is often hampered by retinal trauma during surgery and by low patient compliance. Our work in this project aimed to improve vitreoretinal surgical methods from information gathered by sensitive surface analysis of pre-retinal tissues found at the vitreoretinal interface. Atomic force microscopy characterization of human retinal tissues revealed that surgically excised inner limiting membrane (ILM) has a heterogeneous surface and is mainly composed of globular and fibrous structures. ILM tissues also show low adhesion for clean unmodified surfaces as opposed to those with functional groups attractive to those on the ILM surface, due to their charge. Based on these observations, layer-by-layer films with embedded gold nanoparticles with a positive outer charge were designed. These modifications increased the adhesion between surgical instruments and ILM by increasing the roughness and tuning the film surface charge. These films proved to be stable under physiological conditions. Finally, the effect of vital dyes on the topographical characteristics of ILMs was characterized and new imaging modes to further reveal ILM topography were utilized. Roughness and adhesion force data suggest that second generation dyes have no effect on the surface nanostructure of ILMs, but increase adhesion at the tip sample interface. This project clearly illustrates that physicochemical information from tissues can be used to rationally re-design surgical procedures, in this case for tissue removal purposes. This rational design method can be applied to other soft tissue excision procedures as is the case of cataract surgery or laparoscopic removal of endometrial tissue.

  8. Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier

    International Nuclear Information System (INIS)

    Haryanto,; Singh, Deepti; Han, Sung Soo; Son, Jun Hyuk; Kim, Seong Cheol

    2015-01-01

    The cross-linked poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethacrylate (PEGDMA)/(PEO) hydrogels were developed for possible biomedical applications such as an anti-adhesion barrier. Various contents of PEGDC/PEO film were irradiated using an electron beam with various beam intensities in order to obtain various degrees of crosslinked hydrogels. The optimum dose (300 kGy) and total crosslinker content of 10% were used to prepare crosslinked hydrogel films with three different compositions (10% PEGDC, 10% PEGDMA, 5% PEGDC–5% PEGDMA). Among them, 10% PEGDC hydrogel film exhibited the highest elongation at break (69.33 ± 6.87%) with high mechanical strength. 10% PEGDC hydrogel film showed the lowest hemolysis activity (6.03 ± 0.01%) and the highest tissue adherence (75.67 ± 1.15 cN). The result also indicated that the carboxyl groups in PEGDC affect the tissue adherence of hydrogel films via H-bonding interactions. In animal studies, 10% PEGDC anti-adhesion hydrogel film degraded within 3 weeks and demonstrated better anti-adhesive effect compared to Guardix-SG®. - Highlights: • The crosslinked PEGDC/PEO hydrogel was developed by e-beam irradiation. • 10% PEGDC hydrogel film showed the highest elongation at break and tissue adhesion. • The COOH group enhanced the tissue adherence of hydrogel films on the intestine. • 10% PEGDC hydrogel film demonstrated a good anti-adhesive effect in animal study. • All of the hydrogel films with 10% PEGDC degraded in vivo within three weeks

  9. Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice.

    Science.gov (United States)

    Liu, Yin; Belkina, Natalya V; Park, Chung; Nambiar, Raj; Loughhead, Scott M; Patino-Lopez, Genaro; Ben-Aissa, Khadija; Hao, Jian-Jiang; Kruhlak, Michael J; Qi, Hai; von Andrian, Ulrich H; Kehrl, John H; Tyska, Matthew J; Shaw, Stephen

    2012-01-12

    ERM (ezrin, radixin moesin) proteins in lymphocytes link cortical actin to plasma membrane, which is regulated in part by ERM protein phosphorylation. To assess whether phosphorylation of ERM proteins regulates lymphocyte migration and membrane tension, we generated transgenic mice whose T-lymphocytes express low levels of ezrin phosphomimetic protein (T567E). In these mice, T-cell number in lymph nodes was reduced by 27%. Lymphocyte migration rate in vitro and in vivo in lymph nodes decreased by 18% to 47%. Lymphocyte membrane tension increased by 71%. Investigations of other possible underlying mechanisms revealed impaired chemokine-induced shape change/lamellipod extension and increased integrin-mediated adhesion. Notably, lymphocyte homing to lymph nodes was decreased by 30%. Unlike most described homing defects, there was not impaired rolling or sticking to lymph node vascular endothelium but rather decreased migration across that endothelium. Moreover, decreased numbers of transgenic T cells in efferent lymph suggested defective egress. These studies confirm the critical role of ERM dephosphorylation in regulating lymphocyte migration and transmigration. Of particular note, they identify phospho-ERM as the first described regulator of lymphocyte membrane tension, whose increase probably contributes to the multiple defects observed in the ezrin T567E transgenic mice.

  10. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications.

    Science.gov (United States)

    Hocaoglu-Emre, F Sinem; Saribal, Devrim; Yenmis, Guven; Guvenen, Guvenc

    2017-03-01

    Type 2 diabetes mellitus (T2DM) is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and cluster of differentiation-146 (CD146) are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM. Serum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1) and soluble VCAM-1 (sVCAM-1) were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels. Serum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (Pmolecule levels were not correlated with the complication type. In the study group, most of the patients were on insulin therapy (76%), and 95% of them were receiving angiotensin-converting enzyme (ACE)-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM. Copyright © 2017 Korean Endocrine Society

  11. Radiation-curable adhesives

    International Nuclear Information System (INIS)

    Woods, J.G.

    1992-01-01

    Radiation-curable adhesives may be classified into two broad categories. In the first category, adhesive bonding occurs as a direct result of irradiation. The second category includes pressure-sensitive and hot-melt adhesives, which are composed of linear or lightly cross-linked polymers prepared by a radiation-induced polymerization reaction. This chapter is mainly concerned with radiation-curable adhesives of the first category. The various adhesive types are discussed and adhesive performance is examined, particularly in relation to the chemistry and chemical technology which underlies the individual materials. A description of a limited number of representative applications is included as is an outline of recent developments of curing and dispensing equipment. 268 refs., 14 figs., 13 tabs

  12. A MAM7 peptide-based inhibitor of Staphylococcus aureus adhesion does not interfere with in vitro host cell function.

    Directory of Open Access Journals (Sweden)

    Catherine Alice Hawley

    Full Text Available Adhesion inhibitors that block the attachment of pathogens to host tissues may be used synergistically with or as an alternative to antibiotics. The wide-spread bacterial adhesin Multivalent Adhesion Molecule (MAM 7 has recently emerged as a candidate molecule for a broad-spectrum adhesion inhibitor which may be used to prevent bacterial colonization of wounds. Here we have tested if the antibacterial properties of a MAM-based inhibitor could be used to competitively inhibit adhesion of methicillin-resistant Staphylococcus aureus (MRSA to host cells. Additionally, we analyzed its effect on host cellular functions linked to the host receptor fibronectin, such as migration, adhesion and matrix formation in vitro, to evaluate potential side effects prior to advancing our studies to in vivo infection models. As controls, we used inhibitors based on well-characterized bacterial adhesin-derived peptides from F1 and FnBPA, which are known to affect host cellular functions. Inhibitors based on F1 or FnBPA blocked MRSA attachment but at the same time abrogated important cellular functions. A MAM7-based inhibitor did not interfere with host cell function while showing good efficacy against MRSA adhesion in a tissue culture model. These observations provide a possible candidate for a bacterial adhesion inhibitor that does not cause adverse effects on host cells while preventing bacterial infection.

  13. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  14. Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available The central nervous system normally functions at O(2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O(2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O(2 tensions compared to the cell culture standard of 20% O(2, to investigate their ability to sense and translate this O(2 information to transcriptional activity. Variance of ambient O(2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O(2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O(2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O(2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional 'programs' may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity.

  15. Wetting and surface tension of bismate glass melt

    International Nuclear Information System (INIS)

    Shim, Seung-Bo; Kim, Dong-Sun; Hwang, Seongjin; Kim, Hyungsun

    2009-01-01

    Lead oxide glass frits are used widely in the electronics industry for low-temperature firing. On the other hand, one of the low-sintering and low-melting lead-free glass systems available, the bismate glass system, is considered to be an alternative to lead oxide glass. In order to extend the applications of Bi 2 O 3 glasses, this study examined the thermophysical properties of low-melting Bi 2 O 3 -B 2 O 3 -ZnO-BaO-Al 2 O 3 -SiO 2 glass frits with various ZnO/B 2 O 3 ratios. The fundamental thermal properties, such as glass transition temperature and softening point, were examined by differential thermal analysis and a glass softening point determination system. The wetting angles, viscosities and surface tension of the various bismate glasses on an alumina substrate were measured using hot-stage microscopy and the sessile drop method. These thermophysical properties will be helpful in understanding the work of adhesion and the liquid spread kinetics of glass frits.

  16. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  17. Spontaneous tension haemopneumothorax

    OpenAIRE

    Patterson, Benjamin Oliver; Itam, Sarah; Probst, Fey

    2008-01-01

    Abstract We present a patient with sudden onset progressive shortness of breath and no history of trauma, who rapidly became haemodynamically compromised with a pneumothorax and pleural effusion seen on chest radiograph. He was treated for spontaneous tension pneumothorax but this was soon revealed to be a tension haemopneumothorax. He underwent urgent thoracotomy after persistent bleeding to explore an apical vascular abnormality seen on CT scanning. To our knowledge this is the first such c...

  18. The Adhesive Capability of Two Lactobacillus Strains and Physicochemical Properties of Their Synthesized Biosurfactants

    Directory of Open Access Journals (Sweden)

    Piotr Gołek

    2011-01-01

    Full Text Available The aim of this study is to describe the adhesive capability of Lactobacillus fermenti 126 and Lactobacillus rhamnosus CCM 1825 as well as to isolate and evaluate the functional properties of their synthesized biosurfactants. Fourier transform infrared spectroscopy shows that both crude biosurfactants contain three components: protein, polysaccharide and phosphate in different ratio. The crude biosurfactants synthesized by Lactobacillus fermenti 126 and Lactobacillus rhamnosus CCM 1825 contain 8 and 9 fractions analyzed by capillary gel electrophoresis. Lactobacillus fermenti 126 and Lactobacillus rhamnosus CCM 1825 strains used in this study synthesize biosurfactants with low effectiveness, critical micelle concentration of 9.0 and 6.0 g/L, and surface tension of (45.1±0.1 and (43.6±0.6 mN/m, respectively. Biosurfactant synthesized by Lactobacillus rhamnosus CCM 1825 demonstrated higher emulsifying and froth-forming activity than that obtained from Lactobacillus fermenti 126, which resulted in better antiadhesive properties. The advantageous adhesive properties of these Lactobacillus strains were confirmed. A positive effect of the impregnation of polystyrene surface with an aqueous solution of biosurfactants on the inhibition of adhesion of Escherichia coli 22, Klebsiella pneumoniae 2 and Pseudomonas aeruginosa W2 to the impregnated surface was found.

  19. Interfacial Friction and Adhesion of Polymer Brushes

    KAUST Repository

    Landherr, Lucas J. T.

    2011-08-02

    A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (δ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ∼ δ4/3, which is supported by our experimental data. © 2011 American Chemical Society.

  20. Inhibitory Effects of North American Wild Rice on Monocyte Adhesion and Inflammatory Modulators in Low-Density Lipoprotein Receptor-Knockout Mice.

    Science.gov (United States)

    Moghadasian, Mohammed H; Zhao, Ruozhi; Ghazawwi, Nora; Le, Khuong; Apea-Bah, Franklin B; Beta, Trust; Shen, Garry X

    2017-10-18

    The present study examined the effects of wild rice on monocyte adhesion, inflammatory and fibrinolytic mediators in low-density lipoprotein receptor-knockout (LDLr-KO) mice. Male LDLr-KO mice received a cholesterol (0.06%, w/w)-supplemented diet with or without white or wild rice (60%, w/w) for 20 weeks. White rice significantly increased monocyte adhesion and abundances of monocyte chemoattractant protein-1, tissue necrosis factor-α, intracellular cell adhesion molecule-1, plasminogen activator inhibitor-1, urokinase plasminogen activator (uPA), and uPA receptor in aortae and hearts of LDLr-KO mice compared to the control diet. Wild rice inhibited monocyte adhesion to the aorta, atherosclerosis, and abundances of the inflammatory and fibrinolytic regulators in the cardiovascular tissue of LDLr-KO mice compared to white rice. White or wild rice did not significantly alter the levels of cholesterol, triglycerides, or antioxidant enzymes in plasma. The anti-atherosclerotic effect of wild rice may result from its inhibition on monocyte adhesion and inflammatory modulators in LDLr-KO mice.

  1. Classification review of dental adhesive systems: from the IV generation to the universal type

    Science.gov (United States)

    Sofan, Eshrak; Sofan, Afrah; Palaia, Gaspare; Tenore, Gianluca; Romeo, Umberto; Migliau, Guido

    2017-01-01

    Summary Adhesive dentistry has undergone great progress in the last decades. In light of minimal-invasive dentistry, this new approach promotes a more conservative cavity design, which relies on the effectiveness of current enamel-dentine adhesives. Adhesive dentistry began in 1955 by Buonocore on the benefits of acid etching. With changing technologies, dental adhesives have evolved from no-etch to total-etch (4th and 5th generation) to self-etch (6th, 7th and 8th generation) systems. Currently, bonding to dental substrates is based on three different strategies: 1) etch-and-rinse, 2) self-etch and 3) resin-modified glass-ionomer approach as possessing the unique properties of self-adherence to the tooth tissue. More recently, a new family of dentin adhesives has been introduced (universal or multi-mode adhesives), which may be used either as etch-and-rinse or as self-etch adhesives. The purpose of this article is to review the literature on the current knowledge for each adhesive system according to their classification that have been advocated by many authorities in most operative/restorative procedures. As noted by several valuable studies that have contributed to understanding of bonding to various substrates helps clinicians to choose the appropriate dentin bonding agents for optimal clinical outcomes. PMID:28736601

  2. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    Science.gov (United States)

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.

    LENUS (Irish Health Repository)

    Lyons, Mathew

    2014-06-03

    Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace׳s law showed a circumferential stress in the abdominal wall of approx. 1.1MPa due to an IAP of 11kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress-stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress-stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.

  4. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  5. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    Directory of Open Access Journals (Sweden)

    Nicolas Lebesgue

    2016-06-01

    Full Text Available Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc versus the non-adhesive part (the stem, and also to profile the proteome of the secreted adhesive (glue. This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016 [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold, likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  6. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications.

    Science.gov (United States)

    Madhurakkat Perikamana, Sajeesh Kumar; Lee, Jinkyu; Lee, Yu Bin; Shin, Young Min; Lee, Esther J; Mikos, Antonios G; Shin, Heungsoo

    2015-09-14

    Current advances in biomaterial fabrication techniques have broadened their application in different realms of biomedical engineering, spanning from drug delivery to tissue engineering. The success of biomaterials depends highly on the ability to modulate cell and tissue responses, including cell adhesion, as well as induction of repair and immune processes. Thus, most recent approaches in the field have concentrated on functionalizing biomaterials with different biomolecules intended to evoke cell- and tissue-specific reactions. Marine mussels produce mussel adhesive proteins (MAPs), which help them strongly attach to different surfaces, even under wet conditions in the ocean. Inspired by mussel adhesiveness, scientists discovered that dopamine undergoes self-polymerization at alkaline conditions. This reaction provides a universal coating for metals, polymers, and ceramics, regardless of their chemical and physical properties. Furthermore, this polymerized layer is enriched with catechol groups that enable immobilization of primary amine or thiol-based biomolecules via a simple dipping process. Herein, this review explores the versatile surface modification techniques that have recently been exploited in tissue engineering and summarizes polydopamine polymerization mechanisms, coating process parameters, and effects on substrate properties. A brief discussion of polydopamine-based reactions in the context of engineering various tissue types, including bone, blood vessels, cartilage, nerves, and muscle, is also provided.

  7. Effect of adhesive thickness on adhesively bonded T-joint

    International Nuclear Information System (INIS)

    Abdullah, A R; Afendi, Mohd; Majid, M S Abdul

    2013-01-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding

  8. Tension headache.

    Science.gov (United States)

    Ziegler, D K

    1978-05-01

    Headache is an extremely common symptom, and many headaches undoubtedly have a relationship to stressful situations. The clear definition, however, of a "tension headache" complex and its differentiation from migraine in some patients is difficult. The problems are in the identification of a specific headache pattern induced by stress or "tension" and the relationship of the symptom to involuntary contraction of neck and scalp muscles. Treatment consists of analgesics and occasionally mild tranquilizers. Psychotherapy consists of reassurance and often other supportive measures, including modification of life styles. Various feedback techniques have been reported of value, but their superiority to suggestion and hypnosis is still problematic.

  9. Prevention of Intraabdominal Adhesions by Local and Systemic Administration of Immunosuppressive Drugs

    Science.gov (United States)

    Peker, Kemal; Inal, Abdullah; Sayar, Ilyas; Sahin, Murat; Gullu, Huriye; Inal, Duriye Gul; Isik, Arda

    2013-01-01

    Background: Intraperitoneal adhesion formation is a serious postsurgical issue. Adhesions develop after damage to the peritoneum by surgery, irradiation, infection or trauma. Objectives: Using a rat model, we compared the effectiveness of systemic and intraperitoneally administered common immunosuppressive drugs for prevention of postoperative intraperitoneal adhesions. Materials and Methods: Peritoneal adhesions were induced in 98 female Wistar-Albino rats by cecal abrasion and peritoneal excision. Rats were randomly separated into seven groups, each containing fourteen rats, and the standard experimental model was applied to all of rats. 14 days later, rats were euthanized, intraperitoneal adhesions were scored and tissues were examined histologically using hematoxylin/eosin and Masson’s trichrome staining. Results: Throughout the investigation, no animal died during or after surgery. In all of experimental groups, decrease in fibrosis was statistically significant. Decrease in fibrosis was most prominently in intraperitoneal tacrolimus group (P = 0.000), and decrease was least in intraperitoneal cyclosporine group (P = 0.022). Vascular proliferation was significantly decreased in all experimental groups (P < 0.05) except for systemic tacrolimus group (P = 0.139). Most prominent reduction in vascular proliferation was in intraperitoneal tacrolimus group (P = 0.000). Conclusions: Administration of immunosuppressive drugs is effective for prevention of intraperitoneal adhesions. PMID:24693396

  10. Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection.

    NARCIS (Netherlands)

    Broek, R.P.G ten; Wilbers, J.; Goor, H. van

    2011-01-01

    BACKGROUND: Minimizing peritoneal tissue injury during abdominal surgery has the benefit of reducing postoperative inflammatory response, pain, and adhesion formation. Ultrasonic dissection seems to reduce tissue damage. This study aimed to compare electrocautery and ultrasonic dissection in terms

  11. Bio-inspired enhancement of friction and adhesion at the polydimethylsiloxane-intestine interface and biocompatibility characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongyu, E-mail: zhanghyu@tsinghua.edu.cn [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Wang, Yi [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Vasilescu, Steven [School of Mathematics and Physical Science, Faculty of Science, University of Technology Sydney, New South Wales 2007 (Australia); Gu, Zhibin [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, Tao [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2017-05-01

    An active navigation of self-propelled miniaturized robot along the intestinal tract without injuring the soft tissue remains a challenge as yet. Particularly in this case an effective control of the interfacial friction and adhesion between the material used and the soft tissue is crucial. In the present study, we investigated the frictional and adhesive properties between polydimethylsiloxane (PDMS, microscopically patterned with micro-pillar arrays and non-patterned with a flat surface) and rabbit small intestinal tract using a universal material tester. The friction coefficient-time plot and adhesive force-time plot were recorded during the friction test (sliding speed: 0.25 mm/s; normal loading: 0.4 N) and adhesion test (preloading: 0.5 N; hoisting speed: 2.5 × 10{sup −3} mm/s). In addition, biocompatibility of the PDMS samples was characterized in terms of cell morphology (scanning electron microscope) and cell cytotoxicity (alamarBlue assay) using human vascular endothelial cells (HUVECs). The results demonstrated that the interfacial friction (0.27 vs 0.19) and adhesion (34.9 mN vs 26.7 mN) were greatly increased using microscopically patterned PDMS, in comparison with non-patterned PDMS. HUVECs adhered to and proliferated on non-patterned/microscopically patterned PDMS very well, with a relative cell viability of about 90% following seeding at 1 d, 3 d, and 5 d. The favorable enhancement of the frictional and adhesive properties, along with the excellent biocompatibility of the microscopically patterned PDMS, makes it a propitious choice for clinical application of self-propelled miniaturized robots. - Highlights: • Micro-pillars enhanced friction and adhesion between PDMS and intestinal tract. • Micro-patterned PDMS showed good cell morphology and cytotoxicity using HUVECs. • Micro-pattern technology may be applied in self-propelled miniaturized robot.

  12. Bio-inspired enhancement of friction and adhesion at the polydimethylsiloxane-intestine interface and biocompatibility characterization

    International Nuclear Information System (INIS)

    Zhang, Hongyu; Wang, Yi; Vasilescu, Steven; Gu, Zhibin; Sun, Tao

    2017-01-01

    An active navigation of self-propelled miniaturized robot along the intestinal tract without injuring the soft tissue remains a challenge as yet. Particularly in this case an effective control of the interfacial friction and adhesion between the material used and the soft tissue is crucial. In the present study, we investigated the frictional and adhesive properties between polydimethylsiloxane (PDMS, microscopically patterned with micro-pillar arrays and non-patterned with a flat surface) and rabbit small intestinal tract using a universal material tester. The friction coefficient-time plot and adhesive force-time plot were recorded during the friction test (sliding speed: 0.25 mm/s; normal loading: 0.4 N) and adhesion test (preloading: 0.5 N; hoisting speed: 2.5 × 10 −3 mm/s). In addition, biocompatibility of the PDMS samples was characterized in terms of cell morphology (scanning electron microscope) and cell cytotoxicity (alamarBlue assay) using human vascular endothelial cells (HUVECs). The results demonstrated that the interfacial friction (0.27 vs 0.19) and adhesion (34.9 mN vs 26.7 mN) were greatly increased using microscopically patterned PDMS, in comparison with non-patterned PDMS. HUVECs adhered to and proliferated on non-patterned/microscopically patterned PDMS very well, with a relative cell viability of about 90% following seeding at 1 d, 3 d, and 5 d. The favorable enhancement of the frictional and adhesive properties, along with the excellent biocompatibility of the microscopically patterned PDMS, makes it a propitious choice for clinical application of self-propelled miniaturized robots. - Highlights: • Micro-pillars enhanced friction and adhesion between PDMS and intestinal tract. • Micro-patterned PDMS showed good cell morphology and cytotoxicity using HUVECs. • Micro-pattern technology may be applied in self-propelled miniaturized robot.

  13. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the

  14. Tensions in Distributed Leadership

    Science.gov (United States)

    Ho, Jeanne; Ng, David

    2017-01-01

    Purpose: This article proposes the utility of using activity theory as an analytical lens to examine the theoretical construct of distributed leadership, specifically to illuminate tensions encountered by leaders and how they resolved these tensions. Research Method: The study adopted the naturalistic inquiry approach of a case study of an…

  15. Indentation and Observation of Anisotropic Soft Tissues Using an Indenter Device

    Directory of Open Access Journals (Sweden)

    Parinaz ASHRAFI

    2015-01-01

    Full Text Available Soft tissues of human body have complex structures and different mechanical behaviors than those of traditional engineering materials. There is a great urge to understand tissue behavior of human body. Experimental data is needed for improvement of soft tissue modeling and advancement in implants and prosthesis, as well as diagnosis of diseases. Mechanical behavior and responses change when tissue loses its liveliness and viability. One of the techniques for soft tissue testing is indentation, which is applied on live tissue in its physiological environment. Indentation affords several advantages over other types of tests such as uniaxial tension, biaxial tension, and simple shear and suction, thus it is of interest to develop new indentation techniques from which more valid data can be extracted. In this study a new indenter device was designed and constructed. Displacement and force rate cyclic loading, and relaxation experiments were conducted on human arm. The in-vivo force rate controlled cyclic loading test method which is novel is compared with the traditional displacement controlled cyclic loading tests. Anisotropic behavior of tissue cannot be determined by axisymmetric tips, therefore ellipsoid tips were used for examining anisotropy and inplane material direction of bulk soft tissues

  16. Chapter 9:Wood Adhesion and Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2013-01-01

    The recorded history of bonding wood dates back at least 3000 years to the Egyptians (Skeist and Miron 1990, River 1994a), and adhesive bonding goes back to early mankind (Keimel 2003). Although wood and paper bonding are the largest applications for adhesives, some of the fundamental aspects leading to good bonds are not fully understood. Better understanding of these...

  17. Oxidative stress under ambient and physiological oxygen tension in tissue culture

    Science.gov (United States)

    Jagannathan, Lakshmanan; Cuddapah, Suresh; Costa, Max

    2016-01-01

    Oxygen (O2) levels range from 2–9% in vivo. However, cell culture experiments are performed at atmospheric O2 levels (21%). Oxidative stress due to generation of reactive oxygen species (ROS) in cells cultured at higher than physiological levels is implicated in multitude of deleterious effects including DNA damage, genomic instability and senescence. In addition, oxidative stress activates redox sensitive transcription factors related to inflammatory signaling and apoptotic signaling. Furthermore, several chromatin-modifying enzymes are affected by ROS, potentially impacting epigenetic regulation of gene expression. While primary cells are cultured at lower O2 levels due to their inability to grow at higher O2, the immortalized cells, which display no such apparent growth difficulties, are typically cultured at 21% O2. This review will provide an overview of issues associated with increased oxygen levels in in vitro cell culture and point out the benefits of using lower levels of oxygen tension even for immortalized cells. PMID:27034917

  18. Tension pneumocephalus: Mount Fuji sign

    Directory of Open Access Journals (Sweden)

    Pulastya Sanyal

    2015-01-01

    Full Text Available A 13-year-old male was operated for a space occupying lesion in the brain. A noncontrast computed tomography scan done in the late postoperative period showed massive subdural air collection causing compression of bilateral frontal lobes with widening of interhemispheric fissure and the frontal lobes acquiring a peak like configuration - causing tension pneumocephalus-"Mount Fuji sign." Tension pneumocephalus occurs when air enters the extradural or intradural spaces in sufficient volume to exert a mass or pressure effect on the brain, leading to brain herniation. Tension pneumocephalus is a surgical emergency, which needs immediate intervention in the form of decompression of the cranial cavity by a burr hole or needle aspiration. The Mount Fuji sign differentiates tension pneumocephalus from pneumocephalus.

  19. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  20. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  1. An In Vitro Evaluation of Leakage of Two Etch and Rinse and Two Self-Etch Adhesives after Thermocycling

    OpenAIRE

    Geerts, Sabine; Bolette, Amandine; Seidel, Laurence; Guéders, Audrey

    2012-01-01

    Our experiment evaluated the microleakage in resin composite restorations bonded to dental tissues with different adhesive systems. 40 class V cavities were prepared on the facial and lingual surfaces of each tooth with coronal margins in enamel and apical margins in cementum (root dentin). The teeth were restored with Z100 resin composite bonded with different adhesive systems: Scotchbond Multipurpose (SBMP), a 3-step Etch and Rinse adhesive, Adper Scotchbond 1 XT (SB1), a 2-step Etch and Ri...

  2. Mechanisms of adhesion and subsequent actions of a haematopoietic stem cell line, HPC-7, in the injured murine intestinal microcirculation in vivo.

    Directory of Open Access Journals (Sweden)

    Dean P J Kavanagh

    Full Text Available Although haematopoietic stem cells (HSCs migrate to injured gut, therapeutic success clinically remains poor. This has been partially attributed to limited local HSC recruitment following systemic injection. Identifying site specific adhesive mechanisms underpinning HSC-endothelial interactions may provide important information on how to enhance their recruitment and thus potentially improve therapeutic efficacy. This study determined (i the integrins and inflammatory cyto/chemokines governing HSC adhesion to injured gut and muscle (ii whether pre-treating HSCs with these cyto/chemokines enhanced their adhesion and (iii whether the degree of HSC adhesion influenced their ability to modulate leukocyte recruitment.Adhesion of HPC-7, a murine HSC line, to ischaemia-reperfused (IR injured mouse gut or cremaster muscle was monitored intravitally. Critical adhesion molecules were identified by pre-treating HPC-7 with blocking antibodies to CD18 and CD49d. To identify cyto/chemokines capable of recruiting HPC-7, adhesion was monitored following tissue exposure to TNF-α, IL-1β or CXCL12. The effects of pre-treating HPC-7 with these cyto/chemokines on surface integrin expression/clustering, adhesion to ICAM-1/VCAM-1 and recruitment in vivo was also investigated. Endogenous leukocyte adhesion following HPC-7 injection was again determined intravitally.IR injury increased HPC-7 adhesion in vivo, with intestinal adhesion dependent upon CD18 and muscle adhesion predominantly relying on CD49d. Only CXCL12 pre-treatment enhanced HPC-7 adhesion within injured gut, likely by increasing CD18 binding to ICAM-1 and/or CD18 surface clustering on HPC-7. Leukocyte adhesion was reduced at 4 hours post-reperfusion, but only when local HPC-7 adhesion was enhanced using CXCL12.This data provides evidence that site-specific molecular mechanisms govern HPC-7 adhesion to injured tissue. Importantly, we show that HPC-7 adhesion is a modulatable event in IR injury and

  3. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    Science.gov (United States)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  4. The Role of Immunoglobulin Superfamily Cell Adhesion Molecules in Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Chee Wai Wong

    2012-01-01

    Full Text Available Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM, L1CAM, neural CAM (NCAM, leukocyte CAM (ALCAM, intercellular CAM-1 (ICAM-1 and platelet endothelial CAM-1 (PECAM-1 could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.

  5. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes.

    Science.gov (United States)

    Kroustalli, Anthoula A; Kourkouli, Souzana N; Deligianni, Despina D

    2013-12-01

    Multiwalled carbon nanotubes (MWCNTs) are considered to be excellent reinforcements for biorelated applications, but, before being incorporated into biomedical devices, their biocompatibility need to be investigated thoroughly. We investigated the ability of films of pristine MWCNTs to influence human mesenchymal stem cells' proliferation, morphology, and differentiation into osteoblasts. Moreover, the selective integrin subunit expression and the adhesion mechanism to the substrate were evaluated on the basis of adherent cell number and adhesion strength, following the treatment of cells with blocking antibodies to a series of integrin subunits. Results indicated that MWCNTs accelerated cell differentiation to a higher extent than tissue culture plastic, even in the absence of additional biochemical inducing agents. The pre-treatment with anti-integrin antibodies decreased number of adherent cells and adhesion strength at 4-60%, depending on integrin subunit. These findings suggest that pristine MWCNTs represent a suitable reinforcement for bone tissue engineering scaffolds.

  6. Photocrosslinkable chitosan as a biological adhesive.

    Science.gov (United States)

    Ono, K; Saito, Y; Yura, H; Ishikawa, K; Kurita, A; Akaike, T; Ishihara, M

    2000-02-01

    A photocrosslinkable chitosan to which both azide and lactose moieties were introduced (Az-CH-LA) was prepared as a biological adhesive for soft tissues and its effectiveness was compared with that of fibrin glue. Introduction of the lactose moieties resulted in a much more water-soluble chitosan at neutral pH. Application of ultraviolet light (UV) irradiation to photocrosslinkable Az-CH-LA produced an insoluble hydrogel within 60 s. This hydrogel firmly adhered two pieces of sliced ham with each other, depending upon the Az-CH-LA concentration. The binding strength of the chitosan hydrogel prepared from 30-50 mg/mL of Az-CH-LA was similar to that of fibrin glue. Compared to the fibrin glue, the chitosan hydrogel more effectively sealed air leakage from pinholes on isolated small intestine and aorta and from incisions on isolated trachea. Neither Az-CH-LA nor its hydrogel showed any cytotoxicity in cell culture tests of human skin fibroblasts, coronary endothelial cells, and smooth muscle cells. Furthermore, all mice studied survived for at least 1 month after implantation of 200 microL of photocrosslinked chitosan gel and intraperitoneal administration of up to 1 mL of 30 mg/mL of Az-CH-LA solution. These results suggest that the photocrosslinkable chitosan developed here has the potential of serving as a new tissue adhesive in medical use. Copyright 2000 John Wiley & Sons, Inc.

  7. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts.

    Science.gov (United States)

    Perinpanayagam, H; Zaharias, R; Stanford, C; Brand, R; Keller, J; Schneider, G

    2001-11-01

    In osteoporosis, the regenerative capacity of bone is compromised, which may involve altered osteoblast (OB) activity. This could be attributed to an inappropriate synthesis and assembly of an extracellular matrix (ECM), altered cell adhesion to the ECM, or be due to inappropriate downstream activation of adhesion-mediated signaling cascades through proteins such as focal adhesion kinase (FAK). The purpose of our study was to compare early adhesion-mediated events using previously described and characterized clinically derived OBs obtained from human patients undergoing major joint arthroplasty for osteoporosis or osteoarthritis. The presence or absence of osteoporosis was established with a radiographic index. Using light microscopy and crystal violet staining, we show that OB cells derived from sites of osteoporosis do not attach and spread as well as non-osteoporotic (OP) OB cells. OP cells initially have a more rounded morphology, and show significantly less (P attachment to serum-coated tissue culture plastic over a 24 h time period. Immunofluorescent labeling after 24 h of attachment showed that OP OB focal adhesions (FAs) and stress fibers were less defined, and that the OP cells were smaller and had a more motile phenotype. When normalized protein lysates were Western blotted for phosphotyrosine (PY) a band corresponding to pp125FAK was identified. FAK tyrosine phosphorylation was evident at 6 h in both the OP and non-OP OBs, but decreased or was absent through 24 h in OP OBs. These results suggest early adhesion-mediated events, such as cell adhesion, attachment, and FAK signaling via PY may be altered in OP OBs.

  8. Cell adhesion on NiTi thin film sputter-deposited meshes

    Energy Technology Data Exchange (ETDEWEB)

    Loger, K. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Engel, A.; Haupt, J. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Li, Q. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lima de Miranda, R. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); ACQUANDAS GmbH, Kiel (Germany); Quandt, E. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lutter, G. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Selhuber-Unkel, C. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany)

    2016-02-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm{sup 2} and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm{sup 2} and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  9. Cell adhesion on NiTi thin film sputter-deposited meshes

    International Nuclear Information System (INIS)

    Loger, K.; Engel, A.; Haupt, J.; Li, Q.; Lima de Miranda, R.; Quandt, E.; Lutter, G.; Selhuber-Unkel, C.

    2016-01-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm 2 and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm 2 and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  10. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    Science.gov (United States)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  11. An In Vitro Evaluation of Leakage of Two Etch and Rinse and Two Self-Etch Adhesives after Thermocycling

    Science.gov (United States)

    Geerts, Sabine; Bolette, Amandine; Seidel, Laurence; Guéders, Audrey

    2012-01-01

    Our experiment evaluated the microleakage in resin composite restorations bonded to dental tissues with different adhesive systems. 40 class V cavities were prepared on the facial and lingual surfaces of each tooth with coronal margins in enamel and apical margins in cementum (root dentin). The teeth were restored with Z100 resin composite bonded with different adhesive systems: Scotchbond Multipurpose (SBMP), a 3-step Etch and Rinse adhesive, Adper Scotchbond 1 XT (SB1), a 2-step Etch and Rinse adhesive, AdheSE One (ADSE-1), a 1-step Self-Etch adhesive, and AdheSE (ADSE), a 2-step Self-Etch adhesive. Teeth were thermocycled and immersed in 50% silver nitrate solution. When both interfaces were considered, SBMP has exhibited significantly less microleakage than other adhesive systems (resp., for SB1, ADSE-1 and ADSE, P = 0.0007, P adhesives, microleakage was found greater at enamel than at dentin interfaces (for ADSE, P = 0.024 and for ADSE-1, P adhesive systems, there was no significant difference between enamel and dentin interfaces; (3) SBMP was found significantly better than other adhesives both at enamel and dentin interfaces. In our experiment Etch and Rinse adhesives remain better than Self-Etch adhesives at enamel interface. In addition, there was no statistical difference between 1-step (ADSE-1) and 2-step (ADSE) Self-Etch adhesives. PMID:22675358

  12. Bond strength of composite to dentin: effect of acid etching and laser irradiation through an uncured self-etch adhesive system

    International Nuclear Information System (INIS)

    Castro, F L A; Carvalho, J G; Andrade, M F; Saad, J R C; Hebling, J; Lizarelli, R F Z

    2014-01-01

    This study evaluated the effect on micro-tensile bond strength (µ-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer’s instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd:YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm 2 ) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (α = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher µ-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in µ-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher µ-TBS when compared to the suggested manufacturer’s technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin. (paper)

  13. Adhesion of human and animal escherichia coli strains in association with their virulence-associated genes and phylogenetic origins

    DEFF Research Database (Denmark)

    Fr̈mmel, Ulrike; R̈diger, Stefan; B̈hm, Alexander

    2013-01-01

    for the occurrence of 44 VAGs using a novel multiplex PCR microbead assay (MPMA) and for adhesion to four epithelial cell lines using a new adhesion assay. We correlated data for the definition of new adhesion genes. inVAGs were identified only sporadically, particularly in roe deer (Capreolus capreolus...... to cells, host, and tissue, though it was also unspecific. Occurrence of the following VAGs was associated with a higher rate of adhesion to one or more cell lines: afa-dra, daaD, tsh, vat, ibeA, fyuA, mat, sfa-foc, malX, pic, irp2, and papC. In summary, we established new screening methods which enabled...

  14. Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables

    Science.gov (United States)

    Liu, Ruiwei; Guo, Hongwei; Liu, Rongqiang; Wang, Hongxiang; Tang, Dewei; Song, Xiaoke

    2017-11-01

    Shape accuracy is of substantial importance in deployable structures as the demand for large-scale deployable structures in various fields, especially in aerospace engineering, increases. The main purpose of this paper is to present a shape accuracy optimization method to find the optimal pretensions for the desired shape of cable-rib tension deployable antenna structure with tensioned cables. First, an analysis model of the deployable structure is established by using finite element method. In this model, geometrical nonlinearity is considered for the cable element and beam element. Flexible deformations of the deployable structure under the action of cable network and tensioned cables are subsequently analyzed separately. Moreover, the influence of pretension of tensioned cables on natural frequencies is studied. Based on the results, a genetic algorithm is used to find a set of reasonable pretension and thus minimize structural deformation under the first natural frequency constraint. Finally, numerical simulations are presented to analyze the deployable structure under two kinds of constraints. Results show that the shape accuracy and natural frequencies of deployable structure can be effectively improved by pretension optimization.

  15. Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts

    Directory of Open Access Journals (Sweden)

    Ott Carolyn

    2012-04-01

    Full Text Available Abstract Background The central tenet of cilia function is sensing and transmitting information. The capacity to directly contact extracellular surfaces would empower primary cilia to probe the environment for information about the nature and location of nearby surfaces. It has been well established that flagella and other motile cilia perform diverse cellular functions through adhesion. We hypothesized that mammalian primary cilia also interact with the extracellular environment through direct physical contact. Methods We identified cilia in rod photoreceptors and cholangiocytes in fixed mouse tissues and examined the structures that these cilia contact in vivo. We then utilized an MDCK cell culture model to characterize the nature of the contacts we observed. Results In retina and liver tissue, we observed that cilia from nearby cells touch one another. Using MDCK cells, we found compelling evidence that these contacts are stable adhesions that form bridges between two cells, or networks between many cells. We examined the nature and duration of the cilia-cilia contacts and discovered primary cilia movements that facilitate cilia-cilia encounters. Stable adhesions form as the area of contact expands from a single point to a stretch of tightly bound, adjacent cilia membranes. The cilia-cilia contacts persisted for hours and were resistant to several harsh treatments such as proteases and DTT. Unlike many other cell adhesion mechanisms, calcium was not required for the formation or maintenance of cilia adhesion. However, swainsonine, which blocks maturation of N-linked glycoproteins, reduced contact formation. We propose that cellular control of adhesion maintenance is active because cilia adhesion did not prevent cell division; rather, contacts dissolved during mitosis as cilia were resorbed. Conclusions The demonstration that mammalian primary cilia formed prolonged, direct, physical contacts supports a novel paradigm: that mammalian primary

  16. Histological Analysis of Intra-Abdominal Adhesions Treated with Sodium Hyaluronate and Carboxymethylcellulose Gel.

    Science.gov (United States)

    Montalvo-Javé, Eduardo Esteban; Mendoza-Barrera, German Eduardo; García-Pineda, Manuel Alejandro; Jaime Limón, Álvaro Rodrigo; Montalvo-Arenas, César; Castell Rodríguez, Andrés Eliú; Tapia Jurado, Jesús

    2016-01-01

    To evaluate macro and microscopically the adhesions developed after using the anti-adherence compound sodium hyaluronate and carboxymethylcellulose (SH-CBMC) gel and to determine the volume of the adhesions using a stereological estimation. The study was experimental, random, comparative, and prospective. The subjects of the study were male Wistar rats divided in three groups (n = 10). Group I (control) included rats with no peritoneal injury. Group II rats had a 2 cm diameter injury created bilaterally in the parietal peritoneum at 3 cm from the abdominal midline with electrocautery coated with physiological solution. Group III rats were given the same injuries and coated with SH-CBMC gel. All groups were followed up postoperatively for 30 days, after which a laparotomy was performed to macroscopically determine the presence and type of adhesions. Experimental models were euthanized with anesthetic overdose and biopsies were taken for histopathological examination and stereological estimate of the volume of adhesions. Macroscopic adhesions were 20% less prevalent in Group III compared to Group II, which presented 40% more multiple and firm adhesions, unlike in Group III, in which they were unique and lax. There was a statistically significant decrease in the presence and number of adhesions in rats treated with SH-CBMC gel. Inflammatory infiltrate was significantly lower in rats treated with SH-CBMC gel, but there were no differences in connective tissue, fibrosis, and angiogenesis among groups. There was no statistical difference in the overall volume of adhesions among the treatment groups. SH-CBMC gel reduces macroscopic presence and number of adhesions and the severity of the inflammatory infiltrate.

  17. Spontaneous tension haemopneumothorax.

    Science.gov (United States)

    Patterson, Benjamin Oliver; Itam, Sarah; Probst, Fey

    2008-10-31

    We present a patient with sudden onset progressive shortness of breath and no history of trauma, who rapidly became haemodynamically compromised with a pneumothorax and pleural effusion seen on chest radiograph. He was treated for spontaneous tension pneumothorax but this was soon revealed to be a tension haemopneumothorax. He underwent urgent thoracotomy after persistent bleeding to explore an apical vascular abnormality seen on CT scanning. To our knowledge this is the first such case reported.Aetiology and current approach to spontaneous haemothorax are discussed briefly.

  18. Construction of retroviral recombinant containing human tissue ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... Recombinant retroviral vector containing human tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) gene was ..... heavy metal ions, the protein could be express in an .... involves adhesion, degradation and movement. To.

  19. Adhesive permeability affects coupling of resin cements that utilise self-etching primers to dentine.

    Science.gov (United States)

    Carvalho, R M; Pegoraro, T A; Tay, F R; Pegoraro, L F; Silva, N R F A; Pashley, D H

    2004-01-01

    To examine the effects of an experimental bonding technique that reduces the permeability of the adhesive layer on the coupling of resin cements to dentine. Extracted human third molars had their mid to deep dentin surface exposed flat by transversally sectioning the crowns. Resin composite overlays were constructed and cemented to the surfaces using either Panavia F (Kuraray) or Bistite II DC (Tokuyama) resin cements mediated by their respective one-step or two-step self-etch adhesives. Experimental groups were prepared in the same way, except that the additional layer of a low-viscosity bonding resin (LVBR, Scotchbond Multi-Purpose Plus, 3M ESPE) was placed on the bonded dentine surface before luting the overlays with the respective resin cements. The bonded assemblies were stored for 24 h in water at 37 degrees C and subsequently prepared for microtensile bond strength testing. Beams of approximately 0.8 mm(2) were tested in tension at 0.5 mm/min in a universal tester. Fractured surfaces were examined under scanning electron microscopy (SEM). Additional specimens were prepared and examined with TEM using a silver nitrate-staining technique. Two-way ANOVA showed significant interactions between materials and bonding protocols (p0.05). SEM observation of the fractured surfaces in Panavia F showed rosette-like features that were exclusive for specimens bonded according to manufacturer's directions. Such features corresponded well with the ultrastructure of the interfaces that showed more nanoleakage associated with the more permeable adhesive interface. The application of the additional layer of the LVBR reduced the amount of silver impregnation for both adhesives suggesting that reduced permeability of the adhesives resulted in improved coupling of the resin cements to dentin. Placement of an intermediate layer of a LVBR between the bonded dentine surface and the resin cements resulted in improved coupling of Panavia F to dentine.

  20. Membrane tension regulates clathrin-coated pit dynamics

    Science.gov (United States)

    Liu, Allen

    2014-03-01

    Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates

  1. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    International Nuclear Information System (INIS)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun

    2016-01-01

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively

  2. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun [Andong National Univ., Andong (Korea, Republic of)

    2016-07-15

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively.

  3. Effect of hyaluronic acid on postoperative intraperitoneal adhesion formation in the rat model

    Energy Technology Data Exchange (ETDEWEB)

    Urman, B.; Gomel, V.; Jetha, N. (Department of Obstetrics and Gynecology, University of British Columbia, Vancouver (Canada))

    1991-09-01

    The aim of this study was to determine the effectiveness of hyaluronic acid solution in preventing intraperitoneal (IP) adhesions. The study design was prospective, randomized and blinded and involved 83 rats. Measured serosal injury was inflicted using a CO2 laser on the right uterine horn of the rat. Animals randomized to groups 1 and 2 received either 0.4% hyaluronic acid or its diluent phosphate-buffered saline (PBS) intraperitoneally before and after the injury. In groups 3 and 4, the same solutions were used only after the injury. Postoperative adhesions were assessed at second-look laparotomy. Histologic assessment of the fresh laser injury was carried out on uteri pretreated with hyaluronic acid, PBS, or nothing. Pretreatment with hyaluronic acid was associated with a significant reduction in postoperative adhesions and a significantly decreased crater depth. Hyaluronic acid appears to reduce postoperative IP adhesion formation by coating the serosal surfaces and decreasing the extent of initial tissue injury.

  4. Self-etch and etch-and-rinse adhesive systems in clinical dentistry.

    Science.gov (United States)

    Ozer, Fusun; Blatz, Markus B

    2013-01-01

    Current adhesive systems follow either an "etch-and-rinse" or "self-etch" approach, which differ in how they interact with natural tooth structures. Etch-and-rinse systems comprise phosphoric acid to pretreat the dental hard tissues before rinsing and subsequent application of an adhesive. Self-etch adhesives contain acidic monomers, which etch and prime the tooth simultaneously. Etch-and-rinse adhesives are offered as two- or three-step systems, depending on whether primer and bonding are separate or combined in a single bottle. Similarly, self-etch adhesives are available as one- or two-step systems. Both etch-and-rinse and self-etch systems form a hybrid layer as a result of resins impregnating the porous enamel or dentin. Despite current trends toward fewer and simpler clinical application steps, one-step dentin bonding systems exhibit bonding agent lower bond strengths and seem less predictable than multi-step etch-and-rinse and self-etch systems. The varying evidence available today suggests that the choice between etch-and-rinse and self-etch systems is often a matter of personal preference. In general, however, phosphoric acid creates a more pronounced and retentive etching pattern in enamel. Therefore, etch-and-rinse bonding systems are often preferred for indirect restorations and when large areas of enamel are still present. Conversely, self-etch adhesives provide superior and more predictable bond strength to dentin and are, consequently, recommended for direct composite resin restorations, especially when predominantly supported by dentin.

  5. Physics of adhesion

    International Nuclear Information System (INIS)

    Gerberich, W W; Cordill, M J

    2006-01-01

    Adhesion physics was relegated to the lowest echelons of academic pursuit until the advent of three seemingly disconnected events. The first, atomic force microscopy (AFM), eventually allowed fine-scale measurement of adhesive point contacts. The second, large-scale computational materials science, now permits both hierarchical studies of a few thousand atoms from first principles or of billions of atoms with less precise interatomic potentials. The third is a microelectronics industry push towards the nanoscale which has provided the driving force for requiring a better understanding of adhesion physics. In the present contribution, an attempt is made at conjoining these separate events into an updating of how theoretical and experimental approaches are providing new understanding of adhesion physics. While all material couples are briefly considered, the emphasis is on metal/semiconductor and metal/ceramic interfaces. Here, adhesion energies typically range from 1 to 100 J m -2 where the larger value is considered a practical work of adhesion. Experimental emphasis is on thin-film de-adhesion for 10 to 1000 nm thick films. For comparison, theoretical approaches from first principles quantum mechanics to embedded atom methods used in multi-scale modelling are utilized

  6. A rat hysteropexy model for evaluating adhesion formation and comparison of two different structured meshes.

    Science.gov (United States)

    Gokmen-Karasu, Ayse Filiz; Aydin, Serdar; Sonmez, Fatma Cavide; Adanir, Ilknur; Ilhan, Gulsah; Ates, Seda

    2017-11-01

    Peritonization of mesh during sacrohysteropexy is generally advocated to prevent adhesions to the viscera; however, randomized clinical trials are lacking, and peritonization may not be completely possible in a laparoscopic hysteropexy procedure. Our main objective was to describe a basic experimental rat sacrohysteropexy model. We hypothesized that even when peritoneal closure was omitted, using composite mesh would result in less adhesions to the viscera. Twenty in-bred female virgin Wistar Hannover rats were used in this study. Standardized hysteropexy procedure and adhesion model is described step by step with two different mesh materials: polypropylene and a composite polyester. Mesh was anchored between the posterior cervix and anterior longitudinal ligament of the lumbar vertebrae. Macroscopic adhesion scores and histopathological tissue reaction was investigated. Macroscopically, the surface area involved in adhesions was similar between groups. However, adhesions in the polypropylene group were more dense, required sharp dissection for lysis, and yielded higher total macroscopic adhesion scores (p < 0.001). Histologically, a more pronounced host inflammatory response was encountered in the polyester group (p < 0.001). We describe a rat hysteropexy model and a previously established uterine adhesion model. Adhesion scores in the composite mesh group were lower, and bowel involvement was not seen. Our findings are promising, and further research investigating antiadhesive composite mesh use for hysterosacropexy would be appropriate, especially when peritoneal closure is omitted.

  7. Influence of a hydrophobic resin coating on the immediate and 6-month dentin bonding of three universal adhesives.

    Science.gov (United States)

    Sezinando, Ana; Luque-Martinez, Issis; Muñoz, Miguel Angel; Reis, Alessandra; Loguercio, Alessandro D; Perdigão, Jorge

    2015-10-01

    To test the influence of a hydrophobic resin coating (HC) on the immediate (24h) and 6-month (6m) microtensile dentin bond strengths (μTBS) and nanoleakage (NL) of three universal adhesives applied in self-etch (SE) or in etch-and-rinse (ER) mode. Sixty caries-free extracted third molars were assigned to 12 experimental groups resulting from the combination of the factors "adhesive system" (Scotchbond Universal Adhesive [SBU], 3M ESPE; All-Bond Universal [ABU], Bisco Inc.; and G-Bond Plus [GBP], GC Corporation); "adhesive strategy" (SE or ER); "hydrophobic resin coating" [HC] (with or without Heliobond, Ivoclar Vivadent); and "storage time" (24h or 6m). Specimens were prepared for μTBS testing - (24h) half of the beams were immediately tested under tension; and (6m) the other half was stored in distilled water (37°C) for 6m prior to testing. For each tooth, two beams were randomly selected for NL evaluation for both evaluation times. Data were analyzed for each adhesive system using three-way ANOVA and Tukey's post-hoc test (α=0.05). μTBS: (24h): In SE mode, HC resulted in statistically greater mean μTBS for all adhesives. (6m): When HC was not used the mean μTBS for SBU/ER, ABU/ER, GBP/ER and SBU/SE decreased significantly. NL: (24h): SBU/ER, ABU/ER and GBP/SE resulted in a significant reduction in NL when HC was applied. (6m): No significant reduction was observed for SBU/ER or for SBU/SE regardless of the use of HC. The application of a hydrophobic resin coating improved the 24h and the 6m performances of all three adhesives systems in SE mode. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.

    Science.gov (United States)

    West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C

    2017-08-07

    In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Change in organic molecule adhesion on α-alumina (Sapphire) with change in NaCl and CaCl2 solution salinity

    DEFF Research Database (Denmark)

    Juhl, Klaus; Bovet, Nicolas Emile; Hassenkam, Tue

    2014-01-01

    We investigated the adhesion of two functional groups to α-alumina as a model for the adsorption of organic molecules on clay minerals. Interactions between organic compounds and clay minerals play an important role in processes such as drinking water treatment, remediation of contaminated soil...... the growth of bones, teeth, and shells. Adhesion of carboxylic acid, -COO(H), and pyridine, -C5H5N(H+), on the {0001} plane of α-alumina wafers has been investigated with atomic force microscopy (AFM) in chemical force mapping (CFM) mode. Both functional groups adhered to α-alumina in deionized water at p...... in surface properties, controlling surface tension (i.e., contact angle) and adsorption affinity on α-alumina and, by analogy, on clay minerals....

  10. Spontaneous tension haemopneumothorax

    Directory of Open Access Journals (Sweden)

    Itam Sarah

    2008-10-01

    Full Text Available Abstract We present a patient with sudden onset progressive shortness of breath and no history of trauma, who rapidly became haemodynamically compromised with a pneumothorax and pleural effusion seen on chest radiograph. He was treated for spontaneous tension pneumothorax but this was soon revealed to be a tension haemopneumothorax. He underwent urgent thoracotomy after persistent bleeding to explore an apical vascular abnormality seen on CT scanning. To our knowledge this is the first such case reported. Aetiology and current approach to spontaneous haemothorax are discussed briefly.

  11. Immunohistochemical expression of epithelial cell adhesion molecule (EpCAM) in mucoepidermoid carcinoma compared to normal salivary gland tissues.

    Science.gov (United States)

    Kamal, Noura M; Salem, Hend M; Dahmoush, Heba M

    2017-07-01

    Mucoepidermoid carcinoma (MEC) is the most common malignant salivary gland tumor which displays biological, histological and clinical diversity thus representing a challenge for its diagnosis and management. Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein identified as a tumor specific antigen due to its frequent overexpression in the majority of epithelial carcinomas and its correlation with prognosis. It is considered to be a promising biomarker used as a therapeutic target already in ongoing clinical trials. The purpose of this study was to investigate the pattern, cellular characterization and level of EpCAM expression in MEC and demonstrate its correlation with histologic grading which may benefit future clinical trials using EpCAM targeted therapy. 48 specimens (12 normal salivary gland tissue and 36 MEC) were collected and EpCAM membranous expression was evaluated by immunohistochemistry. Total immunoscore (TIS) was evaluated, the term 'EpCAM overexpression' was given for tissues showing a total immunoscore >4. A highly significant difference was observed between TIS percent values in control and different grades of MEC (p<0.001). High grade MEC (HG-MEC) was the highest EpCAM expressor. In addition, EpCAM expression pattern differed among the different grades. EpCAM expression was detected in MEC, and its overexpression correlated with increasing the histological grade. The diffuse membranous expression in HG-MEC could be of diagnostic value in relation to the patchy expression observed in both low grade and intermediate grade MEC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Specialized probes based on hydroxyapatite calcium for heart tissues research by atomic force microscopy

    International Nuclear Information System (INIS)

    Zhukov, Mikhail; Golubok, Alexander; Gulyaev, Nikolai

    2016-01-01

    The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of created specialized probes at study a calcinations process of the aortic heart tissues.

  13. Initial tension loss in cerclage cables.

    Science.gov (United States)

    Ménard, Jérémie; Émard, Maxime; Canet, Fanny; Brailovski, Vladimir; Petit, Yvan; Laflamme, George Y

    2013-10-01

    Cerclage cables, frequently used in the management of fractures and osteotomies, are associated with a high failure rate and significant loosening during surgery. This study compared the capacity to maintain tension of different types of orthopaedic cable systems. Multifilament Cobalt-Chrome (CoCr) cables with four different crimp/clamp devices (DePuy, Stryker, Zimmer and Smith&Nephew) and one non-metallic Nylon (Ny) cable from Kinamed were instrumented with a load cell to measure tension during insertion. Significant tension loss was observed with crimping for all cables (Ptensioner led to an additional unexpected tension loss (CoCr-DePuy: 18%, CoCr-Stryker: 29%, CoCr-Smith&Nephew: 33%, Ny: 46%, and CoCr-Zimmer: 52%). The simple CoCr (DePuy) cable system outperformed the more sophisticated locking devices due to its significantly better ability to prevent tension loss. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Reflections about Adhesive Systems

    OpenAIRE

    de Freitas Borges, Marciano; Diesel, Pâmela Gutheil; Corrêa, Fernanda Gomez; Bernardi, Eledana; Fernandes Montagner, Anelise; Skupien, Jovito Adiel; Susin, Alexandre Henrique

    2010-01-01

    The adhesive systems are responsible for an efficient union between teeth and resin, resulting in a longevity restoration. They are organic molecules di or multifunctional that contain reactive groups that interact with dentin and with the resin monomer of composite resin. The adhesive systems are characterized by wet adhesion, which is a result of presence of hidrophylics radicals in their compositions, to promote a better bond and the best properties of the adhesion. Adhesive systems may us...

  15. Expression of MLN64 influences cellular matrix adhesion of breast cancer cells, the role for focal adhesion kinase.

    Science.gov (United States)

    Cai, Wei; Ye, Lin; Sun, Jiabang; Mansel, Robert E; Jiang, Wen G

    2010-04-01

    The metastatic lymph node 64 (MLN64) gene was initially identified as highly expressed in the metastatic lymph node from breast cancer. It is localized in q12-q21 of the human chromosome 17 and is often co-amplified with erbB-2. However, the role played by MLN64 in breast cancer remains unclear. In the present study, the expression of MLN64 was examined in a breast cancer cohort using quantitative real-time PCR and immunohistochemical staining. It demonstrated that MLN64 was highly expressed in breast tumours compared to corresponding background tissues at both transcript level and protein level. The elevated level of MLN64 transcripts was correlated with the poor prognosis and overall survival of the patients. A panel of breast cancer cell sublines was subsequently developed by knockdown of MLN64 expression. Loss of MLN64 expression in MCF-7 cells resulted in a significant reduction of cell growth (absorbance for MCF-7DeltaMLN64 being 0.87+/-0.07, Padhesion assay, MDA-MB-231DeltaMLN64 cells showed a significant increase in adhesion (86+/-14), padhesion kinase (FAK) in MDA-MB-231DeltaMLN64 cells using Western blot analysis and immunofluorescent staining of FAK. Moreover, addition of FAK inhibitor to these cells diminished the effect of MLN64 on cell-matrix adhesion, suggesting that FAK contributed to the increased adhesion in MDA-MB-231DeltaMLN64 cells. In conclusion, MLN64 is overexpressed in breast cancer, and its level correlates with poor prognosis and patient survival. MLN64 contributes to the development and progression of breast cancer through the regulation of cell proliferation and adhesive capacity.

  16. Nanofiber mats composed of a chitosan-poly(d,l-lactic-co-glycolic acid)-poly(ethylene oxide) blend as a postoperative anti-adhesion agent.

    Science.gov (United States)

    Ko, Jae Eok; Ko, Young-Gwang; Kim, Won Il; Kwon, Oh Kyoung; Kwon, Oh Hyeong

    2017-10-01

    Postoperative tissue adhesion causes serious complications and suffering in 90% of patients after peritoneum surgery, while commercial anti-adhesion agents cannot completely prevent postoperative peritoneal adhesions. This study demonstrates electrospining of a blended solution of chitosan, poly(d,l-lactic-co-glycolic acid) (PLGA), and poly(ethylene oxide) (PEO) to fabricate a chitosan-based nanofibrous mat as a postoperative anti-adhesion agent. Rheological studies combined with scanning electron microscopy reveal that the spinnability of the chitosan-PLGA solution could be controlled by adjusting the blend ratio and concentration with average fiber diameter from 634 to 913 nm. Biodegradation of the nanofiber specimens showed accelerated hydrolysis by chitosan. Proliferation of fibroblasts and antimicrobial activity of nanofibers containing chitosan was analyzed. Abdominal defects with cecum adhesion in rats demonstrated that the blend nanofiber mats were effective in preventing tissue adhesion as a barrier (4 weeks after abdominal surgery) by coverage of exfoliated peritoneum and insufficient wound sites at the beginning of the wound healing process. Chitosan-PLGA-PEO blend nanofiber mats will provide a promising key as a postoperative anti-adhesion agent. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1906-1915, 2017. © 2016 Wiley Periodicals, Inc.

  17. Toward a general psychological model of tension and suspense.

    Science.gov (United States)

    Lehne, Moritz; Koelsch, Stefan

    2015-01-01

    Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life). The omnipresence of tension and suspense suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie) build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying tension and suspense. The model provides a theoretical framework that can inform future empirical research on tension phenomena.

  18. Low cytotoxic tissue adhesive based on oxidized dextran and epsilon-poly-L-lysine.

    Science.gov (United States)

    Hyon, Suong-Hyu; Nakajima, Naoki; Sugai, Hajime; Matsumura, Kazuaki

    2014-08-01

    A novel adhesive hydrogel consisting of dextran and epsilon-poly(L-lysine) (dextran-PL) with multiple biomedical applications was developed. Periodate oxidation in aqueous media almost stoichiometrically introduces aldehyde groups in dextran molecules, and aldehyde dextran can react with the primary amino groups in epsilon-PL (ɛ-PL) at neutral pH to form a hydrogel. The gelation time of the hydrogel can be easily controlled by the extent of oxidation in dextran and of the acylation in ɛ-PL by anhydrides. The shear adhesion strength of dextran-PL was 10 times higher than that of fibrin glue, when wet collagen sheets were selected as test specimens. The cytotoxicity of aldehyde dextran and ɛ-PL were 1000 times lower than that of glutaraldehyde and poly(allylamine). The considerably low cytotoxicity of aldehyde dextran could be ascribed to its low reactivity with amine species when compared with glutaraldehyde. In contrast, a high reactivity of amino groups in ɛ-PL was observed when compared with glycine, L-lysine, and gelatin, which could be explained by their poor dissociation at neutral pH, thus leading to low cytotoxicity. © 2013 Wiley Periodicals, Inc.

  19. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  20. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    Science.gov (United States)

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  1. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  2. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow

    NARCIS (Netherlands)

    Emans, Tonja W.; Janssen, Ben J.; Pinkham, Maximilian I.; Ow, Connie P. C.; Evans, Roger G.; Joles, Jaap A.; Malpas, Simon C.; Krediet, C. T. Paul; Koeners, Maarten P.

    2016-01-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous

  3. Roles of cell adhesion and cytoskeleton activity in Entamoeba histolytica pathogenesis: a delicate balance.

    Science.gov (United States)

    Tavares, Paulo; Rigothier, Marie-Christine; Khun, Huot; Roux, Pascal; Huerre, Michel; Guillén, Nancy

    2005-03-01

    The protozoan parasite Entamoeba histolytica colonizes the human large bowel. Invasion of the intestinal epithelium causes amoebic colitis and opens the route for amoebic liver abscesses. The parasite relies on its dynamic actomyosin cytoskeleton and on surface adhesion molecules for dissemination in the human tissues. Here we show that the galactose/N-acetylgalactosamine (Gal/GalNAc) lectin clusters in focal structures localized in the region of E. histolytica that contacts monolayers of enterocytes. Disruption of myosin II activity impairs the formation of these structures and renders the trophozoites avirulent for liver abscess development. Production of the cytoplasmic domain of the E. histolytica Gal/GalNAc lectin in engineered trophozoites causes reduced adhesion to enterocytes. Intraportal delivery of these parasites to the liver leads to the formation of a large number of small abscesses with disorganized morphology that are localized in the vicinity of blood vessels. The data support a model for invasion in which parasite motility is essential for establishment of infectious foci, while the adhesion to host cells modulates the distribution of trophozoites in the liver and their capacity to migrate in the hepatic tissue.

  4. 25 Years of Tension over Actin Binding to the Cadherin Cell Adhesion Complex: The Devil is in the Details.

    Science.gov (United States)

    Nelson, W James; Weis, William I

    2016-07-01

    Over the past 25 years, there has been a conceptual (re)evolution in understanding how the cadherin cell adhesion complex, which contains F-actin-binding proteins, binds to the actin cytoskeleton. There is now good synergy between structural, biochemical, and cell biological results that the cadherin-catenin complex binds to F-actin under force. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  6. A new biodegradable adhesive for protection of intestinal anastomoses. Preliminary communication.

    Science.gov (United States)

    Cueto, Jorge; Barrientos, Tomás; Rodríguez, Ernesto; Del Moral, Pamela

    2011-08-01

    Anastomotic leaks continue to be a devastating complication for patients and surgeons worldwide. The few surgical adhesives available to date have not achieved the desired clinical results. The purpose of this experimental study was to determine if Pebisut® applied to intestinal suture lines provides increased resistance and protection during the critical days of healing. Intestinal lesions were caused in rats and dogs and a new biodegradable adhesive (Pebisut®) (patent granted in the European Union 07808494.4-1219, 01.12.2010, in Mexico P.C.T./MX/a/2009/001737, 16.02.2009, pending in the U.S.P.T.O. 60/762,136, 26.01.2006) was applied to compare the resistance of suture lines using bursting pressures and histologically. Under acute and chronic conditions, Pebisut® strengthened and made the suture lines more resistant, while histologically penetrating and sealing them. The adhesive disappears within 2-3 weeks and is well tolerated by the intestinal tissues. This biodegradable adhesive provides greater resistance, temporarily protects suture lines and may prevent anastomotic leaks. Copyright © 2011 IMSS. Published by Elsevier Inc. All rights reserved.

  7. Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway.

    Directory of Open Access Journals (Sweden)

    Igor Paron

    Full Text Available BACKGROUND: Pancreatic cancer (PDAC is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC, a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs. In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. METHODS: Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. RESULTS: Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. CONCLUSION: TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.

  8. Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions.

    Science.gov (United States)

    Croutze, Roger; Jomha, Nadr; Uludag, Hasan; Adesida, Adetola

    2013-12-13

    Limited intrinsic healing potential of the meniscus and a strong correlation between meniscal injury and osteoarthritis have prompted investigation of surgical repair options, including the implantation of functional bioengineered constructs. Cell-based constructs appear promising, however the generation of meniscal constructs is complicated by the presence of diverse cell populations within this heterogeneous tissue and gaps in the information concerning their response to manipulation of oxygen tension during cell culture. Four human lateral menisci were harvested from patients undergoing total knee replacement. Inner and outer meniscal fibrochondrocytes (MFCs) were expanded to passage 3 in growth medium supplemented with basic fibroblast growth factor (FGF-2), then embedded in porous collagen type I scaffolds and chondrogenically stimulated with transforming growth factor β3 (TGF-β3) under 21% (normal or normoxic) or 3% (hypoxic) oxygen tension for 21 days. Following scaffold culture, constructs were analyzed biochemically for glycosaminoglycan production, histologically for deposition of extracellular matrix (ECM), as well as at the molecular level for expression of characteristic mRNA transcripts. Constructs cultured under normal oxygen tension expressed higher levels of collagen type II (p = 0.05), aggrecan (p oxygen tension. There was no significant difference in expression of these genes between scaffolds seeded with MFCs isolated from inner or outer regions of the tissue following 21 days chondrogenic stimulation (p > 0.05). Cells isolated from inner and outer regions of the human meniscus demonstrated equivalent differentiation potential toward chondrogenic phenotype and ECM production. Oxygen tension played a key role in modulating the redifferentiation of meniscal fibrochondrocytes on a 3D collagen scaffold in vitro.

  9. Tension type headaches: a review

    African Journals Online (AJOL)

    Location of the pain:There is often a typical location for tension- type headaches, as ... Cranial nerve abnormalities, including papilloedema. • Signs of ... peripheral and central mechanisms underlie tension-type ... Physiotherapy has been shown to be an effective management option for .... Acupuncture in primary headache.

  10. Post-tensioning system surveillance program

    International Nuclear Information System (INIS)

    Drew, G.E.

    1979-01-01

    Nuclear power plant containment structure post-tensioning system tendon surveillance program is described in detail. Data collected over three yearly post-tensioning system Surveillance Programs is presented and evaluated to correlate anticipated stress losses with actual losses. In addition corrosion protected system performance is analyzed

  11. The study and design of tension controller

    Science.gov (United States)

    Jun, G.; Lamei, X.

    2018-02-01

    Tension control is a wide used technology in areas such as textiles, paper and plastic films. In this article, the tension control system release and winding process is analyzed and the mathematical model of tension control system is established, and a high performance tension controller is designed. In hardware design, STM32F130 single chip microcomputer is used as the control core, which has the characteristics of fast running speed and rich peripheral features. In software design, μC/OS-II operating system is introduced to improve the efficiency of single chip microcomputer, and enhance the independence of each module, and make development and maintenance more convenient. The taper tension control is adopted in the winding part, which can effectively solve the problem of rolling shrinkage. The results show that the tension controller has the characteristics of simple structure, easy operation and stable performance.

  12. Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal

    OpenAIRE

    Cho, Woo Kyung; Ankrum, James A.; Guo, Dagang; Chester, Shawn A.; Yang, Seung Yun; Kashyap, Anurag; Campbell, Georgina A.; Wood, Robert J.; Rijal, Ram K.; Karnik, Rohit; Langer, Robert; Karp, Jeffrey M.

    2012-01-01

    North American porcupines are well known for their specialized hairs, or quills that feature microscopic backward-facing deployable barbs that are used in self-defense. Herein we show that the natural quill’s geometry enables easy penetration and high tissue adhesion where the barbs specifically contribute to adhesion and unexpectedly, dramatically reduce the force required to penetrate tissue. Reduced penetration force is achieved by topography that appears to create stress concentrations al...

  13. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  14. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Diaz-Gomez, Luis; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Silva, Maite; Dominguez, Fernando; Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L.; Macossay, Javier

    2014-01-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications

  15. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Gomez, Luis [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Alvarez-Lorenzo, Carmen, E-mail: carmen.alvarez.lorenzo@usc.es [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Concheiro, Angel [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Silva, Maite [Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Dominguez, Fernando [Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela (Spain); Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L. [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States); Macossay, Javier, E-mail: jmacossay@utpa.edu [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States)

    2014-07-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications.

  16. Mentoring Preservice Teachers: Identifying Tensions and Possible Resolutions

    Science.gov (United States)

    Hudson, Peter; Hudson, Sue

    2018-01-01

    Tensions can occur in the mentor-mentee relationship during school-based professional experiences that require problem solving. What are the tensions for mentor teachers in preservice teacher education and how might these tensions be resolved? This qualitative study collected data from 31 high school mentor teachers about tensions experienced with…

  17. Autonomously Self-Adhesive Hydrogels as Building Blocks for Additive Manufacturing.

    Science.gov (United States)

    Deng, Xudong; Attalla, Rana; Sadowski, Lukas P; Chen, Mengsu; Majcher, Michael J; Urosev, Ivan; Yin, Da-Chuan; Selvaganapathy, P Ravi; Filipe, Carlos D M; Hoare, Todd

    2018-01-08

    We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic cross-linking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within 1 min after cutting or shear under both neutral and acidic pH conditions. Incorporation of this hydrogel in an interpenetrating calcium-alginate network results in an interfacially stiffer but still rapidly self-adhesive hydrogel that can be assembled into hollow perfusion channels by simple contact additive manufacturing within minutes. Such channels withstand fluid perfusion while retaining their dimensions and support endothelial cell growth and proliferation, providing a simple and modular route to produce customized cell scaffolds.

  18. TANNIN ADHESIVES AS AN ALTENATIVE TO THE SYNTHETIC PHENOLIC ADHESIVES

    Directory of Open Access Journals (Sweden)

    Semra Çolak

    2003-04-01

    Full Text Available Recently, increasing attention has been paid industrially to the use of tannin formaldehyde adhesives in production of wood based panel products such as particleboard, fiber board and plywood. The researches on the use of tannin extracts as a wood adhesive started in 1950, however, they proceeded very slowly since the problems associated with the application of them. The idea which tannin extract can be used replace the oil-based phenolic adhesive was the base of several studies after the oil crisis of the 1970s. In the past, the economical aspects were important in the researches on the tannin-based adhesives. Nowadays, however, both economical and ecological factors should have taken into consideration in wood bonding.

  19. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  20. β-Catenin–regulated myeloid cell adhesion and migration determine wound healing

    Science.gov (United States)

    Amini-Nik, Saeid; Cambridge, Elizabeth; Yu, Winston; Guo, Anne; Whetstone, Heather; Nadesan, Puviindran; Poon, Raymond; Hinz, Boris; Alman, Benjamin A.

    2014-01-01

    A β-catenin/T cell factor–dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin–mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury. PMID:24837430

  1. Energetics of bacterial adhesion

    International Nuclear Information System (INIS)

    Loosdrecht, M.C.M. van; Zehnder, A.J.B.

    1990-01-01

    For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized. (author) 2 figs., 1 tab., 50 refs

  2. Morphological Evaluation of the Adhesive/Enamel interfaces of Two-step Self-etching Adhesives and Multimode One-bottle Self-etching Adhesives.

    Science.gov (United States)

    Sato, Takaaki; Takagaki, Tomohiro; Matsui, Naoko; Hamba, Hidenori; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    To evaluate the acid-base resistant zone (ABRZ) at the adhesive/enamel interface of self-etching adhesives with or without prior phosphoric acid etching. Four adhesives were used in 8 groups: Clearfil SE Bond (SEB), Optibond XTR (XTR), Scotchbond Universal Adhesive (SBU), and Clearfil BOND SE ONE (ONE) without prior phosphoric-acid etching, and each adhesive with phosphoric acid etching for 10 s (P-SEB, P-XTR, P-SBU and P-ONE, respectively). After application of self-etching adhesives on ground enamel surfaces of human teeth, a flowable composite was placed. For observation of the acid-base resistant zone (ABRZ), the bonded interface was exposed to demineralizing solution (pH 4.5) for 4.5 h, followed by 5% NaOCl with ultrasonication for 20 min. After the acid-base challenge, morphological attributes of the interface were observed using SEM. ABRZ formation was confirmed in all groups. The funnel-shaped erosion beneath the interface was present in SBU and ONE, where nearly 10 to 15 μm of enamel was dissolved. With phosphoric acid etching, the ABRZs were obviously thicker compared with no phosphoric acid etching. Enamel beneath the bonding interface was more susceptible to acid dissolution in SBU and ONE. In the case of the one-bottle self-etching adhesives and universal adhesives that intrinsically have higher pH values, enamel etching should be recommended to improve the interfacial quality.

  3. Influence of Application Time and Etching Mode of Universal Adhesives on Enamel Adhesion.

    Science.gov (United States)

    Sai, Keiichi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Ishii, Ryo; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2018-01-01

    To investigate the influence of application time and etching mode of universal adhesives on enamel adhesion. Five universal adhesives, Adhese Universal, Bondmer Lightless, Clearfil Universal Bond Quick, G-Premio Bond, and Scotchbond Universal, were used. Bovine incisors were prepared and divided into four groups of ten teeth each. SBS, Ra, and SFE were determined after the following procedures: 1. self-etch mode with immediate air blowing after application (IA); 2. self-etch mode with prolonged application time (PA); 3. etch-and-rinse mode with IA; 4. etch-and-rinse mode with PA. After 24-h water storage, the bonded assemblies were subjected to shear bond strength (SBS) tests. For surface roughness (Ra) and surface free energy (SFE) measurements, the adhesives were simply applied to the enamel and rinsed with acetone and water before the measurements were carried out. Significantly higher SBS and Ra values were obtained with etch-and-rinse mode than with self-etch mode regardless of the application time or type of adhesive. Although most adhesives showed decreased SFE values with increased application time in self-etch mode, SFE values in etch-and-rinse mode were dependent on the adhesive type and application time. Etching mode, application time, and type of adhesive significantly influenced the SBS, Ra, and SFE values.

  4. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    Science.gov (United States)

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The extent of adhesion induction through electrocoagulation and suturing in an experimental rat study.

    Science.gov (United States)

    Wallwiener, Christian W; Kraemer, Bernhard; Wallwiener, Markus; Brochhausen, Christoph; Isaacson, Keith B; Rajab, Taufiek K

    2010-03-01

    To investigate the effect of three types of peritoneal trauma occurring during surgery (high-frequency bipolar current, suturing, and mechanical damage) on postoperative adhesion formation in a rodent animal model. Randomized, controlled experimental trial in an in vitro animal model. Laboratory facilities of a university department of obstetrics and gynecology. Thirty-five female Wistar rats. Bilateral experimental lesions were created on the abdominal wall in every animal. The effect of minimal electrocoagulation was examined by creating lesions (n = 14) through sweeps of a bipolar forceps with a duration of 1 second and standardized pressure. For extensive electrocoagulation standardized lesions (n = 14) were created using sweeps of a duration of 3 seconds and three times more pressure. For mechanical trauma, standardized lesions (n = 14) were created by denuding the peritoneum mechanically. To study the additive effect of suturing, experimental lesions were created by suturing plus minimal electrocoagulation (n = 14) or mechanical denuding (n = 14). Adhesion incidence, quantity, and quality of the resulting adhesions were scored 14 days postoperatively. Adhesions were studied histopathologically. Mechanical denuding of the peritoneum did not result in adhesion formation. After minimal electrocoagulation, mean adhesion quantity of the traumatized area averaged 0%. This contrasted with extensive electrocoagulation, where there was 50% adhesion. Additional suturing increased mean adhesion quantity to 73% and 64% for superficial electrocoagulation and mechanical denuding, respectively. We conclude that superficial trauma limited mostly to the parietal peritoneum may be a negligible factor in adhesion formation in this model. This appears to be irrespective of the mode of trauma. However, additional trauma to the underlying tissues, either by deeper electrocoagulation or suturing, leads to significantly increased adhesion formation. These data also show that there

  6. Mounting ground sections of teeth: Cyanoacrylate adhesive versus Canada balsam.

    Science.gov (United States)

    Vangala, Manogna Rl; Rudraraju, Amrutha; Subramanyam, R V

    2016-01-01

    Hard tissues can be studied by either decalcification or by preparing ground sections. Various mounting media have been tried and used for ground sections of teeth. However, there are very few studies on the use of cyanoacrylate adhesive as a mounting medium. The aim of our study was to evaluate the efficacy of cyanoacrylate adhesive (Fevikwik™) as a mounting medium for ground sections of teeth and to compare these ground sections with those mounted with Canada balsam. Ground sections were prepared from twenty extracted teeth. Each section was divided into two halves and mounted on one slide, one with cyanoacrylate adhesive (Fevikwik™) and the other with Canada balsam. Scoring for various features in the ground sections was done by two independent observers. Statistical analysis using Student's t-test (unpaired) of average scores was performed for each feature observed. No statistically significant difference was found between the two for most of the features. However, cyanoacrylate was found to be better than Canada balsam for observing striae of Retzius (P < 0.0205), enamel lamellae (P < 0.036), dentinal tubules (P < 0.0057), interglobular dentin (P < 0.0001), sclerotic dentin - transmitted light (P < 0.00001), sclerotic dentin - polarized light (P < 0.0002) and Sharpey's fibers (P < 0.0004). This initial study shows that cyanoacrylate is better than Canada balsam for observing certain features of ground sections of teeth. However, it remains to be seen whether it will be useful for studying undecalcified sections of carious teeth and for soft tissue sections.

  7. Perceiving the affordance of string tension for power strokes in badminton: expertise allows effective use of all string tensions.

    Science.gov (United States)

    Zhu, Qin

    2013-01-01

    Affordances mean opportunities for action. These affordances are important for sports performance and relevant to the abilities developed by skilled athletes. In racquet sports such as badminton, different players prefer widely different string tension because it is believed to provide opportunities for effective strokes. The current study examined whether badminton players can perceive the affordance of string tension for power strokes and whether the perception of affordance itself changed as a function of skill level. The results showed that string tension constrained the striking performance of both novice and recreational players, but not of expert players. When perceptual capability was assessed, perceptual mode did not affect perception of the optimal string tension. Skilled players successfully perceived the affordance of string tension, but only experts were concerned about saving energy. Our findings demonstrated that perception of the affordance of string tension in badminton was determined by action abilities. Furthermore, experts could adjust the action to maintain a superior level of performance based on the perception of affordance.

  8. Tension waves in tethered satellite cables

    Science.gov (United States)

    Lallman, F. J.

    1984-01-01

    A one-degree-of-freedom simulation of the Tethered Satellite System (TSS) was programmed using a distributed system model of the tether based on the one-dimensional wave equation. This model represents the time varying tension profile along the tether as the sum of two traveling waves of tension moving in opposite directions. A control loop was devised which combines a deployment rate command with the measured tension at the deployer to produce a smooth, stable rate of deployment of the subsatellite. Simulation results show a buildup of periodic bursts of high frequency oscillation in tension. This report covers the mathematical modelling and simulation results and explains the reason for the observed oscillations. The design of a possible vibration damping device is discussed.

  9. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  10. Biomechanical and histologic evaluation of two application forms of surgical glue for mesh fixation to the abdominal wall.

    Science.gov (United States)

    Ortillés, Á; Pascual, G; Peña, E; Rodríguez, M; Pérez-Köhler, B; Mesa-Ciller, C; Calvo, B; Bellón, J M

    2017-11-01

    The use of an adhesive for mesh fixation in hernia repair reduces chronic pain and minimizes tissue damage in the patient. This study was designed to assess the adhesive properties of a medium-chain (n-butyl) cyanoacrylate glue applied as drops or as a spray in a biomechanical and histologic study. Both forms of glue application were compared to the use of simple-loose or continuous-running polypropylene sutures for mesh fixation. Eighteen adult New Zealand White rabbits were used. For mechanical tests in an ex vivo and in vivo study, patches of polypropylene mesh were fixed to an excised fragment of healthy abdominal tissue or used to repair a partial abdominal wall defect in the rabbit respectively. Depending on the fixation method used, four groups of 12 implants each or 10 implants each respectively for the ex vivo and in vivo studies were established: Glue-Drops, Glue-Spray, Suture-Simple and Suture-Continuous. Biomechanical resistance in the ex vivo implants was tested five minutes after mesh fixation. In vivo implants for biomechanical and histologic assessment were collected at 14 days postimplant. In the ex vivo study, the continuous suture implants showed the highest failure sample tension, while the implants fixed with glue showed lower failure sample tension values. However, the simple and continuous suture implants returned the highest stretch values. In the in vivo implants, failure sample tension values were similar among groups while the implants fixed with a continuous running suture had the higher stretch values, and the glue-fixed implants the lower stretch values. All meshes showed good tissue integration within the host tissue regardless of the fixation method used. Our histologic study revealed the generation of a denser, more mature repair tissue when the cyanoacrylate glue was applied as a spray rather than as drops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    Science.gov (United States)

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-04-01

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  12. Isolation and Characterization of Adhesive Secretion from Cuvierian Tubules of Sea Cucumber Holothuria forskåli (Echinodermata: Holothuroidea

    Directory of Open Access Journals (Sweden)

    Malgorzata Baranowska

    2011-01-01

    Full Text Available The sea cucumber Holothuria forskåli possesses a specialized system called Cuvierian tubules. During mechanical stimulation white filaments (tubules are expelled and become sticky upon contact with any object. We isolated a protein with adhesive properties from protein extracts of Cuvierian tubules from H. forskåli. This protein was identified by antibodies against recombinant precollagen D which is located in the byssal threads of the mussel Mytilus galloprovincialis. To find out the optimal procedure for extraction and purification, the identified protein was isolated by several methods, including electroelution, binding to glass beads, immunoprecipitation, and gel filtration. Antibodies raised against the isolated protein were used for localization of the adhesive protein in Cuvierian tubules. Immunostaining and immunogold electron microscopical studies revealed the strongest immunoreactivity in the mesothelium; this tissue layer is involved in adhesion. Adhesion of Cuvierian tubule extracts was measured on the surface of various materials. The extracted protein showed the strongest adhesion to Teflon surface. Increased adhesion was observed in the presence of potassium and EDTA, while cadmium caused a decrease in adhesion. Addition of antibodies and trypsin abolished the adhesive properties of the extract.

  13. Effects of in vitro low oxygen tension preconditioning of adipose stromal cells on their in vivo chondrogenic potential: application in cartilage tissue repair.

    Directory of Open Access Journals (Sweden)

    Sophie Portron

    Full Text Available PURPOSE: Multipotent stromal cell (MSC-based regenerative strategy has shown promise for the repair of cartilage, an avascular tissue in which cells experience hypoxia. Hypoxia is known to promote the early chondrogenic differentiation of MSC. The aim of our study was therefore to determine whether low oxygen tension could be used to enhance the regenerative potential of MSC for cartilage repair. METHODS: MSC from rabbit or human adipose stromal cells (ASC were preconditioned in vitro in control or chondrogenic (ITS and TGF-β medium and in 21 or 5% O2. Chondrogenic commitment was monitored by measuring COL2A1 and ACAN expression (real-time PCR. Preconditioned rabbit and human ASC were then incorporated into an Si-HPMC hydrogel and injected (i into rabbit articular cartilage defects for 18 weeks or (ii subcutaneously into nude mice for five weeks. The newly formed tissue was qualitatively and quantitatively evaluated by cartilage-specific immunohistological staining and scoring. The phenotype of ASC cultured in a monolayer or within Si-HPMC in control or chondrogenic medium and in 21 or 5% O2 was finally evaluated using real-time PCR. RESULTS/CONCLUSIONS: 5% O2 increased the in vitro expression of chondrogenic markers in ASC cultured in induction medium. Cells implanted within Si-HPMC hydrogel and preconditioned in chondrogenic medium formed a cartilaginous tissue, regardless of the level of oxygen. In addition, the 3D in vitro culture of ASC within Si-HPMC hydrogel was found to reinforce the pro-chondrogenic effects of the induction medium and 5% O2. These data together indicate that although 5% O2 enhances the in vitro chondrogenic differentiation of ASC, it does not enhance their in vivo chondrogenesis. These results also highlight the in vivo chondrogenic potential of ASC and their potential value in cartilage repair.

  14. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  15. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    Directory of Open Access Journals (Sweden)

    Song Chunsheng

    2017-01-01

    Full Text Available The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhesive layer was achieved by finite element software ABAQUS. The fiber Bragg grating was embedded in the adherend between the first and second layers at the end of the adhesive layer to calculate the reflection spectrum of fiber Bragg grating sensor region with improved T-matrix method for reconstruction of the adherend strain profile of fiber Bragg grating sensing area with the help of genetic algorithm. According to the reconstruction results, the maximum error between the ideal and reconstructed strain profile under different tension loads did not exceed 7.43%, showing a good coincidence degree. The monitoring method of the stiffness degradation evolution of adhesive layer of the carbon fiber–reinforced plastic single-lap joint based on the reconstruction of the adherend strain profile of fiber Bragg grating sensing area thus was figured out.

  16. Mechanical Entrapment Is Insufficient and Intercellular Adhesion Is Essential for Metastatic Cell Arrest in Distant Organs

    Directory of Open Access Journals (Sweden)

    Olga V. Glinskii

    2005-05-01

    Full Text Available In this report, we challenge a common perception that tumor embolism is a size-limited event of mechanical arrest, occurring in the first capillary bed encountered by blood-borne metastatic cells. We tested the hypothesis that mechanical entrapment alone, in the absence of tumor cell adhesion to blood vessel walls, is not sufficient for metastatic cell arrest in target organ microvasculature. The in vivo metastatic deposit formation assay was used to assess the number and location of fluorescently labeled tumor cells lodged in selected organs and tissues following intravenous inoculation. We report that a significant fraction of breast and prostate cancer cells escapes arrest in a lung capillary bed and lodges successfully in other organs and tissues. Monoclonal antibodies and carbohydrate-based compounds (anti-Thomsen-Friedenreich antigen antibody, anti-galectin-3 antibody, modified citrus pectin, and lactulosyl-L-leucine, targeting specifically β-galactoside-mediated tumor-endothelial cell adhesive interactions, inhibited by >90% the in vivo formation of breast and prostate carcinoma metastatic deposits in mouse lung and bones. Our results indicate that metastatic cell arrest in target organ microvessels is not a consequence of mechanical trapping, but is supported predominantly by intercellular adhesive interactions mediated by cancer-associated Thomsen-Friedenreich glycoantigen and β-galactoside-binding lectin galectin-3. Efficient blocking of β-galactoside-mediated adhesion precludes malignant cell lodging in target organs.

  17. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro

    International Nuclear Information System (INIS)

    Schlie-Wolter, Sabrina; Ngezahayo, Anaclet; Chichkov, Boris N.

    2013-01-01

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions—which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance. -- Highlights: • We analyse the impact of ECM components on cell behaviour in vitro. • We compare five different cell types, using the same culture conditions. • The ECM significantly guides all cell responses. • Cell behaviour follows a cell specific ligand-priority ranking. • This gives insight in tissue formation and is essential for biomedical applications

  18. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Schlie-Wolter, Sabrina, E-mail: s.schlie@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Ngezahayo, Anaclet, E-mail: ngezahayo@biophysik.uni-hannover.de [Institute of Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover 30419 (Germany); Chichkov, Boris N., E-mail: b.chichkov@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany)

    2013-06-10

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions—which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance. -- Highlights: • We analyse the impact of ECM components on cell behaviour in vitro. • We compare five different cell types, using the same culture conditions. • The ECM significantly guides all cell responses. • Cell behaviour follows a cell specific ligand-priority ranking. • This gives insight in tissue formation and is essential for biomedical applications.

  19. Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Filová, Elena; Kubies, Dana; Machová, Luďka; Proks, Vladimír; Malinova, V.; Rypáček, František

    2007-01-01

    Roč. 18, č. 7 (2007), s. 1317-1323 ISSN 0957-4530 R&D Projects: GA AV ČR IAA4050202; GA AV ČR(CZ) 1QS500110564 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40500505 Keywords : tissue engineering * integrin-mediated cell adhesion * bioartificial tissue Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.581, year: 2007

  20. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  1. Urinary incontinence - tension-free vaginal tape

    Science.gov (United States)

    ... ency/article/007377.htm Urinary incontinence - tension-free vaginal tape To use the sharing features on this page, please enable JavaScript. Placement of tension-free vaginal tape is surgery to help control stress urinary ...

  2. MRI of placental adhesive disorder

    Science.gov (United States)

    Prapaisilp, P; Bangchokdee, S

    2014-01-01

    Placental adhesive disorder (PAD) is a serious pregnancy complication that occurs when the chorionic villi invade the myometrium. Placenta praevia and prior caesarean section are the two important risk factors. PAD is classified on the basis of the depth of myometrial invasion (placenta accreta, placenta increta and placenta percreta). MRI is the preferred image modality for pre-natal diagnosis of PAD and as complementary technique when ultrasonography is inconclusive. Imaging findings that are helpful for the diagnosis include dark intraplacental bands, direct invasion of adjacent structures by placental tissue, interruption of normal trilayered myometrium and uterine bulging. Clinicians should be aware of imaging features of PAD to facilitate optimal patient management. PMID:25060799

  3. A mechanics approach to the study of pressure sensitive adhesives and human skin for transdermal drug delivery applications

    Science.gov (United States)

    Taub, Marc Barry

    Transdermal drug delivery is an alternative approach to the systemic delivery of pharmaceuticals where drugs are administered through the skin and absorbed percutaneously. This method of delivery offers several advantages over more traditional routes; most notably, the avoidance of the fast-pass metabolism of the liver and gut, the ability to offer controlled release rates, and the possibility for novel devices. Pressure sensitive adhesives (PSAs) are used to bond transdermal drug delivery devices to the skin because of their good initial and long-term adhesion, clean removability, and skin and drug compatibility. However, an understanding of the mechanics of adhesion to the dermal layer, together with quantitative and reproducible test methods for measuring adhesion, have been lacking. This study utilizes a mechanics-based approach to quantify the interfacial adhesion of PSAs bonded to selected substrates, including human dermal tissue. The delamination of PSA layers is associated with cavitation in the PSA followed by the formation of an extensive cohesive zone behind the debond tip. A quantitative metrology was developed to assess the adhesion and delamination of PSAs, such that it could be possible to easily distinguish between the adhesive characteristics of different PSA compositions and to provide a quantitative basis from which the reliability of adhesive layers bonded to substrates could be studied. A mechanics-based model was also developed to predict debonding in terms of the relevant energy dissipation mechanisms active during this process. As failure of transdermal devices may occur cohesively within the PSA layer, adhesively at the interface between the PSA and the skin, or cohesively between the corneocytes that comprise the outermost layer of the skin, it was also necessary to explore the mechanical and fracture properties of human skin. The out-of-plane delamination of corneocytes was studied by determining the strain energy release rate during

  4. Damage development in woven fabric composites during tension-tension fatigue

    DEFF Research Database (Denmark)

    Hansen, U.

    1999-01-01

    of the operating fatigue damage mechanism(s). Fatigue leads to a degradation of material properties. Consequently, in connection with impact induced local stress raisers, fatigue produces continuously changing non-uniform stress fields because of stress redistribution effects. Other models addressing evolution...... of fatigue damage in composite materials have not been able to simulate evolving nonuniform stress fields. Therefore. in the second part of this paper, an analytical/numerical approach capable of addressing these issues is also proposed.......Impacted woven fabric composites were tested in tension-tension fatigue. In contrast to results from static testing, the effects of low energy impact damage in a fatigue environment were found to be the critical element leading to failure of the specimen. This difference emphasizes the need...

  5. Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues.

    Science.gov (United States)

    Kim, Iris L; Khetan, Sudhir; Baker, Brendon M; Chen, Christopher S; Burdick, Jason A

    2013-07-01

    Electrospinning has recently gained much interest due to its ability to form scaffolds that mimic the nanofibrous nature of the extracellular matrix, such as the size and depth-dependent alignment of collagen fibers within hyaline cartilage. While much progress has been made in developing bulk, isotropic hydrogels for tissue engineering and understanding how the microenvironment of such scaffolds affects cell response, these effects have not been extensively studied in a nanofibrous system. Here, we show that the mechanics (through intrafiber crosslink density) and adhesivity (through RGD density) of electrospun hyaluronic acid (HA) fibers significantly affect human mesenchymal stem cell (hMSC) interactions and gene expression. Specifically, hMSC spreading, proliferation, and focal adhesion formation were dependent on RGD density, but not on the range of fiber mechanics investigated. Moreover, traction-mediated fiber displacements generally increased with more adhesive fibers. The expression of chondrogenic markers, unlike trends in cell spreading and cytoskeletal organization, was influenced by both fiber mechanics and adhesivity, in which softer fibers and lower RGD densities generally enhanced chondrogenesis. This work not only reveals concurrent effects of mechanics and adhesivity in a fibrous context, but also highlights fibrous HA hydrogels as a promising scaffold for future cartilage repair strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly.

    Science.gov (United States)

    Brennan, James R; Hocking, Denise C

    2016-03-01

    The cell-dependent polymerization of intercellular fibronectin fibrils can stimulate cells to self-assemble into multicellular structures. The local physical cues that support fibronectin-mediated cellular self-assembly are largely unknown. Here, fibronectin matrix analogs were used as synthetic adhesive substrates to model cell-matrix fibronectin fibrils having different integrin-binding specificity, affinity, and/or density. We utilized this model to quantitatively assess the relationship between adhesive forces derived from cell-substrate interactions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Results indicate that the strength of initial, rather than mature, cell-substrate attachments correlates with the ability of substrates to support fibronectin-mediated cellular self-assembly. The cellular response to soluble fibronectin was bimodal and independent of the integrin-binding specificity of the substrate; increasing soluble fibronectin levels above a critical threshold increased aggregate cohesion on permissive substrates. Once aggregates formed, continuous fibronectin polymerization was necessary to maintain cohesion. During self-assembly, soluble fibronectin decreased cell-substrate adhesion strength and induced aggregate cohesion via a Rho-dependent mechanism, suggesting that the balance of contractile forces derived from fibronectin fibrils within cell-cell versus cell-substrate adhesions controls self-assembly and aggregate cohesion. Thus, initial cell-substrate attachment strength may provide a quantitative basis with which to build predictive models of fibronectin-mediated microtissue fabrication on a variety of substrates. Cellular self-assembly is a process by which cells and extracellular matrix (ECM) proteins spontaneously organize into three-dimensional (3D) tissues in the absence of external forces. Cellular self-assembly can be initiated in vitro, and represents a potential tool for tissue engineers to

  7. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

    International Nuclear Information System (INIS)

    Rodriguez-Ruiz, María E.; Garasa, Saray; Rodriguez, Inmaculada; Solorzano, Jose Luis; Barbes, Benigno; Yanguas, Alba; Teijeira, Alvaro; Etxeberria, Iñaki; Aristu, José Javier; Halin, Cornelia; Melero, Ignacio; Rouzaut, Ana

    2017-01-01

    Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to

  8. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Ruiz, María E., E-mail: mrruiz@unav.es [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Garasa, Saray; Rodriguez, Inmaculada [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Solorzano, Jose Luis; Barbes, Benigno [Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Yanguas, Alba [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Department of Biochemistry and Genetics, University of Navarra, Pamplona (Spain); Teijeira, Alvaro; Etxeberria, Iñaki [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Aristu, José Javier [Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Halin, Cornelia [Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich (Switzerland); Melero, Ignacio [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Rouzaut, Ana [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Department of Biochemistry and Genetics, University of Navarra, Pamplona (Spain)

    2017-02-01

    Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to

  9. Speaker and Observer Perceptions of Physical Tension during Stuttering.

    Science.gov (United States)

    Tichenor, Seth; Leslie, Paula; Shaiman, Susan; Yaruss, J Scott

    2017-01-01

    Speech-language pathologists routinely assess physical tension during evaluation of those who stutter. If speakers experience tension that is not visible to clinicians, then judgments of severity may be inaccurate. This study addressed this potential discrepancy by comparing judgments of tension by people who stutter and expert clinicians to determine if clinicians could accurately identify the speakers' experience of physical tension. Ten adults who stutter were audio-video recorded in two speaking samples. Two board-certified specialists in fluency evaluated the samples using the Stuttering Severity Instrument-4 and a checklist adapted for this study. Speakers rated their tension using the same forms, and then discussed their experiences in a qualitative interview so that themes related to physical tension could be identified. The degree of tension reported by speakers was higher than that observed by specialists. Tension in parts of the body that were less visible to the observer (chest, abdomen, throat) was reported more by speakers than by specialists. The thematic analysis revealed that speakers' experience of tension changes over time and that these changes may be related to speakers' acceptance of stuttering. The lack of agreement between speaker and specialist perceptions of tension suggests that using self-reports is a necessary component for supporting the accurate diagnosis of tension in stuttering. © 2018 S. Karger AG, Basel.

  10. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    International Nuclear Information System (INIS)

    Möller, Jens; Emge, Philippe; Vizcarra, Ima Avalos; Kollmannsberger, Philip; Vogel, Viola

    2013-01-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length. (paper)

  11. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    Science.gov (United States)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  12. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  13. Adhesion of multimode adhesives to enamel and dentin after one year of water storage.

    Science.gov (United States)

    Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2017-06-01

    This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.

  14. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  15. THz Properties of Adhesives

    Science.gov (United States)

    Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.

    2018-06-01

    We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.

  16. Bio-inspired reversible underwater adhesive.

    Science.gov (United States)

    Zhao, Yanhua; Wu, Yang; Wang, Liang; Zhang, Manman; Chen, Xuan; Liu, Minjie; Fan, Jun; Liu, Junqiu; Zhou, Feng; Wang, Zuankai

    2017-12-20

    The design of smart surfaces with switchable adhesive properties in a wet environment has remained a challenge in adhesion science and materials engineering. Despite intense demands in various industrial applications and exciting progress in mimicking the remarkable wet adhesion through the delicate control of catechol chemistry, polyelectrolyte complex, and supramolecular architectures, the full recapitulation of nature's dynamic function is limited. Here, we show a facile approach to synthesize bioinspired adhesive, which entails the reversible, tunable, and fast regulation of the wet adhesion on diverse surfaces. The smart wet adhesive takes advantage of the host-guest molecular interaction and the adhesive nature of catechol chemistry, as well as the responsive polymer, allowing for screening and activation of the interfacial interaction simply by a local temperature trigger in an on-demand manner. Our work opens up an avenue for the rational design of bioinspired adhesives with performances even beyond nature.

  17. Long-term In Vitro Adhesion of Polyalkenoate-based Adhesives to Dentin.

    Science.gov (United States)

    Sezinando, Ana; Perdigão, Jorge; Ceballos, Laura

    2017-01-01

    To study the influence of a polyalkenoate copolymer (VCP) on the immediate (24 h) and 6-month dentin bonding stability of VCP-based adhesives, using microtensile bond strength (μTBS), nanoleakage (NL), and ultramorphological analyses (FE-SEM). Eighty-four caries-free molars were randomly assigned to seven adhesives: Clearfil SE Bond (CSE, Kuraray Noritake); Adper Single Bond Plus (SB, 3M ESPE); SB without VCP (SBnoVCP, 3M ESPE); Scotchbond Universal Adhesive applied as a etch-and-rinse adhesive (SBU_ER); SBU without VCP applied as an etch-and-rinse adhesive (SBUnoVCP_ER); SBU applied as a self-etch adhesive (SBU_SE, 3M ESPE); SBU without VCP applied as a self-etch adhesive (SBUnoVCP_SE, 3M ESPE). Half of the beams were tested after 24 h, and the other half was aged in water for 6 months prior to testing. For each tooth/evaluation time, two beams were randomly selected for NL analysis. Statistical analyses of µTBS results were performed using two-way ANOVA, Tukey's post-hoc tests, and Student's t-test for paired data (α = 0.05). Nanoleakage was statistically analyzed using the Kruskal-Wallis and Mann-Whitney tests, with Wilcoxon's test for paired data. For FE-SEM, four caries-free molars were assigned to each of the seven groups. Dentin disks were restored and cross sectioned into halves. One half was observed at 24 h, and the other at 6 months. The highest 6-month mean μTBS was obtained with SBU_SE/SBUnoVCP_SE and SBUnoVCP_ER. SBUnoVCP_SE resulted in greater silver deposition at 6 months. FE-SEM observations showed that CSE and SBU_SE specimens resulted in a submicron hybrid layer without signs of degradation at 6 months. VCP may contribute to the long-term bonding stability of VCP-based adhesives.

  18. Effects of hypoxia on the immunomodulatory properties of adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    M. Roemeling-Van Rhijn (Marieke); F.K.F. Mensah (Fane ); S.S. Korevaar (Sander); M.J.C. Leijs (Maarten J.C.); G.J.V.M. van Osch (Gerjo); J.N.M. IJzermans (Jan); M.G.H. Betjes (Michiel); C.C. Baan (Carla); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractAdipose tissue-derived mesenchymal stem cells (ASC) are of great interest as a cellular therapeutic agent for regenerative and immunomodulatory purposes. The function of ASC adapts to environmental conditions, such as oxygen tension. Oxygen levels within tissues are typically much lower

  19. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    Science.gov (United States)

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  20. Mechanical characterization of selected adhesives and bulk materials at liquid nitrogen and room temperatures

    International Nuclear Information System (INIS)

    Fitzpatrick, C.M.; Stoddart, W.C.T.

    1977-01-01

    This paper presents the results of a series of mechanical tests on selected adhesives and bulk materials. The materials tested are of general interest to designers of magnets for cryogenic service and include several epoxies, a varnish, a B-stage glass cloth, insulation papers, and commercially available fiber-reinforced composites. These tests were performed at room temperature (293 K) and at liquid nitrogen temperature (77 K). The tests include both simple tension tests and lap shear tests with various adherends. The parameters critical to tensile or bond strength were varied as part of the test program. The procedures used to manufacture and test these specimens and the results of the tests are reported in this paper

  1. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  2. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  3. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    International Nuclear Information System (INIS)

    Mathapati, Santosh; Bishi, Dillip Kumar; Guhathakurta, Soma; Cherian, Kotturathu Mammen; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Verma, Rama Shanker

    2013-01-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  4. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mathapati, Santosh; Bishi, Dillip Kumar [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India); Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Guhathakurta, Soma [Departmet of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Cherian, Kotturathu Mammen [Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Venugopal, Jayarama Reddy; Ramakrishna, Seeram [Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Verma, Rama Shanker, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  5. The tension of framed membranes from computer simulations

    DEFF Research Database (Denmark)

    Hamkens, Daniel; Jeppesen, Claus; Ipsen, John H.

    2018-01-01

    the membranes display power-law characteristics for the equation of state, while higher tension levels includes both an extended linear (elastic) as well as a highly non-linear stretching regime. For semi-flexible membranes a transition from extended to buckled conformations takes place at negative frame......Abstract.: We have analyzed the behavior of a randomly triangulated, self-avoiding surface model of a flexible, fluid membrane subject to a circular boundary by Wang-Landau Monte Carlo computer simulation techniques. The dependence of the canonical free energy and frame tension on the frame area...... is obtained for flexible membranes. It is shown that for low bending rigidities the framed membrane is only stable above a threshold tension, suggesting a discontinuous transition from the collapsed (branched polymer) state to a finite tension extended state. In a tension range above this threshold tension...

  6. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  7. Assessment and reduction of diaphragmatic tension during hiatal hernia repair.

    Science.gov (United States)

    Bradley, Daniel Davila; Louie, Brian E; Farivar, Alexander S; Wilshire, Candice L; Baik, Peter U; Aye, Ralph W

    2015-04-01

    During hiatal hernia repair there are two vectors of tension: axial and radial. An optimal repair minimizes the tension along these vectors. Radial tension is not easily recognized. There are no simple maneuvers like measuring length that facilitate assessment of radial tension. The aims of this project were to: (1) establish a simple intraoperative method to evaluate baseline tension of the diaphragmatic hiatal muscle closure; and, (2) assess if tension is reduced by relaxing maneuvers and if so, to what degree. Diaphragmatic characteristics and tension were assessed during hiatal hernia repair with a tension gage. We compared tension measured after hiatal dissection and after relaxing maneuvers were performed. Sixty-four patients (29 M:35F) underwent laparoscopic hiatal hernia repair. Baseline hiatal width was 2.84 cm and tension 13.6 dag. There was a positive correlation between hiatal width and tension (r = 0.55) but the strength of association was low (r (2) = 0.31). Four different hiatal shapes (slit, teardrop, "D", and oval) were identified and appear to influence tension and the need for relaxing incision. Tension was reduced by 35.8 % after a left pleurotomy (12 patients); by 46.2 % after a right crural relaxing incision (15 patients); and by 56.1 % if both maneuvers were performed (6 patients). Tension on the diaphragmatic hiatus can be measured with a novel device. There was a limited correlation with width of the hiatal opening. Relaxing maneuvers such as a left pleurotomy or a right crural relaxing incision reduced tension. Longer term follow-up will determine whether outcomes are improved by quantifying and reducing radial tension.

  8. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... of the injection site, with a sharply demarcated border between the tumor and brain tissue. In contrast, the parental cell line showed single-cell infiltration and more pronounced destruction of normal brain tissue. Using a 51Cr-release assay, spleen cells from rats transplanted with BT4Cn tumor cells generally...

  9. Density and surface tension of ionic liquids.

    Science.gov (United States)

    Kolbeck, C; Lehmann, J; Lovelock, K R J; Cremer, T; Paape, N; Wasserscheid, P; Fröba, A P; Maier, F; Steinrück, H-P

    2010-12-30

    We measured the density and surface tension of 9 bis[(trifluoromethyl)sulfonyl]imide ([Tf(2)N](-))-based and 12 1-methyl-3-octylimidazolium ([C(8)C(1)Im](+))-based ionic liquids (ILs) with the vibrating tube and the pendant drop method, respectively. This comprehensive set of ILs was chosen to probe the influence of the cations and anions on density and surface tension. When the alkyl chain length in the [C(n)C(1)Im][Tf(2)N] series (n = 1, 2, 4, 6, 8, 10, 12) is increased, a decrease in density is observed. The surface tension initially also decreases but reaches a plateau for alkyl chain lengths greater than n = 8. Functionalizing the alkyl chains with ethylene glycol groups results in a higher density as well as a higher surface tension. For the dependence of density and surface tension on the chemical nature of the anion, relations are only found for subgroups of the studied ILs. Density and surface tension values are discussed with respect to intermolecular interactions and surface composition as determined by angle-resolved X-ray photoelectron spectroscopy (ARXPS). The absence of nonvolatile surface-active contaminants was proven by ARXPS.

  10. Oxygen tension is a determinant of the matrix-forming phenotype of cultured human meniscal fibrochondrocytes.

    Directory of Open Access Journals (Sweden)

    Adetola B Adesida

    Full Text Available BACKGROUND: Meniscal cartilage displays a poor repair capacity, especially when injury is located in the avascular region of the tissue. Cell-based tissue engineering strategies to generate functional meniscus substitutes is a promising approach to treat meniscus injuries. Meniscus fibrochondrocytes (MFC can be used in this approach. However, MFC are unable to retain their phenotype when expanded in culture. In this study, we explored the effect of oxygen tension on MFC expansion and on their matrix-forming phenotype. METHODOLOGY/PRINCIPAL FINDINGS: MFC were isolated from human menisci followed by basic fibroblast growth factor (FGF-2 mediated cell expansion in monolayer culture under normoxia (21%O(2 or hypoxia (3%O(2. Normoxia and hypoxia expanded MFC were seeded on to a collagen scaffold. The MFC seeded scaffolds (constructs were cultured in a serum free chondrogenic medium for 3 weeks under normoxia and hypoxia. Constructs containing normoxia-expanded MFC were subsequently cultured under normoxia while those formed from hypoxia-expanded MFC were subsequently cultured under hypoxia. After 3 weeks of in vitro culture, the constructs were assessed biochemically, histologically and for gene expression via real-time reverse transcription-PCR assays. The results showed that constructs under normoxia produced a matrix with enhanced mRNA ratio (3.5-fold higher; p<0.001 of collagen type II to I. This was confirmed by enhanced deposition of collagen II using immuno-histochemistry. Furthermore, the constructs under hypoxia produced a matrix with higher mRNA ratio of aggrecan to versican (3.5-fold, p<0.05. However, both constructs had the same capacity to produce a glycosaminoglycan (GAG -specific extracellular matrix. CONCLUSIONS: Our data provide evidence that oxygen tension is a key player in determining the matrix phenotype of cultured MFC. These findings suggest that the use of normal and low oxygen tension during MFC expansion and subsequent neo-tissue

  11. Performance of a new one-step multi-mode adhesive on etched vs non-etched enamel on bond strength and interfacial morphology.

    Science.gov (United States)

    de Goes, Mario Fernando; Shinohara, Mirela Sanae; Freitas, Marcela Santiago

    2014-06-01

    To compare microtensile bond strength (μTBS) and interfacial morphology of a new one-step multimode adhesive with a two-step self-etching adhesive and two etch-and-rinse adhesives systems on enamel. Thirty human third molars were sectioned to obtain two enamel fragments. For μTBS, 48 enamel surfaces were ground using 600-grit SiC paper and randomly assigned into 6 groups (n = 8): nonetched Scotchbond Universal [SBU]; etched SBU [SBU-et]; non-etched Clearfil SE Bond [CSE]; etched CSE [CSE-et]; Scotchbond Multi-PURPOSE [SBMP]; Excite [EX]. The etched specimens were conditioned with 37% phosphoric acid for 30 s, each adhesive system was applied according to manufacturers' instructions, and composite resin blocks (Filtek Supreme Plus, 3M ESPE) were incrementally built up. Specimens were sectioned into beams with a cross-sectional area of 0.8-mm2 and tested under tension (1 mm/min). The data were analyzed with oneway ANOVA and Fisher's PLSD (α = 0.05). For interface analysis, two samples from each group were embedded in epoxy resin, polished, and then observed using scanning electron microscopy (SEM). The μTBS values (in MPa) and the standard deviations were: SBU = 27.4 (8.5); SBU-et = 33.6 (9.3); CSE = 28.5 (8.3); CSE-et = 34.2 (9.0); SBMP = 30.4 (11.0); EX = 23.3 (8.2). CSE-et and SBU-et presented the highest bond strength values, followed by SBMP, CSE, and SBU which did not differ significantly from each other. EX showed the statistically significantly lowest bond strength values. SEM images of interfaces from etched samples showed long adhesive-resin tags penetrating into demineralized enamel. Preliminary etching of enamel significantly increased bond strength for the new one-step multimode adhesive SBU and two-step self-etching adhesive CSE.

  12. Reversible low adhesive to high adhesive superhydrophobicity transition on ZnO nanoparticle surfaces

    International Nuclear Information System (INIS)

    Li, Jian; Jing, Zhijiao; Yang, Yaoxia; Zha, Fei; Yan, Long; Lei, Ziqiang

    2014-01-01

    Superhydrophobic ZnO surfaces with water contact angle of 162° and sliding angle of 2° were fabricated successfully by spraying hydrophobic ZnO nanoparticle suspensions without limitations the shape and size of substrates. The as-prepared superhydrophobic ZnO surfaces are low adhesive and a water droplet easily rolls off with the surface slightly tilted. However, after being irradiated by UV light through a photomask, it becomes highly adhesive, on which a water droplet is firmly pinned without any movement. Further annealing the irradiated film, water droplets can roll off the surface again. Reversible transition between the low adhesive rolling state and high adhesive pinning state can be realized simply by UV illumination and heat treatment alternately. At the same time, the maximum adhesive force between the superhydrophobic ZnO surfaces and the water droplet changes from extreme low (∼5.1 μN) to very high (∼136.1 μN). When irradiated without a photomask, the surface became hydrophilic. Additionally, a water droplet can be transfered from the low adhesive superhydrophobic ZnO surfaces to the hydrophilic ZnO surfaces using the high adhesive superhydrophobic ZnO surfaces as a mechanical hand.

  13. Traumatic tension pneumocephalus: Two case reports

    Directory of Open Access Journals (Sweden)

    Abubaker Al-Aieb

    2017-01-01

    Conclusions: These are two rare cases with posttraumatic tension pneumocephalus treated conservatively with a favorable outcome. Early diagnosis of tension pneumocephalus is a crucial step to facilitate early recovery; however, the associated injuries need attention as they could influence the hospital course.

  14. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions

    Energy Technology Data Exchange (ETDEWEB)

    Sakwe, Amos M., E-mail: asakwe@mmc.edu [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Koumangoye, Rainelli; Guillory, Bobby [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Ochieng, Josiah [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Center for Aids Health Disparity Research, Meharry Medical College, Nashville, TN 37208 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN (United States)

    2011-04-01

    The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation.

  15. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions

    International Nuclear Information System (INIS)

    Sakwe, Amos M.; Koumangoye, Rainelli; Guillory, Bobby; Ochieng, Josiah

    2011-01-01

    The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation.

  16. Exploratory experimental investigations on post-tensioned structural glass beams

    DEFF Research Database (Denmark)

    Louter, C.; Nielsen, Jens Henrik; Belis, J.

    2013-01-01

    This paper discusses two projects on post-tensioned glass beams, performed at EPFL and DTU, respectively. In these projects small scale glass beams (length of 1.5m and 1m) are post-tensioned by means of steel threaded rods tensioned at the beam ends. The purpose of post-tensioning glass beams...

  17. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-01

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.

  18. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  19. Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    Science.gov (United States)

    Domínguez, Francisco; Simón, Carlos; Quiñonero, Alicia; Ramírez, Miguel Ángel; González-Muñoz, Elena; Burghardt, Hans; Cervero, Ana; Martínez, Sebastián; Pellicer, Antonio; Palacín, Manuel; Sánchez-Madrid, Francisco; Yáñez-Mó, María

    2010-01-01

    Background Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. Methods and Principal Findings Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. Conclusions These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window. PMID:20976164

  20. Rapid cable tension estimation using dynamic and mechanical properties

    Science.gov (United States)

    Martínez-Castro, Rosana E.; Jang, Shinae; Christenson, Richard E.

    2016-04-01

    Main tension elements are critical to the overall stability of cable-supported bridges. A dependable and rapid determination of cable tension is desired to assess the state of a cable-supported bridge and evaluate its operability. A portable smart sensor setup is presented to reduce post-processing time and deployment complexity while reliably determining cable tension using dynamic characteristics extracted from spectral analysis. A self-recording accelerometer is coupled with a single-board microcomputer that communicates wirelessly with a remote host computer. The portable smart sensing device is designed such that additional algorithms, sensors and controlling devices for various monitoring applications can be installed and operated for additional structural assessment. The tension-estimating algorithms are based on taut string theory and expand to consider bending stiffness. The successful combination of cable properties allows the use of a cable's dynamic behavior to determine tension force. The tension-estimating algorithms are experimentally validated on a through-arch steel bridge subject to ambient vibration induced by passing traffic. The tension estimation is determined in well agreement with previously determined tension values for the structure.

  1. Cohesion and Adhesion with Proteins

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  2. Oxygen tension level and human viral infections

    Energy Technology Data Exchange (ETDEWEB)

    Morinet, Frédéric, E-mail: frederic.morinet@sls.aphp.fr [Centre des Innovations Thérapeutiques en Oncologie et Hématologie (CITOH), CHU Saint-Louis, Paris (France); Université Denis Diderot, Sorbonne Paris Cité Paris, Paris (France); Casetti, Luana [Institut Cochin INSERM U1016, Paris (France); François, Jean-Hugues; Capron, Claude [Institut Cochin INSERM U1016, Paris (France); Laboratoire d' Hématologie, Hôpital Ambroise Paré, Boulogne (France); Université de Versailles Saint-Quentin en Yvelynes, Versailles (France); Pillet, Sylvie [Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Saint-Etienne, Saint-Etienne (France); Université de Lyon et Université de Saint-Etienne, Jean Monnet, GIMAP EA3064, F-42023 Saint-Etienne, Lyon (France)

    2013-09-15

    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.

  3. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour

    Science.gov (United States)

    Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  4. The Equilibrium Spreading Tension of Pulmonary Surfactant

    OpenAIRE

    Dagan, Maayan P.; Hall, Stephen B.

    2015-01-01

    Monomolecular films at an air/water interface coexist at the equilibrium spreading tension (γe) with the bulk phase from which they form. For individual phospholipids, γe is single-valued, and separates conditions at which hydrated vesicles adsorb from tensions at which overcompressed monolayers collapse. With pulmonary surfactant, isotherms show that monolayers compressed on the surface of bubbles coexist with the three-dimensional collapsed phase over a range of surface tensions. γe therefo...

  5. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  6. Microsurgical principles and postoperative adhesions: lessons from the past.

    Science.gov (United States)

    Gomel, Victor; Koninckx, Philippe R

    2016-10-01

    "Microsurgery" is a set of principles developed to improve fertility surgery outcomes. These principles were developed progressively based on common sense and available evidence, under control of clinical feedback obtained with the use of second-look laparoscopy. Fertility outcome was the end point; significant improvement in fertility rates validated the concept clinically. Postoperative adhesion formation being a major cause of failure in fertility surgery, the concept of microsurgery predominantly addresses prevention of postoperative adhesions. In this concept, magnification with a microscope or laparoscope plays a minor role as technical facilitator. Not surprisingly, the principles to prevent adhesion formation are strikingly similar to our actual understanding: gentle tissue handling, avoiding desiccation, irrigation at room temperature, shielding abdominal contents from ambient air, meticulous hemostasis and lavage, avoiding foreign body contamination and infection, administration of dexamethasone postoperatively, and even the concept of keeping denuded areas separated by temporary adnexal or ovarian suspension. The actual concepts of peritoneal conditioning during surgery and use of dexamethasone and a barrier at the end of surgery thus confirm without exception the tenets of microsurgery. Although recent research helped to clarify the pathophysiology of adhesion formation, refined its prevention and the relative importance of each factor, the clinical end point of improvement of fertility rates remains demonstrated for only the microsurgical tenets as a whole. In conclusion, the principles of microsurgery remain fully valid as the cornerstones of reproductive microsurgery, whether performed by means of open access or laparoscopy. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Tension perturbations of black brane spacetimes

    International Nuclear Information System (INIS)

    Traschen, Jennie; Fox, Daniel

    2004-01-01

    We consider black brane spacetimes that have at least one spatial translation Killing field that is tangent to the brane. A new parameter, the tension of a spacetime, is defined. The tension parameter is associated with spatial translations in much the same way that the ADM mass is associated with the time translation Killing field. In this work, we explore the implications of the spatial translation symmetry for small perturbations around a background black brane. For static-charged black branes we derive a law which relates the tension perturbation to the surface gravity times the change in the horizon area, plus terms that involve variations in the charges and currents. We find that as a black brane evaporates the tension decreases. We also give a simple derivation of a first law for black brane spacetimes. These constructions hold when the background stress-energy is governed by a Hamiltonian, and the results include arbitrary perturbative stress-energy sources

  8. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Park, JUngchan; Jung, Myunghwan; Kim, Yongki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Junkyu [Bio alpha., Co. Ltd., Gimhae (Korea, Republic of)

    2014-05-15

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He{sup +} ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He{sup +} ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft.

  9. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    International Nuclear Information System (INIS)

    Lee, Jaesang; Park, JUngchan; Jung, Myunghwan; Kim, Yongki; Park, Junkyu

    2014-01-01

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He + ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He + ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft

  10. SYNERGISTIC EFFECTS of CYCLIC TENSION and TRANSFORMING GROWTH FACTOR-β1 on the AORTIC VALVE MYOFIBROBLAST

    Science.gov (United States)

    Merryman, W. David; Lukoff, Howard D.; Long, Rebecca A.; Engelmayr, George C.; Hopkins, Richard A.; Sacks, Michael S.

    2007-01-01

    Background Phenotypically, the aortic valve interstitial cell (AVIC) is a dynamic myofibroblast, appearing contractile and activated in times of development, disease, and remodeling. The precise mechanism of phenotypic modulation is unclear, but it is speculated that both biomechanical and biochemical factors are influential. Therefore, we hypothesized that isolated and combined treatments of cyclic tension and TGF-β1 would alter the phenotype and subsequent collagen biosynthesis of AVICs in situ. Methods and Results Porcine aortic valve leaflets received 7 and 14 day treatments of 15% cyclic stretch (Tension), 0.5 ng/ml TGF-β1 (TGF), 15% cyclic stretch and 0.5 ng/ml TGF-β1 (Tension+TGF), or neither mechanical nor cytokine stimuli (Null). Tissues were homogenized and assayed for AVIC phenotype (smooth muscle α-actin (SMA)) and collagen biosynthesis (via heat shock protein 47 (Hsp47) which was further verified with type I collagen C-terminal propeptide (CICP)). At both 7 and 14 days, SMA, Hsp47, and CICP quantities were significantly greater (p<0.001) in the Tension+TGF group compared to all other groups. Additionally, Tension alone appeared to maintain SMA and Hsp47 levels that were measured at day 0, while TGF alone elicited an increase in SMA and Hsp47 compared to day 0 levels. Null treatment revealed diminished proteins at both time points. Conclusions Elevated TGF-β1 levels, in the presence of cyclic mechanical tension, resulted in synergistic increases in the contractile and biosynthetic proteins in AVICs. Since cyclic mechanical stimuli can never be relieved in vivo, the presence of TGF-β1 (possibly from infiltrating macrophages) may result in overly biosynthetic AVICs, leading to altered ECM architecture, compromised valve function, and ultimately degenerative valvular disease. PMID:17868877

  11. Modification of the radiation response of pig skin by manipulation of tissue oxygen tension using anesthetics and administration of BW12C

    International Nuclear Information System (INIS)

    van den Aardweg, G.J.; Hopewell, J.W.; Barnes, D.W.; Sansom, J.M.; Nethersell, A.B.

    1989-01-01

    The importance of tissue oxygen tension on radiosensitivity was studied by examining modifications in the incidence of moist desquamation in pig skin after irradiation with strontium-90 plaques. The effects were analyzed using quantal dose-response data and comparisons were made using ED50 values for moist desquamation. Under standard anesthetic conditions of 2% halothane, approximately 70% oxygen, and approximately 30% nitrous oxide, the ED50 value (+/- SE) for moist desquamation was 27.32 +/- 0.52 Gy with no significant variation in radiosensitivity between dorsal, lateral, and ventral skin sites on the flank. Irradiation with 2% halothane and air increased the ED50 to 31.25 +/- 0.94 Gy, primarily due to an increased radioresistance of the dorsal sites. When combined with BW12C, a drug which binds oxygen selectively to hemoglobin and hence reduced the oxygen availability to tissues, a further increase in the ED50 values was observed. This was approximately 39 Gy with BW12C concentrations of 30 mg/kg and 50 mg/kg b.w. of BW12C, indicating a dose modification factor (DMF) of approximately 1.26. However, when animals were breathing the standard gas mixture, this DMF was reduced to 1.15 for 30 mg/kg of BW12C, indicating that a higher level of oxygen partly counteracted the effects of the drug in these studies with BW12C. The greatest variability in radiosensitivity was seen in the dorsal fields. This suggested complex physiological adaptation, a phenomenon that might also explain the absence of any modification of the radiation response when 100 mg/kg of BW12C was used

  12. Recombinant Gelatin Microspheres : Novel Formulations for Tissue Repair?

    NARCIS (Netherlands)

    Tuin, Annemarie; Kluijtmans, Sebastiaan G.; Bouwstra, Jan B.; Harmsen, Martin C.; Van Luyn, Marja J. A.

    Microspheres (MSs) can function as multifunctional scaffolds in different approaches of tissue repair (TR), as a filler, a slow-release depot for growth factors, or a delivery vehicle for cells. Natural cell adhesion-supporting extracellular matrix components like gelatin are good materials for

  13. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.

    Science.gov (United States)

    Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun

    2016-06-01

    Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Many Roles of Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  15. Measurement for Surface Tension of Aqueous Inorganic Salt

    Directory of Open Access Journals (Sweden)

    Jiming Wen

    2018-03-01

    Full Text Available Bubble columns are effective means of filtration in filtered containment venting systems. Here, the surface tension has a significant influence on bubble size distribution and bubble deformation, which have a strong impact on the behavior of the bubble column. The influence of aqueous inorganic compounds on the surface tension depends on the electrolytic activity, Debye length, entropy of ion hydration, and surface deficiencies or excess. In this work, the surface tensions of same specific aqueous solutions have been measured by different methods including platinum plate method, platinum ring method, and maximum bubble pressure method. The measured surface tensions of both sodium hydroxide and sodium thiosulfate are less than that of water. As solution temperature ranges from 20 to 75°C, the surface tension of 0.5 mol/L sodium hydroxide solution decreases from 71 to 55 mN/m while that of 1 mol/L solution decreases from 60 to 45 mN/m. Similarly during the same temperature range, the surface tension of 0.5 mol/L sodium thiosulfate decreases from 70 to 38 mN/m, and that of 1 mol/L sodium thiosulfate is between 68 and 36 mN/m. The analysis for the influence mechanism of aqueous inorganic on surface tension is provided. In addition, experimental results show that the surface tension of solid aerosol suspension liquid has no obvious difference from that of distilled water.

  16. Evaluation of the potential anti-adhesion effect of the PVA/Gelatin membrane.

    Science.gov (United States)

    Bae, Sang-Ho; Son, So-Ra; Kumar Sakar, Swapan; Nguyen, Thi-Hiep; Kim, Shin-Woo; Min, Young-Ki; Lee, Byong-Taek

    2014-05-01

    A common and prevailing complication for patients with abdominal surgery is the peritoneal adhesion that follows during the post-operative recovery period. Biodegradable polymers have been suggested as a barrier to prevent the peritoneal adhesion. In this work, as a preventive method, PVA/Gelatin hydrogel-based membrane was investigated with various combinations of PVA and gelatin (50/50, 30/70/, and 10/90). Membranes were made by casting method using hot PVA-gelatin solution and the gelatin was cross-linked by exposing UV irradiation for 5 days to render stability of the produced sheathed form in the physiological environment. Physical crosslinking was chosen to avoid the problems of potential cytotoxic effect of chemical crosslinking. Their materials characterization and mechanical properties were evaluated by SEM surface characterization, hydrophilicity, biodegradation rate, and so forth. Cytocompatibility was observed by in vitro experiments with cell proliferation using confocal laser scanning microscopy and the MTT assay by L-929 mouse fibroblast cells. The fabricated PVA/Gel membranes were implanted between artificially defected cecum and peritoneal wall in rats and were sacrificed after 1 and 2 weeks post-operative to compare their tissue adhesion extents with that of control group where the defected surface was not separated by PVA/Gel membrane. The PVA/Gel membrane (10/90) significantly reduced the adhesion extent and showed to be a potential candidate for the anti-adhesion application. Copyright © 2013 Wiley Periodicals, Inc.

  17. Tending the tensions in co-creation

    DEFF Research Database (Denmark)

    Phillips, Professor MSO Louise; Nordentoft, Helle Merete; Pedersen, Lektor Christina Hee

    -for-granted positive value. In the panel we de-romanticise “co-creation” and explore how it is enacted in particular organisational contexts, concentrating on context-specific tensions arising in the meeting between different knowledge forms and interests. These include tensions BETWEEN dialogic views of knowledge co-creation...

  18. Surface tension in soap films: revisiting a classic demonstration

    International Nuclear Information System (INIS)

    Behroozi, F

    2010-01-01

    We revisit a classic demonstration for surface tension in soap films and introduce a more striking variation of it. The demonstration shows how the film, pulling uniformly and normally on a loose string, transforms it into a circular arc under tension. The relationship between the surface tension and the string tension is analysed and presented in a useful graphical form. (letters and comments)

  19. Surface tension in soap films: revisiting a classic demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, F [Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614 (United States)], E-mail: behroozi@uni.edu

    2010-01-15

    We revisit a classic demonstration for surface tension in soap films and introduce a more striking variation of it. The demonstration shows how the film, pulling uniformly and normally on a loose string, transforms it into a circular arc under tension. The relationship between the surface tension and the string tension is analysed and presented in a useful graphical form. (letters and comments)

  20. Diphenhydramine and hyaluronic acid derivatives reduce adnexal adhesions and prevent tubal obstructions in rats.

    Science.gov (United States)

    Avsar, Ayse Filiz; Avsar, Fatih Mehmet; Sahin, Mustafa; Topaloglu, Serdar; Vatansev, Husamettin; Belviranli, Metin

    2003-01-10

    The purpose of this study is to investigate the effects of diphenhydramine-HCl and Na-hyaluronate derivatives on the development of postoperative peritoneal adhesion and tubal obstruction. Forty female rats of Sprague-Dawley type were used in the study. The rats were divided into four groups, each comprising 10 subjects. After all the rats were anaesthetized with 50mg/kg ketamine HCl, their abdomens were opened with a lower midline incision. Injury was induced on the right pelvic peritoneum and on the peritoneal surface of left uterine tube. No additional procedure was applied to the first group. 10 mg/kg diphenhydramine-HCl was given to the second group intravenously. In the third group, 0.25 mg/kg Orthovisc, a Na-hyaluronate derivative was diluted with 2 ml physiological saline and poured into the abdomen. For the fourth group, Seprafilm, a Na-hyaluronate derivative was covered in a layer of 0.7 cm x 3 cm over the left uterine tube. After 14 days, the rats were anaesthetized with ketamine HCl again, and 5 cm(3) blood sample was taken with cardiac puncture. The abdomen was opened with an incision transverse to the upper end of the midline incision, and the presence of adhesions was investigated. Detected adhesions were staged according to the Mazuji classification. Tubal patencies were inspected by injecting methylene blue from the uterine corpus into the lumen using an injector. A piece of abdominal wall of 4 cm x 4 cm was removed by extending the incision in the reverse U shape. The tensile strength and bursting pressure of the suture line were determined using the Peacock method. One gram of tissue was taken from the incision line, and hydroxyproline levels were determined by the Bergman-Loxley method. Aspartate aminotransferase (AST) levels were measured. All of the rats completed the study. AST levels, tissue hydroxyproline levels and tensile strength and bursting pressure test results were found to be similar in all groups. While adhesion rates in the groups

  1. Bending Under Tension Test with Direct Friction Measurement

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.

    2006-01-01

    A special Bending-Under-Tension (BUT) transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all...... measured directly, thus enabling accurate measurement of friction and direct determination of lubricant film breakdown for varying normal pressure, sliding speed, tool radius and tool preheat temperature. The transducer is applied in an experimental investigation focusing on limits of lubrication...

  2. Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives

    Science.gov (United States)

    Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner

    2011-01-01

    Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...

  3. Magnetic tension and gravitational collapse

    International Nuclear Information System (INIS)

    Tsagas, Christos G

    2006-01-01

    The gravitational collapse of a magnetized medium is investigated by studying qualitatively the convergence of a timelike family of non-geodesic worldlines in the presence of a magnetic field. Focusing on the field's tension, we illustrate how the winding of the magnetic forcelines due to the fluid's rotation assists the collapse, while shear-like distortions in the distribution of the field's gradients resist contraction. We also show that the relativistic coupling between magnetism and geometry, together with the tension properties of the field, lead to a magneto-curvature stress that opposes the collapse. This tension stress grows stronger with increasing curvature distortion, which means that it could potentially dominate over the gravitational pull of the matter. If this happens, a converging family of non-geodesic worldlines can be prevented from focusing without violating the standard energy conditions

  4. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Effect of adhesive system application for cavities prepared with erbium, chromium: yttrium scandium gallium garnet laser on rat dental pulp tissue.

    Science.gov (United States)

    Takada, Mayo; Suzuki, Masaya; Haga-Tsujimura, Maiko; Shinkai, Koichi

    2017-07-01

    We examined the effects of adhesive systems under study applied for a laser-cut cavity using an Er,Cr:YSGG laser on rat dental pulp at 24 h and 14 days postoperatively. Group 1, laser-cut cavities were treated with a self-etching-primer and bonding agent; group 2, pretreated with a phosphoric-acid, and then treated with a self-etching-primer and bonding agent; group 3, pretreated with a phosphoric-acid and sodium-hypochlorite, and then treated with a self-etching-primer and bonding agent; and group 4, treated with an all-in-one adhesive. A flowable resin composite was used as filling material for each cavity treated with each group. A glass-ionomer-cement was used as a control. The following items were evaluated: pulp-tissue-disorganization (PTD), inflammatory-cell-infiltration (ICI), tertiary-dentin-formation (TDF), and bacterial-penetration (BP). The results were statistically analyzed using the Kruskal-Wallis test and Mann-Whitney U test. No significant differences were observed among the experimental groups for all parameters after 24 h and 14 days (P > 0.05). The majority of the specimens showed PTD with edema formation after 24 h; however, all the specimens demonstrated pulpal healing with TDF after 14 days. On the parameter of TDF, all groups showed significant differences between the two postoperative periods (P < 0.01). On the parameter of ICI, a significant difference was found between the two postoperative periods in group 4 (P < 0.05). No specimens showed BP. The pretreatment on the cavity prepared with the laser using phosphoric-acid or sodium-hypochlorite did not affect the dental pulp healing of rat tooth.

  6. Measuring Rock-Fluid Adhesion Directly

    Science.gov (United States)

    Tadmor, R.

    2017-12-01

    We show how to measure directly solid-liquid adhesion. We consider the normal adhesion, the work adhesion, and the lateral adhesion. The technique at the center of the method is Centrifugal Adhesion Balance (CAB) which allows coordinated manipulation of normal and lateral forces. For example: 1. It allows to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. 2. It allows to increase the lateral force at zero normal force, mimicking zero gravity. From this one can obtain additional solid-liquid interaction parameters. When performing work of adhesion measurements, the values obtained are independent of drop size and are in agreement with theoretical predictions.

  7. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    Science.gov (United States)

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  8. Comparison of enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives in self-etch mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Hosoya, Yumiko; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-10-01

    To comparatively evaluate universal adhesives and two-step self-etch adhesives for enamel bond fatigue durability in self-etch mode. Three universal adhesives (Clearfil Universal Bond; G-Premio Bond; Scotchbond Universal Adhesive) and three two-step self-etch adhesives (Clearfil SE Bond; Clearfil SE Bond 2; OptiBond XTR) were used. The initial shear bond strength and shear fatigue strength of the adhesive to enamel in self-etch mode were determined. The initial shear bond strengths of the universal adhesives to enamel in self-etch mode was significantly lower than those of two-step self-etch adhesives and initial shear bond strengths were not influenced by type of adhesive in each adhesive category. The shear fatigue strengths of universal adhesives to enamel in self-etch mode were significantly lower than that of Clearfil SE Bond and Clearfil SE Bond 2, but similar to that OptiBond XTR. Unlike two-step self-etch adhesives, the initial shear bond strength and shear fatigue strength of universal adhesives to enamel in self-etch mode was not influenced by the type of adhesive. This laboratory study showed that the enamel bond fatigue durability of universal adhesives was lower than Clearfil SE Bond and Clearfil SE Bond 2, similar to Optibond XTR, and was not influenced by type of adhesive, unlike two-step self-etch adhesives.

  9. Muscle trigger point therapy in tension-type headache.

    Science.gov (United States)

    Alonso-Blanco, Cristina; de-la-Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César

    2012-03-01

    Recent evidence suggests that active trigger points (TrPs) in neck and shoulder muscles contribute to tension-type headache. Active TrPs within the suboccipital, upper trapezius, sternocleidomastoid, temporalis, superior oblique and lateral rectus muscles have been associated with chronic and episodic tension-type headache forms. It seems that the pain profile of this headache may be provoked by referred pain from active TrPs in the posterior cervical, head and shoulder muscles. In fact, the presence of active TrPs has been related to a higher degree of sensitization in tension-type headache. Different therapeutic approaches are proposed for proper TrP management. Preliminary evidence indicates that inactivation of TrPs may be effective for the management of tension-type headache, particularly in a subgroup of patients who may respond positively to this approach. Different treatment approaches targeted to TrP inactivation are discussed in the current paper, focusing on tension-type headache. New studies are needed to further delineate the relationship between muscle TrP inactivation and tension-type headache.

  10. Characteristics of Disease Spectrum in relation to Species, Serogroups, and Adhesion Ability of Motile Aeromonads in Fish

    Directory of Open Access Journals (Sweden)

    Alicja Kozińska

    2012-01-01

    Full Text Available An attempt was made to delineate the relationship between of Aeromonas species and/or serogroups and specific disease symptoms in common carp Cyprinus carpio L. and rainbow trout Oncorhynchus mykiss Walbaum. The adhesion of Aeromonas strains to various tissues in relation to disease spectrum was also tested. All strains of A. hydrophila caused skin ulcers as well as septicaemia in both carp and trout while the other strains were able to cause only skin ulcers or some specific internal lesions with or without septicaemia depending on which species and/or serogroup they represented. Disease symptoms depended also on fish species. It was found that adhesion intensity of Aeromonas strains tested was significantly higher to tissues, which were susceptible to infection with these strains. The results indicate that adhesion to various cells of the fish organism is principal marker to detect virulent Aeromonas strains. The findings presented in this study may be helpful in the appraisal of aeromonads disease risk and kind of the infection in particular fish farms by epizootiological studies or/and during routine fish examinations. They will also be useful to improve and facilitate diagnosis of bacterial fish disease.

  11. Patients with tension-type headaches feel stigmatized

    Directory of Open Access Journals (Sweden)

    Sanjay Prakash

    2016-01-01

    Full Text Available The author, a sufferer of tension-type headache (TTH, believes that the word "tension" in "tension-type headache" carries a social stigma and that patients do not accept a diagnosis of TTH readily. TTH is the most common primary headache disorder. The disability of TTH as a burden of society is greater than that of migraine. Absenteeism because of TTH is higher than that due to migraine. However, patients with TTH do not go for consultation. Even the prevalence of new daily persistent headache (NDPH is 12 times higher at the headache clinic than that of chronic TTH (CTTH. These points hint that TTH patients probably do not want to visit the clinic. The author believes that it could be because of the stigma attached to "tension." Herein, the author has noted the first responses given by 50 consecutive patients with TTH when they were told that they had been suffering from TTH. The first answer of 64% of patients with TTH was "I do not have any tension/stress ." This denial is similar to the denial declared by patients with depression. Depression and tension are similar in the sense that both are considered as a signs of personal weakness. Such a preconception in the society creates a stigma, and patients deny the diagnosis, conceal symptoms, and become reluctant to seek help and treatment.

  12. Segmental jejunal entrapment, volvulus, and strangulation secondary to intra-abdominal adhesions in a dog.

    Science.gov (United States)

    Di Cicco, Michael F; Bennett, R Avery; Ragetly, Chantal; Sippel, Kate M

    2011-01-01

    A 4 yr old, castrated male dachshund was presented for lethargy, restlessness, a "hunched" posture, and a painful abdomen. A gastric foreign body had been surgically removed 24 mo previously. Exploratory celiotomy revealed a devitalized segment of jejunum with twisted mesentery. Several adhesions and fibrous bands were present within the abdomen, presumptively from the previous gastric foreign body surgery. Histopathology determined that a fibrous tissue band caused entrapment of the segment of intestine and its mesentery resulting in volvulus and ischemic necrosis of the intestine. This case is unique because it involved a focal area of the jejunum that was incarcerated in fibrous adhesions.

  13. Correlation of cutaneous tension distribution and tissue oxygenation with acute external tissue expansion

    Directory of Open Access Journals (Sweden)

    Marquardt C

    2009-11-01

    Full Text Available Abstract Today, the biomechanical fundamentals of skin expansion are based on viscoelastic models of the skin. Although many studies have been conducted in vitro, analyses performed in vivo are rare. Here, we present in vivo measurements of the expansion at the skin surface as well as measurement of the corresponding intracutaneous oxygen partial pressure. In our study the average skin stretching was 24%, with a standard deviation of 11%, excluding age or gender dependency. The measurement of intracutaneous oxygen partial pressure produced strong inter-individual fluctuations, including initial values at the beginning of the measurement, as well as varying individual patient reactions to expansion of the skin. Taken together, we propose that even large defect wounds can be closed successfully using the mass displacement caused by expansion especially in areas where soft, voluminous tissue layers are present.

  14. [Long-term expansion of multipotent mesenchymal stromal cells under reduced oxygen tension].

    Science.gov (United States)

    Rylova, Iu V; Buravkova, L B

    2013-01-01

    We have shown that the decrease in oxygen tension in the culture medium of multipotent mesenchymal stromal cells (MMSCs) results in a short-term reduction in the proportion of CD73(+)-cells in the population, without effecting the number of cells expressing other constitutive surface markers (CD90 and CD105). In this case, the heterogeneity of the cell population declined: large spread cells disappeared. The proliferative activity of MMSCs significantly increased and remained stable in conditions in which the oxygen content was close to the tissue oxygen levels (5% O2). At lower oxygen concentration, proliferative activity of the cells gradually reduced from passages 3-4. The increase in proliferative activity was not accompanied by increased expression of telomerase gene indicateding the alsance of cell transformation. However, genome-wide analysis of MMSC gene expression level revealed changes in expression of cyclins (CCND2 and PCNA), regulatory subunit cyclin-dependent kinase (CKS2) and an inhibitor of cyclin-dependent kinase (CDKN2C), regulating the cell cycle, which is obviously facilitated the increase in the proliferative capacity of cells at lower oxygen tension.

  15. Tissue factor-expressing tumor cells can bind to immobilized recombinant tissue factor pathway inhibitor under static and shear conditions in vitro.

    Directory of Open Access Journals (Sweden)

    Sara P Y Che

    Full Text Available Mammary tumors and malignant breast cancer cell lines over-express the coagulation factor, tissue factor (TF. High expression of TF is associated with a poor prognosis in breast cancer. Tissue factor pathway inhibitor (TFPI, the endogenous inhibitor of TF, is constitutively expressed on the endothelium. We hypothesized that TF-expressing tumor cells can bind to immobilized recombinant TFPI, leading to arrest of the tumor cells under shear in vitro. We evaluated the adhesion of breast cancer cells to immobilized TFPI under static and shear conditions (0.35 - 1.3 dyn/cm2. We found that high-TF-expressing breast cancer cells, MDA-MB-231 (with a TF density of 460,000/cell, but not low TF-expressing MCF-7 (with a TF density of 1,400/cell, adhered to recombinant TFPI, under static and shear conditions. Adhesion of MDA-MB-231 cells to TFPI required activated factor VII (FVIIa, but not FX, and was inhibited by a factor VIIa-blocking anti-TF antibody. Under shear, adhesion to TFPI was dependent on the TFPI-coating concentration, FVIIa concentration and shear stress, with no observed adhesion at shear stresses greater than 1.0 dyn/cm2. This is the first study showing that TF-expressing tumor cells can be captured by immobilized TFPI, a ligand constitutively expressed on the endothelium, under low shear in vitro. Based on our results, we hypothesize that TFPI could be a novel ligand mediating the arrest of TF-expressing tumor cells in high TFPI-expressing vessels under conditions of low shear during metastasis.

  16. Wet adhesion with application to tree frog adhesive toe pads and tires

    International Nuclear Information System (INIS)

    Persson, B N J

    2007-01-01

    Strong adhesion between solids with rough surfaces is only possible if at least one of the solids is elastically very soft. Some lizards and spiders are able to adhere (dry adhesion) and move on very rough vertical surfaces due to very compliant surface layers on their attachment pads. Flies, bugs, grasshoppers and tree frogs have less compliant pad surface layers, and in these cases adhesion to rough surfaces is only possible because the animals inject a wetting liquid into the pad-substrate contact area, which generates a relative long-range attractive interaction due to the formation of capillary bridges. In this presentation I will discuss some aspects of wet adhesion for tree frogs and give some comments related to tire applications

  17. Wet adhesion with application to tree frog adhesive toe pads and tires

    Energy Technology Data Exchange (ETDEWEB)

    Persson, B N J [IFF, FZ-Juelich, 52425 Juelich (Germany)

    2007-09-19

    Strong adhesion between solids with rough surfaces is only possible if at least one of the solids is elastically very soft. Some lizards and spiders are able to adhere (dry adhesion) and move on very rough vertical surfaces due to very compliant surface layers on their attachment pads. Flies, bugs, grasshoppers and tree frogs have less compliant pad surface layers, and in these cases adhesion to rough surfaces is only possible because the animals inject a wetting liquid into the pad-substrate contact area, which generates a relative long-range attractive interaction due to the formation of capillary bridges. In this presentation I will discuss some aspects of wet adhesion for tree frogs and give some comments related to tire applications.

  18. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  19. Comparison of honey and dextrose solution on post-operative peritoneal adhesion in rat model.

    Science.gov (United States)

    Rahimi, Vafa Baradaran; Shirazinia, Reza; Fereydouni, Narges; Zamani, Parvin; Darroudi, Sousan; Sahebkar, Amir Hossein; Askari, Vahid Reza

    2017-08-01

    Peritoneal adhesion between abdominal organs is a complication of surgery. It causes major complications like pain, bowel obstruction, infertility and increases risk of death. Honey is known to have anti-inflammatory and antioxidant properties potentially relevant for adhesive protection. Thirty rats were divided into five groups: negative control without any surgical procedure (normal group), control group treated with normal saline, experimental group I treated with 1ml of 10% honey, experimental group II treated with honey at half concentration of group I (honey0.5), and positive control group receiving 1ml of dextrose 5%. Inflammatory, growth and angiogenesis factors (TNF-α, Il-6, IL-1β, TGF-β1 and VEGF) of the adhesion tissue were assessed using ELISA. Antioxidant factors (NO, GSH and MDA) were also assessed using biochemical procedures. The difference between peritoneal adhesion scores, TNF-α, IL-1β, IL-6, TGF-β1, VEGF, NO, GSH and MDA value of all groups was strongly significant (p<0.001). We showed that honey can decrease peritoneal adhesion (p<0.001), TNF-α (p<0.001), IL-1β (p<0.001), IL-6 (p<0.001), TGF-β1 (p<0.001), VEGF (p<0.001), NO (p<0.001), MDA (p<0.001) and increase GSH (p<0.001) compared with control group. Honey 0.5 also significantly decreased peritoneal adhesion (p<0.001), TNF-α (p<0.001), IL-1β (p<0.01), IL-6 (p<0.001), VEGF (p<0.001), NO (p<0.001), MDA (p<0.01) and increase GSH (p<0.001) compared with control group. We find that honey can decrease inflammatory, growth and angiogenesis factors which can advance peritoneal adhesion and increase antioxidant factors. Honey could serve as a protective agent for peritoneal adhesion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Influence of temporary cement contamination on the surface free energy and dentine bond strength of self-adhesive cements.

    Science.gov (United States)

    Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi

    2012-02-01

    The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.