WorldWideScience

Sample records for adhesion kinase decreases

  1. In vitro phosphorylation of the focal adhesion targeting domain of focal adhesion kinase by Src kinase.

    Science.gov (United States)

    Cable, Jennifer; Prutzman, Kirk; Gunawardena, Harsha P; Schaller, Michael D; Chen, Xian; Campbell, Sharon L

    2012-03-20

    Focal adhesion kinase (FAK), a key regulator of cell adhesion and migration, is overexpressed in many types of cancer. The C-terminal focal adhesion targeting (FAT) domain of FAK is necessary for proper localization of FAK to focal adhesions and subsequent activation. Phosphorylation of Y926 in the FAT domain by the tyrosine kinase Src has been shown to promote metastasis and invasion in vivo by linking the FAT domain to the MAPK pathway via its interaction with growth factor receptor-bound protein 2. Several groups have reported that inherent conformational dynamics in the FAT domain likely regulate phosphorylation of Y926; however, what regulates these dynamics is unknown. In this paper, we demonstrate that there are two sites of in vitro Src-mediated phosphorylation in the FAT domain: Y926, which has been shown to affect FAK function in vivo, and Y1008, which has no known biological role. The phosphorylation of these two tyrosine residues is pH-dependent, but this does not reflect the pH dependence of Src kinase activity. Circular dichroism and nuclear magnetic resonance data indicate that the stability and conformational dynamics of the FAT domain are sensitive to changes in pH over a physiological pH range. In particular, regions of the FAT domain previously shown to regulate phosphorylation of Y926 as well as regions near Y1008 show pH-dependent dynamics on the microsecond to millisecond time scale.

  2. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration

    International Nuclear Information System (INIS)

    Wu, C.-C.; Su, H.-W.; Lee, C.-C.; Tang, M.-J.; Su, F.-C.

    2005-01-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (∼600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration

  3. Protein kinase C involvement in focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1992-01-01

    Matrix molecules such as fibronectin can promote cell attachment, spreading and focal adhesion formation. Although some interactions of fibronectin with cell surface receptors have now been identified, the consequent activation of intracellular messenger systems by cell/matrix interactions have...... still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form....... Fibroblasts spread within 1h on substrata composed of fibronectin and formed focal adhesions by 3h, as monitored by interference reflection microscopy (IRM) and by labeling for talin, vinculin and integrin beta 1 subunits. In addition, stress fibers were visible. When cells were allowed to spread for 1h...

  4. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    Science.gov (United States)

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-04-01

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  5. Phosphotyrosine enrichment identifies focal adhesion kinase and other tyrosine kinases for targeting in canine hemangiosarcoma.

    Science.gov (United States)

    Marley, K; Maier, C S; Helfand, S C

    2012-09-01

    Canine hemangiosarcoma (HSA) is an endothelial cell malignancy driven, in part, by activating mutations in receptor and non-receptor tyrosine kinases. Proteomics, Western blots and a tyrosine kinase inhibitor were used to elucidate activating mechanisms in HSA cell lines. Phosphotyrosine peptides from focal adhesion kinase (FAK) STAT3, Lyn, Fyn and other signal transduction kinases were identified by mass spectrometry. FAK was constitutively activated at tyrosine 397, the autophosphorylation site, and this was reversible with high concentrations of a FAK inhibitor. FAK inhibitor-14 suppressed migration and phosphorylation of FAK tyrosine 397 and tyrosines 576/577 and was cytotoxic to HSA cells suggesting FAK signalling may be an important contributor to canine HSA survival. © 2012 Blackwell Publishing Ltd.

  6. Focal Adhesion Kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho

    International Nuclear Information System (INIS)

    Playford, Martin P.; Vadali, Kavita; Cai Xinming; Burridge, Keith; Schaller, Michael D.

    2008-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho

  7. Focal adhesion kinase and paxillin promote migration and adhesion to fibronectin by swine skeletal muscle satellite cells

    Science.gov (United States)

    Wang, Dan; Gao, Chun-qi; Chen, Rong-qiang; Jin, Cheng-long; Li, Hai-chang; Yan, Hui-chao; Wang, Xiu-qi

    2016-01-01

    The focal adhesion kinase (FAK) signaling pathway contributes to the cell migration and adhesion that is critical for wound healing and regeneration of damaged muscle, but its function in skeletal muscle satellite cells (SCs) is less clear. We compared the migration and adhesion of SCs derived from two species of pig (Lantang and Landrace) in vitro, and explored how FAK signaling modulates the two processes. The results showed that Lantang SCs had greater ability to migrate and adhere to fibronection (P < 0.05) than Landrace SCs. Compared to Landrace SCs, Lantang SCs expressed many more focal adhesion (FA) sites, which were indicated by the presence of p-paxillin (Tyr118), and exhibited less F-actin reorganization 24 h after seeding onto fibronectin. Levels of p-FAK (Tyr397) and p-paxillin (Tyr118) were greater (P < 0.05) in Lantang SCs than Landrace SCs after migration for 24 h. Similarly, Lantang SCs showed much higher levels of p-FAK (Tyr397), p-paxillin (Tyr118) and p-Akt (Ser473) than Landrace SCs 2 h after adhesion. Treatment with the FAK inhibitor PF-573228 (5 or 10 μmol/L) inhibited Lantang SC migration and adhesion to fibronectin (P < 0.05), decreased levels of p-paxillin (Tyr118) and p-Akt (Ser473) (P < 0.05), and suppressed the formation of FA sites on migrating SCs. Thus FAK appears to play a key role in the regulation of SC migration and adhesion necessary for muscle regeneration. PMID:27127174

  8. Protein kinase C, focal adhesions and the regulation of cell migration

    DEFF Research Database (Denmark)

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles...... and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components...

  9. Increased Expression of Focal Adhesion Kinase in Thyroid Cancer: Immunohistochemical Study

    OpenAIRE

    Kim, Sang Jin; Park, Jin Woo; Yoon, Ji Sung; Mok, Ji O; Kim, Yeo Joo; Park, Hyeong Kyu; Kim, Chul Hee; Byun, Dong Won; Lee, Yong Jin; Jin, So Young; Suh, Kyo Il; Yoo, Myung Hi

    2004-01-01

    Focal adhesion kinase (FAK) is a tyrosine kinase that is found in cellular structures called focal adhesions. FAK appears to be a key element in signal transduction pathways involved in cell adhesion and locomotion. FAK is overexpressed in various tumors, including tumors derived from regions of the head and neck, colon, breast, prostate, and liver. In this study, we investigated immunohistochemically whether FAK expression was increased in thyroid cancers. FAK staining was not seen in any of...

  10. Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Klemm, Anna H.; Diez, Gerold; Alonso, Jose-Luis; Goldmann, Wolfgang H.

    2009-01-01

    Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53 > p53 > vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.

  11. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  12. Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes

    DEFF Research Database (Denmark)

    Goñi, Guillermina M; Epifano, Carolina; Boskovic, Jasminka

    2014-01-01

    Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase (NRTK) with key roles in integrating growth and cell matrix adhesion signals, and FAK is a major driver of invasion and metastasis in cancer. Cell adhesion via integrin receptors is well known to trigger FAK signaling, and many of the p...

  13. Indole-3-carbinol inhibits MDA-MB-231 breast cancer cell motility and induces stress fibers and focal adhesion formation by activation of Rho kinase activity.

    Science.gov (United States)

    Brew, Christine T; Aronchik, Ida; Kosco, Karena; McCammon, Jasmine; Bjeldanes, Leonard F; Firestone, Gary L

    2009-05-15

    Indole-3-carbinol (I3C), a phytochemical derived from cruciferous vegetables such as broccoli and Brussels sprouts, has potent antiproliferative effects in human breast cancer cells and has been shown to decrease metastatic spread of tumors in experimental animals. Using chemotaxis and fluorescent-bead cell motility assays, we demonstrated that I3C significantly decreased the in vitro migration of MDA-MB-231 cells, a highly invasive breast cancer cell line. Immunofluorescence staining of the actin cytoskeleton revealed that concurrent with the loss of cell motility, I3C treatment significantly increased stress fiber formation. Furthermore, I3C induced the localization of the focal adhesion component vinculin and tyrosine-phosphorylated proteins to the cell periphery, which implicates an indole-dependent enhancement of focal adhesions within the outer boundary of the cells. Coimmunoprecipitation analysis of focal adhesion kinase demonstrated that I3C stimulated the dynamic formation of the focal adhesion protein complex without altering the total level of individual focal adhesion proteins. The RhoA-Rho kinase pathway is involved in stress fiber and focal adhesion formation, and I3C treatment stimulated Rho kinase enzymatic activity and cofilin phosphorylation, which is a downstream target of Rho kinase signaling, but did not increase the level of active GTP-bound RhoA. Exposure of MDA-MB-231 cells to the Rho kinase inhibitor Y-27632, or expression of dominant negative RhoA ablated the I3C induced formation of stress fibers and of peripheral focal adhesions. Expression of constitutively active RhoA mimicked the I3C effects on both processes. Taken together, our data demonstrate that I3C induces stress fibers and peripheral focal adhesions in a Rho kinase-dependent manner that leads to an inhibition of motility in human breast cancer cells. (c) 2008 Wiley-Liss, Inc.

  14. Activation of erythropoietin-producing hepatocellular receptor A2 attenuates cell adhesion of human fallopian tube epithelial cells via focal adhesion kinase dephosphorylation.

    Science.gov (United States)

    Yang, Xiao-Yi; Zhu, Wei-Jie; Jiang, Huan

    2012-02-01

    Tyrosine kinase receptor erythropoietin-producing hepatocellular receptor A2 (EphA2) and its predominant ligand EphrinA1 have been studied extensively for their roles of mediating cell adhesion in epithelial cells. However, EphA2 signaling in human fallopian tube epithelial cells is poorly understood. In this study, primary cultured fallopian tube epithelial cells were used as a model treated with EphrinA1-Fc or IgG-Fc (control), to explore the role of EphA2 signal and its network involved in the regulation of cell adhesion of tubal epithelia cells. The activation of EphA2 and focal adhesion kinase (FAK) was evaluated by western blotting assay in the cultured fallopian tube epithelia cells, of which the cell adhesion activity was determined by MTT assay. A significantly negative correlation was found between phosphorylated-EphA2 (Pho-EphA2) and phosphorylated-FAK (Pho-FAK) after exposure to EphrinA1-Fc (P = 0.000; r = -0.848). EphrinA1-Fc increased Pho-EphA2 and reduced Pho-FAK in seconds, with the apex level of Pho-EphA2 and the nadir level of Pho-FAK detected at the same time (10 min). Cell adhesion of the cultured cells supplemented with EphrinA1-Fc appeared to be weaker than that of the controls at the later time points of the treatment (from 30 to 120 min) (P < 0.05). Taken together, the EphrinA1 addition directly induces an elevated Pho-EphA2 accompanied by a decreased Pho-FAK in human fallopian tube epithelia cells. Furthermore, activation of EphA2 participates in the regulation of fallopian tube cell adhesion via FAK dephosphorylation.

  15. Focal adhesion kinase, a downstream mediator of Raf-1 signaling, suppresses cellular adhesion, migration, and neuroendocrine markers in BON carcinoid cells.

    Science.gov (United States)

    Ning, Li; Chen, Herbert; Kunnimalaiyaan, Muthusamy

    2010-05-01

    We have recently reported that activation of the Raf-1/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/2 (MEK1/2)/ERK1/2 signaling cascade in gastrointestinal carcinoid cell line (BON) alters cellular morphology and neuroendocrine phenotype. The mechanisms by which Raf-1 mediates these changes in carcinoid cells are unclear. Here, we report that activation of the Raf-1 signaling cascade in BON cells induced the expression of focal adhesion kinase (FAK) protein, suppressed the production of neuroendocrine markers, and resulted in significant decreases in cellular adhesion and migration. Importantly, inactivation of MEK1/2 by 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene or abolition of FAK induction in Raf-1-activated BON cells by targeted siRNA led to reversal of the Raf-1-mediated reduction in neuroendocrine markers and cellular adhesion and migration. Phosphorylation site-specific antibodies detected the phosphorylated FAK(Tyr407), but not FAK(Tyr397), in these Raf-1-activated cells, indicating that FAK(Tyr407) may be associated with changes in the neuroendocrine phenotype. Overexpression of constitutively active FAK plasmids (wild-type FAK or FAK(Tyr397) mutant) into BON cells reduced neuroendocrine markers, whereas the FAK(Tyr407) mutant plasmid did not show any decrease in the levels of neuroendocrine markers, indicating that phosphorylation of FAK at the Tyr(407) residue may be important for these effects. Our results showed for the first time that FAK is an essential downstream effector of the Raf-1/MEK1/2/ERK1/2 signaling cascade and negatively regulated the neuroendocrine and metastatic phenotype in BON cells. (c)2010 AACR.

  16. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration

    Science.gov (United States)

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-01-01

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405

  17. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions

    KAUST Repository

    Walkiewicz, Katarzyna Wiktoria

    2015-06-17

    The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein ‘nanomachines’ to become activated in a site-specific manner.

  18. Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma.

    Science.gov (United States)

    Kanteti, Rajani; Mirzapoiazova, Tamara; Riehm, Jacob J; Dhanasingh, Immanuel; Mambetsariev, Bolot; Wang, Jiale; Kulkarni, Prakash; Kaushik, Garima; Seshacharyulu, Parthasarathy; Ponnusamy, Moorthy P; Kindler, Hedy L; Nasser, Mohd W; Batra, Surinder K; Salgia, Ravi

    2018-04-03

    The non-receptor cytoplasmic tyrosine kinase, Focal Adhesion Kinase (FAK) is known to play a key role in a variety of normal and cancer cellular functions such as survival, proliferation, migration and invasion. It is highly active and overexpressed in various cancers including Pancreatic Ductal Adenocarcinoma (PDAC) and Malignant Pleural Mesothelioma (MPM). Here, initially, we demonstrate that FAK is overexpressed in both PDAC and MPM cell lines. Then we analyze effects of two small molecule inhibitors PF-573228, and PF-431396, which are dual specificity inhibitors of FAK and proline rich tyrosine kinase 2 (PYK2), as well as VS-6063, another small molecule inhibitor that specifically inhibits FAK but not PYK2 for cell growth, motility and invasion of PDAC and MPM cell lines. Treatment with PF-573228, PF-431396 and VS-6063 cells resulted in a dose-dependent inhibition of growth and anchorage-independent colony formation in both cancer cell lines. Furthermore, these compounds suppressed the phosphorylation of FAK at its active site, Y397, and functionally induced significant apoptosis and cell cycle arrest in both cell lines. Using the ECIS (Electric cell-substrate impedance sensing) system, we found that treatment of both PF compounds suppressed adherence and migration of PDAC cells on fibronectin. Interestingly, 3D-tumor organoids derived from autochthonous KC (Kras;PdxCre) mice treated with PF-573228 revealed a significant decrease in tumor organoid size and increase in organoid cell death. Taken together, our results show that FAK is an important target for mesothelioma and pancreatic cancer therapy that merit further translational studies.

  19. FAK dimerization controls its kinase-dependent functions at focal adhesions

    KAUST Repository

    Brami-Cherrier, Karen

    2014-01-30

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK\\'s kinase-dependent functions-autophosphorylation of tyrosine-397-requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. © 2014 The Authors.

  20. Copper deficiency induced emphysema is associated with focal adhesion kinase inactivation.

    Directory of Open Access Journals (Sweden)

    Shiro Mizuno

    Full Text Available Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1α dependent vascular endothelial growth factor (VEGF expression, and is also required for the activity of lysyl oxidase (LOX to effect matrix protein cross-linking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis via inactivation of focal adhesion kinase (FAK.To examine the molecular mechanisms whereby copper depletion causes the destruction of the normal alveolar architecture via anoikis, Male Sprague-Dawley rats were fed a copper deficient diet for 6 weeks while being treated with the copper chelator, tetrathiomolybdate. Other groups of rats were treated with the inhibitor of auto-phosphorylation of FAK, 1,2,4,5-benzenetetraamine tetrahydrochloride (1,2,4,5-BT or FAK small interfering RNA (siRNA.Copper depletion caused emphysematous changes, decreased HIF-1α activity, and downregulated VEGF expression in the rat lungs. Cleaved caspase-3, caspase-8 and Bcl-2 interacting mediator of cell death (Bim expression was increased, and the phosphorylation of FAK was decreased in copper depleted rat lungs. Administration of 1,2,4,5-BT and FAK siRNA caused emphysematous lung destruction associated with increased expression of cleaved capase-3, caspase-8 and Bim.These data indicate that copper-dependent mechanisms contribute to the pathogenesis of emphysema, which may be associated with decreased HIF-1α and FAK activity in the lung.

  1. Rsu1 contributes to cell adhesion and spreading in MCF10A cells via effects on P38 map kinase signaling.

    Science.gov (United States)

    Kim, Yong-Chul; Gonzalez-Nieves, Reyda; Cutler, Mary L

    2015-01-01

    The ILK, PINCH, Parvin (IPP) complex regulates adhesion and migration via binding of ILK to β1 integrin and α-parvin thus linking focal adhesions to actin cytoskeleton. ILK also binds the adaptor protein PINCH which connects signaling proteins including Rsu1 to the complex. A recent study of Rsu1 and PINCH1 in non-transformed MCF10A human mammary epithelial cells revealed that the siRNA-mediated depletion of either Rsu1 or PINCH1 decreased the number of focal adhesions (FAs) and altered the distribution and localization of FA proteins. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function in part by regulating levels of PINCH1. However, Rsu1, but not PINCH1, was required for EGF-induced activation of p38 Map kinase and ATF2 phosphorylation, suggesting a Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with a Rsu1 mutant (N92D) that does not bind to PINCH1 failed to restore FAs or migration but did promote IPP-independent spreading and constitutive as well as EGF-induced p38 activation. In this commentary we discuss p38 activity in adhesion and how Rsu1 expression may be linked to Map kinase kinase (MKK) activation and detachment-induced stress kinase signaling.

  2. Focal Adhesion Kinase as a Potential Target in AML and MDS.

    Science.gov (United States)

    Carter, Bing Z; Mak, Po Yee; Wang, Xiangmeng; Yang, Hui; Garcia-Manero, Guillermo; Mak, Duncan H; Mu, Hong; Ruvolo, Vivian R; Qiu, Yihua; Coombes, Kevin; Zhang, Nianxiang; Ragon, Brittany; Weaver, David T; Pachter, Jonathan A; Kornblau, Steven; Andreeff, Michael

    2017-06-01

    Although overexpression/activation of focal adhesion kinase (FAK) is widely known in solid tumors to control cell growth, survival, invasion, metastasis, gene expression, and stem cell self-renewal, its expression and function in myeloid leukemia are not well investigated. Using reverse-phase protein arrays in large cohorts of newly diagnosed acute myeloid leukemia (AML) and myeloid dysplastic syndrome (MDS) samples, we found that high FAK expression was associated with unfavorable cytogenetics ( P = 2 × 10 -4 ) and relapse ( P = 0.02) in AML. FAK expression was significantly lower in patients with FLT3 -ITD ( P = 0.0024) or RAS ( P = 0.05) mutations and strongly correlated with p-SRC and integrinβ3 levels. FAK protein levels were significantly higher in CD34 + ( P = 5.42 × 10 -20 ) and CD34 + CD38 - MDS ( P = 7.62 × 10 -9 ) cells compared with normal CD34 + cells. MDS patients with higher FAK in CD34 + cells tended to have better overall survival ( P = 0.05). FAK expression was significantly higher in MDS patients who later transformed to compared with those who did not transform to AML and in AML patients who transformed from MDS compared with those with de novo AML. Coculture with mesenchymal stromal cells (MSC) increased FAK expression in AML cells. Inhibition of FAK decreased MSC-mediated adhesion/migration and viability of AML cells and prolonged survival in an AML xenograft murine model. Our results suggest that FAK regulates leukemia-stromal interactions and supports leukemia cell survival; hence, FAK is a potential therapeutic target in myeloid leukemia. Mol Cancer Ther; 16(6); 1133-44. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    International Nuclear Information System (INIS)

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  4. Copper Deficiency Induced Emphysema Is Associated with Focal Adhesion Kinase Inactivation

    OpenAIRE

    Mizuno, Shiro; Yasuo, Masanori; Bogaard, Harm J.; Kraskauskas, Donatas; Alhussaini, Aysar; Gomez-Arroyo, Jose; Farkas, Daniela; Farkas, Laszlo; Voelkel, Norbert F.

    2012-01-01

    Background Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1?) dependent vascular endothelial growth factor (VEGF) expression, and is also required for the activity of lysyl oxidase (LOX) to effect matrix protein cross-linking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis) via inactivation of focal adhesion kinase (FAK). Methodology To examine the molecular mechanisms whereby copper depletion causes the destruction of the normal alveola...

  5. Expression of MLN64 influences cellular matrix adhesion of breast cancer cells, the role for focal adhesion kinase.

    Science.gov (United States)

    Cai, Wei; Ye, Lin; Sun, Jiabang; Mansel, Robert E; Jiang, Wen G

    2010-04-01

    The metastatic lymph node 64 (MLN64) gene was initially identified as highly expressed in the metastatic lymph node from breast cancer. It is localized in q12-q21 of the human chromosome 17 and is often co-amplified with erbB-2. However, the role played by MLN64 in breast cancer remains unclear. In the present study, the expression of MLN64 was examined in a breast cancer cohort using quantitative real-time PCR and immunohistochemical staining. It demonstrated that MLN64 was highly expressed in breast tumours compared to corresponding background tissues at both transcript level and protein level. The elevated level of MLN64 transcripts was correlated with the poor prognosis and overall survival of the patients. A panel of breast cancer cell sublines was subsequently developed by knockdown of MLN64 expression. Loss of MLN64 expression in MCF-7 cells resulted in a significant reduction of cell growth (absorbance for MCF-7DeltaMLN64 being 0.87+/-0.07, Padhesion assay, MDA-MB-231DeltaMLN64 cells showed a significant increase in adhesion (86+/-14), padhesion kinase (FAK) in MDA-MB-231DeltaMLN64 cells using Western blot analysis and immunofluorescent staining of FAK. Moreover, addition of FAK inhibitor to these cells diminished the effect of MLN64 on cell-matrix adhesion, suggesting that FAK contributed to the increased adhesion in MDA-MB-231DeltaMLN64 cells. In conclusion, MLN64 is overexpressed in breast cancer, and its level correlates with poor prognosis and patient survival. MLN64 contributes to the development and progression of breast cancer through the regulation of cell proliferation and adhesive capacity.

  6. The role of phosphatidylinositol 3-kinase in neural cell adhesion molecule-mediated neuronal differentiation and survival

    DEFF Research Database (Denmark)

    Ditlevsen, Dorte K; Køhler, Lene B; Pedersen, Martin V

    2003-01-01

    The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein...... that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data...

  7. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis.

    Science.gov (United States)

    Zhang, J; Gao, Q; Zhou, Y; Dier, U; Hempel, N; Hochwald, S N

    2016-04-14

    Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC.

  8. Conformational Dynamics of the Focal Adhesion Targeting Domain Control Specific Functions of Focal Adhesion Kinase in Cells

    KAUST Repository

    Kadaré, Gress

    2015-01-02

    Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr925 facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr925 phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr861, located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser910 by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule.

  9. Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion

    Directory of Open Access Journals (Sweden)

    Ritva Tikkanen

    2012-10-01

    Full Text Available The Cbl-associated protein/ponsin (CAP is an adaptor protein that contains a so-called Sorbin homology (SoHo domain and three Src homology 3 (SH3 domains which are engaged in diverse protein-protein interactions. CAP has been shown to function in the regulation of the actin cytoskeleton and cell adhesion and to be involved in the differentiation of muscle cells and adipocytes. In addition, it participates in signaling pathways through several receptor tyrosine kinases such as insulin and neurotrophin receptors. In the last couple of years, several studies have shed light on the details of these processes and identified novel interaction partners of CAP. In this review, we summarize these recent findings and provide an overview on the function of CAP especially in cell adhesion and membrane receptor signaling.

  10. Mitogen-Activated Protein Kinase (MAPK) Pathway Regulates Branching by Remodeling Epithelial Cell Adhesion

    Science.gov (United States)

    Ihermann-Hella, Anneliis; Lume, Maria; Miinalainen, Ilkka J.; Pirttiniemi, Anniina; Gui, Yujuan; Peränen, Johan; Charron, Jean; Saarma, Mart; Costantini, Frank; Kuure, Satu

    2014-01-01

    Although the growth factor (GF) signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK) pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA) protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions. PMID:24603431

  11. Mitogen-activated protein kinase (MAPK pathway regulates branching by remodeling epithelial cell adhesion.

    Directory of Open Access Journals (Sweden)

    Anneliis Ihermann-Hella

    2014-03-01

    Full Text Available Although the growth factor (GF signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions.

  12. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes

    Science.gov (United States)

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-01-01

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies. PMID:26703626

  13. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK and Mitogen-Activated Protein Kinases (MAP Kinases Signaling Pathway in Keratinocytes

    Directory of Open Access Journals (Sweden)

    Yun-Hee Choi

    2015-11-01

    Full Text Available Mycosporine-like amino acids (MAAs are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS. In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH, Mycosporine-glycine (M-Gly, and Porphyra (P334 were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK, extracellular signal-regulated kinases (ERK, and c-Jun N-terminal kinases (JNK. These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.

  14. Increased Mesenchymal Stem Cell Response and Decreased Staphylococcus aureus Adhesion on Titania Nanotubes without Pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Zhiqiang Xu

    2015-01-01

    Full Text Available Titanium (Ti implants with enhanced biocompatibility and antibacterial property are highly desirable and characterized by improved success rates. In this study, titania nanotubes (TNTs with various tube diameters were fabricated on Ti surfaces through electrochemical anodization at 10, 30, and 60 V (denoted as NT10, NT30, and NT60, resp.. Ti was also investigated and used as a control. NT10 with a diameter of 30 nm could promote the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs without noticeable differentiation. NT30 with a diameter of 100 nm could support the adhesion and proliferation of BMSCs and induce osteogenesis. NT60 with a diameter of 200 nm demonstrated the best ability to promote cell spreading and osteogenic differentiation; however, it clearly impaired cell adhesion and proliferation. As the tube diameter increased, bacterial adhesion on the TNTs decreased and reached the lowest value on NT60. Therefore, NT30 without pharmaceuticals could be used to increase mesenchymal stem cell response and decrease Staphylococcus aureus adhesion and thus should be further studied for improving the efficacy of Ti-based orthopedic implants.

  15. Integrin-Associated Focal Adhesion Kinase Protects Human Embryonic Stem Cells from Apoptosis, Detachment, and Differentiation

    Directory of Open Access Journals (Sweden)

    Loriana Vitillo

    2016-08-01

    Full Text Available Human embryonic stem cells (hESCs can be maintained in a fully defined niche on extracellular matrix substrates, to which they attach through integrin receptors. However, the underlying integrin signaling mechanisms, and their contribution to hESC behavior, are largely unknown. Here, we show that focal adhesion kinase (FAK transduces integrin activation and supports hESC survival, substrate adhesion, and maintenance of the undifferentiated state. After inhibiting FAK kinase activity we show that hESCs undergo cell detachment-dependent apoptosis or differentiation. We also report deactivation of FAK downstream targets, AKT and MDM2, and upregulation of p53, all key players in hESC regulatory networks. Loss of integrin activity or FAK also induces cell aggregation, revealing a role in the cell-cell interactions of hESCs. This study provides insight into the integrin signaling cascade activated in hESCs and reveals in FAK a key player in the maintenance of hESC survival and undifferentiated state.

  16. RACK1 Targets the Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase Pathway To Link Integrin Engagement with Focal Adhesion Disassembly and Cell Motility

    Czech Academy of Sciences Publication Activity Database

    Vomastek, Tomáš; Iwanicki, M. P.; Schaeffer, J.; J.; Tarcsafalvi, A.; Parsons, J. T.; Weber, M. J.

    2007-01-01

    Roč. 27, č. 23 (2007), s. 8296-8305 ISSN 0270-7306 R&D Projects: GA AV ČR IAA500200716 Institutional research plan: CEZ:AV0Z50200510 Keywords : protein kinase * adhesion * cell Subject RIV: EE - Microbiology, Virology Impact factor: 6.420, year: 2007

  17. Decreased soluble cell adhesion molecules after tirofiban infusion in patients with unstable angina pectoris

    Directory of Open Access Journals (Sweden)

    Aliyev Emil

    2004-04-01

    Full Text Available Abstract Aim The inflammatory response, initiated by neutrophil and monocyte adhesion to endothelial cells, is important in the pathogenesis of acute coronary syndromes. Platelets play an important role in inflammatory process by interacting with monocytes and neutrophils. In this study, we investigated the effect of tirofiban on the levels of cell adhesion molecules (soluble intercellular adhesion molecule-1, sICAM-1, and vascular cell adhesion molecule-1, sVCAM-1 in patients with unstable angina pectoris (AP. Methods Thirty-five patients with unstable AP (Group I, ten patients with stable AP (Group II and ten subjects who had angiographycally normal coronary arteries (Group III were included the study. Group I was divided into two subgroups for the specific treatment regimens: Group IA (n = 15 received tirofiban and Group IB (n = 20 did not. Blood samples for investigating the cell adhesion molecules were drawn at zero time (baseline; 0 h in all patients and at 72 h in Group I. Results The baseline levels of sICAM-1 and sVCAM-1 were higher in Group I than in Groups II and III. They were higher in Group IA than in Group IB. However, the sICAM-1 and sVCAM-1 levels decreased significantly in Group IA after tirofiban infusion. In contrast, these levels remained unchanged or were increased above the baseline value in Group IB at 72 h. Conclusion The levels of cell adhesion molecules in patients with unstable AP decreased significantly after tirofiban infusion. Inhibition of platelet function by specific glycoprotein IIb/IIIa antagonists may decrease platelet-mediated inflammation and the ischemic end-point.

  18. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    Science.gov (United States)

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-06-29

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility.

  19. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD.

    Science.gov (United States)

    Balasundaram, Ganesan; Sato, Michiko; Webster, Thomas J

    2006-05-01

    Better materials are needed to promote bone growth. For this reason, the present study created nanometer crystalline hydroxyapatite (HA) and amorphous calcium phosphate compacts functionalized with the arginine-glycine-aspartic acid (RGD) peptide sequence. Crystalline HA and amorphous calcium phosphate nanoparticles were synthesized by a wet chemical process followed by a hydrothermal treatment for 2 h at 200 degrees C and 70 degrees C, respectively. Resulting particles were then pressed into compacts. For the preparation of conventional HA particles (or those with micron diameters), the aforementioned pressed compacts were sintered at 1,100 degrees C for 2 h. Peptide functionalization was conducted by means of a three step reaction procedure: silanization with 3-aminopropyltriethoxysilane (APTES), cross-linking with N-succinimidyl-3-maleimido propionate (SMP), and finally peptide immobilization. The three step reaction procedure was characterized by a novel 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) fluorescence technique. For all materials, results showed that the immobilization of the cell adhesive RGD sequence increased osteoblast (bone-forming cell) adhesion compared to those non-functionalized and those functionalized with the noncell adhesive control peptide (RGE) after 4 h. However, surprisingly, results also showed that the adhesion of osteoblasts on non-functionalized amorphous nanoparticulate calcium phosphate was similar to conventional HA functionalized with RGD. Osteoblast adhesion on nanocrystalline HA (unfunctionalized and functionalized with RGD) was below that of the respective functionalized amorphous calcium phosphate but above that of the respective functionalized conventional HA. In this manner, results of this study suggest that decreasing the particulate size into the nanometer regime and reducing crystallinity of calcium phosphate based materials may promote osteoblast adhesion to the same degree as the well

  20. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Prolactin-Induced Tyrosine Phosphorylation, Activation and ReceptorAssociation of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells. Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental ProtectionAgency, MD-72, Research Triangle Park, NC 27711, and

  1. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling

    NARCIS (Netherlands)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2010-01-01

    The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration

  2. Mammary gland-specific ablation of focal adhesion kinase reduces the incidence of p53-mediated mammary tumour formation.

    NARCIS (Netherlands)

    Miltenburg, van M.H.; Nimwegen, van M.J.; Tijdens, R.B.; Lalai, R.A.; Kuiper, R.; Klarenbeek, S.; Schouten, P.C.; Vries, de A.; Jonkers, J.M.M.; Water, van de B.

    2014-01-01

    BACKGROUND Elevated expression of focal adhesion kinase (FAK) occurs in numerous human cancers including colon-, cervix- and breast cancer. Although several studies have implicated FAK in mammary tumour formation induced by ectopic oncogene expression, evidence supporting a role for FAK in

  3. Down-regulation of integrin β1 and focal adhesion kinase in renal glomeruli under various hemodynamic conditions.

    Directory of Open Access Journals (Sweden)

    Xiaoli Yuan

    Full Text Available Given that integrin β1 is an important component of the connection to maintain glomerular structural integrity, by binding with multiple extracellular matrix proteins and mediating intracellular signaling. Focal adhesion kinase (FAK is the most essential intracellular integrator in the integrin β1-FAK signalling pathway. Here, we investigated the changes of the two molecules and visualized the possible interaction between them under various hemodynamic conditions in podocytes. Mice kidney tissues were prepared using in vivo cryotechnique (IVCT and then were stained and observed using light microscopy, confocal laser scanning microscopy and immunoelectron microscopy. The expression of these molecules were examined by western blot. Under the normal condition, integrin β1 stained continually and evenly at the membrane, and FAK was located in the cytoplasm and nuclei of the podocytes. There were significant colocalized plaques of two molecules. But under acute hypertensive and cardiac arrest conditions, integrin β1 decreased and stained intermittently. Similarly, FAK decreased and appeared uneven. Additionally, FAK translocated to the nuclei of the podocytes. As a result, the colocalization of integrin β1 and FAK reduced obviously under these conditions. Western blot assay showed a consistent result with the immunostaining. Collectively, the abnormal redistribution and decreased expressions of integrin β1 and FAK are important molecular events in regulating the functions of podocytes under abnormal hemodynamic conditions. IVCT could offer considerable advantages for morphological analysis when researching renal diseases.

  4. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2013-01-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  5. Focal Adhesion Kinase: Insight into Molecular Roles and Functions in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Nadia Panera

    2017-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related death worldwide. Due to the high incidence of post-operative recurrence after current treatments, the identification of new and more effective drugs is required. In previous years, new targetable genes/pathways involved in HCC pathogenesis have been discovered through the help of high-throughput sequencing technologies. Mutations in TP53 and β-catenin genes are the most frequent aberrations in HCC. However, approaches able to reverse the effect of these mutations might be unpredictable. In fact, if the reactivation of proteins, such as p53 in tumours, holds great promise as anticancer therapy, there are studies arguing that chronic activation of these types of molecules may be deleterious. Thus, recently the efforts on potential targets have focused on actionable mutations, such as those occurring in the gene encoding for focal adhesion kinase (FAK. This tyrosine kinase, localized to cellular focal contacts, is over-expressed in a variety of human tumours, including HCC. Moreover, several lines of evidence demonstrated that FAK depletion or inhibition impair in vitro and in vivo HCC growth and metastasis. Here, we provide an overview of FAK expression and activity in the context of tumour biology, discussing the current evidence of its connection with HCC development and progression.

  6. Activation of Focal Adhesion Kinase and Src Mediates Acquired Sorafenib Resistance in A549 Human Lung Adenocarcinoma Xenografts.

    Science.gov (United States)

    Zhou, Qingyu; Guo, Xiaofang; Choksi, Riya

    2017-12-01

    Despite encouraging clinical results with sorafenib monotherapy in patients with KRAS- mutant non-small-cell lung cancer (NSCLC), the overall survival benefit of this drug is limited by the inevitable development of acquired resistance. The exact mechanism underlying acquired sorafenib resistance in KRAS -mutant NSCLC is unclear. In this study, the mechanism of acquired sorafenib resistance was explored using a biologically relevant xenograft model, which was established by using the A549 human lung adenocarcinoma cell line and an in vivo-derived, sorafenib-resistant A549 subline (A549/SRFres). Results from the initial study demonstrated that sorafenib treatment significantly decreased E-cadherin ( P A549/SRFres tumors, whereas expression levels of phospho-protein kinase B (AKT), phospho-focal adhesion kinase (FAK), and phospho-Src were elevated in sorafenib-treated A549 and A549/SRFres tumors. We next examined whether concomitant dasatinib treatment could overcome acquired sorafenib resistance by blocking the FAK/Src escape route that mediates resistance. Despite the observed in vitro synergy between sorafenib and dasatinib, the in vivo antitumor effect of half-dose sorafenib-dasatinib combination therapy was inferior to that of the full-dose sorafenib treatment. Although the sorafenib-dasatinib combination effectively inhibited Src and AKT phosphorylation, it did not block the Y576/577-FAK phosphorylation, nor did it decrease vimentin protein expression; unexpectedly, it increased Y397-FAK phosphorylation and MMP9 protein expression in tumors. These results suggest that acquired sorafenib resistance in KRAS -mutant A549 xenografts involves the compensatory activation of FAK and Src, and Src inhibition alone is insufficient to diminish sorafenib-promoted epithelial-mesenchymal transition process and invasive potentials in tumors. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Typhonium flagelliforme decreases tyrosine kinase and Ki67 expression in mice

    Directory of Open Access Journals (Sweden)

    Chodidjah Chodidjah

    2015-12-01

    Full Text Available Background Worldwide, breast cancer is the most frequent cancer in women after lung cancer. Treatments include surgery, radiation, immunotherapy and chemotherapy, but are not effective. Tyrosine kinase and Ki67 protein are markers of proliferation. Typhonium flagelliforme ethanol extract (TFEE has been shown to inhibit proliferation of Michigan Cancer Foundation-7 (MCF7 cells in culture. The aim of the present study was to examine the effect of administration of TFEE on tyrosine kinase and Ki67 expression in mice. Methods This experimental study using post test randomized design with control group was conducted in 24 tumor-bearing CH3 mice. They were randomly divided into 4 groups, consisting of one control and 3 treatment groups (TI, T2, T3 treated daily for 30 days with 0.2 ml TFEE at dosages of 200, 400, and 800 mg/kgBW, respectively. On day 31 the tumor tissues were collected and their tyrosine kinase and Ki67 expression were levels assessed using ELISA and immunohistochemical staining, respectively. Tyrosine kinase and Ki67 expression levels were analyzed, respectively using Kruskal Wallis test and one-way Anova followed by Bonferroni post hoc test. Results Mean tyrosine kinase level was highest in the control group, followed by T3, T2 and T1 (p=0.019. Mean level of Ki 67 expression was highest in the control group, followed by T2, T3 and T1 (p=0.000. Conclussions Oral administration of TFEE at a dose of 200 mg/kgBW decreases tyrosine kinase levels and Ki 67 expression.

  8. Kinetic Mechanism and Rate-Limiting Steps of Focal Adhesion Kinase-1

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, Jessica L.; Briand, Jacques; Chen, Stephanie; Lehr, Ruth; McDevitt, Patrick; Zhao, Baoguang; Smallwood, Angela; Concha, Nestor; Oza, Khyati; Kirkpatrick, Robert; Yan, Kang; Villa, James P.; Meek, Thomas D.; Thrall, Sara H. (Chemizon); (GSKPA)

    2010-12-07

    Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH{sub 2}, FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k{sub cat} (0.052 {+-} 0.001 s{sup -1}), K{sub MgATP} (1.2 {+-} 0.1 {micro}M), K{sub iMgATP} (1.3 {+-} 0.2 {micro}M), K{sub FAK-tide} (5.6 {+-} 0.4 {micro}M), and K{sub iFAK-tide} (6.1 {+-} 1.1 {micro}M) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described by a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the {beta}{gamma}-bridge:{beta}-nonbridge positional oxygen exchange of [{gamma}-{sup 18}O{sub 4}]ATP in the presence of 1 mM [{gamma}-{sup 18}O{sub 4}]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k{sub x}/k{sub cat} = 0.14 {+-} 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k{sub cat}/K{sub FAK-tide}, while k{sub cat} and k{sub cat}/K{sub MgATP} were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k{sub cat}/K{sub m} for MgATP but not on k{sub cat}/K{sub m} for FAK-tide. From the positional isotope exchange, viscosity, and

  9. Loss of keratinocyte focal adhesion kinase stimulates dermal proteolysis through upregulation of MMP9 in wound healing.

    Science.gov (United States)

    Wong, Victor W; Garg, Ravi K; Sorkin, Michael; Rustad, Kristine C; Akaishi, Satoshi; Levi, Kemal; Nelson, Emily R; Tran, Misha; Rennert, Robert; Liu, Wei; Longaker, Michael T; Dauskardt, Reinhold H; Gurtner, Geoffrey C

    2014-12-01

    To investigate how epithelial mechanotransduction pathways impact wound repair. Mechanical forces are increasingly recognized to influence tissue repair, but their role in chronic wound pathophysiology remains unknown. Studies have shown that chronic wounds exhibit high levels of matrix metalloproteinase 9 (MMP9), a key proteolytic enzyme that regulates wound remodeling. We hypothesized that epithelial mechanosensory pathways regulated by keratinocyte-specific focal adhesion kinase (FAK) control dermal remodeling via MMP9. A standard wound model was applied to keratinocyte-specific FAK knockout (KO) and control mice. Rates of wound healing were measured and tissue was obtained for histologic and molecular analyses. Transcriptional and immunoblot assays were used to assess the activation of FAK, intracellular kinases, and MMP9 in vitro. A cell suspension model was designed to validate the importance of FAK mechanosensing, p38, and MMP9 secretion in human cells. Biomechanical testing was utilized to evaluate matrix tensile properties in FAK KO and control wounds. Wound healing in FAK KO mice was significantly delayed compared with controls (closure at 15 days compared with 20 days, P = 0.0003). FAK KO wounds demonstrated decreased dermal thickness and collagen density. FAK KO keratinocytes exhibited overactive p38 and MMP9 signaling in vitro, findings recapitulated in human keratinocytes via the deactivation of FAK in the cell suspension model. Functionally, FAK KO wounds were significantly weaker and more brittle than control wounds, results consistent with the histologic and molecular analyses. Keratinocyte FAK is highly responsive to mechanical cues and may play a critical role in matrix remodeling via regulation of p38 and MMP9. These findings suggest that aberrant epithelial mechanosensory pathways may contribute to pathologic dermal proteolysis and wound chronicity.

  10. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis.

    Directory of Open Access Journals (Sweden)

    Duane Delimont

    Full Text Available It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages.

  11. Gonadotropin-releasing hormone agonist pretreatment did not decrease postoperative adhesion formation after abdominal myomectomy in a randomized control trial.

    Science.gov (United States)

    Coddington, Charles C; Grow, Daniel R; Ahmed, Mohamed S; Toner, James P; Cook, Elizabeth; Diamond, Michael P

    2009-05-01

    To determine if 3 months of preoperative gonadotropin-releasing hormone agonist (GnRH-a) treatment decreases postoperative uterine adhesions after open abdominal surgery for the removal of uterine fibroids. Prospective, randomized, clinical study. A tertiary care medical center. Women of reproductive age with symptomatic uterine fibroids not amenable to hysteroscopic removal. Twenty patients underwent an initial abdominal myomectomy followed by a second-look laparoscopy for evaluating uterine adhesions after random allocation to groups receiving either GnRH analog or placebo for 3 months before the initial surgery. Adhesion formation between treatment groups and by incision number and aggregate length. Presurgical GnRH-a treatment did not decrease adhesion formation compared with placebo. For every additional centimeter of incision length, the total adhesion area over the uterine serosal surface increased by 0.55 cm(2). The number of myomas removed and the number of incisions were positively correlated with total adhesion area. Preoperative treatment with GnRH-a for 3 months before open abdominal myomectomy did not decrease postoperative uterine adhesions. Following the standards of good surgical technique, adhesions are minimized with fewer and smaller incisions.

  12. Multi-targeted molecular therapeutic approach in aggressive neuroblastoma: the effect of Focal Adhesion Kinase-Src-Paxillin system.

    Science.gov (United States)

    Kratimenos, Panagiotis; Koutroulis, Ioannis; Marconi, Dante; Syriopoulou, Vasiliki; Delivoria-Papadopoulos, Maria; Chrousos, George P; Theocharis, Stamatios

    2014-12-01

    Nonreceptor tyrosine kinases play key roles in the integrin system. Located at the focal adhesions, they consist of large protein complexes through which the cytoskeleton connects to the extracellular matrix. The focal adhesion kinase (FAK)-Src-paxillin complex, a major mediator of the integrin pathway, contributes to cell migration and motility. Its overexpression is increased in children with advanced neuroblastoma (NB), one of the most common malignancies of childhood, with poor survival. We review the most recent data on FAK-Src-paxillin and their implications in NB, the molecular structure and the regulatory mechanisms of each molecule and their interactions and up-to-date information on their use as the newest biomarkers and their potential use as therapeutic targets in NB. Based on the current literature, we hypothesize that combined and concurrent inhibition of the FAK-Src-Paxillin system may result in significant tumor suppression and prevention or delay of metastasis.

  13. Inhibition of tumor necrosis factor alpha-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase.

    Science.gov (United States)

    Ewart, Marie-Ann; Kohlhaas, Christine F; Salt, Ian P

    2008-12-01

    Proatherosclerotic adhesion of leukocytes to the endothelium is attenuated by NO. As AMP-activated protein kinase (AMPK) regulates endothelial NO synthesis, we investigated the modulation of adhesion to cultured human aortic endothelial cells (HAECs) by AMPK. HAECs incubated with the AMPK activator, AICAR, or expressing constitutively active AMPK demonstrated reduced TNFalpha-stimulated adhesion of promonocytic U-937 cells. Rapid inhibition of TNFalpha-stimulated U-937 cell adhesion by AICAR was NO-dependent, associated with unaltered cell surface adhesion molecule expression, and reduced MCP-1 secretion by HAECs. In contrast, inhibition of TNFalpha-stimulated U-937 cell adhesion by prolonged AMPK activation was NO-independent and associated with reduced cell surface adhesion molecule expression. AMPK activation in HAECs inhibits TNFalpha-stimulated leukocyte adhesion by a rapid NO-dependent mechanism associated with reduced MCP-1 secretion and a late NO-independent mechanism whereby adhesion molecule expression, in particular E-selectin, is suppressed.

  14. Focal adhesion kinase as a mechanotransducer during rapid brain growth of the chick embryo.

    Science.gov (United States)

    Desmond, Mary E; Knepper, Janice E; DiBenedetto, Angela J; Malaugh, Elizabeth; Callejo, Sagrario; Carretero, Raquel; Alonso, Maria-Isabel; Gato, Angel

    2014-01-01

    Expansion of the hollow fluid-filled embryonic brain occurs by an increase in intraluminal pressure created by accumulation of cerebrospinal fluid (CSF). Experiments have shown a direct correlation between cavity pressure and cell proliferation within the neuroepithelium. These findings lead us to ask how mechanistically this might come about. Are there perhaps molecules on the luminal surface of the embryonic neuroepithelium, such as focal adhesion kinases (FAKs) known to respond to tension in other epithelial cells? Immunodetection using antibodies to total FAK and p-FAK was performed with subsequent confocal analysis of the pattern of their activation under normal intraluminal pressure and induced chronic pressure. Western analysis was also done to look at the amount of FAK expression, as well as its activation under these same conditions. Using immunolocalization, we have shown that FAK is present and activated on both apical and basolateral surfaces and within the cytoplasm of the neuroepithelial cells. This pattern changed profoundly when the neuroepithelium was under pressure. By Western blot, we have shown that FAK was upregulated and activated in the neuroepithelium of the embryos just after the neural tube becomes a closed pressurized system, with phosphorylation detected on the luminal instead of the basal surface, along with an increase in cell proliferation. Chronic hyper-pressure does not induce an increase in phosphorylation of FAK. In conclusion, here we show that neuroepithelial cells respond to intraluminal pressure via FAK phosphorylation on the luminal surface.

  15. Organization and post-transcriptional processing of focal adhesion kinase gene

    Directory of Open Access Journals (Sweden)

    Enslen Hervé

    2006-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase critical for processes ranging from embryo development to cancer progression. Although isoforms with specific molecular and functional properties have been characterized in rodents and chicken, the organization of FAK gene throughout phylogeny and its potential to generate multiple isoforms are not well understood. Here, we study the phylogeny of FAK, the organization of its gene, and its post-transcriptional processing in rodents and human. Results A single orthologue of FAK and the related PYK2 was found in non-vertebrate species. Gene duplication probably occurred in deuterostomes after the echinoderma embranchment, leading to the evolution of PYK2 with distinct properties. The amino acid sequence of FAK and PYK2 is conserved in their functional domains but not in their linker regions, with the absence of autophosphorylation site in C. elegans. Comparison of mouse and human FAK genes revealed the existence of multiple combinations of conserved and non-conserved 5'-untranslated exons in FAK transcripts suggesting a complex regulation of their expression. Four alternatively spliced coding exons (13, 14, 16, and 31, previously described in rodents, are highly conserved in vertebrates. Cis-regulatory elements known to regulate alternative splicing were found in conserved alternative exons of FAK or in the flanking introns. In contrast, other reported human variant exons were restricted to Homo sapiens, and, in some cases, other primates. Several of these non-conserved exons may correspond to transposable elements. The inclusion of conserved alternative exons was examined by RT-PCR in mouse and human brain during development. Inclusion of exons 14 and 16 peaked at the end of embryonic life, whereas inclusion of exon 13 increased steadily until adulthood. Study of various tissues showed that inclusion of these exons also occurred, independently from each other, in a

  16. Reduced Mechanical Stretch Induces Enhanced Endothelin B Receptor-mediated Contractility via Activation of Focal Adhesion Kinase and Extra Cellular-regulated Kinase 1/2 in Cerebral Arteries from Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Rasmussen, Marianne N P; Skovsted, Gry F

    2016-01-01

    ETB receptor agonist sarafotoxin 6c. The involvement of extracellular regulated kinase (ERK) 1/2 and focal adhesion kinase (FAK) were studied by their specific inhibitors U0126 and PF-228, respectively. Compared to their stretched counterparts, un-stretched MCA segments showed a significantly...

  17. Titanium dioxide nanoparticles induce human eosinophil adhesion onto endothelial EA.hy926 cells via activation of phosphoinositide 3-kinase/Akt cell signalling pathway.

    Science.gov (United States)

    Murphy-Marion, Maxime; Girard, Denis

    2018-02-01

    The use of nanoparticles (NPs) for developing new therapeutic strategies in a variety of diseases is gaining increasing attention. However, NPs could possess undesired effects, including pro-inflammatory activities. Despite the fact that several studies reported that NPs may induce or exacerbate eosinophilic inflammation in vivo in rodents, the information regarding the direct interaction between NPs and human eosinophils is lacking. In the present study, we test the possibility that NPs could alter the capacity of human eosinophils to adhere onto a cellular substratum. Using a panel of NPs, we found that several were able to increase the adhesion of human eosinophil onto endothelial EA.hy926 cells. Among them, TiO 2 NPs were the most potent and we therefore pursue this study with these NPs. TiO 2 NPs were found to increase the adhesion of eosinophils in a concentration dependent fashion. TiO 2 NPs did not alter the cell surface expression of a panel of cellular adhesion molecules, but CD29. Indeed, a weak to moderate, but significant, decrease of CD29 was observed after 30min but returned to normal levels after 90min. TiO 2 NPs were found to activate Akt, one important target of phosphoinositide 3-kinase (PI3K). However, despite the fact that cells were fully responsive to the cytokine GM-CSF activating both Akt and Erk-1/2, TiO 2 NPs did not activate Erk-1/2. Using a pharmacological approach with the PI3K/Akt inhibitor, wortmannin, the ability of TiO 2 NPs to activate Akt was drastically inhibited and, further, their capacity to increase adhesion of eosinophils was reversed. This study provides insights into the effects of NPs on the biology of human eosinophils indicating that as other agents, NPs, namely TiO 2 NPs, can induce intracellular events associated with a cellular function, adhesion. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Decreasing adhesions and avoiding further surgery in a pediatric patient involved in a severe pedestrian versus motor vehicle accident

    Directory of Open Access Journals (Sweden)

    Amanda D. Rice

    2014-02-01

    Full Text Available In this case study, we report the use of manual physical therapy in a pediatric patient experiencing complications from a life-threatening motor vehicle accident that necessitated 19 surgeries over the course of 12 months. Post-surgical adhesions decreased the patient’s quality of life. He developed multiple medical conditions including recurrent partial bowel obstructions and an ascending testicle. In an effort to avoid further surgery for bowel obstruction and the ascending testicle, the patient was effectively treated with a manual physical therapy regimen focused on decreasing adhesions. The therapy allowed return to an improved quality of life, significant decrease in subjective reports of pain and dysfunction, and apparent decreases in adhesive processes without further surgery, which are important goals for all patients, but especially for pediatric patients.

  19. Cortactin is a scaffolding platform for the E-cadherin adhesion complex and is regulated by protein kinase D1 phosphorylation.

    Science.gov (United States)

    Sroka, Robert; Van Lint, Johan; Katz, Sarah-Fee; Schneider, Marlon R; Kleger, Alexander; Paschke, Stephan; Seufferlein, Thomas; Eiseler, Tim

    2016-06-15

    Dynamic regulation of cell-cell adhesion by the coordinated formation and dissolution of E-cadherin-based adherens junctions is crucial for tissue homeostasis. The actin-binding protein cortactin interacts with E-cadherin and enables F-actin accumulation at adherens junctions. Here, we were interested to study the broader functional interactions of cortactin in adhesion complexes. In line with literature, we demonstrate that cortactin binds to E-cadherin, and that a posttranslational modification of cortactin, RhoA-induced phosphorylation by protein kinase D1 (PKD1; also known as PRKD1) at S298, impairs adherens junction assembly and supports their dissolution. Two new S298-phosphorylation-dependent interactions were also identified, namely, that phosphorylation of cortactin decreases its interaction with β-catenin and the actin-binding protein vinculin. In addition, binding of vinculin to β-catenin, as well as linkage of vinculin to F-actin, are also significantly compromised upon phosphorylation of cortactin. Accordingly, we found that regulation of cell-cell adhesion by phosphorylation of cortactin downstream of RhoA and PKD1 is vitally dependent on vinculin-mediated protein interactions. Thus, cortactin, unexpectedly, is an important integration node for the dynamic regulation of protein complexes during breakdown and formation of adherens junctions. © 2016. Published by The Company of Biologists Ltd.

  20. Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites

    Science.gov (United States)

    Seil, Justin T; Webster, Thomas J

    2008-01-01

    Nanomaterials offer a number of properties that are of interest to the field of neural tissue engineering. Specifically, materials that exhibit nanoscale surface dimensions have been shown to promote neuron function while simultaneously minimizing the activity of cells such as astrocytes that inhibit central nervous system regeneration. Studies demonstrating enhanced neural tissue regeneration in electrical fields through the use of conductive materials have led to interest in piezoelectric materials (or those materials which generate a transient electrical potential when mechanically deformed) such as zinc oxide (ZnO). It has been speculated that ZnO nanoparticles possess increased piezoelectric properties over ZnO micron particles. Due to this promise in neural applications, the objective of the present in vitro study was, for the first time, to assess the activity of astroglial cells on ZnO nanoparticle polymer composites. ZnO nanoparticles embedded in polyurethane were analyzed via scanning electron microscopy to evaluate nanoscale surface features of the composites. The surface chemistry was characterized via X-ray photoelectron spectroscopy. Astroglial cell response was evaluated based on cell adhesion and proliferation. Astrocyte adhesion was significantly reduced on ZnO nanoparticle/polyurethane (PU) composites with a weight ratio of 50:50 (PU:ZnO) wt.%, 75:25 (PU:ZnO) wt.%, and 90:10 (PU:ZnO) wt.% in comparison to pure PU. The successful production of ZnO nanoparticle composite scaffolds suitable for decreasing astroglial cell density demonstrates their potential as a nerve guidance channel material with greater efficiency than what may be available today. PMID:19337420

  1. Expression of focal adhesion kinase in uveal melanoma and the effects of Hsp90 inhibition by 17-AAG.

    Science.gov (United States)

    Faingold, Dana; Filho, Vasco Bravo; Fernandes, Bruno; Jagan, Lisa; de Barros, Alexandre M; Orellana, Maria Eugenia; Antecka, Emilia; Burnier, Miguel N

    2014-11-01

    Focal adhesion kinase (FAK) is implicated in tumor progression and metastatic cascade, and has been shown to be overexpressed in a variety of human cancers. However, the role of FAK in human uveal melanoma (UM) is not well defined. The purpose of this study was to evaluate the expression of FAK in UM tumors and normal eyes, and to determine the effect of Hsp90 inhibition on FAK expression in UM cells. FAK expression was assessed in 39 UM specimens, FAK[pY397] expression was assessed in 51 UM specimens, and both FAK and FAK[pY397] expression were assessed in 20 normal eyes. The expression of FAK and FAK[pY397] was detected by Western blot in five UM cell lines after treatment with 10 μmol/L of 17-AAG. FAK was positive in 87.2% and FAK[pY397] in 90% of UM specimens. Low FAK expression was detected in non-tumor structures and in normal eyes. The cell lines with the most proliferative, invasive phenotype (92.1, SP6.5 and MKT-BR) displayed high expression of FAK[pY397], and the levels of FAK and FAK[pY397] were decreased in the presence of 17-AAG starting with 24 h of exposure. FAK and FAK[pY397] were overexpressed in human UM tumors compared to normal ocular tissue and high levels of FAK[pY397] were seen in the most aggressive UM cell lines. Hsp90 inhibition led to downregulation of FAK expression. We propose a role for FAK in the pathogenesis of UM. Future studies are needed to explore the use of Hsp90 inhibitors as a feasible approach for modulating FAK in UM. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Tyrosine kinase/phosphatase inhibitors decrease dengue virus production in HepG2 cells.

    Science.gov (United States)

    Limjindaporn, Thawornchai; Panaampon, Jutatip; Malakar, Shilu; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai

    2017-01-29

    Dengue virus is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. High rates of dengue virus replication and virion production are related to disease severity. To identify anti-DENV compounds, we performed cell-based ELISA testing to detect the level of DENV E protein expression. Among a total of 83 inhibitors, eight were identified as inhibitors with antiviral activity. Epidermal growth factor receptor inhibitor II (EGFR/ErbB-2/ErbB-4 inhibitor II) and protein tyrosine phosphatase inhibitor IV (PTP inhibitor IV) significantly inhibited dengue virus production and demonstrated low toxicity in hepatocyte cell lines. Our results suggest the efficacy of tyrosine kinase/phosphatase inhibitors in decreasing dengue virus production in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Non-typeable Haemophilus influenzae decreases cilia beating via protein kinase C epsilon

    Directory of Open Access Journals (Sweden)

    Bailey Kristina L

    2012-06-01

    Full Text Available Abstract Background Haemophilus influenzae infection of the nasal epithelium has long been associated with observations of decreased nasal ciliary beat frequency (CBF and injury to the ciliated epithelium. Previously, we have reported that several agents that slow CBF also have the effect of activating protein kinase C epsilon (PKCϵ activity in bronchial epithelial cells. The subsequent auto-downregulation of PKCϵ or the direct inhibition of PKCϵ leads to the specific detachment of the ciliated cells. METHODS: Primary cultures of ciliated bovine bronchial epithelial cells were exposed to filtered conditioned media supernatants from non-typeable H. influenzae (NTHi cultures. CBF and motile points were measured and PKCϵ activity assayed. Results NTHi supernatant exposure significantly and rapidly decreased CBF in a dose-dependent manner within 10 minutes of exposure. After 3 hours of exposure, the number of motile ciliated cells significantly decreased. Direct measurement of PKCϵ activity revealed a dose-dependent activation of PKCϵ in response to NTHi supernatant exposure. Both CBF and PKCϵ activity changes were only observed in fresh NTHi culture supernatant and not observed in exposures to heat-inactivated or frozen supernatants. Conclusions Our results suggest that CBF slowing observed in response to NTHi is consistent with the stimulated activation of PKCϵ. Ciliated cell detachment is associated with PKCϵ autodownregulation.

  4. LEFTY2 Controls Migration of Human Endometrial Cancer Cells via Focal Adhesion Kinase Activity (FAK) and miRNA-200a.

    Science.gov (United States)

    Alowayed, Nour; Salker, Madhuri S; Zeng, Ni; Singh, Yogesh; Lang, Florian

    2016-01-01

    LEFTY2, a suppressor of cell proliferation, tumor growth, regulator of stemness and embryonic differentiation, is a negative regulator of cancer cell reprogramming. Malignant transformation may lead to migration requiring loss of adhesion and gain of migratory activity. Signaling involved in the orchestration of migration, proliferation and spreading of cells include focal adhesion kinase (FAK) and adhesion molecule E-cadherin. The present study explored whether LEFTY2 influences the proliferation marker MKi67, FAK activity, E-cadherin abundance and migration of Ishikawa human endometrial carcinoma cells. Moreover, the study explored the involvement of microRNA-200a (miR-200a), which is known to regulate cellular adhesion by targeting E-Cadherin. FAK activity was estimated from FAK phosphorylation quantified by Western blotting, migration utilizing a wound healing assay, miR-200a and MKi67 expression levels utilizing qRT-PCR, cell proliferation and apoptosis using BrdU and Annexin V staining, respectively, and E-Cadherin (E-Cad) abundance, using confocal microscopy. LEFTY2 (25 ng/ml, 48 hours) treatment was followed by decrease of MKi67 expression, FAK activity and migration. LEFTY2 upregulated miRNA-200a and E-Cad protein level in Ishikawa cells. The effect of LEFTY2 on migration was mimicked by FAK inhibitor PF 573228 (50 µM). Addition of LEFTY2 in the presence of PF-573228 did not result in a further significant decline of migration. In conclusion, LEFTY2 down-regulates MKi67 expression and FAK activity, up-regulates miR-200a and E-cadherin, and is thus a powerful negative regulator of endometrial cell proliferation and migration. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. PPARβ/δ modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity

    International Nuclear Information System (INIS)

    Goudarzi, Maryam; Koga, Takayuki; Khozoie, Combiz; Mak, Tytus D.; Kang, Boo-Hyon; Jr, Albert J. Fornace; Peters, Jeffrey M.

    2013-01-01

    Because of the significant morbidity and lethality caused by alcoholic liver disease (ALD), there remains a need to elucidate the regulatory mechanisms that can be targeted to prevent and treat ALD. Toward this goal, minimally invasive biomarker discovery represents an outstanding approach for these purposes. The mechanisms underlying ALD include hepatic lipid accumulation. As the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) has been shown to inhibit steatosis, the present study examined the role of PPARβ/δ in ALD coupling metabolomic, biochemical and molecular biological analyses. Wild-type and Pparβ/δ-null mice were fed either a control or 4% ethanol diet and examined after 4–7 months of treatment. Ethanol fed Pparβ/δ-null mice exhibited steatosis after short-term treatment compared to controls, the latter effect appeared to be due to increased activity of sterol regulatory element binding protein 1c (SREBP1c). The wild-type and Pparβ/δ-null mice fed the control diet showed clear differences in their urinary metabolomic profiles. In particular, metabolites associated with arginine and proline metabolism, and glycerolipid metabolism, were markedly different between genotypes suggesting a constitutive role for PPARβ/δ in the metabolism of these amino acids. Interestingly, urinary excretion of taurine was present in ethanol-fed wild-type mice but markedly lower in similarly treated Pparβ/δ-null mice. Evidence suggests that PPARβ/δ modulates pyridoxal kinase activity by altering K m , consistent with the observed decreased in urinary taurine excretion. These data collectively suggest that PPARβ/δ prevents ethanol-induced hepatic effects by inhibiting hepatic lipogenesis, modulation of amino acid metabolism, and altering pyridoxal kinase activity

  6. Impaired Expression of Focal Adhesion Kinase in Mesenchymal Stromal Cells from Low-Risk Myelodysplastic Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Yuenv Wu

    2017-08-01

    Full Text Available The pathogenic role of mesenchymal stromal cells (MSCs in myelodysplastic syndromes (MDS development and progression has been investigated by numerous studies, yet, it remains controversial in some aspects (1, 2. In the present study, we found distinct features of MSCs from low-risk (LR-MDS stromal microenvironment as compared to those from healthy subjects. At the molecular level, focal adhesion kinase, a key tyrosine kinase in control of cell proliferation, survival, and adhesion process, was found profoundly suppressed in expression and activation in LR-MDS MSC. At a functional level, LR-MDS MSCs showed impaired growth and clonogenic capacity, which were independent of cellular senescence and apoptosis. The pro-adipogenic differentiation and attenuated osteogenic capacity along with reduced SDF-1 expression could be involved in creating an unfavorable microenvironment for hematopoiesis. In conclusion, our experiments support the theory that the stromal microenvironment is fundamentally altered in LR-MDS, and these preliminary data offer a new perspective on LR-MDS pathophysiology.

  7. Resensitization of breast cancer cells to anoikis by tropomyosin-1: role of Rho kinase-dependent cytoskeleton and adhesion.

    Science.gov (United States)

    Bharadwaj, Shantaram; Thanawala, Ruchi; Bon, Giulia; Falcioni, Rita; Prasad, G L

    2005-12-15

    Two most common properties of malignant cells are the presence of aberrant actin cytoskeleton and resistance to anoikis. Suppression of several key cytoskeletal proteins, including tropomyosin-1 (TM1), during neoplastic transformation is hypothesized to contribute to the altered cytoskeleton and neoplastic phenotype. Using TM1 as a paradigm, we have shown that cytoskeletal proteins induce anoikis in breast cancer (MCF-7 and MDA MB 231) cells. Here, we have tested the hypothesis that TM1-mediated cytoskeletal changes regulate integrin activity and the sensitivity to anoikis. TM1 expression in MDA MB 231 cells promotes the assembly of stress fibers, induces rapid anoikis via caspase-dependent pathways involving the release of cytochrome c. Further, TM1 inhibits binding of MDA MB 231 cells to collagen I, but promotes adhesion to laminin. Inhibition of Rho kinase disrupts TM1-mediated cytoskeletal reorganization and adhesion to the extracellular matrix components, whereas the parental cells attach to collagen I, spread and form extensive actin meshwork in the presence of Rho kinase inhibitor, underscoring the differences in parental and TM1-transduced breast cancer cells. Further, treatment with the cytoskeletal disrupting drugs rescues the cells from TM1-induced anoikis. These new findings demonstrate that the aberrant cytoskeleton contributes to neoplastic transformation by conferring resistance to anoikis. Restoration of stress fiber network through enhanced expression of key cytoskeletal proteins may modulate the activity of focal adhesions and sensitize the neoplastic cells to anoikis. Oncogene (2005) 24, 8291-8303. doi:10.1038/sj.onc.1208993; published online 19 September 2005.

  8. The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Asma Begum

    Full Text Available Cancer stem cells (CSCs play an important role in the clonogenic growth and metastasis of pancreatic ductal adenocarcinoma (PDAC. A hallmark of PDAC is the desmoplastic reaction, but the impact of the tumor microenvironment (TME on CSCs is unknown. In order to better understand the mechanisms, we examined the impact of extracellular matrix (ECM proteins on PDAC CSCs. We quantified the effect of ECM proteins, β1-integrin, and focal adhesion kinase (FAK on clonogenic PDAC growth and migration in vitro and tumor initiation, growth, and metastasis in vivo in nude mice using shRNA and overexpression constructs as well as small molecule FAK inhibitors. Type I collagen increased PDAC tumor initiating potential, self-renewal, and the frequency of CSCs through the activation of FAK. FAK overexpression increased tumor initiation, whereas a dominant negative FAK mutant or FAK kinase inhibitors reduced clonogenic PDAC growth in vitro and in vivo. Moreover, the FAK inhibitor VS-4718 extended the anti-tumor response to gemcitabine and nab-paclitaxel in patient-derived PDAC xenografts, and the loss of FAK expression limited metastatic dissemination of orthotopic xenografts. Type I collagen enhances PDAC CSCs, and both kinase-dependent and independent activities of FAK impact PDAC tumor initiation, self-renewal, and metastasis. The anti-tumor impact of FAK inhibitors in combination with standard chemotherapy support the clinical testing of this combination.

  9. New Treatment Opportunities in Phosphatase and Tensin Homolog (PTEN-Deficient Tumors: Focus on PTEN/Focal Adhesion Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Roberta Alfieri

    2017-08-01

    Full Text Available Deep genetic studies revealed that phosphatase and tensin homolog (PTEN mutations or loss of expression are not early events in cancer development but characterize tumor progression and invasion. Loss of PTEN function causes a full activation of the prosurvival phosphoinositide 3-kinase (PI3K/AKT/mTOR pathway, but the treatment with specific inhibitors of PI3K/AKT/mTOR did not produce the expected results. One of the alternative targets of PTEN is the focal adhesion kinase (FAK kinase, mainly involved in the control of cancer cell spread. The connection between PTEN and FAK has been demonstrated in different tumor types, with reduced PTEN activity often correlated with increased expression and phosphorylation of FAK. FAK inhibition may thus represent a promising strategy, and some clinical trials are testing FAK inhibitors alone or combined with other agents in a number of solid tumors. However, only few preclinical and clinical data described the effects of the combination of PI3K/AKT/mTOR and FAK inhibitors. Increasing knowledge on the PTEN/FAK connection could confirm PTEN as a good prognostic marker for a combination strategy based on concomitant inhibition of PI3K/AKT and FAK signaling, in advanced metastatic malignancies with altered or reduced PTEN expression.

  10. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes.

    Science.gov (United States)

    DeRita, Rachel M; Zerlanko, Brad; Singh, Amrita; Lu, Huimin; Iozzo, Renato V; Benovic, Jeffrey L; Languino, Lucia R

    2017-01-01

    It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (Src pY416 ) is co-expressed in Exo with phosphorylated FAK (FAK pY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, Src pY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Ferulic acid attenuates focal cerebral ischemia-induced decreases in p70S6 kinase and S6 phosphorylation.

    Science.gov (United States)

    Koh, Phil-Ok

    2013-10-25

    Ferulic acid exhibits neuroprotective effects against focal cerebral ischemia. PI3/K and Akt signaling pathways play an essential role in protecting against cerebral ischemia. Mammalian target of rapamycin (mTOR), a major downstream target of Akt, regulates p70S6 kinase and S6, both of which are involved in ribosomal biogenesis and protein synthesis. I investigated whether ferulic acid regulates mTOR, p70S6 kinase, and S6 phosphorylation during brain ischemic injury. Rats were treated immediately with vehicle or ferulic acid (100mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brains tissues were removed at 24h after the onset of MCAO and the cerebral cortex regions were collected. Ferulic acid reduced the MCAO-induced infarct volume. I showed previously that ferulic acid prevents the MCAO injury-induced decrease of Akt phosphorylation. In this study, MCAO injury induced decreases in mTOR, p70S6 kinase, and S6 phosphorylation levels, while ferulic acid attenuated the injury-induced decreases. Immunohistochemical staining demonstrated that ferulic acid prevented the MCAO-induced reduction in the number of positive cells for phosphorylated p70S6 kinase and phosphorylated S6. These findings suggest that ferulic acid has a neuroprotective function against focal cerebral ischemia by modulating p70S6 kinase expression and S6 phosphorylation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines

    Science.gov (United States)

    Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.

    2014-01-01

    This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771

  13. Protein kinase A-alpha directly phosphorylates FoxO1 in vascular endothelial cells to regulate expression of vascular cellular adhesion molecule-1 mRNA.

    Science.gov (United States)

    Lee, Ji-Won; Chen, Hui; Pullikotil, Philomena; Quon, Michael J

    2011-02-25

    FoxO1, a forkhead box O class transcription factor, is abundant in insulin-responsive tissues. Akt, downstream from phosphatidylinositol 3-kinase in insulin signaling, phosphorylates FoxO1 at Thr(24), Ser(256), and Ser(319), negatively regulating its function. We previously reported that dehydroepiandrosterone-stimulated phosphorylation of FoxO1 in endothelial cells requires cAMP-dependent protein kinase α (PKA-α). Therefore, we hypothesized that FoxO1 is a novel direct substrate for PKA-α. Using an immune complex kinase assay with [γ-(32)P]ATP, purified PKA-α directly phosphorylated wild-type FoxO1 but not FoxO1-AAA (mutant with alanine substitutions at known Akt phosphorylation sites). Phosphorylation of wild-type FoxO1 (but not FoxO1-AAA) was detectable using phospho-specific antibodies. Similar results were obtained using purified GST-FoxO1 protein as the substrate. Thus, FoxO1 is a direct substrate for PKA-α in vitro. In bovine aortic endothelial cells, interaction between endogenous PKA-α and endogenous FoxO1 was detected by co-immunoprecipitation. In human aortic endothelial cells (HAEC), pretreatment with H89 (PKA inhibitor) or siRNA knockdown of PKA-α decreased forskolin- or prostaglandin E(2)-stimulated phosphorylation of FoxO1. In HAEC transfected with a FoxO-promoter luciferase reporter, co-expression of the catalytic domain of PKA-α, catalytically inactive mutant PKA-α, or siRNA against PKA-α caused corresponding increases or decreases in transactivation of the FoxO promoter. Expression of vascular cellular adhesion molecule-1 mRNA, up-regulated by FoxO1 in endothelial cells, was enhanced by siRNA knockdown of PKA-α or treatment of HAEC with the PKA inhibitor H89. Adhesion of monocytes to endothelial cells was enhanced by H89 treatment or overexpression of FoxO1-AAA, similar to effects of TNF-α treatment. We conclude that FoxO1 is a novel physiological substrate for PKA-α in vascular endothelial cells.

  14. Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension

    Science.gov (United States)

    Fowler, Ewan D.; Benoist, David; Drinkhill, Mark J.; Stones, Rachel; Helmes, Michiel; Wüst, Rob C.I.; Stienen, Ger J.M.; Steele, Derek S.; White, Ed

    2015-01-01

    Our objective was to investigate the role of creatine kinase in the contractile dysfunction of right ventricular failure caused by pulmonary artery hypertension. Pulmonary artery hypertension and right ventricular failure were induced in rats by monocrotaline and compared to saline-injected control animals. In vivo right ventricular diastolic pressure–volume relationships were measured in anesthetized animals; diastolic force–length relationships in single enzymatically dissociated myocytes and myocardial creatine kinase levels by Western blot. We observed diastolic dysfunction in right ventricular failure indicated by significantly steeper diastolic pressure–volume relationships in vivo and diastolic force–length relationships in single myocytes. There was a significant reduction in creatine kinase protein expression in failing right ventricle. Dysfunction also manifested as a shorter diastolic sarcomere length in failing myocytes. This was associated with a Ca2 +-independent mechanism that was sensitive to cross-bridge cycling inhibition. In saponin-skinned failing myocytes, addition of exogenous creatine kinase significantly lengthened sarcomeres, while in intact healthy myocytes, inhibition of creatine kinase significantly shortened sarcomeres. Creatine kinase inhibition also changed the relatively flat contraction amplitude–stimulation frequency relationship of healthy myocytes into a steeply negative, failing phenotype. Decreased creatine kinase expression leads to diastolic dysfunction. We propose that this is via local reduction in ATP:ADP ratio and thus to Ca2 +-independent force production and diastolic sarcomere shortening. Creatine kinase inhibition also mimics a definitive characteristic of heart failure, the inability to respond to increased demand. Novel therapies for pulmonary artery hypertension are needed. Our data suggest that cardiac energetics would be a potential ventricular therapeutic target. PMID:26116865

  15. Suppression of carbonic anhydrase IX leads to aberrant focal adhesion and decreased invasion of tumor cells

    Czech Academy of Sciences Publication Activity Database

    Radvak, P.; Repic, M.; Svastova, E.; Takacova, M.; Csaderova, L.; Strnad, Hynek; Pastorek, J.; Pastorekova, S.; Kopacek, J.

    2013-01-01

    Roč. 29, č. 3 (2013), s. 1147-1153 ISSN 1021-335X Institutional support: RVO:68378050 Keywords : carbonic anhydrase IX * hypoxia * shRNA silencing * microarray * focal adhesion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.191, year: 2013

  16. Inhibitor of Tec kinase, LFM-A13, decreases pro-inflammatory mediators production in LPS-stimulated RAW264.7 macrophages via NF-κB pathway.

    Science.gov (United States)

    Wang, Fei; Zhang, Wei; Wang, Chao; Fang, Xu; Cheng, Hao; Liu, Sheng; Chen, Xu-Lin

    2017-05-23

    Tec kinase, a prototypical member of the Tec tyrosine kinases family, was shown to mainly govern lymphocyte proliferation. In the present study, we investigated the role of Tec kinase in acute inflammatory response in lipopolysaccharide (LPS) challenge. First, we demonstrate that Tec kinase activity was observed in RAW264.7 macrophages exposed to LPS. Tec and phosphorylated Tec expression were upregulated in a dose- and time-dependent manner after LPS stimulation. LPS increased monocyte chemotactic protein (MCP)-1 secretion and intercellular adhesion molecule (ICAM)-1 expression, and increasing mRNA expression was consistently observed. LPS also induced IκBα phoshporylaytion and its degradation, increased NF-κB p65 phoshporylaytion and translocation to nuclei in RAW264.7 cells. Pretreatment with LFM-A13 decreased LPS-induced cytokines and chemokines production and mRNA levels, blocked NF-κB transactivation. These effects of LPS were also prevented by Tec-siRNA. Additionally, LFM-A13 or Tec-siRNA obviously inhibited LPS-induced TGFβ-activated kinase 1(TAK1) phosphorylation. Taken together, our results suggest that Tec kinase involves in acute inflammation process in LPS-stimulated RAW264.7 cells, at least mediated by activating TAK1/ NF-κB signal pathway.

  17. A role for focal adhesion kinase in facilitating the contractile responses of murine gastric fundus smooth muscles.

    Science.gov (United States)

    Xie, Yeming; Han, Koon Hee; Grainger, Nathan; Li, Wen; Corrigan, Robert D; Perrino, Brian A

    2018-03-12

    Smooth muscle contraction involves regulating myosin light chain phosphorylation and dephosphorylation by myosin light chain kinase and myosin light chain phosphatase. CPI-17 and MYPT1 are crucial for regulating gastrointestinal smooth muscle contraction by inhibiting myosin light chain phosphatase. Integrin signalling involves the dynamic recruitment of several proteins, including FAK, to focal adhesions. FAK tyrosine kinase activation is involved in cell adhesion to the extracellular matrix via integrin signalling. FAK participates in linking the force generated by myofilament activation to the extracellular matrix and throughout the smooth muscle tissue. Here, we show that cholinergic stimulation activates FAK in gastric fundus smooth muscles. Electrical field stimulation in the presence of L-NAME and MRS2500 contracted gastric fundus smooth muscle strips and increased FAK Y397 phosphorylation (pY397). Atropine blocked the contractions and prevented the increase in pY397. The FAK inhibitor PF-431396 inhibited the contractions and the increase in pY397. PF-431396 also inhibited the EFS-induced increase in CPI-17 T38 phosphorylation, and reduced MYPT1 T696 and T853, and myosin light chain S19 phosphorylation. Ca 2+ influx was unaffected by PF-431396. Nicardipine inhibited the contractions but had no effect on the increase in pY397. PDBu or calyculin A contracted gastric fundus smooth muscle strips Ca 2+ independently and increased pY397. Our findings suggest that FAK is activated by mechanical forces during contraction, and reveal a novel role of FAK in the regulation of CPI-17 phosphorylation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Pacha-Olivenza, Miguel A.; Calzado-Martín, Alicia; Multigner, Marta; Vera, Carolina; Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M.; González-Carrasco, José Luis; Vilaboa, Nuria

    2014-01-01

    Highlights: • Si ion implantation of AISI 316LVM medical grade alloy might reduce bacterial adhesion and colonization. • Si ion implantation does not impair the attachment, viability and matrix maturation of human mesenchymal stem cells. • Nano-topography and surface chemistry changes account for the Si ion implantation induced effects. - Abstract: 316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5–5 × 10 16 ions/cm 2 ; angle of incidence: 45–90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed

  19. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Pacha-Olivenza, Miguel A. [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); Calzado-Martín, Alicia [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Multigner, Marta [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vera, Carolina [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M. [Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); González-Carrasco, José Luis [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); and others

    2014-08-15

    Highlights: • Si ion implantation of AISI 316LVM medical grade alloy might reduce bacterial adhesion and colonization. • Si ion implantation does not impair the attachment, viability and matrix maturation of human mesenchymal stem cells. • Nano-topography and surface chemistry changes account for the Si ion implantation induced effects. - Abstract: 316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5–5 × 10{sup 16} ions/cm{sup 2}; angle of incidence: 45–90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed.

  20. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling.

    Science.gov (United States)

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2015-01-15

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. Long form ST2 (ST2L), the receptor for IL-33, is expressed on immune effector cells and lung epithelia and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system; however, its upstream internalization has not been studied. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, and an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2L(S446A)) and phosphorylation site mutant (ST2L(S442A)) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Furthermore, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  1. Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis

    International Nuclear Information System (INIS)

    Tamagiku, Yuji; Sonoda, Yoshiko; Kunisawa, Mari; Ichikawa, Daiju; Murakami, Yayoi; Aizu-Yokota, Eriko; Kasahara, Tadashi

    2004-01-01

    We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells

  2. Homozygous mutation of focal adhesion kinase in embryonic stem cell derived neurons: normal electrophysiological and morphological properties in vitro

    Directory of Open Access Journals (Sweden)

    Komiyama NH

    2006-06-01

    Full Text Available Abstract Background Genetically manipulated embryonic stem (ES cell derived neurons (ESNs provide a powerful system with which to study the consequences of gene manipulation in mature, synaptically connected neurons in vitro. Here we report a study of focal adhesion kinase (FAK, which has been implicated in synapse formation and regulation of ion channels, using the ESN system to circumvent the embryonic lethality of homozygous FAK mutant mice. Results Mouse ES cells carrying homozygous null mutations (FAK-/- were generated and differentiated in vitro into neurons. FAK-/- ESNs extended axons and dendrites and formed morphologically and electrophysiologically intact synapses. A detailed study of NMDA receptor gated currents and voltage sensitive calcium currents revealed no difference in their magnitude, or modulation by tyrosine kinases. Conclusion FAK does not have an obligatory role in neuronal differentiation, synapse formation or the expression of NMDA receptor or voltage-gated calcium currents under the conditions used in this study. The use of genetically modified ESNs has great potential for rapidly and effectively examining the consequences of neuronal gene manipulation and is complementary to mouse studies.

  3. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    International Nuclear Information System (INIS)

    Miyata, Yoshiki; Sato, Takashi; Ito, Akira

    2005-01-01

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH 2 -terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation

  4. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    International Nuclear Information System (INIS)

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-01-01

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  5. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Karin [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden); Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew [HHMI, Children' s Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Grawé, Jan [Department of Genetics and Pathology, Uppsala University, Uppsala 75185 (Sweden); McKinney-Freeman, Shannon L. [Department of Hematology, St. Jude Children' s Research Hospital, Memphis, TN 38105 (United States); Daley, George Q. [HHMI, Children' s Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Welsh, Michael, E-mail: michael.welsh@mcb.uu.se [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden)

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via

  6. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion.

    Science.gov (United States)

    Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Grodzik, Marta; Strojny, Barbara; Kurantowicz, Natalia; Zdunek, Krzysztof; Chodun, Rafał; Chwalibog, André; Sawosz, Ewa

    2017-01-01

    The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug delivery. The objective of this research was to assess changes in the adhesion, migration, and invasiveness of two glioblastoma cell lines, U87 and U118, after ND, NG, and nGO treatment. All treatments affected the cell surface structure, adhesion-dependent EGFR/AKT/mTOR, and β-catenin signaling pathways, decreasing the migration and invasiveness of both glioblastoma cell lines. The examined nanoparticles did not show strong toxicity but effectively deregulated cell migration. ND was effectively taken up by cells, whereas nGO and NG strongly interacted with the cell surface. These results indicate that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment.

  7. The new InsP3Kinase inhibitor BIP-4 is competitive to InsP3 and blocks proliferation and adhesion of lung cancer cells.

    Science.gov (United States)

    Schröder, Dominik; Tödter, Klaus; Gonzalez, Beatriz; Franco-Echevarría, Elsa; Rohaly, Gabor; Blecher, Christine; Lin, Hong-Ying; Mayr, Georg W; Windhorst, Sabine

    2015-07-15

    As ectopic expression of the neuronal inositol-1,4,5-trisphosphate-3-kinase A (InsP3Kinase) in tumor cells increases the metastatic potential, InsP3Kinase is an interesting target for tumor therapy. Recently, we have identified a membrane-permeable InsP3Kinase inhibitor (BAMB-4) exhibiting an IC50-value of 20 μM. Here we characterized a new InsP3Kinase inhibitor which shows a 130-fold lower IC50 value (157 ± 57 nM) as compared to BAMB-4. We demonstrate that this nitrophenolic compound, BIP-4, is non-competitive to ATP but competitive to InsP3, thus exhibits a high selectivity for inhibition of InsP3Kinase activity. Docking analysis suggested a putative binding mode of this molecule into the InsP3Kinase active site. Determination of cellular uptake in lung cancer cells (H1299) revealed that 6% of extracellular BIP-4 is internalized by non-endosomal uptake, showing that BIP-4 is not trapped inside endo/lysosomes but is available to inhibit cellular InsP3Kinase activity. Interestingly, we found that BIP-4 mediated inhibition of InsP3Kinase activity in the two lung cancer cell lines H1299 and LN4323 inhibited proliferation and adhesion at IC50 values of 3 μM or 2 μM, respectively. InsP3Kinase inhibition did not alter ATP-induced calcium signals but significantly reduced the level of Ins(1,3,4,5,6)P5. From these data we conclude that the inhibitory effect of BIP-4 on proliferation and adhesion of lung cancer cells does not result from alterations of calcium but from alterations of inositol phosphate signals. In summary, we reveal that inhibition of cellular InsP3Kinase by BIP-4 impairs proliferation and adhesion and therefore BIP-4 might be a promising compound to reduce the metastatic potential of lung carcinoma cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Rosiglitazone and AS601245 decrease cell adhesion and migration through modulation of specific gene expression in human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Angelo Cerbone

    Full Text Available PPARs are nuclear receptors activated by ligands. Activation of PPARγ leads to a reduction of adhesion and motility in some cancer models. PPARγ transcriptional activity can be negatively regulated by JNK-mediated phosphorylation. We postulated that the use of agents able to inhibit JNK activity could increase the effectiveness of PPARγ ligands. We analysed the effects of rosiglitazone (PPARγ ligand and AS601245 (a selective JNK inhibitor alone or in association on adhesion and migration of CaCo-2, HT29, and SW480 human colon cancer cells and investigated, through microarray analysis, the genes involved in these processes. Cell adhesion and migration was strongly inhibited by rosiglitazone and AS601245. Combined treatment with the two compounds resulted in a greater reduction of the adhesion and migration capacity. Affymetrix analysis in CaCo-2 cells revealed that some genes which were highly modulated by the combined treatment could be involved in these biological responses. Rosiglitazone, AS601245 and combined treatment down-regulated the expression of fibrinogen chains in all three cell lines. Moreover, rosiglitazone, alone or in association with AS601245, caused a decrease in the fibrinogen release. ARHGEF7/β-PIX gene was highly down-regulated by combined treatment, and western blot analysis revealed that β-PIX protein is down-modulated in CaCo-2, HT29 and SW480 cells, also. Transfection of cells with β-PIX gene completely abrogated the inhibitory effect on cell migration, determined by rosiglitazone, AS601245 and combined treatment. Results demonstrated that β-PIX protein is involved in the inhibition of cell migration and sustaining the positive interaction between PPARγ ligands and anti-inflammatory agents in humans.

  9. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes.

    Science.gov (United States)

    Bellance, Catherine; Khan, Junaid A; Meduri, Geri; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2013-05-01

    Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(-) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethyl-amino)-phenyl-17β-hydroxy-17-(1-propynyl)-estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes.

  10. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Directory of Open Access Journals (Sweden)

    César Martín

    Full Text Available Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  11. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Science.gov (United States)

    Martín, César; Uribe, Kepa B; Gómez-Bilbao, Geraxane; Ostolaza, Helena

    2011-02-23

    Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT) that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin) family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  12. Focal Adhesion Kinase Directly Interacts with TSC2 Through Its FAT Domain and Regulates Cell Proliferation in Cashmere Goat Fetal Fibroblasts.

    Science.gov (United States)

    Zheng, Xu; Bao, Wenlei; Yang, Jiaofu; Zhang, Tao; Sun, Dongsheng; Liang, Yan; Li, Shuyu; Wang, Yanfeng; Feng, Xue; Hao, Huifang; Wang, Zhigang

    2016-09-01

    Focal adhesion kinase (FAK) is a cytoplasmic nonreceptor tyrosine kinase that senses a variety of extracellular signals, such as growth factors and integrins, to control the process of cell proliferation and metabolism. We cloned three goat FAK transcript variants (KM655805, KM658268, and KM658269) that encode 1052, 1006, and 962 amino-acid residue proteins. Bioinformatics analysis indicated that the putative FAK protein contains an FERM domain, a PTK domain, two Proline-rich regions, and a focal adhesion-targeting (FAT) domain. All the three transcript variants of FAK were detected in seven different goat tissues, and variant 1 had the most accumulation whereas variant 2 and variant 3 had lower accumulation. Treatment of goat fetal fibroblasts (GFbs) with a specific FAK inhibitor, TAE226, inhibited cell proliferation (p Cashmere goat tissues and its products participate in the mammalian target of rapamycin signaling pathway and cell proliferation through a direct interaction with TSC2 in GFBs.

  13. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiangyang [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006 (China); State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Wang, Yao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Liu, Chengmei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Lu, Quqin [Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006 (China); Liu, Tao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Chen, Guoan [Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006 (China); Rao, Hai [Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Luo, Shiwen, E-mail: shiwenluo@ncu.edu.cn [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China)

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  14. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    International Nuclear Information System (INIS)

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-01-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton

  15. Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signaling molecules

    International Nuclear Information System (INIS)

    Leich, E; Weißbach, S; Klein, H-U; Grieb, T; Pischimarov, J; Stühmer, T; Chatterjee, M; Steinbrunn, T; Langer, C; Eilers, M; Knop, S; Einsele, H; Bargou, R; Rosenwald, A

    2013-01-01

    Multiple myeloma (MM) is a largely incurable plasma cell malignancy with a poorly understood and heterogeneous clinical course. To identify potential, functionally relevant somatic mutations in MM, we performed whole-exome sequencing of five primary MM, corresponding germline DNA and six MM cell lines, and developed a bioinformatics strategy that also integrated published mutational data of 38 MM patients. Our analysis confirms that identical, recurrent mutations of single genes are infrequent in MM, but highlights that mutations cluster in important cellular pathways. Specifically, we show enrichment of mutations in adhesion molecules of MM cells, emphasizing the important role for the interaction of the MM cells with their microenvironment. We describe an increased rate of mutations in receptor tyrosine kinases (RTKs) and associated signaling effectors, for example, in EGFR, ERBB3, KRAS and MAP2K2, pointing to a role of aberrant RTK signaling in the development or progression of MM. The diversity of mutations affecting different nodes of a particular signaling network appears to be an intrinsic feature of individual MM samples, and the elucidation of intra- as well as interindividual redundancy in mutations that affect survival pathways will help to better tailor targeted therapeutic strategies to the specific needs of the MM patient

  16. Constrained Adherable Area of Nanotopographic Surfaces Promotes Cell Migration through the Regulation of Focal Adhesion via Focal Adhesion Kinase/Rac1 Activation.

    Science.gov (United States)

    Lim, Jiwon; Choi, Andrew; Kim, Hyung Woo; Yoon, Hyungjun; Park, Sang Min; Tsai, Chia-Hung Dylan; Kaneko, Makoto; Kim, Dong Sung

    2018-05-02

    Cell migration is crucial in physiological and pathological processes such as embryonic development and wound healing; such migration is strongly guided by the surrounding nanostructured extracellular matrix. Previous studies have extensively studied the cell migration on anisotropic nanotopographic surfaces; however, only a few studies have reported cell migration on isotropic nanotopographic surfaces. We herein, for the first time, propose a novel concept of adherable area on cell migration using isotropic nanopore surfaces with sufficient nanopore depth by adopting a high aspect ratio. As the pore size of the nanopore surface was controlled to 200, 300, and 400 nm in a fixed center-to-center distance of 480 nm, it produced 86, 68, and 36% of adherable area, respectively, on the fabricated surface. A meticulous investigation of the cell migration in response to changes in the constrained adherable area of the nanotopographic surface showed 1.4-, 1.5-, and 1.6-fold increase in migration speeds and a 1.4-, 2-, and 2.5-fold decrease in the number of focal adhesions as the adherable area was decreased to 86, 68, and 36%, respectively. Furthermore, a strong activation of FAK/Rac1 signaling was observed to be involved in the promoted cell migration. These results suggest that the reduced adherable area promotes cell migration through decreasing the FA formation, which in turn upregulates FAK/Rac1 activation. The findings in this study can be utilized to control the cell migration behaviors, which is a powerful tool in the research fields involving cell migration such as promoting wound healing and tissue repair.

  17. Structural basis for decreased induction of class IB PI3-kinases expression by MIF inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhay Kumar [Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO USA; Pantouris, Georgios [Department of Pharmacology, Yale University School of Medicine, New Haven CT USA; Borosch, Sebastian [Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen Germany; Rojanasthien, Siripong [Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO USA; Cho, Thomas Yoonsang [Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO USA

    2016-09-13

    Macrophage migration inhibitory factor (MIF) is a master regulator of proinflammatory cytokines and plays pathological roles when not properly regulated in rheumatoid arthritis, lupus, atherosclerosis, asthma and cancer. Unlike canonical cytokines, MIF has vestigial keto-enol tautomerase activity. Most of the current MIF inhibitors were screened for the inhibition of this enzymatic activity. However, only some of the enzymatic inhibitors inhibit receptor-mediated biological functions of MIF, such as cell recruitment, through an unknown molecular mechanism. The goal of this study was to understand the molecular basis underlying the pharmacological inhibition of biological functions of MIF. Here, we demonstrate how the structural changes caused upon inhibitor binding translate into the alteration of MIF-induced downstream signalling. Macrophage migration inhibitory factor activates phosphoinositide 3-kinases (PI3Ks) that play a pivotal role in immune cell recruitment in health and disease. There are several different PI3K isoforms, but little is known about how they respond to MIF. We demonstrate that MIF up-regulates the expression of Class IB PI3Ks in leucocytes. We also demonstrate that MIF tautomerase active site inhibitors down-regulate the expression of Class IB PI3Ks as well as leucocyte recruitment in vitro and in vivo. Finally, based on our MIF:inhibitor complex crystal structures, we hypothesize that the reduction in Class IB PI3K expression occurs because of the displacement of Pro1 towards the second loop of MIF upon inhibitor binding, which results in increased flexibility of the loop 2 and sub-optimal MIF binding to its receptors. These results will provide molecular insights for fine-tuning the biological functions of MIF.

  18. Platelet adhesion enhances the glycoprotein VI-dependent procoagulant response: Involvement of p38 MAP kinase and calpain.

    Science.gov (United States)

    Siljander, P; Farndale, R W; Feijge, M A; Comfurius, P; Kos, S; Bevers, E M; Heemskerk, J W

    2001-04-01

    In the final stages of activation, platelets express coagulation-promoting activity by 2 simultaneous processes: exposure of aminophospholipids, eg, phosphatidylserine (PS), at the platelet surface, and formation of membrane blebs, which may be shed as microvesicles. Contact with collagen triggers both processes via platelet glycoprotein VI (GPVI). Here, we studied the capacity of 2 GPVI ligands, collagen-related peptide (CRP) and the snake venom protein convulxin (CVX), to elicit the procoagulant platelet response. In platelets in suspension, either ligand induced full aggregation and high Ca(2+) signals but little microvesiculation or PS exposure. However, most of the platelets adhering to immobilized CRP or CVX had exposed PS and formed membrane blebs after a prolonged increase in cytosolic [Ca(2+)](i). Platelets adhering to fibrinogen responded similarly but only when exposed to soluble CRP or CVX. By scanning electron microscopic analysis, the bleb-forming platelets were detected as either round, spongelike structures with associated microparticles or as arrays of vesicular cell fragments. The phosphorylation of p38 mitogen-activated protein kinase (MAPK) elicited by CRP and CVX was enhanced in fibrinogen-adherent platelets compared with that in platelets in suspension. The p38 inhibitor SB203580 and the calpain protease inhibitor calpeptin reduced only the procoagulant bleb formation, having no effect on PS exposure. Inhibition of p38 also downregulated calpain activity. We conclude that the procoagulant response evoked by GPVI stimulation is potentiated by platelet adhesion. The sequential activation of p38 MAPK and calpain appears to regulate procoagulant membrane blebbing but not PS exposure.

  19. Interleukin-2 induces beta2-integrin-dependent signal transduction involving the focal adhesion kinase-related protein B (fakB)

    DEFF Research Database (Denmark)

    Brockdorff, J; Kanner, S B; Nielsen, M

    1998-01-01

    beta2 integrin molecules are involved in a multitude of cellular events, including adhesion, migration, and cellular activation. Here, we studied the influence of beta2 integrins on interleukin-2 (IL-2)-mediated signal transduction in human CD4(+) T cell lines obtained from healthy donors...... and a leukocyte adhesion deficiency (LAD) patient. We show that IL-2 induces tyrosine phosphorylation of a 125-kDa protein and homotypic adhesion in beta2 integrin (CD18)-positive but not in beta2-integrin-negative T cells. EDTA, an inhibitor of integrin adhesion, blocks IL-2-induced tyrosine phosphorylation...... experiments indicate that the IL-2-induced 125-kDa phosphotyrosine protein is the focal adhesion kinase-related protein B (fakB). Thus, IL-2 induces strong tyrosine phosphorylation of fakB in beta2-integrin-positive but not in beta2-integrin-negative T cells, and CD18 mAb selectively blocks IL-2-induced fak...

  20. The PI3-kinase delta inhibitor idelalisib (GS-1101 targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL cell to endothelial and marrow stromal cells.

    Directory of Open Access Journals (Sweden)

    Stefania Fiorcari

    Full Text Available CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3Kδ inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC. We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNFα-induced VCAM-1 (CD106 expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood.

  1. Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists.

    Science.gov (United States)

    Yang, Xiuwei H; Flores, Ludmila M; Li, Qinglin; Zhou, Pengcheng; Xu, Fenghui; Krop, Ian E; Hemler, Martin E

    2010-03-15

    Resistance to anti-ErbB2 agents is a significant problem in the treatment of human ErbB2+ breast cancers. We show here that adhesion of human ErbB2+ breast cancer cells to basement membrane laminin-5 provides substantial resistance to trastuzumab and lapatinib, agents that respectively target the extracellular and kinase domains of ErbB2. Knockdown of laminin-binding integrins (alpha6beta4, alpha3beta1) or associated tetraspanin protein CD151 reversed laminin-5 resistance and sensitized ErbB2+ cells to trastuzumab and lapatinib. CD151 knockdown, together with trastuzumab treatment, inhibited ErbB2 activation and downstream signaling through Akt, Erk1/2, and focal adhesion kinase (FAK). Hence, ErbB2 function in mammary tumor cells is promoted by integrin-mediated adhesion to laminin-5, with strong support by CD151, leading to signaling through FAK. Consequently, removal or inhibition of any of these components (laminin-5, integrin, CD151, FAK) markedly sensitizes cells to anti-ErbB2 agents. These new insights should be useful when devising strategies for overcoming drug resistance in ErbB2+ cancers.

  2. Concurrent decrease of vasopressin and protein kinase C-alpha immunoreactivity during the light phase in the vole suprachiasmatic nucleus

    NARCIS (Netherlands)

    Jansen, K; Van der Zee, EA; Gerkema, MP

    1998-01-01

    Vasopressin (AVP) is a major neuropeptide in the suprachiasmatic nucleus, the mammalian hypothalamic circadian pacemaker. Protein kinase C alpha is a putatively coupled intracellular messenger. Mean numbers of AVP- and protein kinase C alpha- immunoreactive neurons were determined in the

  3. Protein kinase A phosphorylates serine 267 in the homeodomain of engrailed-2 leading to decreased DNA binding

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Jensen, Ole N

    2004-01-01

    Engrailed-2 (En-2) belongs to an evolutionarily conserved family of DNA binding homeodomain-containing proteins that are expressed in mammalian brain during development. Here, we demonstrate that serine 267 in the homeodomain of En-2 is phosphorylated by protein kinase A (PKA) in forskolin......-treated COS-7 cells. Furthermore, we analyze the physiological function of En-2 phosphorylation by PKA. The nuclear localization of En-2 is not influenced by the phosphorylation of serine 267. However, substitution of serine 267 with alanine resulted in increased binding of En-2 to DNA, while replacing serine...... 267 with glutamic acid resulted in decreased En-2 DNA binding. These results suggest that the transcriptional activity of En-2 is regulated by PKA....

  4. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction.

    Science.gov (United States)

    Pezzi, Nicole; Assis, Amanda Freire; Cotrim-Sousa, Larissa Cotrim; Lopes, Gabriel Sarti; Mosella, Maritza Salas; Lima, Djalma Sousa; Bombonato-Prado, Karina F; Passos, Geraldo Aleixo

    2016-09-01

    We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. FAK/src-family dependent activation of the Ste20-like kinase SLK is required for microtubule-dependent focal adhesion turnover and cell migration.

    Directory of Open Access Journals (Sweden)

    Simona Wagner

    2008-04-01

    Full Text Available Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses and tissue repair. Using knockdown and dominant negative approaches, we show that the microtubule-associated Ste20-like kinase SLK is required for focal adhesion turnover and cell migration downstream of the FAK/c-src complex. Our results show that SLK co-localizes with paxillin, Rac1 and the microtubules at the leading edge of migrating cells and is activated by scratch wounding. SLK activation is dependent on FAK/c-src/MAPK signaling, whereas SLK recruitment to the leading edge is src-dependent but FAK independent. Our results show that SLK represents a novel focal adhesion disassembly signal.

  6. Gene therapy targeting hepatocellular carcinoma by a dual-regulated oncolytic adenovirus harboring the focal adhesion kinase shRNA.

    Science.gov (United States)

    Gao, Yang; Zhu, Yayun; Huang, Xinyu; Ai, Kaixing; Zheng, Qi; Yuan, Zhou

    2015-08-01

    Cancer targeting gene-viro-therapy (CTGVT) approach has become a hotspot and a trend in the field of cancer biotherapy and oncolytic adenovirus is an ideal vector to carry the targeting genes. In this study, we used human telomerase reverse transcriptase (hTERT) promoter to control the adenovirus early region 1a (E1A) and the human α-fetoprotein (AFP) promoter integrated with hypoxia response element (HRE) to control the adenovirus early region 1b (E1B). Then the novel double-regulated adenovirus Ad-hTERT-HREAF (named SG505) was engineered. The short-hairpin RNA against focal adhesion kinase (FAK) was inserted into SG505 and thus forming Ad-hTERT-HREAF-shRNA (called SG505‑siFAK). Then various oncolytic adenoviruses were examined to verify whether they could suppress liver cancer cells selectively and efficiently both in vitro and in vivo. Both replicative and replication-defective adenoviruses carrying FAK-shRNA significantly inhibited the expression of FAK in Hep3B and SMMC-7721 cell lines and efficiently suppressed the growth of liver cancer cell lines with minor effect to normal cells. Furthermore, the recombined oncolytic adenoviruses, SG505-siFAK, SG505-EGFP and SG505 were able to selectively propagate in AFP-positive liver cancer cells in vitro and the SG505-siFAK efficiently suppressed the expression of FAK. SG505-siFAK showed the most potent tumor inhibition capability among the three recombined adenovirus with IC50 levels of 0.092±0.009 and 0.424±0.414 pfu/cell in the Hep3B and HepG2 cell line, respectively. Animal experiment further confirmed that SG505-siFAK achieved the most significant tumor inhibition of Hep3B liver cancer xenografted growth by intratumoral injection comparing to the intravenous injection among the three recombined viruses. Immunohistochemical results indicated that FAK expression was downregulated significantly in the tumors treated with SG505-siFAK. The dual-regulated oncolytic adenovirus SG505-siFAK was proven to inhibit the

  7. v-Src SH3-enhanced Interaction with Focal Adhesion Kinase at Beta1 Integrin-containing Invadopodia Promotes Cell Invasion

    OpenAIRE

    Hauck, Christof R.; Hsia, Datsun A.; Ilić, Du ko; Schlaepfer, David D.

    2002-01-01

    In viral Src (v-Src) transformed cells, focal adhesion kinase (FAK) associates in a stable signaling complex with v-Src that is mediated by combined v-Src SH2 and gain-of-function v-Src SH3 domain binding to FAK. Here, we assess the significance of the Arg-95 to Trp gain-of-function mutation in the v-Src SH3 domain through comparisons of Src-/- fibroblasts transformed with either Prague C v-Src or a point-mutant (v-Src-RT) containing a normal (Arg-95) SH3 domain. Both v-Src isoforms exhibited...

  8. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    transfected with expression plasmids encoding constitutively active forms of Ras, Raf, MAP kinase kinases MEK1 and 2, dominant negative forms of Ras and Raf, and the FAK-related nonkinase. Alternatively, PC12-E2 cells were submitted to treatment with antibodies to the fibroblast growth factor (FGF) receptor......, inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...

  9. Selective decrease of components of the creatine kinase system and ATP synthase complex in chronic Chagas disease cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Priscila Camillo Teixeira

    2011-06-01

    Full Text Available BACKGROUND: Chronic Chagas disease cardiomyopathy (CCC is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC and ischemic (IC cardiomyopathies. METHODOLOGY/PRINCIPAL FINDINGS: Myocardium homogenates from CCC (N=5, IC (N=5 and IDC (N=5 patients, as well as from heart donors (N=5 were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit and muscular creatine kinase (CKM and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. CONCLUSIONS/SIGNIFICANCE: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.

  10. Focal Adhesion Kinase (FAK) Binds RET Kinase via Its FERM Domain, Priming a Direct and Reciprocal RET-FAK Transactivation Mechanism

    NARCIS (Netherlands)

    Plaza-Menacho, Ivan; Morandi, Andrea; Mologni, Luca; Boender, Piet; Gambacorti-Passerini, Carlo; Magee, Anthony I.; Hofstra, Robert M. W.; Knowles, Phillip; McDonald, Neil Q.; Isacke, Clare M.

    2011-01-01

    Whether RET is able to directly phosphorylate and activate downstream targets independently of the binding of proteins that contain Src homology 2 or phosphotyrosine binding domains and whether mechanisms in trans by cytoplasmic kinases can modulate RET function and signaling remain largely

  11. Non-small-cell lung cancer cells combat epidermal growth factor receptor tyrosine kinase inhibition through immediate adhesion-related responses

    Directory of Open Access Journals (Sweden)

    Wang HY

    2016-05-01

    Full Text Available Hsian-Yu Wang,1,2 Min-Kung Hsu,3,4 Kai-Hsuan Wang,1 Ching-Ping Tseng,2,4 Feng-Chi Chen,3,4 John T-A Hsu1,4 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University (NCTU, Hsinchu, 3Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 4Department of Biological Science and Technology, National Chiao Tung University (NCTU, Hsinchu, Taiwan, Republic of China Background: Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs, such as gefitinib, erlotinib, and afatinib, have greatly improved treatment efficacy in non-small cell lung cancer (NSCLC patients with drug-sensitive EGFR mutations. However, in some TKI responders, the benefits of such targeted therapies are limited by the rapid development of resistance, and strategies to overcome this resistance are urgently needed. Studies of drug resistance in cancer cells typically involve long term in vitro induction to obtain stably acquired drug-resistant cells followed by elucidation of resistance mechanisms, but the immediate responses of cancer cells upon drug treatment have been ignored. The aim of this study was to investigate the immediate responses of NSCLC cells upon treatment with EGFR TKIs.Results: Both NSCLC cells, ie, PC9 and H1975, showed immediate enhanced adhesion-related responses as an apoptosis-countering mechanism upon first-time TKI treatment. By gene expression and pathway analysis, adhesion-related pathways were enriched in gefitinib-treated PC9 cells. Pathway inhibition by small-hairpin RNAs or small-molecule drugs revealed that within hours of EGFR TKI treatment, NSCLC cells used adhesion-related responses to combat the drugs. Importantly, we show here that the Src family inhibitor, dasatinib, dramatically inhibits

  12. A Molecular Mechanism for the Requirement of PAT-4 (Integrin-linked Kinase (ILK)) for the Localization of UNC-112 (Kindlin) to Integrin Adhesion Sites*

    Science.gov (United States)

    Qadota, Hiroshi; Moerman, Donald G.; Benian, Guy M.

    2012-01-01

    Caenorhabditis elegans muscle cells attach to basement membrane through adhesion plaques. PAT-3 (β-integrin), UNC-112 (kindlin), and PAT-4 (integrin-linked kinase) are associated with these structures. Genetic analysis indicated that PAT-4 is required for UNC-112 to be properly localized. We investigated the molecular basis of this requirement. We show that the cytoplasmic tail of PAT-3 binds to full-length UNC-112 and that the N- and C-terminal halves of UNC-112 bind to each other. We demonstrate competition between the UNC-112 C-terminal half and PAT-4 for binding to the UNC-112 N-terminal half. The D382V mutation results in lack of binding to PAT-4 and lack of localization to adhesion structures. T346A or E349K mutations, which abolish interaction of the N- and C-terminal halves, permit D382V UNC-112 to localize to adhesion structures. The following model is proposed. UNC-112 exists in closed inactive and open active conformations, and upon binding of PAT-4 to the UNC-112 N-terminal half, UNC-112 is converted into the open state, able to bind to PAT-3. PMID:22761445

  13. A molecular mechanism for the requirement of PAT-4 (integrin-linked kinase (ILK)) for the localization of UNC-112 (Kindlin) to integrin adhesion sites.

    Science.gov (United States)

    Qadota, Hiroshi; Moerman, Donald G; Benian, Guy M

    2012-08-17

    Caenorhabditis elegans muscle cells attach to basement membrane through adhesion plaques. PAT-3 (β-integrin), UNC-112 (kindlin), and PAT-4 (integrin-linked kinase) are associated with these structures. Genetic analysis indicated that PAT-4 is required for UNC-112 to be properly localized. We investigated the molecular basis of this requirement. We show that the cytoplasmic tail of PAT-3 binds to full-length UNC-112 and that the N- and C-terminal halves of UNC-112 bind to each other. We demonstrate competition between the UNC-112 C-terminal half and PAT-4 for binding to the UNC-112 N-terminal half. The D382V mutation results in lack of binding to PAT-4 and lack of localization to adhesion structures. T346A or E349K mutations, which abolish interaction of the N- and C-terminal halves, permit D382V UNC-112 to localize to adhesion structures. The following model is proposed. UNC-112 exists in closed inactive and open active conformations, and upon binding of PAT-4 to the UNC-112 N-terminal half, UNC-112 is converted into the open state, able to bind to PAT-3.

  14. The Natural Stilbenoid Piceatannol Decreases Activity and Accelerates Apoptosis of Human Neutrophils: Involvement of Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Viera Jancinova

    2013-01-01

    Full Text Available Neutrophils are able to release cytotoxic substances and inflammatory mediators, which, along with their delayed apoptosis, have a potential to maintain permanent inflammation. Therefore, treatment of diseases associated with chronic inflammation should be focused on neutrophils; formation of reactive oxygen species and apoptosis of these cells represent two promising targets for pharmacological intervention. Piceatannol, a naturally occurring stilbenoid, has the ability to reduce the toxic action of neutrophils. This substance decreased the amount of oxidants produced by neutrophils both extra- and intracellularly. Radicals formed within neutrophils (fulfilling a regulatory role were reduced to a lesser extent than extracellular oxidants, potentially dangerous for host tissues. Moreover, piceatannol did not affect the phosphorylation of p40phox—a component of NADPH oxidase, responsible for the assembly of functional oxidase in intracellular (granular membranes. The stilbenoid tested elevated the percentage of early apoptotic neutrophils, inhibited the activity of protein kinase C (PKC—the main regulatory enzyme in neutrophils, and reduced phosphorylation of PKC isoforms α, βII, and δ on their catalytic region. The results indicated that piceatannol may be useful as a complementary medicine in states associated with persisting neutrophil activation and with oxidative damage of tissues.

  15. The direct effect of Focal Adhesion Kinase (FAK, dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD, and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  16. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling

    OpenAIRE

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2014-01-01

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. ST2L, the receptor for IL-33, is expressed on immune effector cells and lung epithelia, and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system, however its upstream internalization has not been studied. Here, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates S...

  17. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    , inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...

  18. Notch signaling mediates the age-associated decrease in adhesion of germline stem cells to the niche.

    Directory of Open Access Journals (Sweden)

    Chen-Yuan Tseng

    2014-12-01

    Full Text Available Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs, and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion.

  19. A Site-Specific Phosphorylation of the Focal Adhesion Kinase Controls the Formation of Spheroid Cell Clusters

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Gosau, Martin; Kristensen, Lars Peter

    2014-01-01

    approach revealed regulated phosphorylated proteins in SCCs, which were derived from DFCs after 24 and 48 h in SFM. These regulated proteins were categorized using the Kyoto encyclopedia of genes and genomes program. Here, cellular processes and signaling pathway were identified such as the focal adhesion...

  20. Osthole Suppresses the Migratory Ability of Human Glioblastoma Multiforme Cells via Inhibition of Focal Adhesion Kinase-Mediated Matrix Metalloproteinase-13 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2014-03-01

    Full Text Available Glioblastoma multiforme (GBM is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.

  1. Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension

    NARCIS (Netherlands)

    Fowler, Ewan D.; Benoist, David; Drinkhill, Mark J.; Stones, Rachel; Helmes, Michiel; Wüst, Rob C. I.; Stienen, Ger J. M.; Steele, Derek S.; White, Ed

    2015-01-01

    Our objective was to investigate the role of creatine kinase in the contractile dysfunction of right ventricular failure caused by pulmonary artery hypertension. Pulmonary artery hypertension and right ventricular failure were induced in rats by monocrotaline and compared to saline-injected control

  2. Lipid-induced insulin resistance in cultured hepatoma cells is associated with a decreased insulin receptor tyrosine kinase activity.

    OpenAIRE

    Hubert, P; Bruneau-Wack, C; Cremel, G; Le Marchand-Brustel, Y; Staedel, C

    1991-01-01

    We have shown previously that experimental modifications of the cellular lipid composition of an insulin-sensitive rat hepatoma cell line (Zajdela Hepatoma Culture, ZHC) affect both binding and biological actions of insulin. Discrepancies between insulin binding and actions implied a postbinding defect, responsible for the observed insulin resistance in lipid-treated cells. To elucidate the mechanism for this defect, we have studied insulin binding and insulin receptor kinase activity in part...

  3. miR-518f-5p decreases tetraspanin CD9 protein levels and differentially affects non-tumourigenic prostate and prostate cancer cell migration and adhesion.

    Science.gov (United States)

    Bond, Danielle R; Naudin, Crystal; Carroll, Adam P; Goldie, Belinda J; Brzozowski, Joshua S; Jankowski, Helen M; Cairns, Murray J; Ashman, Leonie K; Scarlett, Christopher J; Weidenhofer, Judith

    2018-01-05

    Tetraspanin CD9 is generally considered to be a metastasis suppressor, with decreased levels associated with progression and metastasis in many advanced stage cancers. Little is known about the cause of CD9 dysregulation in prostate cancer, however there are several miRNA-binding sites in the 3´UTR of the transcript suggesting it could be post-transcriptionally regulated. Using microarrays and luciferase assays in tumourigenic and non-tumourigenic prostate cell lines we identified miR-518f-5p as a regulator of the CD9 3'UTR gene expression, and decreased expression of endogenous CD9 in non-tumorigenic prostate RWPE1 and prostate cancer DU145 cells. This resulted in differential functional effects, in which RWPE1 cells showed increased migration and decreased adhesion to extracellular matrix substrates, whereas DU145 cells showed decreased migration and increased adhesion. Moreover, overexpression of miR-518f-5p significantly increased proliferation between 48h and 72h in normal RWPE1 cells, with no effect on tumourigenic DU145 cell proliferation. These results show that tetraspanin CD9 is regulated by miRNAs in prostate cell lines and that due to differential functional effects in non-tumourigenic versus tumourigenic prostate cells, miR-518f-5p may be an effective biomarker and/or therapeutic target for prostate cancer progression.

  4. PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization.

    Science.gov (United States)

    Goldbrunner, Roland H; Bendszus, Martin; Wood, Jeanette; Kiderlen, Michael; Sasaki, Masato; Tonn, Jörg-Christian

    2004-08-01

    The aim of this study was to test the efficacy of PTK787/ZK222584, an inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, on VEGF-dependent glioma vascularization and growth. C6 rat glioma cells were transfected with VEGF(164) in a sense (V(+)) or antisense (V(-)) direction. Spheroids generated from V(+) or V(-) cells were implanted orthotopically into 60 rat brains. Expression of VEGF and fetal liver kinase-1 (VEGF receptor 2) was assessed immunohistochemically. Animals with V(+) gliomas received orally administered PTK787/ZK222584 on postoperative Day (POD) 1 to 12 or POD 7 to 12. Untreated animals served as negative controls, and animals with V(-) gliomas served as positive controls. Growth and vascularization were evaluated by magnetic resonance imaging and immunohistochemistry. Flk-1 expression was positive within tumor vessels in V(+) gliomas, whereas all C6 clones were negative for fetal liver kinase-1 in vitro. Early (POD 1-12) and delayed (POD 7-12) application of PTK787/ZK222584 in V(+) glioma-bearing animals resulted in a significant reduction of tumor size (71% and 36%, P new tool in malignant glioma therapy.

  5. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation.

    Directory of Open Access Journals (Sweden)

    Naadiya Carrim

    Full Text Available We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI.To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway.Human and mouse washed platelets (from WT or Pyk2 KO mice were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P surface expression and integrin αIIbβ3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk, PI3-K and Bruton's tyrosine kinase (Btk and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbβ3 activation.Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.

  6. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    International Nuclear Information System (INIS)

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-01-01

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells

  7. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  8. Nitroxide Tempol down-regulates kinase activities associated with NADPH oxidase function in phagocytic cells and potentially decreases their fungicidal response.

    Science.gov (United States)

    Santos, Gérsika B; Ribeiro, Ana C G; Lima, Samuel N P; Trostchansky, Andrés; Cerdeira, Cláudio Daniel; Brigagão, Maísa R P L

    2018-01-05

    The identification of novel targets to control inflammation in humans is probably the primary challenge that impairs the development of new anti-inflammatory drugs. Therefore, the modulation of intracellular signaling pathways in phagocytes may be an interesting means of achieving this goal. However, this change to signaling can compromise the host's susceptibility to invading pathogens. We investigated whether the antioxidant nitroxide Tempol regulates the activity of kinases associated with the production of oxidants in neutrophils, which affects the fungicidal capability of these cells. The effects of Tempol on PMA- or fMLP-activated neutrophils were examined by oxygen consumption as an index of the oxidative burst, a release of extracellular and total Reactive Oxygen Species (ROS) by chemiluminescence, kinase activities through analysis of ATP consumption during enzyme activities and the dot blot immunoassay and, finally, by neutrophil capacity of killing Candida albicans. Tempol significantly inhibited the neutrophil oxidative burst in a concentration-dependent manner and decreased oxygen consumption (IC50 = 45 μM) and extracellular/total ROS formation with an increase on the lag period response. In addition, Tempol inhibited neutrophil kinase activities (i.e., a decrease in protein phosphorylation) elicited through different biochemical pathways and consequently impaired the fungicidal activity of these cells. Although Tempol has potential anti-inflammatory activity that acts on different intracellular pathways (such as those involving kinases), researchers should be cautious, since this nitroxide down-regulated oxidants production and the fungicidal response of neutrophils. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Interaction between Cancer Stem Cell Marker CD133 and Src Protein Promotes Focal Adhesion Kinase (FAK) Phosphorylation and Cell Migration.

    Science.gov (United States)

    Liu, Chanjuan; Li, Yinan; Xing, Yang; Cao, Benjin; Yang, Fan; Yang, Tianxiao; Ai, Zhilong; Wei, Yuanyan; Jiang, Jianhai

    2016-07-22

    CD133, a widely known cancer stem cell marker, has been proved to promote tumor metastasis. However, the mechanism by which CD133 regulates metastasis remains largely unknown. Here, we report that CD133 knockdown inhibits cancer cell migration, and CD133 overexpression promotes cell migration. CD133 expression is beneficial to activate the Src-focal adhesion kinase (FAK) signaling pathway. Further studies show that CD133 could interact with Src, and the region between amino acids 845 and 857 in the CD133 C-terminal domain is indispensable for its interaction with Src. The interaction activates Src to phosphorylate its substrate FAK and to promote cell migration. Likewise, a Src binding-deficient CD133 mutant loses the abilities to increase Src and FAK phosphorylation and to promote cell migration. Inhibition of Src activity by PP2, a known Src activity inhibitor, could block the activation of FAK phosphorylation and cell migration induced by CD133. In summary, our data suggest that activation of FAK by the interaction between CD133 and Src promotes cell migration, providing clues to understand the migratory mechanism of CD133(+) tumor cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Treadmill exercise decreases incidence of Alzheimer’s disease by suppressing glycogen synthase kinase-3β expression in streptozotocin-induced diabetic rats

    Science.gov (United States)

    Kim, Dae-Young; Jung, Sun-Young; Kim, Tae-Woon; Lee, Kwang-Sik; Kim, Kijeong

    2015-01-01

    Diabetes is a metabolic disorder, and it is considered as a major risk factor for Alzheimer’s disease (AD). In the present study, we evaluated whether treadmill exercise ameliorates progression of AD in relation with glycogen synthase kinase-3β (GSK-3β) activity using streptozotocin (STZ)-induced diabetic rats. For this study, step-down avoidance task, immunohistochemistry for glycogen synthase kinase-3β (GSK-3β) and tau, and western blot for phosphor-phosphoinositide 3 kinase (p-PI3K)/PI3K and phosphor-Akt (p-Akt)/Akt were performed. Diabetes mellitus was induced by intraperitoneal injection of STZ. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, five times a week, during 12 weeks. The present results showed that short-term and long-term latencies in the step-down avoidance task were decreased by induction of diabetes, and treadmill exercise inhibited these latencies in the diabetic rats. Induction of diabetes suppressed the ratio of p-PI3K to PI3K and the ratio of p-Akt to Akt, and treadmill exercise increased these ratios in the diabetic rats. The numbers of GSK-3β-positive and tau-positive cells in the hippocampal dentate gyrus was higher in the diabetes-induction group than that in the control group, and treadmill exercise inhibited these numbers in the diabetic rats. In the present study, treadmill exercise suppressed hyperphosphorylation of tau in the hippocampus by decreased GSK-3β activity through PI3K/Akt pathway activation in the diabetic rats. Based on the present results, treadmill exercise may helpful to prevent diabetes-associated AD occurrence. PMID:25960981

  11. Inhibition of Cholesterol Synthesis in HepG2 Cells by GINST-Decreasing HMG-CoA Reductase Expression Via AMP-Activated Protein Kinase.

    Science.gov (United States)

    Han, Joon-Seung; Sung, Jong Hwan; Lee, Seung Kwon

    2017-11-01

    GINST, a hydrolyzed ginseng extract, has been reported to have antidiabetic effects and to reduce hyperglycemia and hyperlipidemia. Hypercholesterolemia is caused by diet or genetic factors and can lead to atherosclerosis and coronary heart disease. Thus, the purpose of this study is to determine whether GINST and the ginsenoside metabolite, IH-901 (compound K), reduce cholesterol synthesis in HepG2 cells and the signal transduction pathways involved. Concentrations of cholesterol were measured by using an enzymatic method. Expression levels of sterol regulatory element-binding protein 2 (SREBP2), HMG-CoA reductase (HMGCR), peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer-binding proteins α (C/EBPα), GAPDH, and phosphorylation of AMP-activated protein kinase α (AMPKα), protein kinase B (PKB, also known as Akt), and mechanistic target of rapamycin complex 1 (mTORC1) were measured using western blot. Total cholesterol concentration decreased after GINST treatment for 24 and 48 h. Expression of HMGCR decreased more with GINST than with the inhibitors, U18666A and atorvastatin, after 48 h in a dose-dependent manner. Phosphorylation of AMPKα increased 2.5x by GINST after 360 min of treatment, and phosphorylation of Akt decreased after 120 and 360 min. We separated compound K from GINST extracts flash chromatography. Compound K decreased cholesterol synthesis in HepG2 cells at 24 and 48 h. Therefore, we conclude that GINST inhibits cholesterol synthesis in HepG2 cells by decreasing HMGCR expression via AMPKα activation. GINST, a hydrolyzed ginseng extract, can inhibit cholesterol synthesis in liver cells via activation of AMPKα. IH-901 (compound K), which is the main component with bioactivity in GINST, also has anticholesterol effects. Thus, we suggest that GINST can be used to reduce hypercholesterolemia. © 2017 Institute of Food Technologists®.

  12. The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes

    Directory of Open Access Journals (Sweden)

    Feinstein Douglas L

    2011-01-01

    Full Text Available Abstract Background Reactive astrocytes are capable of producing a variety of pro-inflammatory mediators and potentially neurotoxic compounds, including nitric oxide (NO. High amounts of NO are synthesized following up-regulation of inducible NO synthase (iNOS. The expression of iNOS is tightly regulated by complex molecular mechanisms, involving both transcriptional and post-transcriptional processes. The mammalian target of rapamycin (mTOR kinase modulates the activity of some proteins directly involved in post-transcriptional processes of mRNA degradation. mTOR is a serine-threonine kinase that plays an evolutionarily conserved role in the regulation of cell growth, proliferation, survival, and metabolism. It is also a key regulator of intracellular processes in glial cells. However, with respect to iNOS expression, both stimulatory and inhibitory actions involving the mTOR pathway have been described. In this study the effects of mTOR inhibition on iNOS regulation were evaluated in astrocytes. Methods Primary cultures of rat cortical astrocytes were activated with different proinflammatory stimuli, namely a mixture of cytokines (TNFα, IFNγ, and IL-1β or by LPS plus IFNγ. Rapamycin was used at nM concentrations to block mTOR activity and under these conditions we measured its effects on the iNOS promoter, mRNA and protein levels. Functional experiments to evaluate iNOS activity were also included. Results In this experimental paradigm mTOR activation did not significantly affect astrocyte iNOS activity, but mTOR pathway was involved in the regulation of iNOS expression. Rapamycin did not display any significant effects under basal conditions, on either iNOS activity or its expression. However, the drug significantly increased iNOS mRNA levels after 4 h incubation in presence of pro-inflammatory stimuli. This stimulatory effect was transient, since no differences in either iNOS mRNA or protein levels were detected after 24 h. Interestingly

  13. Loss of Extracellular Signal-Regulated Kinase 1/2 in the Retinal Pigment Epithelium Leads to RPE65 Decrease and Retinal Degeneration.

    Science.gov (United States)

    Pyakurel, Aswin; Balmer, Delphine; Saba-El-Leil, Marc K; Kizilyaprak, Caroline; Daraspe, Jean; Humbel, Bruno M; Voisin, Laure; Le, Yun Z; von Lintig, Johannes; Meloche, Sylvain; Roduit, Raphaël

    2017-12-15

    Recent work suggested that the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) is increased in the retinal pigment epithelium (RPE) of age-related macular degeneration (ARMD) patients and therefore could be an attractive therapeutic target. Notably, ERK1/2 pathway inhibitors are used in cancer therapy, with severe and noncharacterized ocular side effects. To decipher the role of ERK1/2 in RPE cells, we conditionally disrupted the Erk1 and Erk2 genes in mouse RPE. The loss of ERK1/2 activity resulted in a significant decrease in the level of RPE65 expression, a decrease in ocular retinoid levels concomitant with low visual function, and a rapid disorganization of RPE cells, ultimately leading to retinal degeneration. Our results identify the ERK1/2 pathway as a direct regulator of the visual cycle and a critical component of the viability of RPE and photoreceptor cells. Moreover, our results caution about the need for a very fine adjustment of kinase inhibition in cancer or ARMD treatment in order to avoid ocular side effects. Copyright © 2017 Pyakurel et al.

  14. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    Science.gov (United States)

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  15. Myocardial Ablation of G Protein-Coupled Receptor Kinase 2 (GRK2 Decreases Ischemia/Reperfusion Injury through an Anti-Intrinsic Apoptotic Pathway.

    Directory of Open Access Journals (Sweden)

    Qian Fan

    Full Text Available Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2 activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R injury. To do this we utilized two independent lines of GRK2 knockout (KO mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.

  16. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  17. Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMζ), dopamine, and glutamate receptors.

    Science.gov (United States)

    Braren, Stephen H; Drapala, Damian; Tulloch, Ingrid K; Serrano, Peter A

    2014-01-01

    Methamphetamine (MA) is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg) on working memory using the radial 8-arm maze (RAM) across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1), dopamine transporter (DAT) and tyrosine hydroxylase (TH); and memory markers, protein kinase M zeta (PKMζ) and protein kinase C zeta (PKCζ). Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA.

  18. Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects Protein Kinase M zeta (PKMζ, dopamine, and glutamate receptors

    Directory of Open Access Journals (Sweden)

    Stephen H Braren

    2014-12-01

    Full Text Available Methamphetamine (MA is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg on working memory using the radial 8-arm maze (RAM across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1, dopamine transporter (DAT and tyrosine hydroxylase (TH; and memory markers, protein kinase M zeta (PKMζ and protein kinase C zeta (PKCζ. Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA.

  19. Functional involvement of protein kinase C, Rho-kinase and TRPC3 decreases while PLC increases with advancement of pregnancy in mediating oxytocin-induced myometrial contractions in water buffaloes (Bubalus bubalis).

    Science.gov (United States)

    Sharma, Abhishek; Nakade, Udayraj P; Choudhury, Soumen; Garg, Satish Kumar

    2017-04-01

    Present study unravels the involvement of different calcium signaling pathways in oxytocin-induced contractions in myometrium of non-pregnant and pregnant buffaloes during early and mid-pregnancy stages. Uteri of pregnant animals were more sensitive than of non-pregnant buffaloes. Phasic contractions and frequency of contraction significantly increased with advancement of pregnancy, while tonic contractions non-significantly and amplitude significantly decreased from six months pregnancy onward. Oxytocin produced concentration-dependent-contraction on isolated myometrial strips of pregnant and non-pregnant buffaloes and the dose response curves (DRCs) of oxytocin were significantly (P < 0.05) shifted to right in the presence of nifedipine (1 μM), in Ca 2+ -free Ringer Locke solution (RLS), ruthenium red (30 μM), ruthenium red + nifedipine, cyclopiazonic acid (CPA; Ca 2+ free RLS as well as RLS), CPA (10 μM)+nifedipine, U-73122 (1 μM) + nifedipine and SKF96365 (25 μM) on uteri of non-pregnant and pregnant (early and mid) animals. The DRCs were also significantly shifted towards right in the presence of Y-27632 (10 μM), GF109203X (5 μM) and Pyr3 (10 μM) on uteri of non-pregnant and early pregnancy stage buffaloes while only in the presence of U-73122 (1 μM) on uteri of mid-pregnancy stage buffaloes. Our finding suggest that and L-type Ca 2+ channels, IP3-RyR-gated, and store-operated calcium channels including transient receptor potential channel (TRPC) pathways play significant role in mediating oxytocin-induced contractions in myometrium of pregnant and non-pregnant buffaloes. SERCA plays major role only during early-pregnancy while functional role of protein kinase C (PKC), Rho-kinase and TRPC3 pathways decreased and role of G-protein coupled receptor-phospholipase C (GPCR-PLC) pathway increased with advancement of pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  1. Spermidine decreases Na⁺,K⁺-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats.

    Science.gov (United States)

    Carvalho, Fabiano B; Mello, Carlos F; Marisco, Patricia C; Tonello, Raquel; Girardi, Bruna A; Ferreira, Juliano; Oliveira, Mauro S; Rubin, Maribel A

    2012-06-05

    Spermidine is an endogenous polyamine with a polycationic structure present in the central nervous system of mammals. Spermidine regulates biological processes, such as Ca(2+) influx by glutamatergic N-methyl-d-aspartate receptor (NMDA receptor), which has been associated with nitric oxide synthase (NOS) and cGMP/PKG pathway activation and a decrease of Na(+),K(+)-ATPase activity in rats' cerebral cortex synaptosomes. Na(+),K(+)-ATPase establishes Na(+) and K(+) gradients across membranes of excitable cells and by this means maintains membrane potential and controls intracellular pH and volume. However, it has not been defined whether spermidine modulates Na(+),K(+)-ATPase activity in the hippocampus. In this study we investigated whether spermidine alters Na(+),K(+)-ATPase activity in slices of hippocampus from rats, and possible underlying mechanisms. Hippocampal slices and homogenates were incubated with spermidine (0.05-10 μM) for 30 min. Spermidine (0.5 and 1 μM) decreased Na(+),K(+)-ATPase activity in slices, but not in homogenates. MK-801 (100 and 10 μM), a non-competitive antagonist of NMDA receptor, arcaine (0.5μM), an antagonist of the polyamine binding site at the NMDA receptor, and L-NAME (100μM), a NOS inhibitor, prevented the inhibitory effect of spermidine (0.5 μM). ODQ (10 μM), a guanylate cyclase inhibitor, and KT5823 (2 μM), a protein kinase G inhibitor, also prevented the inhibitory effect of spermidine on Na(+),K(+)-ATPase activity. Spermidine (0.5 and 1.0 μM) increased NO(2) plus NO(3) (NOx) levels in slices, and MK-801 (100 μM) and arcaine (0.5 μM) prevented the effect of spermidine (0.5 μM) on the NOx content. These results suggest that spermidine-induced decrease of Na(+),K(+)-ATPase activity involves NMDA receptor/NOS/cGMP/PKG pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. RNAi-Mediated Downregulation of Inositol Pentakisphosphate Kinase (IPK1 in Wheat Grains Decreases Phytic Acid Levels and Increases Fe and Zn Accumulation

    Directory of Open Access Journals (Sweden)

    Sipla Aggarwal

    2018-03-01

    Full Text Available Enhancement of micronutrient bioavailability is crucial to address the malnutrition in the developing countries. Various approaches employed to address the micronutrient bioavailability are showing promising signs, especially in cereal crops. Phytic acid (PA is considered as a major antinutrient due to its ability to chelate important micronutrients and thereby restricting their bioavailability. Therefore, manipulating PA biosynthesis pathway has largely been explored to overcome the pleiotropic effect in different crop species. Recently, we reported that functional wheat inositol pentakisphosphate kinase (TaIPK1 is involved in PA biosynthesis, however, the functional roles of the IPK1 gene in wheat remains elusive. In this study, RNAi-mediated gene silencing was performed for IPK1 transcripts in hexaploid wheat. Four non-segregating RNAi lines of wheat were selected for detailed study (S3-D-6-1; S6-K-3-3; S6-K-6-10 and S16-D-9-5. Homozygous transgenic RNAi lines at T4 seeds with a decreased transcript of TaIPK1 showed 28–56% reduction of the PA. Silencing of IPK1 also resulted in increased free phosphate in mature grains. Although, no phenotypic changes in the spike was observed but, lowering of grain PA resulted in the reduced number of seeds per spikelet. The lowering of grain PA was also accompanied by a significant increase in iron (Fe and zinc (Zn content, thereby enhancing their molar ratios (Zn:PA and Fe:PA. Overall, this work suggests that IPK1 is a promising candidate for employing genome editing tools to address the mineral accumulation in wheat grains.

  3. Buddleja globosa (matico) prevents collagen-induced platelet activation by decreasing phospholipase C-gamma 2 and protein kinase C phosphorylation signaling.

    Science.gov (United States)

    Fuentes, Manuel; Sepúlveda, Cesar; Alarcón, Marcelo; Palomo, Iván; Fuentes, Eduardo

    2018-01-01

    Platelets play a key role in thrombosis and cardiovascular diseases. Medicinal plants could be one of the most important factors that influence risks for platelet activation. Buddleja globosa (known as "matico") is a medicinal plant with many biological activities. The high content of polyphenols suggest that matico could have antiplatelet activity. The present study was aimed at evaluating mechanisms of antiplatelet action of an extract of matico. We demonstrated that matico extract at low concentrations and in a concentration dependent manner (0.05-1 mg/mL) was a potent inhibitor of platelet aggregation in response to collagen, convulsion and ADP (IC 50 values was 61 μg/mL, 72 μg/mL and 290 μg/mL, respectively). In this sense matico extract exerted the greatest antiaggregant activity induced by collagen. Similarly, matico showed a decrease in % of positive platelet for P-selectina (vehicle, 0.01, 0.05, 0.1, 0.5 and 1 mg/mL were 32 ± 2%, 29 ± 2 (p < 0.05), 19 ± 1 (p < 0.01), 15 ± 2 (p < 0.01), 10 ± 1% (p < 0.01) and 7 ± 2% (p < 0.01), respectively) and PAC-1 binding (vehicle, 0.01, 0.05, 0.1, 0.5 and 1 mg/mL were 59 ± 1, 58 ± 3 (n.s), 55 ± 2 (p < 0.05), 50 ± 2 (p < 0.01), 38 ± 1 (p < 0.01), 36 ± 2 (p < 0.01). The cellular mechanism for the antiplatelet activity of matico might be mediated by the inhibition of phospholipase C-gamma 2 and protein kinase C phosphorylation. This beneficial property of matico may be of importance in thrombosis, in which platelet activation and aggregation are important determinants of thrombus initiation and development, and may contribute to the beneficial effects of matico intake in the prevention of cardiovascular diseases.

  4. Buddleja globosa (matico prevents collagen-induced platelet activation by decreasing phospholipase C-gamma 2 and protein kinase C phosphorylation signaling

    Directory of Open Access Journals (Sweden)

    Manuel Fuentes

    2018-01-01

    Full Text Available Platelets play a key role in thrombosis and cardiovascular diseases. Medicinal plants could be one of the most important factors that influence risks for platelet activation. Buddleja globosa (known as “matico” is a medicinal plant with many biological activities. The high content of polyphenols suggest that matico could have antiplatelet activity. The present study was aimed at evaluating mechanisms of antiplatelet action of an extract of matico. We demonstrated that matico extract at low concentrations and in a concentration dependent manner (0.05–1 mg/mL was a potent inhibitor of platelet aggregation in response to collagen, convulsion and ADP (IC50 values was 61 μg/mL, 72 μg/mL and 290 μg/mL, respectively. In this sense matico extract exerted the greatest antiaggregant activity induced by collagen. Similarly, matico showed a decrease in % of positive platelet for P-selectina (vehicle, 0.01, 0.05, 0.1, 0.5 and 1 mg/mL were 32 ± 2%, 29 ± 2 (p < 0.05, 19 ± 1 (p < 0.01, 15 ± 2 (p < 0.01, 10 ± 1% (p < 0.01 and 7 ± 2% (p < 0.01, respectively and PAC-1 binding (vehicle, 0.01, 0.05, 0.1, 0.5 and 1 mg/mL were 59 ± 1, 58 ± 3 (n.s, 55 ± 2 (p < 0.05, 50 ± 2 (p < 0.01, 38 ± 1 (p < 0.01, 36 ± 2 (p < 0.01. The cellular mechanism for the antiplatelet activity of matico might be mediated by the inhibition of phospholipase C-gamma 2 and protein kinase C phosphorylation. This beneficial property of matico may be of importance in thrombosis, in which platelet activation and aggregation are important determinants of thrombus initiation and development, and may contribute to the beneficial effects of matico intake in the prevention of cardiovascular diseases.

  5. Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases

    Science.gov (United States)

    Engstrom, Anna; Wang, Hao; Xia, Zhengui

    2015-01-01

    Adult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited. The goal of this study was to determine whether lead, a heavy metal, directly impairs critical processes in adult neurogenesis and to characterize the underlying signaling pathways using primary cultured SGZ-aNPCs isolated from adult mice. We report here that lead significantly increases apoptosis and inhibits proliferation in SGZ-aNPCs. In addition, lead significantly impairs spontaneous neuronal differentiation and maturation. Furthermore, we found that activation of the c-Jun NH2-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase signaling pathways are important for lead cytotoxicity. Our data suggest that lead can directly act on adult neural stem cells and impair critical processes in adult hippocampal neurogenesis, which may contribute to its neurotoxicity and adverse effects on cognition in adults. PMID:25967738

  6. Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria.

    Science.gov (United States)

    Muzzio, Nicolás E; Pasquale, Miguel A; Diamanti, Eleftheria; Gregurec, Danijela; Moro, Marta Martinez; Azzaroni, Omar; Moya, Sergio E

    2017-11-01

    The development of antifouling coatings with restricted cell and bacteria adherence is fundamental for many biomedical applications. A strategy for the fabrication of antifouling coatings based on the layer-by-layer assembly and thermal annealing is presented. Polyelectrolyte multilayers (PEMs) assembled from chitosan and hyaluronic acid were thermally annealed in an oven at 37°C for 72h. The effect of annealing on the PEM properties and topography was studied by atomic force microscopy, ζ-potential, circular dichroism and contact angle measurements. Cell adherence on PEMs before and after annealing was evaluated by measuring the cell spreading area and aspect ratio for the A549 epithelial, BHK kidney fibroblast, C2C12 myoblast and MC-3T3-E1 osteoblast cell lines. Chitosan/hyaluronic acid PEMs show a low cell adherence that decreases with the thermal annealing, as observed from the reduction in the average cell spreading area and more rounded cell morphology. The adhesion of S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria strains was quantified by optical microscopy, counting the number of colony-forming units and measuring the light scattering of bacteria suspension after detachment from the PEM surface. A 20% decrease in bacteria adhesion was selectively observed in the S. aureus strain after annealing. The changes in mammalian cell and bacteria adhesion correlate with the changes in topography of the chitosan/hyaluronic PEMs from a rough fibrillar 3D structure to a smoother and planar surface after thermal annealing. Copyright © 2017. Published by Elsevier B.V.

  7. RP1 Is a Phosphorylation Target of CK2 and Is Involved in Cell Adhesion

    Science.gov (United States)

    Göttig, Stephan; Henschler, Reinhard; Markuly, Norbert; Kleber, Sascha; Faust, Michael; Mischo, Axel; Bauer, Stefan; Zweifel, Martin; Knuth, Alexander; Renner, Christoph; Wadle, Andreas

    2013-01-01

    RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association. PMID:23844040

  8. Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second

    Science.gov (United States)

    Strohmeyer, Nico; Bharadwaj, Mitasha; Costell, Mercedes; Fässler, Reinhard; Müller, Daniel J.

    2017-12-01

    Integrin-mediated mechanosensing of the extracellular environment allows cells to control adhesion and signalling. Whether cells sense and respond to force immediately upon ligand-binding is unknown. Here, we report that during adhesion initiation, fibroblasts respond to mechanical load by strengthening integrin-mediated adhesion to fibronectin (FN) in a biphasic manner. In the first phase, which depends on talin and kindlin as well as on the actin nucleators Arp2/3 and mDia, FN-engaged α5β1 integrins activate focal adhesion kinase (FAK) and c-Src in less than 0.5 s to steeply strengthen α5β1- and αV-class integrin-mediated adhesion. When the mechanical load exceeds a certain threshold, fibroblasts decrease adhesion and initiate the second phase, which is characterized by less steep adhesion strengthening. This unique, biphasic cellular adhesion response is mediated by α5β1 integrins, which form catch bonds with FN and signal to FN-binding integrins to reinforce cell adhesion much before visible adhesion clusters are formed.

  9. Serine34 phosphorylation of RHO guanine dissociation inhibitor (RHOGDI{alpha}) links signaling from conventional protein kinase C to RHO GTPase in cell adhesion

    DEFF Research Database (Denmark)

    Dovas, Athanassios; Choi, Youngsil; Yoneda, Atsuko

    2010-01-01

    , resulting in a specific decrease in affinity for RhoA, but not Rac1 or cdc42. The mechanism of RhoGDIalpha phosphorylation is distinct, requiring PKCalpha and phosphatidylinositol 4,5 bisphosphate, consistent with recent evidence that the inositide can activate, localize and orient PKCalpha in membranes...

  10. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  11. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  12. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. Published by Elsevier Inc.

  13. Decreased spontaneous activity in AMPK alpha 2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism

    DEFF Research Database (Denmark)

    Møller, Lisbeth Liliendal Valbjørn; Sylow, Lykke; Gøtzsche, Casper René

    2016-01-01

    It is well known that physical activity has several health benefits, yet many people do not exercise. Dopamine levels in the striatum of the brain are thought to be important for the motivation to exercise. Conversely, we hypothesized that muscle quality can affect the motivation to exercise...... DOPAC and HVA were also similar between genotypes. These findings show that decreased AMPK activity in muscle leads to decreased voluntary activity which is not due to secondary abnormalities in dopamine levels in the ventral striatum or sensitivity to cocaine. Thus, decreased voluntary activity in AMPK...

  14. Inhibition of tumor vasculogenic mimicry and prolongation of host survival in highly aggressive gallbladder cancers by norcantharidin via blocking the ephrin type a receptor 2/focal adhesion kinase/paxillin signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Vasculogenic mimicry (VM is a newly-defined tumor microcirculation pattern in highly aggressive malignant tumors. We recently reported tumor growth and VM formation of gallbladder cancers through the contribution of the ephrin type a receptor 2 (EphA2/focal adhesion kinase (FAK/Paxillin signaling pathways. In this study, we further investigated the anti-VM activity of norcantharidin (NCTD as a VM inhibitor for gallbladder cancers and the underlying mechanisms. In vivo and in vitro experiments to determine the effects of NCTD on tumor growth, host survival, VM formation of GBC-SD nude mouse xenografts, and vasculogenic-like networks, malignant phenotypes i.e., proliferation, apoptosis, invasion and migration of GBC-SD cells. Expression of VM signaling-related markers EphA2, FAK and Paxillin in vivo and in vitro were examined by immunofluorescence, western blotting and real-time polymerase chain reaction (RT-PCR, respectively. The results showed that after treatment with NCTD, GBC-SD cells were unable to form VM structures when injecting into nude mouse, growth of the xenograft was inhibited and these observations were confirmed by facts that VM formation by three-dimensional (3-D matrix, proliferation, apoptosis, invasion, migration of GBC-SD cells were affected; and survival time of the xenograft mice was prolonged. Furthermore, expression of EphA2, FAK and Paxillin proteins/mRNAs of the xenografts was downregulated. Thus, we concluded that NCTD has potential anti-VM activity against human gallbladder cancers; one of the underlying mechanisms may be via blocking the EphA2/FAK/Paxillin signaling pathway.

  15. Long-term treadmill exercise improves memory impairment through restoration of decreased synaptic adhesion molecule 1/2/3 induced by transient cerebral ischemia in the aged gerbil hippocampus.

    Science.gov (United States)

    Ahn, Ji Hyeon; Park, Joon Ha; Park, Jinseu; Shin, Myoung Cheol; Cho, Jun Hwi; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Shin, Bich Na; Kim, Young-Myeong; Lee, Choong Hyun; Hwang, In Koo; Kang, Il Jun; Chen, Bai Hui; Yan, Bing Chun; Lee, Young Joo; Won, Moo-Ho; Choi, Soo Young

    2018-03-01

    Exercise improves cognitive impairments induced by transient cerebral ischemia, and modulates synaptic adhesion molecules. In this study, we investigated effects of long-term treadmill exercise on cognitive impairments and its relation to changes of synaptic cell adhesion molecule (SynCAM) 1/2/3 in the hippocampus after 5 min of transient cerebral ischemia in aged gerbils. Animals were assigned to sedentary and exercised groups, given treadmill exercise for 4 consecutive weeks from 5 days after transient ischemia, and evaluated cognitive function through passive avoidance test and Morris water maze test. SynCAM 2 protein levels were determined in the hippocampus by western blot. In addition, neuronal and synaptic changes were examined by NeuN immunohistochemistry, and SynCAM 1/2/3 and MAP2 double immunofluorescence, respectively. We found that transient cerebral ischemia led to neuronal death in the CA1 area and dentate gyrus, and impaired -memory function; however, 4 weeks of treadmill exercise improved ischemia-induced memory impairment. In addition, SynCAM 1/2/3 and SynCAM 2 expression in the hippocampus was significantly decreased in the sedentary group after transient cerebral ischemia; however, SynCAM 1/2/3 expressionand and SynCAM 2 protein level was significantly increased in the ischemic group with exercise. These results suggest that long-term treadmill exercise improves memory impairment through the restoration of decreased SynCAM 1/2/3 expression in the hippocampus induced by transient cerebral ischemia in the aged gerbil. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Directory of Open Access Journals (Sweden)

    Julie Sahler

    also changed monocyte mRNA levels of several genes including those under PPARγ control. Overall, the delivery of PPARγ from microparticles to human monocytes influenced gene expression, decreased inflammatory mediator production and increased monocyte adherence. These results support the concept that the composition of blood microparticles has a profound impact on the function of cells with which they interact, and likely plays a role in vascular inflammation.

  17. Microparticles Engineered to Highly Express Peroxisome Proliferator-Activated Receptor-γ Decreased Inflammatory Mediator Production and Increased Adhesion of Recipient Monocytes

    Science.gov (United States)

    Sahler, Julie; Woeller, Collynn F.; Phipps, Richard P.

    2014-01-01

    mRNA levels of several genes including those under PPARγ control. Overall, the delivery of PPARγ from microparticles to human monocytes influenced gene expression, decreased inflammatory mediator production and increased monocyte adherence. These results support the concept that the composition of blood microparticles has a profound impact on the function of cells with which they interact, and likely plays a role in vascular inflammation. PMID:25426628

  18. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Science.gov (United States)

    Sahler, Julie; Woeller, Collynn F; Phipps, Richard P

    2014-01-01

    mRNA levels of several genes including those under PPARγ control. Overall, the delivery of PPARγ from microparticles to human monocytes influenced gene expression, decreased inflammatory mediator production and increased monocyte adherence. These results support the concept that the composition of blood microparticles has a profound impact on the function of cells with which they interact, and likely plays a role in vascular inflammation.

  19. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ*

    Science.gov (United States)

    Farnsworth, Nikki L.; Walter, Rachelle L.; Hemmati, Alireza; Westacott, Matthew J.; Benninger, Richard K. P.

    2016-01-01

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311

  20. Integrin-linked kinase regulates interphase and mitotic microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Simin Lim

    Full Text Available Integrin-linked kinase (ILK localizes to both focal adhesions and centrosomes in distinct multiprotein complexes. Its dual function as a kinase and scaffolding protein has been well characterized at focal adhesions, where it regulates integrin-mediated cell adhesion, spreading, migration and signaling. At the centrosomes, ILK regulates mitotic spindle organization and centrosome clustering. Our previous study showed various spindle defects after ILK knockdown or inhibition that suggested alteration in microtubule dynamics. Since ILK expression is frequently elevated in many cancer types, we investigated the effects of ILK overexpression on microtubule dynamics. We show here that overexpressing ILK in HeLa cells was associated with a shorter duration of mitosis and decreased sensitivity to paclitaxel, a chemotherapeutic agent that suppresses microtubule dynamics. Measurement of interphase microtubule dynamics revealed that ILK overexpression favored microtubule depolymerization, suggesting that microtubule destabilization could be the mechanism behind the decreased sensitivity to paclitaxel, which is known to stabilize microtubules. Conversely, the use of a small molecule inhibitor selective against ILK, QLT-0267, resulted in suppressed microtubule dynamics, demonstrating a new mechanism of action for this compound. We further show that treatment of HeLa cells with QLT-0267 resulted in higher inter-centromere tension in aligned chromosomes during mitosis, slower microtubule regrowth after cold depolymerization and the presence of a more stable population of spindle microtubules. These results demonstrate that ILK regulates microtubule dynamics in both interphase and mitotic cells.

  1. Phosphatidylinositol 4,5-bisphosphate decreases the concentration of Ca2+, phosphatidylserine and diacylglycerol required for protein kinase C α to reach maximum activity.

    Directory of Open Access Journals (Sweden)

    Antonio L Egea-Jiménez

    Full Text Available The C2 domain of PKCα possesses two different binding sites, one for Ca(2+ and phosphatidylserine and a second one that binds PIP2 with very high affinity. The enzymatic activity of PKCα was studied by activating it with large unilamellar lipid vesicles, varying the concentration of Ca(2+ and the contents of dioleylglycerol (DOG, phosphatidylinositol 4,5-bisphosphate (PIP2 and phosphadidylserine (POPS in these model membranes. The results showed that PIP2 increased the Vmax of PKCα and, when the PIP2 concentration was 5 mol% of the total lipid in the membrane, the addition of 2 mol% of DOG did not increase the activity. In addition PIP2 decreases K0.5 of Ca(2+ more than 3-fold, that of DOG almost 5-fold and that of POPS by a half. The K0.5 values of PIP2 amounted to only 0.11 µM in the presence of DOG and 0.39 in its absence, which is within the expected physiological range for the inner monolayer of a mammalian plasma membrane. As a consequence, PKCα may be expected to operate near its maximum capacity even in the absence of a cell signal producing diacylglycerol. Nevertheless, we have shown that the presence of DOG may also help, since the K0.5 for PIP2 notably decreases in its presence. Taken together, these results underline the great importance of PIP2 in the activation of PKCα and demonstrate that in its presence, the most important cell signal for triggering the activity of this enzyme is the increase in the concentration of cytoplasmic Ca(2+.

  2. EPS-SJ exopolisaccharide produced by the strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 is involved in adhesion to epithelial intestinal cells and decrease on E. coli association to Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Milica eZivkovic

    2016-03-01

    Full Text Available The aim of this study was to determine the role of an exopolysaccharide produced by natural dairy isolate Lactobacillus paracasei subsp. paracasei BGSJ2-8, in the adhesion to intestinal epithelial cells and a decrease in E. coli’s association with Caco-2 cells. Annotation of the BGSJ2-8 genome showed the presence of a gene cluster, epsSJ, which encodes the biosynthesis of the strain-specific exopolysaccharide EPS-SJ, detected as two fractions (P1 and P2 by size exclusion chromatography (SEC coupled with multi-angle laser light scattering (MALLS detection. SEC-MALLS analysis revealed that an EPS-SJ‒ mutant (EPS7, obtained by insertion mutagenesis of the glps_2198 gene encoding primary glycosyltransferase does not produce the P2 fraction of EPS-SJ. Transmission electron microscopy showed that EPS7 mutant has a thinner cell wall compared to the EPS-SJ+ strain BGSJ2-83 (a plasmid free-derivative of BGSJ2-8. Interestingly, strain BGSJ2-83 showed higher adhesion to Caco-2 epithelial intestinal cell line than the EPS7 mutant. Accordingly, BGSJ2-83 effectively reduced E. coli ATCC25922’s association with Caco-2 cells, while EPS7 did not show statistically significant differences. In addition, the effect of EPS-SJ on the proliferation of lymphocytes in gastrointestinal associated lymphoid tissue (GALT was tested and the results showed that the reduction of GALT lymphocyte proliferation was higher by BGSJ2-83 than by the mutant. To the best of our knowledge this is the first report indicating that the presence of EPS (EPS-SJ on the surface of lactobacilli can improve communication between bacteria and intestinal epithelium, implying its possible role in gut colonization.

  3. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  4. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  5. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...

  6. Pharmacological implications from the adhesion-induced signaling profiles in cultured human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Wen-Chuan Wu

    2014-01-01

    Full Text Available Extracellular matrix (ECM plays an active and complex role in regulating cellular behaviors, including proliferation and adhesion. This study aimed at delineating the adhesion-induced signaling profiles in cultured human retinal pigment epithelium (RPE cells and investigating the antiadhesion effect of antiproliferative drugs in this context. RPE R-50 cells grown on various ECM molecules, such as type I and IV collagens, fibronectin, and laminin, were used for adhesion assay and for examining the phosphorylation profiles of signaling mediators including Akt, extracellular signal-regulated kinase (ERK 1/2, and integrin-linked kinase (ILK using Western blotting. The cells receiving antiproliferative drug treatment at subtoxic doses were used to evaluate their antiadhesive and suppressive effects on kinase activities. ECM coating enhanced adhesion and spreading of RPE cells significantly. The cellular attachment onto ECM-coated surfaces differentially induced Akt, ERK1/2, and ILK phosphorylation, and concomitantly increased p53 phosphorylation and cyclin D1 expression, but decreased Bcl-2/Bax ratios. Treatment with antiproliferative agents, including 5-fluorouracil, mitomycin C, and daunomycin, at subtoxic doses suppressed the ability of RPE cells to adhere to ECM substratum significantly. This suppression was in part mediated through reduction of integrin β1 and β3 expressions and interfering Akt-ILK signaling activity. Mechanistically, blockade of PI3K/Akt signaling resulted in the suppressed adhesion of RPE cells to ECM. These findings support the hypothesis that, in addition to their antimitogenic effect, antiproliferative agents also exhibit suppressive effect on the adhesiveness of cultured RPE cells. Moreover, inhibitors of the PI3K/Akt signaling mediator can potentially be used as therapeutic agents for proliferative vitreoretinopathy.

  7. Signaling transduction pathways involved in basophil adhesion and histamine release

    DEFF Research Database (Denmark)

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles ...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  8. Denture Adhesives

    Science.gov (United States)

    ... prevent overuse if zinc is an ingredient. (Some companies include graphics of the amount of adhesive to ... and adequate directions for use or a clear definition of an unsafe dosage or methods or duration ...

  9. IL-4 inhibition of IL-1 induced Matrix metalloproteinase-3 (MMP-3) expression in human fibroblasts involves decreased AP-1 activation via negative crosstalk involving of Jun N-terminal kinase (JNK).

    Science.gov (United States)

    Chambers, Mariah; Kirkpatrick, Garrett; Evans, Michel; Gorski, Grzegorz; Foster, Sara; Borghaei, Ruth C

    2013-06-10

    Matrix metalloproteinase-3 (MMP-3) over-expression is associated with tissue destruction in the context of chronic inflammation. Previous studies showed that IL-4 inhibits induction of MMP-3 by IL-1β, and suggested that AP-1 might be involved. Here we show that IL-1 induced binding of transcription factor AP-1 to the MMP-3 promoter consists primarily of c-Jun, JunB, and c-Fos and that binding of c-Jun and c-Fos is inhibited by the combination of cytokines while binding of Jun B is not. Mutation of the AP-1 site in the MMP-3 promoter decreased the ability of IL-4 to inhibit its transcription in transfected MG-63 cells. Western blotting showed that both cytokines activate Jun N-terminal kinase (JNK), but with somewhat different kinetics, and that activation of JNK by both cytokines individually is inhibited by the combination. These results indicate that IL-4 inhibition of MMP-3 expression is associated with reduction of IL-1 induced binding of active forms of the AP-1 dimer, while less active JunB-containing dimers remain, and suggest that these changes are associated with decreased activation of JNK. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  11. The Green Tea Component (-)-Epigallocatechin-3-Gallate Sensitizes Primary Endothelial Cells to Arsenite-Induced Apoptosis by Decreasing c-Jun N-Terminal Kinase-Mediated Catalase Activity.

    Science.gov (United States)

    Kim, Jee-Youn; Choi, Ji-Young; Lee, Hyeon-Ju; Byun, Catherine Jeonghae; Park, Jung-Hyun; Park, Jae Hoon; Cho, Ho-Seong; Cho, Sung-Jin; Jo, Sangmee Ahn; Jo, Inho

    2015-01-01

    The green tea component (-)-epigallocatechin-3-gallate (EGCG) has been shown to sensitize many different types of cancer cells to anticancer drug-induced apoptosis, although it protects against non-cancerous primary cells against toxicity from certain conditions such as exposure to arsenic (As) or ultraviolet irradiation. Here, we found that EGCG promotes As-induced toxicity of primary-cultured bovine aortic endothelial cells (BAEC) at doses in which treatment with each chemical alone had no such effect. Increased cell toxicity was accompanied by an increased condensed chromatin pattern and fragmented nuclei, cleaved poly(ADP-ribose) polymerase (PARP), activity of the pro-apoptotic enzymes caspases 3, 8 and 9, and Bax translocation into mitochondria, suggesting the involvement of an apoptotic signaling pathway. Fluorescence activated cell sorting analysis revealed that compared with EGCG or As alone, combined EGCG and As (EGCG/As) treatment significantly induced production of reactive oxygen species (ROS), which was accompanied by decreased catalase activity and increased lipid peroxidation. Pretreatment with N-acetyl-L-cysteine or catalase reversed EGCG/As-induced caspase activation and EC toxicity. EGCG/As also increased the phosphorylation of c-Jun N-terminal kinase (JNK), which was not reversed by catalase. However, pretreatment with the JNK inhibitor SP600125 reversed all of the observed effects of EGCG/As, suggesting that JNK may be the most upstream protein examined in this study. Finally, we also found that all the observed effects by EGCG/As are true for other types of EC tested. In conclusion, this is firstly to show that EGCG sensitizes non-cancerous EC to As-induced toxicity through ROS-mediated apoptosis, which was attributed at least in part to a JNK-activated decrease in catalase activity.

  12. The Green Tea Component (--Epigallocatechin-3-Gallate Sensitizes Primary Endothelial Cells to Arsenite-Induced Apoptosis by Decreasing c-Jun N-Terminal Kinase-Mediated Catalase Activity.

    Directory of Open Access Journals (Sweden)

    Jee-Youn Kim

    Full Text Available The green tea component (--epigallocatechin-3-gallate (EGCG has been shown to sensitize many different types of cancer cells to anticancer drug-induced apoptosis, although it protects against non-cancerous primary cells against toxicity from certain conditions such as exposure to arsenic (As or ultraviolet irradiation. Here, we found that EGCG promotes As-induced toxicity of primary-cultured bovine aortic endothelial cells (BAEC at doses in which treatment with each chemical alone had no such effect. Increased cell toxicity was accompanied by an increased condensed chromatin pattern and fragmented nuclei, cleaved poly(ADP-ribose polymerase (PARP, activity of the pro-apoptotic enzymes caspases 3, 8 and 9, and Bax translocation into mitochondria, suggesting the involvement of an apoptotic signaling pathway. Fluorescence activated cell sorting analysis revealed that compared with EGCG or As alone, combined EGCG and As (EGCG/As treatment significantly induced production of reactive oxygen species (ROS, which was accompanied by decreased catalase activity and increased lipid peroxidation. Pretreatment with N-acetyl-L-cysteine or catalase reversed EGCG/As-induced caspase activation and EC toxicity. EGCG/As also increased the phosphorylation of c-Jun N-terminal kinase (JNK, which was not reversed by catalase. However, pretreatment with the JNK inhibitor SP600125 reversed all of the observed effects of EGCG/As, suggesting that JNK may be the most upstream protein examined in this study. Finally, we also found that all the observed effects by EGCG/As are true for other types of EC tested. In conclusion, this is firstly to show that EGCG sensitizes non-cancerous EC to As-induced toxicity through ROS-mediated apoptosis, which was attributed at least in part to a JNK-activated decrease in catalase activity.

  13. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    reduce or delay bacterial biofilm formation of a range of urinary tract infectious E.coli and Klebsiella isolates. Several other proteinaceous coatings were also found to display anti-adhesive properties, possibly providing a measure for controlling the colonization of implant materials. Several other...... components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  14. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam

    2006-01-01

    Interaction between chondrocytes and extracellular matrix is considered a key factor in the generation of grafts for matrix-associated chondrocyte transplantation. Therefore, our objective was to study the influence of differentiation status on cellular attachment. Adhesion of chondrocytes...... to collagen type II increased after removal from native cartilage up to the third day in monolayer in a dose-dependent manner. Following dedifferentiation after the second passage, adhesion to collagen types I (-84%) and II (-46%) decreased, whereas adhesion to fibrinogen (+59%) and fibronectin (+43......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...

  15. UVB therapy decreases the adhesive interaction between peripheral blood mononuclear cells and dermal microvascular endothelium, and regulates the differential expression of CD54, VCAM-1, and E-selectin in psoriatic plaques

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.-P.; Harris, K.; Chin, Y.H. [Miami Univ., FL (United States). School of Medicine; Falanga, V.; Taylor, J.R. [Miami Univ., FL (United States). School of Medicine]|[Miami Veteran Affairs Medical Center, Miami, FL (United States)

    1996-01-01

    A dermal lymphocytic infiltrate is a characteristic feature of psoriasis, and may be involved in the pathogenesis of the disease. We have previously shown that specialized dermal microvascular endothelial cells (DMEC) in psoriatic lesions promote the selective adherence of the CD4 CD45Ro helper T-cell subset. In this study, we examined the adhesive interaction between peripheral blood mononuclear cells and psoriatic DMEC in patients treated with ultraviolet B light (UVB), and correlated the results with the expression and function of endothelial adhesion molecules on DMEC. (author).

  16. UVB therapy decreases the adhesive interaction between peripheral blood mononuclear cells and dermal microvascular endothelium, and regulates the differential expression of CD54, VCAM-1, and E-selectin in psoriatic plaques

    International Nuclear Information System (INIS)

    Cai, J.-P.; Harris, K.; Chin, Y.H.

    1996-01-01

    A dermal lymphocytic infiltrate is a characteristic feature of psoriasis, and may be involved in the pathogenesis of the disease. We have previously shown that specialized dermal microvascular endothelial cells (DMEC) in psoriatic lesions promote the selective adherence of the CD4 CD45Ro helper T-cell subset. In this study, we examined the adhesive interaction between peripheral blood mononuclear cells and psoriatic DMEC in patients treated with ultraviolet B light (UVB), and correlated the results with the expression and function of endothelial adhesion molecules on DMEC. (author)

  17. FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of S1P(3) and phosphoinositide 3-kinase.

    Science.gov (United States)

    Imeri, Faik; Blanchard, Olivier; Jenni, Aurelio; Schwalm, Stephanie; Wünsche, Christin; Zivkovic, Aleksandra; Stark, Holger; Pfeilschifter, Josef; Huwiler, Andrea

    2015-12-01

    Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.

  18. Focal adhesions and assessment of cytotoxicity

    NARCIS (Netherlands)

    van Kooten, TG; Klein, CL; Wagner, M; Kirkpatrick, CJ

    Focal adhesions are highly ordered assemblies of transmembrane receptors, extracellular matrix proteins, and a large number of cytoplasmic proteins, including structural proteins, as well as tyrosine kinases, phosphatases, and their substrates. They are now accepted as a prime component of signal

  19. Adhesive plasters

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  20. Breast cancer-specific mutations in CK1ε inhibit Wnt/β-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration

    NARCIS (Netherlands)

    Foldynová-Trantírková, S.; Sekyrová, P.; Tmejová, K.; Brumovská, E.; Bernatík, O.; Blankenfeldt, W.; Krejčí, P.; Kozubík, A.; Doležal, T.; Trantirek, L.|info:eu-repo/dai/nl/326057072; Bryja, V.

    2010-01-01

    Introduction Breast cancer is one of the most common types of cancer in women. One of the genes that were found mutated in breast cancer is casein kinase 1 epsilon (CK1ε). Because CK1ε is a crucial regulator of the Wnt signaling cascades, we determined how these CK1ε mutations interfere with the Wnt

  1. Adhesion rings surround invadopodia and promote maturation

    Directory of Open Access Journals (Sweden)

    Kevin M. Branch

    2012-06-01

    Invasion and metastasis are aggressive cancer phenotypes that are highly related to the ability of cancer cells to degrade extracellular matrix (ECM. At the cellular level, specialized actin-rich structures called invadopodia mediate focal matrix degradation by serving as exocytic sites for ECM-degrading proteinases. Adhesion signaling is likely to be a critical regulatory input to invadopodia, but the mechanism and location of such adhesion signaling events are poorly understood. Here, we report that adhesion rings surround invadopodia shortly after formation and correlate strongly with invadopodium activity on a cell-by-cell basis. By contrast, there was little correlation of focal adhesion number or size with cellular invadopodium activity. Prevention of adhesion ring formation by inhibition of RGD-binding integrins or knockdown (KD of integrin-linked kinase (ILK reduced the number of ECM-degrading invadopodia and reduced recruitment of IQGAP to invadopodium actin puncta. Furthermore, live cell imaging revealed that the rate of extracellular MT1-MMP accumulation at invadopodia was greatly reduced in both integrin-inhibited and ILK-KD cells. Conversely, KD of MT1-MMP reduced invadopodium activity and dynamics but not the number of adhesion-ringed invadopodia. These results suggest a model in which adhesion rings are recruited to invadopodia shortly after formation and promote invadopodium maturation by enhancing proteinase secretion. Since adhesion rings are a defining characteristic of podosomes, similar structures formed by normal cells, our data also suggest further similarities between invadopodia and podosomes.

  2. Breast cancer-specific mutations in CK1epsilon inhibit Wnt/beta-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration

    Czech Academy of Sciences Publication Activity Database

    Foldynová-Trantírková, Silvie; Sekyrová, Petra; Tmejová, Kateřina; Brumovská, E.; Bernatik, O.; Blankenfeldt, W.; Krejčí, Pavel; Kozubík, Alois; Doležal, Tomáš; Trantírek, Lukáš; Bryja, Vítězslav

    2010-01-01

    Roč. 2010, č. 3 (2010), R30 ISSN 1465-5411 R&D Projects: GA ČR GA301/07/0814; GA ČR(CZ) GD204/09/H058 Grant - others:GA ČR(CZ) GA204/09/0498; GA ČR(CZ) GA301/09/0587; GA ČR(CZ) KJB501630801 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50070508; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : casein kinase 1 epsilon * Wnt signaling cascade * kinase activity * autophosphorylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.785, year: 2010

  3. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  4. Kinases and Cancer.

    Science.gov (United States)

    Cicenas, Jonas; Zalyte, Egle; Bairoch, Amos; Gaudet, Pascale

    2018-03-01

    Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...].

  5. Kinases and Cancer

    OpenAIRE

    Jonas Cicenas; Egle Zalyte; Amos Bairoch; Pascale Gaudet

    2018-01-01

    Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...

  6. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts.

    Science.gov (United States)

    Perinpanayagam, H; Zaharias, R; Stanford, C; Brand, R; Keller, J; Schneider, G

    2001-11-01

    In osteoporosis, the regenerative capacity of bone is compromised, which may involve altered osteoblast (OB) activity. This could be attributed to an inappropriate synthesis and assembly of an extracellular matrix (ECM), altered cell adhesion to the ECM, or be due to inappropriate downstream activation of adhesion-mediated signaling cascades through proteins such as focal adhesion kinase (FAK). The purpose of our study was to compare early adhesion-mediated events using previously described and characterized clinically derived OBs obtained from human patients undergoing major joint arthroplasty for osteoporosis or osteoarthritis. The presence or absence of osteoporosis was established with a radiographic index. Using light microscopy and crystal violet staining, we show that OB cells derived from sites of osteoporosis do not attach and spread as well as non-osteoporotic (OP) OB cells. OP cells initially have a more rounded morphology, and show significantly less (P attachment to serum-coated tissue culture plastic over a 24 h time period. Immunofluorescent labeling after 24 h of attachment showed that OP OB focal adhesions (FAs) and stress fibers were less defined, and that the OP cells were smaller and had a more motile phenotype. When normalized protein lysates were Western blotted for phosphotyrosine (PY) a band corresponding to pp125FAK was identified. FAK tyrosine phosphorylation was evident at 6 h in both the OP and non-OP OBs, but decreased or was absent through 24 h in OP OBs. These results suggest early adhesion-mediated events, such as cell adhesion, attachment, and FAK signaling via PY may be altered in OP OBs.

  7. Effect on adhesion of a nanocapsules-loaded adhesive system

    Directory of Open Access Journals (Sweden)

    Bruna Genari

    2018-02-01

    Full Text Available Abstract This study aimed to evaluate the in situ degree of conversion, contact angle, and immediate and long-term bond strengths of a commercial primer and an experimental adhesive containing indomethacin- and triclosan-loaded nanocapsules (NCs. The indomethacin- and triclosan-loaded NCs, which promote anti-inflammatory and antibacterial effects through controlled release, were incorporated into the primer at a concentration of 2% and in the adhesive at concentrations of 1, 2, 5, and 10%. The in situ degree of conversion (DC, n=3 was evaluated by micro-Raman spectroscopy. The contact angle of the primer and adhesive on the dentin surface (n = 3 was determined by an optical tensiometer. For the microtensile bond strength µTBS test (12 teeth per group, stick-shaped specimens were tested under tensile stress immediately after preparation and after storage in water for 1 year. The data were analyzed using two-way ANOVA, three-way ANOVA and Tukey’s post hoc tests with α=0.05. The use of the NC-loaded adhesive resulted in a higher in situ degree of conversion. The DC values varied from 75.07 ± 8.83% to 96.18 ± 0.87%. The use of NCs in only the adhesive up to a concentration of 5% had no influence on the bond strength. The contact angle of the primer remained the same with and without NCs. The use of both the primer and adhesive with NCs (for all concentrations resulted in a higher contact angle of the adhesive. The longitudinal μTBS was inversely proportional to the concentration of NCs in the adhesive system, exhibiting decreasing values for the groups with primer containing NCs and adhesives with increasing concentrations of NCs. Adhesives containing up to 5% of nanocapsules and primer with no NCs maintained the in situ degree of conversion, contact angle, and immediate and long-term bond strengths. Therefore, the NC-loaded adhesive can be an alternative method for combining the bond performance and therapeutic effects. The use of an

  8. Decreased Libido

    Science.gov (United States)

    ... causes decreased libido? Decreased libido often accompanies other sexual disorders. Although most men with erectile dysfunction do not complain of decreased libido, after time, persistent failure with erections and sexual performance can lead to reduced sex drive in ...

  9. Enhancement of Human Endothelial Cell Adhesion to Type I Collagen by Lysophosphatidic Acid (LPA and Sphingosine-1-Phosphate (S1P

    Directory of Open Access Journals (Sweden)

    Hsinyu Lee

    2004-06-01

    Full Text Available The diverse cellular effects of lysophosphatidic acid (LPA and sphingosine-1-phosphate (S1P are transduced by two structurally homologous subfamilies of G protein-coupled receptors, which are encoded by endothelial differentiation genes (Edg Rs. Human umbilical cord vein endothelial cells (HUVECs express Edg Rs for LPA (Edg2 and S1P (Edg1 and 3, which transduce signals for migration of HUVECs through micropore filters coated with type I collagen. Since activation of integrins is essential for optimal migration of endothelial cells, we now examine the capacity of LPA and S1P to augment integrin mediation of endothelial cell binding to type I collagen. Lysophospholipid enhancement of HUVEC adhesion to type I collagen is detectable within 20 minutes. Enhancement of adhesion by both LPA and S1P is significant at 50 nM and optimal at 5µM. Pertussis toxin (PTx, a specific inhibitor of Gi, and C3 exotoxin, a specific inhibitor of Rho, both suppress LPA and S1P enhancement of HUVEC adhesion. In contrast, PD98059, which blocks MAP kinase kinase (MEK, and wortmannin, which inhibits phosphatidylinositol 3-kinase (PI3K, had no effect on LPA- or S1P-enhancement of HUVEC adhesion. Neutralizing monoclonal antibodies specific for α2 and β1 integrin chains, concomitantly decrease LPA and S1P enhancement of HUVEC adhesion to type I collagen. LPA and S1P thus promote type I collagen-dependent adhesion and migration of HUVECs by recruiting α2 and β1 integrin through both Gi and Rho pathways. Integrin α2/β1 therefore appears to be critical on the effects of LPA and S1P on endothelial cell physiology.

  10. Surface energy and viscoelasticity influence caramel adhesiveness.

    Science.gov (United States)

    Wagoner, Ty B; Foegeding, Edward Allen

    2017-08-26

    Adhesion is an important textural attribute that directs consumer eating patterns and behaviors and can be a negative attribute during food processing. The objectives of this study were to modify caramel formulation and compare adhesion to different materials to quantify the influence of surface energetics and viscoelasticity on caramel adhesiveness. Mechanical adhesion was viewed in the context of pressure sensitive tack theory, where adhesion is controlled by viscoelasticity of the adhesive material and the surface energy relationship of material and probe. Caramel samples varied in total amount of fat and protein, and mechanical adhesion was measured using a series of materials with total surface energies of 39.7-53.2 mJ/m 2 . Adhesiveness decreased as fat and protein content increased, with a significant effect of total surface energy. Viscoelasticity was modeled using creep recovery data fit to a four-element Burger mechanistic model. Burger model parameters representing retarded elasticity correlated strongly with adhesiveness. The results suggest two zones of adhesion based on formulation, one driven by both surface energy relationships-most notably dispersive and total surface energy-and viscoelasticity, and the other driven solely by viscoelasticity. Relationships between mechanical properties and adhesion have been explored but are still not well understood, and could aid in the design of food products with a controlled level of adhesion. The results of this study indicate the importance of considering material surface energy when measuring mechanical adhesion or texture profile analysis. Understanding the relationships between viscoelastic behavior and adhesion can be used to make inferences on perceived texture. © 2017 Wiley Periodicals, Inc.

  11. Advanced adhesives in electronics

    CERN Document Server

    Bailey, C

    2011-01-01

    Adhesives are widely used in the manufacture of electronic devices to act as passive and active components. Recently there has been considerable interest in the use of conductive adhesives. This book reviews key types of conductive adhesives, processing methods, properties and the way they can be modelled as well as potential applications.$bAdhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic ...

  12. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  13. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix.

    Science.gov (United States)

    Khotskaya, Yekaterina B; Beck, Benjamin H; Hurst, Douglas R; Han, Zhenbo; Xia, Weiya; Hung, Mien-Chie; Welch, Danny R

    2014-12-01

    Metastatic dissemination is a multi-step process that depends on cancer cells' ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it decreases survival in circulation, increases susceptibility to anoikis, and reduces capacity to colonize secondary organs. In this report, BRMS1 expression is shown to not significantly alter expression levels of integrin monomers, while time-lapse and confocal microscopy revealed that BRMS1-expressing cells exhibited reduced activation of both β1 integrin and focal adhesion kinase, and decreased localization of these molecules to sites of focal adhesions. Short-term plating of BRMS1-expressing cells onto collagen or fibronectin markedly decreased cytoskeletal reorganization and formation of cellular adhesion projections. Under 3D culture conditions, BRMS1-expressing cells remained rounded and failed to reorganize their cytoskeleton and form invasive colonies. Taken together, BRMS1-expressing breast cancer cells are greatly attenuated in their ability to respond to microenvironment changes. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  14. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-01-01

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  15. Role of flexural stiffness of leukocyte microvilli in adhesion dynamics

    Science.gov (United States)

    Wu, Tai-Hsien; Qi, Dewei

    2018-03-01

    Previous work reported that microvillus deformation has an important influence on dynamics of cell adhesion. However, the existing studies were limited to the extensional deformation of microvilli and did not consider the effects of their bending deformation on cell adhesion. This Rapid Communication investigates the effects of flexural stiffness of microvilli on the rolling process related to adhesion of leukocytes by using a lattice-Boltzmann lattice-spring method (LLM) combined with adhesive dynamics (AD) simulations. The simulation results reveal that the flexural stiffness of microvilli and their bending deformation have a profound effect on rolling velocity and adhesive forces. As the flexural stiffness of the microvilli decreases, their bending angles increase, resulting in an increase in the number of receptor-ligand bonds and adhesive bonding force and a decrease in the rolling velocity of leukocytes. The effects of flexural stiffness on deformation and adhesion represent crucial factors involved in cell adhesion.

  16. Properties of pressure-sensitive adhesive tapes with soft adhesives to human skin and their mechanism.

    Science.gov (United States)

    Tokumura, Fumio; Homma, Takeyasu; Tomiya, Toshiki; Kobayashi, Yuko; Matsuda, Tetsuaki

    2007-05-01

    The use of soft adhesives in the manufacture of pressure-sensitive adhesive tapes has recently increased. The dermal peeling force of adhesive tapes with soft adhesives was studied. Four kinds of adhesive tapes with adhesives of different softness were made, by adding varying amounts of isopropyl myristate as a softener. The tapes were applied on the flexor side of the forearm of six healthy male volunteers. The dermal peeling force, the amount of stripped corneocytes, the level of pain when the tapes were removed and the degree of penetration of adhesives into the sulcus cutis (skin furrows) were evaluated at 1 and 24 h after application of the tapes. Furthermore, a skin model panel (a sulcus cutis and crista cutis model panel) and a crista cutis model panel were constructed from a general stainless-steel panel, and the peeling force of the tapes against the model panels was measured. As the softness of adhesives increased, the peeling force against a general stainless-steel panel with a flat surface decreased, although the peeling force against human skin did not significantly change. The amount of stripped corneocytes on the removed tapes and the level of pain when the tapes were removed decreased with the increase in softness of the adhesives. These results suggest that adhesive tapes with soft adhesives that contain isopropyl myristate as a softener are suitable for the skin. Furthermore, the degree of penetration of adhesive into the sulcus cutis increased as the softness of adhesives increased. Upon evaluation of the peeling force against the model panels, as the softness of adhesives increased, there was a slight decrease in the peeling force against the skin model panel, while there was a remarkable decrease in the peeling force against the crista cutis model panel. These results suggest that the lack of change in the dermal peeling force as the softness of adhesives increased was caused by penetration of soft adhesive into the sulcus cutis, and that the

  17. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    International Nuclear Information System (INIS)

    Kim, Ji Young; Kim, Dong Hee; Kim, Hyung Gyun; Song, Gyu-Yong; Chung, Young Chul; Roh, Seong Hwan; Jeong, Hye Gwang

    2006-01-01

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  18. Anandamide inhibits adhesion and migration of breast cancer cells

    International Nuclear Information System (INIS)

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo; Bifulco, Maurizio

    2006-01-01

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB 1 receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB 1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB 1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB 1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo

  19. Adhesive wafer bonding

    Science.gov (United States)

    Niklaus, F.; Stemme, G.; Lu, J.-Q.; Gutmann, R. J.

    2006-02-01

    Wafer bonding with intermediate polymer adhesives is an important fabrication technique for advanced microelectronic and microelectromechanical systems, such as three-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive bears the forces involved to hold the surfaces together. The main advantages of adhesive wafer bonding include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers. Compared to alternative wafer bonding techniques, adhesive wafer bonding is simple, robust, and low cost. This article reviews the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications.

  20. Resveratrol and Estradiol Exert Disparate Effects on Cell Migration, Cell Surface Actin Structures, and Focal Adhesion Assembly in MDA-MB-231 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nicolas G. Azios

    2005-02-01

    Full Text Available Resveratrol, a grape polyphenol, is thought to be a cancer preventive, yet its effects on metastatic breast cancer are relatively unknown. Since cancer cell invasion is dependent on cell migration, the chemotactic response of MDA-MB-231 metastatic human breast cancer cells to resveratrol, estradiol (E2, or epidermal growth factor (EGF was investigated. Resveratrol decreased while E2 and EGF increased directed cell migration. Resveratrol may inhibit cell migration by altering the cytoskeleton. Resveratrol induced a rapid global array of filopodia and decreased focal adhesions and focal adhesion kinase (FAK activity. E2 or EGF treatment did not affect filopodia extension but increased lamellipodia and associated focal adhesions that are integral for cell migration. Combined resveratrol and E2 treatment resulted in a filopodia and focal adhesion response similar to resveratrol alone. Combined resveratrol and EGF resulted in a lamellipodia and focal adhesion response similar to EGF alone. E2 and to a lesser extent resveratrol increased EGFR activity. The cytoskeletal changes and EGFR activity in response to E2 were blocked by EGFR1 inhibitor indicating that E2 may increase cell migration via crosstalk with EGFR signaling. These data suggest a promotional role for E2 in breast cancer cell migration but an antiestrogenic, preventative role for resveratrol.

  1. Inhibition of protein kinase C in PHA-activated PBMC treated with anti-HLA class I monoclonal antibody is associated to decreased proliferation and expression of cell cycle related genes.

    Science.gov (United States)

    Rita, S; Michele, R; Patrizia, O; Alessansdra, B; Sara, B; Enrico, G

    1994-01-01

    Treatment of PHA-activated PBMC with anti-HLA class I monoclonal antibody (mAb 01.65) shows: 1) depletion of particulate protein Kinase C (PKC) and partial reduction of cytosolic PKC after only 10 min.; 2) inhibition of tritiated thymidine (3H-Td) incorporation; 3) slowing down of cell cycle; 4) reduced expression of four cell cycle related genes. These findings suggest that the depletion of PKC is reflected on the cell cycle progression and expression of cell cycle related genes. We studied, in PHA-activated PBMC cultures, the effect of N-N-Staurosporine (StSp) acting as PKC inhibitor at nanomolar concentrations, alone and combined with mAb 01.65. StSp, inhibits the proliferative response of PHA stimulated PBMC in a competitive fashion with mAb 01.65. We report here that StSp alone and combined with mAb 01.65 affects also the expression of c-myc and cdc2 and the membrane expression of two proliferation markers: IL-2R (CD25) and TfR (CD71).

  2. Adhesion toughness of multilayer graphene films.

    Science.gov (United States)

    Wood, Joseph D; Harvey, Christopher M; Wang, Simon

    2017-12-05

    Interface adhesion toughness between multilayer graphene films and substrates is a major concern for their integration into functional devices. Results from the circular blister test, however, display seemingly anomalous behaviour as adhesion toughness depends on number of graphene layers. Here we show that interlayer shearing and sliding near the blister crack tip, caused by the transition from membrane stretching to combined bending, stretching and through-thickness shearing, decreases fracture mode mixity G II /G I , leading to lower adhesion toughness. For silicon oxide substrate and pressure loading, mode mixity decreases from 232% for monolayer films to 130% for multilayer films, causing the adhesion toughness G c to decrease from 0.424 J m -2 to 0.365 J m -2 . The mode I and II adhesion toughnesses are found to be G Ic  = 0.230 J m -2 and G IIc  = 0.666 J m -2 , respectively. With point loading, mode mixity decreases from 741% for monolayer films to 262% for multilayer films, while the adhesion toughness G c decreases from 0.543 J m -2 to 0.438 J m -2 .

  3. Adhesive Elastomeric Proteins

    OpenAIRE

    Mansour, Haefa; Liu, Julie

    2013-01-01

    Sutures and staples commonly used to close surgical wounds tend to be much stiffer than the surrounding tissue, often resulting in external tissue damage. Surgical adhesives provide a promising alternative to these sutures and staples. Ideal surgical adhesives are biocompatible, able to set well and remain sticky in moist conditions, possess strong adhesive and cohesive properties, and exhibit mechanical properties that mimic those of the surrounding tissue. Unfortunately, the adhesives avail...

  4. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  5. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  6. Effects of alcohol on pericardial adhesion formation in hypercholesterolemic swine.

    Science.gov (United States)

    Lassaletta, Antonio D; Chu, Louis M; Sellke, Frank W

    2012-04-01

    Reoperative cardiac surgery is complicated in part because of extensive adhesions encountered during the second operation. The purpose of this study was to examine the effects of alcohol with and without resveratrol (red wine vs vodka) on postoperative pericardial adhesion formation in a porcine model of hypercholesterolemia and chronic myocardial ischemia. Male Yorkshire swine were fed a high-cholesterol diet to simulate conditions of coronary artery disease followed by surgical placement of an ameroid constrictor to induce chronic ischemia. Postoperatively, control pigs continued their high-cholesterol diet alone, whereas the 2 experimental groups had diets supplemented with red wine or vodka. Seven weeks after ameroid placement, all animals underwent reoperative sternotomy. Compared with controls, pericardial adhesion grade was markedly reduced in the vodka group, whereas there was no difference in the wine group. Intramyocardial fibrosis was significantly reduced in the vodka group compared with controls. There was no difference in expression of proteins involved in focal adhesion formation between any groups (focal adhesion kinase, integrin alpha-5, integrin beta-1, paxillin, vinculin, protein tyrosine kinase 2, protein kinase C ε, and phosphorylated protein kinase C ε). The wine group exhibited elevated C-reactive protein levels versus the control and vodka groups. Postoperative vodka consumption markedly reduced the formation of pericardial adhesions and intramyocardial fibrosis, whereas red wine had no effect. Analysis of protein expression did not reveal any obvious explanation for this phenomenon, suggesting a post-translational effect of alcohol on fibrous tissue deposition. The difference in adhesion formation in the vodka versus wine groups may be due to increased inflammation in the wine group. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  7. Activation of the canonical Wnt/β-catenin pathway enhances monocyte adhesion to endothelial cells

    International Nuclear Information System (INIS)

    Lee, Dong Kun; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-01-01

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/β-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3β or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/β-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/β-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules

  8. Adhesions and Adhesiolysis: The Role of Laparoscopy

    Science.gov (United States)

    Kavic, Suzanne M.

    2002-01-01

    Background: Adhesions commonly result from abdominal and pelvic surgical procedures and may result in intestinal obstruction, infertility, chronic pain, or complicate subsequent operations. Laparoscopy produces less peritoneal trauma than does conventional laparotomy and may result in decreased adhesion formation. We present a review of the available data on laparoscopy and adhesion formation, as well as laparoscopic adhesiolysis. We also review current adjuvant techniques that may be used by practicing laparoscopists to prevent adhesion formation. Database: A Medline search using “adhesions,” “adhesiolysis,” and “laparoscopy” as key words was performed for English-language articles. Further references were obtained through cross-referencing the bibliography cited in each work. Discussion: The majority of studies indicate that laparoscopy may reduce postoperative adhesion formation relative to laparotomy. However, laparoscopy by itself does not appear to eliminate adhesions completely. A variety of adjuvant materials are available to surgeons, and the most recent investigation has demonstrated significant potential for intraperitoneal barriers. Newer technologies continue to evolve and should result in clinically relevant reductions in adhesion formation. PMID:12113430

  9. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...

  10. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  11. Control and prevention of peritoneal adhesions in gynecologic surgery.

    Science.gov (United States)

    2006-11-01

    Postoperative adhesion formation is a natural consequence of surgical tissue trauma and healing and may result in infertility, pain, and bowel obstruction. Microsurgical principles and minimally invasive surgery may help decrease adhesion formation, but anti-inflammatory agents and peritoneal instillates have no demonstrable benefit. Although some surgical barriers are effective for reducing postoperative adhesions, none has been shown to improve fertility or to decrease pain or the incidence of postoperative bowel obstruction.

  12. Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C

    DEFF Research Database (Denmark)

    Oh, E S; Woods, A; Couchman, J R

    1997-01-01

    During cell-matrix adhesion, both tyrosine and serine/threonine kinases are activated. Integrin ligation correlates with tyrosine phosphorylation, whereas the later stages of spreading and focal adhesion and stress fiber formation in primary fibroblasts requires interactions of cell surface...

  13. Influence of Application Time and Etching Mode of Universal Adhesives on Enamel Adhesion.

    Science.gov (United States)

    Sai, Keiichi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Ishii, Ryo; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2018-01-01

    To investigate the influence of application time and etching mode of universal adhesives on enamel adhesion. Five universal adhesives, Adhese Universal, Bondmer Lightless, Clearfil Universal Bond Quick, G-Premio Bond, and Scotchbond Universal, were used. Bovine incisors were prepared and divided into four groups of ten teeth each. SBS, Ra, and SFE were determined after the following procedures: 1. self-etch mode with immediate air blowing after application (IA); 2. self-etch mode with prolonged application time (PA); 3. etch-and-rinse mode with IA; 4. etch-and-rinse mode with PA. After 24-h water storage, the bonded assemblies were subjected to shear bond strength (SBS) tests. For surface roughness (Ra) and surface free energy (SFE) measurements, the adhesives were simply applied to the enamel and rinsed with acetone and water before the measurements were carried out. Significantly higher SBS and Ra values were obtained with etch-and-rinse mode than with self-etch mode regardless of the application time or type of adhesive. Although most adhesives showed decreased SFE values with increased application time in self-etch mode, SFE values in etch-and-rinse mode were dependent on the adhesive type and application time. Etching mode, application time, and type of adhesive significantly influenced the SBS, Ra, and SFE values.

  14. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability...

  15. Nitric oxide-induced activation of the AMP-activated protein kinase α2 subunit attenuates IκB kinase activity and inflammatory responses in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Elke Bess

    Full Text Available BACKGROUND: In endothelial cells, activation of the AMP-activated protein kinase (AMPK has been linked with anti-inflammatory actions but the events downstream of kinase activation are not well understood. Here, we addressed the effects of AMPK activation/deletion on the activation of NFκB and determined whether the AMPK could contribute to the anti-inflammatory actions of nitric oxide (NO. METHODOLOGY/PRINCIPAL FINDINGS: Overexpression of a dominant negative AMPKα2 mutant in tumor necrosis factor-α-stimulated human endothelial cells resulted in increased NFκB activity, E-selectin expression and monocyte adhesion. In endothelial cells from AMPKα2(-/- mice the interleukin (IL-1β induced expression of E-selectin was significantly increased. DETA-NO activated the AMPK and attenuated NFκB activation/E-selectin expression, effects not observed in human endothelial cells in the presence of the dominant negative AMPK, or in endothelial cells from AMPKα2(-/- mice. Mechanistically, overexpression of constitutively active AMPK decreased the phosphorylation of IκB and p65, indicating a link between AMPK and the IκB kinase (IKK. Indeed, IKK (more specifically residues Ser177 and Ser181 was found to be a direct substrate of AMPKα2 in vitro. The hyper-phosphorylation of the IKK, which is known to result in its inhibition, was also apparent in endothelial cells from AMPKα2(+/+ versus AMPKα2(-/- mice. CONCLUSIONS: These results demonstrate that the IKK is a direct substrate of AMPKα2 and that its phosphorylation on Ser177 and Ser181 results in the inhibition of the kinase and decreased NFκB activation. Moreover, as NO potently activates AMPK in endothelial cells, a portion of the anti-inflammatory effects of NO are mediated by AMPK.

  16. Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics.

    Directory of Open Access Journals (Sweden)

    Saisai Wei

    Full Text Available Angiogenin (ANG acts on both vascular endothelial cells and cancer cells, but the underlying mechanism remains elusive. In this study, we carried out a co-immunoprecipitation assay in HeLa cells and identified 14 potential ANG-interacting proteins. Among these proteins, β-actin, α-actinin 4, and non-muscle myosin heavy chain 9 are stress fiber components and involved in cytoskeleton organization and movement, which prompted us to investigate the mechanism of action of ANG in cell migration. Upon confirmation of the interactions between ANG and the three proteins, further studies revealed that ANG co-localized with β-actin and α-actinin 4 at the leading edge of migrating cells. Down-regulation of ANG resulted in fewer but thicker stress fibers with less dynamics, which was associated with the enlargements of focal adhesions. The focal adhesion kinase activity and cell migration capacity were significantly decreased in ANG-deficient cells. Taken together, our data demonstrated that the existence of ANG in the cytoplasm optimizes stress fiber assembly and focal adhesion formation to accommodate cell migration. The finding that ANG promoted cancer cell migration might provide new clues for tumor metastasis research.

  17. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability....... These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1 mediated...

  18. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  19. Epigallocatechin-3-gallate reduces the proliferation of benign prostatic hyperplasia cells via regulation of focal adhesions.

    Science.gov (United States)

    Tepedelen, Burcu Erbaykent; Soya, Elif; Korkmaz, Mehmet

    2017-12-15

    Benign prostatic hyperplasia (BPH) is the most common urological disease that is characterized by the excessive growth of prostatic epithelial and stromal cells. Pharmacological therapy for BPH has limited use due to the many side effects so there is a need for new agents including natural compounds such as epigallocatechin-3-gallate (EGCG). This study was undertaken to assess the role of EGCG, suppressing the formation of BPH by reducing inflammation and oxidative stress, in cytoskeleton organization and ECM interactions via focal adhesions. We performed MTT assay to investigate cell viability of BPH-1 cells, wound healing assay to examine cell migration, immunofluorescence assay for F-actin organization and paxillin distribution and finally immunoblotting to investigate focal adhesion protein levels in the presence and absence of EGCG. We found that EGCG inhibits cell proliferation at the concentration of 89.12μM, 21.2μM and 2.39μM for 24, 48 and 72h, respectively as well as inhibitory effects of EGCG on BPH-1 cell migration were observed in a wound healing assay. Furthermore, it was determined by immunofluorescence labeling that EGCG disrupts F-actin organization and reduces paxillin distribution. Additionally, EGCG decreases the activation of FAK (Focal Adhesion Kinase) and the levels of paxillin, RhoA (Ras homolog gene family, member A), Cdc42 (cell division cycle 42) and PAK1 (p21 protein-activated kinase 1) in a dose-dependent manner. For the first time, by this study, we found evidence that BPH-1 cell proliferation could be inhibited with EGCG through the disruption of cytoskeleton organization and ECM interactions. Consequently, EGCG might be useful in the prevention and treatment of diseases characterized by excessive cell proliferation such as BPH. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Rho kinases I and II regulate different aspects of myosin II activity

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R

    2005-01-01

    The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...... bundle assembly and smooth muscle contractility. Here, analysis of fibroblast adhesion to fibronectin revealed that although ROCK II was more abundant, its activity was always lower than ROCK I. Specific reduction of ROCK I by siRNA resulted in loss of stress fibers and focal adhesions, despite...

  1. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway.

    Directory of Open Access Journals (Sweden)

    Guo-Sheng Wu

    Full Text Available Cell adhesion, migration and invasion are critical steps for carcinogenesis and cancer metastasis. Ganoderma lucidum, also called Lingzhi in China, is a traditional Chinese medicine, which exhibits anti-proliferation, anti-inflammation and anti-metastasis properties. Herein, GAEE, G. lucidum extract mainly contains ganoderiol A (GA, dihydrogenated GA and GA isomer, was shown to inhibit the abilities of adhesion and migration, while have a slight influence on that of invasion in highly metastatic breast cancer MDA-MB-231 cells at non-toxic doses. Further investigation revealed that GAEE decreased the active forms of focal adhesion kinase (FAK and disrupted the interaction between FAK and SRC, which lead to deactivating of paxillin. Moreover, GAEE treatment downregulated the expressions of RhoA, Rac1, and Cdc42, and decreased the interaction between neural Wiskott-Aldrich Syndrome protein (N-WASP and Cdc42, which impair cell migration and actin assembly. To our knowledge, this is the first report to show that G.lucidum triterpenoids could suppress cell migration and adhesion through FAK-SRC-paxillin signaling pathway. Our study also suggests that GAEE may be a potential agent for treatment of breast cancer.

  2. Soy protein adhesives

    Science.gov (United States)

    Charles R. Frihart

    2010-01-01

    In the quest to manufacture and use building materials that are more environmentally friendly, soy adhesives can be an important component. Trees fix and store carbon dioxide in the atmosphere. After the trees are harvested, machinery converts the wood into strands, which are then bonded together with adhesives to form strandboard, used in constructing long-lasting...

  3. Adhesive compositions and methods

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Sendijarevic, Vahid; O' Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  4. adhesive intestinal obstruction

    African Journals Online (AJOL)

    2006-06-01

    Jun 1, 2006 ... ABSTRACT. Background: Adhesions after abdominal and pelvic surgery are a major cause of intestinal obstruction in the western world and the pathology is steadily gaining prominence in our practice. Objective: To determine the magnitude of adhesive intestinal obstruction; to determine the types.

  5. Instant acting adhesive system

    Science.gov (United States)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  6. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells

    International Nuclear Information System (INIS)

    Tang, Nan-Hong; Chen, Yan-Lin; Wang, Xiao-Qian; Li, Xiu-Jin; Wu, Yong; Zou, Qi-Lian; Chen, Yuan-Zhong

    2010-01-01

    Fibronectin (FN) is known to be a large multifunction glycoprotein with binding sites for many substances, including N-terminal and C-terminal heparin-binding domains. We investigated the effects of highly purified rhFNHN29 and rhFNHC36 polypeptides originally cloned from the two heparin-binding domains on the adhesion and invasion of highly metastatic human hepatocellular carcinoma cells (MHCC97H) and analyzed the underlying mechanism involved. The MHCC97H cells that adhered to FN in the presence of various concentrations of rhFNHN29 and rhFNHC36 polypeptides were stained with crystal violet and measured, and the effects of rhFNHN29 and rhFNHC36 on the invasion of the MHCC97H cells were then detected using the Matrigel invasion assay as well as a lung-metastasis mouse model. The expression level of integrins and focal adhesion kinase (FAK) phosphotyrosyl protein was examined by Western blot, and the activity of matrix metalloproteinases (MMPs) and activator protein 1 (AP-1) was analyzed by gelatin zymography and the electrophoretic mobility band-shift assay (EMSA), respectively. Both of the polypeptides rhFNHN29 and rhFNHC36 inhibited adhesion and invasion of MHCC97H cells; however, rhFNHC36 exhibited inhibition at a lower dose than rhFNHN29. These inhibitory effects were mediated by integrin αvβ3 and reversed by a protein tyrosine phosphatase inhibitor. Polypeptides rhFNHN29 and rhFNHC36 abrogated the tyrosine phosphorylation of focal adhesion kinase (p-FAK) and activation of activator protein 1 (AP-1), resulting in the decrease of integrin αv, β3 and β1 expression as well as the reduction of MMP-9 activity. Polypeptides rhFNHN29 and rhFNHC36 could potentially be applicable to human liver cancer as anti-adhesive and anti-invasive agents

  7. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  8. Baicalein suppresses 17-β-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway.

    Science.gov (United States)

    Shang, Dandan; Li, Zheng; Zhu, Zhuxia; Chen, Huamei; Zhao, Lujun; Wang, Xudong; Chen, Yan

    2015-04-01

    Flavonoids are structurally similar to steroid hormones, particularly estrogens, and therefore have been studied for their potential effects on hormone-dependent cancers. Baicalein is the primary flavonoid derived from the root of Scutellaria baicalensis Georgi. In the present study, we investigated the effects of baicalein on 17β-estradiol (E2)-induced migration, adhesion and invasion of MCF-7 and SK-BR-3 breast cancer cells. The results demonstrated that baicalein suppressed E2-stimulated wound-healing migration and cell‑Matrigel adhesion, and ameliorated E2-promoted invasion across a Matrigel-coated Transwell membrane. Furthermore, baicalein interfered with E2-induced novel G protein-coupled estrogen receptor (GPR30)-related signaling, including a decrease in tyrosine phosphorylation of epidermal growth factor receptor (EGFR) as well as phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine kinase Akt, without affecting GPR30 expression. The results also showed that baicalein suppressed the expression of GPR30 target genes, cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF) induced by E2. Furthermore, baicalein prevented GPR30-related signaling activation and upregulation of CYR61 and CTGF mRNA levels induced by G1, a specific GPR 30 agonist. The results suggest that baicalein inhibits E2-induced migration, adhesion and invasion through interfering with GPR30 signaling pathway activation, which indicates that it may act as a therapeutic candidate for the treatment of GPR30-positive breast cancer metastasis.

  9. The novel synthetic ether lipid inositol-C2-PAF inhibits phosphorylation of the tyrosine kinases Src and FAK independent of integrin activation in transformed skin cells.

    Science.gov (United States)

    Semini, Geo; Hildmann, Annette; Reissig, Hans-Ulrich; Reutter, Werner; Danker, Kerstin

    2011-04-15

    New alkyl-phospholipids that are structurally derived from platelet-activating factor are promising candidates for anticancer treatment. The mechanism of action of derivatives of the platelet-activating factor is distinctly different from that of known DNA- or tubulin-targeting anticancer agents because they are incorporated into cell membranes, where they accumulate and interfere with a wide variety of key enzymes. We recently presented evidence of a novel group of alkyl-phospholipids, glycosidated phospholipids that efficiently inhibit cell proliferation. One member of this group, inositol-C2-PAF (Ino-C2-PAF), displays high efficacy and low cytotoxicity in HaCaT-cells, an immortalized non-tumorigenic skin keratinocyte cell line. Here, we show that Ino-C2-PAF also inhibits the motility of the skin-derived transformed cell lines HaCaT and squamous cell carcinoma (SCC)-25. This decrease in motility is accompanied by an altered F-actin cytoskeleton, increased clustering of integrins, and increased cell-matrix adhesion. Despite enhanced integrin clustering and matrix adhesion, we observed less phosphorylation of the cytoplasmic tyrosine kinases focal adhesion kinase (FAK) and Src, key regulators of cellular motility, at focal adhesion sites. Transient transfection of constitutively active variants of FAK and Src could at least in part bybass this inhibitory effect of Ino-C2-PAF. This fact indicates that Ino-C2-PAF interferes with the fine-tuned balance between adhesion and migration. Ino-C2-PAF at least partially uncouples integrin-mediated attachment from subsequent integrin-dependent signaling steps, which inhibits migration in transformed keratinocyte cell lines. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Adhesive capsulitis of the hip: a review.

    Science.gov (United States)

    Looney, Colin G; Raynor, Brett; Lowe, Rebecca

    2013-12-01

    Adhesive capsulitis of the hip (ACH) is a rare clinical entity. Similar to adhesive capsulitis of the shoulder, ACH is characterized by a painful decrease in active and passive range of motion as synovial inflammation in the acute stages of the disease progresses to capsular fibrosis in the chronic stages. Once other diagnoses have been ruled out, management of ACH is tailored to reduce inflammation in the acute stages with NSAIDs, intra-articular steroid injections, and targeted physical therapy while biomechanical dysfunction in the spine, hip, sacroiliac joint, or lower limb joints is addressed. In chronic stages of the disease, intervention should focus on decreasing the progression of fibrotic changes and regaining range of motion through aggressive physical therapy. Interventions described for chronic ACH include manipulation under anesthesia; pressure dilatation; and open or arthroscopic synovectomy, lysis of adhesions, and capsular release. Surgical intervention should be considered only after failure of a minimum 3-month course of nonsurgical treatment.

  11. EB curable laminating adhesives

    International Nuclear Information System (INIS)

    Matsuyama, Asao; Kobayashi, Masahide; Gotoh, Sakiko

    1992-01-01

    New developed solvent free EB curable laminating adhesives have two liquid components, A with hydroxy and acryloyl group, B with isocyanate and acryloyl group in a molecule. These EB laminating adhesives do not need any aging process, which is a big advantage, and are very suitable for environment, safety, and health because of no heating process and solvent free formulas. And we have made basic research about the relation of peel strength or heat seal strength versus Tg of cured film, elongation at break, elastic modulus, and so on. Basic specifications of the new developed adhesives are shown. (author)

  12. HGF induces FAK activation and integrin-mediated adhesion in MTLn3 breast carcinoma cells.

    Science.gov (United States)

    Beviglia, L; Kramer, R H

    1999-11-26

    Expression of hepatocyte growth factor (HGF) and its tyrosine kinase receptor, c-Met, is positively correlated with breast carcinoma progression. We found that in invasive and metastatic MTLn3 breast carcinoma cells, HGF stimulated both initial adhesion to and motility on the extracellular matrix (ECM) ligands laminin 1, type I collagen, and fibronectin. Next, analysis with function-perturbing antibodies showed that adhesion to the different ECM proteins was mediated through specific beta1 integrins. In MTLn3 cells, HGF induced rapid tyrosine phosphorylation and activation of both c-Met and focal adhesion kinase (FAK). Cell anchorage and adhesion to the ECM substrates was required for HGF-induced FAK activation, since HGF failed to trigger tyrosine phosphorylation of FAK in suspended cells. Our results provide evidence that the 2 signaling pathways, integrin/ECM and c-Met/HGF, cooperate synergistically to induce FAK activation in an adhesion-dependent manner, leading to enhanced cell adhesion and motility. Moreover, we found that a FRNK (the FAK-related non-kinase)-like molecule is expressed in MTLn3 cells. Since FRNK acts as a competitive inhibitor of FAK function, our results suggest that a FRNK-like protein could facilitate disassembly of focal adhesions and likely be responsible for the HGF-induced scattering and motility of MTLn3 cells. Copyright 1999 Wiley-Liss, Inc.

  13. Immunotherapeutic modulation of intraperitoneal adhesions by Asparagus racemosus.

    Directory of Open Access Journals (Sweden)

    Rege N

    1989-10-01

    Full Text Available The hypothesis that macrophages appear to play a pivotal role in the development of intraperitoneal adhesions and that modulation of macrophage activity, therefore, is likely to provide a tool for prevention of adhesions, was tested in the present study. Effect of Asparagus racemosus, an indigenous agent with immunostimulant properties, was evaluated in an animal model of intraperitoneal adhesions induced by caecal rubbing. Animals were sacrificed 15 days following surgery. The peritoneal macrophages were collected to assess their activity. At the same time, peritoneal cavity was examined for the presence of adhesions, which were graded. A significant decrease was observed in the adhesion scores attained by animals receiving Asparagus racemosus. This was associated with significant increase in the activity of macrophages (70.1 +/- 2.52, compared to that in surgical controls (53.77 +/- 10.8. These findings support our hypothesis and provide a novel approach for the prevention and management of post-operative adhesions.

  14. Evaluation of polyaryl adhesives in elastomer-stainless steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Miura, M.; Carciello, N.; Sugama, T.; Kukacka, L.E.

    1992-10-01

    Polyaryl thermoplastic adhesives (polyetheretherketone, PEEK, polyphenylene sulfide PPS, polyphenylethersulfone, PES) were evaluated for ability to bond elastomer to metal for use in geothermal environments. Strength of elastomer-to-metal joints adhesives blends (such as in drill pipe or casing protectors) were determined using peel tests. Parameters involved in making the joints were temperature, time and atmosphere, in addition to type of adhesive. Physical chemical analyses have aided endeavors to determine the cause of adhesion failure in the joint: differential thermal analyses, thermal gravimetric analyses, infrared spectroscopy and electron spectroscopy for chemical analysis. Tests showed that joints made of adhesive blends which contained greater than 50% PES survived simulated geothermal conditions (200C, water vapor pressure 200 psi) for weeks without significant decrease in peel strength. Chemical components of the adhesive appear to be highly stable under the conditions required to make the joints and in subsequent exposure to the simulated geothermal environment.

  15. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  16. Cohesion and Adhesion with Proteins

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  17. Effect of the adhesive antibiotic TA on adhesion and initial growth of E. coli on silicone rubber.

    Science.gov (United States)

    Simhi, E; van der Mei, H C; Ron, E Z; Rosenberg, E; Busscher, H J

    2000-11-01

    Catheter-associated urinary tract infection is the most common nosocomial infection, and contributes to patient morbidity and mortality. We investigated the effect that the TA adhesive antibiotic had on adhesion and initial growth in urine of Escherichia coli on silicone rubber. The TA antibiotic had reduced adhesion, and inhibited initial growth of the bacteria on the surface. Since adhesion and initial growth on the surface are an essential part of biofilm formation and subsequent infection, we speculate that the TA antibiotic coating might decrease the infection rate associated with indwelling urinary catheter.

  18. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    Science.gov (United States)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  19. Efficacy of tray adhesives for the adhesion of elastomer rubber impression materials to impression modeling plastics for border molding.

    Science.gov (United States)

    Nishigawa, G; Sato, T; Suenaga, K; Minagi, S

    1998-02-01

    Tray adhesive, which is used for the adhesion of elastomer rubber impression materials to a custom resin tray, lowers the retention of the impression materials to the impression modeling plastics, as some ingredients of tray adhesive make the impression modeling plastic soft and tacky. The efficacy of tray adhesive, which is used for the adhesion of elastomer rubber impression materials to a custom resin tray, on the adhesion between elastomer rubber impression material and impression modeling plastic was investigated. Four silicone rubber impression materials (two addition reaction types and two condensation reaction types), two polysulfide rubber impression materials, and one impression modeling plastic were used in this study. Tensile strength between elastomer rubber impression material and impression modeling plastic with or without the application of tray adhesive was evaluated. Although tray adhesives for both addition reaction type and both condensation reaction type of silicone impression materials and one tray adhesive for polysulfide rubber impression material increased the tensile strength between the impression material and impression modeling plastic, one tray adhesive for polysulfide rubber impression material decreased the tensile strength when sufficient drying time was not applied.

  20. The Interaction of Src Kinase with beta 3 Integrin Tails : A Potential Therapeutic Target in Thrombosis and Cancer

    NARCIS (Netherlands)

    Huveneers, Stephan; Danen, Erik H. J.

    2010-01-01

    Activation of Src family kinases is an important event downstream of integrin adhesion signaling in many cell types. A particularly intriguing connection between an integrin and a Src family kinase was first discovered in platelets, where the selective direct interaction of alpha IIb beta 3

  1. Signaling through intercellular adhesion molecule 1 (ICAM-1) in a B cell lymphoma line

    DEFF Research Database (Denmark)

    Holland, J; Owens, T

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1) (CD54) is an adhesion molecule of the immunoglobulin superfamily. The interaction between ICAM-1 on B lymphocytes and leukocyte function-associated antigen 1 on T cells plays a major role in several aspects of the immune response, including T-dependent B...... cell activation. While it was originally believed that ICAM-1 played a purely adhesive role, recent evidence suggests that it can itself transduce biochemical signals. We demonstrate that cross-linking of ICAM-1 results in the up-regulation of class II major histocompatibility complex, and we...... investigate the biochemical mechanism for the signaling role of ICAM-1. We show that cross-linking of ICAM-1 on the B lymphoma line A20 induces an increase in tyrosine phosphorylation of several cellular proteins, including the Src family kinase p53/p56(lyn). In vitro kinase assays showed that Lyn kinase...

  2. Src SUMOylation Inhibits Tumor Growth Via Decreasing FAK Y925 Phosphorylation.

    Science.gov (United States)

    Wang, Jing; Deng, Rong; Cui, Nan; Zhang, Hailong; Liu, Tianqi; Dou, Jinzhuo; Zhao, Xian; Chen, Ran; Wang, Yanli; Yu, Jianxiu; Huang, Jian

    2017-12-01

    Src, a non-receptor tyrosine kinase protein, plays a critical role in cell proliferation and tumorigenesis. SUMOylation, a reversible ubiquitination-like post-translational modification, is vital for tumor progression. Here, we report that the Src protein can be SUMOylated at lysine 318 both in vitro and in vivo. Hypoxia can induce a decrease of Src SUMOylation along with an increase of Y419 phosphorylation, a phosphorylation event required for Src activation. On the other hand, treatment with hydrogen peroxide can enhance Src SUMOylation. Significantly, ectopic expression of SUMO-defective mutation, Src K318R, promotes tumor growth more potently than that of wild-type Src, as determined by migration assay, soft agar assay, and tumor xenograft experiments. Consistently, Src SUMOylation leads to a decrease of Y925 phosphorylation of focal adhesion kinase (FAK), an established regulatory event of cell migration. Our results suggest that SUMOylation of Src at lysine 318 negatively modulate its oncogenic function by, at least partially, inhibiting Src-FAK complex activity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    Science.gov (United States)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane

  4. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  5. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  6. Protein kinase C modulates Aurora-kinase inhibition induced by CCT129202 in HMC-1⁵⁶⁰,⁸¹⁶ cell line.

    Science.gov (United States)

    Tobío, Araceli; Alfonso, Amparo; Fernández-Araujo, Andrea; Alonso, Eva; Botana, Luis M

    2013-01-01

    The human mast cell line HMC-1⁵⁶⁰,⁸¹⁶ carries activating mutations in the proto-oncogene of c-kit that cause autophosphorylation and permanent c-kit receptor activation. The compound CCT129202 is a new and selective inhibitor of Aurora kinase A and B that decreases the viability of a variety of human tumor cell lines. The effect of Aurora kinase inhibition was assessed in the HMC-1⁵⁶⁰,⁸¹⁶ line in order to find a suitable tool for mastocytosis treatment. CCT129202 treatment induces a significant decrease in cell viability in HMC-1⁵⁶⁰,⁸¹⁶ cells after 48 hours of treatment. Moreover, caspase-3 and caspase-8 activation was induced after incubation of HMC-1⁵⁶⁰,⁸¹⁶ cells in the presence of CCT129202. It has been demonstrated that Protein Kinase C (PKC) plays a crucial role in mast cell activation as well as cell migration, adhesion and apoptotic cell death. Co-treatment of Ca²⁺-independent PKCs (δ ε and θ) inhibitor GF109203X with CCT129202, reduces caspase-3 activation which controls cell levels. In contrast, Go6976, an inhibitor of Ca²⁺-dependent PKCs, increases caspase-3 activation. Oppositely, GF109203X does not modify CCT129202-induced apoptosis through the caspase-8 pathway whereas Go6976 treatment abolishes the increase on caspase-8 activity due to CCT129202. This implies that Ca²⁺-independent PKC isoforms seems to be related with CCT129202-induced apoptosis through the caspase- 3 pathway, whereas Ca²⁺-dependent PKC isoforms are related with the CCT129202 effect on the caspase-8 pathway. Interestingly, CCT129202 cytotoxic effect remains even though Ca²⁺-dependent PKCs are inhibited, which shows that the Aurora kinase inhibitor effect is acting through the caspase-3 pathway. On the other hand, Ca²⁺-independent PKCs inhibition does not affect the final apoptotic CCT129202 effect because this seems to be mediated by the caspase-8 pathway. Moreover, CCT129202 does not affect PKCδ and Ca

  7. Surgical Adhesives in Facial Plastic Surgery.

    Science.gov (United States)

    Toriumi, Dean M; Chung, Victor K; Cappelle, Quintin M

    2016-06-01

    In facial plastic surgery, attaining hemostasis may require adjuncts to traditional surgical techniques. Fibrin tissue adhesives have broad applications in surgery and are particularly useful when addressing the soft tissue encountered in facial plastic surgery. Beyond hemostasis, tissue adhesion and enhanced wound healing are reported benefits associated with a decrease in operating time, necessity for drains and pressure dressings, and incidence of wound healing complications. These products are clinically accessible to most physicians who perform facial plastic surgery, including skin grafts, flaps, rhytidectomy, and endoscopic forehead lift. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Coatings against corrosion and microbial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Telegdi, J.; Szabo, T.; Al-Taher, F.; Pfeifer, E.; Kuzmann, E.; Vertes, A. [Chemical Research Center, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59/67 (Hungary)

    2010-12-15

    A systematic study on anti-corrosion and anti-fouling effect of hydrophobic Langmuir-Blodgett and self-assembled molecular layers deposited on metal surfaces, as well as anti-microbial adhesion properties of coatings with biocide is presented. Both types of efficiencies produced by LB films are enhanced by Fe{sup 3+} ions built in the molecular film. The quaternary ammonium type biocide embedded into the cross-linked gelatin decreased significantly the microbial adhesion, the biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  10. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing.

    Science.gov (United States)

    Labonte, David; Clemente, Christofer J; Dittrich, Alex; Kuo, Chi-Yun; Crosby, Alfred J; Irschick, Duncan J; Federle, Walter

    2016-02-02

    Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads' adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives.

  11. Dielectric Non-Destructive Analysis of Adhesive Bonded Structures

    National Research Council Canada - National Science Library

    Mijovic, Jovan

    2004-01-01

    .... The highlights of the research performed are: l) The defects in adhesive joints decrease the real and imaginary dielectric permittivity in the frequency domain and induce additional peaks in the time domain spectra; 2...

  12. Using Adhesive Patterning to Construct 3D Paper Microfluidic Devices.

    Science.gov (United States)

    Kalish, Brent; Tsutsui, Hideaki

    2016-04-01

    We demonstrate the use of patterned aerosol adhesives to construct both planar and nonplanar 3D paper microfluidic devices. By spraying an aerosol adhesive through a metal stencil, the overall amount of adhesive used in assembling paper microfluidic devices can be significantly reduced. We show on a simple 4-layer planar paper microfluidic device that the optimal adhesive application technique and device construction style depends heavily on desired performance characteristics. By moderately increasing the overall area of a device, it is possible to dramatically decrease the wicking time and increase device success rates while also reducing the amount of adhesive required to keep the device together. Such adhesive application also causes the adhesive to form semi-permanent bonds instead of permanent bonds between paper layers, enabling single-use devices to be non-destructively disassembled after use. Nonplanar 3D origami devices also benefit from the semi-permanent bonds during folding, as it reduces the likelihood that unrelated faces may accidently stick together. Like planar devices, nonplanar structures see reduced wicking times with patterned adhesive application vs uniformly applied adhesive.

  13. Effects of hierarchical structures and insulating liquid media on adhesion

    Science.gov (United States)

    Yang, Weixu; Wang, Xiaoli; Li, Hanqing; Song, Xintao

    2017-11-01

    Effects of hierarchical structures and insulating liquid media on adhesion are investigated through a numerical adhesive contact model established in this paper, in which hierarchical structures are considered by introducing the height distribution into the surface gap equation, and media are taken into account through the Hamaker constant in Lifshitz-Hamaker approach. Computational methods such as inexact Newton method, bi-conjugate stabilized (Bi-CGSTAB) method and fast Fourier transform (FFT) technique are employed to obtain the adhesive force. It is shown that hierarchical structured surface exhibits excellent anti-adhesive properties compared with flat, micro or nano structured surfaces. Adhesion force is more dependent on the sizes of nanostructures than those of microstructures, and the optimal ranges of nanostructure pitch and maximum height for small adhesion force are presented. Insulating liquid media effectively decrease the adhesive interaction and 1-bromonaphthalene exhibits the smallest adhesion force among the five selected media. In addition, effects of hierarchical structures with optimal sizes on reducing adhesion are more obvious than those of the selected insulating liquid media.

  14. Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation.

    Directory of Open Access Journals (Sweden)

    Tomas Garzon-Muvdi

    Full Text Available Glioblastoma (GB is a highly invasive and lethal brain tumor due to its universal recurrence. Although it has been suggested that the electroneutral Na(+-K(+-Cl(- cotransporter 1 (NKCC1 can play a role in glioma cell migration, the precise mechanism by which this ion transporter contributes to GB aggressiveness remains poorly understood. Here, we focused on the role of NKCC1 in the invasion of human primary glioma cells in vitro and in vivo. NKCC1 expression levels were significantly higher in GB and anaplastic astrocytoma tissues than in grade II glioma and normal cortex. Pharmacological inhibition and shRNA-mediated knockdown of NKCC1 expression led to decreased cell migration and invasion in vitro and in vivo. Surprisingly, knockdown of NKCC1 in glioma cells resulted in the formation of significantly larger focal adhesions and cell traction forces that were approximately 40% lower than control cells. Epidermal growth factor (EGF, which promotes migration of glioma cells, increased the phosphorylation of NKCC1 through a PI3K-dependant mechanism. This finding is potentially related to WNK kinases. Taken together, our findings suggest that NKCC1 modulates migration of glioma cells by two distinct mechanisms: (1 through the regulation of focal adhesion dynamics and cell contractility and (2 through regulation of cell volume through ion transport. Due to the ubiquitous expression of NKCC1 in mammalian tissues, its regulation by WNK kinases may serve as new therapeutic targets for GB aggressiveness and can be exploited by other highly invasive neoplasms.

  15. Adhesive particle shielding

    Science.gov (United States)

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  16. The effect of surface roughness and viscoelasticity on rubber adhesion.

    Science.gov (United States)

    Tiwari, A; Dorogin, L; Bennett, A I; Schulze, K D; Sawyer, W G; Tahir, M; Heinrich, G; Persson, B N J

    2017-05-21

    Adhesion between silica glass or acrylic balls and silicone elastomers and various industrial rubbers is investigated. The work of adhesion during pull-off is found to strongly vary depending on the system, which we attribute to the two opposite effects: (1) viscoelastic energy dissipation close to an opening crack tip and (2) surface roughness. Introducing surface roughness on the glass ball is found to increase the work of adhesion for soft elastomers, while for the stiffer elastomers it results in a strong reduction in the work of adhesion. For the soft silicone elastomers a strong increase in the work of adhesion with increasing pull-off velocity is observed, which may result from the non-adiabatic processes associated with molecular chain pull-out. In general, the work of adhesion is decreased after repeated contacts due to the transfer of molecules from the elastomers to the glass ball. Thus, extracting the free chains (oligomers) from the silicone elastomers is shown to make the work of adhesion independent of the number of contacts. The viscoelastic properties (linear and nonlinear) of all of the rubber compounds are measured, and the velocity dependent crack opening propagation energy at the interface is calculated. Silicone elastomers show a good agreement between the measured work of adhesion and the predicted results, but carbon black filled hydrogenated nitrile butadiene rubber compounds reveal that strain softening at the crack tip may play an important role in determining the work of adhesion. Additionally, adhesion measurement under submerged conditions in distilled water and water + soap solutions are also performed: a strong reduction in the work of adhesion is measured for the silicone elastomers submerged in water, and a complete elimination of adhesion is found for the water + soap solution attributed to an osmotic repulsion between the negatively charged surface of the glass and the elastomer.

  17. Effect of Paste Flux Concentration on Adhesion Behavior

    Directory of Open Access Journals (Sweden)

    DU Quan-bin

    2017-11-01

    Full Text Available In view of the problem that paste flux is difficult to spread uniformly on the surface of filler metal, the adhesion behavior of the different concentrations of paste flux on the surface of filler metal was studied by the equipment of OM, wetting angle tester and surface tensiometer. The results show that adhesive layer is gradually thickened with the increase of the concentration of paste flux. A small amount of shrinkage appears in the thin adhesive layer. however, mass paste flux slides off filler metal when adhesive layer is thicker, accompanying by severe aggregation and shrinkage. For the ideal surface, the adhesive tension of paste flux with different concentrations of paste flux is the same. For the actual surface, the stripe groove additional pressure is formed when paste flux wets stripe groove, and the additional pressure is the main reason for the lagging phenomenon of the shrinkage of the adhesive layer. With the increase of paste flux concentration, the additional pressure decreases, the hysteresis resistance decreases, and the shrinkage increases. A relationship is satisfied when the shrinkage takes place in thin adhesive layer, this is ΔWC ≥ A+ΔP. Whether the shrinkage occurs mainly depends on the adhesion tension and the additional pressure.

  18. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  19. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  20. Opa+ Neisseria gonorrhoeae exhibits reduced survival in human neutrophils via Src family kinase-mediated bacterial trafficking into mature phagolysosomes.

    Science.gov (United States)

    Johnson, M Brittany; Ball, Louise M; Daily, Kylene P; Martin, Jennifer N; Columbus, Linda; Criss, Alison K

    2015-05-01

    During gonorrhoeal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity-associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa- and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine-treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial contents. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non-oxidative components, particularly neutrophil proteases and the bactericidal/permeability-increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signalling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signalling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa- Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils' full antimicrobial arsenal. © 2014 John Wiley & Sons Ltd.

  1. Rho kinase inhibitor fasudil mitigates high-cholesterol diet-induced hypercholesterolemia and vascular damage.

    Science.gov (United States)

    Abdali, Nibrass Taher; Yaseen, Awny H; Said, Eman; Ibrahim, Tarek M

    2017-04-01

    The current study was designed to investigate the potential beneficial therapeutic outcome of Rho kinase inhibitor (fasudil) against hypercholesterolemia-induced myocardial and vascular injury in rabbits together with diet modification. Sixteen male rabbits were randomly divided into four groups: normal control group which received standard rabbit chow, hypercholesterolemic control group, and treated groups which received cholesterol-rich rabbit chow (1.5% cholesterol) for 8 weeks. Treated groups received either fasudil (100 mg/kg/day) or rosuvastatin (2.5 mg/kg/day) starting from the ninth week for further 4 weeks with interruption of the cholesterol-rich chow. Biochemical assessment of serum cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and myocardial oxidative/antioxidant biomarkers malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH), besides biochemical assessment of serum nitric oxide (NO), creatine kinase (CK), and lactate dehydrogenase (LDH) activities and serum total antioxidant capacity (TAC), was conducted. Serum vascular cell adhesion molecule 1 (VCAM-1) and serum Rho-associated protein kinase 1 (ROCK-1) were also evaluated along with histopathological examination of aorta specimens. Fasudil administration significantly decreased serum cholesterol, triglyceride (TG), and LDL and significantly increased serum HDL, with concomitant decrease in serum CK and LDH activities, NO, and restoration of serum TAC. Myocardial MDA significantly declined; SOD activity and GSH contents were restored. Serum ROCK-1 and VCAM-1 levels significantly declined as well. Vascular improvement was confirmed with histopathological examination, which revealed normal aortic intema with the absence of atheromas. Fasudil has promising anti-atherogenic activity mediated primarily via alleviation of hypercholesterolemia-induced oxidative stress and modulation of inflammatory response.

  2. Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad

    Energy Technology Data Exchange (ETDEWEB)

    DeFlaun, M.F.; Streger, S.; Condee, C.W. [Envirogen, Inc., Lawrenceville, NJ (United States). Princeton Research Center; Oppenheimer, S.R.; Fletcher, M. [Univ. of Maryland Biotechnology Inst., Baltimore, MD (United States). Center of Marine Biotechnology

    1999-02-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. The authors compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435.

  3. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  4. Adhesive contact of randomly rough surfaces

    Science.gov (United States)

    Pastewka, Lars; Robbins, Mark

    2012-02-01

    The contact area, stiffness and adhesion between rigid, randomly rough surfaces and elastic substrates is studied using molecular statics and continuum simulations. The surfaces are self-affine with Hurst exponent 0.3 to 0.8 and different short λs and long λL wavelength cutoffs. The rms surface slope and the range and strength of the adhesive potential are also varied. For parameters typical of most solids, the effect of adhesion decreases as the ratio λL/λs increases. In particular, the pull-off force decreases to zero and the area of contact Ac becomes linear in the applied load L. A simple scaling argument is developed that describes the increase in the ratio Ac/L with increasing adhesion and a corresponding increase in the contact stiffness [1]. The argument also predicts a crossover to finite contact area at zero load when surfaces are exceptionally smooth or the ratio of surface tension to bulk modulus is unusually large, as for elastomers. Results that test this prediction will be presented and related to the Maugis-Dugdale [2] theories for individual asperities and the more recent scaling theory of Persson [3]. [1] Akarapu, Sharp, Robbins, Phys. Rev. Lett. 106, 204301 (2011) [2] Maugis, J. Colloid Interface Sci. 150, 243 (1992) [3] Persson, Phys. Rev. Lett. 74, 75420 (2006)

  5. an Adhesive Patch

    Directory of Open Access Journals (Sweden)

    S. Mojtaba Taghizadeh

    2013-01-01

    Full Text Available Drug-in-adhesive transdermal drug delivery systems  TDDSs containing stimulants, termed as energetic substances, such as caffeine and pantothenic acid, were studied. Caffeine is a white crystalline substance and a stimulant to central nervous system. In humans, caffeine acts as a central nervous system stimulant, temporarily warding off drowsiness and restoring alertness. Pantothenic acid, also recognized as vitamin B5, is a water-soluble vitamin. For many animals, pantothenic acid is an essential nutrient. Animals require pantothenic acid to synthesize and metabolize proteins, carbohydrates and fats. For this purpose caffeine and pantothenic acid were  used  as  drug  components with  6.32%  and  1.12%  loadings,  in  different functional and non-functional acrylic pressure sensitive adhesives (PSAs of 52.89%, respectively. Ethylene glycol as a chemical enhancer was used in all TDDSs with 39.67%. The effect of PSAs  type on  in vitro  release and adhesion properties  (peel strength and tack values from drug delivery devices were evaluated. It was found that TDDS containing -COOH functional PSA showed  the  lowest steady state fux. The adhesion properties of the samples were improved by addition of functional acrylic PSA in formulations.

  6. Pyruvate kinase blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003357.htm Pyruvate kinase blood test To use the sharing features on this page, ... energy when oxygen levels are low. How the Test is Performed A blood sample is needed. In the laboratory, white blood ...

  7. Effect of atmospheric-pressure plasma treatment on the adhesion properties of a thin adhesive layer in a selective transfer process

    Science.gov (United States)

    Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop

    2018-01-01

    The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.

  8. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion.

    Directory of Open Access Journals (Sweden)

    Andrea Koenen

    Full Text Available The CXC-chemokine receptor 6 (CXCR6 is a class A GTP-binding protein-coupled receptor (GPCRs that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16, and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.

  9. Preventing mussel adhesion using lubricant-infused materials

    Science.gov (United States)

    Amini, Shahrouz; Kolle, Stefan; Petrone, Luigi; Ahanotu, Onyemaechi; Sunny, Steffi; Sutanto, Clarinda N.; Hoon, Shawn; Cohen, Lucas; Weaver, James C.; Aizenberg, Joanna; Vogel, Nicolas; Miserez, Ali

    2017-08-01

    Mussels are opportunistic macrofouling organisms that can attach to most immersed solid surfaces, leading to serious economic and ecological consequences for the maritime and aquaculture industries. We demonstrate that lubricant-infused coatings exhibit very low preferential mussel attachment and ultralow adhesive strengths under both controlled laboratory conditions and in marine field studies. Detailed investigations across multiple length scales—from the molecular-scale characterization of deposited adhesive proteins to nanoscale contact mechanics to macroscale live observations—suggest that lubricant infusion considerably reduces fouling by deceiving the mechanosensing ability of mussels, deterring secretion of adhesive threads, and decreasing the molecular work of adhesion. Our study demonstrates that lubricant infusion represents an effective strategy to mitigate marine biofouling and provides insights into the physical mechanisms underlying adhesion prevention.

  10. Adhesive bonding of wood materials

    Science.gov (United States)

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  11. Temporal quantitation of mutant Kit tyrosine kinase signaling attenuated by a novel thiophene kinase inhibitor OSI-930.

    Science.gov (United States)

    Petti, Filippo; Thelemann, April; Kahler, Jen; McCormack, Siobhan; Castaldo, Linda; Hunt, Tony; Nuwaysir, Lydia; Zeiske, Lynn; Haack, Herbert; Sullivan, Laura; Garton, Andrew; Haley, John D

    2005-08-01

    OSI-930, a potent thiophene inhibitor of the Kit, KDR, and platelet-derived growth factor receptor tyrosine kinases, was used to selectively inhibit tyrosine phosphorylation downstream of juxtamembrane mutant Kit in the mast cell leukemia line HMC-1. Inhibition of Kit kinase activity resulted in a rapid dephosphorylation of Kit and inhibition of the downstream signaling pathways. Attenuation of Ras-Raf-Erk (phospho-Erk, phospho-p38), phosphatidyl inositol-3' kinase (phospho-p85, phospho-Akt, phospho-S6), and signal transducers and activators of transcription signaling pathways (phospho-STAT3/5/6) were measured by affinity liquid chromatography tandem mass spectrometry, by immunoblot, and by tissue microarrays of fixed cell pellets. To more globally define additional components of Kit signaling temporally altered by kinase inhibition, a novel multiplex quantitative isobaric peptide labeling approach was used. This approach allowed clustering of proteins by temporal expression patterns. Kit kinase, which dephosphorylates rapidly upon kinase inhibition, was shown to regulate both Shp-1 and BDP-1 tyrosine phosphatases and the phosphatase-interacting protein PSTPIP2. Interactions with SH2 domain adapters [growth factor receptor binding protein 2 (Grb2), Cbl, Slp-76] and SH3 domain adapters (HS1, cortactin, CD2BP3) were attenuated by inhibition of Kit kinase activity. Functional crosstalk between Kit and the non-receptor tyrosine kinases Fes/Fps, Fer, Btk, and Syk was observed. Inhibition of Kit modulated phosphorylation-dependent interactions with pathways controlling focal adhesion (paxillin, leupaxin, p130CAS, FAK1, the Src family kinase Lyn, Wasp, Fhl-3, G25K, Ack-1, Nap1, SH3P12/ponsin) and septin-actin complexes (NEDD5, cdc11, actin). The combined use of isobaric protein quantitation and expression clustering, immunoblot, and tissue microarray strategies allowed temporal measurement signaling pathways modulated by mutant Kit inhibition in a model of mast cell

  12. Adhesive Capsulitis of the Shoulder Joint: Value of Glenohumeral Distance on Magnetic Resonance Arthrography.

    Science.gov (United States)

    Lee, Kyu Hong; Park, Hee Jin; Lee, So Yeon; Youn, In Young; Kim, Eugene; Park, Jai Hyung; Park, Se Jin

    2017-01-01

    To evaluate the usefulness of glenohumeral distance (GHD) on axial images of magnetic resonance (MR) arthrography for diagnosis of adhesive capsulitis and to compare this finding with previously reported classic MR arthrographic findings of adhesive capsulitis. Our study was approved by the institutional ethical review board of our institute. We evaluated 41 patients (M-F, 35:6; mean age, 46 years; adhesive capsulitis, 21; no adhesive capsulitis, 20) who underwent MR arthrography. Two radiologists measured GHD, width of the axillary recess, and capsular thickness in consensus. The GHD was measured from the subchondral bone of the glenoid fossa to the subchondral bone of the humeral head at the level of the midline of the humeral head. Glenohumeral distance (anterior, middle, posterior, and mean), width of the axillary recess, and capsular thickness (anterior, posterior, and mean) were compared in the adhesive capsulitis and no adhesive capsulitis groups using the Mann-Whitney U test. The mean GHD of the no adhesive capsulitis group was longer than that of the adhesive capsulitis group. The length differences were statistically significant (P adhesive capsulitis group was significantly wider than that of the adhesive capsulitis group (P adhesive capsulitis group was significantly thinner than that in the adhesive capsulitis group (P = 0.001). A decreased GHD on MR arthrography can be another useful feature to diagnose adhesive capsulitis in addition to previously presented radiologic features such as capsular thickening and reduced axillary recess capacity.

  13. Hypoxia Decreases Invasin-Mediated Yersinia enterocolitica Internalization into Caco-2 Cells.

    Science.gov (United States)

    Zeitouni, Nathalie E; Dersch, Petra; Naim, Hassan Y; von Köckritz-Blickwede, Maren

    2016-01-01

    Yersinia enterocolitica is a major cause of human yersiniosis, with enterocolitis being a typical manifestation. These bacteria can cross the intestinal mucosa, and invade eukaryotic cells by binding to host β1 integrins, a process mediated by the bacterial effector protein invasin. This study examines the role of hypoxia on the internalization of Y. enterocolitica into intestinal epithelial cells, since the gastrointestinal tract has been shown to be physiologically deficient in oxygen levels (hypoxic), especially in cases of infection and inflammation. We show that hypoxic pre-incubation of Caco-2 cells resulted in significantly decreased bacterial internalization compared to cells grown under normoxia. This phenotype was absent after functionally blocking host β1 integrins as well as upon infection with an invasin-deficient Y. enterocolitica strain. Furthermore, downstream phosphorylation of the focal adhesion kinase was also reduced under hypoxia after infection. In good correlation to these data, cells grown under hypoxia showed decreased protein levels of β1 integrins at the apical cell surface whereas the total protein level of the hypoxia inducible factor (HIF-1) alpha was elevated. Furthermore, treatment of cells with the HIF-1 α stabilizer dimethyloxalylglycine (DMOG) also reduced invasion and decreased β1 integrin protein levels compared to control cells, indicating a potential role for HIF-1α in this process. These results suggest that hypoxia decreases invasin-integrin-mediated internalization of Y. enterocolitica into intestinal epithelial cells by reducing cell surface localization of host β1 integrins.

  14. Distinct Photopolymerization Efficacy on Dentin of Self-etch Adhesives

    Science.gov (United States)

    Zhang, Y.; Wang, Y.

    2012-01-01

    The effect of application mode on polymerization effectiveness of self-etch adhesives with different pHs has rarely been studied. We applied 2 self-etch adhesives—Adper Prompt L-Pop (APLP, pH ~ 0.8) and Adper Easy-Bond (AEB, pH ~ 2.5)—to dentin with or without agitation (dynamic or static application), to investigate photopolymerization efficacy on dentin, and to understand the role of chemical interaction/reaction between adhesives and dentin. Micro-Raman spectra and imaging were acquired across the dentin/adhesive (D/A) interface. The degree of conversion (DC) of each adhesive as a function of position was calculated. SEM-EDS was used to obtain the elemental distribution along the interface. Photopolymerization efficacies of the two self-etch adhesives on dentin were apparently different. APLP exhibited decreasing DCs as the distance from the D/A interface became greater for both application modes, while the DCs for the dynamic mode were much higher than those for the static mode. As for AEB, the DCs remained almost constant across the adhesive layer and showed no significant difference between two modes. Raman spectral analysis disclosed that the chemical interaction between dentin and adhesives was responsible for the observations. We also verified this by tracking the distribution of the elements Ca and P in the adhesive layers. PMID:22736445

  15. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  16. Gecko-Inspired Electrospun Flexible Fiber Arrays for Adhesion

    Science.gov (United States)

    Najem, Johnny F.

    The ability of geckos to adhere to vertical solid surfaces comes from their remarkable feet with millions of projections terminating in nanometer spatulae. We present a simple yet robust method for fabricating directionally sensitive dry adhesives. By using electrospun nylon 6 nanofiber arrays, we create gecko-inspired dry adhesives, that are electrically insulating, and that show shear adhesion strength of 27 N/cm2 on a glass slide. This measured value is 270% that reported of gecko feet and 97-fold above normal adhesion strength of the same arrays. The data indicate a strong shear binding-on and easy normal lifting-off. This anisotropic strength distribution is attributed to an enhanced shear adhesion strength with decreasing fiber diameter (d) and an optimum performance of nanofiber arrays in the shear direction over a specific range of thicknesses. With use of electrospinning, we report the fabrication of nylon 6 nanofiber arrays that show a friction coefficient (mu) of 11.5. These arrays possess significant shear adhesion strength and low normal adhesion strength. Increasing the applied normal load considerably enhances the shear adhesion strength and mu, irrespective of d and fiber arrays thickness (T). Fiber bending stiffness and fiber surface roughness are considerably decreased with diminishing d while fiber packing density is noticeably increased. These enhancements are proposed to considerably upsurge the shear adhesion strength between nanofiber arrays and a glass slide. The latter upsurge is mainly attributed to a sizeable proliferation in van der Waals (vdW) forces. These nanofiber arrays can be alternatively bound-on and lifted-off over a glass slide with a trivial decrease in the initial mu and adhesion strength. By using selective coating technique, we have also created hierarchical structures having closely packed nanofibers with d of 50 nm. We determine the effects of applied normal load, fiber surface roughness, loading angle, d, T, and repeated

  17. Non-Catalytic Functions of Pyk2 and Fyn Regulate Late Stage Adhesion in Human T Cells

    Science.gov (United States)

    Houtman, Jon C. D.

    2012-01-01

    T cell activation drives the protective immune response against pathogens, but is also critical for the development of pathological diseases in humans. Cytoskeletal changes are required for downstream functions in T cells, including proliferation, cytokine production, migration, spreading, and adhesion. Therefore, investigating the molecular mechanism of cytoskeletal changes is crucial for understanding the induction of T cell-driven immune responses and for developing therapies to treat immune disorders related to aberrant T cell activation. In this study, we used a plate-bound adhesion assay that incorporated near-infrared imaging technology to address how TCR signaling drives human T cell adhesion. Interestingly, we observed that T cells have weak adhesion early after TCR activation and that binding to the plate was significantly enhanced 30–60 minutes after receptor activation. This late stage of adhesion was mediated by actin polymerization but was surprisingly not dependent upon Src family kinase activity. By contrast, the non-catalytic functions of the kinases Fyn and Pyk2 were required for late stage human T cell adhesion. These data reveal a novel TCR-induced signaling pathway that controls cellular adhesion independent of the canonical TCR signaling cascade driven by tyrosine kinase activity. PMID:23300847

  18. Management of adhesive capsulitis

    Directory of Open Access Journals (Sweden)

    Stupay KL

    2015-08-01

    Full Text Available Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive criteria for diagnosis make evaluating treatment modalities difficult. Many treatment methods have been reported, most with some success, but few have been proved to alter the natural course of this disease. Most afflicted patients will achieve acceptable shoulder function without surgery. Those who remain debilitated after 8–12 months are reasonable candidates for invasive treatments. Here, the various treatment methods and the data to support their use are reviewed. Keywords: frozen shoulder, stiff shoulder, periarthritis, painful shoulder 

  19. Joining STS304l sheets by using nano-adhesives

    International Nuclear Information System (INIS)

    Feng, Liang; Bae Dong Ho

    2013-01-01

    This study introduces a new nano-adhesive which is an improvement over the conventional epoxy resin that is widely used in the automobile industry. Multi-walled carbon nanotubes (CNTs) (1% to 4% by weight) were mixed into the epoxy resin by using a mixer. The bubbles generated during mixing were removed by using a high vacuum. The electrical and mechanical properties of the joints were assessed by considering the geometric parameters of the nano-adhesive bonded joints to optimize quality and performance for actual application. The results show that the electrical resistance of nano-adhesives decreased with increased CNT weight percentage and decreased thickness of the bonded layer. Static tensile strength increased dramatically at a CNT weight percentage of 2% compared with other values. The surface treatment condition of the plates also affected the tensile strength of the nano-adhesive bonded joints.

  20. Collective cell streams in epithelial monolayers depend on cell adhesion

    International Nuclear Information System (INIS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-01-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell–cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns. (paper)

  1. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  2. Inhibition of protein kinase CK2 suppresses tumor necrosis factor (TNF)-α-induced leukocyte-endothelial cell interaction.

    Science.gov (United States)

    Ampofo, Emmanuel; Rudzitis-Auth, Jeannette; Dahmke, Indra N; Rössler, Oliver G; Thiel, Gerald; Montenarh, Mathias; Menger, Michael D; Laschke, Matthias W

    2015-10-01

    Inflammatory endothelial processes are regulated by the nuclear factor-κB (NF-κB) pathway, which involves phosphorylation of p65. Because p65 is a substrate of CK2, we herein investigated, whether this pleiotropic protein kinase may be a beneficial anti-inflammatory target. For this purpose, we analyzed in human dermal microvascular endothelial cells (HDMEC) the effect of CK2 inhibition by quinalizarin and CX-4945 on cell viability, adhesion molecule expression and NF-κB pathway activation. Leukocyte binding to HDMEC was assessed in an in vitro adhesion assay. Dorsal skinfold chambers in BALB/c mice were used to study leukocyte-endothelial cell interaction and leukocyte transmigration by means of repetitive intravital fluorescence microscopy and immunohistochemistry. We found that quinalizarin and CX-4945 effectively suppressed the activity of CK2 in HDMEC without affecting their viability. This was associated with a significant down-regulation of tumor necrosis factor (TNF)-α-induced E-selectin, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression due to a reduction of shuttling, phosphorylation and transcriptional activity of the NF-κB complex. In consequence, leukocyte binding to quinalizarin- and CX-4945-treated HDMEC was diminished. Finally, CX-4945 treatment significantly decreased the numbers of adherent and transmigrated leukocytes in dorsal skinfold chambers exposed to TNF-α in vivo. These findings indicate that CK2 is a key regulator of leukocyte-endothelial cell interaction in inflammation by regulating the expression of E-selectin, ICAM-1 and VCAM-1 via affecting the transcriptional activity of the NF-κB complex. Accordingly, CK2 represents a promising target for the development of novel anti-inflammatory drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Photolithography of polytetrafluoroethylene for tailored adhesion

    International Nuclear Information System (INIS)

    Rye, R.R.; Martinez, R.J.

    1988-01-01

    Irradiation of polytetrafluoroethylene (PTFE) with Mg (Kα) x-rays is shown to protect the surface against the chemical etching steps used to prepare PTFE for adhesion. Pre-irradiated etched samples of PTFE have adhesions strengths of less than 3% of that for non-irradiated etched samples. The major portion of this decrease in adhesion strength occurs for x-ray exposures of less than 10 min ∼4.8 x10 3 mrads) and failure in every case occurs in PTFE and not in the bonded transition region. XPS measurements (20 angstrom sampling depth) show little difference in F content between irradiated and non-irradiated samples, but thermal desorption shows increasing fluorocarbon desorption with irradiation time. These results are consistent with the known radiation chemistry of PTFE. Irradiation produced free radicals lead to branching and/ or cross-linking, and a surface rich in low molecular weight fluorocarbons. The more rigid cross-linked surface is resistant to deep (10,000 angstrom chemical attack and the bond formed is with a surface rich in short chain flurocarbons. Both a thin boundary region and bonding to short chain species is expected to lead to weak adhesive bonding. Electron irradiation is shown to lead to protection against chemical etching comparable to that obtained with X-rays. With electrons one has the patterns with resolution limited by the beam diameter

  4. Cyclic stretch-induced stress fiber dynamics - Dependence on strain rate, Rho-kinase and MLCK

    International Nuclear Information System (INIS)

    Lee, Chin-Fu; Haase, Candice; Deguchi, Shinji; Kaunas, Roland

    2010-01-01

    Research highlights: → Cyclic stretch induces stress fiber disassembly, reassembly and fusion perpendicular to the direction of stretch. → Stress fiber disassembly and reorientation were not induced at low stretch frequency. → Stretch caused actin fiber formation parallel to stretch in distinct locations in cells treated with Rho-kinase and MLCK inhibitors. -- Abstract: Stress fiber realignment is an important adaptive response to cyclic stretch for nonmuscle cells, but the mechanism by which such reorganization occurs is not known. By analyzing stress fiber dynamics using live cell microscopy, we revealed that stress fiber reorientation perpendicular to the direction of cyclic uniaxial stretching at 1 Hz did not involve disassembly of the stress fiber distal ends located at focal adhesion sites. Instead, these distal ends were often used to assemble new stress fibers oriented progressively further away from the direction of stretch. Stress fiber disassembly and reorientation were not induced when the frequency of stretch was decreased to 0.01 Hz, however. Treatment with the Rho-kinase inhibitor (Y27632) reduced stress fibers to thin fibers located in the cell periphery which bundled together to form thick fibers oriented parallel to the direction of stretching at 1 Hz. In contrast, these thin fibers remained diffuse in cells subjected to stretch at 0.01 Hz. Cyclic stretch at 1 Hz also induced actin fiber formation parallel to the direction of stretch in cells treated with the myosin light chain kinase (MLCK) inhibitor ML-7, but these fibers were located centrally rather than peripherally. These results shed new light on the mechanism by which stress fibers reorient in response to cyclic stretch in different regions of the actin cytoskeleton.

  5. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    International Nuclear Information System (INIS)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  6. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking

    NARCIS (Netherlands)

    Sinclair, Linda V.; Finlay, David; Feijoo, Carmen; Cornish, Georgina H.; Gray, Alex; Ager, Ann; Okkenhaug, Klaus; Hagenbeek, Thijs J.; Spits, Hergen; Cantrell, Doreen A.

    2008-01-01

    Phosphatidylinositol-3-OH kinase (PI(3)K) and the nutrient sensor mTOR are evolutionarily conserved regulators of cell metabolism. Here we show that PI(3)K and mTOR determined the repertoire of adhesion and chemokine receptors expressed by T lymphocytes. The key lymph node-homing receptors CD62L

  7. Pode a tela de poliéster coberta com colágeno diminuir as taxas aderências intraperitoneais na correção de hérnia incisional? May polyester with collagen coating mesh decrease the rate of intraperitoneal adhesions in incisional hernia repair?

    Directory of Open Access Journals (Sweden)

    Bárbara Lamber

    2013-03-01

    Full Text Available RACIONAL: Entre as telas utilizadas na reparação de hérnias incisionais na técnica aberta, a de polipropileno é a mais utilizada devido à flexibilidade, estimulação do crescimento celular, resposta inflamatória satisfatória, fácil manipulação e baixo preço. No entanto, induz a formação de aderências, quando em contato com os conteúdos intra-abdominais. OBJETIVO: Avaliar as aderências formadas após a colocação intraperitoneal da tela de polipropileno e a tela de poliéster coberta com colágeno. MÉTODO: Foram utilizadas 26 ratas Wistar fêmeas, randomizadas em três grupos. No grupo 0 (sham não houve colocação de prótese, apenas laparotomia; no grupo 1 foi implantada a prótese de polipropileno na superfície peritoneal; e no grupo 2, a prótese composta por poliéster coberta por colágeno. Todos os animais foram mortos 21 dias após o procedimento e avaliados quanto às vísceras envolvidas nas aderências, grau das aderências, percentual da tela acometimento por aderências e a força necessária para a sua ruptura. RESULTADOS: Não houve diferença de peso entre os grupos. O grupo 0 não apresentou aderência. Os grupos 1 e 2 apresentaram aderências na superfície da prótese, predominante no omento. O grau de aderências, superfície acometida não teve diferença representativa entre os grupos. A cobertura de colágeno não demonstrou aderências. As aderências ocorreram na borda livre da tela, em contato com a face de poliéster. Análise do tipo de superfície comprometida por aderências, o grupo polipropileno teve 80% e o grupo poliéster com colágeno apenas 10% (pBACKGROUND: Among meshes used in incisional hernias in open technique repair, the polypropylene is the most commonly used due to flexibility, cellular growth stimulation, satisfactory inflammatory response, easy manipulation and low price. However, it induces adhesions formation when in contact with the intra-abdominal contents. AIM: To evaluate

  8. Adhesive capsulitis of the shoulder: MR arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jeong; Han, Tae Il; Lee, Kwang Won; Choi, Youn Seon; Kim, Dae Hong; Han, Hyun Young; Song, Mun Kab [Eulji Univ. School of Medicine, Taejon (Korea, Republic of); Kwon, Soon Tae [Chungnam National Univ. College of Medicine, Taejon (Korea, Republic of)

    2001-07-01

    Adhesive capsulitis is a clinical syndrome involving pain and decreased joint motion caused by thickening and contraction of the joint capsule. The purpose of this study is to describe the MR arthrographic findings of this syndrome. Twenty-nine sets of MR arthrographic images were included in the study. Fourteen patients had adhesive capsulitis diagnosed by physical examination and arthrography, and their MR arthrographic findings were compared with those of 15 subjects in the control group. The images were retrospectively reviewed with specific attention to the thickness of the joint capsule, volume of the axillary pouch (length, width, height(depth)), thinkness of the coracohumeral ligament, presence of extra-articular contrast extravasation, and contrst filling of the subcoracoid bursa. Mean capsular thickness measured at the inferior portion of the axillary pouch was 4.1 mm in patients with adhesive capsulitis and 1.5 mm in the control group. The mean width of the axillary pouch was 2.5 mm in patients and 9.5 mm in controls. In patients, the capsule was significantly thicker and the axillary pouch significantly narrower than in controls (p<0.05). Capsule thickness greater than 2.5 mm at the inferior portion of the axillary pouch (sensitivity 93%, specificity 80%) and a pouch narrower than 3.5 mm (sensitivity 93%, specificity 100%) were useful criteria for the diagnosis of adhesive capsulitis. In patients with this condition, extra-articular contrast extravasation was noted in six patients (43%) and contrast filling of the subcoracoid bursa in three (21%). The MR arthrographic findings of adhesive capsulitis are capsular thickening, a low-volume axillary pouch, extra-articular contrast extravasation, and contrast filling of the subcoracoid bursa. Capsule thickness greater than 2.5 mm at the inferior portion of the axillary pouch and a pouch width of less than 3.5 mm are useful diagnostic imaging characteristics.

  9. Polymer Claw: Instant Underwater Adhesive

    Science.gov (United States)

    2012-09-24

    glycerol is a well-known hygroscopic liquid and lubricant. In the Polymer Claw Progress Report -4- 9/24/12 The Johns Hopkins University Applied Physics...the Polymer Claw adhesive partially solidified, while commercial adhesives were completely liquid after one hour. However, the curing rate was...is not valid for partial liquid adhesives, we will only test at later times, noting the minimum time for which the glass slides break. The time to

  10. Polyurethane adhesive ingestion.

    Science.gov (United States)

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Polyurethane adhesives are found in a large number of household products in the United States and are used for a variety of purposes. Several brands of these expanding wood glues (those containing diphenylmethane diisocyanate [MDI]) have the potential to form gastrointestinal (GI) foreign bodies if ingested. The ingested adhesive forms an expanding ball of glue in the esophagus and gastric lumen. This expansion is caused by a polymerization reaction using the heat, water, and gastric acids of the stomach. A firm mass is created that can be 4-8 times its original volume. As little as 2 oz of glue have been reported to develop gastric foreign bodies. The obstructive mass is reported to form within minutes of ingestion of the adhesive. The foreign body can lead to esophageal impaction and obstruction, airway obstruction, gastric outflow obstruction, mucosal hemorrhage, ulceration, laceration, perforation of the esophageal and gastric linings, and death. Clinical signs following ingestion include anorexia, lethargy, vomiting, tachypnea, and abdominal distention and pain, and typically develop within 12 hours. Clinical signs may depend upon the size of the mass. If left untreated, perforation and rupture of the esophagus or stomach can occur. The glue mass does not stick to the GI mucosa and is not always detectable on abdominal palpation. Radiographs are recommended to confirm the presence of the "glue-ball" foreign body, and radiographic evidence of the obstruction may be seen as early as 4-6 hours following ingestion. Emesis is contraindicated owing to the risk of aspiration of the glue into the respiratory tree or the subsequent lodging of the expanding glue mass in the esophagus. Likewise, efforts to dilute the glue and prevent the formation of the foreign body through administration of liquids, activated charcoal, or bulk-forming products to push the foreign body through the GI tract have proven ineffective. Even endoscopy performed to remove the foreign body has

  11. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Jorgensen, R.L.

    2009-01-01

    also decreases adhesion of other food-relevant bacteria. The manipulation of adhesion was not attributable to growth inhibitory effects. Chemical analysis revealed that the stainless steels were covered by homogenous layers of adsorbed proteins. The presence of tropomyocin was indicated by appearance......Preconditioning of stainless steel with aqueous cod muscle extract significantly impedes subsequent bacterial adhesion most likely due to repelling effects of fish tropomyosin. The purpose of this study was to determine if other food conditioning films decrease or enhance bacterial adhesion...

  12. Streptococcus pyogenes CAMP factor promotes bacterial adhesion and invasion in pharyngeal epithelial cells without serum via PI3K/Akt signaling pathway.

    Science.gov (United States)

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Isono, Toshihito; Nakamura, Yuki; Saitoh, Issei; Hayasaki, Haruaki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2018-01-01

    Streptococcus pyogenes is a bacterium that causes systemic diseases, such as pharyngitis and toxic shock syndrome, via oral- or nasal-cavity infection. S. pyogenes produces various molecules known to function with serum components that lead to bacterial adhesion and invasion in human tissues. In this study, we identified a novel S. pyogenes adhesin/invasin. Our results revealed that CAMP factor promoted streptococcal adhesion and invasion in pharyngeal epithelial Detroit562 cells without serum. Recombinant CAMP factor initially localized on the membranes of cells and then became internalized in the cytosol following S. pyogenes infection. Additionally, CAMP factor phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in the cells. ELISA results demonstrate that CAMP factor affected the amount of phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in Detroit562 cells. Furthermore, CAMP factor did not reverse the effect of phosphoinositide 3-kinase knockdown by small interfering RNA in reducing the level of adhesion and invasion of S. pyogenes isogenic cfa-deficient mutant. These results suggested that S. pyogenes CAMP factor activated the phosphoinositide 3-kinase/serine-threonine kinase signaling pathway, promoting S. pyogenes invasion of Detroit562 cells without serum. Our findings suggested that CAMP factor played an important role on adhesion and invasion in pharyngeal epithelial cells. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Collagen-induced expression of collagenase-3 by primary chondrocytes is mediated by integrin α1 and discoidin domain receptor 2: a protein kinase C-dependent pathway.

    Science.gov (United States)

    Vonk, Lucienne A; Doulabi, Behrouz Z; Huang, ChunLing; Helder, Marco N; Everts, Vincent; Bank, Ruud A

    2011-03-01

    To investigate whether maintaining the chondrocyte's native pericellular matrix prevents collagen-induced up-regulation of collagenase-3 (MMP-13) and whether integrin α1 (ITGα1) and/or discoidin domain receptor 2 (DDR2) modulate MMP-13 expression and which signalling pathway plays a role in collagen-stimulated MMP-13 expression. Goat articular chondrocytes and chondrons were cultured on collagen coatings. Small interfering RNA (siRNA) oligonucleotides targeted against ITGα1 and DDR2 were transfected into primary chondrocytes. Chemical inhibitors for mitogen-activated protein kinase kinase (MEK1) (PD98059), focal adhesion kinase (FAK) (FAK inhibitor 14), mitogen-activated protein kinase 8 (JNK) (SP600125) and protein kinase C (PKC) (PKC412), and a calcium chelator (BAPTA-AM) were used in cell cultures. Real-time PCR was performed to examine gene expression levels of MMP-13, ITGα1 and DDR2 and collagenolytic activity was determined by measuring the amount of hydroxyproline released in the culture medium. Maintaining the chondrocyte's native pericellular matrix prevented MMP-13 up-regulation and collagenolytic activity when the cells were cultured on a collagen coating. Silencing of ITGα1 and DDR2 reduced MMP-13 gene expression and collagenolytic activity by primary chondrocytes cultured on collagen. Incubation with the PKC inhibitor strongly reduced MMP-13 gene expression levels. Gene expression levels of MMP-13 were also decreased by chondrocytes incubated with the MEK, FAK or JNK inhibitor. Maintaining the native pericellular matrix of chondrocytes prevents collagen-induced up-regulation of MMP-13. Both ITGα1 and DDR2 modulate MMP-13 expression after direct contact between chondrocytes and collagen. PKC, FAK, MEK and JNK are involved in collagen-stimulated expression of MMP-13.

  14. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  15. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Hansen, Morten Ejby; Majumder, Avishek

    2016-01-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after......); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host....

  16. Influence of adhesion on random loose packings of binary micro-particle mixtures

    Science.gov (United States)

    Liu, Wenwei; Chen, Sheng; Li, Shuiqing; Key Laboratory for Thermal Science; Power Engineering of Ministry of Education Team

    2017-11-01

    Binary adhesive packings of microspheres with certain size ratios are investigated via a 3D discrete-element method specially developed with adhesive contact mechanics. We found a novel phenomenon that the packing fraction of the binary adhesive mixtures decreases monotonically with the increase of the amount of small components. It was further divulged that this behavior results from the competition between a geometrical filling effect and an adhesion effect. The positive geometrical filling effect only depends on the size ratio, while a dimensionless adhesion parameter Ad is employed to characterize the negative adhesion effect, which comes to its maximum at Ad 10 . Structural properties, including contact network, partial coordination number, radial distribution function and angular distribution function, are analyzed in order to give a better understanding of such adhesive binary packings. National Key Basic Research Program of China (No. 2013CB228506) and National Natural Science Foundation of China (No. 51390491).

  17. Studies on the Adhesive Property of Snail Adhesive Mucus.

    Science.gov (United States)

    Newar, Janu; Ghatak, Archana

    2015-11-10

    Many gastropod molluscs are known to secrete mucus which allow these animals to adhere to a substrate while foraging over it. While the mucus is known to provide strong adhesion to both dry and wet surfaces, including both horizontal and vertical ones, no systematic study has been carried out to understand the strength of such adhesion under different conditions. We report here results from preliminary studies on adhesion characteristics of the mucus of a snail found in eastern India, Macrochlamys indica. When perturbed, the snail was found to secrete its adhesive mucus, which was collected and subjected to regular adhesion tests. The hydrated mucus was used as such, and also as mixed with buffer of different pH. These experiments suggest that the mucus was slightly alkaline, and showed the maximum adhesion strength of 9 kPa when present in an alkaline buffer. Preliminary studies indicate that adhesive force is related to the ability of the mucus to incorporate water. In alkaline condition, the gel like mass that it forms, incorporate water from a wet surface and enable strong adhesion.

  18. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2015-01-01

    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  19. Molecular mechanisms underlying synergistic adhesion of sickle red blood cells by hypoxia and low nitric oxide bioavailability.

    Science.gov (United States)

    Gutsaeva, Diana R; Montero-Huerta, Pedro; Parkerson, James B; Yerigenahally, Shobha D; Ikuta, Tohru; Head, C Alvin

    2014-03-20

    The molecular mechanisms by which nitric oxide (NO) bioavailability modulates the clinical expression of sickle cell disease (SCD) remain elusive. We investigated the effect of hypoxia and NO bioavailability on sickle red blood cell (sRBC) adhesion using mice deficient for endothelial NO synthase (eNOS) because their NO metabolite levels are similar to those of SCD mice but without hypoxemia. Whereas sRBC adhesion to endothelial cells in eNOS-deficient mice was synergistically upregulated at the onset of hypoxia, leukocyte adhesion was unaffected. Restoring NO metabolite levels to physiological levels markedly reduced sRBC adhesion to levels seen under normoxia. These results indicate that sRBC adherence to endothelial cells increases in response to hypoxia prior to leukocyte adherence, and that low NO bioavailability synergistically upregulates sRBC adhesion under hypoxia. Although multiple adhesion molecules mediate sRBC adhesion, we found a central role for P-selectin in sRBC adhesion. Hypoxia and low NO bioavailability upregulated P-selectin expression in endothelial cells in an additive manner through p38 kinase pathways. These results demonstrate novel cellular and signaling mechanisms that regulate sRBC adhesion under hypoxia and low NO bioavailability. Importantly, these findings point us toward new molecular targets to inhibit cell adhesion in SCD.

  20. Investigations on the viscoelastic performance of pressure sensitive adhesives in drug-in-adhesive type transdermal films.

    Science.gov (United States)

    Wolff, Hans-Michael; Irsan; Dodou, Kalliopi

    2014-08-01

    We aimed to investigate the effect of solubility parameter and drug concentration on the rheological behaviour of drug-in-adhesive films intended for transdermal application. Films were prepared over a range of drug concentrations (5%, 10% and 20% w/w) using ibuprofen, benzoic acid, nicotinic acid and lidocaine as model drugs in acrylic (Duro-Tak 87-4287 and Duro-Tak 87900A) or silicone (Bio-PSA 7-4301 and Bio-PSA 7-4302) pressure sensitive adhesives (PSAs). Saturation status of films was determined using light microscopy. Viscoelastic parameters were measured in rheology tests at 32°C. Subsaturated films had lower viscoelastic moduli whereas saturated films had higher moduli than the placebo films and/or a concentration-dependent increase in their modulus. Saturation concentration of each drug in the films was reflected by decreasing/increasing viscoelastic patterns. The viscoelastic windows (VWs) of the adhesive and drug-in-adhesive films clearly depicted the effect of solubility parameter differences, molar concentration of drug in the adhesive film and differences in PSA chemistry. Drug solubility parameters and molar drug concentrations have an impact on rheological patterns and thus on the adhesive performance of tested pressure sensitive adhesives intended for use in transdermal drug delivery systems. Use of the Flory equation in its limiting form was appropriate to predict drug solubility in the tested formulations.

  1. Interleukin 1β induces rapid phosphorylation and redistribution of talin: A possible mechanism for modulation of fibroblast focal adhesion

    International Nuclear Information System (INIS)

    Qwarnstroem, E.E.; MacFarlane, S.A.; Page, R.C.; Dower, S.K.

    1991-01-01

    The majority of interleukin 1 (IL-1) receptors in human fibroblasts has been shown to be localized at focal adhesions. This study describes rapid alterations caused by IL-1β/IL-1-receptor interaction at these sites. Fibroblast monolayers, incubated with IL-1β and prepared for electron microscopy, showed successive loss of cell-substratum contact and fewer and less-pronounced processes. Immunocytochemistry revealed loss and redistribution of the talin staining initially observed after 5-15 min of IL-1β incubation. Similarly, the cytoskeleton showed a decrease in staining and a disorganization starting from 15 to 30 min after IL-1 addition, whereas extracellular fibronectin appeared largely unaffected. Prelabeling with [ 32 P]phosphate showed a 2- to 3-fold increase in the level of talin phosphorylation, peaking at 15 min. Phospho amino acid analyses revealed a higher level of serine and threonine phosphorylation. The data suggest that the action of IL-1β on fibroblasts may be partially mediated by direct phosphorylation of talin via activation of a protein serine/threonine kinase, leading to changes in transmembrane linkage proteins and the cytoskeleton. Such alterations at focal adhesions may provide a mechanism by which IL-1 can rapidly modulate cell-matrix interactions during inflammation and wound healing

  2. Effect of adhesive thickness on adhesively bonded T-joint

    Science.gov (United States)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  3. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  4. Proteoglycans, ion channels and cell-matrix adhesion

    DEFF Research Database (Denmark)

    Mitsou, Ioli; Multhaupt, Hinke A.B.; Couchman, John R.

    2017-01-01

    , growth factors and morphogens to enzymes and extracellular matrix (ECM) glycoproteins and collagens.Extracellular interactions with other receptors, such as some integrins, are mediated by the core protein.This places syndecans at the nexus of many cellular responses to extracellular cues in development......, maintenance, repair and disease.The cytoplasmic domains of syndecans, while having no intrinsic kinase activity, can nevertheless signal through binding proteins.All syndecans appear to be connected to the actin cytoskeleton and can therefore contribute to cell adhesion, notably to the ECM and migration.......Recent data now suggest that syndecans can regulate stretchactivated ion channels.The structure and function of the syndecans and the ion channels are reviewed here, along with an analysis of ion channel functions in cell-matrix adhesion.This area sheds new light on the syndecans, not least since evidence...

  5. A kinome wide screen identifies novel kinases involved in regulation of monoamine transporter function

    DEFF Research Database (Denmark)

    Vuorenpää, Anne Elina; Ammendrup-Johnsen, Ina; Jorgensen, Trine N.

    2016-01-01

    cells (CAD) and rat chromocytoma (PC12) cells. Whereas SIK3 likely transcriptionally regulated expression of the three transfected transporters, depletion of PKA C-α was shown to decrease SERT function. Depletion of PrKX caused decreased surface expression and function of DAT without changing protein...... in regulation of monoamine transporter function and surface expression. A primary screen in HEK 293 cells stably expressing DAT or SERT with siRNAs against 573 human kinases revealed 93 kinases putatively regulating transporter function. All 93 hits, which also included kinases previously implicated...... in HEK 293 cells transiently expressing DAT, SERT or NET. Subsequently, three kinases; salt inducible kinase 3 (SIK3), cAMP-dependent protein kinase catalytic subunit alpha (PKA C-α) and protein kinase X-linked (PrKX); were selected for additional exploration in catecholaminergic CATH.a differentiated...

  6. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    Science.gov (United States)

    Gilman, Casey A; Imburgia, Michael J; Bartlett, Michael D; King, Daniel R; Crosby, Alfred J; Irschick, Duncan J

    2015-01-01

    One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko's adhesive system (C = dΔ/dF). Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g). We also examined changes between juveniles and adults within a single species (Phelsuma grandis). We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring) of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of adhesion in

  7. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells

    Directory of Open Access Journals (Sweden)

    Wu Yong

    2010-10-01

    Full Text Available Abstract Background Fibronectin (FN is known to be a large multifunction glycoprotein with binding sites for many substances, including N-terminal and C-terminal heparin-binding domains. We investigated the effects of highly purified rhFNHN29 and rhFNHC36 polypeptides originally cloned from the two heparin-binding domains on the adhesion and invasion of highly metastatic human hepatocellular carcinoma cells (MHCC97H and analyzed the underlying mechanism involved. Methods The MHCC97H cells that adhered to FN in the presence of various concentrations of rhFNHN29 and rhFNHC36 polypeptides were stained with crystal violet and measured, and the effects of rhFNHN29 and rhFNHC36 on the invasion of the MHCC97H cells were then detected using the Matrigel invasion assay as well as a lung-metastasis mouse model. The expression level of integrins and focal adhesion kinase (FAK phosphotyrosyl protein was examined by Western blot, and the activity of matrix metalloproteinases (MMPs and activator protein 1 (AP-1 was analyzed by gelatin zymography and the electrophoretic mobility band-shift assay (EMSA, respectively. Results Both of the polypeptides rhFNHN29 and rhFNHC36 inhibited adhesion and invasion of MHCC97H cells; however, rhFNHC36 exhibited inhibition at a lower dose than rhFNHN29. These inhibitory effects were mediated by integrin αvβ3 and reversed by a protein tyrosine phosphatase inhibitor. Polypeptides rhFNHN29 and rhFNHC36 abrogated the tyrosine phosphorylation of focal adhesion kinase (p-FAK and activation of activator protein 1 (AP-1, resulting in the decrease of integrin αv, β3 and β1 expression as well as the reduction of MMP-9 activity. Conclusions Polypeptides rhFNHN29 and rhFNHC36 could potentially be applicable to human liver cancer as anti-adhesive and anti-invasive agents.

  8. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...

  9. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  10. Controlling adhesive behavior during recycling

    Science.gov (United States)

    Carl Houtman; Karen Scallon; Jihui Guo; XinPing Wang; Steve Severtson; Mark Kroll; Mike Nowak

    2004-01-01

    Adhesives can be formulated to facilitate their removal by typical paper recycling unit operations. The investigations described in this paper are focused on determining fundamental properties that control particle size during pulping. While pressure-sensitive adhesives (PSAs) with high elastic moduli tend to survive pulping with larger particles, facestock and...

  11. Influence of denture adhesives on occlusion and disocclusion times.

    Science.gov (United States)

    Abdelnabi, Mohamed Hussein; Swelem, Amal Ali; Al-Dharrab, Ayman A

    2016-03-01

    The effectiveness of adhesives in enhancing several functional aspects of complete denture performance has been well established. The direct influence of adhesives on occlusal contact simultaneity has not yet been investigated. The purpose of this crossover clinical trial was to evaluate quantitatively the influence of adhesives on occlusal balance by recording timed occlusal contacts; namely occlusion time (OT) and disocclusion time during right (DT-right) and left (DT-left) excursions by using computerized occlusal analysis. A crossover clinical trial was adopted. Assessments were carried out while participants (n=49) wore their dentures first without then with adhesives. Computerized occlusal analysis using the T-Scan III system was conducted to perform baseline computer-guided occlusal adjustment for conventionally fabricated dentures. Retention and stability assessment using the modified Kapur index and recording of OT and DT-right and DT-left values using the T-Scan III were subsequently carried out for all dentures, first without adhesives and then after application of adhesive. All T-Scan procedures were carried out by the same clinician. Wilcoxon signed-rank test was used to analyze the Kapur index scores and occlusal parameters (α=.05). Stability and retention of conventional dentures ranged initially from good to very good. However, adhesive application resulted in significant improvement (Pstability and retention and a significant decrease in duration of all occlusal parameters (OT [P=.003], DT-right [P=.003], and DT-left [P=.008]). Adhesives significantly decreased OT and DT durations in initially well-fitting complete dentures with fairly well balanced occlusion, and further enhanced denture stability and occlusal contact simultaneity. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Soy protein isolate molecular level contributions to bulk adhesive properties

    Science.gov (United States)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  13. Effect of Saline Environment on Mechanical Properties of Structural Adhesive Bonds

    Directory of Open Access Journals (Sweden)

    Miroslav Müller

    2016-01-01

    Full Text Available This study brings new pieces of knowledge about a utilization of an inorganic filler in an area of steel adhesive bonds exposed to a degradation environment. The filler in the form of glass beads with a fraction size 90 ± 20 μm was used within the research. The aim of the research was to evaluate an influence of the degradation environment on a strength of structural two‑component epoxy adhesives and a composite material. A preparation of adhesive bonds and a process of testing of the adhesive bonds were in accordance with the modified standard ČSN EN 1465. The degradation environment in a form of 5 % saline solution was used within this experiment. Adhesive bonded testing samples were subjected to a cyclic loading of the saline solution. The adhesive bonds with the filler reached up to 16 % higher adhesive bond strength than the unfilled adhesive bonds. The bonds adhesive bonded with the tested composite adhesive better resisted to the degradation process of ca. 9 %. The cyclic exposure, i.e. dipping of the testing samples into the saline solution and consequent drying significantly decreases the strength of the adhesive bond (up to 67 % in 6 weeks.

  14. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  15. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  16. Effect of fibril shape on adhesive properties

    Science.gov (United States)

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom

    2010-08-01

    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  17. Skin irritation due to repetitive application of adhesive tape: the influence of adhesive strength and seasonal variability.

    Science.gov (United States)

    Tokumura, Fumio; Umekage, Kazuo; Sado, Masashi; Otsuka, Saburo; Suda, Shin; Taniguchi, Masaharu; Yamori, Akira; Nakamura, Atsushi; Kawai, Jun; Oka, Keiji

    2005-05-01

    Influence of the repetitive application of pressure-sensitive adhesive tapes on skin was evaluated. Two kinds of tapes with different adhesive strengths were repetitively applied to the inside of the forearm of six volunteers in winter and summer, in order to examine the dermal peeling force, the amount of stripped corneocytes, transepidermal water loss (TEWL), hydration and deepened skin furrows (changes in skin surface topography) in the epidermal stratum corneum. As adhesive tapes were applied repetitively, dermal peeling force gradually increased while the amount of stripped corneocytes decreased. As the cumulative amount of stripped corneocytes increased with repetitive applications, the skin irritation worsened as measured by increased destruction of the skin surface topography and TEWL. These phenomena were more marked with the stronger adhesive tape, and there was seasonal variability.

  18. Adhesive capsulitis of the shoulder.

    Science.gov (United States)

    Neviaser, Andrew S; Neviaser, Robert J

    2011-09-01

    Adhesive capsulitis is characterized by painful, gradual loss of active and passive shoulder motion resulting from fibrosis and contracture of the joint capsule. Other shoulder pathology can produce a similar clinical picture, however, and must be considered. Management is based on the underlying cause of pain and stiffness, and determination of the etiology is essential. Subtle clues in the history and physical examination can help differentiate adhesive capsulitis from other conditions that cause a stiff, painful shoulder. The natural history of adhesive capsulitis is a matter of controversy. Management of true capsular restriction of motion (ie, true adhesive capsulitis) begins with gentle, progressive stretching exercises. Most patients improve with nonsurgical treatment. Indications for surgery should be individualized. Failure to obtain symptomatic improvement and continued functional disability following ≥6 months of physical therapy is a general guideline for surgical intervention. Diligent postoperative therapy to maintain motion is required to minimize recurrence of adhesive capsulitis.

  19. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  20. Adhesive tape exfoliation

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2015-01-01

    Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful....... In particular on the nature of the surprisingly small number of repetitive steps that are needed in order to obtain a single-layer slab. Two frameworks for exfoliation are investigated: parallel exfoliation involving repetitive simultaneous cleaving, the other, serial exfoliation, which involves the repetitive...... cleaving of a single chunk of graphite. For both cases, parallel and serial exfoliation, it is investigated how many generations of cleavages are needed. An approximate model with the probability distribution expressed as a simple closed form is presented and compared with the simulations....

  1. Protein Kinase CK2 Regulates Leukocyte-Endothelial Cell Interactions during Ischemia and Reperfusion in Striated Skin Muscle.

    Science.gov (United States)

    Ampofo, Emmanuel; Widmaier, Daniela; Montenarh, Mathias; Menger, Michael D; Laschke, Matthias W

    2016-01-01

    Ischemia and reperfusion (I/R) causes tissue injury by inflammatory processes. This involves the upregulation of endothelial surface proteins by phospho-regulated signaling pathways, resulting in enhanced interactions of leukocytes with endothelial cells. Recently, we found that protein kinase CK2 is a crucial regulator of leukocyte-mediated inflammation. Therefore, in this study we investigated the involvement of CK2 in leukocyte-endothelial cell interactions during I/R injury. We first analyzed the inhibitory action of (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA) and CX-4945 on CK2 kinase activity and the viability of human dermal microvascular endothelial cells (HDMEC). To mimic I/R conditions in vitro, HDMEC were exposed to hypoxia and reoxygenation and the expression of adhesion molecules was analyzed by flow cytometry. Moreover, we analyzed in vivo the effect of CK2 inhibition on leukocyte-endothelial cell interactions in the dorsal skinfold chamber model of I/R injury by means of repetitive intravital fluorescence microscopy and immunohistochemistry. We found that TBCA and CX-4945 suppressed the activity of CK2 in HDMEC without affecting cell viability. This was associated with a significant downregulation of E-selectin and intercellular adhesion molecule (ICAM)-1 after in vitro hypoxia and reoxygenation. In vivo, CX-4945 treatment significantly decreased the numbers of adherent and transmigrated leukocytes in striated muscle tissue exposed to I/R. Our findings indicate that CK2 is involved in the regulation of leukocyte-endothelial cell interactions during I/R by mediating the expression of E-selectin and ICAM-1. © 2016 S. Karger AG, Basel.

  2. Current aspects on bonding effectiveness and stability in adhesive dentistry.

    Science.gov (United States)

    Cardoso, M V; de Almeida Neves, A; Mine, A; Coutinho, E; Van Landuyt, K; De Munck, J; Van Meerbeek, B

    2011-06-01

    Improved dental adhesive technology has extensively influenced modern concepts in restorative dentistry. In light of minimal-invasive dentistry, this new approach promotes a more conservative cavity design, which basically relies on the effectiveness of current enamel-dentine adhesives. Nowadays, the interaction of adhesives with the dental substrate is based on two different strategies, commonly described as an etch-and-rinse and a self-etch approach. In an attempt to simplify the bonding technique, manufacturers have decreased the number of steps necessary for the accomplishment of the bonding procedure. As a consequence, two-step etch-and-rinse and one-step (self-etch) adhesives were introduced and gained rapid popularity in the dental market due to their claimed user-friendliness and lower technique sensitivity. However, many concerns have been raised on the bonding effectiveness of these simplified adhesives, especially in terms of durability, although this tends to be very material dependent. In order to blend all the adhesive components into one single solution, one-step adhesives were made more acidic and hydrophilic. Unfortunately, these properties induce a wide variety of seemingly unrelated problems that may jeopardize the effectiveness and stability of adhesion to the dental substrate. Being more susceptible to water sorption and thus nanoleakage, these adhesives are more prone to bond degradation and tend to fail prematurely as compared to their multi-step counterparts. Incidentally, another factor that may interfere with the bonding effectiveness of adhesives is the technique used for caries removal and cavity preparation. Several tools are on the market today to effectively remove carious tissue, thereby respecting the current trend of minimum intervention. Despite their promising performance, such techniques modify the tooth substrate in different aspects, possibly affecting bonding effectiveness. Altogether, we may conclude that not only the

  3. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    Science.gov (United States)

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by

  4. Ribosomal S6 Kinase Cooperates with Casein Kinase 2 to Modulate the Drosophila Circadian Molecular Oscillator

    Science.gov (United States)

    Akten, Bikem; Tangredi, Michelle M.; Jauch, Eike; Roberts, Mary A.; Ng, Fanny; Raabe, Thomas; Jackson, F. Rob

    2009-01-01

    There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian system. In mammals, RSK1 is a light- and clock-regulated kinase known to be activated by the MAPK pathway, but there is no direct evidence that it functions as a component of the circadian system. Here, we show that Drosophila S6KII RNA displays rhythms in abundance, indicative of circadian control. Importantly, an S6KII null mutant exhibits a short-period circadian phenotype that can be rescued by expression of the wild-type gene in clock neurons, indicating a role for S6KII in the molecular oscillator. Peak PER clock protein expression is elevated in the mutant, indicative of enhanced stability, whereas per mRNA level is decreased, consistent with enhanced feedback repression. Gene reporter assays show that decreased S6KII is associated with increased PER repression. Surprisingly, we demonstrate a physical interaction between S6KII and the Casein Kinase 2 regulatory subunit (CK2β), suggesting a functional relationship between the two kinases. In support of such a relationship, there are genetic interactions between S6KII and CK2 mutations, in vivo, which indicate that CK2 activity is required for S6KII action. We propose that the two kinases cooperate within clock neurons to fine-tune circadian period, improving the precision of the clock mechanism. PMID:19144847

  5. Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces.

    Directory of Open Access Journals (Sweden)

    Neil J Shirtcliffe

    Full Text Available Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted, texture (smooth, rough or granular or wetting property (hydrophilic or hydrophobic via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.

  6. Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces.

    Science.gov (United States)

    Shirtcliffe, Neil J; McHale, Glen; Newton, Michael I

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.

  7. Regulation of Autophagy by Kinases

    International Nuclear Information System (INIS)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  8. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  9. Regulation of Autophagy by Kinases

    Science.gov (United States)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets. PMID:24212825

  10. Regulation of Autophagy by Kinases

    Directory of Open Access Journals (Sweden)

    Savitha Sridharan

    2011-06-01

    Full Text Available Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  11. Effects of the knockdown of death-associated protein 3 expression on cell adhesion, growth and migration in breast cancer cells.

    Science.gov (United States)

    Wazir, Umar; Sanders, Andrew J; Wazir, Ahmad M A; Ye, Lin; Jiang, Wen G; Ster, Irina C; Sharma, Anup K; Mokbel, Kefah

    2015-05-01

    The death-associated protein 3 (DAP3) is a highly conserved phosphoprotein involved in the regulation of autophagy. A previous clinical study by our group suggested an association between low DAP3 expression and clinicopathological parameters of human breast cancer. In the present study, we intended to determine the role of DAP3 in cancer cell behaviour in the context of human breast cancer. We developed knockdown sub-lines of MCF7 and MDA-MB-231, and performed growth, adhesion, invasion assays and electric cell-substrate impedance sensing (ECIS) studies of post-wound migration of the cells. In addition, we studied the mRNA expression of caspase 8 and 9, death ligand signal enhancer (DELE), IFN-β promoter stimulator 1 (IPS1), cyclin D1 and p21 in the control and knockdown sub-lines. The knockdown sub-lines of MCF7 and MDA-MB-231 had significantly increased adhesion and decreased growth when compared to the controls. Furthermore, invasion and migration were significantly increased in the MDA-MB-231DAP3kd cells vs. the controls. The expression of caspase 9 and IPS1, known components of the apoptosis pathway, were significantly reduced in the MCF7DAP3kd cells (p=0.05 and p=0.003, respectively). We conclude that DAP3 silencing contributes to breast carcinogenesis by increasing cell adhesion, migration and invasion. It is possible that this may be due to the activity of focal adhesion kinase further downstream of the anoikis pathway. Further research in this direction would be beneficial in increasing our understanding of the mechanisms underlying human breast cancer.

  12. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  13. Marine Bioinspired Underwater Contact Adhesion.

    Science.gov (United States)

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-09

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications.

  14. HSC-specific inhibition of Rho-kinase reduces portal pressure in cirrhotic rats without major systemic effects

    NARCIS (Netherlands)

    Klein, Sabine; Van Beuge, Marike Marjolijn; Granzow, Michaela; Beljaars, Leonie; Schierwagen, Robert; Kilic, Sibel; Heidari, Iren; Huss, Sebastian; Sauerbruch, Tilman; Poelstra, Klaas; Trebicka, Jonel

    2012-01-01

    Background & Aims: Rho-kinase activation mediates cell contraction and increases intrahepatic resistance and consequently portal pressure in liver cirrhosis. Systemic Rho-kinase inhibition decreases portal pressure in cirrhosis, but also arterial pressure. Thus, liver-specific Rho-kinase inhibition

  15. TANNIN ADHESIVES AS AN ALTENATIVE TO THE SYNTHETIC PHENOLIC ADHESIVES

    Directory of Open Access Journals (Sweden)

    Semra Çolak

    2003-04-01

    Full Text Available Recently, increasing attention has been paid industrially to the use of tannin formaldehyde adhesives in production of wood based panel products such as particleboard, fiber board and plywood. The researches on the use of tannin extracts as a wood adhesive started in 1950, however, they proceeded very slowly since the problems associated with the application of them. The idea which tannin extract can be used replace the oil-based phenolic adhesive was the base of several studies after the oil crisis of the 1970s. In the past, the economical aspects were important in the researches on the tannin-based adhesives. Nowadays, however, both economical and ecological factors should have taken into consideration in wood bonding.

  16. RAGE controls leukocyte adhesion in preterm and term infants.

    Science.gov (United States)

    Buschmann, Kirsten; Tschada, Raphaela; Metzger, Marie-Sophie; Braach, Natascha; Kuss, Navina; Hudalla, Hannes; Poeschl, Johannes; Frommhold, David

    2014-11-27

    Insufficient leukocyte recruitment may be one reason for the high incidence of life-threatening infections in preterm infants. Since the receptor of advanced glycation end products (RAGE) is a known leukocyte adhesion molecule and highly expressed during early development, we asked whether RAGE plays a role for leukocyte recruitment in preterm and term infants. Leukocyte adhesion was analyzed in dynamic flow chamber experiments using isolated leukocytes of cord blood from extremely premature (35 weeks of gestation) and compared to the results of adults. For fluorescent microscopy leukocytes were labeled with rhodamine 6G. In the respective age groups we also measured the plasma concentration of soluble RAGE (sRAGE) by ELISA and Mac-1 and LFA-1 expression on neutrophils by flow cytometry. The adhesive functions of fetal leukocytes significantly increase with gestational age. In all age groups, leukocyte adhesion was crucially dependent on RAGE. In particular, RAGE was equally effective to mediate leukocyte adhesion when compared to ICAM-1. The plasma levels of sRAGE were high in extremely premature infants and decreased with increasing gestational age. In contrast, expression of β2-Integrins Mac-1 and LFA-1 which are known ligands for RAGE and ICAM-1 did not change during fetal development. We conclude that RAGE is a crucial leukocyte adhesion molecule in both preterm and term infants.

  17. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  18. Treatment to Control Adhesion of Silicone-Based Elastomers

    Science.gov (United States)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.

  19. Numerical investigation of adhesion effects on solid particles filtration efficiency

    Science.gov (United States)

    Shaffee, Amira; Luckham, Paul; Matar, Omar K.

    2017-11-01

    Our work investigate the effectiveness of particle filtration process, in particular using a fully-coupled Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) approach involving poly-dispersed, adhesive solid particles. We found that an increase in particle adhesion reduces solid production through the opening of a wire-wrap type filter. Over time, as particle agglomerates continuously deposit on top of the filter, layer upon layer of particles is built on top of the filter, forming a particle pack. It is observed that with increasing particle adhesion, the pack height build up also increases and hence decreases the average particle volume fraction of the pack. This trend suggests higher porosity and looser packing of solid particles within the pack with increased adhesion. Furthermore, we found that the pressure drop for adhesive case is lower compared to non-adhesive case. Our results suggest agglomerating solid particles has beneficial effects on particle filtration. One important application of these findings is towards designing and optimizing sand control process for a hydrocarbon well with excessive sand production which is major challenge in oil and gas industry. Funding from PETRONAS and RAEng UK for Research Chair (OKM) gratefully acknowledged.

  20. Host factors that modify Plasmodium falciparum adhesion to endothelial receptors.

    Science.gov (United States)

    Mahamar, Almahamoudou; Attaher, Oumar; Swihart, Bruce; Barry, Amadou; Diarra, Bacary S; Kanoute, Moussa B; Cisse, Kadidia B; Dembele, Adama B; Keita, Sekouba; Gamain, Benoît; Gaoussou, Santara; Issiaka, Djibrilla; Dicko, Alassane; Duffy, Patrick E; Fried, Michal

    2017-10-24

    P. falciparum virulence is related to adhesion and sequestration of infected erythrocytes (IE) in deep vascular beds, but the endothelial receptors involved in severe malaria remain unclear. In the largest ever study of clinical isolates, we surveyed adhesion of freshly collected IE from children under 5 years of age in Mali to identify novel vascular receptors, and examined the effects of host age, hemoglobin type, blood group and severe malaria on levels of IE adhesion to a panel of endothelial receptors. Several novel molecules, including integrin α3β1, VE-cadherin, ICAM-2, junctional adhesion molecule-B (JAM-B), laminin, and cellular fibronectin, supported binding of IE from children. Severe malaria was not significantly associated with levels of IE adhesion to any of the 19 receptors. Hemoglobin AC, which reduces severe malaria risk, reduced IE binding to the receptors CD36 and integrin α5β1, while hemoglobin AS did not modify IE adhesion to any receptors. Blood groups A, AB and B significantly reduced IE binding to ICAM-1. Severe malaria risk varies with age, but age significantly impacted the level of IE binding to only a few receptors: IE binding to JAM-B decreased with age, while binding to CD36 and integrin α5β1 significantly increased with age.

  1. Structural adhesives directory and databook

    CERN Document Server

    Wilson, Jo

    1996-01-01

    A worldwide directory of commercially available adhesive products for use in a wide range of engineering disciplines. Along with product names and suppliers, basic property data are tabulated and cross-referenced. The book is subdivided according to class of adhesive, with introductions to each class followed by comparison tables and datasheets for each adhesive. The datasheets contain detailed information, from product codes to environmental properties and are therefore of interest across a broad readership. Standardized data will aid the user in cross-comparison between different manufacturers and in easily identifying the required information.

  2. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  3. Adhesion of laser deposited films

    International Nuclear Information System (INIS)

    Zhovannik, E.V.; Nikolaev, I.N.; Utochkin, Yu.A.; Stavkin, D.G.

    1996-01-01

    The method of thin solid films (Ni, Cu, Al, Pd, Si, InSb, Ta 2 O 5 ) formation on different substrates (Cu, Fe, Si, SiO 2 , Ta 2 O 5 , carbon, glass, mica, teflon) with higher adhesion strength (∼ 10 7 Pa) without preliminary treatment of substrate surface was discribed. The method is based on laser evaporation of solid in vacuum. Adhesion was measured by means of a direct pull technique using a pin soldered to buffer film evaporated by laser on the investigated film. Possible reasons for higher adhesion of films fabricated by laser deposition were discussed. 10 refs.; 3 figs

  4. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  5. Comparing Soy Flour Wood Adhesives to Purified Soy Protein Adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2013-01-01

    While economics dictate that soy-based wood adhesives be made with soy flour, much of the recent literature on soy-based wood adhesives has involved using soy protein isolate. The obvious assumption is that the additional carbohydrates in the flour but not in the isolate only serve as inert diluents. Our studies have shown that the isolate can provide 10 times the wet...

  6. Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces

    NARCIS (Netherlands)

    Canas, N.; Kamperman, M.M.G.; Volker, B.; Kroner, E.; McMeeking, R.M.; Arzt, E.

    2012-01-01

    In this work, the adhesion of biomimetic polydimethylsiloxane (PDMS) pillar arrays with mushroom-shaped tips was studied on nano- and micro-rough surfaces and compared to unpatterned controls. The adhesion strength on nano-rough surfaces invariably decreased with increasing roughness, but pillar

  7. Utility of MR arthrography in the diagnosis of adhesive capsulitis

    Energy Technology Data Exchange (ETDEWEB)

    Manton, G.L.; Schweitzer, M.E.; Weishaupt, D.; Karasick, D. [Dept. of Radiology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States)

    2001-06-01

    Objective. Arthrographically, adhesive capsulitis is characterized by decreased joint volume; histologically, the capsule and synovium are thickened. We therefore compared using MR arthrography the joint volumes and capsule/synovial thickness of patients with and without adhesive capsulitis in order to assess the utility of MR arthrography in diagnosing adhesive capsulitis.Design and patients. The 1.5 T MR arthrography images of 28 subjects with (n=9) and without (n=19) adhesive capsulitis were compared. Adhe- sive capsulitis was diagnosed when there was an injected glenohumeral joint volume of less than 10 ml. Two masked observers working in consensus assessed the images for the relative amount of fluid in the biceps tendon sheath and axillary recess, corrugation at the margin of the capsule, capsule/synovial thickness, abnormalities of the rotator interval capsule, and for the presence of a cuff tear.Results. There was a trend towards differences in capsular and synovial thickness (P>0.07) between the subjects with and without adhesive capsulitis; however, the controls had thicker synovium/capsules. Surprisingly, the amount of fluid in the axillary recess and biceps tendon sheath was not significantly different between the groups (P>0.25). There were more tears of the rotator cuff in controls than in patients with adhesive capsulitis (6, 3 vs 1, 1: complete, partial). Also, both corrugation (7 vs 0) and interval abnormalities (7 vs 0) were more common in the controls.Conclusion. There appear to be no useful MR arthrographic signs of adhesive capsulitis. Capsular/synovial thickness, static fluid volume, and the presence of corrugation are inconclusive as MR arthrographic signs for distinguishing shoulders with adhesive capsulitis from those without. (orig.)

  8. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Priscilla Coutinho ROMUALDO

    Full Text Available Abstract Bacterial endotoxin (LPS adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component, then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p0.05. There was no significant difference (p>0.05 among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025. Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  9. Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions.

    Science.gov (United States)

    Bengaluru Subramanyam, Srinivas; Kondrashov, Vitaliy; Rühe, Jürgen; Varanasi, Kripa K

    2016-05-25

    Ice adhesion on superhydrophobic surfaces can significantly increase in humid environments because of frost nucleation within the textures. Here, we studied frost formation and ice adhesion on superhydrophobic surfaces with various surface morphologies using direct microscale imaging combined with macroscale adhesion tests. Whereas ice adhesion increases on microtextured surfaces, a 15-fold decrease is observed on nanotextured surfaces. This reduction is because of the inhibition of frost formation within the nanofeatures and the stabilization of vapor pockets. Such "Cassie ice"-promoting textures can be used in the design of anti-icing surfaces.

  10. Regulation of Src Family Kinases in Human Cancers

    Science.gov (United States)

    Sen, Banibrata; Johnson, Faye M.

    2011-01-01

    The nonreceptor protein tyrosine kinase Src plays a crucial role in the signal transduction pathways involved in cell division, motility, adhesion, and survival in both normal and cancer cells. Although the Src family kinases (SFKs) are activated in various types of cancers, the exact mechanisms through which they contribute to the progression of individual tumors remain to be defined. The activation of Src in human cancers may occur through a variety of mechanisms that include domain interaction and structural remodeling in response to various activators or upstream kinases and phosphatastes. Because of Src's prominent roles in invasion and tumor progression, epithelial-to-mesenchymal transition, angiogenesis, and the development of metastasis, Src is a promising target for cancer therapy. Several small molecule inhibitors of Src are currently being investigated in clinical trials. In this article, we will summarize the mechanisms regulating Src kinase activity in normal and cancer cells and discuss the status of Src inhibitor development against various types of cancers. PMID:21776389

  11. Inhibition of PIM1 kinase attenuates inflammation-induced pro-labour mediators in human foetal membranes in vitro.

    Science.gov (United States)

    Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-06-01

    compared to preterm with no labour or PPROM. In human foetal membranes, PIM1 inhibitors SMI-4a and AZD1208 significantly decreased the expression of pro-inflammatory cytokine interleukin-6 (IL6) and chemokines CXCL8 and CCL2 mRNA and release, prostaglandin prostaglandin F2α (PGF2α) release, adhesion molecule intercellular adhesion molecule 1 mRNA expression and release, and oxidative stress marker 8-isoprostane release after stimulation with either LPS or flagellin. Primary amnion cells transfected with PIM1 siRNA also showed decreased expression of IL6, CXCL8 and CCL2, PTGS2 mRNA and PGF2α release, and matrix metalloproteinase-9 (MMP9) expression, when stimulated with TNF. None. The conclusions were drawn from in vitro experiments using foetal membrane explants and primary cells isolated from amnion. Animal models are necessary to determine whether PIM1 kinase inhibitors can prevent spontaneous preterm birth in vivo. PIM1 kinase inhibitors may provide a novel therapeutic approach for preventing spontaneous preterm birth. Associate Professor Martha Lappas is supported by a Career Development Fellowship from the National Health and Medical Research Council (NHMRC; grant no. 1047025). Funding for this study was provided by the NHMRC (grant no. 1058786), Norman Beischer Medical Research Foundation and the Mercy Research Foundation. The authors have no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Troglitazone and Δ2Troglitazone Enhance Adiponectin Expression in Monocytes/Macrophages through the AMP-Activated Protein Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Jaw-Shiun Tsai

    2014-01-01

    Full Text Available Accumulating evidence indicates that the regimen to increase adiponectin will provide a novel therapeutic strategy for inflammation and cardiovascular disorders. Here, we tested the effect of troglitazone (TG and its newly synthesized derivative, 5-[4-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-yl-methoxy-benzylidene]-2,4-thiazolidinedione (Δ2troglitazone, (Δ2TG, on the adiponectin expression in monocytes/macrophages and the relative mechanisms. The expression of adiponectin was located in macrophages of atherosclerotic lesions from patients and cholesterol-fed rabbits. TG and Δ2TG enhanced adiponectin mRNA and protein expression in THP-1 cells by quantitative real-time PCR, Western blot, and immunocytochemistry. TG induced adiponectin mRNA expression through a PPARγ-dependent pathway whereas Δ2TG enhanced adiponectin mRNA expression through a PPARγ-independent pathway in THP-1 cells. Both TG and Δ2TG enhanced adiponectin mRNA expression through AMP-activated protein kinase (AMPK activation. TG and Δ2TG decreased the adhesion of THP-1 cells to TNF-α-treated HUVECs and the inhibitory effect was abolished by specific antiadiponectin antibodies. TG- and Δ2TG-induced suppression on monocyte adhesion were inhibited by a selective AMPK inhibitor compound C. Our data suggest that the inhibitory effect of TG and Δ2TG on monocyte adhesion might be at least in part through de novo adiponectin expression and activation of an AMPK-dependent pathway, which might play an important role in anti-inflammation and antiatherosclerosis.

  13. Signal transduction by HLA class II molecules in human T cells: induction of LFA-1-dependent and independent adhesion

    DEFF Research Database (Denmark)

    Odum, Niels; Yoshizumi, H; Okamoto, Y

    1992-01-01

    was recently reported to induce homotypic aggregation through activation of protein kinase C (PKC) and mediated by CD11a/CD54 (LFA-1/CAM-1) adhesion molecules. Here, we report that moAbs directed against framework DR, but neither DR1, 2- and DRw52- nor DQ- and DP-specific moABs induced homotypic aggregation...

  14. Adhesive capsulitis: a review.

    Science.gov (United States)

    Ewald, Anthony

    2011-02-15

    Adhesive capsulitis is a common, yet poorly understood, condition causing pain and loss of range of motion in the shoulder. It can occur in isolation or concomitantly with other shoulder conditions (e.g., rotator cuff tendinopathy, bursitis) or diabetes mellitus. It is often self-limited, but can persist for years and may never fully resolve. The diagnosis is usually clinical, although imaging can help rule out other conditions. The differential diagnosis includes acromioclavicular arthropathy, autoimmune disease (e.g., systemic lupus erythematosus, rheumatoid arthritis), biceps tendinopathy, glenohumeral osteoarthritis, neoplasm, rotator cuff tendinopathy or tear (with or without impingement), and subacromial and subdeltoid bursitis. Several treatment options are commonly used, but few have high-level evidence to support them. Because the condition is often self-limited, observation and reassurance may be considered; however, this may not be acceptable to many patients because of the painful and debilitating nature of the condition. Nonsurgical treatments include analgesics (e.g., acetaminophen, nonsteroidal anti-inflammatory drugs), oral prednisone, and intra-articular corticosteroid injections. Home exercise regimens and physical therapy are often prescribed. Surgical treatments include manipulation of the joint under anesthesia and capsular release.

  15. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes

    DEFF Research Database (Denmark)

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer

    2011-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes...... remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim...... was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease...

  16. Possibilities of Adhesives Filling With Micro-particle Fillers – Lap-shear Tensile Strength

    Directory of Open Access Journals (Sweden)

    Petr Valášek

    2016-01-01

    Full Text Available An adhesive bonding can be ranged among technologies of materials bonding which are used in all industrial branches. It plays its important role also in an area of the construction of agricultural machines, e.g. tractors, harvestors etc. Utility properties of adhesives can be extended by using various types of fillers. These fillers increase some mechanical characteristics of adhesives and not last they can decrease resultant price. The paper focuses on a possibility to fill the adhesives showing increased lap-shear tensile strength. These adhesives are used e.g. for adhesive bonding of coach bodies in an automotive industry so that is why it is possible to apply them also in the agricultural area. Laboratory experiments describe the lap-shear tensile strength of rigid adherents which were bonded with adhesives with a variable concentration of micro-particle filler – a glass powder. T-test used for a comparison of the shear strength of the bonds created with the adhesives with 5 vol.% of the glass powder did not evidence a statistically significant difference comparing with the unfilled adhesives. This priece of knowledge opens a possible way of a material usage of the glass powder in the area of the adhesive bonding.

  17. Foreign material in postoperative adhesions

    NARCIS (Netherlands)

    R.W. Luijendijk; D.C.D. de Lange (Diederik); C.C. Wauters; W.C.J. Hop (Wim); J.J. Duron; J.L. Pailler; B.R. Camprodon; L. Holmdahl; H.J. van Geldorp; J. Jeekel (Hans)

    1996-01-01

    textabstractOBJECTIVE: The authors determined the prevalence of foreign body granulomas in intra-abdominal adhesions in patients with a history of abdominal surgery. PATIENTS AND METHODS: In a cross-sectional, multicenter, multinational study, adult patients with a

  18. Underwater adhesion: The barnacle way

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.

    silicone substrata. For both materials, significant variation among maternal families in the proportion of barnacles producing a thick adhesive plaque was observed, which suggests the presence of genetic variation, or maternal environmental effects...

  19. Effect of repeated contact on adhesion measurements involving polydimethylsiloxane structural material

    International Nuclear Information System (INIS)

    Kroner, E; Arzt, E; Maboudian, R

    2009-01-01

    During the last few years several research groups have focused on the fabrication of artificial gecko inspired adhesives. For mimicking these structures, different polymers are used as structure material, such as polydimethylsiloxanes (PDMS), polyurethanes (PU), and polypropylene (PP). While these polymers can be structured easily and used for artificial adhesion systems, the effects of repeated adhesion testing have never been investigated closely. In this paper we report on the effect of repeated adhesion measurements on the commercially available poly(dimethylsiloxane) polymer kit Sylgard 184 (Dow Corning). We show that the adhesion force decreases as a function of contact cycles. The rate of change and the final value of adhesion are found to depend on the details of the PDMS synthesis and structuring.

  20. 21 CFR 878.4010 - Tissue adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue adhesive for the topical approximation of skin—(1) Identification. A tissue adhesive for the topical...

  1. Mechanisms of adhesion in geckos.

    Science.gov (United States)

    Autumn, Kellar; Peattie, Anne M

    2002-12-01

    The extraordinary adhesive capabilities of geckos have challenged explanation for millennia, since Aristotle first recorded his observations. We have discovered many of the secrets of gecko adhesion, yet the millions of dry, adhesive setae on the toes of geckos continue to generate puzzling new questions and valuable answers. Each epidermally-derived, keratinous seta ends in hundreds of 200 nm spatular tips, permitting intimate contact with rough and smooth surfaces alike. Prior studies suggested that adhesive force in gecko setae was directly proportional to the water droplet contact angle (θ) , an indicator of the free surface energy of a substrate. In contrast, new theory suggests that adhesion energy between a gecko seta and a surface (W(GS)) is in fact proportional to (1 + cosθ), and only for θ > 60°. A reanalysis of prior data, in combination with our recent study, support the van der Waals hypothesis of gecko adhesion, and contradict surface hydrophobicity as a predictor of adhesion force. Previously, we and our collaborators measured the force production of a single seta. Initial efforts to attach a seta failed because of improper 3D orientation. However, by simulating the dynamics of gecko limbs during climbing (based on force plate data) we discovered that, in single setae, a small normal preload, combined with a 5 μm displacement yielded a very large adhesive force of 200 microNewton (μN), 10 times that predicted by whole-animal measurements. 6.5 million setae of a single tokay gecko attached maximally could generate 130 kg force. This raises the question of how geckos manage to detach their feet in just 15 ms. We discovered that simply increasing the angle that the setal shaft makes with the substrate to 30° causes detachment. Understanding how simultaneous attachment and release of millions of setae are controlled will require an approach that integrates levels ranging from molecules to lizards.

  2. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  3. The relation between oxidative stress and adhesion molecules in ...

    African Journals Online (AJOL)

    Background: Antioxidant potential decreases while plasma lipid peroxidation products increase in type1 diabetes mellitus. The vascular endothelium is a major target of oxidative stress (OS). Reactive oxygen species signal events leading to impairment of endothelial function and promotion of leukocyte adhesion to the ...

  4. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the

  5. Post-operative adhesions after digestive surgery: their incidence and prevention: review of the literature.

    Science.gov (United States)

    Ouaïssi, M; Gaujoux, S; Veyrie, N; Denève, E; Brigand, C; Castel, B; Duron, J J; Rault, A; Slim, K; Nocca, D

    2012-04-01

    Post-operative adhesions after gastrointestinal surgery are responsible for significant morbidity and constitute an important public health problem. The aim of this study was to review the surgical literature to determine the incidence, consequences and the variety of possible countermeasures to prevent adhesion formation. A systematic review of English and French language surgical literature published between 1995 and 2009 was performed using the keywords "adhesion" and "surgery". Peritoneal adhesions are reported as the cause of 32% of acute intestinal obstruction and 65-75% of all small bowel obstructions. It is estimated that peritoneal adhesions develop after 93-100% of upper abdominal laparotomies and after 67-93% of lower abdominal laparotomies. Nevertheless, only 15-18% of these adhesions require surgical re-intervention. The need for re-intervention for adhesion-related complications varies depending on the initial type of surgery, the postoperative course and the type of incision. The laparoscopic approach appears to decrease the risk of adhesion formation by 45% and the need for adhesion-related re-intervention to 0.8% after appendectomy and to 2.5% after colorectal surgery. At the present time, only one product consisting of hyaluronic acid applied to a layer of carboxymethylcellulose (Seprafilm(®)) has been shown to significantly reduce the incidence of postoperative adhesion formation; but this product is also associated with a significant increase in the incidence of anastomotic leakage when the membrane is applied in direct contact with the anastomosis. The use of this product has not been shown to decrease the risk of re-intervention for bowel obstruction. The prevention of postoperative adhesions is an important public health goal, particularly in light of the frequency of this complication. The routine use of anti-adhesion products is not recommended given the lack of studies with a high level of evidence concerning their efficacy and safety of

  6. Optimizing Adhesive Design by Understanding Compliance.

    Science.gov (United States)

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.

  7. Bruton's tyrosine kinase and phospholipase C gamma 2 mediate chemokine-controlled B cell migration and homing

    NARCIS (Netherlands)

    de Gorter, David J. J.; Beuling, Esther A.; Kersseboom, Rogier; Middendorp, Sabine; van Gils, Janine M.; Hendriks, Rudolf W.; Pals, Steven T.; Spaargaren, Marcel

    2007-01-01

    Control of integrin-mediated adhesion and migration by chemokines plays a critical role in B cell development, differentiation, and function; however, the underlying signaling mechanisms are poorly defined. Here we show that the chemokine SDF-1 induced activation of Bruton's tyrosine kinase (Btk)

  8. Adhesion and migration of cells responding to microtopography.

    Science.gov (United States)

    Estévez, Maruxa; Martínez, Elena; Yarwood, Stephen J; Dalby, Matthew J; Samitier, Josep

    2015-05-01

    It is known that cells respond strongly to microtopography. However, cellular mechanisms of response are unclear. Here, we study wild-type fibroblasts responding to 25 µm(2) posts and compare their response to that of FAK(-/-) fibroblasts and fibroblasts with PMA treatment to stimulate protein kinase C (PKC) and the small g-protein Rac. FAK knockout cells modulated adhesion number and size in a similar way to cells on topography; that is, they used more, smaller adhesions, but migration was almost completely stalled demonstrating the importance of FAK signaling in contact guidance and adhesion turnover. Little similarity, however, was observed to PKC stimulated cells and cells on the topography. Interestingly, with PKC stimulation the cell nuclei became highly deformable bringing focus on these surfaces to the study of metastasis. Surfaces that aid the study of cellular migration are important in developing understanding of mechanisms of wound healing and repair in aligned tissues such as ligament and tendon. © 2014 Wiley Periodicals, Inc.

  9. Effect of Diluent on Ultra-low Temperature Curable Conductive Silver Adhesive

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Du, Haibo; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive needed urgently for the surface conductive treatment of piezoelectric composite material. The effect of diluent acetone on ultra-low temperature curable conductive silver adhesive were investigated for surface conductive treatment of piezoelectric composite material. In order to improve the operability and extend the life of the conductive adhesive, the diluent was added to dissolve and disperse conductive adhesive. With the increase of the content of diluent, the volume resistivity of conductive adhesive decreased at first and then increased, and the shear strength increased at first and then decreased. When the acetone content is 10%, the silver flaky bonded together, arranged the neatest, the smallest gap, the most closely connected, the surface can form a complete conductive network, and the volume resistivity is 2.37 × 10-4Ω · cm, the shear strength is 5.13MPa.

  10. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Korshunova, Irina; Berezin, Vladimir

    2006-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been...... with the Src-family kinases, were also involved in neuritogenesis induced by physiological, homophilic NCAM interactions. Thus, unanticipated mechanisms of Ca2+ homeostasis are shown to be activated by NCAM and to contribute to neuronal differentiation....

  11. Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex

    Directory of Open Access Journals (Sweden)

    Dongqing Zha

    2013-04-01

    Full Text Available Nephrin, a structural molecule, is also a signaling molecule afterphosphorylation. Inhibition of nephrin phosphorylation iscorrelated with podocyte injury. The PINCH-1-ILK-α-parvin(PIP complex plays a crucial role in cell adhesion andcytoskeleton formation. We hypothesized that nephrinphosphorylation influenced cytoskeleton and cell adhesion inpodocytes by regulating the PIP complex. The nephrinphosphorylation, PIP complex formation, and F-actin in Wistarrats intraperitoneally injected with puromycin aminonucleosidewere gradually decreased but increased with time, coincidingwith the recovery from glomerular/podocyte injury and proteinuria.In cultured podocytes, PIP complex knockdown resultedin cytoskeleton reorganization and decreased cell adhesion andspreading. Nephrin and its phosphorylation were unaffectedafter PIP complex knockdown. Furthermore, inhibition ofnephrin phosphorylation suppressed PIP complex expression,disorganized podocyte cytoskeleton, and decreased celladhesion and spreading. These findings indicate that alterationsin nephrin phosphorylation disorganize podocyte cytoskeletonand decrease cell adhesion through a PIP complex-dependentmechanism. [BMB Reports 2013; 46(4: 230-235

  12. Anti-adhesion therapy following operative hysteroscopy for treatment of female subfertility

    NARCIS (Netherlands)

    Bosteels, Jan; Weyers, Steven; D'Hooghe, Thomas M.; Torrance, Helen; Broekmans, Frank J.; Chua, Su Jen; Mol, Ben Willem J.

    2017-01-01

    Background: Observational evidence suggests a potential benefit with several anti-adhesion therapies in women undergoing operative hysteroscopy (e.g. insertion of an intrauterine device or balloon, hormonal treatment, barrier gels or human amniotic membrane grafting) for decreasing intrauterine

  13. Decreasing relative risk premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    2007-01-01

    such that the corresponding relative risk premium is a decreasing function of present wealth, and we determine the set of associated utility functions. We find a new characterization of risk vulnerability and determine a large set of utility functions, closed under summation and composition, which are both risk vulnerable...... and have decreasing relative risk premium. We finally introduce the notion of partial risk neutral preferences on binary lotteries and show that partial risk neutrality is equivalent to preferences with decreasing relative risk premium...

  14. Thrombin generation in abdominal sepsis is Rho-kinase-dependent.

    Science.gov (United States)

    Wang, Yongzhi; Braun, Oscar Ö; Zhang, Su; Norström, Eva; Thorlacius, Henrik

    2015-05-08

    Sepsis causes severe derangements of the coagulation system. However, the signaling mechanisms regulating sepsis-induced thrombin generation remain elusive. Herein, we hypothesized that Rho-kinase might be an important regulator of thrombin generation in abdominal sepsis. Abdominal sepsis was induced by cecal ligation and puncture (CLP) in C57Bl/6 mice. Thrombin generation, coagulation factors, lung histology and myeloperoxidase (MPO) activity were determined 6 h and 24 h after induction of CLP. Induction of CLP triggered a systemic inflammatory response characterized by neutrophil accumulation and tissue injury in the lung as well as thrombocytopenia and leukocytopenia. Administration of Y-27632, a Rho-kinase inhibitor, attenuated these markers of systemic inflammation in CLP animals. Moreover, peak thrombin formation was decreased by 77% and 81% in plasma from mice 6 h and 24 h after induction of CLP. Total thrombin generation was reduced by 64% and 67% 6 h and 24 h after CLP induction, respectively. Notably, administration of Y-27632 increased peak formation by 99% and total thrombin generation by 66% in plasma from septic animals. In addition, CLP markedly decreased plasma levels of prothrombin, factor V and factor X at 6 h and 24 h. Interestingly, Rho-kinase inhibition significantly enhanced levels of prothrombin, factor V and factor X in plasma from septic mice. In addition, inhibition of Rho-kinase decreased CLP-induced elevations of CXCL2 by 36% and interleukin-6 by 38%. These novel findings suggest that sepsis-induced thrombin generation is regulated by Rho-kinase. Moreover, inhibition of Rho-kinase reverses sepsis-evoked consumption of coagulation factors. Thus, our results show that targeting Rho-kinase signaling might protect against coagulation dysfunction in abdominal sepsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Restoration of E-cadherin Cell-Cell Junctions Requires Both Expression of E-cadherin and Suppression of ERK MAP Kinase Activation in Ras-Transformed Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Li

    2008-12-01

    Full Text Available E-cadherin is a main component of the cell-cell adhesion junctions that play a principal role in maintaining normal breast epithelial cell morphology. Breast and other cancers that have up-regulated activity of Ras are often found to have down-regulated or mislocalized E-cadherin expression. Disruption of E-cadherin junctions and consequent gain of cell motility contribute to the process known as epithelial-to-mesenchymal transition (EMT. Enforced expression of E-cadherin or inhibition of Ras-signal transduction pathway has been shown to be effective in causing reversion of EMT in several oncogene-transformed and cancer-derived cell lines. In this study, we investigated MCF10A human breast epithelial cells and derivatives that were transformed with either activated H-Ras or N-Ras to test for the reversion of EMT by inhibition of Ras-driven signaling pathways. Our results demonstrated that inhibition of mitogen-activated protein kinase (MAPK kinase, but not PI3-kinase, Rac, or myosin light chain kinase, was able to completely restore E-cadherin cell-cell junctions and epithelial morphology in cell lines with moderate H-Ras expression. In MCF10A cells transformed by a high-level expression of activated H-Ras or N-Ras, restoration of E-cadherin junction required both the enforced reexpression of E-cadherin and suppression of MAPK kinase. Enforced expression of E-cadherin alone did not induce reversion from the mesenchymal phenotype. Our results suggest that Ras transformation has at least two independent actions to disrupt E-cadherin junctions, with effects to cause both mislocalization of E-cadherin away from the cell surface and profound decrease in the expression of E-cadherin.

  16. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  17. 4-Point beam tensile test on a soft adhesive

    International Nuclear Information System (INIS)

    Budzik, Michal K.; Jumel, Julien; Shanahan, Martin E.R.

    2013-01-01

    Highlights: ► An adhesive butt joint with a soft bondline of variable thickness has been studied. ► We found that bondline thickness affects the stress state in soft bondlines. ► Fracture energy at crack onset is lowest for the thinnest of bondlines and becomes stable for thicker layers. ► Maximum stress decreases with increasing bondline thickness. ► We found that for optimal joint design, rate effects must be taken into account. - Abstract: An adhesive butt joint with a soft bondline has been studied. A series of experiments was conducted on test pieces constituted of aluminium adherends bonded with a low modulus epoxy adhesive, Scotch Weld™ 2216. The joint was subjected to four point bending, in tension/compression loading, under constant deflection rate, with the bondline being parallel to the applied load. The objective was to examine and evaluate crack nucleation for a range of adhesive layer thicknesses. Three criteria were used to evaluate joint efficiency. Firstly, force/stress at crack onset revealed that thinner bondlines were preferable to produce stronger and stiffer bonded structures. Secondly, fracture energy was derived, which, in the present configuration, is associated with the energy stored within the adhesive layer, rather than the substrates. This is one of originalities of the test proposed. Fracture energy data lead to the conclusion, that more energy is dissipated by the joints with lower effective rigidity, viz. thicker bondlines. Finally, we applied a criterion of non-linear, ‘pragmatic’ work of adhesion – similar to the J-integral approach. In terms of energy consumption, the third criterion yielded (quasi) independence of the adhesive thickness. From the data collected, we conclude that for optimal joint design, rate effects must be carefully taken into account

  18. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  19. Adhesiveness of cold rolled steels for car body parts

    Directory of Open Access Journals (Sweden)

    Kleiner Marques Marra

    2007-09-01

    Full Text Available The aim of this work was to evaluate the adhesiveness of uncoated and zinc-electrogalvanized steel sheets used in the automotive industry. Three types of adhesives, one acrylic and two epoxy resins, were employed to join low carbon cold rolled steels, one uncoated and another electrogalvanized, both previously degreased or chemically pickled. Mechanical strength of the joints was evaluated by the T-peel and tensile strength tests. Steel grade, surface condition and heating below the cure temperatures did not influence the joints' mechanical strength. However, their shear strength decreased drastically as the test temperature increased. The exposure of the joints to an atmosphere with 90% relative humidity at 40 °C caused reduction of their shear strength. Epoxy adhesives showed higher mechanical strength, but exhibited higher degradation by humidity.

  20. Enhanced adhesion of bioinspired nanopatterned elastomers via colloidal surface assembly

    Science.gov (United States)

    Akerboom, Sabine; Appel, Jeroen; Labonte, David; Federle, Walter; Sprakel, Joris; Kamperman, Marleen

    2015-01-01

    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the immersion depth of the particles were tuned by altering the pH and ionic strength of the water. Initially, PDMS completely wetted the air/water interface outside the monolayer, thereby compressing the monolayer as in a Langmuir trough; further application of PDMS subsequently covered the colloidal monolayers. PDMS curing and particle extraction resulted in elastomers patterned with nanodimples. Adhesion and friction of these nanopatterned surfaces with varying dimple depth were studied using a spherical probe as a counter-surface. Compared with smooth surfaces, adhesion of nanopatterned surfaces was enhanced, which is attributed to an energy-dissipating mechanism during pull-off. All nanopatterned surfaces showed a significant decrease in friction compared with smooth surfaces. PMID:25392404

  1. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  2. Pathogenesis, consequences, and control of peritoneal adhesions in gynecologic surgery: a committee opinion.

    Science.gov (United States)

    2013-05-01

    Postoperative adhesions are a natural consequence of surgical tissue trauma and healing and may result in infertility, pain, and bowel obstruction. Adherence to microsurgical principles and minimally invasive surgery may help to decrease postoperative adhesions. Some surgical barriers have been demonstrated effective for reducing postoperative adhesions, but there is no substantial evidence that their use improves fertility, decreases pain, or reduces the incidence of postoperative bowel obstruction. This document replaces the document of the same name last published in 2008 (Fertil Steril 2008;90[5 Suppl]:S144-9). Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Effect of cyclic hydrodynamic pressure-induced proliferation of human bladder smooth muscle through Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2.

    Science.gov (United States)

    Wu, Tao; Chen, Lin; Wei, Tangqiang; Wang, Yan; Xu, Feng; Wang, Kunjie

    2012-09-01

    To examine the role of Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2 in the cyclic hydrodynamic pressure-induced proliferation of human bladder smooth muscle cells. Human bladder smooth muscle cells were exposed to cyclic hydrodynamic pressures in vitro with defined parameters (static, 100 cmH(2) O, 200 cmH(2) O and 300 cmH(2) O pressure) for 24 h. The proliferation of cells was assessed by flow cytometry. Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2 messenger ribonucleic acid, and protein expression was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the Rac1 was determined with real-time polymerase chain reaction and Western blot technique with small interfering ribonucleic acid transfection and Rac1 inhibitor (NSC23766). The proliferation of human bladder smooth muscle cells was increased. Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2 were activated by 200 and 300 cmH(2) O cyclic hydrodynamic pressure compared with static and 100 cmH(2) O pressure. The "knockdown" of activation of Rac1 using target small interfering ribonucleic acid transfection and Rac1 inhibitor (NSC23766) decreased proliferation of human bladder smooth muscle cells, and downregulated mitogen-activated protein kinase kinase 1/2, extracellular regulated protein kinases 1/2. The Rac1 pathway is activated in mechanotransduction and regulation of human bladder smooth muscle cell proliferation in response to cyclic hydrodynamic pressure. © 2012 The Japanese Urological Association.

  4. Molecular Imaging of the ATM Kinase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Terence M. [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Nyati, Shyam [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Ross, Brian D. [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Rehemtulla, Alnawaz, E-mail: alnawaz@umich.edu [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States)

    2013-08-01

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.

  5. Syndecans promote integrin-mediated adhesion of mesenchymal cells in two distinct pathways

    DEFF Research Database (Denmark)

    Whiteford, James; Behrends, Volker; Kirby, Hishani

    2007-01-01

    and signaling through the cytoplasmic domain of syndecan-4. Here an alternate pathway mediated by the extracellular domains of syndecans-2 and -4 is characterized that is independent of both heparan sulphate and syndecan signaling. This pathway is restricted to mesenchymal cells and was not seen in any...... epithelial cell line tested, apart from vascular endothelia. The syndecan ectodomains coated as substrates promoted integrin-dependent attachment, spreading and focal adhesion formation. Syndecan-4 null cells were competent, as were fibroblasts compromised in heparan sulphate synthesis that were unable...... to form focal adhesions in response to fibronectin. Consistent with actin cytoskeleton organization, the process required Rho-GTP and Rho kinase. While syndecan-2 and -4 ectodomains could both promote integrin-mediated adhesion, their pathways were distinct, as shown by competition assays. Evidence...

  6. p38 signaling and receptor recycling events in a microfluidic endothelial cell adhesion assay.

    Directory of Open Access Journals (Sweden)

    Dwayne A L Vickers

    Full Text Available Adhesion-based microfluidic cell separation has proven to be very useful in applications ranging from cancer diagnostics to tissue engineering. This process involves functionalizing microchannel surfaces with a capture molecule. High specificity and purity capture can be achieved using this method. Despite these advances, little is known about the mechanisms that govern cell capture within these devices and their relationships to basic process parameters such as fluid shear stress and the presence of soluble factors. This work examines how the adhesion of human endothelial cells (ECs is influenced by a soluble tetrapeptide, Arg-Glu-Asp-Val (REDV and fluidic shear stress. The ability of these ECs to bind within microchannels coated with REDV is shown to be governed by shear- and soluble-factor mediated changes in p38 mitogen-activated protein kinase expression together with recycling of adhesion receptors from the endosome.

  7. Epigallocatechin gallate reduces human monocyte mobility and adhesion in vitro.

    Science.gov (United States)

    Melgarejo, Esther; Medina, Miguel Angel; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2009-12-01

    Monocytes/macrophages are an important population of immune inflammatory cells that have diverse effector functions in which their mobility and adhesion play a very relevant role. Epigallocatechin gallate (EGCG), a major component of green tea, has been reported to have anti-allergic and anti-inflammatory activities, but its effects on monocytes remain to be determined. Here we investigated the effects of EGCG on the migration and adhesion of monocytes. We used a human monocyte cell line (THP-1) to analyse the effects of treatment with EGCG under non-cytotoxic conditions on the expression levels of the monocyte chemotactic protein-1 (MCP-1) and of the MCP-1 receptor (CCR2) and on the activation of beta1 integrin. A functional validation was carried out by evaluating the inhibitory effect of EGCG on monocyte adhesiveness and migration in vitro. Treatment of THP-1 cells with EGCG decreased MCP-1 and CCR2 gene expression, together with MCP-1 secretion and CCR2 expression at the cell surface. EGCG also inhibited beta1 integrin activation. The effects on these molecular targets were in agreement with the EGCG-induced inhibition of THP-1 migration in response to MCP-1 and adhesion to fibronectin. Under our experimental conditions, EGCG treatment inhibited the migration and adhesion of monocytes. These inhibitory effects of EGCG on monocyte function should be considered as a promising new anti-inflammatory response with a potential therapeutic role in the treatment of inflammation-dependent diseases.

  8. Work of adhesion of dairy products on stainless steel surface

    Directory of Open Access Journals (Sweden)

    Patrícia Campos Bernardes

    2012-12-01

    Full Text Available The adhesion of the solids presents in food can difficult the process of surface cleaning and promotes the bacterial adhesion process and can trigger health problems. In our study, we used UHT whole milk, chocolate based milk and infant formula to evaluate the adhesion of Enterobacter sakazakii on stainless steel coupons, and we determine the work of adhesion by measuring the contact angle as well as measured the interfacial tension of the samples. Inaddition we evaluated the hydrophobicity of stainless steel after pre-conditioning with milk samples mentioned. E. sakazakii was able to adhere to stainless steel in large numbers in the presence of dairy products. The chocolate based milk obtained the lower contact angle with stainless steel surface, higher interfacial tension and consequently higher adhesion work. It was verified a tendency of decreasing the interfacial tension as a function of the increasing of protein content. The pre-conditioning of the stainless steel coupons with milk samples changed the hydrophobic characteristics of the surfaces and became them hydrophilic. Therefore, variations in the composition of the milk products affect parameters important that can influence the procedure of hygiene in surface used in food industry.

  9. Lignin-Furfural Based Adhesives

    Directory of Open Access Journals (Sweden)

    Prajakta Dongre

    2015-07-01

    Full Text Available Lignin recovered from the hot-water extract of sugar maple (Acer saccharum is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC. The effect of pH (0.3, 0.65 and 1, ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength.

  10. The effect of myofibroblasts and corticosteroid injections in adhesive capsulitis.

    Science.gov (United States)

    Hettrich, Carolyn M; DiCarlo, Edward F; Faryniarz, Deborah; Vadasdi, Katherine B; Williams, Riley; Hannafin, Jo A

    2016-08-01

    Adhesive capsulitis is a condition that results in restricted glenohumeral motion. Fibroblasts have been implicated in the disease process; however, their role as a contractile element in the development of fibrosis and capsular contracture is not well understood. We hypothesized (1) that myofibroblast prevalence in capsular biopsy specimens from patients with adhesive capsulitis would be increased compared with controls and (2) that patients treated with an intra-articular injection of corticosteroid would have fewer myofibroblasts. The study prospectively enrolled 20 consecutive patients with adhesive capsulitis scheduled for capsular release and matched controls. Tissue samples were collected from the posterior and anterior capsule for histomorphologic and immunohistologic analyses. Identical sectioning and preparation was performed in 14 additional adhesive capsulitis specimens from patients who had not received corticosteroid injections. Patients with adhesive capsulitis not treated with preoperative corticosteroid demonstrated more histologic evidence of fibromatosis, synovial hyperplasia, and an increase in positive staining for α-smooth muscle actin than patients who had received intra-articular injections of steroid. No specimens obtained from control patients demonstrated positive staining for α-smooth muscle actin. There was a higher prevalence of myofibroblast staining in patients with adhesive capsulitis, implicating activation of the myofibroblast in the pathophysiology of capsular contracture. Intra-articular steroid injection decreases the presence and amount of fibromatosis, vascular hyperplasia, fibrosis, and the presence of fibroblasts staining for α-smooth muscle actin. This supports the use of steroid injections to alter the disease process by decreasing the pathologic changes found in the capsular tissue. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. A new angle on clinging in geckos: incline, not substrate, triggers the deployment of the adhesive system

    Science.gov (United States)

    Russell, Anthony P.; Higham, Timothy E.

    2009-01-01

    Lizards commonly climb in complex three-dimensional habitats, and gekkotans are particularly adept at doing this by using an intricate adhesive system involving setae on the ventral surface of their digits. However, it is not clear whether geckos always deploy their adhesive system, given that doing so may result in decreased (i.e. reduction in speed) locomotor performance. Here, we investigate circumstances under which the adhesive apparatus of clinging geckos becomes operative, and examine the potential trade-offs between speed and clinging. We quantify locomotor kinematics of a gecko with adhesive capabilities (Tarentola mauritanica) and one without (Eublepharis macularius). Whereas, somewhat unusually, E. macularius did not suffer a decrease in locomotor performance with an increase in incline, T. mauritanica exhibited a significant decrease in speed between the level and a 10° incline. We demonstrate that this results from the combined influence of slope and the deployment of the adhesive system. All individuals kept their digits hyperextended on the level, but three of the six individuals deployed their adhesive system on the 10° incline, and they exhibited the greatest decrease in velocity. The deployment of the adhesive system was dependent on incline, not surface texture (600 grit sandpaper and Plexiglas), despite slippage occurring on the level Plexiglas substrate. Our results highlight the type of sensory feedback (gravity) necessary for deployment of the adhesive system, and the trade-offs associated with adhesion. PMID:19656797

  12. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules

    Directory of Open Access Journals (Sweden)

    Villa-Verde D.M.S.

    1999-01-01

    Full Text Available Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble ß-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  13. Competition between adhesion and inertia during stick-slip peeling of Pressure Sensitive Adhesives

    Science.gov (United States)

    Dalbe, M.-J.; Villey, R.; Ciccotti, M.; Cortet, P.-P.; Santucci, S.; Vanel, L.

    2015-03-01

    We consider the classical problem of the instable stick-slip dynamics often observed when peeling a pressure sensitive adhesive, quantifying for the first time experimentally the influence of the peeling angle. This instability is known to be the consequence of a decreasing fracture energy of the adhesive-substrate joint over a certain range of driving velocity: we focus here on the important case where the instability develops at large driving velocity. We show that the shape of the peeling front velocity fluctuations progressively changes from typical stick-slip relaxation oscillations to nearly sinusoidal oscillations as the peeling angle and/or the driving velocity is increased. This transition is accompanied with a change in the dependencies of the limit cycles' period on the control parameters. We show that it results from the competition, in the dynamical equation, between the standard fracture energy and a term -considered here for the first time- associated to the freestanding tape elasticity and inertia. We manage to predict quantitatively the transition of the instability amplitude and period from the classical Barquins-Maugis quasistatic regime to a purely inertial regime in which the adhesion energy is no more at play in setting the instability limit cycles.

  14. Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels

    Science.gov (United States)

    Wang, Jiuling; Yang, Yiwei; Yu, Miaorong; Hu, Guoqing; Gan, Yong; Gao, Huajian; Shi, Xinghua

    2018-03-01

    It is known that rod-like nanoparticles (NPs) can achieve higher diffusivity than their spherical counterparts in biological porous media such as mucus and tumor interstitial matrix, but the underlying mechanisms still remain elusive. Here, we present a joint experimental and theoretical study to show that the aspect ratio (AR) of NPs and their adhesive interactions with the host medium play key roles in such anomalous diffusion behaviors of nanorods. In an adhesive polymer solution/gel (e.g., mucus), hopping diffusion enables nanorods to achieve higher diffusivity than spherical NPs with diameters equal to the minor axis of the rods, and there exists an optimal AR that leads to maximum diffusivity. In contrast, the diffusivity of nanorods decreases monotonically with increasing AR in a non-adhesive polymer solution/gel (e.g., hydroxyethyl cellulose, HEC). Our theoretical model, which captures all the experimental observations, generalizes the so-called obstruction-scaling model by incorporating the effects of the NPs/matrix interaction via the mean first passage time (MFPT) theory. This work reveals the physical origin of the anomalous diffusion behaviors of rod-like NPs in biological gels and may provide guidelines for a range of applications that involve NPs diffusion in complex porous media.

  15. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway

    Directory of Open Access Journals (Sweden)

    Dandan Ma

    2016-11-01

    Full Text Available Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK-ERK (extracellular signal–regulated kinase/PI3K (phosphatidylinositol-3-kinase signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs of different magnitudes (0, 50, 100, 150, 200, and 250 kPa for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway.

  16. Effect of oxygen plasma treatment on adhesion improvement of Au deposited on Pa-c substrates

    International Nuclear Information System (INIS)

    Lee, Jeong Hoon; Hwang, Kyo Seon; Kim, Tae Song; Seong, Jin Wook; Yoon, Ki Hyun; Ahn, Sae Young

    2004-01-01

    Adhesion of gold on parylene C (Pa-c) is a major hurdle in achieving reliable and durable performance for biosensor application due to the hydrophobicity of Pa-c. It is, therefore, imperative to put efforts to improve adhesion between Au and Pa-c. In this reseach, oxygen plasma treatment for adhesion improvement was performed on Pa-c surfaces at various plasma powers and times. To analyze the relation of surface energy and roughness to adhesion promotion, we used several techniques such as contact-angle, surface-energy, surface-roughness, and adhesion analyses. As the oxygen plasma power and time were increased, the surface roughness of Pa-c increased. Also, Au films had larger and more uniform grain sizes as the oxygen plasma power and time were increased. Untreated surfaces revealed a contact angle of 108 .deg. , but the contact angle drastically decreased in the initial stage of oxygen plasma treatment and slowly decreased with increasing power and time to values of 27.3 and 34, respectively. From the adhesion analysis, adhesion was improved as the plasma power or time was increased. The improvement of adhesion is related to an increase in roughness as well as carbonyl groups.

  17. MEK inhibitors, novel anti-adhesive molecules, reduce sickle red blood cell adhesion in vitro and in vivo, and vasoocclusion in vivo.

    Science.gov (United States)

    Zennadi, Rahima

    2014-01-01

    In sickle cell disease, sickle erythrocyte (SSRBC) interacts with endothelial cells, leukocytes, and platelets, and activates coagulation and inflammation, promoting vessel obstruction, which leads to serious life-threatening complications, including acute painful crises and irreversible damage to multiple organs. The mitogen-activated protein kinase, ERK1/2, is abnormally activated in SSRBCs. However, the therapeutic potential of SSRBC ERK1/2 inactivation has never been investigated. I tested four different inhibitors of MEK1/2 (MEK), the kinase that activates ERK1/2, in a model of human SSRBC adhesion to TNFα-activated endothelial cells (ECs). SSRBC MEK inhibition abrogated adhesion to non-activated and TNFα-activated ECs to levels below baseline SSRBC adhesion to non-activated ECs in vitro. SSRBC MEK inhibition also prevented SSRBCs from activating naïve neutrophils to adhere to endothelium. To determine the effect of MEK inhibitors on SSRBC adherence in vivo, sham-treated or MEK inhibitor-treated SSRBCs were infused to nude mice previously treated with TNFα. Sham-treated SSRBCs displayed marked adhesion and occlusion of enflamed vessels, both small and large. However, SSRBC treatment with MEK inhibitors ex vivo showed poor SSRBC adhesion to enflamed vessels with no visible vasoocclusion in vivo. In addition, MEK inhibitor treatment of SSRBCs reduced SSRBC organ trapping and increased the number of SSRBCs circulating in bloodstream. Thus, these data suggest that SSRBC ERK1/2 plays potentially a critical role in sickle pathogenesis, and that MEK inhibitors may represent a valuable intervention for acute sickle cell crises.

  18. Decreasing Relative Risk Premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    We consider the risk premium demanded by a decision maker with wealth x in order to be indifferent between obtaining a new level of wealth y1 with certainty, or to participate in a lottery which either results in unchanged present wealth or a level of wealth y2 > y1. We define the relative risk...... premium as the quotient between the risk premium and the increase in wealth y1–x which the decision maker puts on the line by choosing the lottery in place of receiving y1 with certainty. We study preferences such that the relative risk premium is a decreasing function of present wealth, and we determine...... relative risk premium in the small implies decreasing relative risk premium in the large, and decreasing relative risk premium everywhere implies risk aversion. We finally show that preferences with decreasing relative risk premium may be equivalently expressed in terms of certain preferences on risky...

  19. Dentin Bonding Durability of Two-step Self-etch Adhesives with Improved of Degree of Conversion of Adhesive Resins.

    Science.gov (United States)

    Sato, Kento; Hosaka, Keiichi; Takahashi, Masahiro; Ikeda, Masaomi; Tian, Fucong; Komada, Wataru; Nakajima, Masatoshi; Foxton, Richard; Nishitani, Yoshihiro; Pashley, David H; Tagami, Junji

    To evaluate (1) the initial and long-term microtensile bond strengths of two-step self-etch adhesives with different degrees of conversion (DC); (2) the elastic modulus of the respective adhesive resins; (3) the water sorption of the respective adhesive resins. Two two-step self-etch adhesives, Clearfil SE Bond (CSE) and Clearfil SE Bond 2 (CSE2) were used in this study. The DC was determined using ATR/FT-IR with a time-based spectrum analysis. Midcoronal flat dentin surfaces of 24 human molars were prepared with 600-grit SiC paper for microtensile bond strength (µTBS) testing. CSE and CSE2 were applied to the dentin surfaces according to the manufacturer's instructions, followed by composite buildups. The µTBS was measured after water storage for 24 h, 6 months, and 1 year. The elastic modulus (before and after 1 month of water immersion) was determined by the three-point flexural bending test and water sorption values by the water sorption test. CSE2 showed significantly higher DC than CSE. The µTBS of CSE2 was significantly higher than that of CSE in all water storage periods. One-year water storage decreased the µTBS of CSE; however, it did not decrease that of CSE2. Regarding the polymerized adhesive resins, the elastic modulus of CSE2 was significantly higher than that of CSE before and after water immersion (p self-etch adhesives resists water aging and improves the initial bond strengths and durability of the resin-dentin bond.

  20. Decreasing serial cost sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter Raahave

    2009-01-01

    The increasing serial cost sharing rule of Moulin and Shenker (Econometrica 60:1009-1037, 1992) and the decreasing serial rule of de Frutos (J Econ Theory 79:245-275, 1998) are known by their intuitive appeal and striking incentive properties. An axiomatic characterization of the increasing serial...... rule was provided by Moulin and Shenker (J Econ Theory 64:178-201, 1994). This paper gives an axiomatic characterization of the decreasing serial rule....

  1. Decreasing Serial Cost Sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter

    The increasing serial cost sharing rule of Moulin and Shenker [Econometrica 60 (1992) 1009] and the decreasing serial rule of de Frutos [Journal of Economic Theory 79 (1998) 245] have attracted attention due to their intuitive appeal and striking incentive properties. An axiomatic characterization...... of the increasing serial rule was provided by Moulin and Shenker [Journal of Economic Theory 64 (1994) 178]. This paper gives an axiomatic characterization of the decreasing serial rule...

  2. Interfacial Friction and Adhesion of Polymer Brushes

    KAUST Repository

    Landherr, Lucas J. T.

    2011-08-02

    A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (δ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ∼ δ4/3, which is supported by our experimental data. © 2011 American Chemical Society.

  3. A new adhesive technique for internal fixation in midfacial surgery

    Directory of Open Access Journals (Sweden)

    Riediger Dieter

    2008-05-01

    Full Text Available Abstract Background The current surgical therapy of midfacial fractures involves internal fixation in which bone fragments are fixed in their anatomical positions with osteosynthesis plates and corresponding screws until bone healing is complete. This often causes new fractures to fragile bones while drilling pilot holes or trying to insert screws. The adhesive fixation of osteosynthesis plates using PMMA bone cement could offer a viable alternative for fixing the plates without screws. In order to achieve the adhesive bonding of bone cement to cortical bone in the viscerocranium, an amphiphilic bone bonding agent was created, analogous to the dentin bonding agents currently on the market. Methods The adhesive bonding strengths were measured using tension tests. For this, metal plates with 2.0 mm diameter screw holes were cemented with PMMA bone cement to cortical bovine bone samples from the femur diaphysis. The bone was conditioned with an amphiphilic bone bonding agent prior to cementing. The samples were stored for 1 to 42 days at 37 degrees C, either moist or completely submerged in an isotonic NaCl-solution, and then subjected to the tension tests. Results Without the bone bonding agent, the bonding strength was close to zero (0.2 MPa. Primary stability with bone bonding agent is considered to be at ca. 8 MPa. Moist storage over 42 days resulted in decreased adhesion forces of ca. 6 MPa. Wet storage resulted in relatively constant bonding strengths of ca. 8 MPa. Conclusion A new amphiphilic bone bonding agent was developed, which builds an optimizied interlayer between the hydrophilic bone surface and the hydrophobic PMMA bone cement and thus leads to adhesive bonding between them. Our in vitro investigations demonstrated the adhesive bonding of PMMA bone cement to cortical bone, which was also stable against hydrolysis. The newly developed adhesive fixing technique could be applied clinically when the fixation of osteosynthesis plates

  4. Adhesion of Antireflective Coatings in Multijunction Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Ryan; Miller, David C.; Dauskardt, Reinhold H.

    2016-11-21

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  5. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  6. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    . The catalytic alpha subunits are distantly related to the CMGC subfamily of kinases, such as the Cdk kinases. There are some peculiarities associated with protein kinase CK2, which are not found with most other protein kinases: (i) the enzyme is constitutively active, (ii) it can use ATP and GTP and (iii...

  7. The Role of the Electrostatic Force in Spore Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Tsouris, Costas [ORNL

    2010-01-01

    Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 {micro}C/cm{sup 2} at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.

  8. Creep behaviour of flexible adhesives

    NARCIS (Netherlands)

    Straalen, IJ.J. van; Botter, E.; Berg, A. van den; Beers, P. van

    2004-01-01

    Since flexible adhesives are used more and more in structural applications, designers should have a better understanding of its behaviour under various conditions as ultimate load, fatigue load, long-term load and environmental conditions. This paper focuses on long-term load conditions and its

  9. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...

  10. Foreign material in postoperative adhesions

    NARCIS (Netherlands)

    R.W. Luijendijk; D.C.D. de Lange (Diederik C.); C.C.A.P. Wauters (C. C A P); W.C.J. Hop (Wim); J.J. Duron; J.L. Pailler; B.R. Camprodon; L. Holmdahl; H.J. van Geldorp (H.); J. Jeekel (Hans)

    1996-01-01

    textabstractObjective: The authors determined the prevalence of foreign body granulomas in intra-abdominal adhesions in patients with a history of abdominal surgery. Patients and Methods: In a cross sectional, multicenter, multinational study, adult patients with a history of one or more previous

  11. Ovalbumin as a Wood Adhesive

    Science.gov (United States)

    Charles R. Frihart; Holly Satori; Zhu Rongxian; Michael J. Birkeland

    2014-01-01

    Use of proteins to bond wood dominated industrial production until the middle of the 20th century (1). The ensuing creation of the plywood and glulam beam industries allowed for more efficient use of wood resources than is possible with solid wood products. Many protein sources have been used as adhesives, including plant (soybean) and animal (blood, fish scales,...

  12. Tensile and bending fatigue of the adhesive interface to dentin.

    Science.gov (United States)

    Belli, Renan; Baratieri, Luiz Narciso; Braem, Marc; Petschelt, Anselm; Lohbauer, Ulrich

    2010-12-01

    The aim of this study was to evaluate the fatigue limits of the dentin-composite interfaces established either with an etch-and-rinse or an one-step self-etch adhesive systems under tensile and bending configurations. Flat specimens (1.2 mm×5 mm×35 mm) were prepared using a plexiglass mold where dentin sections from human third molars were bonded to a resin composite, exhibiting the interface centrally located. Syntac Classic and G-Bond were used as adhesives and applied according to the manufacturer's instructions. The fluorochrome Rhodamine B was added to the adhesives to allow for fractographic evaluation. Tensile strength was measured in an universal testing machine and the bending strength (n=15) in a Flex machine (Flex, University of Antwerp, Belgium), respectively. Tensile (TFL) and bending fatigue limits (BFL) (n=25) were determined under wet conditions for 10(4) cycles following a staircase approach. Interface morphology and fracture mechanisms were observed using light, confocal laser scanning and scanning electron microscopy. Statistical analysis was performed using three-way ANOVA (mod LSD test, pTensile and bending characteristic strengths at 63.2% failure probability for Syntac were 23.8 MPa and 71.5 MPa, and 24.7 MPa and 72.3 MPa for G-Bond, respectively. Regarding the applied methods, no significant differences were detected between adhesives. However, fatigue limits for G-Bond (TFL=5.9 MPa; BFL=36.2 MPa) were significantly reduced when compared to Syntac (TFL=12.6 MPa; BFL=49.7 MPa). Fracture modes of Syntac were generally of adhesive nature, between the adhesive resin and dentin, while G-Bond showed fracture planes involving the adhesive-dentin interface and the adhesive resin. Cyclic loading under tensile and bending configurations led to a significant strength degradation, with a more pronounced fatigue limit decrease for G-Bond. The greater decrease in fracture strength was observed in the tensile configuration. Copyright © 2010 Academy of

  13. Membrane tension controls adhesion positioning at the leading edge of cells

    Science.gov (United States)

    Pontes, Bruno; Gole, Laurent; Kosmalska, Anita Joanna; Tam, Zhi Yang; Luo, Weiwei; Kan, Sophie; Viasnoff, Virgile; Roca-Cusachs, Pere; Tucker-Kellogg, Lisa

    2017-01-01

    Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II–independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells. PMID:28687667

  14. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  15. Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2017-01-01

    a significant effect under the investigated conditions. Addition of compounds which increase the melt fraction of the ash dposit, typically by forming a eutectic system, increases the adhesion strength, whereas addition of inert compounds with a high melting point decreases the adhesion strength. Furthermore......Ash deposition on boiler surfaces is a major problem encountered in biomass combustion. Timely removal of ash deposits is essentialfor optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the adhesion strength of biomass ash from...... off by an electrically controlled arm, and the corresponding adhesion strength was measured. The effect of sintering temperature, sintering time, deposit composition, thermal shocks on the deposit, and steel type was investigated. The results reveal that the adhesion strength of ash deposits...

  16. Src Family Kinases Modulate the Loss of Endothelial Barrier Function in Response to TNF-α: Crosstalk with p38 Signaling.

    Directory of Open Access Journals (Sweden)

    Alejandro P Adam

    Full Text Available Activation of Src Family Kinase (SFK signaling is required for the increase in endothelial permeability induced by a variety of cytokines and growth factors. However, we previously demonstrated that activation of endogenous SFKs by expression of dominant negative C-terminal Src Kinase (DN-Csk is not sufficient to decrease endothelial adherens junction integrity. Basal SFK activity has been observed in normal venular endothelia and was not associated with increased basal permeability. The basal SFK activity however was found to contribute to increased sensitivity of the venular endothelium to inflammatory mediator-induced leakage. How SFK activation achieves this is still not well understood. Here, we show that SFK activation renders human dermal microvascular endothelial cells susceptible to low doses of TNF-α. Treatment of DN-Csk-expressing cells with 50 pg/ml TNF-α induced a loss of TEER as well as drastic changes in the actin cytoskeleton and focal adhesion proteins. This synergistic effect was independent of ROCK or NF-κB activity. TNF-α-induced p38 signaling was required for the synergistic effect on barrier function, and activation of the p38 MAPK alone was also able to induce changes in permeability only in monolayers with active SFKs. These results suggest that the activation of endogenous levels of SFK renders the endothelial barrier more susceptible to low, physiologic doses of TNF-α through activation of p38 which leads to a loss of endothelial tight junctions.

  17. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase.

    Science.gov (United States)

    Sung, Ho Joong; Son, Sin Jee; Yang, Seung-ju; Rhee, Ki-Jong; Kim, Yoon Suk

    2012-07-01

    Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.

  18. Nonwoven glass fiber mat reinforces polyurethane adhesive

    Science.gov (United States)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  19. Potential for Biobased Adhesives in Wood Bonding

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    There has been a resurgence of interest and research on using bio-based materials as wood adhesives; however, they have achieved only limited market acceptance. To better understand this low level of replacement, it is important to understand why adhesives work or fail in moisture durability tests. A holistic model for wood adhesives has been developed that clarifies...

  20. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  1. Recharging "Hot-Melt" Adhesive Film

    Science.gov (United States)

    Progar, D. J.

    1983-01-01

    Technique for recharging surface with "hot-melt" film makes use of one sided, high-temperature, pressure-sensitive adhesive tape. Purpose of the one-sided tape is to hold hot-melt charge in place until fused to surface. After adhesive has fused to surface and cooled, tape is removed, leaving adhesive on surface.

  2. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  3. Aspirin augments hyaluronidase induced adhesion inhibition ...

    African Journals Online (AJOL)

    Postoperative adhesions occur after virtually all abdomino-pelvic surgery and are the leading cause of intestinal obstruction and other gynaecologic problems. We used an animal model to test the efficacy of combined administration of aspirin and hyaluronidase on adhesion formation. Adhesions were induced using ...

  4. 21 CFR 878.4380 - Drape adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and... GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification. A drape adhesive is a device intended to be placed on the skin to attach a surgical drape. (b...

  5. Initial Homotypic Cell Pair Adhesion in Regenerating Hydra Facilitates Subsequent Adhesion of Homotypic Cells

    Science.gov (United States)

    Takaku, Y.; Hariyama, T.; Tsukahara, Y.

    In Hydra vulgaris at the level of dissociated single cells endodermal cells adhere to each other more readily than to ectodermal cells at the initial adhesion. The time required for adhesion to occur between two adjacent cells is shorter for both endodermal and ectodermal homotypic cell adhesions once the initial adhesion of the first pair of cells has been established. It is confirmed that contact of an aggregated pair with additional homotypic cells facilitates the occurrence of homotypic adhesions; heterotypic adhesions are discouraged. This suggests that adhesion of homotypic cells contributes to an increased readiness for subsequent homotypic cells to adhere.

  6. Decreasing asthma morbidity

    African Journals Online (AJOL)

    1994-12-12

    Dec 12, 1994 ... Apart from the optimal use of drugs, various supplementary methods have been tested to decrease asthma morbidity, usually in patients from reiatively affluent socio-economic backgrounds. A study of additional measures taken in a group of moderate to severe adult asthmatics from very poor socio- ...

  7. Citron kinase - renaissance of a neglected mitotic kinase.

    Science.gov (United States)

    D'Avino, Pier Paolo

    2017-05-15

    Cell division controls the faithful segregation of genomic and cytoplasmic materials between the two nascent daughter cells. Members of the Aurora, Polo and cyclin-dependent (Cdk) kinase families are known to regulate multiple events throughout cell division, whereas another kinase, citron kinase (CIT-K), for a long time has been considered to function solely during cytokinesis, the last phase of cell division. CIT-K was originally proposed to regulate the ingression of the cleavage furrow that forms at the equatorial cortex of the dividing cell after chromosome segregation. However, studies in the last decade have clarified that this kinase is, instead, required for the organization of the midbody in late cytokinesis, and also revealed novel functions of CIT-K earlier in mitosis and in DNA damage control. Moreover, CIT-K mutations have recently been linked to the development of human microcephaly, and CIT-K has been identified as a potential target in cancer therapy. In this Commentary, I describe and re-evaluate the functions and regulation of CIT-K during cell division and its involvement in human disease. Finally, I offer my perspectives on the open questions and future challenges that are necessary to address, in order to fully understand this important and yet unjustly neglected mitotic kinase. © 2017. Published by The Company of Biologists Ltd.

  8. Adhesive organ regeneration in Macrostomum lignano.

    Science.gov (United States)

    Lengerer, Birgit; Hennebert, Elise; Flammang, Patrick; Salvenmoser, Willi; Ladurner, Peter

    2016-06-02

    Flatworms possess pluripotent stem cells that can give rise to all cell types, which allows them to restore lost body parts after injury or amputation. This makes flatworms excellent model systems for studying regeneration. In this study, we present the adhesive organs of a marine flatworm as a simple model system for organ regeneration. Macrostomum lignano has approximately 130 adhesive organs at the ventral side of its tail plate. One adhesive organ consists of three interacting cells: one adhesive gland cell, one releasing gland cell, and one modified epidermal cell, called an anchor cell. However, no specific markers for these cell types were available to study the regeneration of adhesive organs. We tested 15 commercially available lectins for their ability to label adhesive organs and found one lectin (peanut agglutinin) to be specific to adhesive gland cells. We visualized the morphology of regenerating adhesive organs using lectin- and antibody staining as well as transmission electron microscopy. Our findings indicate that the two gland cells differentiate earlier than the connected anchor cells. Using EdU/lectin staining of partially amputated adhesive organs, we showed that their regeneration can proceed in two ways. First, adhesive gland cell bodies are able to survive partial amputation and reconnect with newly formed anchor cells. Second, adhesive gland cell bodies are cleared away, and the entire adhesive organ is build anew. Our results provide the first insights into adhesive organ regeneration and describe ten new markers for differentiated cells and tissues in M. lignano. The position of adhesive organ cells within the blastema and their chronological differentiation have been shown for the first time. M. lignano can regenerate adhesive organs de novo but also replace individual anchor cells in an injured organ. Our findings contribute to a better understanding of organogenesis in flatworms and enable further molecular investigations of cell

  9. Determination of the attractive force, adhesive force, adhesion energy and Hamaker constant of soot particles generated from a premixed methane/oxygen flame by AFM

    Science.gov (United States)

    Liu, Ye; Song, Chonglin; Lv, Gang; Chen, Nan; Zhou, Hua; Jing, Xiaojun

    2018-03-01

    Atomic force microscopy (AFM) was used to characterize the attractive force, adhesive force and adhesion energy between an AFM probe tip and nanometric soot particle generated by a premixed methane/oxygen flame. Different attractive force distributions were found when increasing the height above burner (HAB), with forces ranging from 1.1-3.5 nN. As the HAB was increased, the average attractive force initially increased, briefly decreased, and then underwent a gradual increase, with a maximum of 2.54 nN observed at HAB = 25 mm. The mean adhesive force was 6.5-7.5 times greater than the mean attractive force at the same HAB, and values were in the range of 13.5-24.5 nN. The adhesion energy was in the range of 2.0-5.6 × 10-17 J. The variations observed in the average adhesion energy with increasing HAB were different from those of the average adhesion force, implying that the stretched length of soot particles is an important factor affecting the average adhesion energy. The Hamaker constants of the soot particles generated at different HABs were determined from AFM force-separation curves. The average Hamaker constant exhibited a clear correlation with the graphitization degree of soot particles as obtained from Raman spectroscopy.

  10. Hyaluronan modulates cell proliferation and mRNA expression of adhesion-related procollagens and cytokines in glenohumeral synovial/capsular fibroblasts in adhesive capsulitis.

    Science.gov (United States)

    Nago, Masaru; Mitsui, Yasuhiro; Gotoh, Masafumi; Nakama, Kenjirou; Shirachi, Isao; Higuchi, Fujio; Nagata, Kensei

    2010-06-01

    There is a growing body of evidence supporting the use of hyaluronan (HA) in patients with adhesive capsulitis of the shoulder, although the mechanisms of the effect have not yet been clarified. This in vitro study examined the effects of HA on glenohumeral synovial/capsular fibroblasts (GSCFs) from patients with adhesive capsulitis of the shoulder. The study subjects were seven patients with primary or secondary adhesive capsulitis of the shoulder (average age: 55 years; range: 42-65). Synovial/capsular specimens were obtained from the rotator interval of each patient during arthroscopy. Part of the tissue specimen was used for histological analysis. The remainder of the tissue was prepared for cell culture. Various concentrations of HA (0.0-4.0 mg/mL) were added to the monolayer-cultured GSCFs from these patients. Histological analysis consistently demonstrated chronic nonspecific inflammation with synovial hyperplasia, proliferation of vessels and fibroblasts, and increased amount of extracellular matrix. Treatment with HA at various concentrations significantly and dose-dependently inhibited cell proliferation and decreased the expression levels of mRNA for adhesion-related procollagens and cytokines. Pretreatment with OS/37 did not reverse the inhibitory effect of HA. These results suggest that HA modulates cell proliferation and expression of the mRNA of adhesion-related procollagens and cytokines in GSCFs, preventing the progression of adhesion formation in patients with adhesive capsulitis of the shoulder. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells.

    Science.gov (United States)

    Roubos-van den Hil, P J; Nout, M J R; Beumer, R R; van der Meulen, J; Zwietering, M H

    2009-03-01

    This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action. Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells. Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds. The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.

  12. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  13. Improving anti-adhesion performance of electrosurgical electrode assisted with ultrasonic vibration.

    Science.gov (United States)

    Yao, Guang; Zhang, Deyuan; Geng, Daxi; Jiang, Xinggang

    2018-03-01

    The electrosurgical electrode currently stands out as one of the most commonly used tools in minimally invasive surgery. In order to facilitate tissue cutting and accelerate wound healing, tissue adhesion to the electrosurgical electrode is considered as an extremely urgent problem to be solved. In this paper, a novel ultrasonic vibration assisted (UV-A) electrosurgical electrode is firstly proposed to overcome the problem of tissue sticking. The anti-adhesion effects were evaluated by measuring the adhesion force and the weight of tissue adhesion using the electrosurgical electrode with and without UV-A comparatively. Experimental results show that the average adhesion force and the tissue adhesion mass with UV-A were decreased by approximately 60% and 70% respectively, accompanied by smaller thermal injury area compared with that without UV-A. Moreover, the underlying mechanism of anti-adhesion effect with UV-A was revealed by investigating the influence of ultrasonic vibration on electric current, tissue removal and spark discharge. This research suggests that UV-A is a promising and practical method for improving the anti-adhesion performance of electrosurgical electrode. Copyright © 2017. Published by Elsevier B.V.

  14. Anti-Caries Effects of Dental Adhesives Containing Quaternary Ammonium Methacrylates with Different Chain Lengths

    Directory of Open Access Journals (Sweden)

    Qi Han

    2017-06-01

    Full Text Available The objectives of this study were to investigate the effects of dental adhesives containing quaternary ammonium methacrylates (QAMs with different alkyl chain lengths (CL on ecological caries prevention in vitro. Five QAMs were synthesized with a CL = 3, 6, 9, 12, and 16 and incorporated into adhesives. Micro-tensile bond strength and surface charge density were used to measure the physical properties of the adhesives. The proportion change in three-species biofilms consisting of Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii was tested using the TaqMan real-time polymerase chain reaction. Lactic acid assay, MTT [3-(4,5-dimethyl-thiazol-2-yl-2,5-diphenyltetrazolium bromide] assay, exopolysaccharide staining, live/dead staining, scanning electron microscopy (SEM, and transverse microradiography (TMR were performed to study the anti-biofilm and anti-demineralization effects of the dental adhesives. The results showed that incorporating QAMs with different alkyl chain lengths into the adhesives had no obvious effect on the dentin bond strength. The adhesives containing QAMs with a longer alkyl chain developed healthier biofilms. The surface charge density, anti-biofilm, and anti-demineralization effects of the adhesives increased with a CL of the QAMs from 3 to 12, but decreased slightly with a CL from 12 to 16. In conclusion, adhesives containing QAMs with a tailored chain length are promising for preventing secondary caries in an “ecological way”.

  15. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Ruan, Hongjiang; Fan, Cunyi; Zeng, Bingfang; Wang, Chunyang; Wang, Xiang

    2010-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which extracellular signal-regulated kinase (ERK)2 is considered to be crucial. Based on these theories, we examined the effects of a lentivirus-mediated small interfering RNA (siRNA) targeting ERK2 on the suppression of joint adhesion formation in vivo. The effects were assessed in vivo from different aspects including the adhesion score, histology and joint contracture angle. We found that the adhesions in the ERK2 siRNA group became soft and weak, and were easily stretched. Accordingly, the flexion contracture angles in the ERK2 siRNA group were also reduced (P < 0.05 compared with the control group). The animals appeared healthy, with no signs of impaired wound healing. In conclusion, local delivery of a lentivirus-mediated siRNA targeting ERK2 can ameliorate joint adhesion formation effectively and safely.

  16. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...... the extracellular signal-regulated kinase (ERK) cascade to regulate GRK2 cellular levels. ERK activation by receptor stimulation elevated endogenous GRK2 while antagonist treatment decreased cellular GRK2. Activating ERK by overexpressing constitutive active MEK-1 or Ras elevated GRK2 protein levels while blocking...

  17. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    Directory of Open Access Journals (Sweden)

    Casey A Gilman

    Full Text Available One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C is the change in extension (Δ relative to a change in force (F while loading a gecko's adhesive system (C = dΔ/dF. Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g. We also examined changes between juveniles and adults within a single species (Phelsuma grandis. We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of

  18. Gecko adhesion pad: a smart surface?

    Science.gov (United States)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  19. Gecko adhesion pad: a smart surface?

    Energy Technology Data Exchange (ETDEWEB)

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  20. Gecko adhesion pad: a smart surface?

    International Nuclear Information System (INIS)

    Pesika, Noshir S; Zeng Hongbo; Kristiansen, Kai; Israelachvili, Jacob; Zhao, Boxin; Tian Yu; Autumn, Kellar

    2009-01-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  1. Photochemical tissue bonding with chitosan adhesive films

    Directory of Open Access Journals (Sweden)

    Piller Sabine C

    2010-09-01

    Full Text Available Abstract Background Photochemical tissue bonding (PTB is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm. A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31. The adhesion strength dropped to 0.5 ± 0.1 (n = 8 kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. Conclusion A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  2. SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions.

    Science.gov (United States)

    Sugden, Peter H; McGuffin, Liam J; Clerk, Angela

    2013-08-15

    The GCKIII (germinal centre kinase III) subfamily of the mammalian Ste20 (sterile 20)-like group of serine/threonine protein kinases comprises SOK1 (Ste20-like/oxidant-stress-response kinase 1), MST3 (mammalian Ste20-like kinase 3) and MST4. Initially, GCKIIIs were considered in the contexts of the regulation of mitogen-activated protein kinase cascades and apoptosis. More recently, their participation in multiprotein heterocomplexes has become apparent. In the present review, we discuss the structure and phosphorylation of GCKIIIs and then focus on their interactions with other proteins. GCKIIIs possess a highly-conserved, structured catalytic domain at the N-terminus and a less-well conserved C-terminal regulatory domain. GCKIIIs are activated by tonic autophosphorylation of a T-loop threonine residue and their phosphorylation is regulated primarily through protein serine/threonine phosphatases [especially PP2A (protein phosphatase 2A)]. The GCKIII regulatory domains are highly disorganized, but can interact with more structured proteins, particularly the CCM3 (cerebral cavernous malformation 3)/PDCD10 (programmed cell death 10) protein. We explore the role(s) of GCKIIIs (and CCM3/PDCD10) in STRIPAK (striatin-interacting phosphatase and kinase) complexes and their association with the cis-Golgi protein GOLGA2 (golgin A2; GM130). Recently, an interaction of GCKIIIs with MO25 has been identified. This exhibits similarities to the STRADα (STE20-related kinase adaptor α)-MO25 interaction (as in the LKB1-STRADα-MO25 heterotrimer) and, at least for MST3, the interaction may be enhanced by cis-autophosphorylation of its regulatory domain. In these various heterocomplexes, GCKIIIs associate with the Golgi apparatus, the centrosome and the nucleus, as well as with focal adhesions and cell junctions, and are probably involved in cell migration, polarity and proliferation. Finally, we consider the association of GCKIIIs with a number of human diseases, particularly

  3. Adhesion and wear properties of boro-tempered ductile iron

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Yalcin, Yilmaz; Taktak, Suekrue

    2011-01-01

    Highlights: → In this study, the wear and adhesion properties of BDI were investigated. → Boro-tempering process under several heat treatment conditions was examined. → Optical microscope, SEM and XRD analysis were carried out to investigate the microstructure. → It was observed that boro-tempering process improves micro-hardness and wear properties of ductile irons. -- Abstract: In this study, adhesion and wear properties of boro-tempered ductile iron (BDI) were investigated. Boro-tempering was carried out on two stage processes i.e. boronizing and tempering. At the first stage, ductile iron samples were boronized by using pack process at 900 o C for 1, 3, and 5 h and then, secondly tempered at 250, 300, 350, and 400 o C for 1 h. X-ray diffraction (XRD) analysis of boro-tempered samples showed that FeB and Fe 2 B phases were found on the surface of the samples. The Daimler-Benz Rockwell-C adhesion test was used to assess the adhesion of boride layer. Test result showed that adhesion decreased with increasing boriding time and increased with increasing tempering temperature. Dry sliding wear tests of these samples were performed against Al 2 O 3 ball at a constant sliding speed and loads of 5 and 10 N. Wear tests indicated that boro-tempering heat treatment increased wear resistance of ductile iron. In addition, it was found that while wear rate of boro-tempered samples decreased with increasing boriding time, there is no significant affect of tempering temperature on wear rate.

  4. Effect of antibacterial dental adhesive on multispecies biofilms formation.

    Science.gov (United States)

    Zhang, K; Wang, S; Zhou, X; Xu, H H K; Weir, M D; Ge, Y; Li, M; Wang, S; Li, Y; Xu, X; Zheng, L; Cheng, L

    2015-04-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P biofilms compared with control group (P biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial properties to serve as "bioactive" adhesive materials and revealed its potential value for antibiofilm and anticaries clinical applications. © International & American Associations for Dental Research 2015.

  5. Platelet adhesion onto artificial red blood cells.

    Science.gov (United States)

    Muramatsu, N; Kondo, T

    1980-05-01

    Several kinds of polyamide microcapsules containing mammalian hemolysate were prepared by making use of the interfacial polycondensation reaction between diamines and terephthaloyl dichloride and their blood compatibility in terms of platelet adhesion was examined aiming at their ultimate clinical use as artificial red blood cells. It was found that rabbit platelets adhere onto the hemolysate-loaded microcapsules in the presence of the plasma, while no platelet adhesion takes place in the absence of the plasma. This was interpreted as indicating an important role of plasma components in platelet adhesion. Moreover, platelet adhesion was observed to be facilitated by negative charges on the surface of the hemolysate-loaded microcapsules; the more negatively the surface was charge, the more easily the platelets adhered onto the surface. Finally, the present method of assessing platelet adhesion suggested the possibility of its use for kinetic study of platelet adhesion since it allowedus to make numerical evaluation of platelet adhesion as a function of time.

  6. Friction and adhesion of gecko-inspired PDMS flaps on rough surfaces.

    Science.gov (United States)

    Yu, Jing; Chary, Sathya; Das, Saurabh; Tamelier, John; Turner, Kimberly L; Israelachvili, Jacob N

    2012-08-07

    Geckos have developed a unique hierarchical structure to maintain climbing ability on surfaces with different roughness, one of the extremely important parameters that affect the friction and adhesion forces between two surfaces. Although much attention has been paid on fabricating various structures that mimic the hierarchical structure of a gecko foot, yet no systematic effort, in experiment or theory, has been made to quantify the effect of surface roughness on the performance of the fabricated structures that mimic the hierarchical structure of geckos. Using a modified surface forces apparatus (SFA), we measured the adhesion and friction forces between microfabricated tilted PDMS flaps and optically smooth SiO(2) and rough SiO(2) surfaces created by plasma etching. Anisotropic adhesion and friction forces were measured when sliding the top glass surface along (+y) and against (-y) the tilted direction of the flaps. Increasing the surface roughness first increased the adhesion and friction forces measured between the flaps and the rough surface due to topological matching of the two surfaces but then led to a rapid decrease in both of these forces. Our results demonstrate that the surface roughness significantly affects the performance of gecko mimetic adhesives and that different surface textures can either increase or decrease the adhesion and friction forces of the fabricated adhesives.

  7. Effects of surface roughness and film thickness on the adhesion of a bioinspired nanofilm

    Science.gov (United States)

    Peng, Z. L.; Chen, S. H.

    2011-05-01

    Inspired by the gecko's climbing ability, adhesion between an elastic nanofilm with finite length and a rough substrate with sinusoidal roughness is studied in the present paper, considering the effects of substrate roughness and film thickness. It demonstrates that the normal adhesion force of the nanofilm on a rough substrate depends significantly on the geometrical parameters of the substrate. When the film length is larger than the wavelength of the sinusoidal roughness of the substrate, the normal adhesion force decreases with increasing surface roughness, while the normal adhesion force initially decreases then increases if the wavelength of roughness is larger than the film length. This finding is qualitatively consistent with a previously interesting experimental observation in which the adhesion force of the gecko spatula is found to reduce significantly at an intermediate roughness. Furthermore, it is inferred that the gecko may achieve an optimal spatula thickness not only to follow rough surfaces, but also to saturate the adhesion force. The results in this paper may be helpful for understanding how geckos overcome the influence of natural surface roughness and possess such adhesion to support their weights.

  8. Effect of hyaluronic acid on postoperative intraperitoneal adhesion formation in the rat model

    Energy Technology Data Exchange (ETDEWEB)

    Urman, B.; Gomel, V.; Jetha, N. (Department of Obstetrics and Gynecology, University of British Columbia, Vancouver (Canada))

    1991-09-01

    The aim of this study was to determine the effectiveness of hyaluronic acid solution in preventing intraperitoneal (IP) adhesions. The study design was prospective, randomized and blinded and involved 83 rats. Measured serosal injury was inflicted using a CO2 laser on the right uterine horn of the rat. Animals randomized to groups 1 and 2 received either 0.4% hyaluronic acid or its diluent phosphate-buffered saline (PBS) intraperitoneally before and after the injury. In groups 3 and 4, the same solutions were used only after the injury. Postoperative adhesions were assessed at second-look laparotomy. Histologic assessment of the fresh laser injury was carried out on uteri pretreated with hyaluronic acid, PBS, or nothing. Pretreatment with hyaluronic acid was associated with a significant reduction in postoperative adhesions and a significantly decreased crater depth. Hyaluronic acid appears to reduce postoperative IP adhesion formation by coating the serosal surfaces and decreasing the extent of initial tissue injury.

  9. The physical effects of an adhesive dressing top layer on burn wound dressings.

    Science.gov (United States)

    Queen, D; Evans, J H; Gaylor, J D; Courtney, J M; Reid, W H

    1986-06-01

    Three hydrogels were assessed in respect of water-vapour transmission and conformability. These materials were tested alone and as part of a bilaminate dressing which incorporates an adhesive top layer. The adhesive layer used in this study was a compliant adhesive bandage, marketed under the name Mefix. It was observed that this layer reduced the normally high water-vapour transmission rates of the hydrogels to much lower, clinically more acceptable, levels. Mechanically, the Mefix layer protects the underlying hydrogel, prevents tearing and puncturing but decreases conformability by elastic restraint.

  10. Adhesives for fixed orthodontic brackets.

    Science.gov (United States)

    Mandall, N A; Millett, D T; Mattick, C R; Hickman, J; Macfarlane, T V; Worthington, H V

    2003-01-01

    Bonding of orthodontic brackets to teeth is important to enable effective and efficient treatment with fixed appliances. The problem is bracket failure during treatment which increases operator chairside time and lengthens treatment time. A prolonged treatment is likely to increase the oral health risks of orthodontic treatment with fixed appliances one of which is irreversible enamel decalcification. To evaluate the effectiveness of different orthodontic adhesives for bonding. Electronic databases: the Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE. Date of most recent searches: August 2002 (CENTRAL) (The Cochrane Library Issue 2, 2002). Trials were selected if they met the following criteria: randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing two different adhesive groups. Participants were patients with fixed orthodontic appliances. The interventions were adhesives that bonded stainless steel brackets to all teeth except the molars. The primary outcome was debond or bracket failure. Data were recorded on decalcification as a secondary outcome, if present. Information regarding methods, participants, interventions, outcome measures and results were extracted in duplicate by pairs of reviewers (Nicky Mandall (NM) and Rye Mattick (CRM); Declan Millett (DTM) and Joy Hickman (JH2)). Since the data were not presented in a form that was amenable to meta-analysis, the results of the review are presented in narrative form only. Three trials satisfied the inclusion criteria. A chemical cured composite was compared with a light cure composite (one trial), a conventional glass ionomer cement (one trial) and a polyacid-modified resin composite (compomer) (one trial). The quality of the trial reports was generally poor. It is difficult to draw any conclusions from this review, however, suggestions are made for methods of improving future research involving

  11. DIABETES AND SHOULDER ADHESIVE CAPSULITIS

    OpenAIRE

    J. Mohanakrishnan; Bhanumathy Mohanakrishnan

    2016-01-01

    Background: Adhesive capsulitis (AC) of shoulder is a common condition encountered by physical therapists in their routine outpatient care services; AC of shoulder is as by itself being a self limiting disorder lasts from months to years causing pain and discomfort to the patients. The condition is commonly associated with Diabetes mellitus or other co morbidities. The incidence of AC is high among diabetic individuals and it becomes mandatory on the part of physical therapists and other heal...

  12. Polymer nanocarriers for dentin adhesion.

    Science.gov (United States)

    Osorio, R; Osorio, E; Medina-Castillo, A L; Toledano, M

    2014-12-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP- N : Active nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days' immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p degradation. Tested nanoparticles may be incorporated into dental adhesive systems to provide the appropriate environment in which dentin MMP collagen degradation is inhibited and mineral growth can occur. © International & American Associations for Dental Research.

  13. Culinary Medicine—Jalebi Adhesions

    OpenAIRE

    Kapoor, Vinay K

    2015-01-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injurin...

  14. Polyurethane adhesives in flat roofs

    OpenAIRE

    Bogárová Markéta; Stodůlka Jindřich; Šuhajda Karel

    2017-01-01

    It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is...

  15. A review of our development of dental adhesives--effects of radical polymerization initiators and adhesive monomers on adhesion.

    Science.gov (United States)

    Ikemura, Kunio; Endo, Takeshi

    2010-03-01

    This paper reviews the development of dental adhesives by collating information of related studies from original scientific papers, reviews, and patent literatures. Through our development, novel radical polymerization initiators, adhesive monomers, and microcapsules were synthesized, and their effects on adhesion were investigated. It was found that 5-monosubstituted barbituric acid (5-MSBA)-containing ternary initiators in conjunction with adhesive monomers contributed to effective adhesion with good polymerization reactivity. Several kinds of novel adhesive monomers bearing carboxyl group, phosphonic acid group or sulfur-containing group were synthesized, and investigated their multi-purpose bonding functions. It was suggested that the flexible methylene chain in the structure of adhesive monomers played a pivotal role in their enhanced bonding durability. It was found that the combination of acidic monomers with sulfur-containing monomer markedly improved adhesion to enamel, dentin, porcelain, alumina, zirconia, non-precious metals and precious metals. A new poly(methyl methacrylate) (PMMA)-type adhesive resin comprising microencapsulated polymerization initiators was also found to exhibit both good formulation stability and excellent adhesive property.

  16. A measurement system analysis with design of experiments: Investigation of the adhesion performance of a pressure sensitive adhesive with the probe tack test.

    Science.gov (United States)

    Michaelis, Marc; Leopold, Claudia S

    2015-12-30

    The tack of a pressure sensitive adhesive (PSA) is not an inherent material property and strongly depends on the measurement conditions. Following the concept of a measurement system analysis (MSA), influencing factors of the probe tack test were investigated by a design of experiments (DoE) approach. A response surface design with 38 runs was built to evaluate the influence of detachment speed, dwell time, contact force, adhesive film thickness and API content on tack, determined as the maximum of the stress strain curve (σmax). It could be shown that all investigated factors have a significant effect on the response and that the DoE approach allowed to detect two-factorial interactions between the dwell time, the contact force, the adhesive film thickness and the API content. Surprisingly, it was found that tack increases with decreasing and not with increasing adhesive film thickness. Copyright © 2015. Published by Elsevier B.V.

  17. Quantitative proteomic profiling identifies DPYSL3 as pancreatic ductal adenocarcinoma-associated molecule that regulates cell adhesion and migration by stabilization of focal adhesion complex.

    Directory of Open Access Journals (Sweden)

    Takeo Kawahara

    Full Text Available Elucidation of how pancreatic cancer cells give rise to distant metastasis is urgently needed in order to provide not only a better understanding of the underlying molecular mechanisms, but also to identify novel targets for greatly improved molecular diagnosis and therapeutic intervention. We employed combined proteomic technologies including mass spectrometry and isobaric tags for relative and absolute quantification peptide tagging to analyze protein profiles of surgically resected human pancreatic ductal adenocarcinoma tissues. We identified a protein, dihydropyrimidinase-like 3, as highly expressed in human pancreatic ductal adenocarcinoma tissues as well as pancreatic cancer cell lines. Characterization of the roles of dihydropyrimidinase-like 3 in relation to cancer cell adhesion and migration in vitro, and metastasis in vivo was performed using a series of functional analyses, including those employing multiple reaction monitoring proteomic analysis. Furthermore, dihydropyrimidinase-like 3 was found to interact with Ezrin, which has important roles in cell adhesion, motility, and invasion, while that interaction promoted stabilization of an adhesion complex consisting of Ezrin, c-Src, focal adhesion kinase, and Talin1. We also found that exogenous expression of dihydropyrimidinase-like 3 induced activating phosphorylation of Ezrin and c-Src, leading to up-regulation of the signaling pathway. Taken together, the present results indicate successful application of combined proteomic approaches to identify a novel key player, dihydropyrimidinase-like 3, in pancreatic ductal adenocarcinoma tumorigenesis, which may serve as an important biomarker and/or drug target to improve therapeutic strategies.

  18. Quantitative proteomic profiling identifies DPYSL3 as pancreatic ductal adenocarcinoma-associated molecule that regulates cell adhesion and migration by stabilization of focal adhesion complex.

    Science.gov (United States)

    Kawahara, Takeo; Hotta, Naoe; Ozawa, Yukiko; Kato, Seiichi; Kano, Keiko; Yokoyama, Yukihiro; Nagino, Masato; Takahashi, Takashi; Yanagisawa, Kiyoshi

    2013-01-01

    Elucidation of how pancreatic cancer cells give rise to distant metastasis is urgently needed in order to provide not only a better understanding of the underlying molecular mechanisms, but also to identify novel targets for greatly improved molecular diagnosis and therapeutic intervention. We employed combined proteomic technologies including mass spectrometry and isobaric tags for relative and absolute quantification peptide tagging to analyze protein profiles of surgically resected human pancreatic ductal adenocarcinoma tissues. We identified a protein, dihydropyrimidinase-like 3, as highly expressed in human pancreatic ductal adenocarcinoma tissues as well as pancreatic cancer cell lines. Characterization of the roles of dihydropyrimidinase-like 3 in relation to cancer cell adhesion and migration in vitro, and metastasis in vivo was performed using a series of functional analyses, including those employing multiple reaction monitoring proteomic analysis. Furthermore, dihydropyrimidinase-like 3 was found to interact with Ezrin, which has important roles in cell adhesion, motility, and invasion, while that interaction promoted stabilization of an adhesion complex consisting of Ezrin, c-Src, focal adhesion kinase, and Talin1. We also found that exogenous expression of dihydropyrimidinase-like 3 induced activating phosphorylation of Ezrin and c-Src, leading to up-regulation of the signaling pathway. Taken together, the present results indicate successful application of combined proteomic approaches to identify a novel key player, dihydropyrimidinase-like 3, in pancreatic ductal adenocarcinoma tumorigenesis, which may serve as an important biomarker and/or drug target to improve therapeutic strategies.

  19. cAMP-dependent protein kinase phosphorylation of EVL, a Mena/VASP relative, regulates its interaction with actin and SH3 domains.

    Science.gov (United States)

    Lambrechts, A; Kwiatkowski, A V; Lanier, L M; Bear, J E; Vandekerckhove, J; Ampe, C; Gertler, F B

    2000-11-17

    Proteins of the Ena/VASP family are implicated in processes that require dynamic actin remodeling such as axon guidance and platelet activation. In this work, we explored some of the pathways that likely regulate actin dynamics in part via EVL (Ena/VASP-like protein). Two isoforms, EVL and EVL-I, were highly expressed in hematopoietic cells of thymus and spleen. In CD3-activated T-cells, EVL was found in F-actin-rich patches and at the distal tips of the microspikes that formed on the activated side of the T-cells. Like the other family members, EVL localized to focal adhesions and the leading edge of lamellipodia when expressed in fibroblasts. EVL was a substrate for the cAMP-dependent protein kinase, and this phosphorylation regulated several of the interactions between EVL and its ligands. Unlike VASP, EVL nucleated actin polymerization under physiological conditions, whereas phosphorylation of both EVL and VASP decreased their nucleating activity. EVL bound directly to the Abl, Lyn, and nSrc SH3 domains; the FE65 WW domain; and profilin, likely via its proline-rich core. Binding of Abl and nSrc SH3 domains, but not profilin or other SH3 domains, was abolished by cAMP-dependent protein kinase phosphorylation of EVL. We show strong cooperative binding of two profilin dimers on the polyproline sequence of EVL. Additionally, profilin competed with the SH3 domains for binding to partially overlapping binding sites. These data suggest that the function of EVL could be modulated in a complex manner by its interactions with multiple ligands and through phosphorylation by cyclic nucleotide dependent kinases.

  20. Culinary Medicine-Jalebi Adhesions.

    Science.gov (United States)

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.'

  1. Modeling of Sylgard Adhesive Strength

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Ralph Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-03

    Sylgard is the name of a silicone elastomeric potting material manufactured by Dow Corning Corporation.1 Although the manufacturer cites its low adhesive strength as a feature of this product, thin layers of Sylgard do in fact have a non-negligible strength, which has been measured in recent tensile and shear debonding tests. The adhesive strength of thin layers of Sylgard potting material can be important in applications in which components having signi cantly di erent thermal expansion properties are potted together, and the potted assembly is subjected to temperature changes. The tensile and shear tractions developed on the potted surfaces of the components can cause signi cant internal stresses, particularly for components made of low-strength materials with a high area-to-volume ratio. This report is organized as follows: recent Sylgard debonding tests are rst brie y summarized, with particular attention to the adhesion between Sylgard and PBX 9501, and also between Sylgard and aluminum. Next, the type of numerical model that will be used to simulate the debonding behavior exhibited in these tests is described. Then the calibration of the debonding model will be illustrated. Finally, the method by which the model parameters are adjusted (scaled) to be applicable to other, non- tested bond thicknesses is summarized, and all parameters of the model (scaled and unscaled) are presented so that other investigators can reproduce all of the simulations described in this report as well as simulations of the application of interest.

  2. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    and protein levels of MAPKAPK3 were elevated in both HCV subgenomic replicon cells and cell culture-derived HCV (HCVcc)-infected cells. Silencing of MAPKAPK3 expression resulted in decreases in both protein and HCV infectivity levels but not in the intracellular HCV RNA level. We showed that MAPKAPK3......Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray......, approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...

  3. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  4. Functional Peptides from Laminin-1 Improve the Cell Adhesion Capacity of Recombinant Mussel Adhesive Protein.

    Science.gov (United States)

    Wang, Kai; Ji, Lina; Hua, Zichun

    2017-01-01

    Since cell adhesion is important for cell processes such as migration and proliferation, it is a crucial consideration in biomaterial design and development. Based on the fusion of mussel adhesive protein fp151 with laminin-1-originated functional peptides we designed fusion proteins (fLA4, fLG6 and fAG73) and explored their cell adhesion properties. In our study, cell adhesion analysis showed that protein fLG6 and fLA4 had a significantly higher cell adhesion property for A549 than fp151. Moreover, protein fAG73 also displayed a strong adhesion capacity for Hela cells. In conclusion, the incorporation of functional peptides with integrin and heparin/heparan sulphate binding capacity into mussel adhesive protein will promote the application of mussel adhesive protein as cell adhesion biomaterial. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Deletion of the Ste20-like kinase SLK in skeletal muscle results in a progressive myopathy and muscle weakness.

    Science.gov (United States)

    Pryce, Benjamin R; Al-Zahrani, Khalid N; Dufresne, Sébastien; Belkina, Natalya; Labrèche, Cédrik; Patino-Lopez, Genaro; Frenette, Jérôme; Shaw, Stephen; Sabourin, Luc A

    2017-02-02

    The Ste20-like kinase, SLK, plays an important role in cell proliferation and cytoskeletal remodeling. In fibroblasts, SLK has been shown to respond to FAK/Src signaling and regulate focal adhesion turnover through Paxillin phosphorylation. Full-length SLK has also been shown to be essential for embryonic development. In myoblasts, the overexpression of a dominant negative SLK is sufficient to block myoblast fusion. In this study, we crossed the Myf5-Cre mouse model with our conditional SLK knockout model to delete SLK in skeletal muscle. A thorough analysis of skeletal muscle tissue was undertaken in order to identify defects in muscle development caused by the lack of SLK. Isometric force analysis was performed on adult knockout mice and compared to age-matched wild-type mice. Furthermore, cardiotoxin injections were performed followed by immunohistochemistry for myogenic markers to assess the efficiency muscle regeneration following SLK deletion. We show here that early deletion of SLK from the myogenic lineage does not markedly impair skeletal muscle development but delays the regenerative process. Interestingly, adult mice (~6 months) display an increase in the proportion of central nuclei and increased p38 activation. Furthermore, mice as young as 3 months old present with decreased force generation, suggesting that the loss of SLK impairs myofiber stability and function. Assessment of structural components revealed aberrant localization of focal adhesion proteins, such as FAK and paxillin. Our data show that the loss of SLK results in unstable myofibers resulting in a progressive myopathy. Additionally, the loss of SLK resulted in a delay in muscle regeneration following cardiotoxin injections. Our results show that SLK is dispensable for muscle development and regeneration but is required for myofiber stability and optimal force generation.

  6. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  7. Ternary Ag/epoxy adhesive with excellent overall performance.

    Science.gov (United States)

    Ji, Yan-Hong; Liu, Yu; Huang, Gui-Wen; Shen, Xiao-Jun; Xiao, Hong-Mei; Fu, Shao-Yun

    2015-04-22

    Excellent electrical conductivity (EC) generally conflicts with high lap shear strength (LSS) for electrically conductive adhesives (ECAs) since EC increases while LSS decreases with increasing conductive filler content. In this work, the ECAs with the excellent overall performance are developed based on the ternary hybrid of Ag microflakes (Ag-MFs), Ag nanospheres (Ag-NSs), and Ag nanowires (Ag-NWs). First, a low silver content adhesive system is determined. Then, the effects of the relative contents of Ag fillers on the EC and the LSS are studied. It is shown that a small amount of Ag-NSs or Ag-NWs can dramatically improve the EC for the Ag-MF/epoxy adhesives. The Ag-NSs and Ag-NWs with appropriate contents have a synergistic effect in improving the EC. Meanwhile, the LSS of the as-prepared adhesive with the appropriate Ag contents reaches an optimal value. Both the EC and the LSS of the as-prepared ternary hybrid ECA with a low content of 40 wt % Ag are higher than those of the commercial ECAs filled with the Ag-MF content over 60 wt %. Finally, the ternary hybrid ECA with the optimal formulation is shown to be promising for printing the radio frequency identification tag antennas as an immediate application example.

  8. Marginal Sealing Durability of Two Contemporary Self-Etch Adhesives

    Science.gov (United States)

    Khoroushi, Maryam; Mansoori, Mahsa

    2012-01-01

    Introduction. Sealing abilities of two self-etch adhesives were evaluated after two aging processes: storage in water and thermocycling. Materials and Methods. Cl V cavities were prepared on the buccal and lingual aspects of 48 human premolars, with cervical margins 1 mm below the CEJ. Clearfil Protect Bond (CPB) and BeautiBond (BB) (two-step and one-step self-etch adhesives, resp.) were applied, each to half of the cavities and restored with composite resin. Each group was randomly subdivided into 4 subgroups (n = 12) and evaluated for dye penetration after 24 hours, after 3000 thermocycling rounds, after a 6-month water storage, and after 3000 thermocycling rounds plus 6-month water storage, respectively. Data was analyzed using SPSS 11.5 and Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results. There were no significant differences in enamel and dentin microleakage between the adhesives (P = 0.683; P = 0.154). Furthermore, no significant differences were observed in enamel microleakage of each one of CPB and BB (P = 0.061 and P = 0.318, resp.). However, significant decrease was observed in subgroups 3 and 4 (P = 0.001) for CPB dentinal margins. Conclusion. In this study, limited aging procedures had no influence on marginal integrity of composite resin restorations bonded with self-etch adhesives of CPB and BB. Furthermore, CPB dentinal sealing improved after aging. PMID:22611501

  9. Polymeric immunoglobulin receptor-mediated invasion of Streptococcus pneumoniae into host cells requires a coordinate signaling of SRC family of protein-tyrosine kinases, ERK, and c-Jun N-terminal kinase.

    Science.gov (United States)

    Agarwal, Vaibhav; Asmat, Tauseef M; Dierdorf, Nina I; Hauck, Christof R; Hammerschmidt, Sven

    2010-11-12

    Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells.

  10. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    phosphorylation. Protein-tyrosine phosphorylation in bacteria is particular with respect to very low occupancy of phosphorylation sites in vivo; this has represented a major challenge for detection techniques. Only the recent breakthroughs in gel-free high resolution mass spectrometry allowed the systematic...... detection of phosphorylated tyrosines by phosphoprotomics studies in bacteria. Other pioneering studies conducted in recent years, such as the first structures of BY-kinases and biochemical and phyiological studies of new BY-kinase substrates significantly furthered our understanding of these enzymes...

  11. Plant toxin β-ODAP activates integrin β1 and focal adhesion: A critical pathway to cause neurolathyrism.

    Science.gov (United States)

    Tan, Rui-Yue; Xing, Geng-Yan; Zhou, Guang-Ming; Li, Feng-Min; Hu, Wen-Tao; Lambein, Fernand; Xiong, Jun-Lan; Zhang, Sheng-Xiang; Kong, Hai-Yan; Zhu, Hao; Li, Zhi-Xiao; Xiong, You-Cai

    2017-01-17

    Neurolathyrism is a unique neurodegeneration disease caused by β-N-oxalyl-L-α, β- diaminopropionic (β-ODAP) present in grass pea seed (Lathyrus stativus L.) and its pathogenetic mechanism is unclear. This issue has become a critical restriction to take full advantage of drought-tolerant grass pea as an elite germplasm resource under climate change. We found that, in a human glioma cell line, β-ODAP treatment decreased mitochondrial membrane potential, leading to outside release and overfall of Ca 2+ from mitochondria to cellular matrix. Increased Ca 2+ in cellular matrix activated the pathway of ECM, and brought about the overexpression of β1 integrin on cytomembrane surface and the phosphorylation of focal adhesion kinase (FAK). The formation of high concentration of FA units on the cell microfilaments further induced overexpression of paxillin, and then inhibited cytoskeleton polymerization. This phenomenon turned to cause serious cell microfilaments distortion and ultimately cytoskeleton collapse. We also conducted qRT-PCR verification on RNA-sequence data using 8 randomly chosen genes of pathway enrichment, and confirmed that the data was statistically reliable. For the first time, we proposed a relatively complete signal pathway to neurolathyrism. This work would help open a new window to cure neurolathyrism, and fully utilize grass pea germplasm resource under climate change.

  12. Inhibition of Rho kinase regulates specification of early differentiation events in P19 embryonal carcinoma stem cells.

    Directory of Open Access Journals (Sweden)

    Roman J Krawetz

    Full Text Available The Rho kinase pathway plays a key role in many early cell/tissue determination events that take place in embryogenesis. Rho and its downstream effector Rho kinase (ROCK play pivotal roles in cell migration, apoptosis (membrane blebbing, cell proliferation/cell cycle, cell-cell adhesion and gene regulation. We and others have previously demonstrated that inhibition of ROCK blocks endoderm differentiation in embryonal carcinoma stem cells, however, the effect of ROCK inhibition on mesoderm and ectoderm specification has not been fully examined. In this study, the role of ROCK within the specification and differentiation of all three germ layers was examined.P19 cells were treated with the specific ROCK inhibitor Y-27623, and increase in differentiation efficiency into neuro-ectodermal and mesodermal lineages was observed. However, as expected a dramatic decrease in early endodermal markers was observed when ROCK was inhibited. Interestingly, within these ROCK-inhibited RA treated cultures, increased levels of mesodermal or ectodermal markers were not observed, instead it was found that the pluripotent markers SSEA-1 and Oct-4 remained up-regulated similar to that seen in undifferentiated cultures. Using standard and widely accepted methods for reproducible P19 differentiation into all three germ layers, an enhancement of mesoderm and ectoderm differentiation with a concurrent loss of endoderm lineage specification was observed with Y-27632 treatment. Evidence would suggest that this effect is in part mediated through TGF-β and SMAD signaling as ROCK-inhibited cells displayed aberrant SMAD activation and did not return to a 'ground' state after the inhibition had been removed.Given this data and the fact that only a partial rescue of normal differentiation capacity occurred when ROCK inhibition was alleviated, the effect of ROCK inhibition on the differentiation capacity of pluripotent cell populations should be further examined to elucidate the

  13. Handbook of Adhesion, 2nd Edition

    Science.gov (United States)

    Packham, D. E.

    2005-06-01

    This second edition of the successful Handbook of Adhesion provides concise and authoritative articles covering many aspects of the science and technology associated with adhesion and adhesives. It is intended to fill a gap between the necessarily simplified treatment of the student textbook and the full and thorough treatment of the research monograph and review article. The articles are structured in such a way, with internal cross-referencing and external literature references, that the reader can build up a broader and deeper understanding, as their needs require. This second edition includes many new articles covering developments which have risen in prominence in the intervening years, such as scanning probe techniques, the surface forces apparatus and the relation between adhesion and fractal surfaces. Advances in understanding polymer - polymer interdiffusion are reflected in articles drawing out the implications for adhesive bonding. In addition, articles derived from the earlier edition have been revised and updated where needed. Throughout the book there is a renewed emphasis on environmental implications of the use of adhesives and sealants. The scope of the Handbook, which features nearly 250 articles from over 60 authors, includes the background science - physics, chemistry and material science - and engineering, and also aspects of adhesion relevant to the use of adhesives, including topics such as: Sealants and mastics Paints and coatings Printing and composite materials Welding and autohesion Engineering design The Handbook of Adhesion is intended for scientists and engineers in both academia and industry, requiring an understanding of the various facets of adhesion.

  14. The evaluation of p,p′-DDT exposure on cell adhesion of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Jin, Xiaoting; Chen, Meilan; Song, Li; Li, Hanqing; Li, Zhuoyu

    2014-01-01

    Graphical abstract: - Highlights: • Low doses p,p′-DDT exposure disrupts cell–cell adhesion and cell–matrix adhesion in HepG2 cells. • Both oxidative stress and JAK/STAT3 pathway are activated in p,p′-DDT-treated HepG2 cells. • The stimulation of JAK/STAT3 pathway is mediated by oxidative stress. • p,p′-DDT regulates adhesion molecules via the JAK/STAT3 pathway. • p,p′-DDT stimulates JAK/STAT3 signal pathway and disrupts the expressions of cell adhesion molecules in nude mice models. - Abstract: Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p′-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p′-DDT, exposing HepG2 cells for 6 days, decreased cell–cell adhesion and elevated cell–matrix adhesion. Strikingly, p,p′-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p′-DDT-induced effects. p,p′-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p′-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p′-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p′-DDT profoundly promotes the adhesion process by decreasing cell–cell adhesion and inducing cell

  15. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    International Nuclear Information System (INIS)

    Díaz Téllez, J P; Harirchian-Saei, S; Li, Y; Menon, C

    2013-01-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet–visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved. (paper)

  16. Integrin-linked kinase regulates cellular mechanics facilitating the motility in 3D extracellular matrices.

    Science.gov (United States)

    Kunschmann, Tom; Puder, Stefanie; Fischer, Tony; Perez, Jeremy; Wilharm, Nils; Mierke, Claudia Tanja

    2017-03-01

    The motility of cells plays an important role for many processes such as wound healing and malignant progression of cancer. The efficiency of cell motility is affected by the microenvironment. The connection between the cell and its microenvironment is facilitated by cell-matrix adhesion receptors and upon their activation focal adhesion proteins such as integrin-linked kinase (ILK) are recruited to sites of focal adhesion formation. In particular, ILK connects cell-matrix receptors to the actomyosin cytoskeleton. However, ILK's role in cell mechanics regulating cellular motility in 3D collagen matrices is still not well understood. We suggest that ILK facilitates 3D motility by regulating cellular mechanical properties such as stiffness and force transmission. Thus, ILK wild-type and knock-out cells are analyzed for their ability to migrate on 2D substrates serving as control and in dense 3D extracellular matrices. Indeed, ILK wild-type cells migrated faster on 2D substrates and migrated more numerous and deeper in 3D matrices. Hence, we analyzed cellular deformability, Young's modulus (stiffness) and adhesion forces. We found that ILK wild-type cells are less deformable (stiffer) and produce higher cell-matrix adhesion forces compared to ILK knock-out cells. Finally, ILK is essential for providing cellular mechanical stiffness regulating 3D motility. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. [Study of pretreatment with ethanol to compensate premature volatilization of self-etch adhesive system].

    Science.gov (United States)

    Li, Hong; Yang, Hongye; Huang, Cui; Deng, Donglai

    2014-06-01

    To evaluate the effect of pretreatment with ethanol on dentin to compensate premature volatilization of self-etch adhesive system. Thirty-two intact human molars were randomly divided into two groups using a table of random numbers (n = 16): A, an acetone-base adhesive (G-bond) and B, an ethanol-based adhesive (Clearfile S(3) bond). Then each group was randomly assigned into foursub groups (n = 4) : group 1, no premature volatilization; group 2, premature volatilization; group 3, premature volatilization + stepwise ethanol pretreatments; and group 4, premature volatilization + absolute ethanol treatment. After composite resin building, microtensile bond strengths (MTBS) of each subgroup were then tested. Fracture modes were classified by stereomicroscopy and representative interface was observed by field-emission scanning electron microscopy (FE-SEM). For adhesive A, there was significant difference on MTBS among different subgroups (P 0.05); neither between group A1 and A3 (P > 0.05). For adhesive B, there was no difference on MTBS among different subgroups (P > 0.05).FE-SEM showed that the main fracture mode was located at the bottom of the hybrid layer for adhesive A groups, the collagen fibrils were capsulated by resin monomers more densely in group A1 and group A3 in comparison with other two subgroups.For adhesive B groups, the main failure modes were at the top of the hybrid layer. Premature volatilization can obviously decrease the bonding strength of acetone-base self-etch adhesives, but has no significant effect on ethanol-based self-etch adhesives. Dentin pretreatment with a series of increasing ethanol concentrations can effectively compensate the adverse effect of premature volatilization of acetone-base self-etch adhesives on bonding strength.

  18. Hyaluronate acid and oxidized regenerated cellulose prevent adhesion reformation after adhesiolysis in rat models

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-10-01

    Full Text Available Yan Zhang, Qin Liu, Ning Yang, Xuegang Zhang Department of Gynecology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, People’s Republic of China Abstract: Postsurgical adhesion formation is the most common complication in abdominal and pelvic surgery. Adhesiolysis is the most commonly applied treatment for adhesion formation but is often followed by adhesion reformation. Therefore, an efficient strategy should be adopted to solve these problems. This study aimed to explore whether hyaluronic acid and oxidized regenerated cellulose (ORC could prevent adhesion formation and reformation. Thirty female Sprague Dawley rats were randomly divided into three groups (n=10 each and subjected to different treatments during the first and second surgery. The control group was treated with isotonic sodium chloride, the ORC group was treated with ORC (1.5×1 cm, and the medical sodium hyaluronate (MSH group was treated with 1% MSH (0.5 mL. At 2 weeks after the first surgery, adhesion scores in the MSH group (1.90±0.99 and the ORC group (1.40±0.97 were significantly lower than those in the control group (3.00±0.82 (P=0.005. Similarly, 2 weeks after the second surgery, adhesion scores in the MSH group (2.00±0.82 and the ORC group (1.50±1.27 were significantly lower than those in the control group (3.50±0.53 (P=0.001. In addition, body weights in the MSH group and the ORC group did not change significantly, whereas the control group showed a consistent decrease in body weight during the experiment. Histological examination revealed that inflammatory infiltration was involved in both adhesion formation and reformation. In conclusion, hyaluronic acid and ORC were both efficient in reducing adhesion formation and reformation in the rat model. Keywords: hyaluronic acid, oxidized regenerated cellulose, adhesion formation, adhesion reformation, rat model 

  19. Regulation of ionizing radiation-induced adhesion of breast cancer cells to fibronectin by alpha5beta1 integrin.

    Science.gov (United States)

    Lee, Shin Hee; Cheng, Huiwen; Yuan, Ye; Wu, Shiyong

    2014-06-01

    Ionizing radiation (IR) is commonly used for cancer therapy, however, its potential influence on cancer metastatic potential remains controversial. In this study, we elucidated the role of integrins in regulation of IR-altered adhesion between breast cancer cells and extracellular matrix (ECM) proteins, which is a key step in the initial phase of metastasis. Our data suggest that the extent of effect that ionizing radiation had on cell adhesion depended on the genetic background of the breast cancer cells. Ionizing radiation was a better adhesion inducer for p53-mutated cells, such as MDA-MB-231 cells, than for p53 wild-type cells, such as MCF-7 cells. While IR-induced adhesions between MDA-MB-231 cells to fibronectin, laminin, collagen I and collagen IV, only blocking of the adhesion between α5β1 integrin and fibronectin using anti-α5β1 integrin antibody could completely inhibit the radiation-induced adhesion of the cells. A soluble Arg-Gly-Asp peptide, the binding motif for fibronectin binding integrins, could also reduce the adhesion of the cells to fibronectin with or without ionizing radiation exposure. The inhibition of the cell-fibronectin interaction also affected, but did not always correlate with, transwell migration of the cancer cells. In addition, our data showed that the total expression of α5 integrin and surface expression of α5β1 integrin were increased in the cells treated with ionizing radiation. The increased surface expression of α5β1 integrin, along with the adhesion between the cells and fibronectin, could be inhibited by both ataxia telangiectasia mutated (ATM) and Rad3-related (ATR) kinase inhibitors. These results suggested that ATM/ATR-mediated surface expression of α5β1 integrin might play a central role in regulation of ionizing radiation-altered adhesion.

  20. Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth

    Directory of Open Access Journals (Sweden)

    Carlstrom Lucas P

    2011-11-01

    Full Text Available Abstract Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block

  1. Adhesive bond performance of heat-treated wood at various conditions.

    Science.gov (United States)

    Kol, Hamiyet Sahin; Özbay, Günay

    2016-07-01

    Heat treatment of wood leads to chemical, structural and physical changes in wood constituents, which can significantly affect the bonding performance of wood in several ways depending on the adhesive type used. In the present study, fir (Abies bornmülleriana Mattf.) and beech (Fagus orientalis L.) were heat treated at 170 degrees C, 180 degrees C, 190 degrees C, 200 and 212 degrees C for 2 hours. Four different types of adhesives were used for bonding process: melamine-urea-formaldehyde (MUF), melamine formaldehyde (MF), phenol formaldehyde (PF), and polyurethane (PUR). For all the pretreatment conditions, highest shear strength of adhesive bonds of each adhesive system was observed for untreated samples and shear strength decreased with increasing heat treatment. The strength of each adhesive bond of samples which were soaked in water was much less than dry samples, approximately half of the dry strength. Generally, the shear strength of the adhesive bonds after boiling was smaller than or similar to the values obtained for soaking. The untreated samples lost more strength after soaking and boiling than heat treated samples. With increasing heat treatment severity, reduction in shear strength increased in dry samples while decreased in soaking and boiling samples. For instance, after soaking, the untreated samples lost more strength (almost 39%) than heat treated samples (almost 24% for most severely heat treated samples). The results showed that the shear strength of adhesive bonds was influenced by heat treatment and depended on pretreatment of samples prior to testing. In general, all adhesives used performed in quite a similar way for all pretreatment conditions, and the bonding performance of heat treated fir wood was less satisfactory than that of beech wood for all adhesive system and condition.

  2. Human climbing with efficiently scaled gecko-inspired dry adhesives

    OpenAIRE

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for syn...

  3. Targeting protein kinases to reverse multidrug resistance in sarcoma.

    Science.gov (United States)

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-02-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    Directory of Open Access Journals (Sweden)

    Nicolas Lebesgue

    2016-06-01

    Full Text Available Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc versus the non-adhesive part (the stem, and also to profile the proteome of the secreted adhesive (glue. This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016 [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold, likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  5. The influence of adhesive thickness on the microtensile bond strength of three adhesive systems.

    Science.gov (United States)

    D'Arcangelo, Camillo; Vanini, Lorenzo; Prosperi, Gianni Domenico; Di Bussolo, Giulia; De Angelis, Francesco; D'Amario, Maurizio; Caputi, Sergio

    2009-04-01

    To evaluate the effects of multiple adhesive layers of three etch-and-rinse adhesives on both adhesive thickness and microtensile bond strength (microTBS). Midcoronal occlusal dentin of 36 extracted human molars was used. Teeth were randomly assigned to 3 groups (EB, XP, PQ) according to the adhesive system to be used: PQ1 (Ultradent) (PQ), EnaBond (Micerium) (EB), or XP Bond (Dentsply/DeTrey) (XP). Specimens from each group were further divided into three subgroups according to the number of adhesive coatings (1, 2, or 3). In all subgroups, each adhesive layer was light cured before applic