WorldWideScience

Sample records for adhesion molecule-5 occurs

  1. Adhesion

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adhesion URL of this page: //medlineplus.gov/ency/article/001493.htm Adhesion To use the sharing features on this page, please enable JavaScript. Adhesions are bands of scar-like tissue that form between two ...

  2. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  3. Denture Adhesives

    Science.gov (United States)

    ... Devices Products and Medical Procedures Dental Devices Denture Adhesives Share Tweet Linkedin Pin it More sharing options ... Wearers Reporting Problems to the FDA Background Denture adhesives are pastes, powders or adhesive pads that may ...

  4. Radiation-curable adhesives

    International Nuclear Information System (INIS)

    Woods, J.G.

    1992-01-01

    Radiation-curable adhesives may be classified into two broad categories. In the first category, adhesive bonding occurs as a direct result of irradiation. The second category includes pressure-sensitive and hot-melt adhesives, which are composed of linear or lightly cross-linked polymers prepared by a radiation-induced polymerization reaction. This chapter is mainly concerned with radiation-curable adhesives of the first category. The various adhesive types are discussed and adhesive performance is examined, particularly in relation to the chemistry and chemical technology which underlies the individual materials. A description of a limited number of representative applications is included as is an outline of recent developments of curing and dispensing equipment. 268 refs., 14 figs., 13 tabs

  5. Drought occurence

    Science.gov (United States)

    John W. Coulston

    2007-01-01

    Why Is Drought Important? Drought is an important forest disturbance that occurs regularly in the Western United States and irregularly in the Eastern United States (Dale and others 2001). Moderate drought stress tends to slow plant growth while severedrought stress can also reduce photosynthesis (Kareiva and others 1993). Drought can also interact with...

  6. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  7. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  8. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  9. Adhesion science

    CERN Document Server

    Comyn, John

    1997-01-01

    The use of adhesives is widespread and growing, and there are few modern artefacts, from the simple cereal packet, to the jumbo jet, that are without this means of joining. Adhesion Science provides an illuminating account of the science underlying the use of adhesives, a branch of chemical technology which is fundamental to the science of coatings and composite materials and to the performance of all types of bonded structures. This book guides the reader through the essential basic polymer science, and the chemistry of adhesives in use at present. It discusses surface preparation for adhesive bonding, and the use of primers and coupling agents. There is a detailed chapter on contact angles and what can be predicted from them. A simple guide on stress distribution joints and how this relates to testing is included. It also examines the interaction of adhesives and the environment, including an analysis of the resistance of joints to water, oxygen and ultra-violet light. Adhesion Science provides a comprehens...

  10. Aspirin augments hyaluronidase induced adhesion inhibition ...

    African Journals Online (AJOL)

    Postoperative adhesions occur after virtually all abdomino-pelvic surgery and are the leading cause of intestinal obstruction and other gynaecologic problems. We used an animal model to test the efficacy of combined administration of aspirin and hyaluronidase on adhesion formation. Adhesions were induced using ...

  11. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  12. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  13. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  14. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  15. Reflections about Adhesive Systems

    OpenAIRE

    de Freitas Borges, Marciano; Diesel, Pâmela Gutheil; Corrêa, Fernanda Gomez; Bernardi, Eledana; Fernandes Montagner, Anelise; Skupien, Jovito Adiel; Susin, Alexandre Henrique

    2010-01-01

    The adhesive systems are responsible for an efficient union between teeth and resin, resulting in a longevity restoration. They are organic molecules di or multifunctional that contain reactive groups that interact with dentin and with the resin monomer of composite resin. The adhesive systems are characterized by wet adhesion, which is a result of presence of hidrophylics radicals in their compositions, to promote a better bond and the best properties of the adhesion. Adhesive systems may us...

  16. Chapter 9:Wood Adhesion and Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2013-01-01

    The recorded history of bonding wood dates back at least 3000 years to the Egyptians (Skeist and Miron 1990, River 1994a), and adhesive bonding goes back to early mankind (Keimel 2003). Although wood and paper bonding are the largest applications for adhesives, some of the fundamental aspects leading to good bonds are not fully understood. Better understanding of these...

  17. Hysteroscopic Management Of Intrauterin Adhesion

    Directory of Open Access Journals (Sweden)

    Ayşegül Dikmen

    2013-03-01

    Full Text Available Objective: Assessment of preoperative and postoperative outcomes of patients that were performed hysterescopic intrauterine adhesiolysis. Material and method: We reviewed 24 patients that underwent hysterescopy with the complaints of amenorrhea, hypomenorrhea, recurrent pregnancy loss between 2004-2008. The most complaints of patients were infertilty amenorrhea. Results: Adhesions occurs mainly as a result of trauma to the gravid uterine cavity in 14 patients. When classifying patients with their intrauterine adhesions, Grade 3 was the most frequently seen. Adhesiolisis was performed with hysteresopic scissors in all patients. In postoperative period following synechiolysis, 10 patients were treated with estrogen and progestogen, 11 of them used intrauterine device with estrogen and progestogen therapy, foley catheter was used in 3 patients. Hysterescopy was performed in 5 patients for second time because of adhesion suspicions. The re-adhesiolysis performed to 3 patients because of determined to mild adhesion. Conclusion: After hysterescopic adhesiolysis, all patients with the complaint of amenorrhea had regular menstruation. Pregnancy after treatment occured in 4 patients but live birth rate was 75%.

  18. Co-Occurring Disorders

    Science.gov (United States)

    ... the mental health field. Alcohol and Drug Abuse, Addiction and Co-occurring Disorders: Co-occurring Disorders and ... 500 Montgomery Street, Suite 820 Alexandria, VA 22314 Phone (703) 684.7722 Toll Free (800) 969.6642 ...

  19. THz Properties of Adhesives

    Science.gov (United States)

    Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.

    2018-06-01

    We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.

  20. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  1. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  2. Fracture mechanics characterisation of medium-size adhesive joint specimens

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jacobsen, T.K.

    2004-01-01

    Medium-size specimens (glass-fibre beams bonded together by an adhesive layer were tested in four point bending to determine their load carrying capacity. Specimens having different thickness were tested. Except for onespecimen, the cracking occurred as cracking...... along the adhesive layer; initially cracking occurred along the adhesive/laminate interface, but after some crack extension the cracking took place inside the laminate (for one specimen the later part of thecracking occurred unstably along the adhesive/ laminate interface). Crack bridging by fibres...

  3. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  4. Adhesion of silver films to ion-bombarded alumina

    International Nuclear Information System (INIS)

    Erck, R.A.; Fenske, G.R.

    1990-01-01

    This paper reports on silver films deposited on alumina substrates using ion bombardment. Adhesion strength was measured as a function of deposition conditions, sputter-cleaning time, and bombarding ion species, using a pull-type adhesion tester. Argon- and argon/oxygen-ion sputtering produced large increases in adhesion strength, with the greatest increases occurring for oxygen-ion bombardment. Adhesion strength increased monotonically as a function of ion sputtering time. At a given deposition rate, further enhancement of adhesion is seen with concurrent ion bombardment

  5. Energetics of bacterial adhesion

    International Nuclear Information System (INIS)

    Loosdrecht, M.C.M. van; Zehnder, A.J.B.

    1990-01-01

    For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized. (author) 2 figs., 1 tab., 50 refs

  6. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  7. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  8. Shear Adhesion of Tapered Nanopillar Arrays.

    Science.gov (United States)

    Cho, Younghyun; Minsky, Helen K; Jiang, Yijie; Yin, Kaiyang; Turner, Kevin T; Yang, Shu

    2018-04-04

    Tapered nanopillars with various cross sections, including cone-shaped, stepwise, and pencil-like structures (300 nm in diameter at the base of the pillars and 1.1 μm in height), are prepared from epoxy resin templated by nanoporous anodic aluminum oxide (AAO) membranes. The effect of pillar geometry on the shear adhesion behavior of these nanopillar arrays is investigated via sliding experiments in a nanoindentation system. In a previous study of arrays with the same geometry, it was shown that cone-shaped nanopillars exhibit the highest adhesion under normal loading while stepwise and pencil-like nanopillars exhibit lower normal adhesion strength due to significant deformation of the pillars that occurs with increasing indentation depth. Contrary to the previous studies, here, we show that pencil-like nanopillars exhibit the highest shear adhesion strength at all indentation depths among three types of nanopillar arrays and that the shear adhesion increases with greater indentation depth due to the higher bending stiffness and closer packing of the pencil-like nanopillar array. Finite element simulations are used to elucidate the deformation of the pillars during the sliding experiments and agree with the nanoindentation-based sliding measurements. The experiments and finite element simulations together demonstrate that the shape of the nanopillars plays a key role in shear adhesion and that the mechanism is quite different from that of adhesion under normal loading.

  9. Advances in biomaterials for preventing tissue adhesion.

    Science.gov (United States)

    Wu, Wei; Cheng, Ruoyu; das Neves, José; Tang, Jincheng; Xiao, Junyuan; Ni, Qing; Liu, Xinnong; Pan, Guoqing; Li, Dechun; Cui, Wenguo; Sarmento, Bruno

    2017-09-10

    Adhesion is one of the most common postsurgical complications, occurring simultaneously as the damaged tissue heals. Accompanied by symptoms such as inflammation, pain and even dyskinesia in particular circumstances, tissue adhesion has substantially compromised the quality of life of patients. Instead of passive treatment, which involves high cost and prolonged hospital stay, active intervention to prevent the adhesion from happening has been accepted as the optimized strategy against this complication. Herein, this paper will cover not only the mechanism of adhesion forming, but also the biomaterials and medicines used in its prevention. Apart from acting as a direct barrier, biomaterials also show promising anti-adhesive bioactivity though their intrinsic physical and chemical are still not completely unveiled. Considering the diversity of human tissue organization, it is imperative that various biomaterials in combination with specific medicine could be tuned to fit the microenvironment of targeted tissues. With the illustration of different adhesion mechanism and solutions, we hope this review can become a beacon and further inspires the development of anti-adhesion biomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  11. Adhesive interactions with wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....

  12. Adhesive compositions and methods

    Science.gov (United States)

    Allen, Scott D.; Sendijarevic, Vahid; O'Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  13. Soy protein adhesives

    Science.gov (United States)

    Charles R. Frihart

    2010-01-01

    In the quest to manufacture and use building materials that are more environmentally friendly, soy adhesives can be an important component. Trees fix and store carbon dioxide in the atmosphere. After the trees are harvested, machinery converts the wood into strands, which are then bonded together with adhesives to form strandboard, used in constructing long-lasting...

  14. Polymer Nanocarriers for Dentin Adhesion

    Science.gov (United States)

    Osorio, R.; Osorio, E.; Medina-Castillo, A.L.; Toledano, M.

    2014-01-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP-nActive nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days’ immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be incorporated into dental adhesive systems to provide the appropriate environment in which dentin MMP

  15. Physics of adhesion

    International Nuclear Information System (INIS)

    Gerberich, W W; Cordill, M J

    2006-01-01

    Adhesion physics was relegated to the lowest echelons of academic pursuit until the advent of three seemingly disconnected events. The first, atomic force microscopy (AFM), eventually allowed fine-scale measurement of adhesive point contacts. The second, large-scale computational materials science, now permits both hierarchical studies of a few thousand atoms from first principles or of billions of atoms with less precise interatomic potentials. The third is a microelectronics industry push towards the nanoscale which has provided the driving force for requiring a better understanding of adhesion physics. In the present contribution, an attempt is made at conjoining these separate events into an updating of how theoretical and experimental approaches are providing new understanding of adhesion physics. While all material couples are briefly considered, the emphasis is on metal/semiconductor and metal/ceramic interfaces. Here, adhesion energies typically range from 1 to 100 J m -2 where the larger value is considered a practical work of adhesion. Experimental emphasis is on thin-film de-adhesion for 10 to 1000 nm thick films. For comparison, theoretical approaches from first principles quantum mechanics to embedded atom methods used in multi-scale modelling are utilized

  16. EB curable laminating adhesives

    International Nuclear Information System (INIS)

    Matsuyama, Asao; Kobayashi, Masahide; Gotoh, Sakiko

    1992-01-01

    New developed solvent free EB curable laminating adhesives have two liquid components, A with hydroxy and acryloyl group, B with isocyanate and acryloyl group in a molecule. These EB laminating adhesives do not need any aging process, which is a big advantage, and are very suitable for environment, safety, and health because of no heating process and solvent free formulas. And we have made basic research about the relation of peel strength or heat seal strength versus Tg of cured film, elongation at break, elastic modulus, and so on. Basic specifications of the new developed adhesives are shown. (author)

  17. Optical adhesive property study

    Energy Technology Data Exchange (ETDEWEB)

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  18. Syndecan-4 and integrins: combinatorial signaling in cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1999-01-01

    It is now becoming clear that additional transmembrane components can modify integrin-mediated adhesion. Syndecan-4 is a transmembrane heparan sulfate proteoglycan whose external glycosaminoglycan chains can bind extracellular matrix ligands and whose core protein cytoplasmic domain can signal...... during adhesion. Two papers in this issue of JCS demonstrate, through transfection studies, that syndecan-4 plays roles in the formation of focal adhesions and stress fibers. Overexpression of syndecan-4 increases focal adhesion formation, whereas a partially truncated core protein that lacks the binding...... site for protein kinase C(&agr;) and phosphatidylinositol 4, 5-bisphosphate acts as a dominant negative inhibitor of focal adhesion formation. Focal adhesion induction does not require interaction between heparan sulfate glycosaminoglycan and ligand but can occur when non-glycanated core protein...

  19. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  20. Many Roles of Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  1. Cohesion and Adhesion with Proteins

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  2. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.

    Science.gov (United States)

    Schargott, M

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  3. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Energy Technology Data Exchange (ETDEWEB)

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  4. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    International Nuclear Information System (INIS)

    Schargott, M

    2009-01-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface

  5. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  6. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  7. Self-assembled Nano-layering at the Adhesive interface.

    Science.gov (United States)

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  8. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  9. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  10. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  11. Photolithography of polytetrafluoroethylene for tailored adhesion

    International Nuclear Information System (INIS)

    Rye, R.R.; Martinez, R.J.

    1988-01-01

    Irradiation of polytetrafluoroethylene (PTFE) with Mg (Kα) x-rays is shown to protect the surface against the chemical etching steps used to prepare PTFE for adhesion. Pre-irradiated etched samples of PTFE have adhesions strengths of less than 3% of that for non-irradiated etched samples. The major portion of this decrease in adhesion strength occurs for x-ray exposures of less than 10 min ∼4.8 x10 3 mrads) and failure in every case occurs in PTFE and not in the bonded transition region. XPS measurements (20 angstrom sampling depth) show little difference in F content between irradiated and non-irradiated samples, but thermal desorption shows increasing fluorocarbon desorption with irradiation time. These results are consistent with the known radiation chemistry of PTFE. Irradiation produced free radicals lead to branching and/ or cross-linking, and a surface rich in low molecular weight fluorocarbons. The more rigid cross-linked surface is resistant to deep (10,000 angstrom chemical attack and the bond formed is with a surface rich in short chain flurocarbons. Both a thin boundary region and bonding to short chain species is expected to lead to weak adhesive bonding. Electron irradiation is shown to lead to protection against chemical etching comparable to that obtained with X-rays. With electrons one has the patterns with resolution limited by the beam diameter

  12. an Adhesive Patch

    Directory of Open Access Journals (Sweden)

    S. Mojtaba Taghizadeh

    2013-01-01

    Full Text Available Drug-in-adhesive transdermal drug delivery systems  TDDSs containing stimulants, termed as energetic substances, such as caffeine and pantothenic acid, were studied. Caffeine is a white crystalline substance and a stimulant to central nervous system. In humans, caffeine acts as a central nervous system stimulant, temporarily warding off drowsiness and restoring alertness. Pantothenic acid, also recognized as vitamin B5, is a water-soluble vitamin. For many animals, pantothenic acid is an essential nutrient. Animals require pantothenic acid to synthesize and metabolize proteins, carbohydrates and fats. For this purpose caffeine and pantothenic acid were  used  as  drug  components with  6.32%  and  1.12%  loadings,  in  different functional and non-functional acrylic pressure sensitive adhesives (PSAs of 52.89%, respectively. Ethylene glycol as a chemical enhancer was used in all TDDSs with 39.67%. The effect of PSAs  type on  in vitro  release and adhesion properties  (peel strength and tack values from drug delivery devices were evaluated. It was found that TDDS containing -COOH functional PSA showed  the  lowest steady state fux. The adhesion properties of the samples were improved by addition of functional acrylic PSA in formulations.

  13. Leukocyte adhesion deficiencies

    NARCIS (Netherlands)

    van de Vijver, Edith; van den Berg, Timo K.; Kuijpers, Taco W.

    2013-01-01

    During inflammation, leukocytes play a key role in maintaining tissue homeostasis through elimination of pathogens and removal of damaged tissue. Leukocytes migrate to the site of inflammation by crawling over and through the blood vessel wall, into the tissue. Leukocyte adhesion deficiencies (ie,

  14. Adhesive tape exfoliation

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2015-01-01

    Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful...

  15. Wood Composite Adhesives

    Science.gov (United States)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  16. MRI of placental adhesive disorder

    Science.gov (United States)

    Prapaisilp, P; Bangchokdee, S

    2014-01-01

    Placental adhesive disorder (PAD) is a serious pregnancy complication that occurs when the chorionic villi invade the myometrium. Placenta praevia and prior caesarean section are the two important risk factors. PAD is classified on the basis of the depth of myometrial invasion (placenta accreta, placenta increta and placenta percreta). MRI is the preferred image modality for pre-natal diagnosis of PAD and as complementary technique when ultrasonography is inconclusive. Imaging findings that are helpful for the diagnosis include dark intraplacental bands, direct invasion of adjacent structures by placental tissue, interruption of normal trilayered myometrium and uterine bulging. Clinicians should be aware of imaging features of PAD to facilitate optimal patient management. PMID:25060799

  17. Adhesive bonding of wood materials

    Science.gov (United States)

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  18. Effect of Paste Flux Concentration on Adhesion Behavior

    Directory of Open Access Journals (Sweden)

    DU Quan-bin

    2017-11-01

    Full Text Available In view of the problem that paste flux is difficult to spread uniformly on the surface of filler metal, the adhesion behavior of the different concentrations of paste flux on the surface of filler metal was studied by the equipment of OM, wetting angle tester and surface tensiometer. The results show that adhesive layer is gradually thickened with the increase of the concentration of paste flux. A small amount of shrinkage appears in the thin adhesive layer. however, mass paste flux slides off filler metal when adhesive layer is thicker, accompanying by severe aggregation and shrinkage. For the ideal surface, the adhesive tension of paste flux with different concentrations of paste flux is the same. For the actual surface, the stripe groove additional pressure is formed when paste flux wets stripe groove, and the additional pressure is the main reason for the lagging phenomenon of the shrinkage of the adhesive layer. With the increase of paste flux concentration, the additional pressure decreases, the hysteresis resistance decreases, and the shrinkage increases. A relationship is satisfied when the shrinkage takes place in thin adhesive layer, this is ΔWC ≥ A+ΔP. Whether the shrinkage occurs mainly depends on the adhesion tension and the additional pressure.

  19. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  20. Development of Screenable Pressure Sensitive Adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Severtson

    2003-11-29

    An industrial research area of high activity in recent years has been the development of pressure sensitive adhesive (PSA) products that do not interfere with the processing of post-consumer waste. The problem of PSA contamination is arguably the most important technical challenge in expanding the use of recycled fiber. The presence of PSAs in recovered paper creates problems that reduce the efficiency of recycling and papermaking operations and diminish product quality. The widespread use of PSAs engineered to avoid these problems, often referred to as environmentally benign PSAs, could greatly increase the commercial viability of utilizing secondary fiber. Much of the research efforts in this area have focused on the development of PSAs that are designed for enhanced removal with cleaning equipment currently utilized by recycling plants. Most removal occurs at the pressure screens with the size and shape of residual contaminants in the process being the primary criteria for their separation. A viable approach for developing environmentally benign PSAs is their reformulation to inhibit fragmentation. The reduction of adhesives to small particles occurs almost exclusively during repulping; a process in which water and mechanical energy are used to swell and reduce paper products to their constituent fiber. Engineering PSA products to promote the formation of larger adhesive particles during repulping will greatly enhance their removal and reduce or eliminate their impact on the recycling process.

  1. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  2. PECAM-1 polymorphism affects monocyte adhesion to endothelial cells.

    Science.gov (United States)

    Goodman, Reyna S; Kirton, Christopher M; Oostingh, Gertie J; Schön, Michael P; Clark, Michael R; Bradley, J Andrew; Taylor, Craig J

    2008-02-15

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) plays an important role in leukocyte-endothelial cell adhesion and transmigration. Single nucleotide polymorphisms of PECAM-1 encoding amino acid substitutions at positions 98 leucine/valine (L/V), 536 serine/asparagine (S/N), and 643 arginine/glycine (R/G) occur in strong genetic linkage resulting in two common haplotypes (LSR and VNG). These PECAM-1 polymorphisms are associated with graft-versus-host disease after hematopoietic stem cell transplantation and with cardiovascular disease, but whether they influence PECAM-1 function is unknown. We examined the effect of homozygous and heterozygous expression of the PECAM-1 LSR and VNG genotypes on the adhesive interactions of peripheral blood monocytes and activated endothelial cell monolayers under shear stress in a flow-based cell adhesion assay. There was no difference in monocyte adhesion between the two homozygous genotypes of PECAM-1 but when monocytes expressed both alleles in heterozygous form, firm adhesion of monocytes to endothelial cells was markedly increased. PECAM-1 polymorphism expressed in homozygous or heterozygous form by endothelial cells did not influence monocyte adhesion. This is, to our knowledge, the first demonstration that PECAM-1 genotype can alter the level of monocyte binding to endothelial cells and a demonstration that heterozygous expression of a polymorphic protein may lead to altered function.

  3. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  4. Adhesion at WC/diamond interfaces - A theoretical study

    International Nuclear Information System (INIS)

    Padmanabhan, Haricharan; Rao, M. S. Ramachandra; Nanda, B. R. K.

    2015-01-01

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m −2 and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface

  5. Adhesion at WC/diamond interfaces - A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Haricharan [Department of Engineering Design, Indian Institute of Technology Madras, Chennai – 600036 (India); Rao, M. S. Ramachandra [Department of Physics and Nano-Functional Materials Technology Centre, Indian Institute of Technology Madras, Chennai – 600036 (India); Nanda, B. R. K., E-mail: nandab@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai – 600036 (India)

    2015-06-24

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m{sup −2} and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface.

  6. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  7. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  8. Effect of adhesive thickness on adhesively bonded T-joint

    International Nuclear Information System (INIS)

    Abdullah, A R; Afendi, Mohd; Majid, M S Abdul

    2013-01-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding

  9. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y.

    2010-01-01

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  10. Oxidation mechanisms occurring in wines

    OpenAIRE

    Oliveira, Carla Maria; Ferreira, António César Silva; Freitas, Victor De; Silva, Artur M. S.

    2011-01-01

    The present review aims to show the state of the art on the oxidation mechanisms occurring in wines, as well as the methods to monitor, classify and diagnose wine oxidation. Wine oxidation can be divided in enzymatic oxidation and non-enzymatic oxidation. Enzymatic oxidation almost entirely occurs in grape must and is largely correlated with the content of hydroxycinnamates, such as caffeoyltartaric acid and paracoumaroyltartaric acid, and flavan-3-ols. Non-enzymatic oxidation, al...

  11. Arachnids secrete a fluid over their adhesive pads.

    Directory of Open Access Journals (Sweden)

    Anne M Peattie

    Full Text Available BACKGROUND: Many arachnids possess adhesive pads on their feet that help them climb smooth surfaces and capture prey. Spider and gecko adhesives have converged on a branched, hairy structure, which theoretically allows them to adhere solely by dry (solid-solid intermolecular interactions. Indeed, the consensus in the literature is that spiders and their smooth-padded relatives, the solifugids, adhere without the aid of a secretion. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the adhesive contact zone of living spiders, solifugids and mites using interference reflection microscopy, which allows the detection of thin liquid films. Like insects, all the arachnids we studied left behind hydrophobic fluid footprints on glass (mean refractive index: 1.48-1.50; contact angle: 3.7-11.2°. Fluid was not always secreted continuously, suggesting that pads can function in both wet and dry modes. We measured the attachment forces of single adhesive setae from tarantulas (Grammostola rosea by attaching them to a bending beam with a known spring constant and filming the resulting deflection. Individual spider setae showed a lower static friction at rest (26%±2.8 SE of the peak friction than single gecko setae (Thecadactylus rapicauda; 96%±1.7 SE. This may be explained by the fact that spider setae continued to release fluid after isolation from the animal, lubricating the contact zone. SIGNIFICANCE: This finding implies that tarsal secretions occur within all major groups of terrestrial arthropods with adhesive pads. The presence of liquid in an adhesive contact zone has important consequences for attachment performance, improving adhesion to rough surfaces and introducing rate-dependent effects. Our results leave geckos and anoles as the only known representatives of truly dry adhesive pads in nature. Engineers seeking biological inspiration for synthetic adhesives should consider whether model species with fluid secretions are appropriate to their

  12. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  13. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  14. Controlling adhesive behavior during recycling

    Science.gov (United States)

    Carl Houtman; Karen Scallon; Jihui Guo; XinPing Wang; Steve Severtson; Mark Kroll; Mike Nowak

    2004-01-01

    Adhesives can be formulated to facilitate their removal by typical paper recycling unit operations. The investigations described in this paper are focused on determining fundamental properties that control particle size during pulping. While pressure-sensitive adhesives (PSAs) with high elastic moduli tend to survive pulping with larger particles, facestock and...

  15. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam

    2006-01-01

    Interaction between chondrocytes and extracellular matrix is considered a key factor in the generation of grafts for matrix-associated chondrocyte transplantation. Therefore, our objective was to study the influence of differentiation status on cellular attachment. Adhesion of chondrocytes...... to collagen type II increased after removal from native cartilage up to the third day in monolayer in a dose-dependent manner. Following dedifferentiation after the second passage, adhesion to collagen types I (-84%) and II (-46%) decreased, whereas adhesion to fibrinogen (+59%) and fibronectin (+43......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...

  16. Universal adhesives: the next evolution in adhesive dentistry?

    Science.gov (United States)

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  17. Microbial adhesion to silicone hydrogel lenses: a review.

    Science.gov (United States)

    Willcox, Mark D P

    2013-01-01

    Microbial adhesion to contact lenses is believed to be one of the initiating events in the formation of many corneal infiltrative events, including microbial keratitis, that occur during contact lens wear. The advent of silicone hydrogel lenses has not reduced the incidence of these events. This may partly be related to the ability of microbes to adhere to these lenses. The aim of this study was to review the published literature on microbial adhesion to contact lenses, focusing on adhesion to silicone hydrogel lenses. The literature on microbial adhesion to contact lenses was searched, along with associated literature on adverse events that occur during contact lens wear. Particular reference was paid to the years 1995 through 2012 because this encompasses the time when the first clinical trials of silicone hydrogel lenses were reported, and their commercial availability and the publication of epidemiology studies on adverse events were studied. In vitro studies of bacterial adhesion to unworn silicone hydrogel lens have shown that generally, bacteria adhere to these lenses in greater numbers than to the hydroxyethyl methacrylate-based soft lenses. Lens wear has different effects on microbial adhesion, and this is dependent on the type of lens and microbial species/genera that is studied. Biofilms that can be formed on any lens type tend to protect the bacteria and fungi from the effects on disinfectants. Fungal hyphae can penetrate the surface of most types of lenses. Acanthamoeba adhere in greater numbers to first-generation silicone hydrogel lenses compared with the second-generation or hydroxyethyl methacrylate-based soft lenses. Microbial adhesion to silicone hydrogel lenses occurs and is associated with the production of corneal infiltrative events during lens wear.

  18. Adhesion and multi-materials

    International Nuclear Information System (INIS)

    Schultz, J.

    1997-01-01

    Adhesion is a multidisciplinary science relevant to many practical fields. The main application of adhesion is bonding by adhesives. This technique is widely used in the industrial world and more specifically in the advanced technical domains. Adhesion is also involved in multi-component materials such as coatings, multilayer materials, polymer blends, composite materials... The multidisciplinary aspect of adhesion is well demonstrated by considering the wide variety of concepts, models and theories proposed for its description. An example of the adhesion between a fiber and a matrix in a composite material will lead to a general model relating the molecular properties of the interface to its capacity of stress transfer and hence to the macroscopic mechanical properties of the composite. This relationship is valid whatever the fiber (glass, carbon, polymeric) or the polymer matrix (thermoplastics, thermosetting). Any deviation from this model can be attributed to the existence of an interfacial zone or interphase exhibiting properties, mainly mechanical properties, different from the bulk matrix. Two examples are examined: the first one deals with the creation of a trans crystalline interphase in a semi-crystalline thermoplastic matrix and the second one is concerned with the formation of a pseudo glassy interphase in an elastomer matrix. These examples stress the need for complementary approaches in the understanding of adhesion phenomena at different levels of knowledge, from molecular to macroscopic. They also show how important it is to understand the mechanisms of formation of inter phases in order to be able to master the performance of multicomponent materials. (Author)

  19. Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride.

    Science.gov (United States)

    Webb, J S; Van der Mei, H C; Nixon, M; Eastwood, I M; Greenhalgh, M; Read, S J; Robson, G D; Handley, P S

    1999-08-01

    Initial adhesion of fungi to plasticized polyvinyl chloride (pPVC) may determine subsequent colonization and biodeterioration processes. The deteriogenic fungus Aureobasidium pullulans was used to investigate the physicochemical nature of adhesion to both unplasticized PVC (uPVC) and pPVC containing the plasticizers dioctyl phthalate (DOP) and dioctyl adipate (DOA). A quantitative adhesion assay using image analysis identified fundamental differences in the mechanism of adhesion of A. pullulans blastospores to these substrata. Adhesion to pPVC was greater than that to uPVC by a maximum of 280% after a 4-h incubation with 10(8) blastospores ml(-1). That plasticizers enhance adhesion to PVC was confirmed by incorporating a dispersion of both DOA and DOP into the blastospore suspension. Adhesion to uPVC was increased by up to 308% in the presence of the dispersed plasticizers. Hydrophobic interactions were found to dominate adhesion to uPVC because (i) a strong positive correlation was observed between substratum hydrophobicity (measured by using a dynamic contact angle analyzer) and adhesion to a range of unplasticized polymers including uPVC, and (ii) neither the pH nor the electrolyte concentration of the suspension buffer, both of which influence electrostatic interactions, affected adhesion to uPVC. In contrast, adhesion to pPVC is principally controlled by electrostatic interactions. Enhanced adhesion to pPVC occurred despite a relative reduction of 13 degrees in the water contact angle of pPVC compared to that of uPVC. Furthermore, adhesion to pPVC was strongly dependent on both the pH and electrolyte concentration of the suspension medium, reaching maximum levels at pH 8 and with an electrolyte concentration of 10 mM NaCl. Plasticization with DOP and DOA therefore increases adhesion of A. pullulans blastospores to pPVC through an interaction mediated by electrostatic forces.

  20. Performance of a rigid and a flexible adhesive in lumber joints subjected to moisture content changes

    Science.gov (United States)

    G. P. Krueger; R. F. Blomquist

    1964-01-01

    Experimental work was undertaken to investigate the extent and magnitude of deterioration that can occur in typical plywood-to-lumber glue joints subjected to stresses resulting from changes in the moisture content of the wood, and to compare the performance of a somewhat flexible or deformable adhesive to that of a rigid adhesive in these joints. Results showed that...

  1. TANNIN ADHESIVES AS AN ALTENATIVE TO THE SYNTHETIC PHENOLIC ADHESIVES

    Directory of Open Access Journals (Sweden)

    Semra Çolak

    2003-04-01

    Full Text Available Recently, increasing attention has been paid industrially to the use of tannin formaldehyde adhesives in production of wood based panel products such as particleboard, fiber board and plywood. The researches on the use of tannin extracts as a wood adhesive started in 1950, however, they proceeded very slowly since the problems associated with the application of them. The idea which tannin extract can be used replace the oil-based phenolic adhesive was the base of several studies after the oil crisis of the 1970s. In the past, the economical aspects were important in the researches on the tannin-based adhesives. Nowadays, however, both economical and ecological factors should have taken into consideration in wood bonding.

  2. Naturally Occurring Radioactive Materials (NORM)

    International Nuclear Information System (INIS)

    Gray, P.

    1997-01-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training)

  3. Naturally Occurring Radioactive Materials (NORM)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [ed.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

  4. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  5. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  6. Structural adhesives directory and databook

    CERN Document Server

    Wilson, Jo

    1996-01-01

    A worldwide directory of commercially available adhesive products for use in a wide range of engineering disciplines. Along with product names and suppliers, basic property data are tabulated and cross-referenced. The book is subdivided according to class of adhesive, with introductions to each class followed by comparison tables and datasheets for each adhesive. The datasheets contain detailed information, from product codes to environmental properties and are therefore of interest across a broad readership. Standardized data will aid the user in cross-comparison between different manufacturers and in easily identifying the required information.

  7. Naturally occurring radionuclides in food

    International Nuclear Information System (INIS)

    Djujic, I.

    1995-01-01

    The naturally occurring radionuclides are the major source of radiation exposure to humans. The principal way of natural radiation exposure is the inhalation of 222 Rn decay products (about 85% of the total). The remainder is equally divided between internally deposited radionuclides, cosmic and terrestrial sources. In the present study, the content of 40 K, 210 Pb, 226 Ra, 230 Th, 232 Th and 238 U in representative food samples (milk, pork, beef, potatoes, wheat and corn flour) and samples of different food items that do not represent entire national production but provide interesting additional data for approximative calculation of naturally occurring radionuclide intake is presented. Daily weight of food eaten, participation of food groups, as well as daily intake by food of mentioned naturally occurring radionuclides in the Serbian diet was obtained on the base of house hold budget surveys. The result obtained for daily intake estimates in mBq for Serbian population are 78.1 ( 40 K), 38.2( 210 Pb), 52.3( 226 Ra), 2.0( 230 Th) and 12.5( 238 U). (author)

  8. Comparing Soy Flour Wood Adhesives to Purified Soy Protein Adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2013-01-01

    While economics dictate that soy-based wood adhesives be made with soy flour, much of the recent literature on soy-based wood adhesives has involved using soy protein isolate. The obvious assumption is that the additional carbohydrates in the flour but not in the isolate only serve as inert diluents. Our studies have shown that the isolate can provide 10 times the wet...

  9. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Priscilla Coutinho ROMUALDO

    Full Text Available Abstract Bacterial endotoxin (LPS adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component, then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p0.05. There was no significant difference (p>0.05 among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025. Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  10. Efficacy and safety of the C-Qur™ Film Adhesion Barrier for the prevention of surgical adhesions (CLIPEUS Trial): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Stommel, Martijn W J; Strik, Chema; ten Broek, Richard P G; van Goor, Harry

    2014-09-26

    complications are considered multifactorial and difficult to interpret. Incidence of adhesions at repeat surgery is believed to be the most valuable surrogate endpoint for clinically relevant adhesion prevention, since small bowel obstruction and adhesiolysis at repeat surgery are not likely to occur when complete adhesion reduction in a patient is accomplished. ClinicalTrials.gov Identifier NCT01872650, registration date 6 June 2013.

  11. Underwater adhesion: The barnacle way

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.

    . Understanding of the molecular mechanisms of adhesion, that is bioadhesive bond formation and curing, is essential to develop a more rational approach in designing fouling- release coatings. Silicone biofouling release coatings have been shown...

  12. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    Science.gov (United States)

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives.

  13. Bonding effectiveness of self-etch adhesives to dentin after 24 h water storage.

    Science.gov (United States)

    Sarr, Mouhamed; Benoist, Fatou Leye; Bane, Khaly; Aidara, Adjaratou Wakha; Seck, Anta; Toure, Babacar

    2018-01-01

    This study evaluated the immediate bonding effectiveness of five self-etch adhesive systems bonded to dentin. The microtensile bond strength of five self-etch adhesives systems, including one two-step and four one-step self-etch adhesives to dentin, was measured. Human third molars had their superficial dentin surface exposed, after which a standardized smear layer was produced using a medium-grit diamond bur. The selected adhesives were applied according to their respective manufacturer's instructions for μTBS measurement after storage in water at 37°C for 24 h. The μTBS varied from 11.1 to 44.3 MPa; the highest bond strength was obtained with the two-step self-etch adhesive Clearfil SE Bond and the lowest with the one-step self-etch adhesive Adper Prompt L-Pop. Pretesting failures mainly occurring during sectioning with the slow-speed diamond saw were observed only with the one-step self-etch adhesive Adper Prompt L-Pop (4 out of 18). When bonded to dentin, the self-etch adhesives with simplified application procedures (one-step self-etch adhesives) still underperform as compared to the two-step self-etch adhesive Clearfil SE Bond.

  14. Mechanisms of adhesion in geckos.

    Science.gov (United States)

    Autumn, Kellar; Peattie, Anne M

    2002-12-01

    The extraordinary adhesive capabilities of geckos have challenged explanation for millennia, since Aristotle first recorded his observations. We have discovered many of the secrets of gecko adhesion, yet the millions of dry, adhesive setae on the toes of geckos continue to generate puzzling new questions and valuable answers. Each epidermally-derived, keratinous seta ends in hundreds of 200 nm spatular tips, permitting intimate contact with rough and smooth surfaces alike. Prior studies suggested that adhesive force in gecko setae was directly proportional to the water droplet contact angle (θ) , an indicator of the free surface energy of a substrate. In contrast, new theory suggests that adhesion energy between a gecko seta and a surface (W(GS)) is in fact proportional to (1 + cosθ), and only for θ > 60°. A reanalysis of prior data, in combination with our recent study, support the van der Waals hypothesis of gecko adhesion, and contradict surface hydrophobicity as a predictor of adhesion force. Previously, we and our collaborators measured the force production of a single seta. Initial efforts to attach a seta failed because of improper 3D orientation. However, by simulating the dynamics of gecko limbs during climbing (based on force plate data) we discovered that, in single setae, a small normal preload, combined with a 5 μm displacement yielded a very large adhesive force of 200 microNewton (μN), 10 times that predicted by whole-animal measurements. 6.5 million setae of a single tokay gecko attached maximally could generate 130 kg force. This raises the question of how geckos manage to detach their feet in just 15 ms. We discovered that simply increasing the angle that the setal shaft makes with the substrate to 30° causes detachment. Understanding how simultaneous attachment and release of millions of setae are controlled will require an approach that integrates levels ranging from molecules to lizards.

  15. Bio-Inspired Controllable Adhesive

    Science.gov (United States)

    2008-12-01

    pad of the tarsus – which act as a sort of hydraulic suspension. The lamellae contain rows of thin slender fibers , called setae, approximately 130 µm...in length and 20 µm in diameter (Hildebrand, 1988), Fig.1. The terminus of each seta branches into thousands of smaller fibers , or spatular stalks...ADHESION TESTING The structures were characterized (Northen et al., 2008) using a home-built adhesion test apparatus ( Basalt - II) with C. Greiner

  16. A Rare Occurance with Epidermolysis Bullosa Disease: Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Derya Cimen

    2014-02-01

    Full Text Available Epidermolysis bullosa is a congenital and herediter vesiculobullous disease. Dystrophic form of this disease is characterized by severe malnutrition, failure to thrive, adhesions at fingers, joint contractures related with the formation of scar tissues, carcinoma of the skin, anemia, hipoalbuminemia, wound enfections and sepsis. Rarely, mortal dilated cardiomyopathy may occur in patients. In this report we present a 13 year-old pediatric patient with dilated cardiomyopathy, clinically diagnosed with Epidermolysis bullosa as well as a review of recent related literature.

  17. Early occurring and continuing effects

    International Nuclear Information System (INIS)

    Scott, B.R.; Hahn, F.F.

    1985-01-01

    This chapter deals with health-risk estimates for early and continuing effects of exposure to ionizing radiations that could be associated with light water nuclear power plants accidents. Early and continuing effects considered are nonneoplastic diseases and symptoms that normally occur soon after radiation exposure, but may also occur after years have passed. They are generally associated with relatively high (greater than 1 Gy) doses. For most of the effects considered, there is a practical dose threshold. Organs of primary interest, because of their high sensitivity or the likelihood of receiving a large radiation dose, are bone marrow, gastrointestinal tract, thyroid glands, lungs, skin, gonads, and eyes. In utero exposure of the fetus is also considered. New data and modeling techniques available since publication of the Reactor Safety Study (WASH 1400, 1975) were used along with data cited in the Study to develop improved health-risk models for morbidity and mortality. The new models are applicable to a broader range of accident scenarios, provide a more detailed treatment of dose protraction effects, and include morbidity effects not considered in the Reactor Safety Study. 115 references, 20 figures, 19 tables

  18. Naturally-occurring alpha activity

    Energy Technology Data Exchange (ETDEWEB)

    Mayneord, W V

    1960-12-01

    In view of the difficulties of assessing the significance of man-made radioactivity it is important to study for comparison the background of natural radioactivity against which the human race has evolved and lives. It is also important to define the present levels of activity so that it will be possible to detect and study as quickly as possible any changes which may occur owing to the release into the environment of new radioactive materials. Moreover, by the study of the behaviour of natural radioactivity light may be shed upon that of the artificially produced isotopes and a number of analogies traced between the two groups. These concepts have led to studies of naturally-occurring radioactive materials alongside a programme of research into fission products in food, water and air, as well as studies of the metabolism of both sets of materials in the human body. Since the last report there has been a useful increase in our knowledge of natural radioactivity in the biosphere, and its levels relative to the new man-made activities. These studies have necessitated technical developments, particularly in the methods of measuring and identifying alpha-ray emitters, to which group many of the more important natural radioactive materials belong.

  19. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  20. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  1. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    International Nuclear Information System (INIS)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-01-01

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH) 2 D 3 , a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion

  2. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the

  3. Naturally occurring methyl salicylate glycosides.

    Science.gov (United States)

    Mao, Ping; Liu, Zizhen; Xie, Meng; Jiang, Rui; Liu, Weirui; Wang, Xiaohong; Meng, Shen; She, Gaimei

    2014-01-01

    As an important part of non steroids anti-inflammation drug (NSAIDs), salicylate has developed from natural substance salicylic acid to natrium salicylicum, to aspirin. Now, methyl salicylate glycoside, a new derivative of salicylic acid, is modified with a -COOH group integrated one methyl radical into formic ether, and a -OH linked with a monosaccharide, a disaccharide or a trisaccharide unit by glycosidic linkage. It has the similar pharmacological activities, anti-inflammatory, analgesic, antipyretic and antithrombotic as the previous salicylates' without resulting in serious side effects, particularly the gastrointestinal toxicity. Owing to the superiority of those significant bioactivities, methyl salicylate glycosides have became a hot research area in NSAIDs for several years. This paper compiles all 9 naturally occurring methyl salicylate glycosides, their distribution of the resource and pharmacological mechanism, which could contribute to the new drug discovery.

  4. Mechanisms of Probe Tack Adhesion of Model Acrylic Elastomers

    Science.gov (United States)

    Lakrout, Hamed; Creton, Costantino; Ahn, Dongchan; Shull, Kenneth R.

    1997-03-01

    The adhesion mechanisms of model acrylate homopolymers and copolymers are studied with an instrumented probe tack test. A video camera positioned under the transparent glass substrate records the bonding and debonding process while the force displacement curve is acquired. This setup allows to couple the observation of the cavitation and fibrillation mechanisms, occurring during the debonding of the film from the stainless steel probe, with the mechanical measurement of stress and strain. The transitions between different debonding mechanisms are critically dicussed in terms of the bulk and surface properties of the adhesive and its molecular structure.

  5. What occurred in the reactors

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko

    2013-01-01

    Described is what occurred in the reactors of Fukushima Daiichi Nuclear Power Plant at the Tohoku earthquake and tsunami (Mar. 11, 2011) from the aspect of engineering science. The tsunami attacked the Plant 1 hr after the quake. The Plant had reactors in buildings no.1-4 at 10 m height from the normal sea level which was flooded by 1.5-5.5 m high wave. All reactors in no.1-6 in the Plant were the boiling water type, and their core nuclear reactions were stopped within 3 sec due to the first quake by control rods inserted automatically. Reactors in no.1-5 lost their external AC power sources by the breakdown and subsequent submergence (no.1-4) of various equipments and in no.1, 2 and 4, the secondary DC power was then lost by the battery death. Although the isolation condenser started to cool the reactor in no.1 after DC cut, its valve was then kept closed to heat up the reactor, leading to the reaction of heated Zr in the fuel tube and water to yield H 2 which was accumulated in the building: the cause of hydrogen explosion on 12th. The reactor in no.2 had the reactor core isolation cooling system (RCIC) which operated normally for few hrs, then probably stopped to heat up the reactor, resulting in meltdown of the core but no explosion occurred because of the opened door of the blowout panel on the wall by the blast of no.1 explosion. The reactor in no.3 had RCIC and high pressure coolant injection system, but their works stopped to result in the core damage and H 2 accumulation leading to the explosion on 14th. The reactor in no.4 had not been operated because of its periodical annual examination, but was explored on 15th, of which cause was thought to be due to backward flow of H 2 from no.3. Finally, the author discusses about this accident from the industrial aspect of the design of safety level (defense in depth) on international views, and problems and tasks given. (T.T.)

  6. Denture adhesives: a systematic review.

    Science.gov (United States)

    Papadiochou, Sofia; Emmanouil, Ioannis; Papadiochos, Ioannis

    2015-05-01

    Denture adhesives have been the objective of scientific research for over half a century. Although they are used by denture wearers worldwide, investigations of their effectiveness and biocompatibility have led to controversial conclusions. The purpose of this study was to review the literature data with regard to the effectiveness and biocompatibility of denture adhesives as well as the attitudes of both patients and dental professionals toward these materials. An electronic search of English peer-reviewed dental literature in the Medline database was conducted to evaluate the effectiveness and biocompatibility of denture adhesives. There was no limitation in publication year, so the search included all the available scientific evidence included in that particular database until March 2014. Specific inclusion criteria were used for the selection of the appropriate articles. A manual search of the citations of the obtained articles followed to extend the electronic search. A full text review was carried out for only 32 articles. Of the 32 articles, 21 examined the efficacy of denture adhesives in terms of retention and stability and masticatory performance, 6 evaluated the issue of the biocompatibility of denture adhesives, and 5 presented the attitudes of either professionals or patients toward these materials. The majority of clinical studies supported the fact that denture adhesives enhance the retention, stability, and masticatory performance of a removable prosthesis. In terms of biocompatibility, long-term in vivo studies to investigate potential harmful effects were lacking. Patients are satisfied with denture adhesives that meet their needs. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Earl occurring and continuing effects

    International Nuclear Information System (INIS)

    Scott, B.R.; Hahn, F.F.

    1989-01-01

    This chapter develops health-risk models for early and continuing effects of exposure to beta or gamma radiation that could be associated with light water nuclear power plant accidents. The main purpose of the chapter is to provide details on each health-risk model and on the data used. Early and continuing effects considered are prodromal symptoms and nonneoplastic diseases that usually occur soon after a brief radiation exposure. These effects are generally associated with relatively high (greater than 1 Gy) absorbed organ doses. For most of the effects considered, there is an absorbed organ dose threshold below which no effects are seen. Some information is provided on health effects observed in victims of the Chernobyl power plant accident. Organs of primary interest, because of their high sensitivity or their potential for receiving large doses, are bone marrow, gastrointestinal tract, thyroid glands, lungs, skin, gonads, and eyes. Exposure of the fetus is also considered. Additional data and modeling techniques available since publication of the Reactor Safety Study were used to obtain models for morbidity and mortality

  8. Does overtraining occur in triathletes?

    Directory of Open Access Journals (Sweden)

    I Margaritis

    2003-06-01

    Full Text Available 1. Objective: Long distance triathlon training is characterized by considerably high volume training loads. This volume can provoke an overtraining state. The aim of the study was to determine whether overtraining occurs in well-trained male triathletes in relation with their volume training loads. 2. Experimental design: A questionnaire investigation was completed two days before the Nice long-distance triathlon (October 1995: 4-km swim, 120-km bike ride and 30-km run. 3. Participants: Ninety-three well-trained male triathletes who took part in the triathlon race. 4. Measures: A questionnaire to relate clinical symptoms, which are known to appear in case of overtraining, was collected. 5. Results: 39.8% of the questioned triathletes reported a decrease in triathlon performances within the last month preceding the race. Moreover, these triathletes exhibited significantly more overtraining-relied symptoms than the others (5.9±3.8 vs 3.4±2.6, P<0.05. Surprisingly, the occurrence of overtraining in triathletes appears not to depend on the volume training loads. 6. Conclusions: These results suggest that overtraining has to be considered in the case of triathletes. This preliminary study evidences the need for further investigation in order to monitor triathletes training respond and prevent overtraining.

  9. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  10. Physically based principles of cell adhesion mechanosensitivity in tissues

    International Nuclear Information System (INIS)

    Ladoux, Benoit; Nicolas, Alice

    2012-01-01

    The minimal structural unit that defines living organisms is a single cell. By proliferating and mechanically interacting with each other, cells can build complex organization such as tissues that ultimately organize into even more complex multicellular living organisms, such as mammals, composed of billions of single cells interacting with each other. As opposed to passive materials, living cells actively respond to the mechanical perturbations occurring in their environment. Tissue cell adhesion to its surrounding extracellular matrix or to neighbors is an example of a biological process that adapts to physical cues. The adhesion of tissue cells to their surrounding medium induces the generation of intracellular contraction forces whose amplitude adapts to the mechanical properties of the environment. In turn, solicitation of adhering cells with physical forces, such as blood flow shearing the layer of endothelial cells in the lumen of arteries, reinforces cell adhesion and impacts cell contractility. In biological terms, the sensing of physical signals is transduced into biochemical signaling events that guide cellular responses such as cell differentiation, cell growth and cell death. Regarding the biological and developmental consequences of cell adaptation to mechanical perturbations, understanding mechanotransduction in tissue cell adhesion appears as an important step in numerous fields of biology, such as cancer, regenerative medicine or tissue bioengineering for instance. Physicists were first tempted to view cell adhesion as the wetting transition of a soft bag having a complex, adhesive interaction with the surface. But surprising responses of tissue cell adhesion to mechanical cues challenged this view. This, however, did not exclude that cell adhesion could be understood in physical terms. It meant that new models and descriptions had to be created specifically for these biological issues, and could not straightforwardly be adapted from dead matter

  11. Temporary ectropion therapy by adhesive taping: a case study

    Directory of Open Access Journals (Sweden)

    Habermann Anke

    2008-07-01

    Full Text Available Abstract Introduction Various surgical procedures are available to correct paralytic ectropion, which are applied in irreversible facial paresis. Problems occur when facial paresis has an unclear prognosis, since surgery of the lower eyelid is usually irreversible. We propose a simple method to correct temporary ectropion in facial palsy by applying an adhesive strip. Patients and methods Ten patients with peripheral facial paresis and paralytic ectropion were treated with an adhesive strip to correct paralytic ectropion. We used "Steri-Strips" (45 × 6.0 mm, which were taped on the carefully cleaned skin of the lower eyelid and of the adjacent zygomatic region until the prognosis of the paresis was clarified. In addition to the examiner's evaluation of the lower lacrimal point in the lacrimal lake, subjective improvement of the symptoms was assessed using a visual analogue scale (VAS, 1–10. Results 9 patients reported a clear improvement of the symptoms after adhesive taping. There was a clear regression of tearing (VAS (median = 8; 1 = no improvement, 10 = very good improvement, the cosmetic impairment of the adhesive tape was low (VAS (median = 2.5; 1 = no impairment, 10 = severe impairment and most of the patients found the use of the adhesive strip helpful. There was slight reddening of the skin in one case and well tolerated by the facial skin in the other cases. Conclusion The cause and location of facial nerve damage are decisive for the type of surgical therapy. In potentially reversible facial paresis, procedures should be used that are easily performed and above all reversible without complications. Until a reliable prognosis of the paresis can be made, adhesive taping is suited for the temporary treatment of paralytic ectropion. Adhesive taping is simple and can be performed by the patient.

  12. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  13. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    Science.gov (United States)

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  14. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules

    Directory of Open Access Journals (Sweden)

    Villa-Verde D.M.S.

    1999-01-01

    Full Text Available Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble ß-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  15. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    Science.gov (United States)

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  16. Adhesion forces and coaggregation between vaginal staphylococci and lactobacilli.

    Directory of Open Access Journals (Sweden)

    Jessica A Younes

    Full Text Available Urogenital infections are the most common ailments afflicting women. They are treated with dated antimicrobials whose efficacy is diminishing. The process of infection involves pathogen adhesion and displacement of indigenous Lactobacillus crispatus and Lactobacillus jensenii. An alternative therapeutic approach to antimicrobial therapy is to reestablish lactobacilli in this microbiome through probiotic administration. We hypothesized that lactobacilli displaying strong adhesion forces with pathogens would facilitate coaggregation between the two strains, ultimately explaining the elimination of pathogens seen in vivo. Using atomic force microscopy, we found that adhesion forces between lactobacilli and three virulent toxic shock syndrome toxin 1-producing Staphylococcus aureus strains, were significantly stronger (2.2-6.4 nN than between staphylococcal pairs (2.2-3.4 nN, especially for the probiotic Lactobacillus reuteri RC-14 (4.0-6.4 nN after 120 s of bond-strengthening. Moreover, stronger adhesion forces resulted in significantly larger coaggregates. Adhesion between the bacteria occurred instantly upon contact and matured within one to two minutes, demonstrating the potential for rapid anti-pathogen effects using a probiotic. Coaggregation is one of the recognized mechanisms through which lactobacilli can exert their probiotic effects to create a hostile micro-environment around a pathogen. With antimicrobial options fading, it therewith becomes increasingly important to identify lactobacilli that bind strongly with pathogens.

  17. Salivary contamination during bonding procedures with a one-bottle adhesive system.

    Science.gov (United States)

    Fritz, U B; Finger, W J; Stean, H

    1998-09-01

    The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.

  18. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives

    International Nuclear Information System (INIS)

    Sameoto, D; Menon, C

    2009-01-01

    We present a low-cost, large-scale method of fabricating biomimetic dry adhesives. This process is useful because it uses all photosensitive polymers with minimum fabrication costs or complexity to produce molds for silicone-based dry adhesives. A thick-film lift-off process is used to define molds using AZ 9260 photoresist, with a slow acting, deep UV sensitive material, PMGI, used as both an adhesion promoter for the AZ 9260 photoresist and as an undercutting material to produce mushroom-shaped fibers. The benefits to this process are ease of fabrication, wide range of potential layer thicknesses, no special surface treatment requirements to demold silicone adhesives and easy stripping of the full mold if process failure does occur. Sylgard® 184 silicone is used to cast full sheets of biomimetic dry adhesives off 4'' diameter wafers, and different fiber geometries are tested for normal adhesion properties. Additionally, failure modes of the adhesive during fabrication are noted and strategies for avoiding these failures are discussed. We use this fabrication method to produce different fiber geometries with varying cap diameters and test them for normal adhesion strengths. The results indicate that the cap diameters relative to post diameters for mushroom-shaped fibers dominate the adhesion properties

  19. Lignin-Furfural Based Adhesives

    Directory of Open Access Journals (Sweden)

    Prajakta Dongre

    2015-07-01

    Full Text Available Lignin recovered from the hot-water extract of sugar maple (Acer saccharum is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC. The effect of pH (0.3, 0.65 and 1, ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength.

  20. Nanofibers and nanoparticles from the insect-capturing adhesive of the Sundew (Drosera for cell attachment

    Directory of Open Access Journals (Sweden)

    Zhang Mingjun

    2010-08-01

    Full Text Available Abstract Background The search for naturally occurring nanocomposites with diverse properties for tissue engineering has been a major interest for biomaterial research. In this study, we investigated a nanofiber and nanoparticle based nanocomposite secreted from an insect-capturing plant, the Sundew, for cell attachment. The adhesive nanocomposite has demonstrated high biocompatibility and is ready to be used with minimal preparation. Results Atomic force microscopy (AFM conducted on the adhesive from three species of Sundew found that a network of nanofibers and nanoparticles with various sizes existed independent of the coated surface. AFM and light microscopy confirmed that the pattern of nanofibers corresponded to Alcian Blue staining for polysaccharide. Transmission electron microscopy identified a low abundance of nanoparticles in different pattern form AFM observations. In addition, energy-dispersive X-ray spectroscopy revealed the presence of Ca, Mg, and Cl, common components of biological salts. Study of the material properties of the adhesive yielded high viscoelasticity from the liquid adhesive, with reduced elasticity observed in the dried adhesive. The ability of PC12 neuron-like cells to attach and grow on the network of nanofibers created from the dried adhesive demonstrated the potential of this network to be used in tissue engineering, and other biomedical applications. Conclusions This discovery demonstrates how a naturally occurring nanofiber and nanoparticle based nanocomposite from the adhesive of Sundew can be used for tissue engineering, and opens the possibility for further examination of natural plant adhesives for biomedical applications.

  1. Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin.

    Science.gov (United States)

    Renvoise, Julien; Burlot, Delphine; Marin, Gérard; Derail, Christophe

    2009-02-23

    This work deals with the rheological behavior and adherence properties of pressure sensitive adhesive formulations dedicated to medical applications. We have developed a specific viscoelastic substrate which mimics adhesion on human skin to measure the adherence properties of PSAs when they are stuck on the human skin. By comparing peeling results of PSAs, dedicated to medical applications, stuck on human skin and on this viscoelastic substrate we show that this substrate, based on a blend of natural proteins, presents a better representation of the interactions occurring at the skin/adhesive interface than conventional substrates used for peel test (i.e. glass and steel).

  2. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    Science.gov (United States)

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.

  3. Candida biofilms: is adhesion sexy?

    Science.gov (United States)

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins.

  4. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  5. Bio-inspired reversible underwater adhesive.

    Science.gov (United States)

    Zhao, Yanhua; Wu, Yang; Wang, Liang; Zhang, Manman; Chen, Xuan; Liu, Minjie; Fan, Jun; Liu, Junqiu; Zhou, Feng; Wang, Zuankai

    2017-12-20

    The design of smart surfaces with switchable adhesive properties in a wet environment has remained a challenge in adhesion science and materials engineering. Despite intense demands in various industrial applications and exciting progress in mimicking the remarkable wet adhesion through the delicate control of catechol chemistry, polyelectrolyte complex, and supramolecular architectures, the full recapitulation of nature's dynamic function is limited. Here, we show a facile approach to synthesize bioinspired adhesive, which entails the reversible, tunable, and fast regulation of the wet adhesion on diverse surfaces. The smart wet adhesive takes advantage of the host-guest molecular interaction and the adhesive nature of catechol chemistry, as well as the responsive polymer, allowing for screening and activation of the interfacial interaction simply by a local temperature trigger in an on-demand manner. Our work opens up an avenue for the rational design of bioinspired adhesives with performances even beyond nature.

  6. Influence of Blood Contamination During Multimode Adhesive ...

    African Journals Online (AJOL)

    2018-01-30

    Jan 30, 2018 ... (μTBS) of multimode adhesives to dentin when using the self‑etch approach. Materials and Methods: ... adhesion, the collagen fibers collapse during the. Introduction ..... The failure mode was determined using an optical.

  7. Membrane tension controls adhesion positioning at the leading edge of cells.

    Science.gov (United States)

    Pontes, Bruno; Monzo, Pascale; Gole, Laurent; Le Roux, Anabel-Lise; Kosmalska, Anita Joanna; Tam, Zhi Yang; Luo, Weiwei; Kan, Sophie; Viasnoff, Virgile; Roca-Cusachs, Pere; Tucker-Kellogg, Lisa; Gauthier, Nils C

    2017-09-04

    Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells. © 2017 Pontes et al.

  8. Adhesion of cellulose fibers in paper

    International Nuclear Information System (INIS)

    Persson, Bo N J; Ganser, Christian; Schmied, Franz; Teichert, Christian; Schennach, Robert; Gilli, Eduard; Hirn, Ulrich

    2013-01-01

    The surface topography of paper fibers is studied using atomic force microscopy (AFM), and thus the surface roughness power spectrum is obtained. Using AFM we have performed indentation experiments and measured the effective elastic modulus and the penetration hardness as a function of humidity. The influence of water capillary adhesion on the fiberfiber binding strength is studied. Cellulose fibers can absorb a significant amount of water, resulting in swelling and a strong reduction in the elastic modulus and the penetration hardness. This will lead to closer contact between the fibers during the drying process (the capillary bridges pull the fibers into closer contact without storing up a lot of elastic energy at the contacting interface). In order for the contact to remain good in the dry state, plastic flow must occur (in the wet state) so that the dry surface profiles conform to each other (forming a key-and-lock type of contact).

  9. Adhesion of cellulose fibers in paper.

    Science.gov (United States)

    Persson, Bo N J; Ganser, Christian; Schmied, Franz; Teichert, Christian; Schennach, Robert; Gilli, Eduard; Hirn, Ulrich

    2013-01-30

    The surface topography of paper fibers is studied using atomic force microscopy (AFM), and thus the surface roughness power spectrum is obtained. Using AFM we have performed indentation experiments and measured the effective elastic modulus and the penetration hardness as a function of humidity. The influence of water capillary adhesion on the fiber-fiber binding strength is studied. Cellulose fibers can absorb a significant amount of water, resulting in swelling and a strong reduction in the elastic modulus and the penetration hardness. This will lead to closer contact between the fibers during the drying process (the capillary bridges pull the fibers into closer contact without storing up a lot of elastic energy at the contacting interface). In order for the contact to remain good in the dry state, plastic flow must occur (in the wet state) so that the dry surface profiles conform to each other (forming a key-and-lock type of contact).

  10. Potential for Biobased Adhesives in Wood Bonding

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    There has been a resurgence of interest and research on using bio-based materials as wood adhesives; however, they have achieved only limited market acceptance. To better understand this low level of replacement, it is important to understand why adhesives work or fail in moisture durability tests. A holistic model for wood adhesives has been developed that clarifies...

  11. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  12. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  13. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    Science.gov (United States)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  14. Polyurethane structural adhesives applied in automotive composite joints

    Directory of Open Access Journals (Sweden)

    Josue Garcia Quini

    2012-06-01

    Full Text Available In recent years structural adhesives technology has demonstrated great potential for application due to its capacity to transform complex structures into solid unitary and monolithic assemblies using different materials. Thus, seams or joints integrate these structures providing, besides a reduction in weight, a considerable increase in the mechanical resistance and stiffness. The increase in the industrial use of structural adhesives is mainly due to their ability to efficiently bond different materials in an irreversible manner, even replacing systems involving mechanical joints. In the automobile industry structural adhesives have been widely used for the bonding of metal substrates, thermoplastics and composites, frequently employing these in combination, particularly glass fiber and polyester resin composites molded using RTM and SMC processes. However, the use of urethane structural adhesives in applications involving composites and thermoplastics has been the subject of few investigations. In this study the effects of temperature and time on the shear strength of RTM, SMC and ABS joints, applying temperatures of -40, 25, 80, 120 and 177 °C and times of 20 minutes and 500 hours, were determined. The objective was to evaluate the performance under extreme conditions of use in order to assess whether these joints could be used in passenger or off-road vehicles. The results showed that the urethane structural adhesive promoted the efficient bonding of these materials, considering that due to the high adhesive strength the failures occurred in the substrates without adversely affecting the bonded area. For each test condition the joint failure modes were also determined.

  15. Adhesive interactions of geckos with wet and dry fluoropolymer substrates.

    Science.gov (United States)

    Stark, Alyssa Y; Dryden, Daniel M; Olderman, Jeffrey; Peterson, Kelly A; Niewiarowski, Peter H; French, Roger H; Dhinojwala, Ali

    2015-07-06

    Fluorinated substrates like Teflon® (poly(tetrafluoroethylene); PTFE) are well known for their role in creating non-stick surfaces. We showed previously that even geckos, which can stick to most surfaces under a wide variety of conditions, slip on PTFE. Surprisingly, however, geckos can stick reasonably well to PTFE if it is wet. In an effort to explain this effect, we have turned our attention to the role of substrate surface energy and roughness when shear adhesion occurs in media other than air. In this study, we removed the roughness component inherent to commercially available PTFE and tested geckos on relatively smooth wet and dry fluoropolymer substrates. We found that roughness had very little effect on shear adhesion in air or in water and that the level of fluorination was most important for shear adhesion, particularly in air. Surface energy calculations of the two fluorinated substrates and one control substrate using the Tabor-Winterton approximation and the Young-Dupré equation were used to determine the interfacial energy of the substrates. Using these interfacial energies we estimated the ratio of wet and dry normal adhesion for geckos clinging to the three substrates. Consistent with the results for rough PTFE, our predictions show a qualitative trend in shear adhesion based on fluorination, and the quantitative experimental differences highlight the unusually low shear adhesion of geckos on dry smooth fluorinated substrates, which is not captured by surface energy calculations. Our work has implications for bioinspired design of synthetics that can preferentially stick in water but not in air.

  16. The extent of adhesion induction through electrocoagulation and suturing in an experimental rat study.

    Science.gov (United States)

    Wallwiener, Christian W; Kraemer, Bernhard; Wallwiener, Markus; Brochhausen, Christoph; Isaacson, Keith B; Rajab, Taufiek K

    2010-03-01

    To investigate the effect of three types of peritoneal trauma occurring during surgery (high-frequency bipolar current, suturing, and mechanical damage) on postoperative adhesion formation in a rodent animal model. Randomized, controlled experimental trial in an in vitro animal model. Laboratory facilities of a university department of obstetrics and gynecology. Thirty-five female Wistar rats. Bilateral experimental lesions were created on the abdominal wall in every animal. The effect of minimal electrocoagulation was examined by creating lesions (n = 14) through sweeps of a bipolar forceps with a duration of 1 second and standardized pressure. For extensive electrocoagulation standardized lesions (n = 14) were created using sweeps of a duration of 3 seconds and three times more pressure. For mechanical trauma, standardized lesions (n = 14) were created by denuding the peritoneum mechanically. To study the additive effect of suturing, experimental lesions were created by suturing plus minimal electrocoagulation (n = 14) or mechanical denuding (n = 14). Adhesion incidence, quantity, and quality of the resulting adhesions were scored 14 days postoperatively. Adhesions were studied histopathologically. Mechanical denuding of the peritoneum did not result in adhesion formation. After minimal electrocoagulation, mean adhesion quantity of the traumatized area averaged 0%. This contrasted with extensive electrocoagulation, where there was 50% adhesion. Additional suturing increased mean adhesion quantity to 73% and 64% for superficial electrocoagulation and mechanical denuding, respectively. We conclude that superficial trauma limited mostly to the parietal peritoneum may be a negligible factor in adhesion formation in this model. This appears to be irrespective of the mode of trauma. However, additional trauma to the underlying tissues, either by deeper electrocoagulation or suturing, leads to significantly increased adhesion formation. These data also show that there

  17. Debonding characteristics of adhesively bonded woven Kevlar composites

    Science.gov (United States)

    Mall, S.; Johnson, W. S.

    1988-01-01

    The fatigue damage mechanism of an adhesively bonded joint between fabric reinforced composite adherends was investigated with cracked-lap-shear specimens. Two bonded systems were studied: fabric Kevlar 49/5208 epoxy adherends bonded together with either EC 3445 or FM-300 adhesive. For each bonded system, two specimen geometries were tested. In all specimens tested, fatigue damage occurred in the form of cyclic debonding; however, the woven Kevlar specimens gave significantly slower debond growth rates and higher fracture toughness than previously found in the nonwoven adherend specimens. The surfaces for the woven adherends were not smooth; rather, they had regular crests (high spots) and troughs (low spots) due to the weave pattern. Radiographs of the specimens and examination of their failure surfaces revealed that fiber bridging occurred between the crests of the two adherends in the debonded region. The observed improvements in debond growth resistance and static fracture toughness are attributed to this bridging.

  18. Adhesives for fixed orthodontic bands.

    Science.gov (United States)

    Millett, Declan T; Glenny, Anne-Marie; Mattick, Rye Cr; Hickman, Joy; Mandall, Nicky A

    2016-10-25

    Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment. The success of a fixed orthodontic appliance depends on the metal attachments (brackets and bands) being attached securely to the teeth so that they do not become loose during treatment. Brackets are usually attached to the front and side teeth, whereas bands (metal rings that go round the teeth) are more commonly used on the back teeth (molars). A number of adhesives are available to attach bands to teeth and it is important to understand which group of adhesives bond most reliably, as well as reducing or preventing dental decay during the treatment period. To evaluate the effectiveness of the adhesives used to attach bands to teeth during fixed appliance treatment, in terms of:(1) how often the bands come off during treatment; and(2) whether they protect the banded teeth against decay during fixed appliance treatment. The following electronic databases were searched: Cochrane Oral Health's Trials Register (searched 2 June 2016), Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 5) in the Cochrane Library (searched 2 June 2016), MEDLINE Ovid (1946 to 2 June 2016) and EMBASE Ovid (1980 to 2 June 2016). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised and controlled clinical trials (RCTs and CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. All review authors

  19. Shear bond strength of self-etch adhesives to enamel with additional phosphoric acid etching.

    Science.gov (United States)

    Lührs, Anne-Katrin; Guhr, Silke; Schilke, Reinhard; Borchers, Lothar; Geurtsen, Werner; Günay, Hüsamettin

    2008-01-01

    This study evaluated the shear bond strength of self-etch adhesives to enamel and the effect of additional phosphoric acid etching. Seventy sound human molars were randomly divided into three test groups and one control group. The enamel surfaces of the control group (n=10) were treated with Syntac Classic (SC). Each test group was subdivided into two groups (each n=10). In half of each test group, ground enamel surfaces were coated with the self-etch adhesives AdheSe (ADH), Xeno III (XE) or Futurabond NR (FNR). In the remaining half of each test group, an additional phosphoric acid etching of the enamel surface was performed prior to applying the adhesives. The shear bond strength was measured with a universal testing machine at a crosshead speed of 1 mm/minute after storing the samples in distilled water at 37 degrees C for 24 hours. Fracture modes were determined by SEM examination. For statistical analysis, one-way ANOVA and the two-sided Dunnett Test were used (p>0.05). Additional phosphoric etching significantly increased the shear bond strength of all the examined self-etch adhesives (padhesive fractures. For all the self-etch adhesives, a slight increase in mixed fractures occurred after conditioning with phosphoric acid. An additional phosphoric acid etching of enamel should be considered when using self-etch adhesives. More clinical studies are needed to evaluate the long-term success of the examined adhesives.

  20. Gecko adhesion pad: a smart surface?

    Science.gov (United States)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  1. Gecko adhesion pad: a smart surface?

    Energy Technology Data Exchange (ETDEWEB)

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  2. Gecko adhesion pad: a smart surface?

    International Nuclear Information System (INIS)

    Pesika, Noshir S; Zeng Hongbo; Kristiansen, Kai; Israelachvili, Jacob; Zhao, Boxin; Tian Yu; Autumn, Kellar

    2009-01-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  3. Polyurethane adhesives in flat roofs

    OpenAIRE

    Bogárová Markéta; Stodůlka Jindřich; Šuhajda Karel

    2017-01-01

    It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is...

  4. Adhesives for fixed orthodontic brackets.

    Science.gov (United States)

    Mandall, N A; Millett, D T; Mattick, C R; Hickman, J; Macfarlane, T V; Worthington, H V

    2003-01-01

    Bonding of orthodontic brackets to teeth is important to enable effective and efficient treatment with fixed appliances. The problem is bracket failure during treatment which increases operator chairside time and lengthens treatment time. A prolonged treatment is likely to increase the oral health risks of orthodontic treatment with fixed appliances one of which is irreversible enamel decalcification. To evaluate the effectiveness of different orthodontic adhesives for bonding. Electronic databases: the Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE. Date of most recent searches: August 2002 (CENTRAL) (The Cochrane Library Issue 2, 2002). Trials were selected if they met the following criteria: randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing two different adhesive groups. Participants were patients with fixed orthodontic appliances. The interventions were adhesives that bonded stainless steel brackets to all teeth except the molars. The primary outcome was debond or bracket failure. Data were recorded on decalcification as a secondary outcome, if present. Information regarding methods, participants, interventions, outcome measures and results were extracted in duplicate by pairs of reviewers (Nicky Mandall (NM) and Rye Mattick (CRM); Declan Millett (DTM) and Joy Hickman (JH2)). Since the data were not presented in a form that was amenable to meta-analysis, the results of the review are presented in narrative form only. Three trials satisfied the inclusion criteria. A chemical cured composite was compared with a light cure composite (one trial), a conventional glass ionomer cement (one trial) and a polyacid-modified resin composite (compomer) (one trial). The quality of the trial reports was generally poor. It is difficult to draw any conclusions from this review, however, suggestions are made for methods of improving future research involving

  5. Culinary Medicine-Jalebi Adhesions.

    Science.gov (United States)

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.'

  6. Modeling of Sylgard Adhesive Strength

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Ralph Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-03

    Sylgard is the name of a silicone elastomeric potting material manufactured by Dow Corning Corporation.1 Although the manufacturer cites its low adhesive strength as a feature of this product, thin layers of Sylgard do in fact have a non-negligible strength, which has been measured in recent tensile and shear debonding tests. The adhesive strength of thin layers of Sylgard potting material can be important in applications in which components having signi cantly di erent thermal expansion properties are potted together, and the potted assembly is subjected to temperature changes. The tensile and shear tractions developed on the potted surfaces of the components can cause signi cant internal stresses, particularly for components made of low-strength materials with a high area-to-volume ratio. This report is organized as follows: recent Sylgard debonding tests are rst brie y summarized, with particular attention to the adhesion between Sylgard and PBX 9501, and also between Sylgard and aluminum. Next, the type of numerical model that will be used to simulate the debonding behavior exhibited in these tests is described. Then the calibration of the debonding model will be illustrated. Finally, the method by which the model parameters are adjusted (scaled) to be applicable to other, non- tested bond thicknesses is summarized, and all parameters of the model (scaled and unscaled) are presented so that other investigators can reproduce all of the simulations described in this report as well as simulations of the application of interest.

  7. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  8. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears.

    Science.gov (United States)

    Bochyńska, A I; Van Tienen, T G; Hannink, G; Buma, P; Grijpma, D W

    2016-03-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study, a series of amphiphilic copolymers based on polyethylene glycol, trimethylene carbonate and citric acid were synthesized and subsequently end-functionalized with hexamethylene diisocyanate to form reactive adhesive materials. The shear adhesive strength of the networks to bovine meniscus tissue measured in a lap-shear adhesion test ranged between 20 and 80 kPa, which was better than for fibrin glue (10 kPa). The elastic modulus of the networks depended on composition and was in the same range as that of human meniscus. Cell compatibility was assessed using Alamar Blue staining after incubation of the bovine meniscus cells with different concentrations of the glues for 7 days. Cell viability was not affected after adding up to 3mg of the adhesive/mL of medium. The proposed materials are suitable candidates to be used as resorbable tissue adhesives for meniscus repair. They have excellent mechanical and adhesive properties that can be adjusted by varying the composition of the copolymers. Meniscal tears often occur and current treatment strategies do not bring fully satisfactory results. Use of biodegradable tissue adhesives would be an interesting option, but currently available adhesives are not suited due to toxicity or poor mechanical properties. Here, we describe the development of novel biodegradable, hyper-branched, adhesive copolymers. These adhesives cure upon contact with water forming flexible networks. Their adhesion to bovine meniscus tissue was significantly better than that of clinically used fibrin glue. The tensile properties of the cured networks were in the same range of values of the human meniscus. When physiologically relevant amounts were added to

  9. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    International Nuclear Information System (INIS)

    Díaz Téllez, J P; Harirchian-Saei, S; Li, Y; Menon, C

    2013-01-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet–visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved. (paper)

  10. Hearing loss in workers exposed to epoxy adhesives and noise: a cross-sectional study.

    Science.gov (United States)

    Yang, Hsiao-Yu; Shie, Ruei-Hao; Chen, Pau-Chung

    2016-02-18

    Epoxy adhesives contain organic solvents and are widely used in industry. The hazardous effects of epoxy adhesives remain unclear. The objective of this study was to investigate the risk of hearing loss among workers exposed to epoxy adhesives and noise. Cross-sectional study. For this cross-sectional study, we recruited 182 stone workers who were exposed to both epoxy adhesives and noise, 89 stone workers who were exposed to noise only, and 43 workers from the administrative staff who had not been exposed to adhesives or noise. We obtained demographic data, occupational history and medical history through face-to-face interviews and arranged physical examinations and pure-tone audiometric tests. We also conducted walk-through surveys in the stone industry. A total of 40 representative noise assessments were conducted in 15 workplaces. Air sampling was conducted at 40 workplaces, and volatile organic compounds were analysed using the Environmental Protection Agency (EPA) TO-15 method. The mean sound pressure level was 87.7 dBA (SD 9.9). The prevalence of noise-induced hearing loss was considerably increased in the stone workers exposed to epoxy adhesives (42%) compared with the stone workers who were not exposed to epoxy adhesives (21%) and the administrative staff group (9.3%). A multivariate logistic regression analysis revealed that exposure to epoxy adhesives significantly increased the risk of hearing loss between 2 and 6 kHz after adjusting for age. Significant interactions between epoxy adhesives and noise and hearing impairment were observed at 3, 4 and 6 kHz. Epoxy adhesives exacerbate hearing impairment in noisy environments, with the main impacts occurring in the middle and high frequencies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    Directory of Open Access Journals (Sweden)

    Arnauld eSergé

    2016-05-01

    Full Text Available The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation and metastasis.

  12. Bond strength of adhesive resin cement with different adhesive systems

    OpenAIRE

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; S?, Marcus-Vinicius-Reis; Pereira, Jefferson-Ricardo

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder? Scotchbond? Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-s...

  13. Adhesion of Two Lactobacillus gasseri Probiotic Strains on Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Mojca Narat

    2003-01-01

    certain point when the saturation of potential binding sites on Caco-2 cells probably occurs. As the adhesion to Caco-2 cell cultures alone does not guarantee the adhesion of examined strains in vivo, additional studies on experimental animals are in progress and human clinical studies are planned as well.

  14. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    International Nuclear Information System (INIS)

    Meli, E.; Ridolfi, A.

    2015-01-01

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  15. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Meli, E., E-mail: enrico.meli@unifi.it; Ridolfi, A., E-mail: a.ridolfi@unifi.it [University of Florence, Department of Industrial Engineering (Italy)

    2015-03-15

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  16. Ultralarge von Willebrand Factor Fibers Mediate Luminal Staphylococcus aureus Adhesion to an Intact Endothelial Cell Layer Under Shear Stress

    NARCIS (Netherlands)

    Pappelbaum, Karin I.; Gorzelanny, Christian; Graessle, Sandra; Suckau, Jan; Laschke, Matthias W.; Bischoff, Markus; Bauer, Corinne; Schorpp-Kistner, Marina; Weidenmaier, Christopher; Schneppenheim, Reinhard; Obser, Tobias; Sinha, Bhanu; Schneider, Stefan W.

    2013-01-01

    Background During pathogenesis of infective endocarditis, Staphylococcus aureus adherence often occurs without identifiable preexisting heart disease. However, molecular mechanisms mediating initial bacterial adhesion to morphologically intact endocardium are largely unknown. Methods and Results

  17. Human climbing with efficiently scaled gecko-inspired dry adhesives

    OpenAIRE

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for syn...

  18. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  19. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    Directory of Open Access Journals (Sweden)

    Nicolas Lebesgue

    2016-06-01

    Full Text Available Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc versus the non-adhesive part (the stem, and also to profile the proteome of the secreted adhesive (glue. This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016 [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold, likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  20. Measuring Rock-Fluid Adhesion Directly

    Science.gov (United States)

    Tadmor, R.

    2017-12-01

    We show how to measure directly solid-liquid adhesion. We consider the normal adhesion, the work adhesion, and the lateral adhesion. The technique at the center of the method is Centrifugal Adhesion Balance (CAB) which allows coordinated manipulation of normal and lateral forces. For example: 1. It allows to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. 2. It allows to increase the lateral force at zero normal force, mimicking zero gravity. From this one can obtain additional solid-liquid interaction parameters. When performing work of adhesion measurements, the values obtained are independent of drop size and are in agreement with theoretical predictions.

  1. Functionally Graded Adhesives for Composite Joints

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  2. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    to be determined in several different ways. The accuracy of different ways of measuring residual stresses in the adhesive was tested by applying five different methods on a single sandwich test specimen (laminate/adhesive/laminate) that was instrumented with strain gauges and fiber Bragg gratings. Quasi...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  3. Lignin-Furfural Based Adhesives

    OpenAIRE

    Dongre, Prajakta; Driscoll, Mark; Amidon, Thomas; Bujanovic, Biljana

    2015-01-01

    Lignin recovered from the hot-water extract of sugar maple ( Acer saccharum ) is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF) resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR) analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC). The effect of pH (0.3, 0.65 and 1), ex situ furfural, and curing conditions on the tensile properties of...

  4. Adhesives for fixed orthodontic brackets.

    Science.gov (United States)

    Mandall, Nicky A; Hickman, Joy; Macfarlane, Tatiana V; Mattick, Rye Cr; Millett, Declan T; Worthington, Helen V

    2018-04-09

    Bonding of orthodontic brackets to teeth is important to enable effective and efficient treatment with fixed appliances. The problem is bracket failure during treatment which increases operator chairside time and lengthens treatment time. A prolonged treatment is likely to increase the oral health risks of orthodontic treatment with fixed appliances one of which is irreversible enamel decalcification. This is an update of the Cochrane Review first published in 2003. A new full search was conducted on 26 September 2017 but no new studies were identified. We have only updated the search methods section in this new version. The conclusions of this Cochrane Review remain the same. To evaluate the effects of different orthodontic adhesives for bonding. Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 26 September 2017), the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 8) in the Cochrane Library (searched 26 September 2017), MEDLINE Ovid (1946 to 26 September 2017), and Embase Ovid (1980 to 26 September 2017). The US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Trials were selected if they met the following criteria: randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing two different adhesive groups. Participants were patients with fixed orthodontic appliances. The interventions were adhesives that bonded stainless steel brackets to all teeth except the molars. The primary outcome was debond or bracket failure. Data were recorded on decalcification as a secondary outcome, if present. Information regarding methods, participants, interventions, outcome measures and results were extracted in

  5. Factors influencing bacterial adhesion to contact lenses

    OpenAIRE

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The ...

  6. Syndecan-4 and focal adhesion function

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    2001-01-01

    Two groups have now reported the viability of mice that lack syndecan-4. These mice have wound healing/angiogenesis problems, and fibroblasts from these animals differ in adhesion and migration from normal. This is consistent with recent in vitro data indicating a need for signaling via syndecan-4...... for focal adhesion formation, and reports that overexpression of proteins that bind syndecan-4 can modify cell adhesion and migration....

  7. Adhesion of epoxy primer to hydrotalcite conversion coated AA2024

    Science.gov (United States)

    Leggat, Robert Benton, III

    Hydrotalcite-based (HT) conversion coatings are being developed as an environmentally benign alternative to chromate conversion coatings (CCC). Accelerated exposure tests were conducted on epoxy primed, HT-modified AA2024 to gauge service performance. HT-based conversion coatings did not perform as well as the CCC when used with an epoxy primer. The current HT chemistries are optimized for stand-alone corrosion protection, however additional research into the primer/HT interactions is necessary before they can be implemented within a coating scheme. The relative contribution of mechanical and physico-chemical interactions in controlling adhesion has been investigated in this study. Practical adhesion tests were used to assess the dry and wet bond strength of epoxy primer on HT coatings using the pull-off tensile strength (POTS) as the figure of merit. The practical adhesion of HT coated samples generally fell between that observed for the CCC and bare AA2024. Laboratory testing was done to assess the physical and chemical properties of HT coatings. Contact angle measurements were performed using powders representative of different HT chemistries to evaluate the dispersive and acid-base character of the surface. The wet POTS correlated with the electrodynamic (dipole + dispersive) parameter of the surface tension. The HT surfaces were found to be predominantly basic. Given the basicity of epoxy, these results indicate that increasing the acidic character of HT coatings may increase the adhesion performance. This was supported by electrokinetic measurements in which the dry POTS was found to increase with decreasing conversion coating iso-electric point. The correlations with the dry and wet state adhesion are interpreted as indicating that dry state adhesion is optimized by minimizing unfavorable polar interactions between the basic epoxy and HT interfaces. Wet state adhesion, where polar interactions are disrupted, is dictated by non-polar bonding. FTIR

  8. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun [Andong National Univ., Andong (Korea, Republic of)

    2016-07-15

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively.

  9. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    International Nuclear Information System (INIS)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun

    2016-01-01

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively

  10. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    Science.gov (United States)

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  11. Influence of Pre-etching Times on Fatigue Strength of Self-etch Adhesives to Enamel.

    Science.gov (United States)

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Endo, Hajime; Tsuchiya, Kenji; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    To use shear bond strength (SBS) and shear fatigue strength (SFS) testing to determine the influence of phosphoric acid pre-etching times prior to application of self-etch adhesives on enamel bonding. Two single-step self-etch universal adhesives (Prime&Bond Elect and Scotchbond Universal), a conventional single-step self-etch adhesive (G-ӕnial Bond), and a conventional two-step self-etch adhesive (OptiBond XTR) were used. The SBS and SFS were obtained with phosphoric acid pre-etching for 3, 10, or 15 s prior to application of the adhesives, and without pre-etching (0 s) as a control. A staircase method was used to determine the SFS with 10 Hz frequency for 50,000 cycles or until failure occurred. The mean demineralization depth for each treated enamel surface was also measured using a profilometer. For all the adhesives, the groups with pre-etching showed significantly higher SBS and SFS than groups without pre-etching. However, there was no significant difference in SBS and SFS among groups with > 3 s of preetching. In addition, although the groups with pre-etching showed significantly deeper demineralization depths than groups without pre-etching, there was no significant difference in depth among groups with > 3 s of pre-etching. Three seconds of phosphoric acid pre-etching prior to application of self-etch adhesive can enhance enamel bonding effectiveness.

  12. Therapeutically Targeting the Inflammasome Product in a Chimeric Model of Endometriosis-Related Surgical Adhesions.

    Science.gov (United States)

    Stocks, Meredith M; Crispens, Marta A; Ding, Tianbing; Mokshagundam, Shilpa; Bruner-Tran, Kaylon L; Osteen, Kevin G

    2017-08-01

    Development of adhesions commonly occurs in association with surgery for endometriosis. Even in the absence of surgery, women with endometriosis appear to be at an enhanced risk of developing adhesions. In the current study, we utilized a chimeric mouse model of experimental endometriosis in order to examine the role of inflammasome activation in the development of postsurgical adhesions. Mice were randomized to receive peritoneal injections of human endometrial tissue fragments or endometrial tissue conditioned media (CM) from women with or without endometriosis 16 hours after ovariectomy and placement of an estradiol-releasing silastic capsule. A subset of mice receiving CM was also treated with interleukin (IL) 1 receptor antagonist (IL-1ra). Our studies demonstrate that peritoneal injection of endometrial tissue fragments near the time of surgery resulted in extensive adhesive disease regardless of tissue origin. However, adhesion scores were significantly higher in mice receiving CM from tissues acquired from patients with endometriosis compared to control tissue CM ( P = .0001). Cytokine bead array analysis of endometrial CM revealed enhanced expression of IL-1β from patients with endometriosis compared to controls ( P endometriosis as a potential causal factor in their increased susceptibility of developing postsurgical adhesions. Thus, targeting inflammasome activation may be an effective strategy for the prevention of surgical adhesions in patients with endometriosis.

  13. Adhesion of rhodium films on metallic substrates

    International Nuclear Information System (INIS)

    Marot, L.; Covarel, G.; Tuilier, M.-H.; Steiner, R.; Oelhafen, P.

    2008-01-01

    Rhodium coated metallic films were prepared by magnetron sputtering on metallic substrates. All films were elaborated in same conditions on copper, molybdenum and stainless steel. Adhesion strength tests were carried out by scratch test. The results reveal that the adhesion strength between the film and the substrate is influenced by the hardness of the substrate. Increase of deposition temperature improves the adhesion of the coating. In addition, pre-treatment of substrates by a filtered cathodic vacuum arc and the layer thickness have has some effects on the final adhesion strength

  14. Adhesion of rhodium films on metallic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Marot, L. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)], E-mail: laurent.marot@unibas.ch; Covarel, G.; Tuilier, M.-H. [Laboratoire Mecanique, Materiaux et Procedes de Fabrication, Pole STIC-SPI-Math 61 rue Albert Camus, Universite de Haute-Alsace, F-68093 - Mulhouse Cedex (France); Steiner, R.; Oelhafen, P. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2008-09-01

    Rhodium coated metallic films were prepared by magnetron sputtering on metallic substrates. All films were elaborated in same conditions on copper, molybdenum and stainless steel. Adhesion strength tests were carried out by scratch test. The results reveal that the adhesion strength between the film and the substrate is influenced by the hardness of the substrate. Increase of deposition temperature improves the adhesion of the coating. In addition, pre-treatment of substrates by a filtered cathodic vacuum arc and the layer thickness have has some effects on the final adhesion strength.

  15. Structural adhesives for missile external protection material

    Science.gov (United States)

    Banta, F. L.; Garzolini, J. A.

    1981-07-01

    Two basic rubber materials are examined as possible external substrate protection materials (EPM) for missiles. The analysis provided a data base for selection of the optimum adhesives which are compatible with the substrate, loads applied and predicted bondline temperatures. Under the test conditions, EA934/NA was found to be the optimum adhesive to bond VAMAC 2273 and/or NBR/EPDM 9969A to aluminum substrate. The optimum adhesive for composite structures was EA956. Both of these adhesives are two-part epoxy systems with a pot life of approximately two hours. Further research is suggested on field repair criteria, nuclear hardness and survivability effects on bondline, and ageing effects.

  16. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-01-01

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  17. Denture Adhesives in Prosthodontics: An Overview.

    Science.gov (United States)

    Kumar, P Ranjith; Shajahan, P A; Mathew, Jyothis; Koruthu, Anil; Aravind, Prasad; Ahammed, M Fazeel

    2015-01-01

    The use of denture adhesives is common among denture wearers, and it is also prescribed by many dentists. Prescribing denture adhesives has been viewed by many prosthodontists as a means of compensating for any defects in the fabrication procedures. Denture adhesives add to the retention and thereby improve chewing ability, reduce any instability, provide comfort and eliminate the accumulation of food debris beneath the dentures. Consequently, they increase the patient's sense of security and satisfaction. However, obtaining the advice of the dental practitioner prior to the use of adhesives is a must.

  18. An exploration of polymer adhesion on 3D printer bed

    Science.gov (United States)

    Nazan, M. A.; Ramli, F. R.; Alkahari, M. R.; Abdullah, M. A.; Sudin, M. N.

    2017-06-01

    One of the problems in Fused Deposition Modelling (FDM) 3D Printing process is that the extruded plastic filament tends to shrink and warp from the printing platform. The purpose of this research is to explore the warping deformation problem in four aspects i.e. curling, pincushion effect, trapezoid deformation and blocked shrinkage that usually occur in the process. Epoxy resin based adhesive was applied onto the printing platform to reduce and eliminate the warping deformation. Afterwards, by applying the adhesive, the 3D printed models were measured their curling, pincushion, trapezoid and blocked shrinkage using laser scanner and metrology software. The result shows that the pincushion and trapezoid has low deformation compared to curling and blocked shrinkage. Blocked shrinkage effect shows the highest warping deformation value. In comparison of materials, PLA shows the best geometry result with low warping deformation value and the best surface finish.

  19. Detachment dynamics of colloidal spheres with adhesive interactions

    Science.gov (United States)

    Bergenholtz, J.

    2018-04-01

    Escape of colloidal-size particles from various kinds of solids, such as aggregates and surfaces, occurs in a wide variety of settings of both fundamental and applied scientific interest. In this paper an exact solution for the detachment of adhesive spheres from each other by means of diffusion is presented. The solution takes into account repeated detachment and reattachment events in the course of time on the way toward the permanently separated state. For strongly adhesive spheres this state is approached in an exponential manner essentially regardless of how the bound state is specified. The analytical solution is shown to capture semiquantitatively the escape from more realistic potential wells using a mapping procedure whereby equality of second virial coefficients is imposed.

  20. Effect of capillary condensation on friction force and adhesion.

    Science.gov (United States)

    Feiler, Adam A; Stiernstedt, Johanna; Theander, Katarina; Jenkins, Paul; Rutland, Mark W

    2007-01-16

    Friction force measurements have been conducted with a colloid probe on mica and silica (both hydrophilic and hydrophobized) after long (24 h) exposure to high-humidity air. Adhesion and friction measurements have also been performed on cellulose substrates. The long exposure to high humidity led to a large hysteresis between loading and unloading in the friction measurements with separation occurring at large negative applied loads. The large hysteresis in the friction-load relationship is attributed to a contact area hysteresis of the capillary condensate which built up during loading and did not evaporate during the unloading regime. The magnitude of the friction force varied dramatically between substrates and was lowest on the mica substrate and highest on the hydrophilic silica substrate, with the hydrophobized silica and cellulose being intermediate. The adhesion due to capillary forces on cellulose was small compared to that on the other substrates, due to the greater roughness of these surfaces.

  1. A new angle on clinging in geckos: incline, not substrate, triggers the deployment of the adhesive system

    Science.gov (United States)

    Russell, Anthony P.; Higham, Timothy E.

    2009-01-01

    Lizards commonly climb in complex three-dimensional habitats, and gekkotans are particularly adept at doing this by using an intricate adhesive system involving setae on the ventral surface of their digits. However, it is not clear whether geckos always deploy their adhesive system, given that doing so may result in decreased (i.e. reduction in speed) locomotor performance. Here, we investigate circumstances under which the adhesive apparatus of clinging geckos becomes operative, and examine the potential trade-offs between speed and clinging. We quantify locomotor kinematics of a gecko with adhesive capabilities (Tarentola mauritanica) and one without (Eublepharis macularius). Whereas, somewhat unusually, E. macularius did not suffer a decrease in locomotor performance with an increase in incline, T. mauritanica exhibited a significant decrease in speed between the level and a 10° incline. We demonstrate that this results from the combined influence of slope and the deployment of the adhesive system. All individuals kept their digits hyperextended on the level, but three of the six individuals deployed their adhesive system on the 10° incline, and they exhibited the greatest decrease in velocity. The deployment of the adhesive system was dependent on incline, not surface texture (600 grit sandpaper and Plexiglas), despite slippage occurring on the level Plexiglas substrate. Our results highlight the type of sensory feedback (gravity) necessary for deployment of the adhesive system, and the trade-offs associated with adhesion. PMID:19656797

  2. Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives

    Science.gov (United States)

    Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner

    2011-01-01

    Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...

  3. Adhesive Bonding and Corrosion Performance Investigated as a Function of Aluminum Oxide Chemistry and Adhesives

    NARCIS (Netherlands)

    Abrahami, S.T.; Hauffman, T.; de Kok, John M.M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    The long-term strength and durability of an adhesive bond is dependent on the stability of the oxide-adhesive interface. As such, changes in the chemistry of the oxide and/or the adhesive are expected to modify the interfacial properties and affect the joint performance in practice. The upcoming

  4. Influence of Etching Mode on Enamel Bond Durability of Universal Adhesive Systems.

    Science.gov (United States)

    Suzuki, T; Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Endo, H; Erickson, R L; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to determine the enamel bond durability of three universal adhesives in different etching modes through fatigue testing. The three universal adhesives used were Scotchbond Universal, Prime&Bond Elect universal dental adhesive, and All-Bond Universal light-cured dental adhesive. A single-step self-etch adhesive, Clearfil S 3 Bond Plus was used as a control. The shear bond strength (SBS) and shear fatigue strength (SFS) to human enamel were evaluated in total-etch mode and self-etch mode. A stainless steel metal ring with an internal diameter of 2.4 mm was used to bond the resin composite to the flat-ground (4000-grit) tooth surfaces for determination of both SBS and SFS. For each enamel surface treatment, 15 specimens were prepared for SBS and 30 specimens for SFS. The staircase method for fatigue testing was then used to determine the SFS of the resin composite bonded to the enamel using 10-Hz frequencies for 50,000 cycles or until failure occurred. Scanning electron microscopy was used to observe representative debonded specimen surfaces and the resin-enamel interfaces. A two-way analysis of variance and the Tukey post hoc test were used for analysis of the SBS data, whereas a modified t-test with Bonferroni correction was used for the SFS data. All adhesives in total-etch mode showed significantly higher SBS and SFS values than those in self-etch mode. Although All-Bond Universal in self-etch mode showed a significantly lower SBS value than the other adhesives, there was no significant difference in SFS values among the adhesives in this mode. All adhesives showed higher SFS:SBS ratios in total-etch mode than in self-etch mode. With regard to the adhesive systems used in this study, universal adhesives showed higher enamel bond strengths in total-etch mode. Although the influence of different etching modes on the enamel-bonding performance of universal adhesives was found to be dependent on the adhesive material, total-etch mode

  5. Development and characterization of amorphous acrylate networks for use as switchable adhesives inspired from shapememory behavior

    Science.gov (United States)

    Lakhera, Nishant

    induced switchable adhesion and water induced switchable adhesion of patterned acrylate surfaces was investigated. The viscoelastic energy dissipation occurring during the detachment phase was shown to dramatically increase adhesion under both thermally induced and water induced conditions. This effect was most pre-dominant at the glass transition temperature of the material. Increase in pre-load force and unloading velocity were also shown to increase the adhesive capability of the patterned acrylate SMPs.

  6. A novel injectable tissue adhesive based on oxidized dextran and chitosan.

    Science.gov (United States)

    Balakrishnan, Biji; Soman, Dawlee; Payanam, Umashanker; Laurent, Alexandre; Labarre, Denis; Jayakrishnan, Athipettah

    2017-04-15

    A surgical adhesive that can be used in different surgical situations with or without sutures is a surgeons' dream and yet none has been able to fulfill many such demanding requirements. It was therefore a major challenge to develop an adhesive biomaterial that stops bleeding and bond tissues well, which at the same time is non-toxic, biocompatible and yet biodegradable, economically viable and appealing to the surgeon in terms of the simplicity of application in complex surgical situations. With this aim, we developed an in situ setting adhesive based on biopolymers such as chitosan and dextran. Dextran was oxidized using periodate to generate aldehyde functions on the biopolymer and then reacted with chitosan hydrochloride. Gelation occurred instantaneously upon mixing these components and the resulting gel showed good tissue adhesive properties with negligible cytotoxicity and minimal swelling in phosphate buffered saline (PBS). Rheology analysis confirmed the gelation process by demonstrating storage modulus having value higher than loss modulus. Adhesive strength was in the range 200-400gf/cm 2 which is about 4-5 times more than that of fibrin glue at comparable setting times. The adhesive showed burst strength in the range of 400-410mm of Hg which should make the same suitable as a sealant for controlling bleeding in many surgical situations even at high blood pressure. Efficacy of the adhesive as a hemostat was demonstrated in a rabbit liver injury model. Histological features after two weeks were comparable to that of commercially available BioGlue®. The adhesive also demonstrated its efficacy as a drug delivery vehicle. The present adhesive could function without the many toxicity and biocompatibility issues associated with such products. Though there are many tissue adhesives available in market, none are free of shortcomings. The newly developed surgical adhesive is a 2-component adhesive system based on time-tested, naturally occurring polysaccharides

  7. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  8. Development of a test procedure for cryogenic adhesive tapes; Entwicklung einer Testprozedur fuer kryogene Klebebaender

    Energy Technology Data Exchange (ETDEWEB)

    Funke, Thomas; Haberstroh, Christoph [TU Dresden (Germany). Bitzer-Professur fuer Kaelte-, Kryo- und Kompressorentechnik; Mayrhofer, Robert; Stipsitz, Johannes [RUAG Space GmbH, Wien (Austria)

    2016-07-01

    At cryostats and dewars for lowest temperatures - especially in connection with liquid-helium cooling at around 4 K, as well at the most applications of the superconductivity - often joints and shutters on the base of low-temperature suited adhesive tapes are required. A current method for the thermal isolation of cold surfaces is their covering with highly reflecting aluminium foils, which are fastened by adhesive aluminium tapes. Selection, usage, and reliability estimation of presumably suited adhesive tapes respectively aluminium tapes occurs presently rather heuristically. A corresponding testing apparature for the measurement of the maximal pulling force was developed and tested by means of a series of test measurements. The testing set-up and measurement results for the validation of the measurement concept with adhesive aluminium tapes are presented in this contribution.

  9. Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2017-01-01

    Ash deposition on boiler surfaces is a major problem encountered in biomass combustion. Timely removal of ash deposits is essentialfor optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the adhesion strength of biomass ash from...... off by an electrically controlled arm, and the corresponding adhesion strength was measured. The effect of sintering temperature, sintering time, deposit composition, thermal shocks on the deposit, and steel type was investigated. The results reveal that the adhesion strength of ash deposits...... is dependent on two factors: ash melt fraction, and corrosion occurring at the deposit–tube interface. Adhesion strength increases with increasing sintering temperature, sharply increasing at the ash deformation temperature. However, sintering time, as well as the type of steel used, does not have...

  10. AN ANALYTICAL STUDY IN ADHESIVE BOWEL OBSTRUCTION

    Directory of Open Access Journals (Sweden)

    Gerald Anand Raja

    2017-04-01

    Full Text Available BACKGROUND Peritoneal adhesions can be defined as abnormal fibrous bands between organs or tissues or both in the abdominal cavity that are normally separated. Adhesions may be acquired or congenital; however, most are acquired as a result of peritoneal injury, the most common cause of which is abdominopelvic surgery. Less commonly, adhesions may form as the result of inflammatory conditions, intraperitoneal infection or abdominal trauma. The extent of adhesion formation varies from one patient to another and is most dependent on the type and magnitude of surgery performed as well as whether any postoperative complications develop. Fortunately, most patients with adhesions do not experience any overt clinical symptoms. For others, adhesions may lead to any one of a host of problems and can be the cause of significant morbidity and mortality. MATERIALS AND METHODS This is a retrospective study of 50 patients admitted in Government Royapettah Hospital with adhesive bowel obstruction between September 2008 to September 2010. All patients were admitted and managed either conservatively or surgically. RESULTS 1. Adhesive bowel disease is the most common cause for bowel obstruction followed by hernias. 2. Increased incidence is noted in females. 3. Increased incidence of adhesions was documented in gynaecological and colorectal surgeries. 4. Below umbilical incisions have higher propensity for adhesion formation. 5. Laparotomies done for infective aetiology have higher adhesion risks. 6. Most of adhesive obstructions can be managed conservatively. 7. Adhesiolysis preferably laparoscopic can be done. For gangrenous bowel resection and anastomosis or ostomy done. 8. Given the above risk factors, adhesive bowel disease can be prevented to a certain extent. CONCLUSION The formation of peritoneal adhesions continues to plague patients, surgeons and society. Although, research in this area is ongoing, there is currently no method that is 100% effective in

  11. Adverse effects of salivary contamination for adhesives in restorative dentistry. A literature review.

    Science.gov (United States)

    Nair, Pooja; Hickel, Reinhard; Ilie, Nicoleta

    2017-06-01

    To review and critically analyze the literature concerning the influence of salivary contamination on the bond quality of adhesives used in restorative materials by comparing and contrasting the different adhesive materials. A detailed search on PUBMED, Cochrane Library, Google Scholar and Web of Science was carried out to identify publications on salivary contamination and dental adhesive materials, from 1990-2017 (March) which resulted in a total of 6,202 web-identified publications. After screening titles/abstracts and de-duplicating, 54 publications were selected that matched the requirements for this review. The condition for selection was English literature concerning the effect of salivary contamination on the adhesives used in restorative dentistry. The obtained articles were systematically evaluated. Salivary contamination of adhesives during restorative procedures statistically (64.6%) showed an adverse effect on adhesives, occurring either at one or many stages of restoration. Methodological dissimilarities impeded the direct comparison of the selected studies. Nevertheless, the 2-step etch and rinse adhesives were relatively less vulnerable to salivary contamination than the others. 65% of the evaluated studies for decontamination achieved improved bonding when the contaminated surface was subjected to some kind of decontamination procedure. However, the duration and other specificities were not standard in all the evaluations and need further research to assess the course of action. It is necessary to do long term studies to evaluate the effectiveness of contaminated adhesive over time. Salivary contamination is a potential cause for poor bond quality of adhesive systems during restorative procedures and to provide a successful treatment, proper care must be taken to ensure the operating area is free from contamination. Understanding the properties of the materials and its constituents as well as considering measures to manage the potential

  12. Identifying the rules of engagement enabling leukocyte rolling, activation, and adhesion.

    Directory of Open Access Journals (Sweden)

    Jonathan Tang

    2010-02-01

    Full Text Available The LFA-1 integrin plays a pivotal role in sustained leukocyte adhesion to the endothelial surface, which is a precondition for leukocyte recruitment into inflammation sites. Strong correlative evidence implicates LFA-1 clustering as being essential for sustained adhesion, and it may also facilitate rebinding events with its ligand ICAM-1. We cannot challenge those hypotheses directly because it is infeasible to measure either process during leukocyte adhesion following rolling. The alternative approach undertaken was to challenge the hypothesized mechanisms by experimenting on validated, working counterparts: simulations in which diffusible, LFA1 objects on the surfaces of quasi-autonomous leukocytes interact with simulated, diffusible, ICAM1 objects on endothelial surfaces during simulated adhesion following rolling. We used object-oriented, agent-based methods to build and execute multi-level, multi-attribute analogues of leukocytes and endothelial surfaces. Validation was achieved across different experimental conditions, in vitro, ex vivo, and in vivo, at both the individual cell and population levels. Because those mechanisms exhibit all of the characteristics of biological mechanisms, they can stand as a concrete, working theory about detailed events occurring at the leukocyte-surface interface during leukocyte rolling and adhesion experiments. We challenged mechanistic hypotheses by conducting experiments in which the consequences of multiple mechanistic events were tracked. We quantified rebinding events between individual components under different conditions, and the role of LFA1 clustering in sustaining leukocyte-surface adhesion and in improving adhesion efficiency. Early during simulations ICAM1 rebinding (to LFA1 but not LFA1 rebinding (to ICAM1 was enhanced by clustering. Later, clustering caused both types of rebinding events to increase. We discovered that clustering was not necessary to achieve adhesion as long as LFA1 and

  13. Influence of Blood Contamination During Multimode Adhesive ...

    African Journals Online (AJOL)

    Objectives: The present study evaluated the effects of blood contamination performed at different steps of bonding on the microtensile bond strength (μTBS) of multimode adhesives to dentin when using the self-etch approach. Materials and Methods: Seventy-five molars were randomly assigned to three adhesive groups ...

  14. Is nonoperative management of adhesive intestinal obstruction ...

    African Journals Online (AJOL)

    Background: Nonoperative management of adhesive intestinal obstruction gives good results in adults but there are scant studies on its outcome in children. This study reports outcomes and experiences with nonoperative and operative management of adhesive intestinal obstruction in children in a resource-poor country.

  15. Tuneable adhesion through novel binder technologies

    NARCIS (Netherlands)

    Wouters, M.E.L.; Burghoorn, M.M.A.; Ingenhut, B.; Timmer, K.; Rentrop, C.H.A.; Bots, T.L.; Oosterhuis, G.; Fischer, H.R.

    2011-01-01

    A reversible crosslinking mechanism enabling bonding and debonding of adhesives and coatings based on Diels-Alder chemistry is described. The Diels-Alder compounds form a covalently crosslinked network at low temperatures that break at elevated temperatures. As a result, the adhesive exhibits good

  16. Tensile and shear strength of adhesives

    Science.gov (United States)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  17. A CLINICAL STUDY OF ADHESIVE INTESTINAL OBSTRUCTION

    OpenAIRE

    Haricharan; Murali Krishna; Koti Reddy; Nara Hari

    2015-01-01

    INTRODUCTION: Adhesive intestinal obstruction is an inevitable complication of abdominal surgeries. It has high morbidity with associated poor quality of life and predisposition to repeated hospitalization. Commonest cause of bowel obstruction in developed countries is postoperative adhesions with extrinsic compression of the intestine. Most of them can be managed conservatively. METHODS: A retrospective study of 30 patients admit...

  18. Predicting Failure Initiation in Structural Adhesive Joints

    Science.gov (United States)

    2012-08-15

    Elastoplástico de Adhesivos – Modeling, characterization and simulation of the elastoplastic behavior of adhesives. Maestría en Ciencia de Materiales...adhesive and a 1018 steel”. Maestría en Ciencia de Materiales. Centro de Investigación en Materiales Avanzados S.C. May 2012.  Abstract: In the

  19. Chapter 16: Soy Proteins as Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart; Christopher G. Hunt; Michael J. Birkeland

    2014-01-01

    Protein adhesives allowed the development of bonded wood products such as plywood and glulam in the early 20th century. Petrochemical-based adhesives replaced proteins in most wood bonding applications because of lower cost, improved production efficiencies, and enhanced durability. However, several technological and environmental factors have led to a resurgence of...

  20. Degradable Adhesives for Surgery and Tissue Engineering.

    Science.gov (United States)

    Bhagat, Vrushali; Becker, Matthew L

    2017-10-09

    This review highlights the research on degradable polymeric tissue adhesives for surgery and tissue engineering. Included are a comprehensive listing of specific uses, advantages, and disadvantages of different adhesive groups. A critical evaluation of challenges affecting the development of next generation materials is also discussed, and insights into the outlook of the field are explored.

  1. Functional Group Imaging by Adhesion AFM

    NARCIS (Netherlands)

    Berger, C.E.H.; Berger, C.E.H.; van der Werf, Kees; Kooyman, R.P.H.; de Grooth, B.G.; Greve, Jan

    1995-01-01

    Recently developed adhesion atomic force microscopy was used as a technique to map the spatial arrangement of chemical functional groups at a surface with a lateral resolution of 20 nm. The ratio of the adhesion forces for different functional groups can be compared with values determined from the

  2. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  3. Adhesion of Zinc Hot-dip Coatings

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2014-01-01

    Full Text Available The work is focused on verification of quality adhesion of zinc coating. It describes elements which affect quality and adhesive solidity within the coating. For assessment itself it will be neccessary to get know the basic elements which can affect adhesion of hot-dip coating which will be essential for choosing suitable samples for verification itself. These elements characterise acoustic responses during delamination coating. They affect elements influencing progress of signal. In research there is also a summary of existing methods for testing adhesion of coatings. As a result a new proposal of a new method comes out for purpose of quality testing of adhesion zinc hot-dip coating. The results of verification of this method are put to scientific analysis and findings lead to assessment of proposed method and its application in technical practise.The goal of this contribution is also include to proposed methodology testing adhesion zinc coating by nondestructive diagnostic method of acoustic emission (AE, which would monitor characterise progress of coating delamination of hot-dip zinc from basic material in way to adhesion tests would be practicable in situ. It can be enabled by analysis and assessment of results acquired by method AE and its application within verification of new method of adhesion anti-corrosive zinc coating.

  4. Switchable adhesion by chemical functionality and topography

    NARCIS (Netherlands)

    Kamperman, M.M.G.; Synytska, A.

    2012-01-01

    Progress in adhesion technology over the last few decades has led to widespread replacement of mechanical fasteners with adhesive bonds. Despite the advances, it remains challenging to produce materials that are sticky on demand. In this feature article we highlight recent efforts to develop

  5. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  6. Biobased adhesives and non-conventional bonding

    Science.gov (United States)

    Charles Frihart

    2010-01-01

    Biobased adhesives fall into several major classes based upon their chemical structures. Starches are used in large volume, especially in the paper products industries, but cellulosics generally do not have the strength and water resistance needed for most wood products. Several authors have covered cellulosics adhesives (Baumann and Conner 2002, Pizzi 2006). However...

  7. Adhesion studies by instrumental indentation testing

    NARCIS (Netherlands)

    Hangen, U.D.; Downs, S.; Kranenburg, J.M.; Hoogenboom, R.; Schubert, U.S.

    2006-01-01

    The miniaturization of devices and the advances in nanotechnol.-enabled products has led to the requirement of an increased understanding of the various interactions present in nanoscale contacts - including adhesion and surface tension. It is well known that adhesion plays an important role in the

  8. Microparticle adhesion studies by atomic force microscopy

    NARCIS (Netherlands)

    Segeren, L.H.G.J.; Siebum, B.; Karssenberg, F.G.; Berg, van den J.W.A.; Vancso, G.J.

    2002-01-01

    Atomic force microscopy (AFM) is one of the most flexible and simple techniques for probing surface interactions. This article reviews AFM studies on particle adhesion. Special attention is paid to the characterization of roughness and its effect on adhesion. This is of importance when comparing the

  9. Scaling Principles for Understanding and Exploiting Adhesion

    Science.gov (United States)

    Crosby, Alfred

    A grand challenge in the science of adhesion is the development of a general design paradigm for adhesive materials that can sustain large forces across an interface yet be detached with minimal force upon command. Essential to this challenge is the generality of achieving this performance under a wide set of external conditions and across an extensive range of forces. Nature has provided some guidance through various examples, e.g. geckos, for how to meet this challenge; however, a single solution is not evident upon initial investigation. To help provide insight into nature's ability to scale reversible adhesion and adapt to different external constraints, we have developed a general scaling theory that describes the force capacity of an adhesive interface in the context of biological locomotion. We have demonstrated that this scaling theory can be used to understand the relative performance of a wide range of organisms, including numerous gecko species and insects, as well as an extensive library of synthetic adhesive materials. We will present the development and testing of this scaling theory, and how this understanding has helped guide the development of new composite materials for high capacity adhesives. We will also demonstrate how this scaling theory has led to the development of new strategies for transfer printing and adhesive applications in manufacturing processes. Overall, the developed scaling principles provide a framework for guiding the design of adhesives.

  10. Noninvasive detection and mapping of intraabdominal adhesions

    DEFF Research Database (Denmark)

    Zinther, Nellie Bering; Fedder, Jens; Friis-Andersen, Hans

    2010-01-01

    BACKGROUND: Adhesions are a well-known and very common complication to surgery. Their extent and severity varies according to type and number of surgeries, use of intraabdominal mesh, and presence of peritonitis. Adhesions cause increased morbidity and mortality, with subsequent socioeconomic con...

  11. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    International Nuclear Information System (INIS)

    Sekiguchi, Yu; Sato, Chiaki; Takahashi, Kunio

    2015-01-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified. (paper)

  12. Do uniform tangential interfacial stresses enhance adhesion?

    Science.gov (United States)

    Menga, Nicola; Carbone, Giuseppe; Dini, Daniele

    2018-03-01

    We present theoretical arguments, based on linear elasticity and thermodynamics, to show that interfacial tangential stresses in sliding adhesive soft contacts may lead to a significant increase of the effective energy of adhesion. A sizable expansion of the contact area is predicted in conditions corresponding to such scenario. These results are easily explained and are valid under the assumptions that: (i) sliding at the interface does not lead to any loss of adhesive interaction and (ii) spatial fluctuations of frictional stresses can be considered negligible. Our results are seemingly supported by existing experiments, and show that frictional stresses may lead to an increase of the effective energy of adhesion depending on which conditions are established at the interface of contacting bodies in the presence of adhesive forces.

  13. Designing Hydrogel Adhesives for Corneal Wound Repair

    Science.gov (United States)

    Grinstaff, Mark W.

    2013-01-01

    Today, corneal wounds are repaired using nylon sutures. Yet there are a number of complications associated with suturing the cornea, and thus there is interest in an adhesive to replace or supplement sutures in the repair of corneal wounds. We are designing and evaluating corneal adhesives prepared from dendrimers – single molecular weight, highly branched polymers. We have explored two strategies to form these ocular adhesives. The first involves a photocrosslinking reaction and the second uses a peptide ligation reactions to couple the individual dendrimers together to from the adhesive. These adhesives were successfully used to repair corneal perforations, close the flap produced in a LASIK procedure, and secure a corneal transplant. PMID:17889330

  14. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  15. The coffee diterpene kahweol inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules in human endothelial cells

    International Nuclear Information System (INIS)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang

    2006-01-01

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNFα-induced monocytes to endothelial cells and suppressed the TNFα-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNFα-induced JAK2-PI3K/Akt-NF-κB activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells

  16. Effect of gold nanoparticles on postoperative peritoneal adhesions in rats

    Directory of Open Access Journals (Sweden)

    Amir Hooshang Mohammadpour

    2015-07-01

    Full Text Available Objective(s: Abdominal adhesions are one of the most important problems, occurring after intra-abdominal surgery in more than 90% of cases. This condition is the leading cause of bowel obstruction, infertility, and abdominal/pelvic pain. Gold nanoparticles (GNPs have been shown to be non-toxic and exhibit anti-inflammatory, anti-angiogenic and antioxidant activities. The purpose of this study was to determine the effect of intraperitoneal lavage with GNP solutions on the development of postoperative peritoneal adhesion (PPA. Materials and Methods:In the current experimental study, thirty-five male Wistar rats were randomly assigned to seven groups of five rats. After a standardized peritoneal injury, GNP solutions in different concentrations (1, 2.5, 5, 10, 50 and 100 ng/ml were locally administered through nebulization; normal saline (NS was administered to the control group. Two weeks later, the rats were sacrificed and cecum and peritoneal samples were harvested for histopathological assessment. Blood samples were obtained to determine serum concentrations of inflammatory biomarkers including tumor necrosis factor alpha (TNF-α, interleukin-1 beta (IL-1β and vascular endothelial growth factor (VEGF. Results: The rats treated with GNPs had significantly lower microscopic and macroscopic peritoneal adhesion scores, compared to the control group (P

  17. Surface charges promote nonspecific nanoparticle adhesion to stiffer membranes

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha

    2018-04-01

    This letter establishes the manner in which the electric double layer induced by the surface charges of the plasma membrane (PM) enhances the nonspecific adhesion (NSA) of a metal nanoparticle (NP) to stiffer PMs (i.e., PMs with larger bending moduli). The NSA is characterized by the physical attachment of the NP to the membrane and occurs when the decrease in the surface energy (or any other mechanism) associated with the attachment process provides the energy for bending the membrane. Such an attachment does not involve receptor-ligand interactions that characterize the specific membrane-NP adhesion. Here, we demonstrate that a significant decrease in the electrostatic energy caused by the NP-attachment-induced destruction of the charged-membrane-electrolyte interface is responsible for providing the additional energy needed for bending the membrane during the NP adhesion to stiffer membranes. A smaller salt concentration and a larger membrane charge density augment this effect, which can help to design drug delivery to cells with stiffer membranes due to pathological conditions, fabricate NPs with biomimetic cholesterol-rich lipid bilayer encapsulation, etc.

  18. Preparation and study of new rubber to steel adhesive systems

    International Nuclear Information System (INIS)

    Labaj, I.; Ondrusova, D.; Dubec, A.; Pajtasova, M.; Kohutiar, M.

    2017-01-01

    The present paper deals with the preparation of new rubber to steel adhesive systems using the steel surface treatment by applying the adhesive coats based on Co (II) and Cu(II) salts. For demonstration of coats chemical composition EDX analysis was used. The topography and microstructure of prepared adhesive coats were investigated using Scanning Electron Microscopy. Finally the efficiency of adhesion between rubber blends and coated metal steel pieces was evaluated according to Test ASTM D429 Rubber to metal adhesion, method A. The adhesive strength resulting values of prepared steel samples with new adhesive coats were compared with samples covered with adhesive systems commonly used in industry. (authors)

  19. Peritoneal adhesions after laparoscopic gastrointestinal surgery.

    Science.gov (United States)

    Mais, Valerio

    2014-05-07

    Although laparoscopy has the potential to reduce peritoneal trauma and post-operative peritoneal adhesion formation, only one randomized controlled trial and a few comparative retrospective clinical studies have addressed this issue. Laparoscopy reduces de novo adhesion formation but has no efficacy in reducing adhesion reformation after adhesiolysis. Moreover, several studies have suggested that the reduction of de novo post-operative adhesions does not seem to have a significant clinical impact. Experimental data in animal models have suggested that CO₂ pneumoperitoneum can cause acute peritoneal inflammation during laparoscopy depending on the insufflation pressure and the surgery duration. Broad peritoneal cavity protection by the insufflation of a low-temperature humidified gas mixture of CO₂, N₂O and O₂ seems to represent the best approach for reducing peritoneal inflammation due to pneumoperitoneum. However, these experimental data have not had a significant impact on the modification of laparoscopic instrumentation. In contrast, surgeons should train themselves to perform laparoscopy quickly, and they should complete their learning curves before testing chemical anti-adhesive agents and anti-adhesion barriers. Chemical anti-adhesive agents have the potential to exert broad peritoneal cavity protection against adhesion formation, but when these agents are used alone, the concentrations needed to prevent adhesions are too high and could cause major post-operative side effects. Anti-adhesion barriers have been used mainly in open surgery, but some clinical data from laparoscopic surgeries are already available. Sprays, gels, and fluid barriers are easier to apply in laparoscopic surgery than solid barriers. Results have been encouraging with solid barriers, spray barriers, and gel barriers, but they have been ambiguous with fluid barriers. Moreover, when barriers have been used alone, the maximum protection against adhesion formation has been no

  20. Radiation curable adhesive compositions and composite structures

    International Nuclear Information System (INIS)

    Brenner, W.

    1984-01-01

    This disclosure relates to novel adhesive compositions and composite structures utilizing the same, wherein said adhesive compositions contain an elastomer, a chemically compatible ethylenically unsaturated monomer, a tackifier, an adhesion promoter, and optionally, pigments, fillers, thickeners and flow control agents which are converted from the liquid to the solid state by exposure to high energy ionizing radiation such as electron beam. A particularly useful application for such adhesive compositions comprises the assembly of certain composite structures or laminates consisting of, for example, a fiber flocked rubber sheet and a metal base with the adhesive fulfilling the multiple functions of adhering the flocked fiber to the rubber sheet as well as adhering the rubber sheet to the metal base. Optionally, the rubber sheet itself may also be cured at the same time as the adhesive composition with all operations being carried out at ambient temperatures and in the presence of air, with exposure of said assembly to selected dosages of high energy ionizing radiation. These adhesive compositions contain no solvents thereby almost eliminating air pollution or solvent toxicity problems, and offer substantial savings in energy and labor as they are capable of curing in very short time periods without the use of external heat which might damage the substrate

  1. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  2. Drill machine guidance using natural occurring radiation

    International Nuclear Information System (INIS)

    Dahl, H.D.; Schroeder, R.L.; Williams, B.J.

    1980-01-01

    A drilling machine guidance system is described which uses only the naturally occuring radiation within the seam or stratum of interest. The apparatus can be used for guiding horizontal drilling machines through coal seams and the like. (U.K.)

  3. Multiple Primary Cancers: Simultaneously Occurring Prostate ...

    African Journals Online (AJOL)

    2016-05-20

    May 20, 2016 ... occurring prostate cancer and other primary tumors-our experience and literature ..... thyroid cancers, pancreatic tumors, renal cancers, and melanoma. ... Hsing AW, Yeboah E, Biritwum R, Tettey Y, De Marzo AM,. Adjei A, et ...

  4. Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber

    NARCIS (Netherlands)

    Roosjen, A; Boks, NP; van der Mei, HC; Busscher, HJ; Norde, W

    2005-01-01

    Microbial adhesion to surfaces often occurs despite high wall shear rates acting on the adhering microorganisms. In this paper, we compare the wall shear rates needed to prevent microbial adhesion to bare glass and poly(ethylene oxide) (PEO)-brush coated glass in a parallel plate flow chamber.

  5. THE PROBLEMS OF ENSURE OF SAFE LABOR CONDITIONS ON WORKPLACES FOR ADHESIVE BONDING

    Directory of Open Access Journals (Sweden)

    Barbara CIECIŃSKA

    2016-04-01

    Full Text Available In the performance a variety of technological operations a human may come into contact with a variety of factors caus-ing deterioration of safety at work. As an example of which is described in article, adhesive bonding operations are re-quiring use of specific chemicals, which are adhesives. They are produced on the basis of a variety of compounds, often hazardous to human health. Furthermore, adhesive bonding requires a series of preparatory operations such as degreas-ing or surface preparation with a specific structure and roughness and auxiliary operations such as measurement of the wettability of surface. In this paper are described examples of risks occurring during adhesive bonding, it is a simple way to estimate the risks associated with the performance of operations. The examples of the determination by the produc-ers of chemicals are described which are used in adhesive bonding and fragment of international chemical safety card (ICSC, as a source of information important to the workplace organization and ensuring safety during adhesive bonding.

  6. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    Science.gov (United States)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (pbracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  7. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    Science.gov (United States)

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  8. Molybdenum protective coatings adhesion to steel substrate

    Science.gov (United States)

    Blesman, A. I.; Postnikov, D. V.; Polonyankin, D. A.; Teplouhov, A. A.; Tyukin, A. V.; Tkachenko, E. A.

    2017-06-01

    Protection of the critical parts, components and assemblies from corrosion is an urgent engineering problem and many other industries. Protective coatings’ forming on surface of metal products is a promising way of corrosionprevention. The adhesion force is one of the main characteristics of coatings’ durability. The paper presents theoretical and experimental adhesion force assessment for coatings formed by molybdenum magnetron sputtering ontoa steel substrate. Validity and reliability of results obtained by simulation and sclerometry method allow applying the developed model for adhesion force evaluation in binary «steel-coating» systems.

  9. Adhesive bonding using variable frequency microwave energy

    Science.gov (United States)

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  10. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  11. Adhesion Between Poly(dimethylsiloxane) Layers

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    Different adhesion methods of poly(dimethylsiloxane) (PDMS) layers were studied with respect to adhesional force and the resulting rheology of the two-layered PDMS films were investigated. The role of adhesion between PDMS layers on the performances of two-layer structures was studied with peel...... strength test and by SEM pictures. The rheology of the double-layered compared to the monolayer films changed in some cases which indicates that the adhesion process needs to be carefully introduced in order not to alter the final properties....

  12. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  13. Influence of blood contamination during multimode adhesive application on the microtensile bond strength to dentin.

    Science.gov (United States)

    Kucukyilmaz, E; Celik, E U; Akcay, M; Yasa, B

    2017-12-01

    The present study evaluated the effects of blood contamination performed at different steps of bonding on the microtensile bond strength (μTBS) of multimode adhesives to dentin when using the self-etch approach. Seventy-five molars were randomly assigned to three adhesive groups comprising 25 specimens each: two multimode adhesives [Single Bond Universal (SBU) and All-Bond Universal (ABU)] and a conventional one-step self-etch adhesive [Clearfil S3 Bond Plus (CSBP)]. Each group was subdivided as follows: (1) uncontaminated (control): bonding application/light curing as a positive control; (2) contamination-1 (cont-1): bonding application/light curing/blood contamination/dry as a negative control; (3) contamination-2 (cont-2): bonding application/light curing/blood contamination/rinse/dry; (4) contamination-3 (cont-3): bonding application/blood contamination/dry/bonding re-application/light curing; and (5) contamination-4 (cont-4): bonding application/blood contamination/rinse/dry/bonding re-application/light curing. Dentin specimens were prepared for μTBS testing after the composite resin application. Data were analyzed with two-way ANOVA and post-hoc tests (α = 0.05). μTBS values were similar in cont-3 groups, and ABU/cont-4 and corresponding control groups, but were significantly lower in the other groups than in their control groups (P groups showed the lowest μTBS values (P blood contaminants and reapplying the adhesive may regain the dentin adhesion when contamination occurs before light curing. Alternatively, rinsing and drying contaminants followed by adhesive re-application may be effective depending on adhesive type.

  14. Influence of water storage on fatigue strength of self-etch adhesives.

    Science.gov (United States)

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Scheidel, Donal D; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2015-12-01

    The purpose of this study was to determine enamel and dentin bond durability after long-term water storage using self-etch adhesives. Two single step self-etch adhesives (SU, Scotchbond Universal and GB, G-ӕnial Bond) and a two-step self-etch adhesive (OX, OptiBond XTR) were used. The shear bond strength (SBS) and shear fatigue strength (FS) of the enamel and dentin were obtained with and without phosphoric acid pre-etching prior to application of the adhesives. The specimens were stored in distilled water at 37 °C for 24 h, 6 months, and one year. A staircase method was used to determine the FS using a frequency of 10 Hz for 50,000 cycles or until failure occurred. The SBS and FS of enamel bonds were significantly higher with pre-etching, when compared to no pre-etching for the same water storage period. The FS of dentin bonds with pre-etching tended to decrease relative to no pre-etching at the same storage period. For the one year storage period, SU and GB with pre-etching showed significantly lower FS values than the groups without pre-etching. The influence of water storage on FS of the self-etch adhesives was dependent on the adhesive material, storage period and phosphoric acid pre-etching of the bonding site. Phosphoric acid pre-etching of enamel improves the effectiveness of self-etch adhesive systems. Inadvertent contact of phosphoric acid on dentin appears to reduce the ability of self-etch adhesives to effectively bond resin composite materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  16. Adhesion of multimode adhesives to enamel and dentin after one year of water storage.

    Science.gov (United States)

    Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2017-06-01

    This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.

  17. HMAC layer adhesion through tack coat.

    Science.gov (United States)

    2017-02-01

    Tack coats are the asphaltic emulsions applied between pavement lifts to provide adequate bond between the two surfaces. The adhesive bond between the two layers helps the pavement system to behave as a monolithic structure and improves the structura...

  18. Synthesis of LTA zeolite for bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Belaabed, R.; Eabed, S.; Addaou, A.; Laajab, A.; Rodriguez, M.A.; Lahsini, A.

    2016-07-01

    High affinity and adhesion capacity for Gram-positive bacteria on minerals has been widely studied. In this work the adhesion of bacteria on synthesized zeolite has been studied. The Zeolite Linde Type A (LTA) has been synthesized using hydrothermal route using processing parameters to obtain low cost materials. For adhesion studies Staphylococcus aureus and Bacillus subtilis were used as Gram-positive bacteria, Escherichia coli and Pseudomonas aeruginosa are used as Gram-negative bacteria. X-ray diffraction, environmental scanning electron microscope and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the synthesized zeolite. To evaluate the bacterial adhesion to zeolite LTA the hydrophobicity and surface properties are examined using contact angle measurement. (Author)

  19. Anti-adhesive properties of fish tropomyosins

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Bernbom, Nete; Gram, Lone

    2008-01-01

    Aims: We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect. Methods...... to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein...... the importance of substratum's physiochemical properties and exposure time with regards to protein adsorption/elution efficiency and subsequent bacterial adhesion. Significance and Impact of the Study: Fish tropomyosin-coatings could potentially offer a nontoxic and relatively inexpensive measure of reducing...

  20. Recent advances in nanostructured biomimetic dry adhesives

    Directory of Open Access Journals (Sweden)

    Andras ePattantyus-Abraham

    2013-12-01

    Full Text Available The relatively large size of the gecko and its ability to climb a multitude of structures with ease has often been cited as the inspiration upon which the field of dry adhesives is based. Since 2010, there have been many advances in the field of dry adhesives with much of the new research focusing on developing nanoscale and hierarchical features in a concentrated effort to develop synthetic gecko-like dry adhesives which are strong, durable and self-cleaning. A brief overview of the geckos and the hairs which it uses to adhere to many different surfaces is provided before delving into the current methods and materials used to fabricate synthetic gecko hairs. A summary of the recently published literature on bio-inspired, nanostructured dry adhesives is presented with an emphasis being placed on fabrication techniques.

  1. Handbook of adhesive bonded structural repair

    CERN Document Server

    Wegman, Raymond F

    1992-01-01

    Provides repair methods for adhesive bonded and composite structures; identifies suitable materials and equipment for repairs; describes damage evaluation criteria and techniques, and methods of inspection before and after repair.

  2. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  3. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears

    NARCIS (Netherlands)

    Bochynska, A. I.; Van Tienen, T. G.; Hannink, G.; Buma, P.; Grijpma, D. W.

    2016-01-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study,

  4. Reactive Nanocomposites for Controllable Adhesive Debonding

    Science.gov (United States)

    2011-08-01

    technologies include shape memory alloy (SMA)-based approach, a chemical foaming agent (CFA) approach, and a reactive nanocomposite (RNC) approach. SMA...anofoil (a) Component 1 Thermoset Adhesive Component 2 Nano-coating (b) Figure 2. Debonding approach where (a) freestanding...J. Controlled Adhesive Debonding of RAH-66 Comanche Chines Using Shape Memory Alloys ; ARL-TR-2937; U.S. Army Research Laboratory: Aberdeen Proving

  5. Adhesive capsulitis: review of imaging and treatment

    International Nuclear Information System (INIS)

    Harris, Guy; Bou-Haider, Pascal; Harris, Craig

    2013-01-01

    Adhesive capsulitis is one of the most common conditions affecting the shoulder; however, early clinical diagnosis can be challenging. Treatment is most effective when commenced prior to the onset of capsular thickening and contracture; consequently, the role of imaging is increasing. The aim of this review is to demonstrate the typical imaging appearances of adhesive capsulitis and to examine some of the evidence regarding each of these imaging modalities. An evaluation of the various management options available to the clinician is also presented.

  6. Adhesion between Polydimethylsiloxane Layers by Crosslinking

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    2013-01-01

    Adhesion between two surfaces may be strongly improved by chemical crosslinking of the interfaces. Polydimethylsiloxane (PDMS) is a widely used polymer that has received considerable attention due to its unique properties, such as relatively low price, biocompatibility, flexibility, high thermal...... investigated by rheology and microscopy. The objective of this work was to create adhesion of two layers without destroying the original viscoelastic properties of the PDMS films....

  7. Processable polyimide adhesive and matrix composite resin

    Science.gov (United States)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  8. Influence of Application Time and Etching Mode of Universal Adhesives on Enamel Adhesion.

    Science.gov (United States)

    Sai, Keiichi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Ishii, Ryo; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2018-01-01

    To investigate the influence of application time and etching mode of universal adhesives on enamel adhesion. Five universal adhesives, Adhese Universal, Bondmer Lightless, Clearfil Universal Bond Quick, G-Premio Bond, and Scotchbond Universal, were used. Bovine incisors were prepared and divided into four groups of ten teeth each. SBS, Ra, and SFE were determined after the following procedures: 1. self-etch mode with immediate air blowing after application (IA); 2. self-etch mode with prolonged application time (PA); 3. etch-and-rinse mode with IA; 4. etch-and-rinse mode with PA. After 24-h water storage, the bonded assemblies were subjected to shear bond strength (SBS) tests. For surface roughness (Ra) and surface free energy (SFE) measurements, the adhesives were simply applied to the enamel and rinsed with acetone and water before the measurements were carried out. Significantly higher SBS and Ra values were obtained with etch-and-rinse mode than with self-etch mode regardless of the application time or type of adhesive. Although most adhesives showed decreased SFE values with increased application time in self-etch mode, SFE values in etch-and-rinse mode were dependent on the adhesive type and application time. Etching mode, application time, and type of adhesive significantly influenced the SBS, Ra, and SFE values.

  9. Platelet adhesiveness: the effect of centrifugation on the measurement of adhesiveness in platelet-rich plasma

    Science.gov (United States)

    McBride, J. A.

    1968-01-01

    Platelet adhesiveness has been measured in citrated whole blood and in platelet-rich plasma obtained from normal subjects, splenectomized patients, and from patients in whom the diagnosis of recurrent venous thrombosis had been made. The duration of centrifugation used in the preparation of platelet-rich plasma was found to have a profound effect on the measurement of platelet adhesiveness because the figure for platelet adhesiveness measured in platelet-rich plasma obtained by centrifugation was considerably lower than that found in citrated whole blood. This effect was particularly marked when platelet-rich plasma was obtained from subjects in whom platelet adhesiveness measured in whole blood was increased. PMID:5699080

  10. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  11. Determination of natural occurring radionuclides concentrations

    International Nuclear Information System (INIS)

    Stajic, J.; Markovic, V.; Krstic, D.; Nikezic, D.

    2011-01-01

    Tobacco smoke contains certain concentrations of naturally occurring radionuclides from radioactive chains of uranium and thorium - 214 Pb, 214 Bi, 228 Ac, 208 Tl, 226 Ra, 232 Th and 40 K. Inhaling of tobacco smoke leads to internal exposure of man. In order to estimate absorbed dose of irradiation it is necessary to determine concentrations of radionuclides present in the tobacco leaves. In this paper specific activities of naturally occurring radionuclides were measured in tobacco samples from cigarettes which are used in Serbia. [sr

  12. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pressure-sensitive adhesives. 175.125 Section 175...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive...

  13. Factors influencing bacterial adhesion to contact lenses.

    Science.gov (United States)

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

  14. Use of Adhesion Promoters in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Cihlářová Denisa

    2018-03-01

    Full Text Available The purpose of asphalt binder as a significant binder in road constructions is to permanently bind aggregates of different compositions and grain sizes. The asphalt binder itself does not have suitable adhesiveness, so after a period of time, bare grains can appear. This results in a gradual separation of the grains from an asphalt layer and the presence of potholes in a pavement. Adhesion promoters or adhesive agents are important and proven promoters in practice. They are substances mainly based on the fatty acids of polyamides which should increase the reliability of the asphalt’s binder adhesion to the aggregates, thus increasing the lifetime period of the asphalt mixture as well as its resistance to mechanical strain. The amount of a promoter or agent added to the asphalt mixture is negligible and constitutes about 0.3% of the asphalt’s binder weight. Nevertheless, even this quantity significantly increases the adhesive qualities of an asphalt binder. The article was created in cooperatation with the Slovak University of Technology, in Bratislava, Slovakia, and focuses on proving the new AD2 adhesive additive and comparing it with the Addibit and Wetfix BE promoters used on aggregates from the Skuteč - Litická and Bystřec quarries.

  15. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  16. Detection of Harmonic Occurring using Kalman Filtering

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Shoro, Ghulam Mustafa; Imran, Raja Muhammed

    2014-01-01

    /current characteristic. These harmonics are not to be allowed to grow beyond a certain limit to avoid any grave consequence to the customer’s main supply. Filters can be implemented at the power source or utility location to eliminate these harmonics. In this paper we detect the instance at which these harmonics occur...

  17. Formal synthesis of naturally occurring norephedrine

    Indian Academy of Sciences (India)

    A concise and simple synthesis of 1-hydroxy-phenethylamine derivatives has been achieved following classical organic transformations using commercially available chiral pools. The said derivatives were explored for the synthesis of naturally occurring bio-active small molecules. Formal synthesis of norephedrine, virolin ...

  18. Percieved functions of naturally occurring autobiographical memories

    DEFF Research Database (Denmark)

    Treebak, L. S.; Henriksen, J. R.; Lundhus, S.

    2005-01-01

    The main empirical reference on functions of autobiographical memories is still Hyman & Faries (1992) who used the cue-word-method and retrospective judgements. We used diaries to sample naturally occurring autobiographical memories and participants? perceived use of these. Results partly replicate...

  19. A naturally occurring trap for antiprotons

    International Nuclear Information System (INIS)

    Eades, J.; Morita, N.; Ito, T.M.

    1993-05-01

    The phenomenon of delayed annihilation of antiprotons in helium is the first instance of a naturally occurring trap for antimatter in ordinary matter. Recent studies of this effect at CERN are summarized, and plans are described for laser excitation experiments to test its interpretation in terms of metastable exotic helium atom formation. (author)

  20. Jerky periods: myoclonus occurring solely during menses

    NARCIS (Netherlands)

    Buijink, Arthur W. G.; Gelauff, Jeannette M.; van der Salm, Sandra M. A.; Tijssen, Marina A. J.; van Rootselaar, Anne-Fleur

    2013-01-01

    In this case report, we describe an unusual case of a patient with myoclonus only occurring during menses. A 41-year-old female, known to have neurological sequelae after a car accident 1 year earlier, presented with myoclonic movements of the right arm and hand only during menses. Brain magnetic

  1. A new universal simplified adhesive: 6-month clinical evaluation.

    Science.gov (United States)

    Mena-Serrano, Alexandra; Kose, Carlos; De Paula, Eloisa Andrade; Tay, Lidia Yileng; Reis, Alessandra; Loguercio, Alessandro D; Perdigão, Jorge

    2013-02-01

    Multimode adhesives, which can be used as etch-and-rinse or as self-etch adhesives, have been recently introduced without clinical data to back their use. To evaluate the 6-month clinical performance of Scotchbond Universal Adhesive (SU; 3M ESPE, St. Paul, MN, USA) in noncarious cervical lesions (NCCLs) using two evaluation criteria. Thirty-nine patients participated in this study. Two hundred restorations were assigned to four groups: SU-TEm: etch-and-rinse + moist dentin; SU-TEd: etch-and-rinse + dry dentin; SU-SEet: selective enamel etching; and SU-SE: self-etch. The composite resin Filtek Supreme Ultra (3M ESPE) was placed incrementally. The restorations were evaluated at baseline and after 6 months using both the World Dental Federation (FDI) and the United States Public Health Service (USPHS) criteria. Statistical analyses were performed with Friedman repeated measures analysis of variance by rank and McNemar test for significance in each pair (α = 0.05). Only four restorations (SU-SE: 3 and SU-TEm: 1) were lost after 6 months (p > 0.05 for either criteria). Marginal discoloration occurred in one restoration in the SU-SE group (p > 0.05 for either criteria). Only 2/200 restorations were scored as bravo for marginal adaptation using the USPHS criteria (one for SU-SE and one for SU-SEet, p > 0.05). However, when using the FDI criteria, the percentage of bravo scores for marginal adaptation at 6 months were 32%, 36%, 42%, and 46% for groups SU-TEm, SU-TEd, SU-SEet, and SU-SE, respectively (p > 0.05). The clinical behavior of the multimode adhesive does not depend on the bonding strategy at 6 months. The FDI evaluation criteria are more sensitive than the USPHS criteria. At 6 months, the clinical behavior of the new multimode adhesive Scotchbond Universal was found to be reliable when used in noncarious cervical lesions and may not depend on the bonding strategy employed. © 2012 Wiley Periodicals, Inc.

  2. Preferential flow occurs in unsaturated conditions

    Science.gov (United States)

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  3. Mast cells facilitate local VEGF release as an early event in the pathogenesis of postoperative peritoneal adhesions.

    LENUS (Irish Health Repository)

    Cahill, Ronan A

    2012-02-03

    BACKGROUND: Peritoneal injury sustained at laparotomy may evoke local inflammatory responses that result in adhesion formation. Peritoneal mast cells are likely to initiate this process, whereas vascular permeability\\/endothelial growth factor (VEGF) may facilitate the degree to which subsequent adhesion formation occurs. METHODS: Mast cell deficient mice (WBB6F1-\\/-), along with their mast cell sufficient counterparts (WBB6F1+\\/+), underwent a standardized adhesion-inducing operation (AIS) with subsequent sacrifice and adhesion assessment 14 days later in a blinded fashion. Additional CD-1 and WBB6F1+\\/+, and WBB6F1-\\/- mice were killed 2, 6, 12, and 24 hours after operation for measurement of VEGF by ELISA in systemic serum and peritoneal lavage fluid. Two further groups of CD-1 mice underwent AIS and received either a single perioperative dose of anti-VEGF monoclonal antibody (10 mug\\/mouse) or a similar volume of IgG isotypic antibody and adhesion formation 2 weeks later was evaluated. RESULTS: WBB6F1-\\/- mice had less adhesions then did their WBB6F1+\\/+ counterparts (median [interquartile range] adhesion score 3[3-3] vs 1.5[1-2] respectively; P < .003). Local VEGF release peaked 6 hours after AIS in both WBB6F1+\\/+ and CD-1 mice whereas levels remained at baseline in WBB6F1-\\/- mice. CD-1 mice treated with a single dose of anti-VEGF therapy during operation had less adhesions than controls (2[1.25-2] vs 3[2.25-3], P = .0002). CONCLUSIONS: Mast cells and VEGF are central to the formation of postoperative intra-abdominal adhesions with mast cells being responsible, either directly or indirectly, for VEGF release into the peritoneal cavity after operation. In tandem with the recent clinical success of anti-VEGF monoclonal antibodies in oncologic practice, our observations suggest an intriguing avenue for research and development of anti-adhesion strategy.

  4. Shear bond strength of two 2-step etch-and-rinse adhesives when bonding ceramic brackets to bovine enamel.

    Science.gov (United States)

    Godard, Marion; Deuve, Benjamin; Lopez, Isabelle; Hippolyte, Marie-Pascale; Barthélemi, Stéphane

    2017-09-01

    The present study assessed a fracture analysis and compared the shear bond strength (SBS) of two 2-step etch-and-rinse (E&R) adhesives when bonding ceramic orthodontic brackets to bovine enamel. Thirty healthy bovine mandibular incisors were selected and were equally and randomly assigned to 2 experimental groups. Ceramic brackets (FLI Signature Clear ® , RMO) were bonded onto bovine enamel using an adhesive system. In group 1 (n=15), the conventional E&R adhesive (OrthoSolo ® +Enlight ® , Ormco) was used, and in group 2 (n=15), the new E&R adhesive limited to ceramic bracket bonding (FLI ceramic adhesive ® : FLI sealant resin ® +FLI adhesive paste ® , RMO) was used. In order to obtain appropriate enamel surfaces, the vestibular surfaces of mandibular bovine incisors were flat ground. After bonding, all the samples were stored in distilled water at room temperature for 21 days and subsequently tested for SBS, using the Instron ® universal testing machine. The Adhesive Remnant Index (ARI) scores were evaluated. Failure modes were assessed using optical microscopy at magnification ×40. A statistic data analysis was performed using the Mann-Whitney U-test (Penamel/adhesive interface. A statistically significant difference was found for the ARI scores between the two groups (P=0.00996). Only two fractured brackets, which remained bonded onto the bovine enamel, were reported. Both occurred in group 1. When bonded to ceramic brackets, FLI ceramic adhesive ® (RMO) was demonstrated to be very predictable and safe for clinical application in enamel bonding, whereas the results obtained with the conventional adhesive system (OrthoSolo ® +Enlight ® , Ormco) were less reproducible and revealed slightly excessive shear bond strength values. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  5. Tissue adhesives for simple traumatic lacerations.

    Science.gov (United States)

    Beam, Joel W

    2008-01-01

    Farion K, Osmond MH, Hartling L, et al. Tissue adhesives for traumatic lacerations in children and adults. Cochrane Database Syst Rev. 2001(4);CD003326. What is the clinical evidence base for tissue adhesives in the management of simple traumatic lacerations? Studies were identified by searches of the following databases: Cochrane Wounds Group Specialized Trials Register (September 2003), Cochrane Central Register of Controlled Trials (CENTRAL) (CDROM 2003, issue 3), MEDLINE (1966 to September 2003, week 1), EMBASE (1988 to 2003, week 36), Web of Science Science Citation Index (1975 to September 13, 2003) and various clinical trials registers (September 2003). Investigators and product manufacturers were contacted to identify additional eligible studies. The search terms included wounds and injuries, laceration, face injury, nose injury, tissue adhesives, and acrylates. Each study fulfilled the following criteria: (1) The study was a randomized controlled trial that compared tissue adhesives with standard wound closure (SWC) (sutures, staples, adhesive strips) or tissue adhesive with tissue adhesive. (2) The wounds were acute, linear lacerations less than 12 hours old, resulting from blunt or sharp trauma. (3) The wound length, width, and depth allowed for approximation of the edges with minimal tension after deep sutures were placed, if required. Studies were included with no language or publication status restriction, with participants of any age recruited in an emergency department, outpatient clinic, walk-in clinic, or other primary care setting. Studies were excluded if the wounds were stellate lacerations, puncture wounds, mammalian bites, infected, heavily contaminated or devitalized, crossing joints or mucocutaneous junctions, in hair-bearing areas, or in patients with keloid formation or chronic illness. The characteristics of the study and participants, interventions, outcome measures, and findings were extracted by one author and verified by a second

  6. A QUANTITATIVE METHOD TO STUDY CO-ADHESION OF MICROORGANISMS IN A PARALLEL-PLATE FLOW CHAMBER - BASIC PRINCIPLES OF THE ANALYSIS

    NARCIS (Netherlands)

    VANDERMEI, HC; MEINDERS, JM; BUSSCHER, HJ; Bos, R.R.M.

    1994-01-01

    Intermicrobial aggregation is described as one of the factors contributing to dental plaque formation. Intermicrobial aggregation is usually measured by mixing potential partners suspended in a liquid phase ('coaggregation'). However, even if aggregation in the liquid phase occurs, adhesion of

  7. Natural occurring radioactive substances. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Emara, A E [National Center for radiation Research and Technology Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Naturally occurring radioactive substances produced by cosmic rays of those of terrestrial origin are surveyed. The different radioactive decay series are discussed. Special emphasis is given to the element radium as regards its properties and distribution in different environmental samples. The properties of naturally occurring k-40 and its distribution in different natural media are also outlined. Induced radionuclides which are formed as a result of the interaction of cosmic rays with the constituents of the atmosphere are mentioned. In this respect the intensity of natural background radiation and the dose at different locations and levels is surveyed. Some regions of exceptionally high radioactivity which result in high exposure rates are mentioned. Monazite deposits and water springs are mentioned in some detail. The Oklo phenomenon as a natural reactor is also discussed. 8 tabs.

  8. Natural occurring radioactive substances. Vol. 1

    International Nuclear Information System (INIS)

    Emara, A.E.

    1996-01-01

    Naturally occurring radioactive substances produced by cosmic rays of those of terrestrial origin are surveyed. The different radioactive decay series are discussed. Special emphasis is given to the element radium as regards its properties and distribution in different environmental samples. The properties of naturally occurring k-40 and its distribution in different natural media are also outlined. Induced radionuclides which are formed as a result of the interaction of cosmic rays with the constituents of the atmosphere are mentioned. In this respect the intensity of natural background radiation and the dose at different locations and levels is surveyed. Some regions of exceptionally high radioactivity which result in high exposure rates are mentioned. Monazite deposits and water springs are mentioned in some detail. The Oklo phenomenon as a natural reactor is also discussed. 8 tabs

  9. Jerky Periods - Myoclonus Occurring Solely During Menses

    OpenAIRE

    Arthur W. Buijink; Jeannette M. Gelauff; Sandra M. van der Salm; Marina A. Tijssen; Anne-Fleur van Rootselaar

    2013-01-01

    Background: In this case report, we describe an unusual case of a patient with myoclonus only occurring during menses. Case Report: A 41-year-old female, known to have neurological sequelae after a car accident 1 year earlier, presented with myoclonic movements of the right arm and hand only during menses. Brain magnetic resonance imaging is compatible with head trauma. Electromyography shows brief irregular bursts with a duration of about 20 ms. Discussion: This appears to be the first descr...

  10. Adhesive performance of precoated brackets after expiration.

    Science.gov (United States)

    Cloud, Cayce C; Trojan, Terry M; Suliman, Sam N; Tantbirojn, Daranee; Versluis, Antheunis

    2016-03-01

    To evaluate adhesive performance in terms of debonding forces of precoated metal and ceramic brackets 4 years after expiration. Buccal and lingual surfaces of embedded extracted maxillary premolars were etched with 34% Tooth Conditioner Gel (Dentsply Caulk, Milford, Del), rinsed, and dried. Transbond MIP (3M Unitek, Monrovia, Calif) was applied prior to placing adhesive precoated brackets (APC II Victory stainless steel and APC Plus Clarity ceramic brackets, 3M Unitek). The preexpiration brackets had 29-35 months before, and the postexpiration brackets were 45-52 months past, their expiration dates. Sample size was 17-21 per group. Debonding forces were determined by subjecting the bonded brackets to a shear force in a universal testing machine. Debonding forces were compared using two-way ANOVA. Debonded surfaces were examined under a stereomicroscope to determine failure modes, which were compared using the chi-square test. No statistically significant difference was found in debonding forces (P  =  .8581) or failure modes (P  =  .4538) between expired and unexpired brackets. Metal brackets required statistically significantly higher debonding forces than did ceramic brackets (P  =  .0001). For both expired and unexpired brackets, failure modes were mostly cohesive in the adhesive layer for ceramic brackets, and mixed between adhesive and cohesive failure in the adhesive layer for metal brackets. Adhesive precoated brackets did not have any reduction in enamel-adhesion properties up to 4 years after their expiration date. Extended shelf life testing for precoated dental brackets may be worth considering.

  11. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a

  12. Adhesion and adhesion changes at the copper metal-(acrylonitrile-butadiene-styrene) polymer interface

    NARCIS (Netherlands)

    Kisin, S.; Varst, van der P.G.T.; With, de G.

    2007-01-01

    It is known that the adhesive strength of metallic films on polymer substrates often changes in the course of time. To study this effect in more detail, the adhesion energy of sputtered and galvanically strengthened copper coatings on acrylonitrile–butadiene–styrene polymer substrate was determined

  13. Adhesion force imaging in air and liquid by adhesion mode atomic force microscopy

    NARCIS (Netherlands)

    van der Werf, Kees; Putman, C.A.J.; Putman, Constant A.; de Grooth, B.G.; Greve, Jan

    1994-01-01

    A new imaging mode for the atomic force microscope(AFM), yielding images mapping the adhesion force between tip and sample, is introduced. The adhesion mode AFM takes a force curve at each pixel by ramping a piezoactuator, moving the silicon‐nitride tip up and down towards the sample. During the

  14. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    Science.gov (United States)

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-04-01

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  15. Is nonoperative management of adhesive intestinal obstruction applicable to children in a resource-poor country?

    Directory of Open Access Journals (Sweden)

    Osifo Osarumwense

    2010-01-01

    Full Text Available Background: Nonoperative management of adhesive intestinal obstruction gives good results in adults but there are scant studies on its outcome in children. This study reports outcomes and experiences with nonoperative and operative management of adhesive intestinal obstruction in children in a resource-poor country. Patients and Methods: This is a retrospective analysis of records of children who were managed with adhesive intestinal obstruction at the University of Benin Teaching Hospital between January 2002 and December 2008. Results: Adhesive intestinal obstruction accounted for 21 (8.8% of 238 children managed with intestinal obstruction. They were aged between 7 weeks and 16 years (mean 3 ± 6.4 years, comprising 13 males and eight females (ratio 1.6:1. Prior laparotomy for gangrenous/perforated intussusception (seven, 33.3%, perforated appendix (five, 23.8%, perforated volvulus (three, 14.3%, penetrating abdominal trauma (two, 9.5% and perforated typhoid (two, 9.5% were major aetiologies. Adhesive obstruction occurred between 6 weeks and 7 years after the index laparotomies. All the 21 children had initial nonoperative management without success, owing to lack of total parenteral nutrition and monitoring facilities. Outcomes of open adhesiolysis performed between 26 and 48 h in six (28.6% children due to poor response to nonoperative management, 11-13 days in 12 (57.1% who responded minimally and 2-5 weeks in three (14.3% who had relapse of symptoms were encouraging. Exploration of the 21 adhesive obstructions confirmed small bowel obstruction due to solitary bands (two, 9.5%, multiple bands/adhesions (13, 61.9% and encasement, including one bowel gangrene (six, 28.6%. Postoperatively, the only child who had recurrence during 1-6 years of follow-up did well after a repeat adhesiolysis. Conclusion: Nonoperative management was unsuccessful in this setting. Open adhesiolysis may be adopted in children to prevent avoidable morbidities and

  16. Influence of Different Etching Modes on Bond Strength to Enamel using Universal Adhesive Systems.

    Science.gov (United States)

    Diniz, Ana Cs; Bandeca, Matheus C; Pinheiro, Larissa M; Dos Santosh Almeida, Lauber J; Torres, Carlos Rg; Borges, Alvaro H; Pinto, Shelon Cs; Tonetto, Mateus R; De Jesus Tavarez, Rudys R; Firoozmand, Leily M

    2016-10-01

    The adhesive systems and the techniques currently used are designed to provide a more effective adhesion with reduction of the protocol application. The objective of this study was to evaluate the bond strength of universal adhesive systems on enamel in different etching modes (self-etch and total etch). The mesial and distal halves of 52 bovine incisors, healthy, freshly extracted, were used and divided into seven experimental groups (n = 13). The enamel was treated in accordance with the following experimental conditions: FUE-Universal System - Futurabond U (VOCO) with etching; FUWE - Futurabond U (VOCO) without etching; SB-Total Etch System - Single Bond 2 (3M); SBUE-Universal System - Single Bond Universal (3M ESPE) with etching; SBUWE - Single Bond Universal (3M ESPE) without etching; CLE-Self-etch System - Clearfil SE Bond (Kuraray) was applied with etching; CLWE - Clearfil SE Bond (Kuraray) without etching. The specimens were made using the composite spectrum TPH (Dentsply) and stored in distilled water (37 ± 1°C) for 1 month. The microshear test was performed using the universal testing machine EMIC DL 2000 with the crosshead speed of 0.5 mm/minute. The bond strength values were analyzed using statistical tests (Kruskal-Wallis test and Mann-Whitney test) with Bonferroni correction. There was no statistically significant difference between groups (p adhesive interface revealed that most failures occurred between the interface composite resin and adhesive. The universal adhesive system used in dental enamel varies according to the trademark, and the previous enamel etching for universal systems and the self-etch both induced greater bond strength values. Selective enamel etching prior to the application of a universal adhesive system is a relevant strategy for better performance bonding.

  17. A CLINICAL STUDY OF ADHESIVE INTESTINAL OBSTRUCTION

    Directory of Open Access Journals (Sweden)

    Haricharan

    2015-09-01

    Full Text Available INTRODUCTION: Adhesive intestinal obstruction is an inevitable complication of abdominal surgeries. It has high morbidity with associated poor quality of life and predisposition to repeated hospitalization. Commonest cause of bowel obstruction in developed countries is postoperative adhesions with extrinsic compression of the intestine. Most of them can be managed conservatively. METHODS: A retrospective study of 30 patients admitted with the diagnosis of post - operative adhesive partial bowel obstruction was conducted by analyzing their medical records. Demographic data, clinical presentation including duration, previous surgical procedures, treatments received for the condition and successful conservative approach versus requirement of operative intervention were assesse d. RESULTS: The median age was 31yrs, most in their third decade of life. Male predominance was noted. Pelvic surgeries and gynecological surgeries (26% were found to be the most common cause of adhesive bowel obstruction followed by appendectomy (16%. M ore than two third of the patients (76.7% developed symptoms within two years of the initial surgery. Successful conservative treatment was noted in 22 patients (73.3% and discharged on fourth day of admission. Eight patients (26.6% underwent surgery. T hey all underwent adhesiolysis and had good outcome. CONCLUSIONS: The time - honored practice of expectant management of adhesive partial bowel obstruction has equally good outcome, as compared to various interventions practiced

  18. Endothelial cell adhesion to ion implanted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Kusakabe, M [SONY Corp., Tokyo (Japan); Lee, J S; Kaibara, M; Iwaki, M; Sasabe, H [RIKEN (Inst. of Physical and Chemical Research), Saitama (Japan)

    1992-03-01

    The biocompatibility of ion implanted polymers has been studied by means of adhesion measurements of bovine aorta endothelial cells in vitro. The specimens used were polystyrene (PS) and segmented polyurethane (SPU). Na{sup +}, N{sub 2}{sup +}, O{sub 2}{sup +} and Kr{sup +} ion implantations were performed at an energy of 150 keV with fluences ranging from 1x10{sup 15} to 3x10{sup 17} ions/cm{sup 2} at room temperature. The chemical and physical structures of ion-implanted polymers have been investigated in order to analyze their tissue compatibility such as improvement of endothelial cell adhesion. The ion implanted SPU have been found to exhibit remarkably higher adhesion and spreading of endothelial cells than unimplanted specimens. By contrast, ion implanted PS demonstrated a little improvement of adhesion of cells in this assay. Results of FT-IR-ATR showed that ion implantation broke the original chemical bond to form new radicals such as OH, ....C=O, SiH and condensed rings. The results of Raman spectroscopy showed that ion implantation always produced a peak near 1500 cm{sup -1}, which indicated that these ion implanted PS and SPU had the same carbon structure. This structure is considered to bring the dramatic increase in the extent of cell adhesion and spreading to these ion implanted PS and SPU. (orig.).

  19. Dextran and gelatin based photocrosslinkable tissue adhesive.

    Science.gov (United States)

    Wang, Tao; Nie, Jun; Yang, Dongzhi

    2012-11-06

    A two-component tissue adhesive based on biocompatible and bio-degradable polymers (oxidized urethane dextran (Dex-U-AD) and gelatin) was prepared and photocrosslinked under the ultraviolet (UV) irradiation. The adhesive could adhere to surface of gelatin, which simulated the human tissue steadily. The structures of above Dex-U-AD were characterized by FTIR, (1)H NMR spectroscopy and XRD. The adhesion property of result products was evaluated by lap-shear test. The maximum adhesion strength could reach to 4.16±0.72 MPa which was significantly higher than that of fibrin glue. The photopolymerization process of Dex-U-AD/gelatin was monitored by real time infrared spectroscopy (RTIR). It took less than 5 min to complete the curing process. The cytotoxicity of Dex-U-AD/gelatin also was evaluated which indicated that Dex-U-AD/gelatin gels were nontoxic to L929 cell. The relationship between all the above-mentioned properties and degree of oxidization of Dex-U-AD was assessed. The obtained products have the potential to serve as tissue adhesive in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Improved Adhesion of Gold Thin Films Evaporated on Polymer Resin: Applications for Sensing Surfaces and MEMS

    Directory of Open Access Journals (Sweden)

    Behrang Moazzez

    2013-05-01

    Full Text Available We present and analyze a method to improve the morphology and mechanical properties of gold thin films for use in optical sensors or other settings where good adhesion of gold to a substrate is of importance and where controlled topography/roughness is key. To improve the adhesion of thermally evaporated gold thin films, we introduce a gold deposition step on SU-8 photoresist prior to UV exposure but after the pre-bake step of SU-8 processing. Shrinkage and distribution of residual stresses, which occur during cross-linking of the SU-8 polymer layer in the post-exposure baking step, are responsible for the higher adhesion of the top gold film to the post-deposition cured SU-8 sublayer. The SU-8 underlayer can also be used to tune the resulting gold film morphology. Our promoter-free protocol is easily integrated with existing sensor microfabrication processes.

  1. Investigation Of Adhesion Formation In New Stainless Steel Trim Spring Operated Pressure Relief Valves

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Robert E. [Savannah River Site (SRS), Aiken, SC (United States); Bukowski, Julia V. [Villanova University, Villanova, PA (United States); Goble, William M. [exida, Sellersville, PA (United States)

    2013-04-16

    Examination of proof test data for new (not previously installed) stainless steel (SS) trim spring operated pressure relief valves (SOPRV) reveals that adhesions form between the seat and disc in about 46% of all such SOPRV. The forces needed to overcome these adhesions can be sufficiently large to cause the SOPRV to fail its proof test (FPT) prior to installation. Furthermore, a significant percentage of SOPRV which are found to FPT are also found to ''fail to open'' (FTO) meaning they would not relief excess pressure in the event of an overpressure event. The cases where adhesions result in FTO or FPT appear to be confined to SOPRV with diameters < 1 in and set pressures < 150 psig and the FTO are estimated to occur in 0.31% to 2.00% of this subpopulation of SS trim SOPRV. The reliability and safety implications of these finding for end-users who do not perform pre-installation testing of SOPRV are discussed.

  2. Effect of phenolic oligomer on adhesion of poly (ethylene terephthalate) film laminated steel sheets by Electron Beam Curing method

    International Nuclear Information System (INIS)

    Masuhara, Kenichi; Mori, Koji; Koshiishi, Kenji; Sasaki, Takashi.

    1995-01-01

    Adhesion of poly (ethylene terephthalate) film by Electron Beam Curing (EBC) method which can be thought as an energy-saving process was studied for the purpose of bestowing economically design and distinctness of image on thermosetting high molecular weight polyester precoated steel sheets. Adhesion of EB curable resins onto metal is generally poor. In this report, addition of EB curable phenolic resole oligomer with bifunctional acrylates to the top coat used for precoated steel was studied in order to increase the adhesion of an EB curable adhesive, and it was found that the phenolic oligomer is tremendously effective for the improvement of adhesion. The reasons why the phenolic oligomer provides excellent adhesion were 1) elongation at break of the top coat to which the phenolic oligomer is added is little decreased by EB irradiation, and the formability does not reduce. 2) As the phenolic oligomer is unevenly distributed to the surface layer of the top coat, it is suggested that the contact frequency of the phenolic oligomer to the EB curable adhesive is so high that graft polymerization between them is liable to occur. (author)

  3. 3D micro-crack propagation simulation at enamel/adhesive interface using FE submodeling and element death techniques.

    Science.gov (United States)

    Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang

    2010-06-01

    This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.

  4. Influence of frequency on shear fatigue strength of resin composite to enamel bonds using self-etch adhesives.

    Science.gov (United States)

    Takamizawa, Toshiki; Scheidel, Donal D; Barkmeier, Wayne W; Erickson, Robert L; Tsujimoto, Akimasa; Latta, Mark A; Miyazaki, Masashi

    2016-09-01

    The purpose of this study was to determine the influence of different frequency rates on of bond durability of self-etch adhesives to enamel using shear fatigue strength (SFS) testing. A two-step self-etch adhesive (OX, OptiBond XTR), and two single step self-etch adhesives (GB, G-ӕnial Bond and SU, Scotchbond Universal) were used in this study. The shear fatigue strength (SFS) to enamel was obtained. A staircase method was used to determine the SFS values with 50,000 cycles or until failure occurred. Fatigue testing was performed at frequencies of 5Hz, 10Hz, and 20Hz. For each test condition, 30 specimens were prepared for the SFS testing. Regardless of the bond strength test method, OX showed significantly higher SFS values than the two single-step self-etch adhesives. For each of the three individual self-etch adhesives, there was no significant difference in SFS depending on the frequency rate, although 20Hz results tended to be higher. Regardless of the self-etch adhesive system, frequencies of 5Hz, 10Hz, and 20Hz produced similar results in fatigue strength of resin composite bonded to enamel using 50,000 cycles or until bond failure. Accelerated fatigue testing provides valuable information regarding the long term durability of resin composite to enamel bonding using self-etch adhesive system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Jerky periods: myoclonus occurring solely during menses.

    Science.gov (United States)

    Buijink, Arthur W G; Gelauff, Jeannette M; van der Salm, Sandra M A; Tijssen, Marina A J; van Rootselaar, Anne-Fleur

    2013-01-01

    In this case report, we describe an unusual case of a patient with myoclonus only occurring during menses. A 41-year-old female, known to have neurological sequelae after a car accident 1 year earlier, presented with myoclonic movements of the right arm and hand only during menses. Brain magnetic resonance imaging is compatible with head trauma. Electromyography shows brief irregular bursts with a duration of about 20 ms. This appears to be the first description of myoclonus appearing only during menses. We suggest a cortical origin for myoclonus.

  6. Jerky Periods - Myoclonus Occurring Solely During Menses

    Directory of Open Access Journals (Sweden)

    Arthur W. Buijink

    2013-05-01

    Full Text Available Background: In this case report, we describe an unusual case of a patient with myoclonus only occurring during menses. Case Report: A 41-year-old female, known to have neurological sequelae after a car accident 1 year earlier, presented with myoclonic movements of the right arm and hand only during menses. Brain magnetic resonance imaging is compatible with head trauma. Electromyography shows brief irregular bursts with a duration of about 20 ms. Discussion: This appears to be the first description of myoclonus appearing only during menses. We suggest a cortical origin for myoclonus.

  7. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    Science.gov (United States)

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-06

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Bacterial adhesion to unworn and worn silicone hydrogel lenses.

    Science.gov (United States)

    Vijay, Ajay Kumar; Zhu, Hua; Ozkan, Jerome; Wu, Duojia; Masoudi, Simin; Bandara, Rani; Borazjani, Roya N; Willcox, Mark D P

    2012-08-01

    The objective of this study was to determine the bacterial adhesion to various silicone hydrogel lens materials and to determine whether lens wear modulated adhesion. Bacterial adhesion (total and viable cells) of Staphylococcus aureus (31, 38, and ATCC 6538) and Pseudomonas aeruginosa (6294, 6206, and GSU-3) to 10 commercially available different unworn and worn silicone hydrogel lenses was measured. Results of adhesion were correlated to polymer and surface properties of contact lenses. S. aureus adhesion to unworn lenses ranged from 2.8 × 10 to 4.4 × 10 colony forming units per lens. The highest adhesion was to lotrafilcon A lenses, and the lowest adhesion was to asmofilcon A lenses. P. aeruginosa adhesion to unworn lenses ranged from 8.9 × 10 to 3.2 × 10 colony forming units per lens. The highest adhesion was to comfilcon A lenses, and the lowest adhesion was to asmofilcon A and balafilcon A lenses. Lens wear altered bacterial adhesion, but the effect was specific to lens and strain type. Adhesion of bacteria, regardless of genera/species or lens wear, was generally correlated with the hydrophobicity of the lens; the less hydrophobic the lens surface, the greater the adhesion. P. aeruginosa adhered in higher numbers to lenses in comparison with S. aureus strains, regardless of the lens type or lens wear. The effect of lens wear was specific to strain and lens. Hydrophobicity of the silicone hydrogel lens surface influenced the adhesion of bacterial cells.

  9. Nipah virus entry can occur by macropinocytosis

    International Nuclear Information System (INIS)

    Pernet, Olivier; Pohl, Christine; Ainouze, Michelle; Kweder, Hasan; Buckland, Robin

    2009-01-01

    Nipah virus (NiV) is a zoonotic biosafety level 4 paramyxovirus that emerged recently in Asia with high mortality in man. NiV is a member, with Hendra virus (HeV), of the Henipavirus genus in the Paramyxoviridae family. Although NiV entry, like that of other paramyxoviruses, is believed to occur via pH-independent fusion with the host cell's plasma membrane we present evidence that entry can occur by an endocytic pathway. The NiV receptor ephrinB2 has receptor kinase activity and we find that ephrinB2's cytoplasmic domain is required for entry but is dispensable for post-entry viral spread. The mutation of a single tyrosine residue (Y304F) in ephrinB2's cytoplasmic tail abrogates NiV entry. Moreover, our results show that NiV entry is inhibited by constructions and drugs specific for the endocytic pathway of macropinocytosis. Our findings could potentially permit the rapid development of novel low-cost antiviral treatments not only for NiV but also HeV.

  10. Leachability of naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Desideri, D.; Feduzi, L.; Meli, M.A.; Roselli, C.

    2006-01-01

    Naturally occurring radioactive materials (NORM) are present in the environment and can be concentrated by technical activities, particularly those involving natural resources. These NORM deposits are highly stable and very insoluble under environmental conditions at the earth's surface. However, reducing or oxidant conditions or pH changes may enable a fraction of naturally occurring radionuclides to eventually be released to the environment. Leachability of 210 Pb and 210 Po was determined in three samples coming from a refractories production plant (dust, sludge, finished product), in one dust sample from a steelwork and in one ash sample coming from an electric power station. A sequential extraction method consisting of five operationally-defined fractions was used. The average leaching potential observed in the samples from the refractory industry is very low (mean values: 5.8% for 210 Pb and 1.7% for 210 Po). The 210 Pb and 210 Po leachability increases for the ash sample coming from an electric power plant using carbon (17.8% for 210 Pb and 10.0% for 210 Po); for the dust sample coming from a steelwork, the percent soluble fraction is 41.1% for 210 Pb and 8.5% for 210 Po. For all samples the results obtained show that 210 Pb is slightly more soluble than 210 Po. (author)

  11. Effect of evaporation on the shelf life of a universal adhesive.

    Science.gov (United States)

    Pongprueksa, P; Miletic, V; De Munck, J; Brooks, N R; Meersman, F; Nies, E; Van Meerbeek, B; Van Landuyt, K L

    2014-01-01

    The purpose of this study was to evaluate how evaporation affects the shelf life of a one-bottle universal adhesive. Three different versions of Scotchbond Universal (SBU, 3M ESPE, Seefeld, Germany) were prepared using a weight-loss technique. SBU0 was left open to the air until maximal weight loss was obtained, whereas SBU50 was left open until 50% of evaporation occurred. In contrast, SBU100 was kept closed and was assumed to contain the maximum concentration of all ingredients. The degree of conversion (DC) was determined by using Fourier transform infrared spectroscopy on different substrates (on dentin or glass plate and mixed with dentin powder); ultimate microtensile strength and microtensile bond strength to dentin were measured as well. DC of the 100% solvent-containing adhesive (SBU100) was higher than that of the 50% (SBU50) and 0% (SBU0) solvent-containing adhesives for all substrates. DC of the adhesive applied onto glass and dehydrated dentin was higher than that applied onto dentin. Even though the ultimate microtensile strength of SBU0 was much higher than that of SBU50 and SBU100, its bond strength to dentin was significantly lower. Evaporation of adhesive ingredients may jeopardize the shelf life of a one-bottle universal system by reducing the degree of conversion and impairing bond strength. However, negative effects only became evident after more than 50% evaporation.

  12. Clinical and Demographic Characteristics of Women with Intrauterine Adhesion in Abuja, Nigeria

    Directory of Open Access Journals (Sweden)

    Efena R. Efetie

    2012-01-01

    Full Text Available Objective. Infertility menstrual abnormalities continue to constitute a significant bulk of gynecological consultation in Africa. Both of these problems are sometimes traced to intrauterine adhesions which are preventable in the majority of cases. Study Design. A retrospective analysis of intrauterine adhesions at the National Hospital Abuja, Nigeria, was carried out, covering the period from 1st September 1999 to 1st September 2004. A total of 72 cases were analyzed. Statical analysis was done using 2. Results. The incidence of intrauterine adhesions was 1.73% of new patients. Mean age ± SD was 29.97±4.82 years. Patients who were Para 0 to 1 constituted 81.9% of the total. Intrauterine adhesions significantly (<0.02 occurred in nulliparae. The majority (68% were educated only up to secondary level which was significant (<0.05. Menstrual abnormalities were present in 90.3%. The commonest predisposing factor identified was a history of dilatation and curettage or uterine evacuation. Conclusion. Intrauterine adhesions are associated with lower educational status and low parity. Increasing educational targets nationally, poverty alleviation, nationwide retraining in manual vacuum aspiration, and wider application of this technique are recommended.

  13. Adaptive simplification and the evolution of gecko locomotion: Morphological and biomechanical consequences of losing adhesion

    Science.gov (United States)

    Higham, Timothy E.; Birn-Jeffery, Aleksandra V.; Collins, Clint E.; Hulsey, C. Darrin; Russell, Anthony P.

    2015-01-01

    Innovations permit the diversification of lineages, but they may also impose functional constraints on behaviors such as locomotion. Thus, it is not surprising that secondary simplification of novel locomotory traits has occurred several times among vertebrates and could potentially lead to exceptional divergence when constraints are relaxed. For example, the gecko adhesive system is a remarkable innovation that permits locomotion on surfaces unavailable to other animals, but has been lost or simplified in species that have reverted to a terrestrial lifestyle. We examined the functional and morphological consequences of this adaptive simplification in the Pachydactylus radiation of geckos, which exhibits multiple unambiguous losses or bouts of simplification of the adhesive system. We found that the rates of morphological and 3D locomotor kinematic evolution are elevated in those species that have simplified or lost adhesive capabilities. This finding suggests that the constraints associated with adhesion have been circumvented, permitting these species to either run faster or burrow. The association between a terrestrial lifestyle and the loss/reduction of adhesion suggests a direct link between morphology, biomechanics, and ecology. PMID:25548182

  14. Geckos significantly alter foot orientation to facilitate adhesion during downhill locomotion.

    Science.gov (United States)

    Birn-Jeffery, Aleksandra V; Higham, Timothy E

    2014-10-01

    Geckos employ their adhesive system when moving up an incline, but the directionality of the system may limit function on downhill surfaces. Here, we use a generalist gecko to test whether limb modulation occurs on downhill slopes to allow geckos to take advantage of their adhesive system. We examined three-dimensional limb kinematics for geckos moving up and down a 45° slope. Remarkably, the hind limbs were rotated posteriorly on declines, resulting in digit III of the pes facing a more posterior direction (opposite to the direction of travel). No significant changes in limb orientation were found in any other condition. This pes rotation leads to a dramatic shift in foot function that facilitates the use of the adhesive system as a brake/stabilizer during downhill locomotion and, although this rotation is not unique to geckos, it is significant for the deployment of adhesion. Adhesion is not just advantageous for uphill locomotion but can be employed to help deal with the effects of gravity during downhill locomotion, highlighting the incredible multi-functionality of this key innovation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. A new universal simplified adhesive: 18-month clinical evaluation.

    Science.gov (United States)

    Perdigão, J; Kose, C; Mena-Serrano, A P; De Paula, E A; Tay, L Y; Reis, A; Loguercio, A D

    2014-01-01

    To evaluate the 18-month clinical performance of a multimode adhesive (Scotchbond Universal Adhesive, SU, 3M ESPE, St Paul, MN, USA) in noncarious cervical lesions (NCCLs) using two evaluation criteria. Thirty-nine patients participated in this study. Two-hundred restorations were assigned to four groups: ERm, etch-and-rinse + moist dentin; ERd, etch-and-rinse + dry dentin; Set, selective enamel etching; and SE, self-etch. The composite resin, Filtek Supreme Ultra (3M ESPE), was placed incrementally. The restorations were evaluated at baseline, and at 18 months, using both the World Dental Federation (FDI) and the United States Public Health Service (USPHS) criteria. Statistical analyses were performed using Friedman repeated-measures analysis of variance by rank and McNemar test for significance in each pair (α=0.05). Five restorations (SE: 3; Set: 1; and ERm: 1) were lost after 18 months (p>0.05 for either criteria). Marginal staining occurred in four and 10% of the restorations evaluated (p>0.05), respectively, for USPHS and FDI criteria. Nine restorations were scored as bravo for marginal adaptation using the USPHS criteria and 38%, 40%, 36%, and 44% for groups ERm, ERd, Set, and SE, respectively, when the FDI criteria were applied (p>0.05). However, when semiquantitative scores (or SQUACE) for marginal adaptation were used, SE resulted in a significantly greater number of restorations, with more than 30% of the total length of the interface showing marginal discrepancy (28%) in comparison with the other groups (8%, 6%, and 8%, respectively, for ERm, ERd, and Set). The clinical retention of the multimode adhesive at 18 months does not depend on the bonding strategy. The only differences between strategies were found for the parameter marginal adaptation, for which the FDI criteria were more sensitive than the USPHS criteria.

  16. Segment-Specific Adhesion as a Driver of Convergent Extension

    Science.gov (United States)

    Vroomans, Renske M. A.; Hogeweg, Paulien; ten Tusscher, Kirsten H. W. J.

    2015-01-01

    Convergent extension, the simultaneous extension and narrowing of tissues, is a crucial event in the formation of the main body axis during embryonic development. It involves processes on multiple scales: the sub-cellular, cellular and tissue level, which interact via explicit or intrinsic feedback mechanisms. Computational modelling studies play an important role in unravelling the multiscale feedbacks underlying convergent extension. Convergent extension usually operates in tissue which has been patterned or is currently being patterned into distinct domains of gene expression. How such tissue patterns are maintained during the large scale tissue movements of convergent extension has thus far not been investigated. Intriguingly, experimental data indicate that in certain cases these tissue patterns may drive convergent extension rather than requiring safeguarding against convergent extension. Here we use a 2D Cellular Potts Model (CPM) of a tissue prepatterned into segments, to show that convergent extension tends to disrupt this pre-existing segmental pattern. However, when cells preferentially adhere to cells of the same segment type, segment integrity is maintained without any reduction in tissue extension. Strikingly, we demonstrate that this segment-specific adhesion is by itself sufficient to drive convergent extension. Convergent extension is enhanced when we endow our in silico cells with persistence of motion, which in vivo would naturally follow from cytoskeletal dynamics. Finally, we extend our model to confirm the generality of our results. We demonstrate a similar effect of differential adhesion on convergent extension in tissues that can only extend in a single direction (as often occurs due to the inertia of the head region of the embryo), and in tissues prepatterned into a sequence of domains resulting in two opposing adhesive gradients, rather than alternating segments. PMID:25706823

  17. Tensin stabilizes integrin adhesive contacts in Drosophila.

    Science.gov (United States)

    Torgler, Catherine N; Narasimha, Maithreyi; Knox, Andrea L; Zervas, Christos G; Vernon, Matthew C; Brown, Nicholas H

    2004-03-01

    We report the functional characterization of the Drosophila ortholog of tensin, a protein implicated in linking integrins to the cytoskeleton and signaling pathways. A tensin null was generated and is viable with wing blisters, a phenotype characteristic of loss of integrin adhesion. In tensin mutants, mechanical abrasion is required during wing expansion to cause wing blisters, suggesting that tensin strengthens integrin adhesion. The localization of tensin requires integrins, talin, and integrin-linked kinase. The N-terminal domain and C-terminal PTB domain of tensin provide essential recruitment signals. The intervening SH2 domain is not localized on its own. We suggest a model where tensin is recruited to sites of integrin adhesion via its PTB and N-terminal domains, localizing the SH2 domain so that it can interact with phosphotyrosine-containing proteins, which stabilize the integrin link to the cytoskeleton.

  18. Systemic Inflammatory Response and Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    L. V. Molchanova

    2005-01-01

    Full Text Available The lecture presents the materials of foreign studies on the mechanisms responsible for the formation of a systemic inflammatory response syndrome (SIRS. The hypotheses accounting for the occurrence of SIRS in emergencies are described. Adhesion molecules (AM and endothelial dysfunction are apparent to be involved in the inflammatory process, no matter what the causes of SIRS are. The current classification of AM and adhesion cascades with altered blood flow is presented. There are two lines in the studies of AM. One line is to measure the concentration of AM in the plasma of patients with emergencies of various etiology. The other is to study the impact of antiadhesion therapy on the alleviation of the severity of terminal state and its outcome. The studies provide evidence for that an adhesive process is a peculiar prelude to a systemic inflammatory response.

  19. Apparatus for Removing Remaining Adhesives of Filter

    International Nuclear Information System (INIS)

    Kang, Il Sik; Kim, Tae Kuk; Hong, Dae Seok; Ji, Young Yong; Ryu, Woo Seog

    2010-01-01

    A Large amount of ventilation filter was used at radiation areas not only in nuclear power plants but also in nuclear facilities. These spent ventilation filters are generated as radioactive waste and composed of a steel frame, glass fiber media and aluminum separator. When treated, the spent filter is separated into filter media for air purification and frame. After separation, while the filter media is collected using steel drum for reducing internal exposure, the filter frame is treated further to remove adhesives for recycling the frame as many as possible in order to reduce waste and cost and improve working conditions. Usually, the adhesives are separated from the filter frame manually. As a result, a lot of time and labor is required. So, the objective of this study is to develop a motor-driven apparatus for removing adhesives efficiently

  20. Prevention of root caries with dentin adhesives.

    Science.gov (United States)

    Grogono, A L; Mayo, J A

    1994-04-01

    This in vitro investigation determined the feasibility of using dentin adhesives to protect root surfaces against caries. The roots of 22 recently extracted human teeth were all painted with a protective lacquer leaving two unprotected small windows. On each specimen, one window (control) was left untreated and the other window (experimental) was treated using a dentin adhesive (Scotchbond Multi-Purpose). The roots were then immersed in an in vitro acetate/calcium/phosphate demineralization model at pH 4.3. After 70 days, the samples were removed and sectioned through the windows. The undecalcified ground sections were examined under transmitted and polarized light. Lesions characteristic of natural root caries were seen in the untreated control windows. No such lesions were apparent in the experimental windows. The results of this preliminary study suggest that dentin adhesives may provide protection against root caries.

  1. Melting Can Hinder Impact-Induced Adhesion

    Science.gov (United States)

    Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A.

    2017-10-01

    Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ˜10 μ m particle size and ˜1 km /s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.

  2. Wegener's granulomatosis occurring de novo during pregnancy.

    Science.gov (United States)

    Alfhaily, F; Watts, R; Leather, A

    2009-01-01

    Wegener's granulomatosis (WG) is rarely diagnosed during the reproductive years and uncommonly manifests for the first time during pregnancy. We report a case of de novo WG presenting at 30 weeks gestation with classical symptoms of WG (ENT, pulmonary). The diagnosis was confirmed by radiological, laboratory, and histological investigations. With a multidisciplinary approach, she had a successful vaginal delivery of a healthy baby. She was treated successfully by a combination of steroids, azathioprine and intravenous immunoglobulin in the active phase of disease for induction of remission and by azathioprine and steroids for maintenance of remission. The significant improvement in her symptoms allowed us to continue her pregnancy to 37 weeks when delivery was electively induced. Transplacental transmission of PR3-ANCA occurred but the neonate remained well. This case of de novo WG during pregnancy highlights the seriousness of this disease and the challenge in management of such patients.

  3. The Mechanisms of Adhesion of Enteromorpha Clathrata.

    Science.gov (United States)

    1982-08-24

    extracellular polymer was responsible for adhesion to a substrate (21,23,26,39,40,42,59,62,63,74,78, 86,91). The adhesion of Chlorella vulgaris may also depend...marine Chlorella vulgaris to glass. Can. J. Microbiol. 21:1025-1031. 88. Van Baalen, C., 1962. Studies on marine blue-green .4 algae. Bot. Mar. 4:129...also been observed with the unicellular green alga, Chlorella (68). Other negatively charged groups that could be present are phosphatidic groups (46

  4. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito

    2005-01-01

    that compare cells grown in suspension to similar cells grown attached to one another as aggregates have suggested that it is adhesion to the extracellular matrix of the basal membrane that confers resistance to apoptosis and, hence, resistance to cytotoxins. The genes whose expression correlates with poor...... in cell adhesion and the cytoskeleton. If the proteins involved in tethering cells to the extracellular matrix are important in conferring drug resistance, it may be possible to improve chemotherapy by designing drugs that target these proteins....

  5. Bilateral contact problem with adhesion and damage

    Directory of Open Access Journals (Sweden)

    Adel Aissaoui

    2014-05-01

    Full Text Available We study a mathematical problem describing the frictionless adhesive contact between a viscoelastic material with damage and a foundation. The adhesion process is modeled by a bonding field on the contact surface. The contact is bilateral and the tangential shear due to the bonding field is included. We establish a variational formulation for the problem and prove the existence and uniqueness of the solution. The existence of a unique weak solution for the problem is established using arguments of nonlinear evolution equations with monotone operators, a classical existence and uniqueness result for parabolic inequalities, and Banach's fixed point theorem.

  6. Reversible low adhesive to high adhesive superhydrophobicity transition on ZnO nanoparticle surfaces

    International Nuclear Information System (INIS)

    Li, Jian; Jing, Zhijiao; Yang, Yaoxia; Zha, Fei; Yan, Long; Lei, Ziqiang

    2014-01-01

    Superhydrophobic ZnO surfaces with water contact angle of 162° and sliding angle of 2° were fabricated successfully by spraying hydrophobic ZnO nanoparticle suspensions without limitations the shape and size of substrates. The as-prepared superhydrophobic ZnO surfaces are low adhesive and a water droplet easily rolls off with the surface slightly tilted. However, after being irradiated by UV light through a photomask, it becomes highly adhesive, on which a water droplet is firmly pinned without any movement. Further annealing the irradiated film, water droplets can roll off the surface again. Reversible transition between the low adhesive rolling state and high adhesive pinning state can be realized simply by UV illumination and heat treatment alternately. At the same time, the maximum adhesive force between the superhydrophobic ZnO surfaces and the water droplet changes from extreme low (∼5.1 μN) to very high (∼136.1 μN). When irradiated without a photomask, the surface became hydrophilic. Additionally, a water droplet can be transfered from the low adhesive superhydrophobic ZnO surfaces to the hydrophilic ZnO surfaces using the high adhesive superhydrophobic ZnO surfaces as a mechanical hand.

  7. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    Science.gov (United States)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  8. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Yeon; Kim, Hyung Joon; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2017-01-01

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-induced monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.

  9. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.

    Science.gov (United States)

    Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing

    2013-11-01

    Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P lenses incubated with P. aeruginosa (P lenses. Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.

  10. Capillary adhesion between elastic solids with randomly rough surfaces

    International Nuclear Information System (INIS)

    Persson, B N J

    2008-01-01

    I study how the contact area and the work of adhesion between two elastic solids with randomly rough surfaces depend on the relative humidity. The surfaces are assumed to be hydrophilic, and capillary bridges form at the interface between the solids. For elastically hard solids with relatively smooth surfaces, the area of real contact and therefore also the sliding friction are maximal when there is just enough liquid to fill out the interfacial space between the solids, which typically occurs for d K ∼3h rms , where d K is the height of the capillary bridge and h rms the root-mean-square roughness of the (combined) surface roughness profile. For elastically soft solids, the area of real contact is maximal for very low humidity (i.e. small d K ), where the capillary bridges are able to pull the solids into nearly complete contact. In both cases, the work of adhesion is maximal (and equal to 2γcosθ, where γ is the liquid surface tension and θ the liquid-solid contact angle) when d K >> h rms , corresponding to high relative humidity

  11. Aluminum and steel adhesion with polyurethanes from castor oil adhesives submitted to gamma irradiation

    International Nuclear Information System (INIS)

    Azevedo, Elaine C.; Assumpcao, Roberto L.; Nascimento, Eduardo M. do; Claro Neto, Salvador; Soboll, Daniel S.

    2009-01-01

    Polyurethanes adhesive from castor oil is used to join aluminum and steel pieces. The effect of gamma radiation on the resistance to tension tests is investigated. The aluminum and steel pieces after being glued with the adhesive were submitted to gamma irradiation in doses of 1 kGy, 25 kGy and 100 kGy. The rupture strength of the joints after irradiation have a slightly increase or remains practically unchanged indicating that the adhesive properties is not affected by the gamma radiation. (author)

  12. Introduction to naturally occurring radioactive material

    International Nuclear Information System (INIS)

    Egidi, P.

    1997-01-01

    Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. Some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to exclamation point We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these

  13. Introduction to naturally occurring radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, P.

    1997-08-01

    Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose

  14. The analysis of adhesion failure between Ni-coating and sintered NdFeB substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hengxiu, Y; Yong, D; Zhenlun, S, E-mail: yanghengxiu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 (China)

    2011-01-01

    Ni-coating was widely used to protect the sintered NdFeB magnet from corrosion by Watt electro-deposition solution. However, the protection failure always occurs due to poor adhesion strength between Ni-coating and NdFeB substrate. In present work, the adhesion strength of the Ni-coating on NdFeB substrate was measured by vertical tensile method to strip Ni-coating from NdFeB substrate. The results revealed that the adhesion failure was occurred in the side of the NdFeB substrate due to a weak zone sometimes shown cracks located inside of NdFeB substrate, rather than in the interface between Ni-coating and NdFeB substrate. Comparing with cross section morphology of NdFeB magnet after pretreatment, it is concluded that the crack could be formed during the electro-deposition process. The effect of the pH value of bath on adhesion strength indicated that the crack could be induced due to electrochemical hydrogenation of NdFeB substrate during electro-deposition.

  15. Fungi of genus Alternaria occurring on tomato

    Directory of Open Access Journals (Sweden)

    Joanna Marcinkowska

    2013-12-01

    Full Text Available Tomato early blight in central Poland was caused by Alternaria solani (A. porri f. sp., solani and A. alernata (A. tenuis. A. alternata was isolated more often than A. solani. All isolates of A. solani in controlled conditions killed tomato seedlings, while pathogenic isolates of A. alternata caused only slight seedling blight. In greenhouse tests A. solani proved to be strongly pathogenic for leaves and stems of tomato but A. alternata was weakly pathogenic. The latter species attacked only injured fruits while, A. solanicould penetrate through undamaged peel of fruits. Both of these species caused the same type of symptoms; the differences consisted only in intensification of disease symptoms. During 1974 and 1975 field tomatoes were moderately attacked by early blight. Thebest development of this disease occurred by the turn of August and September. Determinate variety 'New Yorker' was distinguished by more severe infection of stem parts of tomato whereas the fruits of a stock variety 'Apollo' were more strongly attacked.

  16. Uranium occurence in California near Bucaramanga (Columbia)

    International Nuclear Information System (INIS)

    Heider Polania, J.

    1980-01-01

    The mining district of California, Bucaramanga, is on the west side of the Cordillera Oriental in the Santander massif region. The oldest rocks of the area form a complex of metamorphites and migmatites of the predevonic age. Amphibolite various types of paragneiss and orthogneiss are represented. Several stages of metamorphism can be documented in some rocks, as well as double anatexis. Triassic to jurassic quarz diorites and leukogranites show wide distribution. Porphyric rocks of granodioritic to granitic composition, to which the uranium mineralization is mainly bonded, intruded into the sediments of the lower cretaceous. Atomic absorption spectral analyses were carried out for the elements Cu, Zn and Li, as well as the uranium contents of some samples using fluorimetry. Uranium is primarily bonded to pitch blende and coffinite. The latter mostly occur in fine distribution grown in quarz and belong to the most recent mineralization phase. Autunite, meta-autunite, torbernite, meta-torbernite, zeunerite, meta-zeunerite and meta uranocircite detected as secondary uranium minerals. (orig./HP) [de

  17. Bioassay of naturally occurring allelochemicals for phytotoxicity.

    Science.gov (United States)

    Leather, G R; Einhellig, F A

    1988-10-01

    The bioassay has been one of the most widely used tests to demonstrate allelopathic activity. Often, claims that a particular plant species inhibits the growth of another are based entirely on the seed germination response to solvent extracts of the suspected allelopathic plant; few of these tests are of value in demonstrating allelopathy under natural conditions. The veracity of the bioassay for evaluating naturally occurring compounds for phytotoxicity depends upon the physiological and biochemical response capacity of the bioassay organism and the mechanism(s) of action of the allelochemicals. The possibility that more than one allelochemical, acting in concert at very low concentrations, may be responsible for an observed allelopathic effect makes it imperative that bioassays be extremely sensitive to chemical growth perturbation agents. Among the many measures of phytotoxicity of allelochemicals, the inhibition (or stimulation) of seed germination, radicle elongation, and/or seedling growth have been the parameters of choice for most investigations. Few of these assays have been selected with the view towards the possible mechanism of the allelopathic effect.

  18. ADHESION OF BIOCOMPATIBLE TiNb COATING

    Directory of Open Access Journals (Sweden)

    Tomas Kolegar

    2017-06-01

    Full Text Available Preparation of a coating with a high quality requires good adhesion of the film to the substrate. The paper deals with the adhesion of biocompatible TiNb coating with different base materials. Several materials such as titanium CP grade 2, titanium alloys Ti6Al4V and stainless steel AISI 316L were measured. Testing samples were made in the shape of small discs. Those samples were coated with a TiNb layer by using the PVD method (magnetron sputtering. Onto the measured layer of TiNb an assistant cylinder was stuck using a high strength epoxy adhesive E1100S. The sample with the assistant cylinder was fixed into a special fixture and the whole assembly underwent pull-off testing for adhesion. The main result of this experiment was determining the strength needed to peel the layer and morphology and size of the breakaway. As a result, we will be able to determine the best base material and conditions where the coating will be remain intact with the base material.

  19. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Film adhesion in amorphous silicon solar cells. A R M YUSOFF*, M N SYAHRUL and K HENKEL. Malaysia Energy Centre, 8th Floor, North Wing, Sapura @ Mines, 7, Jalan Tasik, The Mines Resort City,. 43300 Seri Kembangan, Selangor Darul Ehsan. MS received 11 April 2007. Abstract. A major issue encountered ...

  20. Antibodies against Shigella flexneri adhesion molecule outer ...

    African Journals Online (AJOL)

    OMP) as an adhesion factor and examine its ability to cross-react with the OMPs of other Shigella species. Methods: OMP was isolated from the bacterium S. flexneri after shaving the pili using a pili bacterial cutter in a solution of 0.5 ...

  1. Microbial adhesion in flow displacement systems

    NARCIS (Netherlands)

    Busscher, HJ; van der Mei, HC

    Flow displacement systems are superior to many other (static) systems for studying microbial adhesion to surfaces because mass transport and prevailing shear conditions can be adequately controlled and notoriously ill-defined slight rinsing steps to remove so-called "loosely adhering organisms" can

  2. Two Models of Adhesive Debonding of Sylgard

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Ralph Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-14

    This report begins with a brief summary of the range of modeling methods used to simulate adhesive debonding. Then the mechanical simulation of the blister debonding test, and the thermomechanical simulation of the potted hemisphere problem are described. For both simulations, details of the chosen modeling techniques, and the reasons for choosing them (and rejecting alternate modeling approaches) will be discussed.

  3. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2008-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...

  4. Wood adhesives containing proteins and carbohydrates

    Science.gov (United States)

    In recent years there has been resurgent interest in using biopolymers as sustainable and environmentally friendly ingredients in wood adhesive formulations. Among them, proteins and carbohydrates are the most commonly used. In this chapter, an overview is given of protein-based and carbohydrate-...

  5. Radiation polymerized hot melt pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Pastor, S.D.; Skoultchi, M.M.

    1977-01-01

    Hot melt pressure sensitive adhesive compositions formed by copolymerizing at least one 3-(chlorinated aryloxy)-2-hydroxypropyl ester of an alpha, beta unsaturated carboxylic acid with acrylate based copolymerizable monomers, are described. The resultant ethylenically saturated prepolymer is heated to a temperature sufficient to render it fluid and flowable. This composition is coated onto a substrate and exposed to ultraviolet radiation

  6. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    Science.gov (United States)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  7. Adhesive Bioactive Coatings Inspired by Sea Life.

    Science.gov (United States)

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  8. Chitosan adhesive for laser tissue repair

    Science.gov (United States)

    Lauto, A.; Stoodley, M.; Avolio, A.; Foster, L. J. R.

    2006-02-01

    Background. Laser tissue repair usually relies on haemoderivate solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited repair strength, high solubility, brittleness and viral transmission. Furthermore, the solder activation temperature (65-70 °C) can induce significant damage to tissue. In this study, a new laser-activated biomaterial for tissue repair was developed and tested in vitro and in vivo to overcome some of the shortcomings of traditional solders. Materials and Methods. Flexible and insoluble strips of chitosan adhesive (surface area ~34 mm2, thickness ~20 μm) were developed and bonded on sheep intestine with a laser fluence and irradiance of 52 +/- 2 J/cm2 and ~15 W/cm2 respectively. The temperature between tissue and adhesive was measured using small thermocouples. The strength of repaired tissue was tested by a calibrated tensiometer. The adhesive was also bonded in vivo to the sciatic nerve of rats to assess the thermal damage induced by the laser (fluence = 65 +/- 11 J/cm2, irradiance = 15 W/cm2) four days post-operatively. Results. Chitosan adhesives successfully repaired intestine tissue, achieving a repair strength of 0.50 +/- 0.15 N (shear stress = 14.7 +/- 4.7 KPa, n=30) at a temperature of 60-65 °C. The laser caused demyelination of axons at the operated site; nevertheless, the myelinated axons retained their normal morphology proximally and distally.

  9. Epoxy adhesive plays crucial role at CERN

    CERN Multimedia

    2007-01-01

    "Epoxy adhesives are set to play a vital role in Europe's biggest-ever scientific experiment at the European Centrefor Nuclear Research (CERN) in Geneva, Switzerland, thereby helping scientists gain a better understanding of the origins of the universe." (1/2 page)

  10. Epoxy adhesive plays crucial role at CERN

    CERN Multimedia

    2006-01-01

    "Epoxy adhesives are set to play a vital role in Europe's biggest-ever scientific experiment at the European Centre for Nuclear Research (CERN) in Geneva, Switzerland, thereby helping scientists gain a better understanding of the origins of the universe." (1 page)

  11. Plasma treatment of polymers for improved adhesion

    International Nuclear Information System (INIS)

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer sufaces for improved adhesion are reviewed: noble and reactive has treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changer are discussed, as are the mechanisms of adhersion to polymeric adhesives, particularly epoxy. Noble has plasma eching of fluoropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhsion to epoxy. Reactive has plasma also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble and reactive gas (except for hydrogen) etching of polyolefins results in surface oxidation and imrprove adhesion via hydrogen bonding of these exygen containing groups across the interface. The introduction of amine groups to a polymer surface by ammonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical group surrounding the amine

  12. Microfabricated adhesive mimicking gecko foot-hair

    Science.gov (United States)

    Geim, A. K.; Dubonos, S. V.; Grigorieva, I. V.; Novoselov, K. S.; Zhukov, A. A.; Shapoval, S. Yu.

    2003-07-01

    The amazing climbing ability of geckos has attracted the interest of philosophers and scientists alike for centuries. However, only in the past few years has progress been made in understanding the mechanism behind this ability, which relies on submicrometre keratin hairs covering the soles of geckos. Each hair produces a miniscule force ~10-7 N (due to van der Waals and/or capillary interactions) but millions of hairs acting together create a formidable adhesion of ~10 N cm-2: sufficient to keep geckos firmly on their feet, even when upside down on a glass ceiling. It is very tempting to create a new type of adhesive by mimicking the gecko mechanism. Here we report on a prototype of such 'gecko tape' made by microfabrication of dense arrays of flexible plastic pillars, the geometry of which is optimized to ensure their collective adhesion. Our approach shows a way to manufacture self-cleaning, re-attachable dry adhesives, although problems related to their durability and mass production are yet to be resolved.

  13. Corrosion, haemocompatibility and bacterial adhesion behaviour of ...

    Indian Academy of Sciences (India)

    TiZrN coating was deposited on 316L stainless steel (SS) by the reactive magnetron co-sputtering technique. Cubic phase of TiZrN with uniform surface morphology was observed by X-ray diffraction and atomic force microscopy. Bacterial adhesion, haemocompatibility and corrosion behaviour of TiZrN coating were ...

  14. Sliding Adhesion Dynamics of Isolated Gecko Setal Arrays

    Science.gov (United States)

    Sponberg, Simon; Autumn, Kellar

    2003-03-01

    The tokay gecko (Gekko gecko) can adhere to nearly any surface through van der Waals interactions of the specialized setae (b-keratin "hairs") of its toe pads. Our recent research has suggested that a gecko is substantially overbuilt for static adhesion requiring as little as 0.03of its theoretical adhesive capacity. We performed the first sliding adhesion experiments on this novel biological adhesive to determine its response to dynamic loading. We isolated arrays of setae and constructed a precision controlled Robo-toe to study sliding effects. Our results indicate that, unlike many typical adhesives, gecko setal arrays exhibit an increased frictional force upon sliding (mk > ms) which further increases with velocity, suggesting that perturbation rejection may be an evolutionary design principle underlying the evolution of the gecko adhesive. We compare these dynamic properties with those of other adhesives and explore the impacts of these results on the design of artificial adhesives.

  15. Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Ryan; Dauskardt, Reinhold H.; Miller, David C.

    2016-06-16

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  16. Role of flexural stiffness of leukocyte microvilli in adhesion dynamics

    Science.gov (United States)

    Wu, Tai-Hsien; Qi, Dewei

    2018-03-01

    Previous work reported that microvillus deformation has an important influence on dynamics of cell adhesion. However, the existing studies were limited to the extensional deformation of microvilli and did not consider the effects of their bending deformation on cell adhesion. This Rapid Communication investigates the effects of flexural stiffness of microvilli on the rolling process related to adhesion of leukocytes by using a lattice-Boltzmann lattice-spring method (LLM) combined with adhesive dynamics (AD) simulations. The simulation results reveal that the flexural stiffness of microvilli and their bending deformation have a profound effect on rolling velocity and adhesive forces. As the flexural stiffness of the microvilli decreases, their bending angles increase, resulting in an increase in the number of receptor-ligand bonds and adhesive bonding force and a decrease in the rolling velocity of leukocytes. The effects of flexural stiffness on deformation and adhesion represent crucial factors involved in cell adhesion.

  17. Bacterial adhesion to host tissues : mechanisms and consequences

    National Research Council Canada - National Science Library

    Wilson, Michael, 1947

    2002-01-01

    "This book is about the adhesion of bacteria to their human hosts. Although adhesion is essential for maintaining members of the normal microflora in/on their host, it is also the crucial first stage in any infectious disease...

  18. Bacterial adhesion of porphyromonas gingivalis on provisional fixed prosthetic materials

    Directory of Open Access Journals (Sweden)

    Mustafa Zortuk

    2010-01-01

    Conclusion : The quantity of bacterial adhesion and surface roughness differed among the assessed provisional fixed prosthodontic materials. The light-polymerized provisional material Revotek LC had rougher surface and more bacterial adhesion compared with the others.

  19. Leakage Testing for Different Adhesive Systems and Composites to ...

    African Journals Online (AJOL)

    2015-11-16

    Nov 16, 2015 ... resin composite, the fifth group – two‑stage SE adhesive applied and cavities filled with ... KEYWORDS: Adhesives, composite, evaluation, leakage ... the glass ionomers. ... systems are realized in one or two clinical step(s).[5].

  20. A Novel Electrostatic/Microstructured Adhesive with Dust Mitigation Capabilities

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will develop a novel electrostatic/gecko-like adhesive that will demonstrate an order-of-magnitude improvement of electrostatic adhesion pressure coupled...

  1. Development and In vitro Evaluation of Betahistine Adhesive-Type ...

    African Journals Online (AJOL)

    Purpose: To develop a transdermal betahistine (BTH) delivery system using different pressure sensitive adhesives (PSAs) including acrylics, polyisobutylene and styrenic rubber solution. Methods: Formulations were prepared by solvent casting and adhesive transfer method. PSAs - acrylate vinylacetate (AVA), hydrophilic ...

  2. Evaluation of high temperature structural adhesives for extended service

    Science.gov (United States)

    Hendricks, C. L.; Hill, S. G.

    1984-01-01

    High temperature stable adhesive systems were evaluated for potential Supersonic Cruise Research (SCR) vehicle applications. The program was divided into two major phases: Phase I 'Adhesive Screening' evaluated eleven selected polyimide (PI) and polyphenylquinoxaline (PPQ) adhesive resins using eight different titanium (6Al-4V) adherend surface preparations; Phase II 'Adhesive Optimization and Characterization' extensively evaluated two adhesive systems, selected from Phase I studies, for chemical characterization and environmental durability. The adhesive systems which exhibited superior thermal and environmental bond properties were LARC-TPI polyimide and polyphenylquinoxaline both developed at NASA Langley. The latter adhesive system did develop bond failures at extended thermal aging due primarily to incompatibility between the surface preparation and the polymer. However, this study did demonstrate that suitable adhesive systems are available for extended supersonic cruise vehicle design applications.

  3. Naturally occurring flavonoids against human norovirus surrogates.

    Science.gov (United States)

    Su, Xiaowei; D'Souza, Doris H

    2013-06-01

    Naturally occurring plant-derived flavonoids are reported to have antibacterial, antiviral, and pharmacological activities. The objectives of this study were to determine the antiviral effects of four flavonoids (myricetin, L-epicatechin, tangeretin, and naringenin) on the infectivity of food borne norovirus surrogates after 2 h at 37 °C. The lab-culturable surrogates, feline calicivirus (FCV-F9) at titers of ~7 log₁₀ PFU/ml (high titer) or ~5 log₁₀ PFU/ml (low titer) and murine norovirus (MNV-1) at ~5 log₁₀ PFU/ml, were mixed with equal volumes of myricetin, L-epicatechin, tangeretin, or naringenin at concentrations of 0.5 or 1 mM, and incubated for 2 h at 37 °C. Treatments of viruses were neutralized in cell culture medium containing 10 % heat-inactivated fetal bovine serum, serially diluted, and plaque assayed. Each treatment was replicated thrice and assayed in duplicate. FCV-F9 (low titer) was not found to be reduced by tangeretin or naringenin, but was reduced to undetectable levels by myricetin at both concentrations. Low titer FCV-F9 was also decreased by 1.40 log₁₀ PFU/ml with L-epicatechin at 0.5 mM. FCV-F9 at high titers was decreased by 3.17 and 0.72 log₁₀ PFU/ml with myricetin and L-epicatechin at 0.5 mM, and 1.73 log10 PFU/ml with myricetin at 0.25 mM, respectively. However, MNV-1 showed no significant inactivation by the four tested treatments. The antiviral effects of the tested flavonoids are dependent on the virus type, titer, and dose. Further research will focus on understanding the antiviral mechanism of myricetin and L-epicatechin.

  4. Differential dormancy of co-occurring copepods

    Science.gov (United States)

    Ohman, Mark D.; Drits, Aleksandr V.; Elizabeth Clarke, M.; Plourde, Stéphane

    1998-08-01

    Four species of planktonic calanoid copepods that co-occur in the California Current System ( Eucalanus californicus Johnson, Rhincalanus nasutus Giesbrecht, Calanus pacificus californicus Brodsky, and Metridia pacifica Brodsky) were investigated for evidence of seasonal dormancy in the San Diego Trough. Indices used to differentiate actively growing from dormant animals included developmental stage structure and vertical distribution; activity of aerobic metabolic enzymes (Citrate Synthase and the Electron Transfer System complex); investment in depot lipids (wax esters and triacylglycerols); in situ grazing activity from gut fluorescence; and egg production rates in simulated in situ conditions. None of the 4 species exhibited a canonical calanoid pattern of winter dormancy - i.e., synchronous developmental arrest as copepodid stage V, descent into deep waters, reduced metabolism, and lack of winter reproduction. Instead, Calanus pacificus californicus has a biphasic life history in this region, with an actively reproducing segment of the population in surface waters overlying a deep dormant segment in winter. Eucalanus californicus is dormant as both adult females and copepodid V's, although winter females respond relatively rapidly to elevated food and temperature conditions; they begin feeding and producing eggs within 2-3 days. Rhincalanus nasutus appears to enter dormancy as adult females, although the evidence is equivocal. Metridia pacifica shows no evidence of dormancy, with sustained active feeding, diel vertical migration behavior, and elevated activity of metabolic enzymes in December as well as in June. The four species also differ markedly in water content, classes of storage lipids, and specific activity of Citrate Synthase. These results suggest that copepod dormancy traits and structural composition reflect diverse adaptations to regional environmental conditions rather than a uniform, canonical series of traits that remain invariant among taxa

  5. Wet adhesion with application to tree frog adhesive toe pads and tires

    International Nuclear Information System (INIS)

    Persson, B N J

    2007-01-01

    Strong adhesion between solids with rough surfaces is only possible if at least one of the solids is elastically very soft. Some lizards and spiders are able to adhere (dry adhesion) and move on very rough vertical surfaces due to very compliant surface layers on their attachment pads. Flies, bugs, grasshoppers and tree frogs have less compliant pad surface layers, and in these cases adhesion to rough surfaces is only possible because the animals inject a wetting liquid into the pad-substrate contact area, which generates a relative long-range attractive interaction due to the formation of capillary bridges. In this presentation I will discuss some aspects of wet adhesion for tree frogs and give some comments related to tire applications

  6. Wet adhesion with application to tree frog adhesive toe pads and tires

    Energy Technology Data Exchange (ETDEWEB)

    Persson, B N J [IFF, FZ-Juelich, 52425 Juelich (Germany)

    2007-09-19

    Strong adhesion between solids with rough surfaces is only possible if at least one of the solids is elastically very soft. Some lizards and spiders are able to adhere (dry adhesion) and move on very rough vertical surfaces due to very compliant surface layers on their attachment pads. Flies, bugs, grasshoppers and tree frogs have less compliant pad surface layers, and in these cases adhesion to rough surfaces is only possible because the animals inject a wetting liquid into the pad-substrate contact area, which generates a relative long-range attractive interaction due to the formation of capillary bridges. In this presentation I will discuss some aspects of wet adhesion for tree frogs and give some comments related to tire applications.

  7. Evidence for van der Waals adhesion in gecko setae

    OpenAIRE

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A.; Peattie, Anne M.; Hansen, Wendy R.; Sponberg, Simon; Kenny, Thomas W.; Fearing, Ronald; Israelachvili, Jacob N.; Full, Robert J.

    2002-01-01

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well ...

  8. Amperometric Adhesion Signals of Liposomes, Cells and Droplets

    OpenAIRE

    Ivošević DeNardis, N.; Žutić, V.; Svetličić, V.; Frkanec, R.

    2009-01-01

    Individual soft microparticles (liposomes, living cells and organic droplets) in aqueous media are characterized by their adhesion signals using amperometry at the dropping mercury electrode. We confirmed that the general mechanism established for adhesion of hydrocarbon droplets and cells is valid as well for liposome adhesion within a wide range of surface charge densities. Incidents and shape of adhesion signals in liposome suspensions reflect liposome polydispersity, surface charge den...

  9. How do liquids confined at the nanoscale influence adhesion?

    International Nuclear Information System (INIS)

    Yang, C; Tartaglino, U; Persson, B N J

    2006-01-01

    Liquids play an important role in adhesion and sliding friction. They behave as lubricants in human bodies, especially in the joints. However, in many biological attachment systems they act like adhesives, e.g. facilitating insects to move on ceilings or vertical walls. Here we use molecular dynamics to study how liquids confined at the nanoscale influence the adhesion between solid bodies with smooth and rough surfaces. We show that a monolayer of liquid may strongly affect the adhesion

  10. Adhesive capsulitis of the shoulder: MR arthrography

    International Nuclear Information System (INIS)

    Kim, Hyun Jeong; Han, Tae Il; Lee, Kwang Won; Choi, Youn Seon; Kim, Dae Hong; Han, Hyun Young; Song, Mun Kab; Kwon, Soon Tae

    2001-01-01

    Adhesive capsulitis is a clinical syndrome involving pain and decreased joint motion caused by thickening and contraction of the joint capsule. The purpose of this study is to describe the MR arthrographic findings of this syndrome. Twenty-nine sets of MR arthrographic images were included in the study. Fourteen patients had adhesive capsulitis diagnosed by physical examination and arthrography, and their MR arthrographic findings were compared with those of 15 subjects in the control group. The images were retrospectively reviewed with specific attention to the thickness of the joint capsule, volume of the axillary pouch (length, width, height(depth)), thinkness of the coracohumeral ligament, presence of extra-articular contrast extravasation, and contrst filling of the subcoracoid bursa. Mean capsular thickness measured at the inferior portion of the axillary pouch was 4.1 mm in patients with adhesive capsulitis and 1.5 mm in the control group. The mean width of the axillary pouch was 2.5 mm in patients and 9.5 mm in controls. In patients, the capsule was significantly thicker and the axillary pouch significantly narrower than in controls (p<0.05). Capsule thickness greater than 2.5 mm at the inferior portion of the axillary pouch (sensitivity 93%, specificity 80%) and a pouch narrower than 3.5 mm (sensitivity 93%, specificity 100%) were useful criteria for the diagnosis of adhesive capsulitis. In patients with this condition, extra-articular contrast extravasation was noted in six patients (43%) and contrast filling of the subcoracoid bursa in three (21%). The MR arthrographic findings of adhesive capsulitis are capsular thickening, a low-volume axillary pouch, extra-articular contrast extravasation, and contrast filling of the subcoracoid bursa. Capsule thickness greater than 2.5 mm at the inferior portion of the axillary pouch and a pouch width of less than 3.5 mm are useful diagnostic imaging characteristics

  11. Surface pretreatments for medical application of adhesion

    Directory of Open Access Journals (Sweden)

    Weber Michael

    2003-09-01

    Full Text Available Abstract Medical implants and prostheses (artificial hips, tendono- and ligament plasties usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m. This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body.

  12. Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin.

    Science.gov (United States)

    Luque-Martinez, Issis V; Perdigão, Jorge; Muñoz, Miguel A; Sezinando, Ana; Reis, Alessandra; Loguercio, Alessandro D

    2014-10-01

    To evaluate the microtensile bond strengths (μTBS) and nanoleakage (NL) of three universal or multi-mode adhesives, applied with increasing solvent evaporation times. One-hundred and forty caries-free extracted third molars were divided into 20 groups for bond strength testing, according to three factors: (1) Adhesive - All-Bond Universal (ABU, Bisco, Inc.), Prime&Bond Elect (PBE, Dentsply), and Scotchbond Universal Adhesive (SBU, 3M ESPE); (2) Bonding strategy - self-etch (SE) or etch-and-rinse (ER); and (3) Adhesive solvent evaporation time - 5s, 15s, and 25s. Two extra groups were prepared with ABU because the respective manufacturer recommends a solvent evaporation time of 10s. After restorations were constructed, specimens were stored in water (37°C/24h). Resin-dentin beams (0.8mm(2)) were tested at 0.5mm/min (μTBS). For NL, forty extracted molars were randomly assigned to each of the 20 groups. Dentin disks were restored, immersed in ammoniacal silver nitrate, sectioned and processed for evaluation under a FESEM in backscattered mode. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. drying time) for each strategy, and Tukey's test (α=0.05). NL data were computed with non-parametric tests (Kruskal-Wallis and Mann-Whitney tests, α=0.05). Increasing solvent evaporation time from 5s to 25s resulted in statistically higher mean μTBS for all adhesives when used in ER mode. Regarding NL, ER resulted in greater NL than SE for each of the evaporation times regardless of the adhesive used. A solvent evaporation time of 25s resulted in the lowest NL for SBU-ER. Residual water and/or solvent may compromise the performance of universal adhesives, which may be improved with extended evaporation times. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Adhesion of Pharmaceutical Binding Agents I-Adhesion to polymeric materials

    Directory of Open Access Journals (Sweden)

    Hossain Orafai

    1996-08-01

    Full Text Available Adhesion of three commonly used pharmaceutical binding agents, HPMC , PVP and Gelatin to five different polymeric sheet materials was studied. After conditioning, the bond strength of the specimens were measured by shear testing method using a suitablely designed apparatus. The results were correlated to the surface energies and the solubiiity parameters of the adherends. It is concluded that the thermodynamic properties and the solubility parameters are dominant when the mechanisms of adhesion are by adsorption and diffusion respectively.

  14. Retrospective Study of the Prevalence and Risk Factors of Clitoral Adhesions: Women's Health Providers Should Routinely Examine the Glans Clitoris

    Directory of Open Access Journals (Sweden)

    Leen Aerts, MD, PhD

    2018-06-01

    Full Text Available Introduction: The glans clitoris is covered by a prepuce that normally moves over the glans surface and can be retracted beyond the corona. Clitoral adhesions, ranging from mild to severe, occur when preputial skin adheres to the glans. Physical examination consistent with clitoral adhesions is based on the inability to visualize the entire glans corona. In this closed compartment, the space underneath the adherent prepuce and clitoris can become irritated, erythematous, or infected and can result in sexual dysfunction. Aim: To determine the prevalence of clitoral adhesions in a sexual medicine practice and assess risk factors associated with clitoral adhesions. Methods: This research involved retrospective examinations of vulvoscopy photographs taken from August 2007 to December 2015. Clitoral adhesions were considered absent when preputial retraction enabled full glans corona visualization. The study group consisted of women with mild, moderate, or severe clitoral adhesions based on more than 75%, 25% to 75%, or less than 25% glans clitoris exposure without full corona visualization, respectively. 2 independent reviewers evaluated photographs; a 3rd analyzed study group health record data. Main Outcome Measure: Prevalence of severity of clitoral adhesions. Results: Of the 1,261 vulvoscopy photographs, 767 (61% were determined adequate for assessment and 614 photographs represented individual patients. The study group with clitoral adhesions consisted of 140 women (23% of whom 44%, 34%, and 22% demonstrated mild, moderate, and severe clitoral adhesions, respectively. In the study group, 14% presented with clitorodynia. Risk factors included a history of sexual pain, yeast infection, urinary tract infection, blunt perineal or genital trauma, lichen sclerosus, low calculated free testosterone, and other sexual dysfunctions including persistent genital arousal disorder. Conclusion: Women with sexual dysfunction should routinely undergo clitoral

  15. Information Needs While A Disaster Is Occurring

    Science.gov (United States)

    Perry, S. C.

    2010-12-01

    that rainfall intensity at their homes might be less than the intensity up in the mountains where the debris flows would start. Nor did they know that debris flows travel too quickly to be outrun. These and many other examples indicate need for social and natural scientists to increase awareness of what to expect when the disaster strikes. This information must be solidly understood before the event occurs - while a disaster is unfolding there are no teachable moments. Case studies indicate that even those who come into a disaster well educated about the phenomenon can struggle to apply what they know when the real situation is at hand. In addition, psychological studies confirm diminished ability to comprehend information at times of stress.

  16. Geometry- and rate-dependent adhesive failure of micropatterned surfaces

    NARCIS (Netherlands)

    Bakker, H.; Lindstrom, S.B.; Sprakel, J.H.B.

    2012-01-01

    The dynamic nature of adhesive interface failure remains poorly understood, especially when the contact between the two surfaces is localized in microscopic points of adhesion. Here, we explore the dynamic failure of adhesive interfaces composed of a large number of micron-sized pillars against

  17. Adhesion of tissue glues to different biological substrates

    NARCIS (Netherlands)

    Bochynska, A. I.; Hannink, G.; Buma, P.; Grijpma, D. W.

    2017-01-01

    Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly

  18. Adhesion of tissue glues to different biological substrates

    NARCIS (Netherlands)

    Bochynska, Agnieszka; Hannink, G.; Buma, P.; Grijpma, Dirk W.

    2016-01-01

    Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly

  19. Anisotropic Adhesion Properties of Triangular-Tip-Shaped Micropillars

    KAUST Repository

    Kwak, Moon Kyu

    2011-06-01

    Directional dry adhesive microstructures consisting of high-density triangular-tip-shaped micropillars are described. The wide-tip structures allow for unique directional shear adhesion properties with respect to the peeling direction, along with relatively high normal adhesion. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A comprehensive toxicological evaluation of three adhesives using experimental cigarettes.

    Science.gov (United States)

    Coggins, Christopher R E; Jerome, Ann M; Lilly, Patrick D; McKinney, Willie J; Oldham, Michael J

    2013-01-01

    Adhesives are used in several different manufacturing operations in the production of cigarettes. The use of new, "high-speed-manufacture" adhesives (e.g. vinyl acetate based) could affect the smoke chemistry and toxicology of cigarettes, compared with older "low-speed-manufacture" adhesives (e.g. starch based). This study was conducted to determine whether the inclusion of different levels of three adhesives (ethylene vinyl acetate, polyvinyl acetate and starch) in experimental cigarettes results in different smoke chemistry and toxicological responses in in vitro and in vivo assays. A battery of tests (analytical chemistry, in vitro and in vivo assays) was used to compare the chemistry and toxicology of smoke from experimental cigarettes made with different combinations of the three adhesives. Varying levels of the different side-seam adhesives, as well as the transfer of adhesives from packaging materials, were tested. There were differences in some mainstream cigarette smoke constituents as a function of the level of adhesive added to experimental cigarettes and between the tested adhesives. None of these differences translated into statistically significant differences in the in vitro or in vivo assays. The use of newer "high-speed-manufacture" vinyl acetate-based adhesives in cigarettes does not produce toxicological profiles that prevent the adhesives from replacing the older "low-speed-manufacture" adhesives (such as starch).

  1. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable contact adhesives, also known as contact bonding cements, when distributed in containers intended or suitable for...

  2. Characterizing phenolformaldehyde adhesive cure chemistry within the wood cell wall

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Adhesive bonding of wood using phenol-formaldehyde remains the industrial standard in wood product bond durability. Not only does this adhesive infiltrate the cell wall, it also is believed to form primary bonds with wood cell wall polymers, particularly guaiacyl lignin. However, the mechanism by which phenol-formaldehyde adhesive intergrally interacts and bonds to...

  3. Anisotropic Adhesion Properties of Triangular-Tip-Shaped Micropillars

    KAUST Repository

    Kwak, Moon Kyu; Jeong, Hoon Eui; Bae, Won Gyu; Jung, Ho-Sup; Suh, Kahp Y.

    2011-01-01

    Directional dry adhesive microstructures consisting of high-density triangular-tip-shaped micropillars are described. The wide-tip structures allow for unique directional shear adhesion properties with respect to the peeling direction, along with relatively high normal adhesion. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Leakage testing for different adhesive systems and composites to ...

    African Journals Online (AJOL)

    The teeth were randomly assigned to six groups of 14 teeth each as follows: The first group – etch‑rinse adhesive applied and cavities filled with flowable composite, the second group – etch‑rinse adhesive applied and cavities filled with bulk‑fill resin composite, the third group – one‑stage self‑etch (SE) adhesive applied ...

  5. Influence of Conditioning Time of Universal Adhesives on Adhesive Properties and Enamel-Etching Pattern.

    Science.gov (United States)

    Cardenas, A M; Siqueira, F; Rocha, J; Szesz, A L; Anwar, M; El-Askary, F; Reis, A; Loguercio, A

    2016-01-01

    To evaluate the effect of application protocol in resin-enamel microshear bond strength (μSBS), in situ degree of conversion, and etching pattern of three universal adhesive systems. Sixty-three extracted third molars were sectioned in four parts (buccal, lingual, and proximals) and divided into nine groups, according to the combination of the main factors-Adhesive (Clearfil Universal, Kuraray Noritake Dental Inc, Tokyo, Japan; Futurabond U, VOCO, Cuxhaven, Germany; and Scotchbond Universal Adhesive, 3M ESPE, St Paul, MN, USA)-and enamel treatment/application time (etch-and-rinse mode [ER], self-etch [SE] application for 20 seconds [SE20], and SE application for 40 seconds [SE40]). Specimens were stored in water (37°C/24 h) and tested at 1.0 mm/min (μSBS). The degree of conversion of the adhesives at the resin-enamel interfaces was evaluated using micro-Raman spectroscopy. The enamel-etching pattern was evaluated under a scanning electron microscope. Data were analyzed with two-way analysis of variance and Tukey test (α=0.05). In general, the application of the universal adhesives in the SE40 produced μSBS and degree of conversion that were higher than in the SE20 (puniversal adhesives in the SE mode may be a viable alternative to increase the degree of conversion, etching pattern, and resin-enamel bond strength.

  6. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  7. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    Science.gov (United States)

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-10-23

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  8. Enhancing the Adhesive Strength of a Plywood Adhesive Developed from Hydrolyzed Specified Risk Materials

    Directory of Open Access Journals (Sweden)

    Birendra B. Adhikari

    2016-08-01

    Full Text Available The current production of wood composites relies mostly on formaldehyde-based adhesives such as urea formaldehyde (UF and phenol formaldehyde (PF resins. As these resins are produced from non-renewable resources, and there are some ongoing issues with possible health hazard due to formaldehyde emission from such products, the purpose of this research was to develop a formaldehyde-free plywood adhesive utilizing waste protein as a renewable feedstock. The feedstock for this work was specified risk material (SRM, which is currently being disposed of either by incineration or by landfilling. In this report, we describe a technology for utilization of SRM for the development of an environmentally friendly plywood adhesive. SRM was thermally hydrolyzed using a Canadian government-approved protocol, and the peptides were recovered from the hydrolyzate. The recovered peptides were chemically crosslinked with polyamidoamine-epichlorohydrin (PAE resin to develop an adhesive system for bonding of plywood specimens. The effects of crosslinking time, peptides/crosslinking agent ratio, and temperature of hot pressing of plywood specimens on the strength of formulated adhesives were investigated. Formulations containing as much as 78% (wt/wt peptides met the ASTM (American Society for Testing and Materials specifications of minimum dry and soaked shear strength requirement for UF resin type adhesives. Under the optimum conditions tested, the peptides–PAE resin-based formulations resulted in plywood specimens having comparable dry as well as soaked shear strength to that of commercial PF resin.

  9. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    Science.gov (United States)

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  10. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    Science.gov (United States)

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering.

  11. Primary Adhesion in Enteromorpha. Cue Detection and Surface Selection in the Settlement and Adhesion of Enteromorpha Spores

    National Research Council Canada - National Science Library

    Callow, James

    2001-01-01

    .... spore settlement and adhesion. Our results provide the most comprehensive characterisation of the settlement and adhesion processes and the roles of surface-associated cues, of any soft-fouling species to date, We have shown...

  12. Effect of Phosphoric Acid Pre-etching on Fatigue Limits of Self-etching Adhesives.

    Science.gov (United States)

    Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D D; Erickson, R L; Latta, M A; Miyazaki, M

    2015-01-01

    The purpose of this study was to use shear bond strength (SBS) and shear fatigue limit (SFL) testing to determine the effect of phosphoric acid pre-etching of enamel and dentin prior to application of self-etch adhesives for bonding resin composite to these substrates. Three self-etch adhesives--1) G- ænial Bond (GC Corporation, Tokyo, Japan); 2) OptiBond XTR (Kerr Corp, Orange, CA, USA); and 3) Scotchbond Universal (3M ESPE Dental Products, St Paul, MN, USA)--were used to bond Z100 Restorative resin composite to enamel and dentin surfaces. A stainless-steel metal ring with an inner diameter of 2.4 mm was used to bond the resin composite to flat-ground (4000 grit) tooth surfaces for determination of both SBS and SFL. Fifteen specimens each were used to determine initial SBS to human enamel/dentin, with and without pre-etching with a 35% phosphoric acid (Ultra-Etch, Ultradent Products Inc, South Jordan, UT, USA) for 15 seconds prior to the application of the adhesives. A staircase method of fatigue testing (25 specimens for each test) was then used to determine the SFL of resin composite bonded to enamel/dentin using a frequency of 10 Hz for 50,000 cycles or until failure occurred. A two-way analysis of variance and Tukey post hoc test were used for analysis of SBS data, and a modified t-test with Bonferroni correction was used for the SFL data. Scanning electron microscopy was used to examine the area of the bonded restorative/tooth interface. For all three adhesive systems, phosphoric acid pre-etching of enamel demonstrated significantly higher (padhesives clearly demonstrated different tendencies between enamel and dentin. The effect of using phosphoric acid, prior to the application of the self-etching adhesives, on SBS and SFL was dependent on the adhesive material and tooth substrate and should be carefully considered in clinical situations.

  13. Catheter-assisted retrieval of adhesive Geunther Tulip filter: preliminary experience

    International Nuclear Information System (INIS)

    Xiao Liang; Tong Jiajie; Xie Shiyang; Shen Jing

    2011-01-01

    Objective: To retrospectively summarize the technical experience in performing catheter-assisted retrieval of adhesive Geunther Tulip filter. Methods: During the period from November 2007 to October 2009, 95 patients with pulmonary embolism and acute deep vein thrombosis of lower limbs were admitted to authors' hospital. As simple snare technique failed to catch the adhesive Geunther Tulip filter previously implanted in inferior vena cava (IVC) in 6 patients (four males and two females with a mean age of 43.7 years), catheter-assisted retrieval of adhesive Geunther Tulip filter had to be carried out. The specific procedure was as follows. After phlebography of IVC confirmed that the filter's retrieval hook had adhered to IVC wall, the adhesion was separated with the help of catheter as well as goose-neck capturing device, then, the Geunther Tulip filter was retrieved. After the procedure, both anticoagulation and antibiotic medication were employed for 3-5 days. All the patients were followed up for 4-12 months. Vascular ultrasonography and pulmonary 3D CTA were re-examined in 6 months after primary operation. Results: All 6 adhesive Geunther Tulip filters were successfully removed with a success rate of 100%. The manipulation used in the procedure included catheter-twisting technique (n=1), catheter-looping technique (n=1) and catheter-snare looping technique (n=4). The mean operation time was 40.5 minutes (in the range of 17-78 minutes). The average filter-dwelling time was 46.7 days (ranging from 14 to 80 days). No thrombus formation in deep veins of lower extremity or pulmonary embolism occurred during the follow-up period. Conclusion: The catheter-assisted retrieval technique carries high retrieval rate for adhesive Geunther Tulip filter in IVC, it can markedly improve the retrieval success rate of Tulip IVC filter. (authors)

  14. Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphae--an AFM study.

    Science.gov (United States)

    Ovchinnikova, Ekaterina S; van der Mei, Henny C; Krom, Bastiaan P; Busscher, Henk J

    2013-10-01

    Staphylococcus aureus and Candida albicans are the second and third most commonly isolated microorganisms in hospital-related-infections, that are often multi-species in nature causing high morbidity and mortality. Here, adhesion forces between a S. aureus strain and abiotic (tissue-culture-polystyrene, TCPS) or partly biotic (TCPS with adhering hyphae of C. albicans) surfaces were investigated in presence of fetal-bovine-serum or individual serum proteins and related with staphylococcal adhesion. Atomic-force-microscopy was used to measure adhesion forces between S. aureus and the abiotic and biotic surfaces. Adsorption of individual serum proteins like albumin and apo-transferrin to abiotic TCPS surfaces during 60min, impeded development of strong adhesion forces as compared to fibronectin, while 60min adsorption of proteins from fetal-bovine-serum yielded a decrease in adhesion force from -5.7nN in phosphate-buffered-saline to -0.6nN. Adsorption of albumin and apo-transferrin also decreased staphylococcal adhesion forces to hyphae as compared with fibronectin. During 60min exposure to fetal-bovine-serum however, initial (5min protein adsorption) staphylococcal adhesion forces were low (-1.6nN), but strong adhesion forces of around -5.5nN were restored within 60min. This suggests for the first time that in whole fetal-bovine-serum exchange of non-adhesive proteins by fibronectin occurs on biotic C. albicans hyphal surfaces. No evidence was found for such protein exchange on abiotic TCPS surfaces. Staphylococcal adhesion of abiotic and biotic surfaces varied in line with the adhesion forces and was low on TCPS in presence of fetal-bovine-serum. On partly biotic TCPS, staphylococci aggregated in presence of fetal-bovine-serum around adhering C. albicans hyphae. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Husk to caryopsis adhesion in barley is influenced by pre- and post-anthesis temperatures through changes in a cuticular cementing layer on the caryopsis.

    Science.gov (United States)

    Brennan, M; Shepherd, T; Mitchell, S; Topp, C F E; Hoad, S P

    2017-10-23

    At ripeness, the outer husk of "covered" barley grains firmly adheres to the underlying caryopsis. A cuticular cementing layer on the caryopsis is required for husk adhesion, however the quality of adhesion varies significantly among cultivars which produce the cementing layer, resulting in the economically important malting defect, grain skinning. The composition of the cementing layer, and grain organ development have been hypothesised to influence the quality of husk adhesion. Plants of Hordeum vulgare 'Concerto' were grown at different temperatures pre- and post-anthesis to effect changes in the development of the husk, caryopsis and cuticular cementing layer, to determine how these variables influence the quality of husk-to-caryopsis adhesion. Warm conditions pre-anthesis decreased the quality of husk adhesion, and consequently increased the incidence of grain skinning. Cool post-anthesis conditions further decreased the quality of husk adhesion. The composition of the cementing layer, rather than its structure, differed with respect to husk adhesion quality. This cementing layer was produced at the late milk stage, occurring between nine and 29 days post-anthesis, conditional on the temperature-dependent growth rate. The compounds octadecanol, tritriacontane, campesterol and β-sitosterol were most abundant in caryopses with high-quality husk adhesion. The differences in adhesion quality were not due to incompatible husk and caryopsis dimensions affecting organ contact. This study shows that husk-to-caryopsis adhesion is dependent on cementing layer composition, and implies that this composition is regulated by temperature before, and during grain development. Understanding this regulation will be key to improving husk-to-caryopsis adhesion.

  16. Normally Oriented Adhesion versus Friction Forces in Bacterial Adhesion to Polymer-Brush Functionalized Surfaces Under Fluid Flow

    NARCIS (Netherlands)

    Swartjes, Jan J. T. M.; Veeregowda, Deepak H.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2014-01-01

    Bacterial adhesion is problematic in many diverse applications. Coatings of hydrophilic polymer chains in a brush configuration reduce bacterial adhesion by orders of magnitude, but not to zero. Here, the mechanism by which polymer-brush functionalized surfaces reduce bacterial adhesion from a

  17. Effects of rework on adhesion of Pb-In soldered gold thick films

    International Nuclear Information System (INIS)

    Gehman, R.W.; Becka, G.A.; Losure, J.A.

    1982-02-01

    The feasibility of repeatedly reworking Pb-In soldered joints on gold thick films was evaluated. Nailhead adhesion tests on soldered thick films typically resulted in failure within the bulk solder (50 In-50 Pb). Average strengths increased with each rework, and the failure mode changed. An increase in metalization lift-off occurred with successive reworks. An investigation was initiated to determine why these changes occurred. Based on this work, the thick film adhesion to the substrate appeared to be lowered by indium reduction of cadmium oxide and by formation of a weak, brittle intermetallic compound, Au 9 In 4 . It was concluded that two solder reworks could be conducted without significant amounts of metallization lift-off during nailhead testing

  18. Intercellular Adhesion Molecule-1 Levels in Experimental Brain Injury and the Effects of Alpha-tocopherol

    Directory of Open Access Journals (Sweden)

    Nilgun Senol

    2014-06-01

    Full Text Available Aim: The mechanisms, responsible for the secondary injuries occuring after acute injury of the brain are; release of nitrous oxide which is an inflammatory mediator, abnormal formation of free oxygen radicals and excessive stimulation of excitatory aminoacids. In this study, it is aimed to investigate changes in intercellular adhesion molecule levels in the brain, that occur subsequent to blunt head trauma, and after administration of an antioxidant agent, vitamin E. Material and Method: In this study, rats were divided into 4 groups. In group A; rats had only skin incision, group B; rats were traumatized after the skin incision, group C; isotonic (30mg/kg was given intraperitoneally after 30 minutes of the trauma, group D; alpha-tocopherol (30mg/kg was given intraperitoneally, after 30 minutes of the trauma. All the rats in these groups were sacrified after 24 hours. Biparietal and bifrontal lobs were taken about 3x5x1mm tickness and intercellular adhesion molecule-1 levels were studied by enzyme-linked immunosorbent assay kit. Results: As the result of the statistical analysis, it is detected that although there is an increase in intercellular adhesion molecule levels in brain parenchyma after trauma, it is statistically unsignificant. However, as the traumatized group and the group given alpha-tocopherol after trauma was compared, a statistically significant decrease in intercellular adhesion molecule-1 levels in the alpha-tocopherol given group was seen. Discussion: Alpha-tocopherol, an antioxidant agent, causes decrease in intercellular adhesion molecule levels, by decreasing inflammation.

  19. Uranium occurence in nature: Geophysical prospecting, and its occurence in Syria

    International Nuclear Information System (INIS)

    Al-Haj Rasheed, Zaki

    1985-01-01

    A general idea about naturaly occured uranium minerals such as uranite, pechblende, carnotite, coffinit, and bronnerit is given. At the same time, different geophysical methods and detecting devices applied for uranium exploration have been demonstrated. Investigations and studies carried out in Syria point to a uranium content of 100 ppm in the exploited Syrian phosphorite. 1 fig., 1 tab

  20. Impact of sub-inhibitory antibiotics on fibronectin-mediated host cell adhesion and invasion by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rasigade Jean

    2011-12-01

    Full Text Available Abstract Background Staphylococcus aureus is a well-armed pathogen prevalent in severe infections such as endocarditis and osteomyelitis. Fibronectin-binding proteins A and B, encoded by fnbA/B, are major pathogenesis determinants in these infections through their involvement in S. aureus adhesion to and invasion of host cells. Sub-minimum inhibitory concentrations (sub-MICs of antibiotics, frequently occurring in vivo because of impaired drug diffusion at the infection site, can alter S. aureus phenotype. We therefore investigated their impact on S. aureus fibronectin-mediated adhesiveness and invasiveness. Methods After in vitro challenge of S. aureus 8325-4 and clinical isolates with sub-MICs of major anti-staphylococcal agents, we explored fnbA/B transcription levels, bacterial adhesiveness to immobilised human fibronectin and human osteoblasts in culture, and bacterial invasion of human osteoblasts. Results Oxacillin, moxifloxacin and linezolid led to the development of a hyper-adhesive phenotype in the fibronectin adhesion assay that was consistent with an increase in fnbA/B transcription. Conversely, rifampin treatment decreased fibronectin binding in all strains tested without affecting fnbA/B transcription. Gentamicin and vancomycin had no impact on fibronectin binding or fnbA/B transcription levels. Only oxacillin-treated S. aureus displayed a significantly increased adhesion to cultured osteoblasts, but its invasiveness did not differ from that of untreated controls. Conclusion Our findings demonstrate that several antibiotics at sub-MICs modulate fibronectin binding in S. aureus in a drug-specific fashion. However, hyper- and hypo- adhesive phenotypes observed in controlled in vitro conditions were not fully confirmed in whole cell infection assays. The relevance of adhesion modulation during in vivo infections is thus still uncertain and requires further investigations.

  1. Bonding performance of self-adhesive flowable composites to enamel, dentin and a nano-hybrid composite.

    Science.gov (United States)

    Peterson, Jana; Rizk, Marta; Hoch, Monika; Wiegand, Annette

    2018-04-01

    This study aimed to analyze bond strengths of self-adhesive flowable composites on enamel, dentin and nano-hybrid composite. Enamel, dentin and nano-hybrid composite (Venus Diamond, Heraeus Kulzer, Germany) specimens were prepared. Three self-adhesive composites (Constic, DMG, Germany; Fusio Liquid Dentin, Pentron Clinical, USA; Vertise Flow, Kerr Dental, Italy) or a conventional flowable composite (Venus Diamond Flow, Heraeus Kulzer, Germany, etch&rinse technique) were applied to enamel and dentin. Nano-hybrid composite specimens were initially aged by thermal cycling (5000 cycles, 5-55 °C). Surfaces were left untreated or pretreated by mechanical roughening, Al 2 O 3 air abrasion or silica coating/silanization. In half of the composite specimens, an adhesive (Optibond FL, Kerr Dental, Italy) was used prior to the application of the flowable composites. Following thermal cycling (5000 cycles, 5-55 °C) of all specimens, shear bond strengths (SBS) and failure modes were analyzed (each subgroup n = 16). Statistical analysis was performed by ANOVAs/Bonferroni post hoc tests, Weibull statistics and χ 2 -tests (p composites on enamel and dentin were significantly lower (enamel: composite (enamel: 13.0 ± 5.1, dentin: 11.2 ± 6.3), and merely adhesive failures could be observed. On the nano-hybrid composite, SBS were significantly related to the pretreatment. Adhesive application improved SBS of the conventional, but not of the self-adhesive composites. The self-adhesive composite groups showed less cohesive failures than the reference group; the occurence of cohesive failures increased after surface pretreatment. Bonding of self-adhesive flowable composites to enamel and dentin is lower than bonding to a nano-hybrid composite.

  2. Adhesion mechanisms of nanoparticle silver to substrate materials: identification

    International Nuclear Information System (INIS)

    Joo, Sungchul; Baldwin, Daniel F

    2010-01-01

    Nanoparticle silver (NPS) conductors are increasingly being investigated for printed electronics applications. However, the adhesion mechanism of the nanoparticle silver to substrate materials has not been identified yet. In particular, the adhesion of NPS to organic materials such as the widely used polyimide Kapton HN and Kapton FPC dry films is concerned with low adhesion strength because the processed polymer surface is chemically inert. Moreover, its adhesion to substrate materials such as benzocyclobutene (BCB), copper and aluminum was found to be very weak. Therefore, in this paper, the mechanisms of NPS adhesion to organic and inorganic materials are identified as the first step in improving NPS adhesion strength. Improving the adhesion strength of NPS will be the key issue for printed electronics applications. The adhesion of NPS to substrate materials was found to be mainly attributed to van der Waals forces based on particle adhesion mechanisms. This finding provides the initiative of developing an adhesion prediction model of NPS to substrate materials in order to provide guidelines for improving the NPS adhesion strength to the substrate materials used in printed electronics.

  3. Heterogeneity of Focal Adhesions and Focal Contacts in Motile Fibroblasts.

    Science.gov (United States)

    Gladkikh, Aleena; Kovaleva, Anastasia; Tvorogova, Anna; Vorobjev, Ivan A

    2018-01-01

    Cell-extracellular matrix (ECM) adhesion is an important property of virtually all cells in multicellular organisms. Cell-ECM adhesion studies, therefore, are very significant both for biology and medicine. Over the last three decades, biomedical studies resulted in a tremendous advance in our understanding of the molecular basis and functions of cell-ECM adhesion. Based on morphological and molecular criteria, several different types of model cell-ECM adhesion structures including focal adhesions, focal complexes, fibrillar adhesions, podosomes, and three-dimensional matrix adhesions have been described. All the subcellular structures that mediate cell-ECM adhesion are quite heterogeneous, often varying in size, shape, distribution, dynamics, and, to a certain extent, molecular constituents. The morphological "plasticity" of cell-ECM adhesion perhaps reflects the needs of cells to sense, adapt, and respond to a variety of extracellular environments. In addition, cell type (e.g., differentiation status, oncogenic transformation, etc.) often exerts marked influence on the structure of cell-ECM adhesions. Although molecular, genetic, biochemical, and structural studies provide important maps or "snapshots" of cell-ECM adhesions, the area of research that is equally valuable is to study the heterogeneity of FA subpopulations within cells. Recently time-lapse observations on the FA dynamics become feasible, and behavior of individual FA gives additional information on cell-ECM interactions. Here we describe a robust method of labeling of FA using plasmids with fluorescent markers for paxillin and vinculin and quantifying the morphological and dynamical parameters of FA.

  4. Isolation and biochemical characterization of underwater adhesives from diatoms.

    Science.gov (United States)

    Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T

    2014-01-01

    Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.

  5. Preparation and characterization of UV-curable cationic composite adhesive

    International Nuclear Information System (INIS)

    Shen Yan; Yang Wenbin; Li Yintao; Xie Changqiong; Li Yingjun; Cheng Yafei; Zhou Yuanlin; Lu Zhongyuan

    2011-01-01

    UV-curable cationic composite adhesives containing TiO 2 nanostructures were prepared by using 3, 4-epoxycyclohexylmethyl-3, 4-epoxycyclohexanecarboxylate(CE) as monomer, triphenylsulfonium hexafluorophosphate salt (PI-432) as photoinitiator and titanium isopropoxide (TIP) as inorganic precursor. The morphology of the composite adhesives was characterized by atom force microscopy (AFM). The effect of TIP content on refractive index and transmittance of adhesives were studied. The results show that TiO 2 nanostructures, the average diameter of which is 20 nm or so, can be uniformly dispersed in polymers of composite adhesives. The refractive index of adhesives can be adjusted from 1.501 9 to 1.544 9 with the change of TIP content. The transmittance of adhesives has a slight reduce with the increase of TIP content. When TIP content is up to 40%, the transmittance of composite adhesives remains around 90% or so. (authors)

  6. High-performance mussel-inspired adhesives of reduced complexity.

    Science.gov (United States)

    Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert

    2015-10-19

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  7. Adhesion of non-selective CVD tungsten to silicon dioxide

    International Nuclear Information System (INIS)

    Woodruff, D.W.; Wilson, R.H.; Sanchez-Martinez, R.A.

    1986-01-01

    Adhesion of non-selective, CVD tungsten to silicon dioxide is a critical issue in the development of tungsten as a metalization for VLSI circuitry. Without special adhesion promoters, tungsten deposited from WF/sub 6/ and H/sub 2/ has typically failed a standard tape test over all types of silicon oxides and nitrides. The reasons for failure of thin films, and CVD tungsten in particular are explored along with standard techniques for improving adhesion of thin films. Experiments are reported which include a number of sputtered metals as adhesion promoters, as well as chemical and plasma treatment of the oxide surface. Sputtered molybdenum is clearly the superior adhesion promoting layer from these tests. Traditional adhesion layers such as chromium or titanium failed as adhesion layers for CVD tungsten possibly due to chemical reactions between the WF/sub 6/ and Cr or Ti

  8. Design rules for biomolecular adhesion: lessons from force measurements.

    Science.gov (United States)

    Leckband, Deborah

    2010-01-01

    Cell adhesion to matrix, other cells, or pathogens plays a pivotal role in many processes in biomolecular engineering. Early macroscopic methods of quantifying adhesion led to the development of quantitative models of cell adhesion and migration. The more recent use of sensitive probes to quantify the forces that alter or manipulate adhesion proteins has revealed much greater functional diversity than was apparent from population average measurements of cell adhesion. This review highlights theoretical and experimental methods that identified force-dependent molecular properties that are central to the biological activity of adhesion proteins. Experimental and theoretical methods emphasized in this review include the surface force apparatus, atomic force microscopy, and vesicle-based probes. Specific examples given illustrate how these tools have revealed unique properties of adhesion proteins and their structural origins.

  9. Understanding Surface Adhesion in Nature: A Peeling Model.

    Science.gov (United States)

    Gu, Zhen; Li, Siheng; Zhang, Feilong; Wang, Shutao

    2016-07-01

    Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.

  10. Indicators for surgery in adhesive bowel obstruction.

    Science.gov (United States)

    Rajanikmanth, P V; Kate, V; Ananthakrishnan, N

    2001-01-01

    There is lack of data on risk factors, which, if present, would indicate the need for surgery in patients with adhesive bowel obstruction. A Cohort of 100 consecutive patients with adhesive obstruction was studied prospectively to compare clinical and investigative parameters between the operative and conservative group. It was found that female gender, previous obstetric or gynaecological procedures, pulse and BP on admission, nature of nasogastric aspirate, single distended loop on abdominal x-ray as also predominant ileal distension were independent factors indicating a high probability of surgical intervention. Patients with 2 or more risk factors had 12 times higher probability of surgery and in those with 3 or more the relative risk was 30 times. Patients with such risk factors should be monitored closely after admission and should be taken for surgery after an initial short trial of conservative measures.

  11. Cell adhesion on nanotextured slippery superhydrophobic substrates.

    Science.gov (United States)

    Di Mundo, Rosa; Nardulli, Marina; Milella, Antonella; Favia, Pietro; d'Agostino, Riccardo; Gristina, Roberto

    2011-04-19

    In this work, the response of Saos2 cells to polymeric surfaces with different roughness/density of nanometric dots produced by a tailored plasma-etching process has been studied. Topographical features have been evaluated by atomic force microscopy, while wetting behavior, in terms of water-surface adhesion energy, has been evaluated by measurements of drop sliding angle. Saos2 cytocompatibility has been investigated by scanning electron microscopy, fluorescent microscopy, and optical microscopy. The similarity in outer chemical composition has allowed isolation of the impact of the topographical features on cellular behavior. The results indicate that Saos2 cells respond differently to surfaces with different nanoscale topographical features, clearly showing a certain inhibition in cell adhesion when the nanoscale is particularly small. This effect appears to be attenuated in surfaces with relatively bigger nanofeatures, though these express a more pronounced slippery/dry wetting character. © 2011 American Chemical Society

  12. Engineering emergent multicellular behavior through synthetic adhesion

    Science.gov (United States)

    Glass, David; Riedel-Kruse, Ingmar

    In over a decade, synthetic biology has developed increasingly robust gene networks within single cells, but constructed very few systems that demonstrate multicellular spatio-temporal dynamics. We are filling this gap in synthetic biology's toolbox by developing an E. coli self-assembly platform based on modular cell-cell adhesion. We developed a system in which adhesive selectivity is provided by a library of outer membrane-displayed peptides with intra-library specificities, while affinity is provided by consistent expression across the entire library. We further provide a biophysical model to help understand the parameter regimes in which this tool can be used to self-assemble into cellular clusters, filaments, or meshes. The combined platform will enable future development of synthetic multicellular systems for use in consortia-based metabolic engineering, in living materials, and in controlled study of minimal multicellular systems. Stanford Bio-X Bowes Fellowship.

  13. Mathematical modeling of cell adhesion in shear flow: application to targeted drug delivery in inflammation and cancer metastasis.

    Science.gov (United States)

    Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2007-01-01

    Cell adhesion plays a pivotal role in diverse biological processes that occur in the dynamic setting of the vasculature, including inflammation and cancer metastasis. Although complex, the naturally occurring processes that have evolved to allow for cell adhesion in the vasculature can be exploited to direct drug carriers to targeted cells and tissues. Fluid (blood) flow influences cell adhesion at the mesoscale by affecting the mechanical response of cell membrane, the intercellular contact area and collisional frequency, and at the nanoscale level by modulating the kinetics and mechanics of receptor-ligand interactions. Consequently, elucidating the molecular and biophysical nature of cell adhesion requires a multidisciplinary approach involving the synthesis of fundamentals from hydrodynamic flow, molecular kinetics and cell mechanics with biochemistry/molecular cell biology. To date, significant advances have been made in the identification and characterization of the critical cell adhesion molecules involved in inflammatory disorders, and, to a lesser degree, in cancer metastasis. Experimental work at the nanoscale level to determine the lifetime, interaction distance and strain responses of adhesion receptor-ligand bonds has been spurred by the advent of atomic force microscopy and biomolecular force probes, although our current knowledge in this area is far from complete. Micropipette aspiration assays along with theoretical frameworks have provided vital information on cell mechanics. Progress in each of the aforementioned research areas is key to the development of mathematical models of cell adhesion that incorporate the appropriate biological, kinetic and mechanical parameters that would lead to reliable qualitative and quantitative predictions. These multiscale mathematical models can be employed to predict optimal drug carrier-cell binding through isolated parameter studies and engineering optimization schemes, which will be essential for developing

  14. Adhesion aspects of polyurethane foam sandwich panels.

    OpenAIRE

    Ng, Simon L.

    2016-01-01

    Sandwich panels, polyurethane foam sandwiched between two sheets of steel, form the walls and roofs in the construction of buildings. ArcelorMittal is a manufacturer of the steel as well as these finished panels. For this project they combined with a supplier of the polyurethane foams, Huntsman Polyurethanes, to joint-fund a research project investigating the fundamental mechanisms of adhesion, as well as the causes of failures in the product which manifests primarily in two different ways...

  15. Radiation curable pressure sensitive adhesive composition

    International Nuclear Information System (INIS)

    Steuben, K.C.

    1978-01-01

    Radiation curable pressure sensitive adhesive composition comprises: a polyoxyalkylene homo- or copolymer which is either a polyoxyethylene homopolymer or a poly (oxyethylene-oxypropylene) copolymer, or mixture thereof, having a molecular weight of from 1,700 to 90,000, in which at least 40 percent by weight of the oxyalkylene units are oxyethylene units; a liquid carbamyloxy alkyl acrylate; and, optionally, a photoinitiator

  16. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  17. Role of Confined Water in Underwater Adhesion

    Science.gov (United States)

    Dhinojwala, Ali

    Surface bound water is a strong deterrent for forming strong bonds between two surfaces underwater and expelling that bound water is important for strong adhesion. I will discuss examples of different strategies used by geckos, spiders, and mussels to handle this last layer of bound water. Recent results using infrared-visible sum frequency generation spectroscopy to probe the structure of this bound water will be discussed. National Science Foundation.

  18. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  19. Cell adhesion during bullet motion in capillaries.

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  20. Focal adhesions, stress fibers and mechanical tension

    Energy Technology Data Exchange (ETDEWEB)

    Burridge, Keith, E-mail: Keith_Burridge@med.unc.edu [Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, 12-016 Lineberger, CB#7295, University of North Carolina, Chapel Hill, NC (United States); Guilluy, Christophe, E-mail: christophe.guilluy@univ-nantes.fr [Inserm UMR-S1087, CNRS UMR-C6291, L' institut du Thorax, and Université de Nantes, Nantes (France)

    2016-04-10

    Stress fibers and focal adhesions are complex protein arrays that produce, transmit and sense mechanical tension. Evidence accumulated over many years led to the conclusion that mechanical tension generated within stress fibers contributes to the assembly of both stress fibers themselves and their associated focal adhesions. However, several lines of evidence have recently been presented against this model. Here we discuss the evidence for and against the role of mechanical tension in driving the assembly of these structures. We also consider how their assembly is influenced by the rigidity of the substratum to which cells are adhering. Finally, we discuss the recently identified connections between stress fibers and the nucleus, and the roles that these may play, both in cell migration and regulating nuclear function. - Highlights: • The different types of stress fiber and focal adhesion are described. • We discuss the controversy about tension and assembly of these structures. • We describe the different models used to investigate assembly of these structures. • The influence of substratum rigidity is discussed. • Stress fiber connections to the nucleus are reviewed.

  1. Mouse lung adhesion assay for Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Burns, K A; Freer, J H [Department of Microbiology, Alexander Stone Building, Bearsden, Glasgow, Scotland

    1982-03-01

    The ability of Bordetella pertussis to adhere to cell surfaces has been demonstrated by adhesion to tissue culture cells and adhesion to chicken, hamster or rabbit trachea in organ culture. In this report a mouse lung assay for adhesion is described and the results obtained using two virulent strains of B. pertussis and their avirulent counterparts. These were a C modulation of one of the original virulent strains and a phase IV variant of the other virulent strain. Organisms were radiolabelled by adding 1 ..mu..Ci (37 K Bq) of (/sup 14/C)glutamic acid per 10 ml of culture medium before inoculation and incubation for 5 days. The lungs were washed by perfusion in situ with at least two volumes (1 ml) of sterile 1% (w/v) casamino acids. The percentage of the inoculated organisms retained in the lungs was determined, after removal of the lungs, by one of the following two methods: viable count or radioactive count. Results for both methods were expressed as the percentage of the inoculum retained in the lungs plus or minus one standard deviation.

  2. Cell adhesion pattern created by OSTE polymers.

    Science.gov (United States)

    Liu, Wenjia; Li, Yiyang; Ding, Xianting

    2017-04-24

    Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry thiol-ene (OSTE) polymers to create heterogeneity on the surface by utilizing 3D printing and soft-lithography. By choosing two OSTE polymers with different functional groups, we create a pattern where only parts of the surface can facilitate cell adhesion. We also study the hydrophilic property of OSTE polymers by mixing poly(ethylene glycol) (PEG) directly with pre-polymers and plasma treatments afterwards. Moreover, we investigate the effect of functional groups' excess ratio and hydrophilic property on the cell adhesion ability of OSTE polymers. The results show that the cell adhesion ability of OSTE materials can be tuned within a wide range by the coupling effect of functional groups' excess ratio and hydrophilic property. Meanwhile, by mixing PEG with pre-polymers and undergoing oxygen plasma treatment afterward can significantly improve the hydrophilic property of OSTE polymers.

  3. Mouse lung adhesion assay for Bordetella pertussis

    International Nuclear Information System (INIS)

    Burns, K.A.; Freer, J.H.

    1982-01-01

    The ability of Bordetella pertussis to adhere to cell surfaces has been demonstrated by adhesion to tissue culture cells and adhesion to chicken, hamster or rabbit trachea in organ culture. In this report a mouse lung assay for adhesion is described and the results obtained using two virulent strains of B. pertussis and their avirulent counterparts. These were a C modulation of one of the original virulent strains and a phase IV variant of the other virulent strain. Organisms were radiolabelled by adding 1 μCi (37 K Bq) of [ 14 C]glutamic acid per 10 ml of culture medium before inoculation and incubation for 5 days. The lungs were washed by perfusion in situ with at least two volumes (1 ml) of sterile 1% (w/v) casamino acids. The percentage of the inoculated organisms retained in the lungs was determined, after removal of the lungs, by one of the following two methods: viable count or radioactive count. Results for both methods were expressed as the percentage of the inoculum retained in the lungs plus or minus one standard deviation. (Auth.)

  4. Performance of adhesives base on PU, Epoxy and silane in the Kevlar/alumina interface; Desempenho de adesivos a base de PU, epoxi e silano na interface Kevlar/alumina

    Energy Technology Data Exchange (ETDEWEB)

    Noronha, K.F.; Melo, F.C.L.; Lopes, C.M.A. [Divisao de Materiais, Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil); Divisao de Engenharia Mecanica-Aeronautica, Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)], e-mail: cmoniz@iae.cta.br

    2010-07-01

    Hybrid ceramic/polymer composites are used for ballistic protection due to the good high-velocity impact absorption properties. The choice of the proper adhesive used to bond ceramic and polymer layers is one of the major issues for hybrid armor development due to its influence in the ballistic resistance behaviour. This work presents an adhesion study in composites of aramid textile (Kevlar) and alumina. Adhesives of different chemical nature, based on polyurethane, epoxy and silane were evaluated. T-Peel test was performed for the interface characterization and the post- failure surfaces were examined by optical microscopy. In all samples the failure occurred at the interface. The silane-based adhesive showed no interaction with the polymer, while the PU hot melt adhesive presented the highest adhesion strengths. (author)

  5. Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification

    Science.gov (United States)

    Martín-Martínez, J. M.; Romero-Sánchez, M. D.

    2006-05-01

    The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally

  6. Transience of plasma surface modification as an adhesion promoter for polychlorotrifluorethylene

    International Nuclear Information System (INIS)

    Subrahmanyan, S.; Dillard, J.G.; Love, B.J.; Romand, M.; Charbonnier, M.

    2002-01-01

    Poly(chlorotrifluoroethylene) (PCTFE) and other fluoropolymers are increasingly used as inner layer dielectrics. However, these polymers have low surface energies and correspondingly poor adhesive properties. Results are presented on the use of a low-pressure ammonia plasma to enhance the surface bondability of PCTFE. The plasma modified PCTFE film surfaces were characterized by x-ray photoelectron spectroscopy and contact angle measurements. Surface modified films exhibited improved adhesion to electroless copper deposits (180 deg. peel test) compared to coated PCTFE controls and that underwent no plasma exposure. Annealing studies were conducted between 30 and 100 deg. C to examine the stability of the plasma-modified surfaces. For samples annealed below T g , contact angle measurements indicated that the plasma-introduced groups remained bound on the surface for four weeks. For specimens annealed above T g , the surface functionalities were absorbed within the bulk and surface rearrangement occurred within 10 h of annealing time. As a result of rearrangement, the benefit of adhesion enhancement by plasma is lost and the adhesion to copper is reduced

  7. Effect of saliva decontamination procedures on shear bond strength of a one-step adhesive system.

    Science.gov (United States)

    Ülker, E; Bilgin, S; Kahvecioğlu, F; Erkan, A I

    2017-09-01

    To evaluate the effect of different saliva decontamination procedures on the shear bond strength of a one-step universal adhesive system (Single Bond™ Universal Adhesive, 3M ESPE, St. Paul, MN, USA). The occlusal surfaces of 75 human third molars were ground to expose dentin. The teeth were divided into the following groups: Group 1 (control group): Single Bond™ Universal Adhesive was applied to the prepared tooth according to the manufacturer's recommendations and light cured; no contamination procedure was performed. Group 2: Bonding, light curing, saliva contamination, and dry. Group 3: Bonding, light curing, saliva contamination, rinse, and dry. Group 4: After the procedure performed in Group 2, reapplication of bonding. Group 5: After the procedure performed in Group 3, reapplication of bonding. Then, composite resins were applied with cylindrical-shaped plastic matrixes and light cured. For shear bond testing, a notch-shaped force transducer apparatus was applied to each specimen at the interface between the tooth and composite until failure occurred. The data were statistically analyzed using one-way ANOVA. One-way ANOVA revealed significant differences in shear bond strength between the control group and experimental Groups 2 and 4 (P 0.05). The present in vitro study showed that water rinsing is necessary if cured adhesive resin is contaminated with saliva to ensure adequate bond strength.

  8. Mechanical Entrapment Is Insufficient and Intercellular Adhesion Is Essential for Metastatic Cell Arrest in Distant Organs

    Directory of Open Access Journals (Sweden)

    Olga V. Glinskii

    2005-05-01

    Full Text Available In this report, we challenge a common perception that tumor embolism is a size-limited event of mechanical arrest, occurring in the first capillary bed encountered by blood-borne metastatic cells. We tested the hypothesis that mechanical entrapment alone, in the absence of tumor cell adhesion to blood vessel walls, is not sufficient for metastatic cell arrest in target organ microvasculature. The in vivo metastatic deposit formation assay was used to assess the number and location of fluorescently labeled tumor cells lodged in selected organs and tissues following intravenous inoculation. We report that a significant fraction of breast and prostate cancer cells escapes arrest in a lung capillary bed and lodges successfully in other organs and tissues. Monoclonal antibodies and carbohydrate-based compounds (anti-Thomsen-Friedenreich antigen antibody, anti-galectin-3 antibody, modified citrus pectin, and lactulosyl-L-leucine, targeting specifically β-galactoside-mediated tumor-endothelial cell adhesive interactions, inhibited by >90% the in vivo formation of breast and prostate carcinoma metastatic deposits in mouse lung and bones. Our results indicate that metastatic cell arrest in target organ microvessels is not a consequence of mechanical trapping, but is supported predominantly by intercellular adhesive interactions mediated by cancer-associated Thomsen-Friedenreich glycoantigen and β-galactoside-binding lectin galectin-3. Efficient blocking of β-galactoside-mediated adhesion precludes malignant cell lodging in target organs.

  9. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    International Nuclear Information System (INIS)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E.

    1987-01-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of [ 3 H]serotonin, or alter the dose-responsive binding of 125 I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF

  10. Protein deposition and its effect on bacterial adhesion to contact lenses.

    Science.gov (United States)

    Omali, Negar Babaei; Zhu, Hua; Zhao, Zhenjun; Willcox, Mark D P

    2013-06-01

    Bacterial adhesion to contact lenses is believed to be the initial step for the development of several adverse reactions that occur during lens wear such as microbial keratitis. This study examined the effect of combinations of proteins on the adhesion of bacteria to contact lenses. Unworn balafilcon A and senofilcon A lenses were soaked in commercially available pure protein mixtures to achieve the same amount of various proteins as found ex vivo. These lenses were then exposed to Pseudomonas aeruginosa and Staphylococcus aureus. Following incubation, the numbers of P. aeruginosa or S. aureus that adhered to the lenses were measured. The possible effect of proteins on bacterial growth was investigated by incubating bacteria in medium containing protein. Although there was a significant (p lenses soaked in the lysozyme/lactoferrin combination, the protein adhered to lenses did not alter the adhesion of any other strains of P. aeruginosa or S. aureus (p > 0.05). Growth of S. aureus 031 (p 0.05). Adsorption of amounts of lysozyme and lactoferrin or lipocalin equivalent to those extracted from worn contact lenses did not affect the adhesion of most strains of S. aureus or P. aeruginosa to lens surfaces.

  11. FAK dimerization controls its kinase-dependent functions at focal adhesions

    KAUST Repository

    Brami-Cherrier, Karen; Gervasi, Nicolas; Arsenieva, Diana A.; Walkiewicz, Katarzyna; Boutterin, Marie Claude; Ortega, Á lvaro Darí o; Leonard, Paul G.; Seantier, Bastien; Gasmi, Laï la; Bouceba, Tahar; Kadaré , Gress; Girault -, Jean Antoine; Arold, Stefan T.

    2014-01-01

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK's kinase-dependent functions-autophosphorylation of tyrosine-397-requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. © 2014 The Authors.

  12. Effect of Curing Direction on Microtensile Bond Strength of Fifth and Sixth Generation Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ali Nadaf

    2012-09-01

    Full Text Available Background and Aims: Composite restorative materials and dental adhesives are usually cured with light sources. The light direction may influence the bond strength of dental adhesives. The aim of this study was to evaluate the effect of light direction on the microtensile bond strength of fifth and sixth generation dental adhesives.Materials and Methods: Prime & Bond NT and Clearfil SE bond were used with different light directions.Sixty human incisor teeth were divided into 4 groups (n=15. In groups A and C, Clearfil SE bond with light curing direction from buccal was used for bonding a composite resin to dentin. In groups B and D, Prime & Bond NT with light curing direction from composite was used. After thermocycling the specimens were subjected to tensile force until debonding occurred and values for microtensile bond strength were recorded. The data were analyzed using two-way ANOVA and Tukey post hoc test.Results: The findings showed that the bond strength of Clearfil SE bond was significantly higher than that of Prime&Bond NT (P<0.001. There was no significant difference between light curing directions (P=0.132.Conclusion: Light curing direction did not have significant effect on the bond strength. Sixth generation adhesives was more successful than fifth generation in terms of bond strength to dentin.

  13. Enamel microhardness and bond strengths of self-etching primer adhesives.

    Science.gov (United States)

    Adebayo, Olabisi A; Burrow, Michael F; Tyas, Martin J; Adams, Geoffrey G; Collins, Marnie L

    2010-04-01

    The aim of this study was to determine the relationship between enamel surface microhardness and microshear bond strength (microSBS). Buccal and lingual mid-coronal enamel sections were prepared from 22 permanent human molars and divided into two groups, each comprising the buccal and lingual enamel from 11 teeth, to analyze two self-etching primer adhesives (Clearfil SE Bond and Tokuyama Bond Force). One-half of each enamel surface was tested using the Vickers hardness test with 10 indentations at 1 N and a 15-s dwell time. A hybrid resin composite was bonded to the other half of the enamel surface with the adhesive system assigned to the group. After 24 h of water storage of specimens at 37 degrees C, the microSBS test was carried out on a universal testing machine at a crosshead speed of 1 mm min(-1) until bond failure occurred. The mean microSBS was regressed on the mean Vickers hardness number (VHN) using a weighted regression analysis in order to explore the relationship between enamel hardness and microSBS. The weights used were the inverse of the variance of the microSBS means. Neither separate correlation analyses for each adhesive nor combined regression analyses showed a significant correlation between the VHN and the microSBS. These results suggest that the microSBS of the self-etch adhesive systems are not influenced by enamel surface microhardness.

  14. Increasing the Strength of Adhesively Bonded Joints by Tapering the Adherends

    International Nuclear Information System (INIS)

    GUESS, TOMMY R.; METZINGER, KURT E.

    1999-01-01

    Wind turbine blades are often fabricated with composite materials. These composite blades are frequently attached to a metallic structure with an adhesive bond. For the baseline composite-to-steel joint considered in this study, failure typically occurs when the adhesive debonds from the steel adherend. Previous efforts established that the adhesive peel stresses strongly influence the strength of these joints for both single-cycle and fatigue loading. This study focused on reducing the adhesive peel stresses present in these joints by tapering the steel adherends. Several different tapers were evaluated using finite element analysis before arriving at a final design. To confirm that the selected taper was an improvement to the existing design, the baseline joint and the modified joint were tested in both compression and tension. In these axial tests, the compressive strengths of the joints with tapered adherends were greater than those of the baseline joints for both single-cycle and low-cycle fatigue. In addition, only a minor reduction in tensile strength was observed for the joints with tapered adherends when compared to the baseline joints. Thus, the modification would be expected to enhance the overall performance of this joint

  15. FAK dimerization controls its kinase-dependent functions at focal adhesions

    KAUST Repository

    Brami-Cherrier, Karen

    2014-01-30

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK\\'s kinase-dependent functions-autophosphorylation of tyrosine-397-requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. © 2014 The Authors.

  16. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Maria Isabel, E-mail: maria.isabel.castellanos@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Mas-Moruno, Carlos, E-mail: carles.mas.moruno@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Grau, Anna, E-mail: agraugar@gmail.com [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Serra-Picamal, Xavier, E-mail: xserrapicamal@gmail.com [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Trepat, Xavier, E-mail: xtrepat@ub.edu [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Albericio, Fernando, E-mail: fernando.albericio@irbbarcelona.org [Department of Chemistry, University of Barcelona, CIBER-BBN, 08028 Barcelona (Spain); Joner, Michael, E-mail: michaeljoner@me.com [Department of Cardiology, Deutsches Herzzentrum München, 80636 Munich (Germany); CVPath Institute, Gaithersburg, MD 20878 (United States); and others

    2017-01-30

    Highlights: • We immobilized peptides on CoCr alloy through physisorption and covalent bonding. • Surface activation is an essential step prior to silanization to enhance peptide attachment. • Biofunctionalized surface characteristics were discussed. • RGDS, YIGSR and combination peptides display an improved HUVECs adhesion and proliferation. - Abstract: Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

  17. Surface Modifications in Adhesion and Wetting

    Science.gov (United States)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling technique is extended to investigate the effects of chemical composition on the elastic modulus. Finally, the effect of macro-scale roughness on silane-reinforced joints is investigated

  18. Evidence for van der Waals adhesion in gecko setae.

    Science.gov (United States)

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A; Peattie, Anne M; Hansen, Wendy R; Sponberg, Simon; Kenny, Thomas W; Fearing, Ronald; Israelachvili, Jacob N; Full, Robert J

    2002-09-17

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well to strongly hydrophobic and strongly hydrophilic, polarizable surfaces. Adhesion of a single isolated gecko seta was equally effective on the hydrophobic and hydrophilic surfaces of a microelectro-mechanical systems force sensor. A van der Waals mechanism implies that the remarkable adhesive properties of gecko setae are merely a result of the size and shape of the tips, and are not strongly affected by surface chemistry. Theory predicts greater adhesive forces simply from subdividing setae to increase surface density, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects. Estimates using a standard adhesion model and our measured forces come remarkably close to predicting the tip size of Tokay gecko seta. We verified the dependence on size and not surface type by using physical models of setal tips nanofabricated from two different materials. Both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures.

  19. Controllable biomimetic adhesion using embedded phase change material

    International Nuclear Information System (INIS)

    Krahn, J; Sameoto, D; Menon, C

    2011-01-01

    In many cases, such as in the instance of climbing robots or temporary adhesives, there is the need to be able to dynamically control the level of adhesion a biomimetic dry adhesive can provide. In this study, the effect of changing the backing layer stiffness of a dry adhesive is examined. Embedding a phase change material within the backing of a synthetic dry adhesive sheet allows the stiffness to be tailored at different points of a preload and adhesion cycle. Larger contact areas and more equal load sharing between adhesive fibres can be achieved by increasing the backing layer stiffness after initial deformation when the adhesive backing is loaded in its softened state. Adhesion behaviour is examined when the backing layer is maintained in solid and softened phases during complete load cycles and for load cycles under the condition of contact with the softened phase backing followed by pull-off during the solid phase. Absolute adhesion force is increased for trials in which a soft backing layer hardens prior to pull-off. This effect is due to the increased contact area made between the rounded probe and the softened material during preloading and the more equal load sharing condition during pull-off when the backing layer becomes stiff again

  20. Structural Evaluation of the RSRM Nozzle Replacement Adhesive

    Science.gov (United States)

    Batista-Rodriguez, A.; McLennan, M. L.; Palumbos, A. V.; Richardson, D. E.

    1999-01-01

    This paper describes the structural performance evaluation of a replacement adhesive for the Reusable Solid Rocket Motor (RSRM) nozzle utilizing finite element analysis. Due to material obsolescence and industrial safety issues, the two current structural adhesives, EA 913 and EA 946 are to be replaced with a new adhesive. TIGA 321. The structural evaluation in support of the adhesive replacement effort includes residual stress, transportation, and flight analyses. Factors of safety are calculated using the stress response from each analysis. The factors of safety are used as the limiting criteria to compare the replacement adhesive against the current adhesives. Included in this paper are the analytical approach, assumptions and modeling techniques as well as the results of the evaluation. An important factor to the evaluation is the similarity in constitutive material properties (elastic modulus and Poisson's ratio) between TIGA 321 and EA 913. This similarity leads to equivalent material response from the two adhesives. However, TIGA 321 surpasses EA 913's performance due to higher material capabilities. Conversely, the change in stress response from EA 946 to TIGA 321 is more apparent: this is primarily attributed to the difference in the modulii of the two adhesives, which differ by two orders of magnitude. The results of the bondline evaluation indicate that the replacement adhesive provides superior performance than the current adhesives with only minor exceptions. Furthermore, TIGA 321 causes only a minor chance in the response of the phenolic and metal components.

  1. Shear Bond Strengths of Different Adhesive Systems to Biodentine

    Science.gov (United States)

    Odabaş, Mesut Enes; Bani, Mehmet; Tirali, Resmiye Ebru

    2013-01-01

    The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system) Prime & Bond NT; group 2: (2-step self-etch adhesive system) Clearfil SE Bond; group 3: (1-step self-etch adhesive systems) Clearfil S3 Bond; group 4: control (no adhesive). After the application of adhesive systems, composite resin was applied over Biodentine. This procedure was repeated 24 hours after mixing additional 40 samples, respectively. Shear bond strengths were measured using a universal testing machine, and the data were subjected to 1-way analysis of variance and Scheffé post hoc test. No significant differences were found between all of the adhesive groups at the same time intervals (12 minutes and 24 hours) (P > .05). Among the two time intervals, the lowest value was obtained for group 1 (etch-and-rinse adhesive) at a 12-minute period, and the highest was obtained for group 2 (two-step self-etch adhesive) at a 24-hour period. The placement of composite resin used with self-etch adhesive systems over Biodentine showed better shear bond strength. PMID:24222742

  2. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  3. Fracture toughness of dentin/resin-composite adhesive interfaces.

    Science.gov (United States)

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  4. Mutant matrix metalloproteinase-9 reduces postoperative peritoneal adhesions in rats.

    Science.gov (United States)

    Atta, Hussein; El-Rehany, Mahmoud; Roeb, Elke; Abdel-Ghany, Hend; Ramzy, Maggie; Gaber, Shereen

    2016-02-01

    Postoperative peritoneal adhesions continue to be a major source of morbidity and occasional mortality. Studies have shown that matrix metalloproteinase-9 (MMP-9) levels are decreased postoperatively which may limits matrix degradation and participate in the development of peritoneal adhesions. In this proof-of-principle study, we evaluated the effect of gene therapy with catalytically inactive mutant MMP-9 on postoperative peritoneal adhesions in rats. Adenovirus encoding mutant MMP-9 (Ad-mMMP-9) or saline was instilled in the peritoneal cavity after cecal and parietal peritoneal injury in rats. Expression of mutant MMP-9 transcript was verified by sequencing. Adenovirus E4 gene expression, adhesion scores, MMP-9, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) expression were evaluated at sacrifice one week after treatment. Both mutant MMP-9 transcripts and adenovirus E4 gene were expressed in Ad-mMMP-9 treated adhesions. Adhesions severity decreased significantly (p = 0.036) in the Ad-mMMP-9-treated compared with saline-treated adhesions. Expression of MMP-9 mRNA and protein were elevated (p = 0.001 and p = 0.029, respectively) in the Ad-mMMP-9-treated adhesions compared with saline-treated adhesions. While tPA levels were increased (p = 0.02) in Ad-mMMP-9 treated adhesions compared with saline-treated adhesions, TGF-β1 and PAI-1 levels were decreased (p = 0.017 and p = 0.042, respectively). No difference in mortality were found between groups (p = 0.64). Mutant MMP-9 gene therapy effectively transduced peritoneal adhesions resulting in reduction of severity of primary peritoneal adhesions. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  5. Improving adhesion of seasonings to crackers with hydrocolloid solutions.

    Science.gov (United States)

    Armstrong, Matthew E; Barringer, Sheryl A

    2013-11-01

    Food powders were applied on crackers that had been coated using water, oil, emulsion, sucrose, or hydrocolloid solutions. The hydrocolloids that were used include gellan gum, kappa-carrageenan, methylcellulose, gum karaya, gum tragacanth, gum arabic, guar gum, modified starch, and maltodextrin. Solutions of similar hydrophobicity to the powder gave the greatest adhesion. NaCl, barbecue (BBQ), ranch, and sour cream & onion (SC&O) seasoning showed greatest adhesion with water, cheese powder with an emulsion of 12.5% to 25% oil, and cocoa powder with oil. For NaCl, BBQ, ranch, and SC&O seasoning, hydrocolloids improved the adhesion over using water alone, with gellan gum providing the greatest adhesion. Hydrocolloid structural differences, including the presence or absence of branching, substitution of sugar units, and molecular weight affect water binding and thickening of the hydrocolloid spray that seemed to be significant factors affecting adhesion of powders to the target surface. For cheese powder, hydrocolloids were capable of replacing the oil within an emulsion while improving or maintaining the same level of adhesion, with gum arabic providing the greatest adhesion. For cocoa powder, hydrocolloid solutions were ineffective adhesives due to differences in hydrophilicity that result in insolubility. The effect of hydrocolloid concentration on adhesion was dependent both on the hydrocolloid type and the concentration that is sprayable, with 0.5% being the optimum concentration for most gums. Adhesion using sucrose solutions was determined by particle size and relative hydrophobicity. Increasing sucrose concentration decreased adhesion of smaller particles, but increased adhesion of larger particles. Adhesion of NaCl significantly increased with decreasing NaCl size using oil, water, and sucrose solutions. © 2013 Institute of Food Technologists®

  6. Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials

    Science.gov (United States)

    Lodes, Matthias A.; Sailer, Stefan; Rosiwal, Stefan M.; Singer, Robert F.

    2013-10-01

    Diamond coatings are used in heavily stressed industrial applications to reduce friction and wear. Hot-filament chemical vapour deposition (HFCVD) is the favourable coating method, as it allows a coating of large surface areas with high homogeneity. Due to the high temperatures occurring in this CVD-process, the selection of substrate materials is limited. With the desire to coat light materials, steels and polymers a new approach has been developed. First, by using temperature-stable templates in the HFCVD and stripping off the diamond layer afterwards, a flexible, up to 150 μm thick and free standing nanocrystalline diamond foil (NCDF) can be produced. Afterwards, these NCDF can be applied on technical components through bonding and brazing, allowing any material as substrate. This two-step process offers the possibility to join a diamond layer on any desired surface. With a modified scratch test and Rockwell indentation testing the adhesion strength of NCDF on aluminium and steel is analysed. The results show that sufficient adhesion strength is reached both on steel and aluminium. The thermal stress in the substrates is very low and if failure occurs, cracks grow undercritically. Adhesion strength is even higher for the brazed samples, but here crack growth is critical, delaminating the diamond layer to some extent. In comparison to a sample directly coated with diamond, using a high-temperature CVD interlayer, the brazed as well as the adhesively bonded samples show very good performance, proving their competitiveness. A high support of the bonding layer could be identified as crucial, though in some cases a lower stiffness of the latter might be acceptable considering the possibility to completely avoid thermal stresses which occur during joining at higher temperatures.

  7. Effects of moisture conditions of dental enamel surface on bond strength of brackets bonded with moisture-insensitive primer adhesive system.

    Science.gov (United States)

    Endo, Toshiya; Ozoe, Rieko; Sanpei, Sugako; Shinkai, Koichi; Katoh, Yoshiroh; Shimooka, Shohachi

    2008-07-01

    The purposes of this study were to evaluate the effects of different degrees of water contamination on the shear bond strength of orthodontic brackets bonded to dental enamel with a moisture-insensitive primer (MIP) adhesive system and to compare the modes of bracket/adhesive failure. A total of 68 human premolars were divided into four groups by primers and enamel surface conditions (desiccated, blot dry, and overwet). In group I, the hydrophobic Transbond XT primer adhesive system was used under desiccated conditions for bonding the brackets; in group II, the hydrophilic Transbond MIP adhesive system was used under desiccated conditions; in group III, the hydrophilic Transbond MIP adhesive system was used under blot dry conditions; and in group IV, the hydrophilic Transbond MIP adhesive system was used under overwet conditions. Shear bond strength was measured with a universal testing machine, and the mode of bracket/adhesive failure was determined according to the adhesive remnant index. The mean shear bond strengths were not significantly different among groups I, II, and III, and were higher than the clinically required range of 6 to 8 MPa. The mean shear bond strength achieved in group IV was significantly lower than that achieved in groups I, II, and III, and also lower than the clinically required values. Bond failure occurred at the enamel-adhesive interface more frequently in group IV than in groups I and III. To achieve clinically sufficient bond strengths with the hydrophilic MIP adhesive system, excess water should be blotted from the water-contaminated enamel surface.

  8. Long-term In Vitro Adhesion of Polyalkenoate-based Adhesives to Dentin.

    Science.gov (United States)

    Sezinando, Ana; Perdigão, Jorge; Ceballos, Laura

    2017-01-01

    To study the influence of a polyalkenoate copolymer (VCP) on the immediate (24 h) and 6-month dentin bonding stability of VCP-based adhesives, using microtensile bond strength (μTBS), nanoleakage (NL), and ultramorphological analyses (FE-SEM). Eighty-four caries-free molars were randomly assigned to seven adhesives: Clearfil SE Bond (CSE, Kuraray Noritake); Adper Single Bond Plus (SB, 3M ESPE); SB without VCP (SBnoVCP, 3M ESPE); Scotchbond Universal Adhesive applied as a etch-and-rinse adhesive (SBU_ER); SBU without VCP applied as an etch-and-rinse adhesive (SBUnoVCP_ER); SBU applied as a self-etch adhesive (SBU_SE, 3M ESPE); SBU without VCP applied as a self-etch adhesive (SBUnoVCP_SE, 3M ESPE). Half of the beams were tested after 24 h, and the other half was aged in water for 6 months prior to testing. For each tooth/evaluation time, two beams were randomly selected for NL analysis. Statistical analyses of µTBS results were performed using two-way ANOVA, Tukey's post-hoc tests, and Student's t-test for paired data (α = 0.05). Nanoleakage was statistically analyzed using the Kruskal-Wallis and Mann-Whitney tests, with Wilcoxon's test for paired data. For FE-SEM, four caries-free molars were assigned to each of the seven groups. Dentin disks were restored and cross sectioned into halves. One half was observed at 24 h, and the other at 6 months. The highest 6-month mean μTBS was obtained with SBU_SE/SBUnoVCP_SE and SBUnoVCP_ER. SBUnoVCP_SE resulted in greater silver deposition at 6 months. FE-SEM observations showed that CSE and SBU_SE specimens resulted in a submicron hybrid layer without signs of degradation at 6 months. VCP may contribute to the long-term bonding stability of VCP-based adhesives.

  9. Morphological Evaluation of the Adhesive/Enamel interfaces of Two-step Self-etching Adhesives and Multimode One-bottle Self-etching Adhesives.

    Science.gov (United States)

    Sato, Takaaki; Takagaki, Tomohiro; Matsui, Naoko; Hamba, Hidenori; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    To evaluate the acid-base resistant zone (ABRZ) at the adhesive/enamel interface of self-etching adhesives with or without prior phosphoric acid etching. Four adhesives were used in 8 groups: Clearfil SE Bond (SEB), Optibond XTR (XTR), Scotchbond Universal Adhesive (SBU), and Clearfil BOND SE ONE (ONE) without prior phosphoric-acid etching, and each adhesive with phosphoric acid etching for 10 s (P-SEB, P-XTR, P-SBU and P-ONE, respectively). After application of self-etching adhesives on ground enamel surfaces of human teeth, a flowable composite was placed. For observation of the acid-base resistant zone (ABRZ), the bonded interface was exposed to demineralizing solution (pH 4.5) for 4.5 h, followed by 5% NaOCl with ultrasonication for 20 min. After the acid-base challenge, morphological attributes of the interface were observed using SEM. ABRZ formation was confirmed in all groups. The funnel-shaped erosion beneath the interface was present in SBU and ONE, where nearly 10 to 15 μm of enamel was dissolved. With phosphoric acid etching, the ABRZs were obviously thicker compared with no phosphoric acid etching. Enamel beneath the bonding interface was more susceptible to acid dissolution in SBU and ONE. In the case of the one-bottle self-etching adhesives and universal adhesives that intrinsically have higher pH values, enamel etching should be recommended to improve the interfacial quality.

  10. Preparation and Properties of Cassava Starch-based Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2016-06-01

    Full Text Available A biodegradable, environmentally friendly starch-based wood adhesive with cassava starch as a raw material and butyl acrylate (BA as a co-monomer was synthesized. Results revealed that this cassava starch-based wood adhesive (SWA was more stable than corn starch-based wood adhesive, and its bonding performance was close to that of commercial PVAc emulsion, even after 90 days of storage. Further analysis found that the improved stability of the adhesive could be attributed to its low minimum film forming temperature (MFFT and glass transition temperature (Tg of cassava starch. Moreover, the amount of total volatile organic compounds (TVOCs emitted by the cassava starch-based wood adhesive were much lower than the Chinese national standard control criteria. Therefore, cassava SWA might be a potential alternative to traditional petrochemical-based wood adhesives.

  11. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    International Nuclear Information System (INIS)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6- 3 H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces. (author)

  12. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6-/sup 3/H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces.

  13. Immunotherapeutic modulation of intraperitoneal adhesions by Asparagus racemosus.

    Directory of Open Access Journals (Sweden)

    Rege N

    1989-10-01

    Full Text Available The hypothesis that macrophages appear to play a pivotal role in the development of intraperitoneal adhesions and that modulation of macrophage activity, therefore, is likely to provide a tool for prevention of adhesions, was tested in the present study. Effect of Asparagus racemosus, an indigenous agent with immunostimulant properties, was evaluated in an animal model of intraperitoneal adhesions induced by caecal rubbing. Animals were sacrificed 15 days following surgery. The peritoneal macrophages were collected to assess their activity. At the same time, peritoneal cavity was examined for the presence of adhesions, which were graded. A significant decrease was observed in the adhesion scores attained by animals receiving Asparagus racemosus. This was associated with significant increase in the activity of macrophages (70.1 +/- 2.52, compared to that in surgical controls (53.77 +/- 10.8. These findings support our hypothesis and provide a novel approach for the prevention and management of post-operative adhesions.

  14. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  15. Spatiotemporal patterns formed by deformed adhesive in peeling

    International Nuclear Information System (INIS)

    Yamazaki, Yoshihiro; Toda, Akihiko

    2007-01-01

    Dynamical properties of peeling an adhesive tape are investigated experimentally as an analogy of sliding friction. An adhesive tape is peeled by pulling an elastic spring connected to the tape. Controlling its spring constant k and pulling speed V, peel force is measured and spatiotemporal patterns formed on the peeled tape by deformed adhesive are observed. It is found that there exist two kinds of adhesive state in peeling front. The emergence of multiple states is caused by the stability of a characteristic structure (tunnel structure) formed by deformed adhesive. Tunnel structures are distributed spatiotemporally on adhesive tape after peeling. Based on the spatiotemporal distribution, a morphology-dynamical phase diagram is constructed on k-V space and is divided into the four regions: (A) uniform pattern with tunnel structure, (B) uniform pattern without tunnel structure, (C) striped pattern with oscillatory peeling, and (D) spatiotemporally coexistent pattern

  16. Insights into adhesion of abalone: A mechanical approach.

    Science.gov (United States)

    Li, Jing; Zhang, Yun; Liu, Sai; Liu, Jianlin

    2018-01-01

    Many living creatures possess extremely strong capability of adhesion, which has aroused great attention of many scientists and engineers. Based on the self-developed equipment, we measured the normal and shear adhesion strength of the abalone underwater and out of water on different contact surfaces. It is found that the adhesion force of the abalone can amount to 200 or 300 times its body weight. The effects of wettability and roughness of the surface, and the frictional coefficient of mucus on the adhesion strength have been discussed. The theoretical calculation manifests that the normal adhesion force mainly stems from the suction pressure, van der Waals force and capillary force of the pedal, and their limit values are given. These findings may provide some inspirations to engineer new-typed materials, micro-devices, adhesives and medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Local and systemic effects of fibrin and cyanoacrylate adhesives on lung lesions in rabbits

    Directory of Open Access Journals (Sweden)

    Marcus V.H. Carvalho

    Full Text Available OBJECTIVES: Tissue adhesives can be used to prevent pulmonary air leaks, which frequently occur after lung interventions. The objective of this study is to evaluate local and systemic effects of fibrin and cyanoacrylate tissue adhesives on lung lesions in rabbits. METHODS: Eighteen rabbits were submitted to videothoracoscopy + lung incision alone (control or videothoracoscopy + lung incision + local application of fibrin or cyanoacrylate adhesive. Blood samples were collected and assessed for leukocyte, neutrophil and lymphocyte counts and interleukin-8 levels preoperatively and at 48 hours and 28 days post-operatively. After 28 days, the animals were euthanized for gross examination of the lung surface, and lung fragments were excised for histopathological analysis. RESULTS: Fibrin and cyanoacrylate produced similar adhesion scores of the lung to the parietal pleura. Microscopic analysis revealed uniform low-cellular tissue infiltration in the fibrin group and an intense tissue reaction characterized by dense inflammatory infiltration of granulocytes, giant cells and necrosis in the cyanoacrylate group. No changes were detected in the leukocyte, neutrophil or lymphocyte count at any time-point, while the interleukin-8 levels were increased in the fibrin and cyanoacrylate groups after 48 hours compared with the pre-operative control levels (p<0.01. CONCLUSION: Both adhesive agents promoted normal tissue healing, with a more pronounced local inflammatory reaction observed for cyanoacrylate. Among the serum markers of inflammation, only the interleukin-8 levels changed post-operatively, increasing after 48 hours and decreasing after 28 days to levels similar to those of the control group in both the fibrin and cyanoacrylate groups.

  18. Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro

    Directory of Open Access Journals (Sweden)

    Aliaksandr Dzementsei

    2013-11-01

    The directional migration of primordial germ cells (PGCs to the site of gonad formation is an advantageous model system to study cell motility. The embryonic development of PGCs has been investigated in different animal species, including mice, zebrafish, Xenopus and Drosophila. In this study we focus on the physical properties of Xenopus laevis PGCs during their transition from the passive to the active migratory state. Pre-migratory PGCs from Xenopus laevis embryos at developmental stages 17–19 to be compared with migratory PGCs from stages 28–30 were isolated and characterized in respect to motility and adhesive properties. Using single-cell force spectroscopy, we observed a decline in adhesiveness of PGCs upon reaching the migratory state, as defined by decreased attachment to extracellular matrix components like fibronectin, and a reduced adhesion to somatic endodermal cells. Data obtained from qPCR analysis with isolated PGCs reveal that down-regulation of E-cadherin might contribute to this weakening of cell-cell adhesion. Interestingly, however, using an in vitro migration assay, we found that movement of X. laevis PGCs can also occur independently of specific interactions with their neighboring cells. The reduction of cellular adhesion during PGC development is accompanied by enhanced cellular motility, as reflected in increased formation of bleb-like protrusions and inferred from electric cell-substrate impedance sensing (ECIS as well as time-lapse image analysis. Temporal alterations in cell shape, including contraction and expansion of the cellular body, reveal a higher degree of cellular dynamics for the migratory PGCs in vitro.

  19. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    LENUS (Irish Health Repository)

    Norris, S

    2012-02-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y\\/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N\\/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  20. Bonding Durability of Four Adhesive Systems

    Directory of Open Access Journals (Sweden)

    Leila Atash Biz Yeganeh

    2016-04-01

    Full Text Available Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS and microleakage during six months of water storage.Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP, Single Bond (SB, Clearfil-SE bond (CSEB, and All-Bond SE (ABSE. After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (P<0.05.Results: Single Bond yielded the highest and ABSE yielded the lowest bond strength at one day and six months. Short-term bond strength of SBMP and CSEB was similar. After six months, a significant decrease in bond strength was observed in ABSE and SBMP groups. At one day, ABSE showed the highest microleakage at the occlusal margin; however, at the gingival margin, there was no significant difference among groups. Long-term microleakage of all groups at the occlusal margins was similar, whilst gingival margins of SBMP and SB showed significantly higher microleakage.Conclusion: The highest MTBS and favorable sealability were obtained by Clearfil SE bond. Water storage had no effect on microleakage of self-etch adhesives at the gingival margin or MTBS of CSEB and SB. 

  1. Adhesion aspects in MEMS/NEMS

    CERN Document Server

    Kim, Seong H; Mittal, Kash L

    2012-01-01

    Phenomena associated with the adhesion interaction of surfaces have been a critical aspect of micro- and nanosystem development and performance since the first MicroElectroMechanicalSystems(MEMS) were fabricated. These phenomena are ubiquitous in nature and are present in all systems, however MEMS devices are particularly sensitive to their effects owing to their small size and limited actuation force that can be generated. Extension of MEMS technology concepts to the nanoscale and development of NanoElectroMechanicalSystems(NEMS) will result in systems even more strongly influenced by surface

  2. BUCCAL DRUG DELIVERY USING ADHESIVE POLYMERIC PATCHES

    OpenAIRE

    R. Venkatalakshmi

    2012-01-01

    The buccal mucosa has been investigated for local drug therapy and the systemic delivery of therapeutic peptides and other drugs that are subjected to first-pass metabolism or are unstable within the rest of the gastrointestinal tract. The mucosa of the oral cavity presents a formidable barrier to drug penetration, and one method of optimizing drug delivery is by the use of adhesive dosage forms and the mucosa has a rich blood supply and it is relatively permeable. The buccal mucosa is very s...

  3. EB application in pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Hisashi Itoh; Ichiro Enomoto

    1999-01-01

    Two kinds of pressure sensitive adhesives (PSA's), that were formulations of radiation cross-linkable styrene-isoprene block copolymer (SIS) and complete hydrogenated aliphatic tackifying resin or non-hydrogenated, were prepared and the electron beam (EB) irradiation effect on these PSA performances such as peel strength against some kinds of adherends was studied. The results from measuring of PSA performance exhibit the close correlation between EB irradiation effect of these and the miscibility of the tackifying resin against SIS. Further it was clarified that PSA performance was influenced by the surface tension of adherends

  4. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings

    Energy Technology Data Exchange (ETDEWEB)

    Poulon-Quintin, A., E-mail: poulon@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Faure, C.; Teulé-Gay, L.; Manaud, J.P. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2015-03-15

    Highlights: • Improvement of the NCD adhesion on WC-12%Co substrates for tooling applications using a multi-interlayer additional system. • Reduction of the graphite layer thickness and continuity at the interface with the diamond. • Transmission electron microscopy study for a better understanding of the diffusion phenomena occurring at the interfaces. - Abstract: Nano-crystalline diamond (NCD) films grown under negative biased substrates by chemical vapor deposition (CVD) are widely used as surface overlay coating onto cermet WC-Co cutting tools to get better performances. To improve the diamond adhesion to the cermet substrate, suitable multi-layer systems have been added. They are composed of a cobalt diffusion barrier close to the substrate (single and sequenced nitrides layers) coated with a nucleation extra layer to improve the nucleus density of diamond during CVD processing. For all systems, before and after diamond deposition, transmission electron microscopy (TEM) has been performed for a better understanding of the diffusion phenomena occurring at the interfaces and to evaluate the presence of graphitic species at the interface with the diamond. Innovative multilayer system dedicated to the regulation of cobalt diffusion coated with a bilayer system optimized for the carbon diffusion control, is shown as an efficient solution to significantly reduce the graphite layer formation at the interface with the diamond down to 10 nm thick and to increase the adhesion of NCD diamond layer as scratch-tests confirm.

  5. Self Diagnostic Adhesive for Bonded Joints in Aircraft Structures

    Science.gov (United States)

    2016-10-04

    validated under the fatigue /dynamic loading condition. 3) Both SEM (Spectral Element Modeling) and FEM (Finite Element Modeling) simulation of the...between input voltage and output charge provide the real and imaginary impedance as illustrated in Figure 3. (a) Adhesive + plate (ΩS) PZT (ΩP...3 m m 0.45mm Adhesive 3.18mm dia. PZT disc (0.25mm thick) 8 Self-Diagnostic Adhesive for Bonded Joints in Aircraft Structures

  6. Control and prevention of peritoneal adhesions in gynecologic surgery.

    Science.gov (United States)

    2006-11-01

    Postoperative adhesion formation is a natural consequence of surgical tissue trauma and healing and may result in infertility, pain, and bowel obstruction. Microsurgical principles and minimally invasive surgery may help decrease adhesion formation, but anti-inflammatory agents and peritoneal instillates have no demonstrable benefit. Although some surgical barriers are effective for reducing postoperative adhesions, none has been shown to improve fertility or to decrease pain or the incidence of postoperative bowel obstruction.

  7. Epoxy Nanocomposites - Curing Rheokinetics, Wetting and Adhesion to Fibers

    International Nuclear Information System (INIS)

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G.

    2010-01-01

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  8. Thin film adhesion by nanoindentation-induced superlayers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, William W.; Volinsky, A.A.

    2001-06-01

    This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

  9. Evaluation of an Experimental Adhesive Resin for Orthodontic Bonding

    Science.gov (United States)

    Durgesh, B. H.; Alkheraif, A. A.; Pavithra, D.; Hashem, M. I.; Alkhudhairy, F.; Elsharawy, M.; Divakar, D. D.; Vallittu, P. K.; Matinlinna, J. P.

    2017-07-01

    The aim of this study was to evaluate in vitro the effect of an experimental adhesive resin for orthodontic bonding by measuring some the chemical and mechanical properties. The resin demonstrated increased values of nanohardness and elastic modulus, but the differences were not significant compared with those for the Transbond XT adhesives. The experimental adhesive resin could be a feasible choice or a substitute for the traditional bis-GMA-based resins used in bonding orthodontic attachments.

  10. A mechanics approach to the study of pressure sensitive adhesives and human skin for transdermal drug delivery applications

    Science.gov (United States)

    Taub, Marc Barry

    Transdermal drug delivery is an alternative approach to the systemic delivery of pharmaceuticals where drugs are administered through the skin and absorbed percutaneously. This method of delivery offers several advantages over more traditional routes; most notably, the avoidance of the fast-pass metabolism of the liver and gut, the ability to offer controlled release rates, and the possibility for novel devices. Pressure sensitive adhesives (PSAs) are used to bond transdermal drug delivery devices to the skin because of their good initial and long-term adhesion, clean removability, and skin and drug compatibility. However, an understanding of the mechanics of adhesion to the dermal layer, together with quantitative and reproducible test methods for measuring adhesion, have been lacking. This study utilizes a mechanics-based approach to quantify the interfacial adhesion of PSAs bonded to selected substrates, including human dermal tissue. The delamination of PSA layers is associated with cavitation in the PSA followed by the formation of an extensive cohesive zone behind the debond tip. A quantitative metrology was developed to assess the adhesion and delamination of PSAs, such that it could be possible to easily distinguish between the adhesive characteristics of different PSA compositions and to provide a quantitative basis from which the reliability of adhesive layers bonded to substrates could be studied. A mechanics-based model was also developed to predict debonding in terms of the relevant energy dissipation mechanisms active during this process. As failure of transdermal devices may occur cohesively within the PSA layer, adhesively at the interface between the PSA and the skin, or cohesively between the corneocytes that comprise the outermost layer of the skin, it was also necessary to explore the mechanical and fracture properties of human skin. The out-of-plane delamination of corneocytes was studied by determining the strain energy release rate during

  11. Shear Bond Strength of Saliva Contaminated and Re-etched All-in-One Adhesive to Enamel

    Directory of Open Access Journals (Sweden)

    M. Khoroushi

    2008-12-01

    Full Text Available Objective: The aim of this study was to investigate the effect of phosphoric acid re-etching of an enamel surface treated via a one-bottle adhesive system on shear bond strength between resin composite and the enamelsurface in different stages of adhesive application.Materials and Methods: Extracted intact premolars (n=84 were divided into sevengroups (n=12. In the control group 1, the adhesive i-Bond was used according to the manufacturer's instructions, with nocontamination. In groups 2 to 4, the conditioned and saliva, contaminated enamel was blot dried only, rinsed,and blot dried, rinsed blot dried and re-etched, respectively. In groups 5, 6and 7 cured adhesive was contaminated with saliva and then rinsed and blot-dried, blot dried only and rinsed, blot-dried and re-etched respectively. In groups 3, 4, 6 and 7 the adhesive was reapplied. Afterward, Z100 compos-ite cylinders were bonded to the enamel surfaces. The samples were thermocycled (5°C and 55°C, 30 s, dwelling time: 10 s, 500 cycles. Finally, the samples were sheared using Dartec testing machine and shear bond strength data were subjected to one-way ANOVA analysis and Tukey's HSD test.Results: There were statistically significant differences among groups 1 and 5-7. The samples in groups 1 and 4 demonstrated higher bond strengths than those in the other groups.Conclusion: Using phosphoric acid etching may be effective, only where contamination occurs prior to curing of the adhesive. After curing of the adhesive, none of the methods in this study would be preferred.

  12. Epithelial cell adhesion molecule - More than a carcinoma marker and adhesion molecule

    NARCIS (Netherlands)

    Trzpis, Monika; McLaughlin, Pamela M. J.; de Leij, Lou M. F. H.; Harmsen, Martin C.

    The epithetial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of similar to 40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally

  13. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion

    NARCIS (Netherlands)

    Younes, Jessica A.; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J.; Reid, Gregor; van der Mei, Henny C.

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether

  14. INITIAL MICROBIAL ADHESION IS A DETERMINANT FOR THE STRENGTH OF BIOFILM ADHESION

    NARCIS (Netherlands)

    BUSSCHER, HJ; VANDERMEI, HC; Bos, R.R.M.

    1995-01-01

    This paper presents a hypothesis on the importance of initial microbial adhesion in the overall process of biofilm formation. The hypothesis is based on the realization that dynamic shear conditions exist in many environments, such as in the oral cavity, or on rocks and ship hulls. Recognizing that

  15. Zebra mussel adhesion: structure of the byssal adhesive apparatus in the freshwater mussel, Dreissena polymorpha.

    Science.gov (United States)

    Farsad, Nikrooz; Sone, Eli D

    2012-03-01

    The freshwater zebra mussel (Dreissena polymorpha) owes a large part of its success as an invasive species to its ability to attach to a wide variety of substrates. As in marine mussels, this attachment is achieved by a proteinaceous byssus, a series of threads joined at a stem that connect the mussel to adhesive plaques secreted onto the substrate. Although the zebra mussel byssus is superficially similar to marine mussels, significant structural and compositional differences suggest that further investigation of the adhesion mechanisms in this freshwater species is warranted. Here we present an ultrastructural examination of the zebra mussel byssus, with emphasis on interfaces that are critical to its adhesive function. By examining the attached plaques, we show that adhesion is mediated by a uniform electron dense layer on the underside of the plaque. This layer is only 10-20 nm thick and makes direct and continuous contact with the substrate. The plaque itself is fibrous, and curiously can exhibit either a dense or porous morphology. In zebra mussels, a graded interface between the animal and the substrate mussels is achieved by interdigitation of uniform threads with the stem, in contrast to marine mussels, where the threads themselves are non-uniform. Our observations of several novel aspects of zebra mussel byssal ultrastructure may have important implications not only for preventing biofouling by the zebra mussel, but for the development of new bioadhesives as well. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Investigation of surface properties and adhesion mechanisms in the combination of different layers, with the aid of surface analysis methods

    International Nuclear Information System (INIS)

    Olschewski, T.

    1991-01-01

    The aim of the investigations was to characterize the surface properties of organic coating materials and inorganic substrates, which are relevant in the context of microstructure technique developments and to obtain information on the adhesion mechanisms present. Two systems were examined which play an important part in micro-technique, i.e.: for the LIGA process and in the development of micro-sensors based on Chem FET's for chemical analysis. For these systems, i.e.: PMMA/TiO 2 and PVC adipate/Si 3 N 4 , adhesion mechanisms were expected, which occur particularly frequently in adhesive combination of polymers with inorganic substrates, i.e.: the mechanical gearing between polymer molecules and substrate structures and a chemical interaction between the boundary layers of the organic top coating and the inorganic substrate. (orig./DG) [de

  17. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-01-30

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  18. Adhesives technology for electronic applications materials, processing, reliability

    CERN Document Server

    Licari, James J

    2011-01-01

    Adhesives are widely used in the manufacture and assembly of electronic circuits and products. Generally, electronics design engineers and manufacturing engineers are not well versed in adhesives, while adhesion chemists have a limited knowledge of electronics. This book bridges these knowledge gaps and is useful to both groups. The book includes chapters covering types of adhesive, the chemistry on which they are based, and their properties, applications, processes, specifications, and reliability. Coverage of toxicity, environmental impacts and the regulatory framework make this book par

  19. Bacterial adhesion capacity on food service contact surfaces.

    Science.gov (United States)

    Fink, Rok; Okanovič, Denis; Dražič, Goran; Abram, Anže; Oder, Martina; Jevšnik, Mojca; Bohinc, Klemen

    2017-06-01

    The aim of this study was to analyse the adhesion of E. coli, P. aeruginosa and S. aureus on food contact materials, such as polyethylene terephthalate, silicone, aluminium, Teflon and glass. Surface roughness, streaming potential and contact angle were measured. Bacterial properties by contact angle and specific charge density were characterised. The bacterial adhesion analysis using staining method and scanning electron microscopy showed the lowest adhesion on smooth aluminium and hydrophobic Teflon for most of the bacteria. However, our study indicates that hydrophobic bacteria with high specific charge density attach to those surfaces more intensively. In food services, safety could be increased by selecting material with low adhesion to prevent cross contamination.

  20. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  1. Role of cellular adhesions in tissue dynamics spectroscopy

    Science.gov (United States)

    Merrill, Daniel A.; An, Ran; Turek, John; Nolte, David

    2014-02-01

    Cellular adhesions play a critical role in cell behavior, and modified expression of cellular adhesion compounds has been linked to various cancers. We tested the role of cellular adhesions in drug response by studying three cellular culture models: three-dimensional tumor spheroids with well-developed cellular adhesions and extracellular matrix (ECM), dense three-dimensional cell pellets with moderate numbers of adhesions, and dilute three-dimensional cell suspensions in agarose having few adhesions. Our technique for measuring the drug response for the spheroids and cell pellets was biodynamic imaging (BDI), and for the suspensions was quasi-elastic light scattering (QELS). We tested several cytoskeletal chemotherapeutic drugs (nocodazole, cytochalasin-D, paclitaxel, and colchicine) on three cancer cell lines chosen from human colorectal adenocarcinoma (HT-29), human pancreatic carcinoma (MIA PaCa-2), and rat osteosarcoma (UMR-106) to exhibit differences in adhesion strength. Comparing tumor spheroid behavior to that of cell suspensions showed shifts in the spectral motion of the cancer tissues that match predictions based on different degrees of cell-cell contacts. The HT-29 cell line, which has the strongest adhesions in the spheroid model, exhibits anomalous behavior in some cases. These results highlight the importance of using three-dimensional tissue models in drug screening with cellular adhesions being a contributory factor in phenotypic differences between the drug responses of tissue and cells.

  2. A microfabricated gecko-inspired controllable and reusable dry adhesive

    International Nuclear Information System (INIS)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-01-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ′) of 8–16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ′, along with a large shear force of ∼78 kPa, approaching the 88–226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry. (paper)

  3. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    Science.gov (United States)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  4. Human plasma fibrinogen adsorption and platelet adhesion to polystyrene.

    Science.gov (United States)

    Tsai, W B; Grunkemeier, J M; Horbett, T A

    1999-02-01

    The purpose of this study was to further investigate the role of fibrinogen adsorbed from plasma in mediating platelet adhesion to polymeric biomaterials. Polystyrene was used as a model hydrophobic polymer; i.e., we expected that the role of fibrinogen in platelet adhesion to polystyrene would be representative of other hydrophobic polymers. Platelet adhesion was compared to both the amount and conformation of adsorbed fibrinogen. The strategy was to compare platelet adhesion to surfaces preadsorbed with normal, afibrinogenemic, and fibrinogen-replenished afibrinogenemic plasmas. Platelet adhesion was determined by the lactate dehydrogenase (LDH) method, which was found to be closely correlated with adhesion of 111In-labeled platelets. Fibrinogen adsorption from afibrinogenemic plasma to polystyrene (Immulon I(R)) was low and polystyrene preadsorbed with fibrinogen-replenished afibrinogenemic plasma. Addition of even small, subnormal concentrations of fibrinogen to afibrinogenemic plasma greatly increased platelet adhesion. In addition, surface-bound fibrinogen's ability to mediate platelet adhesion was different, depending on the plasma concentration from which fibrinogen was adsorbed. These differences correlated with changes in the binding of a monoclonal antibody that binds to the Aalpha chain RGDS (572-575), suggesting alteration in the conformation or orientation of the adsorbed fibrinogen. Platelet adhesion to polystyrene preadsorbed with blood plasma thus appears to be a strongly bivariate function of adsorbed fibrinogen, responsive to both low amounts and altered states of the adsorbed molecule. Copyright 1999 John Wiley & Sons, Inc.

  5. Repeated origin and loss of adhesive toepads in geckos.

    Directory of Open Access Journals (Sweden)

    Tony Gamble

    Full Text Available Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation.

  6. Local adhesive surface properties studied by force microscopy

    International Nuclear Information System (INIS)

    Lekka, M.; Lekki, J.; Marszalek, M.; Stachura, Z.; Cleff, B.

    1998-01-01

    Scanning force microscopy was used in the contact mode to determine the adhesion force between a mica surface and a silicon nitride tip. The measurements were performed in an aqueous solution of sodium and calcium chlorides. The adhesion force according to the Derjaguin-Landau-Verwey-Overbeek theory depends on the competition between two kinds of forces: van der Waals and electrostatic 'double layer'. Two different curves of adhesion force versus salt concentration were obtained from the experiment with monovalent and divalent ions. The tip-surface adhesion force was determined from a statistical analysis of data obtained from the force vs. distance retracting curves. (author)

  7. A microfabricated gecko-inspired controllable and reusable dry adhesive

    Science.gov (United States)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-02-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.

  8. Repeated origin and loss of adhesive toepads in geckos.

    Science.gov (United States)

    Gamble, Tony; Greenbaum, Eli; Jackman, Todd R; Russell, Anthony P; Bauer, Aaron M

    2012-01-01

    Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads) that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation.

  9. Adhesive performance of a multi-mode adhesive system: 1-year in vitro study.

    Science.gov (United States)

    Marchesi, Giulio; Frassetto, Andrea; Mazzoni, Annalisa; Apolonio, Fabianni; Diolosà, Marina; Cadenaro, Milena; Di Lenarda, Roberto; Pashley, David H; Tay, Franklin; Breschi, Lorenzo

    2014-05-01

    The aim of this study was to investigate the adhesive stability over time of a multi-mode one-step adhesive applied using different bonding techniques on human coronal dentine. The hypotheses tested were that microtensile bond strength (μTBS), interfacial nanoleakage expression and matrix metalloproteinases (MMPs) activation are not affected by the adhesive application mode (following the use of self-etch technique or with the etch-and-rinse technique on dry or wet dentine) or by ageing for 24h, 6 months and 1year in artificial saliva. Human molars were cut to expose middle/deep dentine and assigned to one of the following bonding systems (N=15): (1) Scotchbond Universal (3M ESPE) self-etch mode, (2) Scotchbond Universal etch-and-rinse technique on wet dentine, (3) Scotchbond Universal etch-and-rinse technique on dry dentine, and (4) Prime&Bond NT (Dentsply De Trey) etch-and-rinse technique on wet dentine (control). Specimens were processed for μTBS test in accordance with the non-trimming technique and stressed to failure after 24h, 6 months or 1 year. Additional specimens were processed and examined to assay interfacial nanoleakage and MMP expression. At baseline, no differences between groups were found. After 1 year of storage, Scotchbond Universal applied in the self-etch mode and Prime&Bond NT showed higher μTBS compared to the other groups. The lowest nanoleakage expression was found for Scotchbond Universal applied in the self-etch mode, both at baseline and after storage. MMPs activation was found after application of each tested adhesive. The results of this study support the use of the self-etch approach for bonding the tested multi-mode adhesive system to dentine due to improved stability over time. Improved bonding effectiveness of the tested universal adhesive system on dentine may be obtained if the adhesive is applied with the self-etch approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving

    Science.gov (United States)

    Sandoval Amador, A.; Carreño Garcia, H.; Escobar Rivero, P.; Peña Ballesteros, D. Y.; Estupiñán Duran, H. A.

    2016-02-01

    The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti6Al4V surfaces were evaluated. Ti6Al4V surfaces were textured using a CO2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment.

  11. HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving

    International Nuclear Information System (INIS)

    Sandoval Amador, A; Carreño Garcia, H; Escobar Rivero, P; Peña Ballesteros, D Y; Estupiñán Duran, H A

    2016-01-01

    The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti 6 Al 4 V surfaces were evaluated. Ti 6 Al 4 V surfaces were textured using a CO 2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment. (paper)

  12. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor

    DEFF Research Database (Denmark)

    Fabriek, Babs O; Polfliet, Machteld M J; Vloet, Rianka P M

    2007-01-01

    Erythropoiesis occurs in erythroblastic islands, where developing erythroblasts closely interact with macrophages. The adhesion molecules that govern macrophage-erythroblast contact have only been partially defined. Our previous work has implicated the rat ED2 antigen, which is highly expressed...... on the surface of macrophages in erythroblastic islands, in erythroblast binding. In particular, the monoclonal antibody ED2 was found to inhibit erythroblast binding to bone marrow macrophages. Here, we identify the ED2 antigen as the rat CD163 surface glycoprotein, a member of the group B scavenger receptor...... that it enhanced erythroid proliferation and/or survival, but did not affect differentiation. These findings identify CD163 on macrophages as an adhesion receptor for erythroblasts in erythroblastic islands, and suggest a regulatory role for CD163 during erythropoiesis....

  13. Morphology and interdiffusion control to improve adhesion and cohesion properties in inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2015-01-01

    © 2014 Elsevier B.V. All rights reserved. The role of pre-electrode deposition annealing on the morphology and the fracture properties of polymer solar cells is discussed. We found an increase in adhesion at the weak P3HT:PCBM/PEDOT:PSS interface with annealing temperature, caused by increased interdiffusion between the organic layers. The formation of micrometer sized PCBM crystallites, which occurs with annealing above the crystallization temperature of PCBM, initially weakened the P3HT:PCBM layer itself. Further annealing improved the cohesion, due to a pull-out toughening mechanism of the growing PCBM clusters. Understanding how the morphology, tuned by annealing, affects the adhesive and cohesive properties in these organic films is essential for the mechanical integrity of OPV devices.

  14. The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

    Directory of Open Access Journals (Sweden)

    Daniel Gandyra

    2015-01-01

    Full Text Available We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1 determination of the water adhesion force and the elasticity of individual hairs (trichomes of the floating fern Salvinia molesta. (2 The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics was performed. The method also resulted in the measurement of an elastic modulus (Young’s modulus for individual hairs of 3.0 × 105 N/cm2, which is within the typical range known for human hair. (3 Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods.

  15. Comparison of enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives in self-etch mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Hosoya, Yumiko; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-10-01

    To comparatively evaluate universal adhesives and two-step self-etch adhesives for enamel bond fatigue durability in self-etch mode. Three universal adhesives (Clearfil Universal Bond; G-Premio Bond; Scotchbond Universal Adhesive) and three two-step self-etch adhesives (Clearfil SE Bond; Clearfil SE Bond 2; OptiBond XTR) were used. The initial shear bond strength and shear fatigue strength of the adhesive to enamel in self-etch mode were determined. The initial shear bond strengths of the universal adhesives to enamel in self-etch mode was significantly lower than those of two-step self-etch adhesives and initial shear bond strengths were not influenced by type of adhesive in each adhesive category. The shear fatigue strengths of universal adhesives to enamel in self-etch mode were significantly lower than that of Clearfil SE Bond and Clearfil SE Bond 2, but similar to that OptiBond XTR. Unlike two-step self-etch adhesives, the initial shear bond strength and shear fatigue strength of universal adhesives to enamel in self-etch mode was not influenced by the type of adhesive. This laboratory study showed that the enamel bond fatigue durability of universal adhesives was lower than Clearfil SE Bond and Clearfil SE Bond 2, similar to Optibond XTR, and was not influenced by type of adhesive, unlike two-step self-etch adhesives.

  16. Interfacial Friction and Adhesion of Polymer Brushes

    KAUST Repository

    Landherr, Lucas J. T.

    2011-08-02

    A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (δ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ∼ δ4/3, which is supported by our experimental data. © 2011 American Chemical Society.

  17. Photocrosslinkable chitosan as a biological adhesive.

    Science.gov (United States)

    Ono, K; Saito, Y; Yura, H; Ishikawa, K; Kurita, A; Akaike, T; Ishihara, M

    2000-02-01

    A photocrosslinkable chitosan to which both azide and lactose moieties were introduced (Az-CH-LA) was prepared as a biological adhesive for soft tissues and its effectiveness was compared with that of fibrin glue. Introduction of the lactose moieties resulted in a much more water-soluble chitosan at neutral pH. Application of ultraviolet light (UV) irradiation to photocrosslinkable Az-CH-LA produced an insoluble hydrogel within 60 s. This hydrogel firmly adhered two pieces of sliced ham with each other, depending upon the Az-CH-LA concentration. The binding strength of the chitosan hydrogel prepared from 30-50 mg/mL of Az-CH-LA was similar to that of fibrin glue. Compared to the fibrin glue, the chitosan hydrogel more effectively sealed air leakage from pinholes on isolated small intestine and aorta and from incisions on isolated trachea. Neither Az-CH-LA nor its hydrogel showed any cytotoxicity in cell culture tests of human skin fibroblasts, coronary endothelial cells, and smooth muscle cells. Furthermore, all mice studied survived for at least 1 month after implantation of 200 microL of photocrosslinked chitosan gel and intraperitoneal administration of up to 1 mL of 30 mg/mL of Az-CH-LA solution. These results suggest that the photocrosslinkable chitosan developed here has the potential of serving as a new tissue adhesive in medical use. Copyright 2000 John Wiley & Sons, Inc.

  18. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration.

    Science.gov (United States)

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-12-18

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.

  19. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Science.gov (United States)

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  20. Drastic Improvement in Adhesion Property of Polytetrafluoroethylene (PTFE) via Heat-Assisted Plasma Treatment Using a Heater.

    Science.gov (United States)

    Ohkubo, Yuji; Ishihara, Kento; Shibahara, Masafumi; Nagatani, Asahiro; Honda, Koji; Endo, Katsuyoshi; Yamamura, Kazuya

    2017-08-25

    The heating effect on the adhesion property of plasma-treated polytetrafluoroethylene (PTFE) was examined. For this purpose, a PTFE sheet was plasma-treated at atmospheric pressure while heating using a halogen heater. When plasma-treated at 8.3 W/cm 2 without using the heater (Low-P), the surface temperature of Low-P was about 95 °C. In contrast, when plasma-treated at 8.3 W/cm 2 while using the heater (Low-P+Heater), the surface temperature of Low-P+Heater was controlled to about 260 °C. Thermal compression of the plasma-treated PTFE with or without heating and isobutylene-isoprene rubber (IIR) was performed, and the adhesion strength of the IIR/PTFE assembly was measured via the T-peel test. The adhesion strengths of Low-P and Low-P+Heater were 0.12 and 2.3 N/mm, respectively. Cohesion failure of IIR occurred during the T-peel test because of its extremely high adhesion property. The surfaces of the plasma-treated PTFE with or without heating were investigated by the measurements of electron spin resonance, X-ray photoelectron spectroscopy, nanoindentation, scanning electron microscopy, and scanning probe microscopy. These results indicated that heating during plasma treatment promotes the etching of the weak boundary layer (WBL) of PTFE, resulting in a sharp increase in the adhesion property of PTFE.

  1. Genomics and X-ray microanalysis indicate that Ca2+ and thiols mediate the aggregation and adhesion of Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Leite B.

    2002-01-01

    Full Text Available The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.

  2. Inhibiting focal adhesion kinase (FAK) blocks IL-4 induced VCAM-1 expression and eosinophil recruitment in vitro and in vivo.

    Science.gov (United States)

    Aulakh, Gurpreet K; Petri, Björn; Wojcik, Katarzyna M; Colarusso, Pina; Lee, James J; Patel, Kamala D

    2018-04-06

    Leukocyte recruitment plays a critical role during both normal inflammation and chronic inflammatory diseases, and ongoing studies endeavor to better understand the complexities of this process. Focal adhesion kinase (FAK) is well known for its role in cancer, yet it also has been shown to regulate aspects of neutrophil and B16 melanoma cell recruitment by rapidly influencing endothelial cell focal adhesion dynamics and junctional opening. Recently, we found that FAK related non-kinase (FRNK), a protein that is often used as a FAK dominant negative, blocked eosinophil transmigration by preventing the transcription of vascular cell adhesion molecule-1 (VCAM-1) and eotaxin-3 (CCL26). Surprisingly, the blocking occurred even in the absence of endogenous FAK. To better understand the role of FAK in leukocyte recruitment, we used a FAK-specific inhibitor (PF-573228) and determined the effect on IL-4 induced eosinophil recruitment in vitro and in vivo. PF-573228 prevented the expression of VCAM-1 and CCL26 expression in IL-4-stimulated human endothelial cells in vitro. As a result, eosinophil adhesion and transmigration were blocked. PF-572338 also prevented IL-4-induced VCAM-1 expression in vivo. Using brightfield intravital microscopy, we found that PF-573228 decreased leukocyte rolling flux, adhesion, and emigration. We specifically examined eosinophil recruitment in vivo by using an eosinophil-GFP reporter mouse and found PF-573228 attenuated eosinophil emigration. This study reveals that a FAK inhibitor influences inflammation through its action on eosinophil recruitment. ©2018 Society for Leukocyte Biology.

  3. Inhibition of Cellular Adhesion by Immunological Targeting of Osteopontin Neoepitopes Generated through Matrix Metalloproteinase and Thrombin Cleavage.

    Science.gov (United States)

    Jürets, Alexander; Le Bras, Marie; Staffler, Günther; Stein, Gesine; Leitner, Lukas; Neuhofer, Angelika; Tardelli, Matteo; Turkof, Edvin; Zeyda, Maximilian; Stulnig, Thomas M

    2016-01-01

    Osteopontin (OPN), a secreted protein involved in inflammatory processes and cancer, induces cell adhesion, migration, and activation of inflammatory pathways in various cell types. Cells bind OPN via integrins at a canonical RGD region in the full length form as well as to a contiguous cryptic site that some have shown is unmasked upon thrombin or matrix metalloproteinase cleavage. Thus, the adhesive capacity of osteopontin is enhanced by proteolytic cleavage that may occur in inflammatory conditions such as obesity, atherosclerosis, rheumatoid arthritis, tumor growth and metastasis. Our aim was to inhibit cellular adhesion to recombinant truncated proteins that correspond to the N-terminal cleavage products of thrombin- or matrix metalloproteinase-cleaved OPN in vitro. We specifically targeted the cryptic integrin binding site with monoclonal antibodies and antisera induced by peptide immunization of mice. HEK 293 cells adhered markedly stronger to truncated OPN proteins than to full length OPN. Without affecting cell binding to the full length form, the raised monoclonal antibodies specifically impeded cellular adhesion to the OPN fragments. Moreover, we show that the peptides used for immunization were able to induce antisera, which impeded adhesion either to all OPN forms, including the full-length form, or selectively to the corresponding truncated recombinant proteins. In conclusion, we developed immunological tools to selectively target functional properties of protease-cleaved OPN forms, which could find applications in treatment and prevention of various inflammatory diseases and cancers.

  4. Co-micellized Pluronic mixture with thermo-sensitivity and residence stability as an injectable tissue adhesion barrier hydrogel.

    Science.gov (United States)

    Oh, Se Heang; Kang, Jun Goo; Lee, Jin Ho

    2018-01-01

    Although the tissue adhesion which leads to various complications frequently occurs after surgery, the development of an ideal tissue adhesion barrier is still a challenge. In this study, a thermo-sensitive hydrogel, which can fulfill the essential requirements of tissue adhesion barrier (that is, ease of handling for surgeon, flowing down prevention after application, stable residence on the injury during wound healing, and no use of toxic additives), was developed using biocompatible polyethylene glycol-polypropylene glycol copolymers (Pluronic F127/F68/P123 mixture). From the in vitro cell culture and in vivo animal study, it was observed that the Pluronic mixtures showed sol-gel transition at approximately body temperature (for easy injection or coating on the injury site and flowing down prevention after application) and prolonged residence stability in aqueous environment (> ∼7 days for stable protection of injury tissues/organs during wound healing), and thus was highly effective for the prevention of tissue adhesion without adverse tissue responses. Based on these results, the Pluronic F127/F68/P123 mixture itself (without any additives) can be a good candidate as an injectable or coatable tissue adhesion barrier hydrogel applicable to various injury tissues in terms of ease of use, effectiveness, and safety. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 172-182, 2018. © 2016 Wiley Periodicals, Inc.

  5. Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C.

    Science.gov (United States)

    Applegate, Tanya L; Gaudieri, Silvana; Plauzolles, Anne; Chopra, Abha; Grebely, Jason; Lucas, Michaela; Hellard, Margaret; Luciani, Fabio; Dore, Gregory J; Matthews, Gail V

    2015-01-01

    Direct-acting antivirals (DAAs) are predicted to transform hepatitis C therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV-positive and -negative individuals with recent HCV. The NS3 protease, NS5A and NS5B polymerase genes were amplified from 50 genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing. A total of 12% of individuals harboured dominant resistance mutations, while 36% demonstrated non-dominant resistant variants below that detectable by bulk sequencing (that is, Resistance variants (resistance from all classes, with the exception of sofosbuvir. Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low-level mutations to all DAA classes were observed by deep sequencing at the majority of sites and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. Clinicaltrials.gov NCT00192569.

  6. Effect of salivary contamination and decontamination on bond strength of two one-step self-etching adhesives to dentin of primary and permanent teeth.

    Science.gov (United States)

    Santschi, Katharina; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-02-01

    To evaluate the effects of human saliva contamination and two decontamination procedures at different stages of the bonding procedure on the bond strength of two one-step self-etching adhesives to primary and permanent dentin. Extracted human primary and permanent molars (210 of each) were ground to mid-coronal dentin. The dentin specimens were randomly divided into 7 groups (n = 15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light curing of the adhesives followed by air drying, rinsing with water spray/air drying, or by rinsing with water spray/air drying/reapplication of the adhesives. Resin composite (Filtek Z250) was applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests. Xeno V+ generated significantly higher SBS than Scotchbond Universal when no saliva contamination occurred. Saliva contamination reduced SBS of Xeno V+, with the reduction being more pronounced when contamination occurred before light curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth. Rinsing with water and air drying followed by reapplication of the adhesive restored bond strength to saliva-contaminated dentin.

  7. Design methodology for nano-engineered surfaces to control adhesion: Application to the anti-adhesion of particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taekyung [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Cheongwan [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); Jung, Myungki; Lee, Jinhyung; Park, Changsu [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Kang, Shinill, E-mail: snlkang@yonsei.ac.kr [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of)

    2016-12-15

    Highlights: • A design method using the Derjaguin approximation with FEA for low-adhesion surface. • Fabrication of nanostructures with small adhesion forces by presented design method. • Characterization of adhesion force via AFM FD-curve with modified atypical tips. • Verification of low-adhesion of designed surfaces using centrifugal detachment tests. • Investigation of interdependence of hydrophobicity and anti-adhesion force. - Abstract: With increasing demand for means of controlling surface adhesion in various applications, including the semiconductor industry, optics, micro/nanoelectromechanical systems, and the medical industry, nano-engineered surfaces have attracted much attention. This study suggests a design methodology for nanostructures using the Derjaguin approximation in conjunction with finite element analysis for the control of adhesion forces. The suggested design methodology was applied for designing a nano-engineered surface with low-adhesion properties. To verify this, rectangular and sinusoidal nanostructures were fabricated and analyzed using force-distance curve measurements using atomic force microscopy and centrifugal detachment testing. For force-distance curve measurements, modified cantilevers with tips formed with atypical particles were used. Subsequently, centrifugal detachment tests were also conducted. The surface wettability of rectangular and sinusoidal nanostructures was measured and compared with the measured adhesion force and the number of particles remaining after centrifugal detachment tests.

  8. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    Science.gov (United States)

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G.; Giovanoli, Pietro

    2016-01-01

    ABSTRACT After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037

  9. Rabbit Achilles tendon full transection model - wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery.

    Science.gov (United States)

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G; Giovanoli, Pietro; Buschmann, Johanna

    2016-09-15

    After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. © 2016. Published by The Company of Biologists Ltd.

  10. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    Directory of Open Access Journals (Sweden)

    Gabriella Meier Bürgisser

    2016-09-01

    Full Text Available After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization, or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization, while in the other groups (3 and 12 weeks a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011, and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points. Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand.

  11. A novel diagnostic aid for intra-abdominal adhesion detection in cine-MR imaging: Pilot study and initial diagnostic impressions.

    Science.gov (United States)

    Randall, David; Joosten, Frank; ten Broek, Richard; Gillott, Richard; Bardhan, Karna Dev; Strik, Chema; Prins, Wiesje; van Goor, Harry; Fenner, John

    2017-07-14

    A non-invasive diagnostic technique for abdominal adhesions is not currently available. Capture of abdominal motion due to respiration in cine-MRI has shown promise, but is difficult to interpret. This article explores the value of a complimentary diagnostic aid to facilitate the non-invasive detection of abdominal adhesions using cine-MRI. An image processing technique was developed to quantify the amount of sliding that occurs between the organs of the abdomen and the abdominal wall in sagittal cine-MRI slices. The technique produces a 'sheargram' which depicts the amount of sliding which has occurred over 1-3 respiratory cycles. A retrospective cohort of 52 patients, scanned for suspected adhesions, made 281 cine-MRI sagittal slices available for processing. The resulting sheargrams were reported by two operators and compared to expert clinical judgement of the cine-MRI scans. The sheargram matched clinical judgement in 84% of all sagittal slices and 93-96% of positive adhesions were identified on the sheargram. The sheargram displayed a slight skew towards sensitivity over specificity, with a high positive adhesion detection rate but at the expense of false positives. Good correlation between sheargram and absence/presence of inferred adhesions indicates quantification of sliding motion has potential to aid adhesion detection in cine-MRI. Advances in Knowledge: This is the first attempt to clinically evaluate a novel image processing technique quantifying the sliding motion of the abdominal contents against the abdominal wall. The results of this pilot study reveal its potential as a diagnostic aid for detection of abdominal adhesions.

  12. Contact mechanics, friction and adhesion with application to quasicrystals

    DEFF Research Database (Denmark)

    Persson, Bo; Carbone, Giuseppe; Samoilov, Vladimir N.

    2015-01-01

    We discuss the origin of friction and adhesion between hard solids such as quasicrystals. We emphasize the fundamental role of surface roughness in many contact mechanics problems, in particular for friction and adhesion between solid bodies. The most important property of rough surfaces...

  13. Adhesion experiments using an AFM-Parameters of influence

    NARCIS (Netherlands)

    Dos Santos Ferreira, O.; Gelinck, E.R.M.; Graaf, D. de; Fischer, H.

    2010-01-01

    Adhesion measurements were performed by AFM (Atomic Force Microscopy). It was shown that many parameters need to be controlled in order to provide reproducible and quantitative results. Adhesion forces were shown to depend on combination of materials characteristics and testing geometry as well as

  14. The electron beam cure of epoxy paste adhesives

    International Nuclear Information System (INIS)

    Farmer, J.D.; Janke, C.J.; Lopata, V.J.

    1998-01-01

    Recently developed epoxy paste adhesives were electron beam cured and experimentally explored to determine their suitability for use in an aerospace-quality aircraft component. There were two major goals for this program. The first was to determine whether the electron beam-curable past adhesives were capable of meeting the requirements of the US Air Force T-38 supersonic jet trainer composite windshield frame. The T-38 windshield frame's arch is currently manufactured by bonding thin stainless steel plies using an aerospace-grade thermally-cured epoxy film adhesive. The second goal was to develop the lowest cost hand layup and debulk process that could be used to produce laminated steel plies with acceptable properties. The laminate properties examined to determine adhesive suitability include laminate mechanical and physical properties at room, adhesive tack, out-time capability, and the debulk requirements needed to achieve these properties. Eighteen past adhesives and four scrim cloths were experimentally examined using this criteria. One paste adhesive was found to have suitable characteristics in each of these categories and was later chosen for the manufacture of the T-38 windshield frame. This experimental study shows that by using low-cost debulk and layup processes, the electron beam-cured past adhesive mechanical and physical properties meet the specifications of the T-38 composite windshield frame

  15. The strength research of the adhesive joints of sheet structures ...

    African Journals Online (AJOL)

    The research results of stress-strained condition of constructional sheet materials are given in the article. The strength dependence on type, configuration and sizes of adhesive joints is analyzed. The research of the strength dependence was made on the samples from bakelite plywood with the main types of adhesive joints ...

  16. Adhesion barriers at cesarean delivery: advertising compared with the evidence.

    Science.gov (United States)

    Albright, Catherine M; Rouse, Dwight J

    2011-07-01

    Cesarean delivery, the most common surgery performed in the United States, is complicated by adhesion formation in 24-73% of cases. Because adhesions have potential sequelae, different synthetic adhesion barriers are currently heavily marketed as a means of reducing adhesion formation resultant from cesarean delivery. However, their use for this purpose has been studied in only two small, nonblinded and nonrandomized trials, both of which were underpowered and subject to bias. Neither demonstrated improvement in meaningful clinical outcomes. In the only cost-effectiveness analysis of adhesion barriers to date, the use of synthetic adhesion barriers was cost-effective only when the subsequent rate of small bowel obstruction was at least 2.4%, a rate far higher than that associated with cesarean delivery. In fact, intra-abdominal adhesions from prior cesarean delivery rarely cause maternal harm and have not been demonstrated to adversely affect perinatal outcome. Based on our review of the available literature, we think the use of adhesion barriers at the time of cesarean delivery would be ill-advised at the present time.

  17. Chapter 8: Soy Properties and Soy Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart; Michael J. Birkeland

    2014-01-01

    Soy flour has been used for many years as a wood adhesive. Rapid development of petroleum-based infrastructure coupled with advancement of synthetic resin technology resulted in waning usage since the early 1960s. Discovery of using polyamidoamine–epichlorohydrin (PAE) resin as a co-reactant has been effective in increasing the wet bond strength of soy adhesives and...

  18. Development and application of wood adhesives in China

    Science.gov (United States)

    Jiyou Gu; Zhiyong Cai

    2010-01-01

    Rapid economic development and growth in China has resulted in a substantial increase in the demand for utilization of bio-based composites. This provides a unique opportunity for developing wood adhesives. This study reviews research development and major accomplishments in wood adhesives and technology in China over the last 50 years. It also discusses the...

  19. Heat resistant soy adhesives for structural wood products

    Science.gov (United States)

    Christopher G. Hunt; Charles Frihart; Jane O' Dell

    2009-01-01

    Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening and depolymerization of biobased polymers at elevated temperatures should be an advantage of biobased adhesives compared to fossil fuel-based adhesives. Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening...

  20. High temperature performance of soy-based adhesives

    Science.gov (United States)

    Jane L. O’Dell; Christopher G. Hunt; Charles R. Frihart

    2013-01-01

    We studied the high temperature performance of soy meal processed to different protein concentrations (flour, concentrate, and isolate), as well as formulated soy-based adhesives, and commercial nonsoy adhesives for comparison. No thermal transitions were seen in phenol-resorcinol-formaldehyde (PRF) or soy-phenol-formaldehyde (SoyPF) or in as-received soy flour...