WorldWideScience

Sample records for adequate irrigation management

  1. Wireless sensor networks for irrigation management

    Science.gov (United States)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  2. Irrigation management in organic greenhouse

    NARCIS (Netherlands)

    Voogt, W.; Balendonck, J.; Berkelmans, R.; Enthoven, N.

    2017-01-01

    Irrigation in protected cultivation is essential due to the absence of natural precipitation. High evapotranspiration, due to higher temperature and prolonged cropping period, requires ample an adequate supply of water. The water supply in a greenhouse is solely carried out by irrigation and thus

  3. Small Acreage Irrigation Management

    OpenAIRE

    Heaton, Kevin M.

    2008-01-01

    Field irrigation application methods include surface (wild flooding, border, furrow, basins), sprinkler (hand line, wheel move, solid set, center pivot), low flow or micro-irrigation (drip, trickle, micro-spray), and subirrigation (water table manipulation under special conditions).

  4. Sprinkler irrigation-pesticide best management systems

    OpenAIRE

    Ranjha, A. Y.; Peralta, R. C.; Hill, R. W.; Requena, A. M.; Deer, H. M.; Ehteshami, M.

    1992-01-01

    The relative reduction in potential groundwater contamination due to pesticides at several sites in Utah was determined by comparing alternative irrigation system designs, water management practices, and pesticides. Alternative sprinkler irrigation distribution coefficients were used to estimate irrigation application depths. The movement of pesticides through soils following sprinkler irrigations was simulated with a one-dimensional model. Pesticide contamination of groundwater can be reduce...

  5. Irrigation Water Management Practices in Smallholder Vegetable ...

    African Journals Online (AJOL)

    ... vegetables using small-scale irrigation. Key informants were interviewed and group discussions were conducted with smallholder vegetable farmers. Data were collected on household irrigation knowledge, experiences, skills, irrigation water sources as well as on irrigation water management practices such as methods, ...

  6. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  7. small scale irrigation management practices

    African Journals Online (AJOL)

    It yis against this background that this study focuses on small scale irrigation fadama farming being a ... inputs, fertilizer and irrigation water. ` The functions .... chemical fertilizer. More of irrigation water could also be used for better eсмciency. The farmers in the study area are not making eсicient use of their resources. There.

  8. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  9. Assessing the Efficacy of the SWAT Auto-Irrigation Function to Simulate Irrigation, Evapotranspiration, and Crop Response to Management Strategies of the Texas High Plains

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-07-01

    Full Text Available In the semi-arid Texas High Plains, the underlying Ogallala Aquifer is experiencing continuing decline due to long-term pumping for irrigation with limited recharge. Accurate simulation of irrigation and other associated water balance components are critical for meaningful evaluation of the effects of irrigation management strategies. Modelers often employ auto-irrigation functions within models such as the Soil and Water Assessment Tool (SWAT. However, some studies have raised concerns as to whether the function is able to adequately simulate representative irrigation practices. In this study, observations of climate, irrigation, evapotranspiration (ET, leaf area index (LAI, and crop yield derived from an irrigated lysimeter field at the USDA-ARS Conservation and Production Research Laboratory at Bushland, Texas were used to evaluate the efficacy of the SWAT auto-irrigation functions. Results indicated good agreement between simulated and observed daily ET during both model calibration (2001–2005 and validation (2006–2010 periods for the baseline scenario (Nash-Sutcliffe efficiency; NSE ≥ 0.80. The auto-irrigation scenarios resulted in reasonable ET simulations under all the thresholds of soil water deficit (SWD triggers as indicated by NSE values > 0.5. However, the auto-irrigation function did not adequately represent field practices, due to the continuation of irrigation after crop maturity and excessive irrigation when SWD triggers were less than the static irrigation amount.

  10. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  11. The Power to Resist: Irrigation Management Transfer in Indonesia

    NARCIS (Netherlands)

    Suhardiman, D.

    2013-01-01

    In the last two decades, international donors have promoted Irrigation Management Transfer (IMT) as an international remedy to management problems in government irrigation systems in many developing countries. This article analyses the political processes that shape IMT policy formulation and

  12. Impact of irrigation, nitrogen fertilization, and spatial management on maize

    Science.gov (United States)

    The spatial management of irrigation water and N fertilization can be employed to reduce interactive effects, thus increasing water and N use efficiency and reducing pollution. Partial root-zone irrigation is a modified form of deficit irrigation which involves irrigating only one part of the root z...

  13. Adequate sizing and motor exploitation: Motor energy management

    Directory of Open Access Journals (Sweden)

    Kostić Miloje M.

    2011-01-01

    Full Text Available Motor energy management includes adequate sizing, control and improvement of electric energy quality, i.e. voltage quality (reducing voltage unbalance and harmonics distortion, and the proper maintenance. The specific motor price per kW is approximately constant for motors rated from 5 kW to 20 kW. By adequate sizing, or by proper replacement of the old motor with the new one, with rated output power reduced by 20% to 50% the smaller motor will be also cheaper by 20% to 50%. When the 22 kW motor is replaced with the new 15 kW that costs 64% of the price of a new 22 kW motor, the efficiency is increased by 3.6% (Example in paper. On the basis of our investigation results, it is confirmed that there are significant possibilities for energy savings by setting voltage values within the ±5% voltage band (Un±5%, since more than 80% induction motors are under loaded (£70%, especially small and medium rated power (1-30 kW motors.

  14. Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation

    Directory of Open Access Journals (Sweden)

    Olutobi Adeyemi

    2017-02-01

    Full Text Available Globally, the irrigation of crops is the largest consumptive user of fresh water. Water scarcity is increasing worldwide, resulting in tighter regulation of its use for agriculture. This necessitates the development of irrigation practices that are more efficient in the use of water but do not compromise crop quality and yield. Precision irrigation already achieves this goal, in part. The goal of precision irrigation is to accurately supply the crop water need in a timely manner and as spatially uniformly as possible. However, to maximize the benefits of precision irrigation, additional technologies need to be enabled and incorporated into agriculture. This paper discusses how incorporating adaptive decision support systems into precision irrigation management will enable significant advances in increasing the efficiency of current irrigation approaches. From the literature review, it is found that precision irrigation can be applied in achieving the environmental goals related to sustainability. The demonstrated economic benefits of precision irrigation in field-scale crop production is however minimal. It is argued that a proper combination of soil, plant and weather sensors providing real-time data to an adaptive decision support system provides an innovative platform for improving sustainability in irrigated agriculture. The review also shows that adaptive decision support systems based on model predictive control are able to adequately account for the time-varying nature of the soil–plant–atmosphere system while considering operational limitations and agronomic objectives in arriving at optimal irrigation decisions. It is concluded that significant improvements in crop yield and water savings can be achieved by incorporating model predictive control into precision irrigation decision support tools. Further improvements in water savings can also be realized by including deficit irrigation as part of the overall irrigation management

  15. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  16. Influence of local topography on precision irrigation management

    Science.gov (United States)

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...

  17. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  18. Irrigation management of muskmelon with tensiometry

    Directory of Open Access Journals (Sweden)

    Márcio José de Santana

    2017-11-01

    Full Text Available The production and consumption of muskmelon have been increasing (MELO et al., 2014, thus, information on techniques for higher field productions are necessary. The experiment described in the present work was conducted in the IFTM, Uberaba, State of Minas Gerais, Brazil, aiming to evaluate the muskmelon yield under different soil water tensions. A randomized block experimental design was used with five treatments (soil water tensions of 10, 20, 30, 40 and 50 kPa and four replications (plots of two rows of 14 plants. Two harvests were carried out and the fruit yield, stem diameter, number of fruits per plant and efficiency of water use were evaluated. Irrigation was performed with a drip irrigation system and managed with tensiometry. The cultivar Bonus n.2 was used with spacing of 1.0 x 0.6 m. The data of the variables were subjected to the F test and regression test. The treatments showed statistical differences in number of fruits per plant, fruit weight (fruit yield and stem diameter. The highest fruit yield found was 1.36 kg fruit-1 and the highest water use efficiency was 4.08 g mm-1 with irrigation for a soil water tension of 10 kPa. The lowest fruit yield was found with irrigation for a soil water tension of 50 kPa.

  19. Improving access to adequate pain management in Taiwan.

    Science.gov (United States)

    Scholten, Willem

    2015-06-01

    There is a global crisis in access to pain management in the world. WHO estimates that 4.65 billion people live in countries where medical opioid consumption is near to zero. For 2010, WHO considered a per capita consumption of 216.7 mg morphine equivalents adequate, while Taiwan had a per capita consumption of 0.05 mg morphine equivalents in 2007. In Asia, the use of opioids is sensitive because of the Opium Wars in the 19th century and for this reason, the focus of controlled substances policies has been on the prevention of diversion and dependence. However, an optimal public health outcome requires that also the beneficial aspects of these substances are acknowledged. Therefore, WHO recommends a policy based on the Principle of Balance: ensuring access for medical and scientific purposes while preventing diversion, harmful use and dependence. Furthermore, international law requires that countries ensure access to opioid analgesics for medical and scientific purposes. There is evidence that opioid analgesics for chronic pain are not associated with a major risk for developing dependence. Barriers for access can be classified in the categories of overly restrictive laws and regulations; insufficient medical training on pain management and problems related to assessment of medical needs; attitudes like an excessive fear for dependence or diversion; and economic and logistical problems. The GOPI project found many examples of such barriers in Asia. Access to opioid medicines in Taiwan can be improved by analysing the national situation and drafting a plan. The WHO policy guidelines Ensuring Balance in National Policies on Controlled Substances can be helpful for achieving this purpose, as well as international guidelines for pain treatment. Copyright © 2015. Published by Elsevier B.V.

  20. Irrigation development and management in Ghana: Prospects and ...

    African Journals Online (AJOL)

    ... existing schemes. It is envisaged that irrigation will be seen in its right perspective as a multidisciplinary activity to ensure the success of schemes. There is the need for running a postgraduate programme in irrigation at the KNUST to enhance the nations efforts at developing and managing irrigation projects successfully.

  1. WATER MANAGEMENT STRATEGIES UNDER DEFICIT IRRIGATION

    Directory of Open Access Journals (Sweden)

    Antonino Capra

    2008-12-01

    Full Text Available Deficit irrigation (DI is an optimization strategy whereby net returns are maximized by reducing the amount of irrigation water; crops are deliberated allowed to sustain some degree of water deficit and yield reduction. Although the DI strategy dates back to the 1970s, this technique is not usually adopted as a practical alternative to full irrigation by either academics or practitioners. Furthermore, there is a certain amount of confusion regarding its concept. In fact, a review of recent literature dealing with DI has shown that only a few papers use the concept of DI in its complete sense (e.g. both the agronomic and economic aspects. A number of papers only deal with the physiological and agronomical aspects of DI or concern techniques such as Regulated Deficit Irrigation (RDI and Partial Root Drying (PRD. The paper includes two main parts: i a review of the principal water management strategies under deficit conditions (e.g. conventional DI, RDI and PRD; and ii a description of a recent experimental research conducted by the authors in Sicily (Italy that integrates agronomic, engineering and economic aspects of DI at farm level. Most of the literature reviewed here showed, in general, quite positive effects from DI application, mostly evidenced when the economics of DI is included in the research approach. With regard to the agronomic effects, total fresh mass and total production is generally reduced under DI, whereas the effects on dry matter and product quality are positive, mainly in crops for which excessive soil water availability can cause significant reductions in fruit size, colour or composition (grapes, tomatoes, mangos, etc.. The experimental trial on a lettuce crop in Sicily, during 2005 and 2006, shows that the highest mean marketable yield of lettuce (55.3 t ha-1 in 2005 and 51.9 t ha-1 in 2006 was recorded in plots which received 100% of ET0-PM (reference evapotranspiration by the Penman- Monteith method applied water. In

  2. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMIS). Thinking along

  3. Online decision support system for surface irrigation management

    Science.gov (United States)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  4. Implementation of efficient irrigation management for a sustainable agriculture. LIFE+ project IRRIMAN

    Science.gov (United States)

    Pérez-Pastor, Alejandro; Garcia-Vila, Margarita; Gamero-Ojeda, Pedro; Ascensión Carmona, M.°; Hernandez, David; José Alarcón, Juan; Nicolás, Emilio; Nortes, Pedro; Aroca, Antonio; María de la Rosa, Jose; Zornoza, Raúl; Faz, Ángel; Molina, Angel; Torres, Roque; Ruiz, Manuel; Calatrava, Javier

    2016-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. But its success greatly depends on the adequate application of the water deficit and requires a continuous and precise control of the plant and soil water status to adjust the water supplies at every crop phenological period. The main objective of this project is to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. With the adoption of this irrigation management we mean to ensure efficient use of water resources, improving quantitative water management, preserving high level of water quality and avoiding misuse and deterioration of water resources. The adoption of efficient irrigation will also lead to increments in water productivity, increments in the potential carbon fixation of the agroecosystem, and decrease energy costs of pressurized irrigation, together with mitigation and adaptation to climate change. The project will achieve the general objective by implication of farmers, irrigation communities, agronomists, industry, consultants, associations and public administration, by increments in social awareness for sustainable irrigation benefits, optimization of irrigation scheduling, improvements in technology, and

  5. Bureaucratic designs : the paradox of irrigation management transfer in Indonesia

    NARCIS (Netherlands)

    Suhardiman, D.

    2008-01-01

    Irrigation Management Transfer (IMT) policy has been formulated and implemented worldwide, relying on three basic assumptions: that the irrigation agency are motivated to adapt their role in the sector's development; that farmers are willing to take over the system management; and that the process

  6. Reform of irrigation management and investment policy in African development

    Directory of Open Access Journals (Sweden)

    KW Easter

    2004-11-01

    Full Text Available This paper examines the reform of water and irrigation management in Africa and compares it with similar reforms in Asia.  Several things are evident from the review.  First, Sub-Saharan Africa (SSA is at an earlier stage of irrigation development and reform than Asia.  Second, the articulated need for reform is much stronger in Asia than it is in SSA.  Third, the productivity of small-scale irrigated farms is significantly lower in SSA compared to Asia.  Thus any irrigation investment strategy in SSA should be different from Asia and focus on increasing small-farm productivity as well as small-scale irrigation projects.  Finally, all direct government irrigation investments should be done jointly with decisions regarding the type of project management.

  7. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Directory of Open Access Journals (Sweden)

    Jochen Hemming

    2009-04-01

    Full Text Available Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method. An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS, such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  8. Root zone sensors for irrigation management in intensive agriculture.

    Science.gov (United States)

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world's water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower's experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS' (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  9. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  10. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  11. The politics of policy : participatory irrigation management in Andhra Pradesh

    NARCIS (Netherlands)

    Nikku, B.R.

    2006-01-01

    This thesis studies the emergence, process and politics of the Andhra Pradesh reform policy of Participatory Irrigation Management (PIM). The reform has been labeled as the 'A? model' of irrigation reforms and supported by external aid agencies like World Bank. Within a short span of time Andhra

  12. Technology transfer: Promoting irrigation progress and best management practices

    Science.gov (United States)

    Educational efforts promoting irrigation best management practices are designed to increase adoption of these practices and increase public understanding of the importance of irrigation. They increase visibility and the impact of the Ogallala Aquifer Program and promote affiliated research and exten...

  13. Using Automation to Improve Surface Irrigation Management

    Science.gov (United States)

    In the Lower Mississippi Water Resource Area (WRA 08), also called the Mid-South, 2 million ha of cropland (80% of the irrigated farmland) employ surface irrigation, almost equally divided between furrow (52%) and controlled flooding (48%). Because Mid-South farmers experience less-than-optimal surf...

  14. Sustainable irrigation and nitrogen management of fertigated vegetable crops

    NARCIS (Netherlands)

    Thompson, R.B.; Incrocci, L.; Voogt, W.; Pardossi, A.; Magán, J.J.

    2017-01-01

    Fertigation in combination with drip irrigation is being increasingly used in vegetable crop production. From a nutrient management perspective, this combination provides the technical capacity for precise nitrogen (N) nutrition, both spatially and temporally. With these systems, N and other

  15. Effects of microclimate, cropping systems, and irrigation management on early and late blight potential on Russet Burbank potato

    Science.gov (United States)

    Soil and irrigation management have been used to optimize crop production. However,their effects on microclimate, development, and controls of potato diseases have not been adequately quantified. The effects of soil, crop, and water management on development of potato early blight and late blight we...

  16. The Power to Resist: Irrigation Management Transfer in Indonesia

    Directory of Open Access Journals (Sweden)

    Diana Suhardiman

    2013-02-01

    Full Text Available In the last two decades, international donors have promoted Irrigation Management Transfer (IMT as an international remedy to management problems in government irrigation systems in many developing countries. This article analyses the political processes that shape IMT policy formulation and implementation in Indonesia. It links IMT with the issue of bureaucratic reform and argues that its potential to address current problems in government irrigation systems cannot be achieved if the irrigation agency is not convinced about the need for management transfer. IMT’s significance cannot be measured only through IMT outcomes and impacts, without linking these with how the irrigation agency perceives the idea of management transfer in the first place, how this perception (redefines the agency’s position in IMT, and how it shapes the agency’s action and strategy in the policy formulation and implementation. I illustrate how the irrigation agency contested the idea of management transfer by referring to IMT policy adoption in 1987 and its renewal in 1999. The article concludes that for management transfer to be meaningful it is pertinent that the issue of bureaucratic reform is incorporated into current policy discussions.

  17. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  18. Soil nitrate testing supports nitrogen management in irrigated annual crops

    Directory of Open Access Journals (Sweden)

    Patricia A. Lazicki

    2016-12-01

    Full Text Available Soil nitrate (NO3− tests are an integral part of nutrient management in annual crops. They help growers make field-specific nitrogen (N fertilization decisions, use N more efficiently and, if necessary, comply with California's Irrigated Lands Regulatory Program, which requires an N management plan and an estimate of soil NO3− from most growers. As NO3− is easily leached into deeper soil layers and groundwater by rain and excess irrigation water, precipitation and irrigation schedules need to be taken into account when sampling soil and interpreting test results. We reviewed current knowledge on best practices for taking and using soil NO3− tests in California irrigated annual crops, including how sampling for soil NO3− differs from sampling for other nutrients, how tests performed at different times of the year are interpreted and some of the special challenges associated with NO3− testing in organic systems.

  19. Participatory management reforms in irrigation sector of sindh

    International Nuclear Information System (INIS)

    Lashari, B.K.

    2009-01-01

    Pakistan has been making efforts to restructuring the century old irrigation system by involving beneficiaries (water users) at various units of the irrigation system management. The main purposes of reforms are to improve O and M (Operation and Maintenance) of irrigation system, to make balance in expenditure and revenue, to improve crop production through efficient use of water, to maintain affordable drainage system and to adopt PWRM (Participatory Water Resource Management) approach. In these reforms, the Sindh provincial irrigation department was transferred to an autonomous body as SmA (Sindh Irrigation and Drainage Authority). Under SmA, CAWB (Canal Area Water Board) at each canal command area, water users association at watercourse level and Farmer Organizations at each secondary canal (Distributary/ Minor) command area were being formed. So far 335 FOs (Farmers Organizations) have been formed in Sindh. To evaluate the performance of FOs in their day to day activities such as water distribution, O and M of irrigation channels, conflict management and revenue (Abiana) collection, IMI (Institutional Maturity Index) of FOs is conducted. The objective IMI analysis was to assess the maturity of FOs in terms of organizational aspects, conflict resolution, financial aspects, water distribution, operation and maintenance, environmental aspects and capacity building of FOs. The IMI analyses identified the weaker aspects of the FOs and need of focus these aspects for improved performance of FOs through effective social mobilization and capacity building activities. (author)

  20. Management Of Irrigation Water and its Impact on Agriculture Productivity

    Directory of Open Access Journals (Sweden)

    Asad Raza Abidi

    2013-10-01

    Full Text Available On the inflow side canal water in the canal command area of Mirwah is mismanaged by irrigation officials and head-end and influential farmers. Farmers in Sindh generally and Khairpur particularly irrigate their land without scientific techniques and there is no economic pricing of water that might encourage conservation. This, together with the lack of any adequate substitute in the form of administrative control of water and cropping patterns, has been responsible for the excessive water-coefficient of output, and the unequal distribution of water, which have been at the heart of the problem of mismanagement water on the inflow side. The need for restructuring the irrigation system in Sindh is urgent not only because of both allocation and distribution, because, over the years, the province has suffered from unequal distribution of water between big and small farmers, and between head-end and tail-end farmers.

  1. Assessment of irrigation schemes in Turkey based on management ...

    African Journals Online (AJOL)

    This suggests that the WUAs-operated schemes are not optimally managed, possibly due to factors such as inappropriate crop pattern and intensity, irrigation infrastructure, lack of an effective monitoring and evaluation system, insufficient awareness among managers and farmers, or unstable administrative structure.

  2. Collective action and participation in irrigation water management: A ...

    African Journals Online (AJOL)

    ABSTRACT. In line with the current focus of most developing countries to transfer management of communal irrigation schemes from state to users .... The importance of collective action in the management of common pool resources like ...... Institute of Natural Resources (INR) for project coordina- tion and logistical support.

  3. Collective action and participation in irrigation water management: A ...

    African Journals Online (AJOL)

    In line with the current focus of most developing countries to transfer management of communal irrigation schemes from state to users, an understanding of the determinants of farmer participation in collective activities forms the basis to improve the management of previously government-funded schemes, which are ...

  4. Water relations and photosynthesis as criteria for adequate irrigation management in 'Tahiti' lime trees Relações hídricas e fotossíntese como critérios para manejo adequado da irrigação em plantas de limeira 'Tahiti'

    Directory of Open Access Journals (Sweden)

    Cláudio Ricardo da Silva

    2005-10-01

    Full Text Available Irrigation scheduling based on soil moisture status is one of the most useful methods because of its practicality and low cost. The effects of available soil water depletion on evapotranspiration (ETc, transpiration (E, leaf water potential at predawn (psiP and midday (psiM, stomatal conductance (gs and net CO2 assimilation (A in lime 'Tahiti' trees (Citrus latifolia were evaluated to improve irrigation schedule and minimize water use without causing water stress. The trees were spaced 7 ´ 4 m and drip-irrigated by four drippers with the available soil water content (AWC depleted by suspension of irrigation (40 days. Leaf water potential was measured on a pressure chamber (psiP and psiM and leaf gas exchange was measured by infrared gas analyzer (E, gs and A. Evapotranspiration was determined with the aid of weighing lysimeter. Water soil content and potential (psiS were monitored with TDR probes and tensiometers, respectively, installed at 0.3, 0.6 and 0.9 m depths. Meteorological variables were monitored with an automatic weather station in the experimental area. The threshold AWC level for the onset of ETc decline was 43%, and 60% for gs, A, E and Y P. Also, psiP was more sensitive to AWC than psiM, and is therefore a better tool for irrigation. When AWC was around 60%, values of psiP and psis were -0.62 MPa and -48.8 kPa, respectively.Programar práticas de irrigação com base na umidade do solo é um dos métodos mais usuais devido sua praticidade e baixo custo. O efeito do esgotamento da água disponível do solo sobre a evapotranspiração (ETc, transpiração (E, potencial de água na folha ao amanhecer (psiP e ao meio-dia (psiM, condutância estomática (gs e assimilação líquida de CO2 (A em plantas de limeira 'Tahiti' (Citrus latifolia foi avaliado para melhorar o manejo da irrigação, minimizando água e evitando o estresse hídrico. As plantas foram espaçadas de 7 ´ 4 m e irrigadas por quatro gotejadores com a diminuição da

  5. New technologies for modernization and management of irrigation piping

    Directory of Open Access Journals (Sweden)

    Alessandro Santini

    2006-07-01

    Full Text Available Improving the efficiency of irrigation piping-systems represents a fundamental prerequisite to achieve a sustainable irrigation under both the environmental the economic point of view. Such an issue is important not only in areas with limited water-budget, but even in those areas where the increasing reduction of the water availability has become a worrying perspective. In the last twenty years, the reduction in water-availability and the increasing costs of system-management have highly limited the cultivated areas which are irrigated by means of water-distribution nets. In the recent years, most of the Italian investments in the irrigation-field have been oriented toward upgrading the open-channels irrigation nets, which were built starting from 50’, by substituting these latter with pipes. The modernization of the piping-systems has been achieved via innovative design solutions, such as back and loading water tanks or towers, which have lead to an improvement into the flexibility of the net management. Nearby the employment of such technologies, nowadays it is also possible to use the knowledge of the physical processes involved in the management of an irrigation system, starting from energy as well as mass exchange in the continuum soil-plant-atmosphere till to a detailed hydraulic description of a water distribution net under different flow regimes. Such a type of knowledge may be used to improve as well as buildup mathematical models for a decisions-support toward the management of complex irrigation districts. The acquirement of the data needed to implement such models has been deeply improved thanks to Geographical Information Systems (GIS, and techniques to analyze satellite-data coming from the Earth observation, which enable to characterize and monitor vegetation at different spatial, spectral and radiometric resolutions.

  6. Lands adequation in Antioquia Department

    International Nuclear Information System (INIS)

    Arango T, Julio Cesar; Bacanumenth

    1999-01-01

    The Colombian government programs concerning land management and adequation began since the fifties. When basic frameworks for irrigating, flood control and drainage were initially developed. Several entities have made huge investments in land adequation, that lead to the improvement of national agriculture in plain regions such as Tolima, Boyaca, Magdalena and Valle del Cauca. During the same period the region of Antioquia did not benefit from the projects, mainly due to the lack of government policies concerning land adequation. Finally, in 1983 the Himat launched the small irrigation national program, which gave solutions for water management in several countryside regions of Antioquia. Twenty-nine small water districts are now operating accounting for 3.759 ha which cover 1.510 households. Now days, thanks to the presence of more accurate policies, is the right time to improve irrigation, flood control and drainage towards to a substantial improvement in the Antioquia agricultural sector, that allows it to overcome the challenges of the next millennium. A project called Antioquia nos une 1998-2000 addresses the importance of promoting the right agricultural structure that ensures agricultural mechanization for sustainability and irrigation. On the other hand, it determines the main resources needed to promote the initiative and points out the importance of distributing them in the basis of the needs and problems of the communities

  7. Evaluation of best management practices under intensive irrigation using SWAT model

    OpenAIRE

    Dechmi, Farida; Skhiri, Ahmed

    2013-01-01

    Land management practices such as conservation tillage and optimum irrigation are routinely used to reduce non-point source pollution and improve water quality. The calibrated and validated SWAT-IRRIG model is the first modified SWAT version that reproduces well the irrigation return flows (IRF) when the irrigation source is outside of the watershed. The application of this SWAT version in intensive irrigated systems permits to better evaluate the best management practices (BMPs) in such syst...

  8. Irrigation management using an expert system, soil water potentials, and vegetative indices for spatial applications

    Science.gov (United States)

    Variable rate irrigation (VRI) systems are irrigation systems that are capable of applying different water depths both in the direction of travel and along the length of the irrigation system. However, when compared to traditional irrigation systems, VRI systems require a higher level of management...

  9. Irrigation management of crops rotations in a changing climate

    Science.gov (United States)

    Rolim, J.; Teixeira, J.; Catalão, J.

    2012-04-01

    Due to climate change we cannot continue to perform irrigation systems design and irrigation management based only on historical records of weather stations, assuming that the statistical parameters of the meteorological data remains unchanged in time, being necessary to take into account the climatic data relative to climate change scenarios. For the Mediterranean basin the various climate models indicate an increase in temperature and a reduction in precipitation and a more frequent occurrence of extreme events which will increase the risk of crop failure. Thus, it is important to adopt strategies to ensure the sustainability of irrigated agriculture in a changing climate. A very interesting technique to achieve this is the adoption of crops rotations, since they increase the heterogeneity of farming systems distributing the risk between crops and minimizing costs. This study aims to evaluate the impact of climate change in the irrigation requirements of crop rotations for the Alentejo region in the South of Portugal, and the ability of crops rotation to reduce these impacts and stabilize crops production. The IrrigRotation software was used to estimate the water requirements of two crop rotations used in the Alentejo region, Sunflower-Wheat-Barley and Sugar beet-Maize-Tomato-Wheat. IrrigRotation is a soil water balance simulation model, continuous in time, based on the dual crop coefficients methodology, which allows to compute the irrigation requirements of crop rotations. The climate data used were the observed data of the Évora and Beja weather stations (1961-90), the A2 and B2 scenarios of the HadRM3P model and the A2 scenarios of the HIRHAMh and HIRHAMhh models (2071-2100). The consideration of a set of climate change scenarios produces as a result a range of values for the irrigation requirements which can be used to define safety margins in irrigation design. The results show that for the Beja clay soils, with high values of soil water storage capacity

  10. Spatial Irrigation Management Using Remote Sensing Water Balance Modeling and Soil Water Content Monitoring

    Science.gov (United States)

    Barker, J. Burdette

    Spatially informed irrigation management may improve the optimal use of water resources. Sub-field scale water balance modeling and measurement were studied in the context of irrigation management. A spatial remote-sensing-based evapotranspiration and soil water balance model was modified and validated for use in real-time irrigation management. The modeled ET compared well with eddy covariance data from eastern Nebraska. Placement and quantity of sub-field scale soil water content measurement locations was also studied. Variance reduction factor and temporal stability were used to analyze soil water content data from an eastern Nebraska field. No consistent predictor of soil water temporal stability patterns was identified. At least three monitoring locations were needed per irrigation management zone to adequately quantify the mean soil water content. The remote-sensing-based water balance model was used to manage irrigation in a field experiment. The research included an eastern Nebraska field in 2015 and 2016 and a western Nebraska field in 2016 for a total of 210 plot-years. The response of maize and soybean to irrigation using variations of the model were compared with responses from treatments using soil water content measurement and a rainfed treatment. The remote-sensing-based treatment prescribed more irrigation than the other treatments in all cases. Excessive modeled soil evaporation and insufficient drainage times were suspected causes of the model drift. Modifying evaporation and drainage reduced modeled soil water depletion error. None of the included response variables were significantly different between treatments in western Nebraska. In eastern Nebraska, treatment differences for maize and soybean included evapotranspiration and a combined variable including evapotranspiration and deep percolation. Both variables were greatest for the remote-sensing model when differences were found to be statistically significant. Differences in maize yield in

  11. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  12. The success of a policy model: Irrigation management transfer in Mexico

    NARCIS (Netherlands)

    Rap, E.R.

    2004-01-01

    This thesis studies the emergence, process and outcomes of the Mexican policy of Irrigation Management Transfer (IMT). Under the influence of neo-liberal government policies, the transfer of government-managed irrigation districts to water users' associations (WUAs) has radically changed irrigation

  13. Farmers' laws and irrigation : water rights and dispute management in the hills of Nepal

    NARCIS (Netherlands)

    Poudel, R.

    2000-01-01

    The title of my Thesis is "Farmers' Laws and Irrigation: Water Rights and Dispute Management in the Hills of Nepal". This is based on a research I conducted in the Thulotar Kulo irrigation system in Nepal, during 1997 and 1998. Thulotar Kulo is a farmer-managed irrigation

  14. Irrigation management in Mediterranean salt affected agriculture: how leaching operates

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2012-03-01

    Full Text Available In the frame of a crop rotation currently applied in a farm of the Apulian Tavoliere (Southern Italy, this paper reports the effect of brackish water irrigation on soil, outlines the corresponding salinity balance, formulates quantitative relations to model salt outflow below the soil root-layer and defines operational criteria to optimize irrigation management at farm level in order to control soil salinity through leaching. The general aim is to contribute to a sustainable use of the available water resources and a proper soil fertility conservation. A three-year trial (2007-2010 was carried out on a farm located close to the coast of the Manfredonia gulf (Mediterranean - Adriatic sea, where irrigation with brackish water is frequently practiced due to seawater intrusion into the groundwater. An especially designed experimental field-unit was set-up: the bottom of three hydraulically insulated plots was covered with a plastic sheet to intercept the percolating water and collect it into tanks by means of drain tubes. Each year a double crop cycle was applied to the soil; a spring-summer crop (tomato, zucchini and pepper, respectively was followed by a fall-winter crop (spinach, broccoli and wheat. Short “fallow” periods (completely bare soil were inserted between two crop cycles. Irrigation or rain completely restored crop water consumptions (with the exception of wheat, considered a rainfed crop and leaching was performed both unintentionally (by rainfalls or intentionally (supplying higher irrigation volumes whenever the soil electrical conductivity exceeded a fixed threshold. The soil electrical conductivity was periodically measured together with volume and electrical conductivity of irrigation and drainage water. All these measures allowed to draw-up the salt-balance of the soil, respectively at the beginning and the end of each crop cycle. Absolute and relative variations in soil salt content were interpreted with respect to absolute

  15. Managing Water Resources for Environmentally Sustainable Irrigated Agriculture in Pakistan

    OpenAIRE

    Muhammad Afzal

    1996-01-01

    Pakistan’s agriculture is almost wholly dependent on irrigation and irrigated land supplies more than 90 percent of agricultural production. Irrigation is central to Pakistan’s economy. Massive investments in irrigation contributed to the development of one of the largest Indus Basin Irrigation System. Despite heavy budgetary inputs in irrigation system, it is facing shortage of resources and suffering from operational problems. The sustainability of irrigated agriculture is threatened due to...

  16. Utilizing on-farm best management practices: Managing Nitrate Leaching Using Evapotranspiration Based Irrigation Methods

    Science.gov (United States)

    Zaragosa, I.; Melton, F. S.; Dexter, J.; Post, K.; Haffa, A.; Kortman, S.; Spellenberg, R.; Cahn, M.

    2017-12-01

    In efforts to provide tools to allow farmers to optimize and quantify water usage and fertilizer applications, University of California Cooperative Extension (UCCE) developed the CropManage irrigation and nitrogen scheduling tool that provides real time evapotranspiration (ETc) based irrigation recommendations and fertilizer recommendations on a per field basis. CropManage incorporates satellite based estimates of fractional cover from web data services from the Satellite Irrigation Management Information Support (SIMS) system developed by NASA Ames Research Center in collaboration with California State University Monterey Bay (CSUMB). In this study, we conducted field trials to quantify the benefits of using these tools to support best management practices (BMPs) for irrigation and nutrient management in strawberries and lettuce in the Salinas Valley, California. We applied two different irrigation treatments based on full replacement (100%) of crop evapotranspiration (ETc), and irrigation at 130% of ETc replacement to approximate irrigation under business as usual irrigation management. Both field studies used a randomized block design with four replicates each. We used CropManage to calculate the 100% and 130% ETc replacement requirements prior to each irrigation event. We collected drainage volume and samples and analyzed them for 8500 to nitrate as (NO3-) concentrations. Experimental results for both strawberries and lettuce showed a significant decrease in the percentage of applied nitrogen leached for the 100% ETc replacement treatment against the 130% ETc replacement treatment. For strawberries, we observed that 24% of applied nitrogen was leached under the 100% ETc replacement treatment, versus 51% of applied nitrogen that was leached under the 130% ETc replacement treatment. For lettuce, we observe that 2% of the applied nitrogen leached bellow the soil profile, versus 6% of the applied nitrogen for the 130%ETc replacement treatment. In both experiments

  17. Remote sensing technologies applied to the irrigation water management on a golf course

    Science.gov (United States)

    Pedras, Celestina; Lança, Rui; Martins, Fernando; Soares, Cristina; Guerrero, Carlos; Paixão, Helena

    2015-04-01

    An adequate irrigation water management in a golf course is a complex task that depends upon climate (multiple microclimates) and land cover (where crops differ in morphology, physiology, plant density, sensitivity to water stress, etc.). These factors change both in time and space on a landscape. A direct measurement provides localized values of the evapotranspiration and climate conditions. Therefore this is not a practical or economical methodology for large-scale use due to spatial and temporal variability of vegetation, soils, and irrigation management strategies. Remote sensing technology combines large scale with ground measurement of vegetation indexes. These indexes are mathematical combinations of different spectral bands mostly in the visible and near infrared regions of the electromagnetic spectrum. They represent the measures of vegetation activity that vary not only with the seasonal variability of green foliage, but also across space, thus they are suitable for detecting spatial landscape variability. The spectral vegetation indexes may enhance irrigation management through the information contained in spectral reflectance data. This study was carried out on the 18th fairway of the Royal Golf Course, Vale do Lobo, Portugal, and it aims to establish the relationship between direct measurements and vegetation indexes. For that it is required (1) to characterize the soil and climatic conditions, (2) to assessment of the irrigation system, (3) to estimate the evapotranspiration (4) and to calculate the vegetation indices. The vegetation indices were determined with basis on spectral bands red, green and blue, RGB, and near Infrared, NIR, obtained from the analysis of images acquired from a unpiloted aerial vehicle, UAV, platform. The measurements of reference evapotranspiration (ETo) were obtained from two meteorological stations located in the study area. The landscape evapotranspiration, ETL, was determined in the fairway with multiple microclimates

  18. Early and late blight potential on Russet Burbank potato as affected by microclimate, cropping systems and irrigation management in North-eastern United States

    Science.gov (United States)

    Soil and irrigation management have been used to optimize crop production; however,their effects on microclimate, development, and potato diseases have not been adequately quantified. The effects of soil, crop, and water management on development of potato early blight and late blight were quantifie...

  19. Institutions and government efficiency: decentralized Irrigation management in China

    Directory of Open Access Journals (Sweden)

    Ying Chai

    2016-02-01

    Full Text Available In order to improve the efficiency of government spending, it is necessary for the decentralized irrigation management to gain support from local institutions. Efficient institutions take on several distinct configurations in different irrigation districts. In this research, we upgrade Tang’s (1992 framework focusing on incentives, to a framework that includes institutional incentives and coordination. Within the framework, we then classify 5 institutional variables: water pricing reform (P, government funding (F, coordination by administration (C, having formal monitors (M and self-organized management (S. This article processes the data obtained through a field survey (2009–2011 in 20 of China’s southern counties, where they implement the “Small-scale Irrigation and Water Conservancy Key Counties Construction (Key Counties Construction”, a national project supported by the central government. Next, it applies Data Envelopment Analysis (DEA to measure the efficiency of government spending and uses Qualitative Comparative Analysis (QCA to extract efficient institutional configurations. It concludes that there are generally three types of institutional configurations able to improve the efficiency of government spending, which are respectively: “government funding combined with coordination by administration”, “water pricing reform combined with self-organized management and coordination by administration or water pricing reform combined with self-organized management and government funding and formal monitors” and “self-organized management”. Among these, the second configuration is a mixed governance structure with multiple institutions coexisting, and this configuration occurs in the most efficient key counties. For that reason, it is viewed as the mainstream irrigation management approach, and we expect it to be the development trend in the future. Although Chinese irrigation policies are formalizing effective local

  20. Managing diminished irrigation capacity with preseason irrigation and plant density for corn production

    Science.gov (United States)

    Many of the irrigation systems today in the U.S. Central Great Plains no longer have the capacity to match peak irrigation needs during the summer and must rely on soil water reserves to buffer the crop from water stress. Considerable research was conducted on preseason irrigation in the U.S. Great ...

  1. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since

  2. Assessing the efficacy of the SWAT auto-irrigation function to simulate Irrigation, evapotranspiration and crop response to irrigation management strategies of the Texas High Plains

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model is widely used for simulation of hydrologic processes at various temporal and spatial scales. Less common are long-term simulation analyses of water balance components including agricultural management practices such as irrigation management. In the se...

  3. Farmers' Willingness to Pay for Improved Irrigation Water — A Case Study of Malaprabha Irrigation Project in Karnataka, India

    OpenAIRE

    Durba Biswas; L. Venkatachalam

    2015-01-01

    In principle, the approach toward irrigation management in India has gradually shifted from a government-dominated, supply-side paradigm toward a user-preferred, demand-side paradigm. Yet, decisions regarding water allocation and irrigation charges do not adequately incorporate farmers' preferences and their willingness-to-pay (WTP) for improved irrigation. Since public investment on irrigation projects is sizeable and the opportunity cost of irrigation water is increasing, there exists a nee...

  4. New model for sustainable management of pressurized irrigation networks. Application to Bembézar MD irrigation district (Spain).

    Science.gov (United States)

    Carrillo Cobo, M T; Camacho Poyato, E; Montesinos, P; Rodríguez Díaz, J A

    2014-03-01

    Pressurized irrigation networks require large amounts of energy for their operation which are linked to significant greenhouse gas (GHG) emissions. In recent years, several management strategies have been developed to reduce energy consumption in the agricultural sector. One strategy is the reduction of the water supplied for irrigation but implies a reduction in crop yields and farmer's profits. In this work, a new methodology is developed for sustainable management of irrigation networks considering environmental and economic criteria. The multiobjective non-dominated Sorting Genetic Algorithm (NSGA II) has been selected to obtain the optimum irrigation pattern that would reduce GHG emissions and increase profits. This methodology has been applied to Bembézar Margen Derecha (BMD) irrigation district (Spain). Irrigation patterns that reduce GHG emissions or increase actual profits are obtained. The best irritation pattern reduces the current GHG emissions in 8.56% with increases the actual profits in 14.56%. Thus, these results confirm that simultaneous improvements in environmental and economic factors are possible. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    OpenAIRE

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since Kennedy published his channel-forming discharge theory in 1895. Subsequently different theories have been developed and are used around the world. All of them assume uniform and steady flow conditions ...

  6. The management perspective on the performance of the irrigation subsector

    OpenAIRE

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the performance of irrigation investments was far below its potential. The size of this underperformance is well represented by Seckler's alarming conclusion that the average irrigation investment costs twi...

  7. Soil and water management in spate irrigation systems in Eritrea

    NARCIS (Netherlands)

    Hadera, M.T.

    2001-01-01

    Spate irrigation has been practised over 100 years in the Red Sea coastal zone of Eritrea such as the Sheeb area. Main problem of the spate irrigation system is water shortage caused by irregular rainfall in the highlands of Eritrea and breaching of the irrigation structures by destructive

  8. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  9. Effects of shallow groundwater management on the spatial and temporal variability of boron and salinity in an irrigated field

    NARCIS (Netherlands)

    Shouse, P.J.; Goldberg, S.; Skaggs, T.H.; Soppe, R.W.O.; Ayars, J.E.

    2006-01-01

    In some irrigated regions, the disposal of agricultural drainage waters poses significant environmental challenges. Efforts are underway to develop irrigation water management practices that reduce the volume of drainage generated. One such management strategy involves restricting flow in subsurface

  10. Paso Robles vineyard irrigation study provides benchmark data to assist future area groundwater management

    OpenAIRE

    Mark C. Battany; Gwen N. Tindula

    2018-01-01

    Accurate information on irrigation water usage does not exist in many areas where groundwater is the primary water source. This lack of information will hinder efforts to manage these groundwater basins sustainably according to current and future water regulations and policies. Using a low-cost methodology of irrigation-line pressure sensors connected to data loggers, we estimated irrigation applications at 84 vineyard sites in the Paso Robles Groundwater Basin over 4 years (2010–2013). We co...

  11. Decentralising Zimbabwe’s water management: The case of Guyu-Chelesa irrigation scheme

    Science.gov (United States)

    Tambudzai, Rashirayi; Everisto, Mapedza; Gideon, Zhou

    Smallholder irrigation schemes are largely supply driven such that they exclude the beneficiaries on the management decisions and the choice of the irrigation schemes that would best suit their local needs. It is against this background that the decentralisation framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasise the need for a participatory approach to water management. The Zimbabwean government has gone a step further in decentralising the management of irrigation schemes, that is promoting farmer managed irrigation schemes so as to ensure effective management of scarce community based land and water resources. The study set to investigate the way in which the Guyu-Chelesa irrigation scheme is managed with specific emphasis on the role of the Irrigation Management Committee (IMC), the level of accountability and the powers devolved to the IMC. Merrey’s 2008 critique of IWRM also informs this study which views irrigation as going beyond infrastructure by looking at how institutions and decision making processes play out at various levels including at the irrigation scheme level. The study was positioned on the hypothesis that ‘decentralised or autonomous irrigation management enhances the sustainability and effectiveness of irrigation schemes’. To validate or falsify the stated hypothesis, data was gathered using desk research in the form of reviewing articles, documents from within the scheme and field research in the form of questionnaire surveys, key informant interviews and field observation. The Statistical Package for Social Sciences was used to analyse data quantitatively, whilst content analysis was utilised to analyse qualitative data whereby data was analysed thematically. Comparative analysis was carried out as Guyu-Chelesa irrigation scheme was compared with other smallholder irrigation scheme’s experiences within Zimbabwe and the Sub Saharan African region at large. The findings were that whilst the

  12. Nitrogen Management Affects Nitrous Oxide Emissions under Varying Cotton Irrigation Systems in the Desert Southwest, USA.

    Science.gov (United States)

    Bronson, Kevin F; Hunsaker, Doug J; Williams, Clinton F; Thorp, Kelly R; Rockholt, Sharette M; Del Grosso, Stephen J; Venterea, Rodney T; Barnes, Edward M

    2018-01-01

    Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (NO) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid western United States. The objective of these studies was to assess the effect of N fertilizer management on NO emissions from furrow-irrigated, overhead sprinkler-irrigated, and subsurface drip-irrigated cotton ( L.) in Maricopa, AZ, on Trix and Casa Grande sandy clay loam soils. Soil test- and canopy-reflectance-based N fertilizer management were compared. In the furrow- and overhead sprinkler-irrigated fields, we also tested the enhanced efficiency N fertilizer additive Agrotain Plus as a NO mitigation tool. Nitrogen fertilizer rates as liquid urea ammonium nitrate ranged from 0 to 233 kg N ha. Two applications of N fertilizer were made with furrow irrigation, three applications under overhead sprinkler irrigation, and 24 fertigations with subsurface drip irrigation. Emissions were measured weekly from May through August with 1-L vented chambers. NO emissions were not agronomically significant, but increased as much as 16-fold following N fertilizer addition compared to zero-N controls. Emission factors ranged from 0.10 to 0.54% of added N fertilizer emitted as NO-N with furrow irrigation, 0.15 to 1.1% with overhead sprinkler irrigation, and emissions due to addition of Agrotain Plus to urea ammonium nitrate was inconsistent. This study provides unique data on NO emissions in arid-land irrigated cotton and illustrates the advantage of subsurface drip irrigation as a low NO source system. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Agro-ecology and irrigation technology : comparative research on farmer-managed irrigation systems in the Mid-hills of Nepal

    NARCIS (Netherlands)

    Parajuli, U.N.

    1999-01-01

    Design and management of irrigation infrastructure in farmer managed irrigation systems (FMISs) are strongly influenced by social and agro-ecological conditions of an area. This thesis analyzes the elements of social and agro-ecological conditions in FMISs in the mid-hills of Nepal and

  14. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    Energy Technology Data Exchange (ETDEWEB)

    Abalos, Diego, E-mail: diego.abalos@upm.es [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Sanchez-Martin, Laura; Garcia-Torres, Lourdes [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Groenigen, Jan Willem van [Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Vallejo, Antonio [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH{sub 4}{sup +} and NO{sub 3}{sup −}) regulating the emissions of greenhouse gases (i.e. N{sub 2}O, CO{sub 2} and CH{sub 4}) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N{sub 2}O, NO, CH{sub 4} and CO{sub 2} were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N{sub 2}O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO{sub 2} emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N{sub 2}O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO{sub 3}{sup −}-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. - Highlights: • The effect of fertigation management techniques on GHG and NO emissions was studied. • Fertigation with urea instead of calcium nitrate increased N{sub 2}O by a factor of 2.4. • Daily irrigation reduced NO (42%) but increased CO

  15. The Success of a Policy Model: Irrigation Management Transfer in Mexico

    NARCIS (Netherlands)

    Rap, E.R.

    2006-01-01

    The Mexican policy of Irrigation Management Transfer has been widely propagated as a success and has become a model for other countries seeking to improve the performance of their irrigation systems while also cutting public expenditures. This article analyses the process of policy-making that has

  16. Management of sierozem soils for irrigated cotton production in South Kazakhstan

    Science.gov (United States)

    Because cotton is an important crop in South Kazakhstan, it is irrigated to get economically viable yields. Irrigation management is challenging because water and soils are saline and because water must be conserved so that some of it can refill the Aral Sea. From 2006 to 2008, we grew furrow-irriga...

  17. Farm level optimal water management : assistant for irrigation under deficit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2008-01-01

    FLOW-AID is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  18. Farm level optimal water management: Assistant for irrigation under Defecit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2009-01-01

    Flow-aid is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  19. Middle East Regional Irrigation Management Information Systems project-Some science products

    Science.gov (United States)

    Similarities in the aridity of environments and water scarcity for irrigation allow common approaches to irrigation management problems and research methods in the Southern Great Plains of the United States and the Middle East. Measurement methods involving weighing lysimeters and eddy covariance sy...

  20. Improvement of sustainability of irrigation in olive by the accurate management of regulated deficit irrigation

    Science.gov (United States)

    Memmi, Houssem; Moreno, Marta M.; Gijón, M. Carmen; Pérez-López, David

    2015-04-01

    Regulated Deficit Irrigation (RDI) is a useful tool to balance the improvement of productivity and water saving. This methodology is based in keeping the maximum yield with deficit irrigation. The key consists in setting water deficit during a non-sensitive phenological period. In olive, this phenological period is pit hardening, although, the accurate delimitation of the end of this period is nowadays under researching. Another interesting point in this methodology is how deep can be the water stress during the non-sensitive period. In this assay, three treatments were used in 2012 and 2013. A control treatment (T0), irrigated following FAO methodology, without water stress during the whole season and two RDI treatments in which water stress was avoided only during stage I and III of fruit growth. During stage II, widely considered as pit hardening, irrigation was ceased until trees reach the stated water stress threshold. Water status was monitored by means of stem water potential (ψs) measurements. When ψs value reached -2 MPa in T1 treatment, trees were irrigated but with a low amount of water with the aim of keeping this water status for the whole stage II. The same methodology was used for T2 treatment, but with a threshold of -3 MPa. Water status was also controlled by leaf conductance measurements. Fruit size and yield were determined at the end of each season. The statistically design was a randomized complete blocks with four repetitions. The irrigation amount in T1 and T2 was 50% and 65% less than T0 at the end of the study. There were no significant differences among treatments in terms of yield in 2012 (year off) and 2013 (year on).

  1. The management perspective on the performance of the irrigation subsector

    NARCIS (Netherlands)

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the

  2. Improving of irrigation management: a learning based approach ...

    African Journals Online (AJOL)

    This paper presents the findings of a study that was conducted to identify social, cultural, economic and technological factors, which influence the adoption of irrigation scheduling practices on the farm. The study showed that irrigation farmers use different learning sources and that informal interaction and social networks ...

  3. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    NARCIS (Netherlands)

    Pardossi, A.; Incrocci, L.; Incrocci, G.; Marlorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J.

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of

  4. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops.

    Science.gov (United States)

    Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (Pfertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Intervention processes and irrigation institutions : sustainability of farmer managed irrigation systems in Nepal

    NARCIS (Netherlands)

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation

  6. Irrigation management strategies for winter wheat using AquaCrop model

    Directory of Open Access Journals (Sweden)

    M. H. Ali

    2013-09-01

    Full Text Available Many regions of the world face the challenge to ensure high yield with limited water supply. This calls for utilization of available water in an efficient and sustainable manner. Quantitative models can assist in management decision and planning purposes. The FAO’s newly developed crop-water model, AquaCrop, which simulates yield in response to water, has been calibrated for winter wheat and subsequently used to simulate yield under different sowing dates, irrigation frequencies, and irrigation sequences using 10 years daily weather data. The simulation results suggest that “2 irrigation frequency” is the most water-efficient schedule for wheat under the prevailing climatic and soil conditions. The results also indicate decreasing yield trend under late sowing. The normal/recommended sequence of irrigation performed better than the seven-days shifting from the normal. The results will help to formulate irrigation management plan based on the resource availability (water, and land availability from previous crop.

  7. Effects of irrigation and nitrogen management on hybrid maize seed production in north-west China

    Directory of Open Access Journals (Sweden)

    Hui RAN,Shaozhong KANG,Fusheng LI,Ling TONG,Taisheng DU

    2016-03-01

    Full Text Available Scientific irrigation and nitrogen management is important for agricultural production in arid areas. To quantify the effect of water and nitrogen management on yield components, biomass partitioning and harvest index (HI of maize for seed production with plastic film-mulching, field experiments including different irrigation and N treatments were conducted in arid north-west China in 2013 and 2014. The results indicated that kernel number per plant (KN was significantly affected by irrigation and N treatments. However, 100-kernel weight was relatively stable. Reducing irrigation quantity significantly increased stem partitioning index (PIstem and leaf partitioning index (PIleaf, and decreased ear partitioning index (PIear at harvest, but lowering N rate (from 500 to 100 kg N·hm-2 did not significantly reduce PIstem, PIleaf, and PIear at harvest. HI was significantly reduced by reducing irrigation quantity, but not by reducing N rate. Linear relationships were found between KN, PIstem, PIleaf, PIear at harvest and HI and evapotranspiration (ET.

  8. Satellite Irrigation Monitoring and Management Support in California with the Terrestrial Observation and Prediction System

    Science.gov (United States)

    Melton, F. S.; Johnson, L.; Lund, C.; Michaelis, A.; Pierce, L.; Guzman, A.; Hiatt, S.; Purdy, A. J.; Lee, C.; Rosevelt, C.; Fletcher, N.; Votava, P.; Milesi, C.; Hashimoto, H.; Wang, W.; Sheffner, E. J.; Nemani, R.

    2011-12-01

    Satellite data can be used to map crop evapotranspiration over large areas and make irrigation scheduling more practical, convenient, and accurate, but requires the development of new tools and computing frameworks to support operational use in irrigation scheduling and water management. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support. The system utilizes the NASA Terrestrial Observation and Prediction System (TOPS) to integrate satellite observations and meteorological observations to map basal crop coefficient (Kcb) and evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at spatial resolutions that are useful for irrigation management at the field level (30m). Integration of data from the NOAA NWS Forecasted Reference Evapotranspiration (FRET) system also allows forecasting of irrigation demand with lead times of up to one week, supporting both irrigation scheduling and water delivery planning. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system, web services, and hand held devices. We also present comparisons of estimates of ETcb from the prototype system against estimates from other methods, including surface renewal stations, energy balance models, and water balance models driven with data from wireless sensor networks deployed in operational agricultural fields across California.

  9. Impact of climate change on irrigation management for olive orchards at southern Spain

    Science.gov (United States)

    Lorite, Ignacio; Gabaldón-Leal, Clara; Santos, Cristina; Belaj, Angjelina; de la Rosa, Raul; Leon, Lorenzo; Ruiz-Ramos, Margarita

    2017-04-01

    The irrigation management for olive orchards under future weather conditions requires the development of advanced tools for considering specific physiological and phenological components affected by the foreseen changes in climate and atmospheric [CO2]. In this study a new simulation model named AdaptaOlive has been considered to develop controlled deficit irrigation and full irrigation scheduling for the traditional olive orchards located in Andalusia region (southern Spain) under the projected climate generated by an ensemble of 11 climate models from the ENSEMBLES European project corresponding to the SRES A1B scenario. Irrigation requirements, irrigation water productivity (IWP) and net margin (NM) were evaluated for three periods (baseline, near future and far future) and three irrigation strategies (rainfed, RF, controlled deficit irrigation, CDI, and full irrigation, FI). For irrigation requirements, a very limited average increase for far future compared with baseline period was found (2.6 and 1.3%, for CDI and FI, respectively). Equally, when IWP was analyzed, significant increases were identified for both irrigation strategies (77.4 and 72.2%, for CDI and FI, respectively) due to the high simulated increase in yield. Finally, when net margin was analyzed, the irrigation water cost had a key significance. For low water costs FI provided higher net margin values than for CDI. However, for high water costs (expected in the future due to the foreseen reduction in rainfall and the increase of the competence for the available water resources), net margin is reduced significantly, generating a very elevated number of years with negative net margin. All the described results are affected by a high level of uncertainty as the projections from the ensemble of 11 climate models show large spread. Thus, for a representative location within Andalusia region as Baeza, a reduction of irrigation requirements under full irrigation strategy was found for the ensemble mean

  10. Maintaining adequate nutrient supply - Principles, decision-support tools, and best management practices [Chapter 6

    Science.gov (United States)

    Robert B. Harrison; Douglas A. Maguire; Deborah Page-Dumroese

    2011-01-01

    Maintaining adequate nutrient supply to maintain or enhance tree vigor and forest growth requires conservation of topsoil and soil organic matter. Sometimes nutrient amendments are also required to supplement inherent nutrient-pool limitations or replenish nutrients removed in harvested material. The goal is to maintain the productive potential of the soil and, when...

  11. Local Irrigation Management Institutions Mediate Changes Driven by External Policy and Market Pressures in Nepal and Thailand

    Science.gov (United States)

    Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  12. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    Science.gov (United States)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  13. Economical Evaluation of Single Irrigation Efficient of Rainfed Barley under Different Agronimic Managements at On-farm Areas

    Directory of Open Access Journals (Sweden)

    Ali Reza Tavakoli

    2016-02-01

    Full Text Available Introduction: Two of the main challenges in developing countries are food production and trying to get a high income for good nutrition and reduction of poverty. Cereals and legumes are the most important crops in the rainfed areas of the country occupying the majority of dry land areas. Irrigated production systems had a main role in food production in the past years; but unfortunately, in recent years, with high population and competition of industry and environment with agricultural sectors, getting adequate irrigation water is difficult. The main purpose of this study is to determine the best option of crop agronomic management. Rainfed agriculture is important in the world; because this production system establishes %80 of the agriculture area and prepares %70 of the food in the world. In the Lorestan province, production area for rainfed barley is 120,000 ha and the amount produced is 120000 ton (approximately 1009 kg per ha. The purposes of this study were to evaluate cost, benefit and profit of rainfed barley production, economical and non-economical substitution of treatments in different agronomic management, study of sale return, cost ratio, determining break-even of price and comparing it with the guaranteed price of barley and estimating the value of water irrigation. Materials and Methods: This research was carried out by sample farmers (12 farmers on rainfed barley at the Honam selected site in the Lorestan province during 2005-07. At on-farm areas of the upper Karkheh River Basin (KRB three irrigation levels were analyzed (rainfed, single irrigation at planting time and single irrigation at spring time under two agronomic managements (advanced management (AM and traditional management (TM. Data was analyzed by Partial Budgeting (PB technique, Marginal Benefit-Cost Ratio (MBCR, and economical and non-economical test. For estimation of net benefit the following formula was used: (1 Where: N.B: Net income (Rials/ ha , B(w : Gross

  14. Costs and benefits of satellite-based tools for irrigation management

    Directory of Open Access Journals (Sweden)

    Francesco eVuolo

    2015-07-01

    Full Text Available This paper presents the results of a collaborative work with farmers and a cost-benefit analysis of geospatial technologies applied to irrigation water management in the semi-arid agricultural area in Lower Austria. We use Earth observation (EO data to estimate crop evapotranspiration (ET and webGIS technologies to deliver maps and irrigation advice to farmers. The study reports the technical and qualitative evaluation performed during a demonstration phase in 2013 and provides an outlook to future developments. The calculation of the benefits is based on a comparison of the irrigation volumes estimated from satellite vs. the irrigation supplied by the farmers. In most cases, the amount of water supplied was equal to the maximum amount of water required by crops. At the same time high variability was observed for the different irrigation units and crop types. Our data clearly indicates that economic benefits could be achieved by reducing irrigation volumes, especially for water-intensive crops. Regarding the qualitative evaluation, most of the farmers expressed a very positive interest in the provided information. In particular, information related to crop ET was appreciated as this helps to make better informed decisions on irrigation. The majority of farmers (54% also expressed a general willingness to pay, either directly or via cost sharing, for such a service. Based on different cost scenarios, we calculated the cost of the service. Considering 20,000 ha regularly irrigated land, the advisory service would cost between 2.5 and 4.3 €/ha per year depending on the type of satellite data used. For comparison, irrigation costs range between 400 and 1000 €/ha per year for a typical irrigation volume of 2,000 cubic meters per ha. With a correct irrigation application, more than 10% of the water and energy could be saved in water-intensive crops, which is equivalent to an economic benefit of 40-100 €/ha per year.

  15. Modelling sustainable salt water management under deficit irrigation conditions for melon in Spain and Brazil.

    Science.gov (United States)

    Leite, Kelly N; Cabello, María J; Valnir Júnior, Manuel; Tarjuelo, José M; Domínguez, Alfonso

    2015-08-30

    In water scarcity areas the use of saline water for irrigation is a common practice. In this study, experimental data from two two-year melon tests were collected for the calibration (2004 'Yellow Melon' (YeMe) type) and validation (2002 YeMe, 2005 and 2006 'Piel de Sapo' (PiSa) type) processes in melon crop simulation under deficit irrigation conditions using salt water. The simulations were carried out for Castilla-La Mancha (Spain) and Ceará (Brazil) using the MOPECO model, which includes optimized regulated deficit irrigation (ORDI) methodology. The objective was to determine the most suitable irrigation strategy for both areas. Under fresh water conditions, ORDI may increase yield by up to 20% (PiSa) and 7% (YeMe) compared with constant deficit irrigation. Higher water deficit should be induced during the vegetative development and ripening stages. The rainfall between irrigation periods is able to leach the salts supplied by the irrigation water. The combination of ORDI with different strategies for managing saline water may increase water use efficiency. In these areas it may be of interest not to apply the leaching fraction (saving up to 67% of irrigation water). However, leaching of the soluble salts accumulated before starting the most sensitive periods may be suitable. © 2014 Society of Chemical Industry.

  16. Integrating Satellite and Surface Sensor Networks for Irrigation Management Applications in California

    Science.gov (United States)

    Melton, F. S.; Johnson, L.; Post, K. M.; Guzman, A.; Zaragoza, I.; Spellenberg, R.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Frame, K.; Temesgen, B.; Eching, S.

    2016-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water managers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. The timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present a system for irrigation scheduling and management support in California and describe lessons learned from the development and implementation of the system. The Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web data services. SIMS also provides an application programming interface (API) that facilitates integration with other irrigation decision support tools, estimation of total crop evapotranspiration (ETc) and calculation of on-farm water use efficiency metrics. Accuracy assessments conducted in commercial fields for more than a dozen crop types to date have shown that SIMS seasonal ETcb estimates are within 10% mean absolute error (MAE) for well-watered crops and within 15% across all crop types studied, and closely track daily ETc and running totals of ETc measured in each field. Use of a soil water balance model to correct for soil evaporation and crop water stress reduces this error to less than 8% MAE across all crop types studied to date relative to field measurements of ETc. Results from irrigation trials conducted by the project for four vegetable crops have also demonstrated the potential for use of ET-based irrigation management strategies to reduce total applied water by

  17. Paso Robles vineyard irrigation study provides benchmark data to assist future area groundwater management

    Directory of Open Access Journals (Sweden)

    Mark C. Battany

    2018-01-01

    Full Text Available Accurate information on irrigation water usage does not exist in many areas where groundwater is the primary water source. This lack of information will hinder efforts to manage these groundwater basins sustainably according to current and future water regulations and policies. Using a low-cost methodology of irrigation-line pressure sensors connected to data loggers, we estimated irrigation applications at 84 vineyard sites in the Paso Robles Groundwater Basin over 4 years (2010–2013. We compared irrigation amounts with the preceding winter's rainfall and with the growing season reference evapotranspiration (ETo. Over the study period, the average annual irrigation application was 11.46 inches (291 millimeters. The average annual application correlated inversely to the preceding winter's rainfall, while the irrigation over the growing season (April–October correlated directly with the ETo over this same period. This study provides an initial data framework that can be used by groundwater sustainability agencies to help manage groundwater in the Paso Robles area. The methodology also could be utilized in other regions to estimate regional irrigation usage while maintaining anonymity for participants.

  18. Influence of grazing management on the production of an irrigated ...

    African Journals Online (AJOL)

    The production of an irrigated grass/legume pasture was determined using Merino ewes on rotational and continuous grazing systems. The clover content of the pasture declined, while the grass content increased under both systems. The lucerne content of the rotationally-grazed pastures did not change, but lucerne failed ...

  19. Intraoperative colonic irrigation in the management of left sided ...

    African Journals Online (AJOL)

    Objectives: To evaluate the safety and benefits of antegrade intraoperative colonic irrigation (lavage) and primary anastomosis, after colonic resection, in the treatment of left sided large bowel emergencies. Design: A prospective descriptive study. Setting: Jos University Teaching Hospital, Jos, Nigeria. Participants: Thirty ...

  20. Web-based management of research groups - using the right tools and an adequate integration strategy

    International Nuclear Information System (INIS)

    Barroso, Antonio Carlos de Oliveira; Menezes, Mario Olimpio de

    2011-01-01

    Nowadays broad interest in a couple of inter linked subject areas can make the configuration of a research group to be much diversified both in terms of its components and of the binding relationships that glues the group together. That is the case of the research group for knowledge management and its applications to nuclear technology - KMANT at IPEN, a living entity born 7 years ago and that has sustainably attracted new collaborators. This paper describes the strategic planning of the group, its charter and credo, the present components of the group and the diversified nature of their relations with the group and with IPEN. Then the technical competencies and currently research lines (or programs) are described as well as the research projects, and the management scheme of the group. In the sequence the web-based management and collaboration tools are described as well our experience with their use. KMANT have experiment with over 20 systems and software in this area, but we will focus on those aimed at: (a) web-based project management (RedMine, ClockinIT, Who does, PhProjekt and Dotproject); (b) teaching platform (Moodle); (c) mapping and knowledge representation tools (Cmap, Freemind and VUE); (d) Simulation tools (Matlab, Vensim and NetLogo); (e) social network analysis tools (ORA, MultiNet and UciNet); (f) statistical analysis and modeling tools (R and SmartPLS). Special emphasis is given to the coupling of the group permanent activities like graduate courses and regular seminars and how newcomers are selected and trained to be able to enroll the group. A global assessment of the role the management strategy and available tool set for the group performance is presented. (author)

  1. Web-based management of research groups - using the right tools and an adequate integration strategy

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, Antonio Carlos de Oliveira; Menezes, Mario Olimpio de, E-mail: barroso@ipen.b, E-mail: mario@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Grupo de Pesquisa em Gestao do Conhecimento Aplicada a Area Nuclear

    2011-07-01

    Nowadays broad interest in a couple of inter linked subject areas can make the configuration of a research group to be much diversified both in terms of its components and of the binding relationships that glues the group together. That is the case of the research group for knowledge management and its applications to nuclear technology - KMANT at IPEN, a living entity born 7 years ago and that has sustainably attracted new collaborators. This paper describes the strategic planning of the group, its charter and credo, the present components of the group and the diversified nature of their relations with the group and with IPEN. Then the technical competencies and currently research lines (or programs) are described as well as the research projects, and the management scheme of the group. In the sequence the web-based management and collaboration tools are described as well our experience with their use. KMANT have experiment with over 20 systems and software in this area, but we will focus on those aimed at: (a) web-based project management (RedMine, ClockinIT, Who does, PhProjekt and Dotproject); (b) teaching platform (Moodle); (c) mapping and knowledge representation tools (Cmap, Freemind and VUE); (d) Simulation tools (Matlab, Vensim and NetLogo); (e) social network analysis tools (ORA, MultiNet and UciNet); (f) statistical analysis and modeling tools (R and SmartPLS). Special emphasis is given to the coupling of the group permanent activities like graduate courses and regular seminars and how newcomers are selected and trained to be able to enroll the group. A global assessment of the role the management strategy and available tool set for the group performance is presented. (author)

  2. Saline irrigation for the management of skin extravasation injury in neonates.

    Science.gov (United States)

    Gopalakrishnan, P N; Goel, Nitin; Banerjee, Sujoy

    2017-07-19

    Extravasation injury, a complication commonly seen in the neonatal intensive care unit, can result in scarring with cosmetic and functional sequelae. A wide variety of treatments are available, including subcutaneous irrigation with saline (with or without hyaluronidase), liposuction, use of specific antidotes, topical applications, and normal wound care with dry or wet dressings. All such treatments aim to prevent or reduce the severity of complications. Primary objective To compare the efficacy and safety of saline irrigation or saline irrigation with prior hyaluronidase infiltration versus no intervention or normal wound care for tissue healing in neonates with extravasation injury. Secondary objectives To evaluate by subgroup analysis of controlled trials the influence of type of extravasate, timing of irrigation following extravasation, and postmenstrual age (PMA) of the neonate at the time of injury on outcomes and adverse effects.Specifically, we planned to perform subgroup analysis for the primary outcome, if appropriate, by examining:1. time to irrigation from identified extravasation injury (irrigation with or without hyaluronidase infiltration versus no intervention or normal wound care for the management of extravasation injury in neonates. Three review authors independently reviewed and identified articles for possible inclusion in this review. We used the GRADE approach to assess the quality of evidence. We found no eligible studies. Our search revealed 10 case reports or case series describing successful outcomes with different interventions for this condition. To date, no RCTs have examined the effects of saline irrigation with or without prior hyaluronidase infiltration for management of extravasation injury in neonates. Saline irrigation is frequently reported in the literature as an intervention for management of extravasation injury in neonates. Research should focus first on evaluating the efficacy and safety of this intervention through RCTs

  3. Safe operation of nuclear power plants - Is safety culture an adequate management method?

    International Nuclear Information System (INIS)

    Piirto, A.

    2012-01-01

    One of the characteristics of a good safety culture is a definable commitment to the improvement of safety behaviours and attitudes at all organisational levels. A second characteristic of an organisation with excellent safety culture is free and open communication. The general understanding has been that safety culture is a part of organisation culture. In addition to safety culture thinking, proactive programmes and displays of proactive work to improve safety are required. This work needs to include, qt a minimum, actions aiming at reducing human errors, the development of human error prevention tools, improvements in training, and the development of working methods and the organisation's activities. Safety depends not only on the technical systems, but also on the organisation. There is a need for better methods and tools for organisational assessment and development. Today there is universal acceptance of the significant impact that management and organisational factors have over the safety significance of complex industrial installations such as nuclear power plants. Many events with significant economic and public impact had causes that have been traced to management deficiencies. The objective of this study is development of new methods to increase safety of nuclear power plant operation. The research has been limited to commercial nuclear power plants that are intended for electrical power generation in Finland. Their production activities, especially operation and maintenance, are primarily reviewed from a safety point of view, as well as human performance and organisational factors perspective. This defines the scope and focus of the study. The research includes studies related to knowledge management and tacit knowledge in the project management context and specific studies related to transfer of tacit knowledge in the maintenance organization and transfer of tacit knowledge between workers of old generation and young generation. The empirical results

  4. Safe operation of nuclear power plants - Is safety culture an adequate management method?

    Energy Technology Data Exchange (ETDEWEB)

    Piirto, A.

    2012-07-01

    One of the characteristics of a good safety culture is a definable commitment to the improvement of safety behaviours and attitudes at all organisational levels. A second characteristic of an organisation with excellent safety culture is free and open communication. The general understanding has been that safety culture is a part of organisation culture. In addition to safety culture thinking, proactive programmes and displays of proactive work to improve safety are required. This work needs to include, qt a minimum, actions aiming at reducing human errors, the development of human error prevention tools, improvements in training, and the development of working methods and the organisation's activities. Safety depends not only on the technical systems, but also on the organisation. There is a need for better methods and tools for organisational assessment and development. Today there is universal acceptance of the significant impact that management and organisational factors have over the safety significance of complex industrial installations such as nuclear power plants. Many events with significant economic and public impact had causes that have been traced to management deficiencies. The objective of this study is development of new methods to increase safety of nuclear power plant operation. The research has been limited to commercial nuclear power plants that are intended for electrical power generation in Finland. Their production activities, especially operation and maintenance, are primarily reviewed from a safety point of view, as well as human performance and organisational factors perspective. This defines the scope and focus of the study. The research includes studies related to knowledge management and tacit knowledge in the project management context and specific studies related to transfer of tacit knowledge in the maintenance organization and transfer of tacit knowledge between workers of old generation and young generation. The empirical

  5. Groundwater Irrigation Management and the Existing Challenges from the Farmers’ Perspective in Central Iran

    Directory of Open Access Journals (Sweden)

    Forough Jafary

    2018-01-01

    Full Text Available The sustainable management of natural resources, and particularly groundwater, presents a major challenge in arid regions to ensure security of water supply and support agricultural production. In many cases, the role of smallholder farmers is often neglected when managing irrigated water and land processes. However, management decisions have a major impact on farmers’ livelihoods, and it is essential: first, to recognise the crucial role of regional and local social, political and economic systems; and second, to integrate farmers’ perspectives in the governance and management of local groundwater practices. This is particularly important as the ways in which arid region farmers use land and water have wider implications for land degradation and salinization. This paper uses a community-based approach to identify and examine the social, economic and cultural dimensions to groundwater irrigation systems from the perspective of local farmers in central Iran. The paper utilises interviews with local farmers and water agencies in Iran to reflect on their respective roles within the irrigation system and in developing management plans for the sustainable use of groundwater. Through social research, we investigate the reasons why farmers might reject government irrigation management schemes and outline how local problems with land degradation and salinization and reduced water availability have arisen as a result of changing management policies. In conclusion, we identify future challenges and consider appropriate future management strategies.

  6. Irrigation and drainage management strategies to enhance cranberry production and optimize water use in North America

    Science.gov (United States)

    Recent funding, as well as technological and management changes, have led to important advances in irrigation and drainage strategies for the North American cranberry industry. This paper represents a synthesis of water management research on cranberry, as well as an introduction to a special issue ...

  7. Understanding of morphometric features for adequate water resource management in arid environments

    Directory of Open Access Journals (Sweden)

    M. Elhag

    2017-08-01

    Full Text Available Hydrological characteristics such as topographic parameters, drainage attributes, and land use/land cover patterns are essential to evaluate the water resource management of a watershed area. In the current study, delineation of a watershed and calculation of morphometric characteristics were undertaken using the ASTER global digital elevation model (GDEM. The drainage density of the basin was estimated to be very high, which indicates that the watershed possesses highly permeable soils and low to medium relief. The stream order of the area ranges from first to sixth order, showing a semi-dendritic and radial drainage pattern that indicates heterogeneity in textural characteristics, and it is influenced by structural characteristics in the study area. The bifurcation ratio (Rb of the basin ranges from 2.0 to 4.42, and the mean bifurcation ratio is 3.84 in the entire study area, which signifies that the drainage pattern of the entire basin is controlled much more by the lithological and geological structure. The elongation ratio is 0.14, which indicates that the shape of the basin has a narrow and elongated shape. A land use/land cover map was generated by using a Landsat-8 image acquired on 10 August 2015 and classified to distinguish mainly the alluvial deposit from the mountainous rock.

  8. Understanding of morphometric features for adequate water resource management in arid environments

    Science.gov (United States)

    Elhag, Mohamed; Galal, Hanaa K.; Alsubaie, Haneen

    2017-08-01

    Hydrological characteristics such as topographic parameters, drainage attributes, and land use/land cover patterns are essential to evaluate the water resource management of a watershed area. In the current study, delineation of a watershed and calculation of morphometric characteristics were undertaken using the ASTER global digital elevation model (GDEM). The drainage density of the basin was estimated to be very high, which indicates that the watershed possesses highly permeable soils and low to medium relief. The stream order of the area ranges from first to sixth order, showing a semi-dendritic and radial drainage pattern that indicates heterogeneity in textural characteristics, and it is influenced by structural characteristics in the study area. The bifurcation ratio (Rb) of the basin ranges from 2.0 to 4.42, and the mean bifurcation ratio is 3.84 in the entire study area, which signifies that the drainage pattern of the entire basin is controlled much more by the lithological and geological structure. The elongation ratio is 0.14, which indicates that the shape of the basin has a narrow and elongated shape. A land use/land cover map was generated by using a Landsat-8 image acquired on 10 August 2015 and classified to distinguish mainly the alluvial deposit from the mountainous rock.

  9. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  10. Assessment of a New Approach for Systematic Subsurface Drip Irrigation Management

    Directory of Open Access Journals (Sweden)

    Hédi Ben Ali

    2017-01-01

    Full Text Available This paper aimed to assess the reliability of a new approach that provides systematic irrigation management based on fixed water suction in the vadose zone. Trials were carried out in the experimental farm of IRA Gabès on subsurface drip irrigated (SDI tomato plot. The SDI system was designed so that the soil water content is to be maintained within prescribed interval ascertaining the best plant growth. Irrigation management was systematically monitored by water suction evolution in the vadose zone. Recorded results showed that all-over irrigation season lateral pressure head ranged within 93.3 ± 20.0; 119.95 ± 53.35 and 106.6 ± 40.0 mb, respectively, at the upstream, middle, and downstream. The correspondent lateral pressure head distribution uniformity ranged within 97.1% and 99.6%. Soil water content varied within 0.2175 ± 0.0165; 0.206 ± 0.0195 and 0.284 ± 0.100 beneath the inlet, the behalf, and the lateral end tip. The correspondent soil water distribution uniformity was higher than 80.7% all-over irrigation season. Based on the recorded results, the proposed approach could be a helpful tool for accurate SDI systems design and best water supplies management. Nevertheless, further trials are needed to assess the approach reliability in different cropping conditions.

  11. IRRIMET: a web 2.0 advisory service for irrigation water management

    Science.gov (United States)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  12. An optimal management of water for a turf irrigation system in Milan area (Italy)

    Science.gov (United States)

    Deangelis, Maria Laura; Mazzoleni, Abramo

    2015-04-01

    The design of an irrigation system is not just "draw", but a complex organization that takes into account of a whole range of information that are inherently contained in the graphic representation of the final plan. The various stages that make up the activity of designing an irrigation system include: general survey of the site to be irrigated, meteorological analysis of the site and the calculation of the water requirement, development of the project with the choice and location of the components. The use of a numerical model based on water balance in a soil-water-atmosphere system allows the evaluation of the optimal water requirement as a function of meteorological characteristics. The water saving is enabled through a smart programming of a modern automation system for irrigation. The meteorological data analysis was conducted choosing from the series of two special years: the year 2002, particularly rainy, and the other in 2007, extraordinarily drought. The determination of the water requirements of turf was conducted on a daily scale. The water consumption was calculated in a classic irrigation system that covers the delivery of 5 mm of water per day, interrupted only by a rain sensor. In the second case water consumption was analysed by managing an irrigation controller based on actual water needs of turf day by day. For the two years in question water savings ranges between 13 and 27%.

  13. Selection of adequate site location during early stages of construction project management: A multi-criteria decision analysis approach

    Science.gov (United States)

    Marović, Ivan; Hanak, Tomaš

    2017-10-01

    In the management of construction projects special attention should be given to the planning as the most important phase of decision-making process. Quality decision-making based on adequate and comprehensive collaboration of all involved stakeholders is crucial in project’s early stages. Fundamental reasons for existence of this problem arise from: specific conditions of construction industry (final products are inseparable from the location i.e. location has a strong influence of building design and its structural characteristics as well as technology which will be used during construction), investors’ desires and attitudes, and influence of socioeconomic and environment aspects. Considering all mentioned reasons one can conclude that selection of adequate construction site location for future investment is complex, low structured and multi-criteria problem. To take into account all the dimensions, the proposed model for selection of adequate site location is devised. The model is based on AHP (for designing the decision-making hierarchy) and PROMETHEE (for pairwise comparison of investment locations) methods. As a result of mixing basis feature of both methods, operational synergies can be achieved in multi-criteria decision analysis. Such gives the decision-maker a sense of assurance, knowing that if the procedure proposed by the presented model has been followed, it will lead to a rational decision, carefully and systematically thought out.

  14. Applications of Satellite Data to Support Improvements in Irrigation and Groundwater Management in California

    Science.gov (United States)

    Melton, F. S.; Huntington, J. L.; Johnson, L.; Guzman, A.; Morton, C.; Zaragoza, I.; Dexter, J.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Temesgen, B.; Trezza, R.; Frame, K.; Eching, S.; Grimm, R.; Hall, M.

    2017-12-01

    In agricultural regions around the world, threats to water supplies from drought and groundwater depletion are driving increased demand for tools to advance agricultural water use efficiency and support sustainable groundwater management. Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water resource managers with information that can be used to both optimize ag water use and improve estimates of groundwater withdrawals for irrigation. We describe the development of two remote sensing-based tools for ET mapping in California, including important lessons in terms of system design, partnership development, and transition to operations. For irrigation management, the integration of satellite data and surface sensor networks to provide timely delivery of information on crop water requirements can make irrigation scheduling more practical, convenient, and accurate. Developed through a partnership between NASA and the CA Department of Water Resources, the Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development and crop water requirements at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based interface and web data services. SIMS also provides an API that facilitates integration with other irrigation decision support tools, such as CropManage and IrriQuest. Field trials using these integrated tools have shown that they can be used to sustain yields while improving water use efficiency and nutrient management. For sustainable groundwater management, the combination of satellite-derived estimates of ET and data on surface water deliveries for irrigation can increase the accuracy of estimates of groundwater pumping. We are developing an OpenET platform to facilitate access to ET data from multiple models and accelerate operational

  15. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  16. Irrigation Water Pricing in Tunisia: Issues for Management Transparency

    Directory of Open Access Journals (Sweden)

    Chokri Thabet

    2006-01-01

    Full Text Available Tunisia is facing increasing competition for water among users due to population and economic growth. Projections show that the water resources will be fully used by 2010. As a result, the opportunity cost of water has risen significantly. In order to cope with potential water shortages, the Tunisian government has undertaken a set of policies and technical measures, such as institutional reforms, improving the efficiency of water delivery network and water pricing policies reforms. It has been observed that cost estimation of water produced and delivered is not transparent. Thus any increase in water price is opposed by farmers. Data is not consistent, making the establishment of a water pricing scheme difficult. Besides, the water authority lacks accurate information on water productivity at farm level leading to asymmetric information on the side of the authorities as well as on the side of the farmers. For a successful reform of the irrigation water pricing policy two conditions have to prevail: i integration of the accounting system of capital costs with an analytical approach and ii assessing farmers’ willingness to pay for irrigation water. Finally, the implementation of a water rights system could be an alternative to solve the asymmetric information problem and improve the economic efficiency.

  17. Holistic irrigation water management approach based on stochastic soil water dynamics

    Science.gov (United States)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly

  18. China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge

    Directory of Open Access Journals (Sweden)

    Liuyang Yao

    2017-12-01

    Full Text Available In response to the increased competition for water, the Chinese government has determined to promote water-saving irrigation (WSI followed by a range of institutional arrangements and policy goals. Three management mechanisms are analyzed in this study in terms of effectiveness, including the top-down regulation mechanism using direct control or economic instruments, the design-bid funding mechanism mobilizing local governments by competitive grants program, and the bottom-up participation mechanism transferring more irrigation management responsibilities to end-users. Although the WSI management has achieved notable improvements by the combination of different mechanisms, conflicts among different policy goals, uneven distribution of financial resources, and insufficient participation from water users caused the difficulty in aligning stakeholders’ incentives. Approaches are needed to enable sustainable management by coordinating incentives from different stakeholders in the management, as well as incorporating end water users to assist decision-making.

  19. RELATIONSHIP BETWEEN AGRICULTURAL LAND SYSTEMS AND WATER USE DURING THE APPLICATION OF PARTICIPATORY IRRIGATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Naoko OKA

    2013-10-01

    Full Text Available The identification of water rights is essential to the application of Participatory Irrigation Management (PIM policies. Water and agricultural land have traditionally had strong relationships. We must clarify land tenure conditions and their relationships with water rights. This paper presents the results of studies focused on the relationships between agricultural land systems and water use in several African and Asian countries. It describes different situations related to land systems and water use, as well as the relationships between them. In study areas, in addition to historical backgrounds, land tenure may be associated with the extent to which state, customary, and individual involvements affect farmers’ de facto water rights. In general, water rights are clearly established in developed countries because formal administration of land and water resources has been functional and well-established. In developing countries, further institutional arrangements may be required to enable farmers to maintain water rights and increase efficient water use and management. However, no single solution is available. This paper describes how local contexts may vary with respect to land and water tenure. When PIM is introduced into irrigation schemes, it must be carefully integrated into agricultural land systems and the regulation of water rights in target areas. First, a land management system must be developed that secures farmers’ rights to ensure rational/optimal use of irrigation water. This offers important implications for rice irrigation and other crops that requires relatively intense and long-term investments in land development and advanced water management.

  20. Regional application of one-dimensional water flow models for irrigation management

    NARCIS (Netherlands)

    Urso, D' G.; Menenti, M.; Santini, A.

    1999-01-01

    Numerical models for the simulation of soil water processes can be used to evaluate the spatial and temporal variations of crop water requirements; this information can support the irrigation management in a rationale usage of water resources. This latter objective requires the knowledge of

  1. The Middle Eastern Regional Irrigation Management Information Systems project-update

    Science.gov (United States)

    The Middle Eastern Regional Irrigation Management Information Systems Project (MERIMIS) was formulated at a meeting of experts from the region in Jordan in 2003. Funded by the U.S. Department of State, it is a cooperative regional project bringing together participants from Israel, Jordan, Palestini...

  2. Use of crop simulation models to evaluate limited irrigation management options for corn in a semiarid environment

    Science.gov (United States)

    Saseendran, S. A.; Ahuja, L. R.; Nielsen, D. C.; Trout, T. J.; Ma, L.

    2008-07-01

    Increasing competition for land and water resources due to increasing demands from rapid population growth calls for increasing water use efficiency of irrigated crops. It is important to develop location-specific agronomic practices to maximize water use efficiency (WUE). Adequately calibrated and validated agricultural systems models provide a systems approach and a fast alternative method for developing and evaluating agronomic practices that can utilize technological advances in limited irrigation agriculture. The objectives of this study were to (1) calibrate and validate the CERES-maize model under both dryland and irrigated corn (Zea mays L.) production in northeastern Colorado and (2) use the model with a long-term weather record to determine (1) optimum allocation of limited irrigation between vegetative and reproductive growth stages and (2) optimum soil water depletion level for initiating limited irrigation. The soil series was a Rago silt loam, and the initial water content on 1 January of each year was equal to field capacity in the upper 300 mm and half of the field capacity below this depth. Optimum production and WUE with minimum nitrogen (N) losses were found when (1) a water allocation ratio of 40:60 or 50:50 (uniform) between vegetative and reproductive stages for irrigations up to 100 mm, and a ratio of 20:80 for irrigations above 100 mm was used; and (2) irrigation was initiated at 20% plant-available water (PAW) (80% depletion). When available water for irrigation is limited to 100 mm, irrigating 50% of the area with 200 mm of water at 20:80 split irrigations between the vegetative and reproductive stages produced greater yield than irrigating 100% of the area with 100 mm water. Concepts developed in the study can potentially be adapted to other locations, climates, and crops. However, precise site-specific recommendations need to be developed for each soil-climate zone using the validated system model.

  3. Irrigation and crop management in Gandak Canal command of India

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The Gandak Project is one of the biggest irrigation projects in India, covering a culturable command area (CCA) of 4.44 lakh ha in U.P., 9.6 lakh ha CCA in Bihar and 0.44 lakh ha in Nepal (Singh and Khan, 2002). The total culturable command areas are 14.44 lakh hectares. The command area is located in between latitude 25 deg 40' to 27 deg 25' and longitude between 83 deg 15' to 85 deg 15'. It is a diversion project through construction of a barrage on the river Gandak. This project area covers up to five districts in the Command of Tirhut Main Canal (TMC) and 3 districts in the Saran Main Canal (SMC) command. The length of main canal is usually long (990 and 650 R.D.'s in eastern and western side, respectively) and the channels are unlined and seepage loss is quite high. (author)

  4. Simulating N2O emissions from irrigated cotton wheat rotations in Australia using DAYCENT: Mitigation options by optimized fertilizer and irrigation management

    Science.gov (United States)

    Scheer, Clemens; DelGrosso, Stephen; Parton, William; Rowlings, David; Grace, Peter

    2014-05-01

    Irrigation and fertilization do not only stimulate plant growth, but also accelerate microbial C- and N-turnover in the soil and thus can lead to enhanced emissions of nitrous oxide (N2O) from soils. In Australia there are more than 2 million hectares of agricultural land under irrigation and research has now focused on a combination of nitrogen fertilizer and irrigation management to maintain crop yields, maximize nitrogen use efficiency and reduce N2O emissions. Process-based models are now being used to estimate N2O emissions and assess mitigation options of N2O fluxes by improving management at field, regional and national scales. To insure that model predictions are reliable it is important to rigorously test the model so that uncertainty bounds for N2O emissions can be reduced and the impacts of different management practices on emissions can be better quantified. We used high temporal frequency dataset of N2O emissions to validate the performance of the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. Furthermore, we evaluated potential N2O mitigation strategies in irrigated cotton-wheat rotations in Australia by simulating different fertilizer and irrigation management scenarios over a climatically variable 25 year time span. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. The simulations of different fertilization and irrigation practices in cotton-wheat rotations over a 25 year time frame clearly showed that there is scope for reducing N2O emissions by modified fertilizer and irrigation management. For wheat and for cotton the model predicted that a

  5. Regulated deficit irrigation as a water management strategy in Vitis vinifera production

    International Nuclear Information System (INIS)

    Wample, R.L.; Smithyman, R.

    2002-01-01

    An initial six-year study in a commercial vineyard located in the Columbia River Valley of Washington State, United States of America, examined the management practices and potential benefits of regulated deficit irrigation (RDI) on Vitis vinifera cv. Sauvignon blanc. The objective of the treatments was to evaluate the effect of deficit irrigation prior to, compared with after, veraison. Each of four irrigation treatments was applied to 1.6 ha and replicated four times for a total 27.0 ha. Irrigation treatments were based on desired soil moisture levels in the top metre of the profile where most of the root system is found. Soil moisture was monitored using a neutron probe and the information was combined with calculations of evaporative demand to determine the irrigation required on a weekly basis. Vine growth, yield, fruit quality and cold hardiness were monitored throughout the study. The results indicated that RDI prior to veraison was effective in controlling shoot growth, as determined by shoot length and elongation rate, as well as pruning weights. Sixteen wine lots, each of approximately 12,000 litres, were prepared each season. Although there was some effect on berry weight, yield was not always significantly reduced. Full irrigation prior to veraison resulted in excessive shoot growth. RDI applied after veraison to vines with large canopies resulted in greater water deficit stress. Fruit quality was increased by pre-veraison RDI compared to postveraison RDI based on wines made. Regulated deficit irrigation applied at anytime resulted in better early-season lignification of canes and cold hardening of buds. There was a slight improvement in mid-winter cold hardiness of vines subjected to RDI. However, this effect was inconsistent. Studies on Cabernet Sauvignon and White Riesling are underway to confirm these results and to investigate the impact of RDI on fruit quality and winemaking practices. (author)

  6. How Participatory is Participatory Irrigation Management (PIM)? A Study of Water User Associations (WUAs) in Andhra Pradesh

    OpenAIRE

    V. Ratna Reddy; P. Prudhvikar Reddy

    2005-01-01

    It is argued that the reason for the ills of irrigation management is the alienation of farmers from the process of planning and implementation. Often 'lack of political will' is identified as the main reason for the tardy progress in irrigation reforms at the state level. Andhra Pradesh has demonstrated the political will by initiating widespread irrigation reforms through legislation. This paper, based on the situation after six years of WUAs in existence, makes an attempt to provide a comp...

  7. Informing sustainable irrigation management strategies in response to implementation of Washington State's Yakima Basin Integrated Plan (YBIP)

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Yoder, J.; Brady, M.; Stockle, C. O.

    2014-12-01

    As an important agricultural snowmelt-dominant watershed in the Pacific Northwest region of the United States, the Yakima River basin (YRB) is projected to experience increasing water scarcity problems during the summer irrigation season. The system is already experiencing over-allocation with unmet irrigation entitlements occurring more frequently, resulting in negative consequences to YRB agriculture and therefore the economy of the region. Water storage management is one climate change adaptation strategy particularly applicable to snowmelt-dominant watersheds experiencing a shift of its water availability away from the summer irrigation season. These changes in conjunction with climate change will significantly change the availability of water for agriculture, thus impacting farmers' irrigation decisions. These decisions occur at multiple time scales, including capital investment to change irrigation technology (decadal), to distributing the seasonal allocation of water in a projected drought year (seasonal), to deficit irrigating crops (daily to weekly). The Yakima Basin Integrated Water Resource Management Plan (YBIP) aims to improve the availability of water for agriculture, fish, and communities through a number of projects, including additional or modification of physical infrastructure. Our objective is to reduce the vulnerability of irrigated agriculture in the YRB to climate change through exploring changes in irrigation management strategies in response to implementation of each phase of YBIP. We apply VIC-CropSyst (a newly coupled hydrological/cropping model) and Yakima RiverWare (a water management model) to explore the relationships between climate, hydrology, crop growth and phenology, irrigation management, and YBIP implementation. Results suggest the importance of irrigation management strategies in YRB and indicate that if irrigation strategies are modified in response to changes in physical infrastructure, significant enhancements to instream

  8. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  9. Effect of pasture irrigation on the technical and management indicators of dairy farms

    Directory of Open Access Journals (Sweden)

    Flávio de Moraes

    2015-07-01

    Full Text Available The objective of this study was to evaluate the effect of pasture irrigation on the technical and management indicators of 20 demonstrative units participating in the “Balde Cheio” Program in the state of Rio de Janeiro from January to December 2011. The following variables were obtained: dam/labor ratio, herd size/labor ratio, milk yield/labor ratio, animals/production area, percentage of lactating cows, and milk yield. Return was analyzed considering gross margin, net margin, outcome (profit or loss, and profitability. The data were analyzed using the PASW 18.0 software. Pasture irrigation did not significantly alter the indicators studied. The greater profitability and return of farms using pasture irrigation were the consequence of better animal production rates/day and per ha/year. When gross margin, net margin and outcome using total revenue are considered, there is decapitalization of the farms. 

  10. Decision Support system- DSS- for irrigation management in greenhouses: a case study in Campania Region

    Science.gov (United States)

    Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna

    2016-04-01

    In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils

  11. Using remote sensing (optical and radar) and modeling to support the irrigation management of cereals in a semi-arid region: a case study of the Tadla irrigated perimeter in Morocco

    OpenAIRE

    Benabdelouahab, Tarik

    2015-01-01

    Summary Irrigated agriculture is an important strategic sector in Morocco, it accounts for about 45%, on average, of the agricultural Gross Domestic Product, contributing thus to food security and employment. It occupies 15% (about 1.5 million ha) of the total cultivated area in the country. Irrigation scheme managers need to ensure that water is optimally used in the irrigated perimeters and that water shortages are avoided. For large areas under irrigation, this can be achieved through ...

  12. Impact of Land Use Change and Land Management on Irrigation Water Supply in Northern Java Coast

    Directory of Open Access Journals (Sweden)

    Suria DarmaTarigan

    2013-05-01

    Full Text Available In Indonesia, paddy irrigation covers an area of 7,230,183 ha. Ten percent (10% of those area or 797,971 ha were supplied by reservoirs. As many as 237,790 ha (30% of those area supplied by reservoirs are situated downstream of Citarum Watershed called Northern Java Coast Irrigation Area or Pantura. Therefore, Citarum watershed is one of the most important watershed in Indonesia. Citarum is also categorized as one of most degraded watershed in Java. The study aimed to evaluate influence of land use change on irrigation water supply in Citarum watershed and land management strategies to reduce the impact. Tremendous land use change occurred in the past ten years in Citarum watershed. Settlement areas increases more than a double during 2000 to 2009 (81,686 ha to 176,442 ha and forest area decreased from 71,750 ha to 9,899 ha in the same time period. Land use change influences irrigation water supply through 2 factors: a decreasing storage capacity of watershed (hydrologic functions for dry season, and b decreasing storage capacity of reservoirs due to the sedimentation. Change of Citarum watershed hydrologic function was analyzed using 24 years’ time series discharge data (1984-2008 in combination with rainfall data from 2000 to 2008. Due to the land use change in this time period, discharge tend to decrease despite of increasing trend of rainfall. As a result irrigation area decreased 9,355 ha during wet season and 10,170 ha during dry season in the last ten years. Another threat for sustainability of water irrigation supply is reservoir sedimentation. Sedimentation rate in the past 10 years has reduced upper Citarum reservoir (Saguling half-life period (½ capacity sedimented from 294 to 28 years. If proper land management strategies be carried out, the half-life period of Saguling reservoir can be extended up to 86,4 years

  13. A Trial of Wound Irrigation in the Initial Management of Open Fracture Wounds.

    Science.gov (United States)

    Bhandari, Mohit; Jeray, Kyle J; Petrisor, Brad A; Devereaux, P J; Heels-Ansdell, Diane; Schemitsch, Emil H; Anglen, Jeff; Della Rocca, Gregory J; Jones, Clifford; Kreder, Hans; Liew, Susan; McKay, Paula; Papp, Steven; Sancheti, Parag; Sprague, Sheila; Stone, Trevor B; Sun, Xin; Tanner, Stephanie L; Tornetta, Paul; Tufescu, Ted; Walter, Stephen; Guyatt, Gordon H

    2015-12-31

    The management of open fractures requires wound irrigation and débridement to remove contaminants, but the effectiveness of various pressures and solutions for irrigation remains controversial. We investigated the effects of castile soap versus normal saline irrigation delivered by means of high, low, or very low irrigation pressure. In this study with a 2-by-3 factorial design, conducted at 41 clinical centers, we randomly assigned patients who had an open fracture of an extremity to undergo irrigation with one of three irrigation pressures (high pressure [>20 psi], low pressure [5 to 10 psi], or very low pressure [1 to 2 psi]) and one of two irrigation solutions (castile soap or normal saline). The primary end point was reoperation within 12 months after the index surgery for promotion of wound or bone healing or treatment of a wound infection. A total of 2551 patients underwent randomization, of whom 2447 were deemed eligible and included in the final analyses. Reoperation occurred in 109 of 826 patients (13.2%) in the high-pressure group, 103 of 809 (12.7%) in the low-pressure group, and 111 of 812 (13.7%) in the very-low-pressure group. Hazard ratios for the three pairwise comparisons were as follows: for low versus high pressure, 0.92 (95% confidence interval [CI], 0.70 to 1.20; P=0.53), for high versus very low pressure, 1.02 (95% CI, 0.78 to 1.33; P=0.89), and for low versus very low pressure, 0.93 (95% CI, 0.71 to 1.23; P=0.62). Reoperation occurred in 182 of 1229 patients (14.8%) in the soap group and in 141 of 1218 (11.6%) in the saline group (hazard ratio, 1.32, 95% CI, 1.06 to 1.66; P=0.01). The rates of reoperation were similar regardless of irrigation pressure, a finding that indicates that very low pressure is an acceptable, low-cost alternative for the irrigation of open fractures. The reoperation rate was higher in the soap group than in the saline group. (Funded by the Canadian Institutes of Health Research and others; FLOW Clinical

  14. KAJIAN ASET NIRWUJUD DALAM MANAJEMEN SISTEM IRIGASI Study on Intangible Assets in Irrigation System Management

    Directory of Open Access Journals (Sweden)

    Nugroho Tri Waskitho

    2012-05-01

    Full Text Available The research aimed at studying on intangible assets at irrigation system management. The research method consisted oftwo stages. The first stage was data collecting which was done by questionnaire and interview on management of Water Use Associations (WUA in Mejing irrigation system in Bantul, Sapon irrigation system in Kulon Progo, Yogyakarta, and Molek irrigation system in Malang, East Java. The second stage was data analysis which was done using ANFIS (Adaptive Neuro Fuzzy Inference System.The research result indicated that knowledge management falls into four main components: (i learning organization, (ii principle of organization, (iii policy and strategy of organization, and (iv information and communication technology which are integrated for controlling intangible assets in irrigation system. Intangible assets consisted of human capital, structural capital, and relation capital which are integrated for controlling performance of irrigation system. Knowledge management in Mejing and Sapon irrigation systems were in moderate-good condition (3.81 in1-5 scale and in Molek irrigation system was poor (2.37. Intangible assets in Mejing, Sapon, and Molek irrigation systems were in moderate-good condition (3.61. Effectiveness of performance in Sapon, Mejing, and Molek irrigation systems were very good (0.89-0.95 and were very potential to develop. Each irrigation system had different priorities ABSTRAK Tujuan penelitian ini adalah mengkaji kondisi aset nirwujud dalam manajemen sistem irigasi ditinjau dari manajemenpengetahuan. Metode penelitian terdiri dari dua tahap. Tahap pertama adalah pengumpulan data yang dilakukan dengan kuesioner dan wawancara dengan pengurus Perkumpulan Petani Pemakai Air (P3A di Daerah Irigasi (DI Mejing di kabupaten Bantul, dan DI Sapon di kabupaten Kulon Progo, propinsi Daerah Istimewa Yogyakarta, dan DI Molek di kabupaten Malang, Jawa Timur. Tahap kedua adalah analisa data yang dilakukan dengan ANFIS (Adaptive Neuro

  15. Collective irrigation reloaded. Re-collection and re-moralization of water management after privatization in Spain

    NARCIS (Netherlands)

    González-Sanchis, María; Boelens, R.A.; Garcia-Molla, Marta

    2017-01-01

    In recent decades, water has been subjected to different commodification and de-collectivization processes. Increasingly, this is also affecting collective irrigation water management. Critical analysis of this privatization and de-collectivization wave in the irrigation sector has mainly focused on

  16. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    NARCIS (Netherlands)

    Abalos, D.; Sanchez-Martin, L.; Garcia-Torres, L.; Groenigen, van J.W.; Vallejo, A.

    2014-01-01

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors

  17. Canopy Reflectance-Based Nitrogen Management Strategies for Subsurface Drip Irrigated Cotton in the Texas High Plains

    Science.gov (United States)

    Nitrogen fertilizer management in subsurface drip irrigation (SDI) systems for cotton (Gossypium hirsutum L.) can be very efficient when N is injected with the irrigation water (fertigated) on a daily basis. However, the daily rates and total amounts of N fertigation are uncertain. Normalized diffe...

  18. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    Science.gov (United States)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  19. Irrigation Water Management in Latin America Manejo del Agua de Riego en Sudamérica

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.Los países sudamericanos tienen un gran potencial para aumentar sus áreas regadas. El riego es importante para fortalecer las economías locales y regionales y para mejorar la seguridad alimentaria. Esta revisión tiene por objeto proporcionar un resumen de los aspectos más importantes del manejo del riego en Sudamérica. Un manejo pobre del riego puede tener un alto impacto en la producción de cultivos y en el ambiente, en tanto que un buen manejo reduce las pérdidas de suelo y agua, y ayuda a los productores a maximizar sus ingresos. Se encontró que se requiere investigación adicional que permita una mejor comprensión de los requerimientos de agua de los cultivos en las condiciones sudamericanas, y también para proporcionar a los agricultores información local que permita hacer programaci

  20. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  1. Towards a smart automated surface irrigation management in rice-growing areas in Italy

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-02-01

    Full Text Available Italy is the leading rice producer in Europe, accounting for more than half of the total high-quality production of this crop. Rice is traditionally grown in fields that remain flooded starting with crop establishment until close to harvest, and this traditional irrigation technique (i.e., continuous submergence is recognised as an important water resource sink (almost 40% of the irrigation water available worldwide is used for paddy areas. Meanwhile, the water management in rice areas requires a high level of labour because it is based on maintaining a predetermined water height in paddy fields and because the regulation of input and output flow is typically operated manually by the farmer. This study reveals the hardware and software characteristics of an automated and remote controlled technology tested for the first time in a rice farm near Pavia (Italy, during the 2016 growing season, aiming at a more efficient and less burdensome irrigation management system for rice fields. A water level sensor in the field provides the data required to govern the inflow regulation gate in real-time, according to the precise time to cut off the flow rate. Using a dedicated web page, the farmer can control flows, volumes and water levels in the fields by operating directly on the gate if necessary or setting the irrigation program according to his agronomic practices.

  2. Earth observation products for operational irrigation management: the PLEIADeS project

    Science.gov (United States)

    D'Urso, G.; Vuolo, F.; Richter, K.; Calera Belmonte, A.; Osann, M. A.

    2009-09-01

    In the context of a sustainable agriculture, a controlled and efficient irrigation management is required to avoid negative effects of the increasing water scarcity, especially in arid and semi-arid regions. Within this background, the project 'Participatory multi-Level EO-assisted tools for Irrigation water management and Agricultural Decision-Support' (PLEIADeS: http://www.pleiades.es) addressed the efficient and sustainable use of water for food production in water-scarce environments. Economical, environmental, technical, social and political dimensions are considered by means of a synergy of leading-edge technologies and participatory approaches. Project partners, represented by a set of nine pilot case studies, include a broad range of conditions characteristic for the European, Southern Mediterranean and American regions. PLEIADeS aimed at improving the performance of irrigation schemes by means of a range of measures, made possible through wide space-time coverage of Earth observation (E.O.) data and interactive networking capabilities of Information and Communication Technologies (ICT). Algorithms for a number of basic products to estimate Irrigation Water Requirements (IWR) in an operational context are defined. In this study, the pilot zone at the Nurra site in Sardinia, Italy, is chosen to test, validate and apply these methodologies.

  3. Hydrological problems of water resources in irrigated agriculture: A management perspective

    Science.gov (United States)

    Singh, Ajay

    2016-10-01

    The development of irrigated agriculture is necessary for fulfilling the rising food requirements of the burgeoning global population. However, the intensification of irrigated agriculture causes the twin menace of waterlogging and soil salinization in arid and semiarid regions where more than 75% of the world's population lives. These problems can be managed by either adopting preventive measures which decrease the inflow of water and salt or by employing remedial measures which increase the outflow. This paper presents an overview of various measures used for the management of waterlogging and salinity problems. The background, processes involved, and severity of waterlogging and salinity problems are provided. The role of drainage systems, conjunctive use of different water sources, use of computer-based mathematical models, and the use of remote sensing and GIS techniques in managing the problems are discussed. Conclusions are provided which could be useful for all the stakeholders.

  4. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    Science.gov (United States)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip

  5. Forest Irrigation Of Tritiated Water: A Proven Tritiated Water Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, Karen; Blount, Gerald; Kmetz, Thomas; Prater, Phil

    2012-11-08

    Tritium releases from the Old Radioactive Waste Burial Ground (ORWBG) at the SRS in South Carolina has impacted groundwater and surface water. Tritiated groundwater plumes discharge into Fourmile Branch which is a small tributary of the Savannah River, a regional water resource. Taking advantage of the groundwater flow paths and the local topography a water collection and irrigation system was constructed and has been used at the SRS for over a decade to reduce these tritiated water releases to Fourmile Branch. The tritiated water is transferred to the atmosphere by evaporation from the pond surface, and after irrigation, wetted surface evaporation and evapotranspiration through the forest vegetation. Over the last decade SRS has irrigated over 120,000,000 gallons of tritiated water, which diverted over 6000 curies away from Fourmile Branch and the Savannah River. The system has been effective in reducing the flux of tritiated groundwater by approximately 70%. Mass balance studies of tritium in the forest soils before operations and over the last decade indicate that approximately 90% of the tritiated water that is irrigated is transferred to the atmosphere. Dose studies indicate that exposure to site workers and offsite maximally exposed individual is very low, approximately 6 mrem/year and 0.004 mrem/year, respectively. To consistently meet the flux reduction goal of tritium into Fourmile Branch optimization activities are proposed. These efforts will increase irrigation capacity and area. An additional 17 acres are proposed for an expansion of the area to be irrigated and a planting of approximately 40 acres of pine forest plantations is underway to expand irrigation capacity. Co-mingled with the tritiated groundwater are low concentrations of chlorinated volatile organic compounds (cVOCs), and 1,4-dioxane. Research studies and SRS field data indicate the forest irrigation system may have an added benefit of reducing the mass of these co-contaminants via

  6. Optimization strategies for improving irrigation water management of lower jhelum canal

    International Nuclear Information System (INIS)

    Rashid, M.U.

    2015-01-01

    The paper includes computing crop water requirement, identification of problems and optimization strategies for improved irrigation water management of a canal command. Lower Jhelum Canal (LJC) System was selected as a case study. Possible strategies for optimization are enhancing irrigation water productivity by high value and high yield crops, adoption of resource conservation interventions (RCIs) at the farm level, improving irrigation system efficiency and its management. Estimation of daily reference evapotranspiration of LJC command was carried out by Penman Montieth -2000 method and metrological data of Sargodha for the period 1999 to 2010 was used. Crop water requirements were computed from reference evapotranspiration, crop coefficients and periods of crops for existing cropping pattern. The comparison of the crop water requirements and available water supplies indicated shortage of more than 51% in Kharif and 54% in Rabi seasons. The gap between requirements and supplies is fulfilled by groundwater in the command. The structural measures identified in the present study for improving canal management include rationalization of canal capacities in keeping with the current water requirements and availability, rehabilitation and remodeling of canal network and lining of distributaries and minors in saline groundwater areas. An array of measures and practices identified for improved water management at the farm level include: improvement and lining of watercourses, proper farm design and layout, adoption of resource conservation technologies involving laser land leveling, zero tillage, and bed-furrow irrigation method. Adopting proper cropping systems considering land suitability and capacity building of farming community in improved soil, crop and water management technologies would enhance the water productivity in an effective and sustainable manner. (author)

  7. An Integrated Modeling System for Water Resource Management Under Climate Change, Socio-Economic Development and Irrigation Management

    Science.gov (United States)

    SU, Q.; Karthikeyan, R.; Lin, Y.

    2017-12-01

    Water resources across the world have been increasingly stressed in the past few decades due to the population and economic growth and climate change. Consequently, the competing use of water among agricultural, domestic and industrial sectors is expected to be increasing. In this study, the water stresses under various climate change, socio-economic development and irrigation management scenarios are predicted over the period of 2015-2050 using an integrated model, in which the changes in water supply and demand induced by climate change, socio-economic development and irrigation management are dynamically parameterized. Simulations on the case of Texas, Southwest U.S. were performed using the newly developed integrated model, showing that the water stress is projected to be elevated in 2050 over most areas of Texas, particularly at Northern and Southern Plain and metropolitan areas. Climate change represents the most pronounce factor affecting the water supply and irrigation water demand in Texas. The water supply over East Texas is largely reduced in future because of the less precipitation and higher temperature under the climate change scenario, resulting in an elevated irrigation water demand and thus a higher water stress in this region. In contrast, the severity of water shortage in West Texas would be alleviated in future because of climate change. The water shortage index over metropolitan areas would increase by 50-90% under 1.0% migration scenario, suggesting that the population growth in future could also greatly stress the water supply, especially megacities like Dallas, Houston, Austin and San Antonio. The projected increase in manufacturing water demand shows little effects on the water stress. Increasing irrigation rate exacerbates the water stress over irrigated agricultural areas of Texas.

  8. Integrated control of landscape irrigation and rainwater harvesting for urban water management

    Science.gov (United States)

    Lee, J. H.; Dhakal, B.; Noh, S.; Seo, D. J.

    2016-12-01

    Demand for freshwater is increasing rapidly in large and fast-growing urban areas such as the Dallas-Fort Worth Metroplex (DFW). With almost complete reliance on surface water, water supply for DFW is limited by the available storage in the reservoir systems which is now subject to larger variability due to climate change. Landscape irrigation is estimated to account for nearly one-third of all residential water use in the US and as much as 60% in dry climate areas. In landscape irrigation, a large portion of freshwater is commonly lost by sub-optimal practices. If practiced over a large area, one may expect optimized smart irrigation to significantly reduce urban freshwater demand. For increasing on-site water supply, rainwater harvesting (RHW) is particularly attractive in that it conserves potable water while reducing stormwater runoff. Traditional static RWH methods, however, have limited success due to the inefficient water usage. If, on the other hand, lawn irrigation and rainwater harvesting can be optimized as an integrated operation and controlled adaptively to the feedback from the environmental sensors, weather conditions and forecast, one may expect the combined benefits for water conservation and stormwater management to be larger. In this work, we develop a prototype system for integrated control of lawn irrigation and RWH for water conservation and stormwater management, and assess and demonstrate the potential impact and value of the system. For in-situ evaluation, we deploy a wireless sensor network consisting of low-cost off-the-shelf sensors and open-sourced components, and collect observations of temperature, humidity, soil moisture, and solar radiation at the test site at the UTA community garden in Arlington, Texas. We assess the health of the lawn grass using normalized vegetation index (NDVI) from the time lapse images at the site. In this poster, we describe the approach and share the initial results.

  9. Irrigator responses to groundwater resource management in northern Victoria, southeastern Australia

    Science.gov (United States)

    Gill, Bruce C.; Webb, John; Wilkinson, Roger; Cherry, Don

    2014-10-01

    In northern Victoria, farmers are the biggest users of groundwater and therefore the main stakeholders in plans that seek to sustainably manage the resource. Interviews with 30 irrigation farmers in two study areas, analysed using qualitative social research methods, showed that the overwhelming majority of groundwater users agreed with the need for groundwater management and thought that the current plans had achieved sustainable resource use. The farmers also expressed a strong need for clear technical explanations for management decisions, in particular easily understood water level data. The social licence to implement the management plans arose through effective consultation with the community during plan development. Several additional factors combined to gain acceptance for the plans: good data on groundwater usage and aquifer levels is available; irrigation farmers had been exposed to usage restrictions since the late 1990s; an ‘adaptive’ management approach is in use which allowed refinements to be readily incorporated and fortuitously, plan development coincided with the 1998-2009 drought, when declines in groundwater levels reinforced the usefulness of the plans. The imposition of a nation-wide water use reduction plan in 2012 had relatively little impact in Victoria because of the early implementation of effective groundwater management plans. However, economic difficulties that reduce groundwater users’ capacity to pay groundwater management charges mean that the future of the plans in Victoria is not assured. Nevertheless, the high level of trust that exists between Victorian irrigation farmers and the management agencies suggests that the continued use of a consultative approach will continue to produce workable outcomes. Lessons from the Victorian experience may be difficult to apply in other areas of groundwater use in Australia and overseas, where there may be a quite different history of development and culture of groundwater management.

  10. Results of an irrigated lands assessment for water management in California

    Science.gov (United States)

    Bauer, E. H.; Baggett, J. D.; Wall, S. L.; Thomas, R. W.; Brown, C. E.

    1984-01-01

    Periodic assessment of existing and future demands for water within California is one responsibility of the California Department of Water Resources (CDWR). The California Irrigated Lands Assessment for Water Management Project represented a 5-year joint research effort between the NASA and the CDWR with technical support from the University of California (UC) at Berkeley and at Santa Barbara. The objectives were: (1) to develop and demonstrate procedures for providing highly precise, timely, estimates of irrigated area on a statewide basis using Landsat sensor data, and (2) to develop, through research with small demonstration sites, a procedure for the inventory and mapping of crop groups on a regional basis. Both manual and computer-assisted analyses were investigated. This paper highlights the statewide irrigated lands inventory where a procedure for statewide estimation of irrigated land using full frame Landsat MSS imagery and sampled ground data was successfully demonstrated. The statewide estimate of 3 990 112 hectares was within + or - 1.32 percent relative standard error at the 95-percent Confidence Interval, well within the design goal. This procedure represents a new capability for obtaining near-real time data on changes in agricultural water use throughout the state.

  11. Agroforestry-based management of salt-affected croplands in irrigated agricultural landscape in Uzbekistan

    Science.gov (United States)

    Khamzina, Asia; Kumar, Navneet; Heng, Lee

    2017-04-01

    In the lower Amu Darya River Basin, the decades of intensive irrigation led to elevated groundwater tables, resulting in ubiquitous soil salinization and adverse impact on crop production. Field-scale afforestation trials and farm-scale economic analyses in the Khorezm region have determined that afforestation can be an environmentally and financially attractive land-use option for degraded croplands because it combines a diversified agricultural production, carbon sequestration, an improved soil health and minimizes the use of irrigation water. We examined prospects for upscaling afforestation activity for regional land-use planning considering prevailing constraints in irrigated agriculture landscape. Assessment of salinity-induced cropland productivity decline using satellite imagery of multiple spatial and temporal resolution revealed that 18-38% of the marginally productive or abandoned cropland might be considered for conversion to agroforestry. Furthermore, a regional-scale water balance suggests that most of these marginal croplands are characterized by sufficient surface water supplies for irrigating the newly planted saplings, before they are able to rely on the groundwater alone. However, the 10-year monitoring of soil salt dynamics in the afforestation trials reveals increasing salinity levels due to the salt exclusion from the root water uptake by the trees. Further study focuses on enhancing long-term sustainability of afforestation as a management option for highly saline lands by examining salt tolerance of candidate species using 13C isotopic signature as the indicator of water and salt stress, salt leaching needs and implications for regional scale planning.

  12. Management of water for irrigation agriculture in semi-arid areas: Problems and prospects

    Science.gov (United States)

    Mvungi, A.; Mashauri, D.; Madulu, N. F.

    Most of the Mwanga district is classified as semi-arid with a rainfall range of 300 and 600 mm. Rainfall patterns in the district are unpredictable and are subject to great fluctuations. Like other semi-arid areas, the district is characterized with land degradation, unreliable rainfall, repeated water shortage, periodic famine, overgrazing, dry land cultivation in the marginal areas and heavy competition for limited biomass between farmers and cattle. Vulnerability here is high due to unreliability of weather. The people of Mwanga are dependent on agriculture for their livelihood. However agriculture is difficult in the area due to inadequate rainfall. For a very long time the people have been dependent on irrigation agriculture to ensure food security. Of late the traditional irrigation system is on the decline threatening food security in the area. This paper examines the state and status of the irrigation canal system in Mwanga district with the view of recommending ways in which it can be improved. The study used participatory, survey and in-depth interviews to obtain both quantitative and qualitative data. The major findings are that social, political, environmental and demographic bases that supported the traditional irrigation system have changed drastically. As a corollary to this, the cultural and religious belief systems that supported and guided the traditional canal system management have been replaced by mistrust and corruption in water allocation. In addition the ownership and management system of the water resources that was vested in the initiator clans has changed and now water user groups own the canals/furrows but they do not own the water sources. This has rendered the control of the water sources difficult if not impossible. Currently the system is faced by a number of problems including shortage of water and poor management as demand for water increases and this has led to serious conflicts among and between crop producers and pastoralists

  13. Solar powered irrigation management using neutron scattering technique

    International Nuclear Information System (INIS)

    Hegazi, A.M.A

    2010-01-01

    This study was conducted to modify a locally assembled solar-powered irrigation system. A direct-coupled photovoltaic pumping system has been assembled and installed in the Egyptian desert in Inshas at the Nuclear Research Center (31 degree 21 ' E, 30 degree 17 ' N). 800 Watt DC motor with brushes was modified to match unsteady PV generator current output. The DC motor was supplied with PV generator current, which was divided between 9 and 4 modules. Pump-set output was tested at different insolation levels and a relationship was carried out from observed data. Hourly solar insolation averages for ten years period were obtained from a program named (Meteo-Norm) software in order to predict and calculate the average daily pumping system water delivery in cubic meters. Preliminary experiment was conducted to acquire a relationship between PVP system outputs and solar-radiation intensity values; which differ from time to time during the day and through different seasons. Solar radiation, power consumption (as Voltage and Current), motor RPM and pump flow varied, while head was kept constant at 4 meter.The system showed trustworthy response to the PV generator output power demonstrated in DC motor RPM and consequently water deliver Based on the obtained results of this study, conclusions are:1.Parameters affecting the performance of solar generator under desert conditions were ambient temperature and contaminants. Focusing on the controllable parameter; dust contaminants; experiments were made to find out the best cleaning period which has limited decrease of the PV output. Results showed that output power was 22% lower for the panel with no cleaning for 20 days. Recommendation is made to do cleaning schedule every three days. 2.Maximizing photovoltaic system efficiency is achieved in order to minimize the initial costs, in other words; more power generated from the PV system unit. These can be obtained by tracking the sun rays through the daytime. Solar tracker was

  14. Irrigation management strategies for winter wheat using AquaCrop model

    OpenAIRE

    M. H. Ali; I. Abustan

    2013-01-01

    Many regions of the world face the challenge to ensure high yield with limited water supply. This calls for utilization of available water in an efficient and sustainable manner. Quantitative models can assist in management decision and planning purposes. The FAO’s newly developed crop-water model, AquaCrop, which simulates yield in response to water, has been calibrated for winter wheat and subsequently used to simulate yield under different sowing dates, irrigation frequencies, and irrigati...

  15. Management of contaminated open fractures: a comparison of two types of irrigation in a porcine model.

    Science.gov (United States)

    Gaines, Robert J; DeMaio, Marlene; Peters, Darren; Hasty, Jacob; Blanks, James

    2012-03-01

    Treatment of open fractures demands rapid intervention consisting of intravenous antibiotics, aggressive debridement, fracture immobilization, and soft tissue management including additional debridements and soft tissue coverage. Despite this approach, infection, particularly osteomyelitis, after open fracture continues to be a source of significant morbidity. Recent literature has provided several studies that performed clinical trials in superficial wounds. These investigations compared sterile solutions with tap water for wound decontamination. The results suggest that tap water washouts are cost-effective for these specific wounds. An established protocol using sterile porcine hind limb tibias, as reported by Bhandari et al., was applied with modification. There were then 15 specimens and 5 controls (no irrigation) for each condition. The conditions were potable water and sterile water. A representative bacterium of gram-positive, Staphylococcus aureus, or gram-negative, Escherichia coli, acted as the contaminant. Sectioned, sterile porcine hind limb tibias were inoculated with 1 mL of a known concentration (1 × 10(10)) of bacterium and incubated. Each specimen was then irrigated, with bulb irrigation at a standardized distance of 15 cm, with 500 mL of irrigation. The specimen, along with 0.5 mL of wash (irrigant collected after it was placed over the specimen), was placed in 5 mL of Brain Heart Infusion broth. All specimens were incubated in this broth at 37°C for 2 hours. At 2 hours, a 100-μL supernatant was plated on blood agar plates and incubated for 24 hours. Colony counts for each specimen and controls were then performed. The number of colony forming units (CFUs) for each type of bacterium was different. The average CFUs from bone samples contaminated with E. coli was 5.18 × 10(8) after irrigation with sterile water and 6.24 × 10(8) after irrigation with tap water. The average CFUs from bone samples contaminated with S. aureus was 18 × 10(6) after

  16. Natural resource management issues of pakistan's agriculture: the cases of land, labour and irrigation

    International Nuclear Information System (INIS)

    Arifullah, S.A.; Farid, N.

    2009-01-01

    With the objective to understand the optimization behavior of farmers in allocating land, labor and irrigation water, Linear Programming (LP) analytic technique was applied to 13 Kharif and 7 Rabi crops, using national level data from 1990-2005. The crops included in the analysis have been occupying 80 - 85 percent of Pakistan's cropped area for the last three to four decades. The optimization analysis resulted in bringing up three major natural resource management issues of the Pakistan's crop sector to the forefront. First, Basmati rice, mung, fodders of millet and sorghum, onion and IRRI rice were found optimal Kharif crops relative to sugarcane, maize, maize fodder, millet, sorghum, cotton and tomato. For Rabi wheat, potato, gram, rapeseed and berseem proved to be optimal relative to barley and sugarcane, for this period. The results imply that to have an efficient agriculture base Pakistan should either replace the sub-optimal crops with the optimal ones, or the resource management side of such crops should be improved with the help sensitivity analysis. Second, cotton and tomato appeared to be relatively sensitive to labor availability than other crops; they seemed to establish a direct correlation between the optimality status and labor availability. And third, irrigation emerged as a critical input for IRRI rice in Kharif and for potato and gram in Rabi season; for these crops the crop optimality was directly correlated to the number of irrigations applied. In contrast, its opportunity cost is higher than the per unit return in cotton, tomato, wheat and berseem. This signified that irrigation needs to be managed efficiently in the latter four crops; whereas in the former three crops use of extra water would help in optimizing. (author)

  17. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management, EU Project

    DEFF Research Database (Denmark)

    Plauborg, Finn; Jensen, Christian Richardt; Dalsgaard, Anders

    2009-01-01

    a multi-disciplinary team, with food safety and quality experts, engineers, agronomists and economists from17 research institutes and private companies in Europe, Israel and China working together. The project assesses potential risks to farmers. Coupled with farm management and economic models, a new......Globally, agricultural irrigation is the number one user of freshwater. Agriculture consumes about 70% of all water withdrawn worldwide, and up to 95% in some developing countries. The SAFIR project contributes to solving this challenge, addressing two major public concerns at the same time...... irrigated as sub-surface drip irrigation. KU-Life and AaU-DJF are the major partners in SAFIR of important work packages covering development of new irrigation strategies, use of waste water for irrigation, modelling, risk assessment and economy. The Danish partners are now aiming at implementation...

  18. Design and Management of Irrigation Systems Diseño y Manejo de Sistemas de Riego

    Directory of Open Access Journals (Sweden)

    Eduardo A Holzapfel

    2009-12-01

    Full Text Available Irrigation systems should be a relevant agent to give solutions to the increasing demand of food, and to the development, sustainability and productivity of the agricultural sector. The design, managing, and operation of irrigation systems are crucial factors to achieve an efficient use of the water resources and the success in the production of crops and orchards. The aim of this paper is to analyze knowledge and investigations that enable to identify the principal criteria and processes that allow improving the design and managing of the irrigation systems, based on the basic concept that they facilitate to develop agriculture more efficient and sustainable. The design and managing of irrigation systems must have its base in criteria that are relevant, which implies to take into account agronomic, soil, hydraulic, economic, energetic, and environmental factors. The optimal design and managing of irrigation systems at farm level is a factor of the first importance for a rational use of water, economic development of the agriculture and its environmental sustainability.Los sistemas de riego deberían ser un agente relevante para dar soluciones a la demanda creciente de alimentos, y el desarrollo, sustentabilidad y productividad del sector agrícola. El diseño, manejo, y operación de los sistemas de riego son factores cruciales para lograr un uso eficiente de los recursos hídricos y el éxito en la producción de cultivos y frutales. El objetivo de este artículo fue analizar conocimientos e investigaciones que permitan identificar los principales criterios y procesos para mejorar el diseño y manejo de los sistemas de riego, basados en el concepto básico de desarrollar una agricultura más eficiente y sostenible. El diseño y manejo de los sistemas de riego deben tener su base en criterios que sean relevantes, lo que implica considerar aspectos agronómicos, de suelo, hidráulicos, económicos, energéticos, y ambientales. El diseño y

  19. Improving irrigation efficiency : the need for a relevant sequence of the management tools

    Science.gov (United States)

    Fayolle, Y.

    2009-04-01

    With 70 % of worldwide withdrawals, irrigation efficiency is a key issue in the overall problem of water resources. Management of water dedicated to agriculture should be improved to secure food production and save water to deal with increasing domestic and industrial demands. This paper is based on the results of a collaborative research project conducted in India with a local NGO (the Aga Khan Rural Support Programme, AKRSP(I)) during which GIS were tested. It is aimed at analyzing the efficiency of water usage in a water development programme conducted by the partner NGO in the semi-arid margins of Gujarat state. The analysis raises the question of the articulation of legal, institutional, economical, and technical tools to improve water efficiency. The NGO supervises the construction of surface water harvesting structures for irrigation purposes. Following a participatory approach, it creates and trains user groups to which the management of dams would then be devolved. User group membership depends on financial contribution to the building costs. A legal vacuum regarding surface water management combined with unequal investment capacities favor the concentration of water resources in the hands of a limited number of farmers. This causes low water use efficiency, irrigation choices being mostly oriented to high water consumptive crops and recipient farmers showing no interest in investing in water saving techniques. Our observations favor equality of access and paying more attention to the sequence in which management tools are articulated. On a national scale, as a prerequisite, water user rights as well as NGO's intervention legal framework should be clarified. On a project scale, before construction, information systems could help to identify all potential beneficiaries and optimize equality of access. It aims at reducing the volume of water per farmer to encourage them to irrigate low water consumptive crops and invest in water saving techniques. Depending

  20. Effect of Zeolite Rates and Irrigation Management on Some Properties of Saffron Corms

    Directory of Open Access Journals (Sweden)

    Abbas Khashei Siuki

    2016-11-01

    Full Text Available Saffron (Crocus sativus L. is a subtropical and valuable crop which is reproduced by corms. Due to the importance of corm weight in saffron yield, it is important to study the different factors that affect yield such as drought stress. For this purpose, this research was conducted as a factorial design based on completely randomized design (CRD in the Agricultural Research Station of the University of Birjand during the period 2013-2015. The treatments consisted of Zeolite at four rates (0: Z0, 0.5: Z1, 1: Z2 and 2: Z3 as weight percentage and irrigation management at three levels (traditional: I1, deficit irrigation as 70% moisture depletion: I2 and full irrigation: I3 with three replications. The results showed that zeolite rates has a significant effect on corm weight, number of corms less than 2gr, number of 6-8gr corms and number of replacement corms (P≤0.01. Irrigation management also has a significant effect on corm weight (P≤0.01, number of corms 6-8gr and number of replacement corms (P≤0.05. The treatments with no zeolite amended (Z0I1, Z0I2 and Z0I3 showed a reduction in corm weight compared to Z3I3 (P≤0.05. Z3I3, Z3I2 and Z3I3 showed an increase in the number of replacement corms while Z0I1 and Z0I2 had the least number of replacement corms. In conclusion, Z2I1 is recommended as the best treatment by considering the reduction in zeolite and water used, which increased corm weight by 26.64%, 23.88% and 17.81% compared to Z0I1, Z0I2 and Z0I3, respectively.

  1. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping

    2018-01-01

    An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.

  2. Effects of application timing of saline irrigation water on broccoli production and quality

    Science.gov (United States)

    Irrigation with moderately saline water is a necessity in many semi-arid areas of the Mediterranean Basin, and requires adequate irrigation management strategies. Broccoli (Brassica oleracea var. italica), a crop moderately tolerant to salinity stress, was used to evaluate the effects of the applica...

  3. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  4. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    Science.gov (United States)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support

  5. A comparative study of wireless and wired sensors networks for deficit irrigation management

    Science.gov (United States)

    Torres Sánchez, Roque; Domingo Miguel, Rafael; Valles, Fulgencio Soto; Perez-Pastor, Alejandro; Lopez Riquelme, Juan Antonio; Blanco Montoya, Victor

    2016-04-01

    In recent years, the including of sensors in the context of agricultural water management, has received an increasing interest for the establishment of irrigation strategies, such as regulated deficit irrigation (RDI). These strategies allow a significant improvement of crop water productivity (marketable yield / water applied), especially in woody orchards. The application of these deficit irrigation strategies, requires the monitoring of variables related to the orchard, with the purpose of achieving an efficiently irrigation management, since it is necessary to know the soil and plant water status to achieve the level of water deficit desired in each phenological stage. These parameters involve the measurements of soil and plant parameters, by using appropriate instrumentation devices. Traditional centralized instrumentation systems include soil matric potential, water content and LVDT sensors which information is stored by dataloggers with a wired connection to the sensors. Nowadays, these wired systems are being replaced by wireless ones due, mainly, to cost savings in wiring and labor. These technologies (WSNs) allow monitoring a wide variety of parameters in orchards with high density of sensors using discrete and autonomous nodes in the trees or soil places where it is necessary, without using wires. In this paper we present a trial in a cherry crop orchard, with different irrigation strategies where both a wireless and a wired system have been deployed with the aim of obtaining the best criteria on how to select the most suitable technology in future agronomic monitoring systems. The first stage of this study includes the deploying of nodes, wires, dataloggers and the installation of the sensors (same for both, wired and wireless systems). This stage was done during the first 15 weeks of the trial. Specifically, 40 MPS6 soil matric potential, 20 Enviroscan water content and 40 (LVDT and band) dendometers were installed in order to cover the experimental

  6. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  7. Using a water-food-energy nexus approach for optimal irrigation management during drought events in Nebraska

    Science.gov (United States)

    Campana, P. E.; Zhang, J.; Yao, T.; Melton, F. S.; Yan, J.

    2017-12-01

    Climate change and drought have severe impacts on the agricultural sector affecting crop yields, water availability, and energy consumption for irrigation. Monitoring, assessing and mitigating the effects of climate change and drought on the agricultural and energy sectors are fundamental challenges that require investigation for water, food, and energy security issues. Using an integrated water-food-energy nexus approach, this study is developing a comprehensive drought management system through integration of real-time drought monitoring with real-time irrigation management. The spatially explicit model developed, GIS-OptiCE, can be used for simulation, multi-criteria optimization and generation of forecasts to support irrigation management. To demonstrate the value of the approach, the model has been applied to one major corn region in Nebraska to study the effects of the 2012 drought on crop yield and irrigation water/energy requirements as compared to a wet year such as 2009. The water-food-energy interrelationships evaluated show that significant water volumes and energy are required to halt the negative effects of drought on the crop yield. The multi-criteria optimization problem applied in this study indicates that the optimal solutions of irrigation do not necessarily correspond to those that would produce the maximum crop yields, depending on both water and economic constraints. In particular, crop pricing forecasts are extremely important to define the optimal irrigation management strategy. The model developed shows great potential in precision agriculture by providing near real-time data products including information on evapotranspiration, irrigation volumes, energy requirements, predicted crop growth, and nutrient requirements.

  8. Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya

    DEFF Research Database (Denmark)

    Mutero, C M; Blank, H; Konradsen, F

    2000-01-01

    collected in the experimental plots were identified as being An. arabiensis. By far the highest numbers of An. arabiensis 1st instar larvae were found in the intermittently irrigated subplots, indicating that the water regime provided the most attractive environment for egg laying. However, the ratio...... between the 4th and 1st instar larvae in the subplots was only 0.08, indicating very low survival rates. In contrast, the 4th/1st instar ratio for subplots with other water management regimes ranged between 0.27 and 0.68, suggesting a correspondingly higher survival than observed with intermittent...... differences among subplots with different water regimes. The average yield per hectare ranged from 4.8-5.3 metric tonnes. The average daily water percolation/seepage rate was 3.6 mm and did not significantly differ among different water management regimes. Further research is necessary to, among other things...

  9. Simulation and management of on-demand irrigation systems: a combined agrohydrological and remote sensing approach

    NARCIS (Netherlands)

    Urso, D' G.

    2001-01-01

    Rational use of water resources in agriculture requires improvements in the efficiency of irrigation. Many irrigation systems, particularly in Mediterranean regions, have been enhanced by replacing open channel conveyance systems with pressurised pipelines. This allows to provide water

  10. Estimating actual irrigation application by remotely sensed evapotranspiration observations

    NARCIS (Netherlands)

    Droogers, P.; Immerzeel, W.W.; Lorite, I.J.; SWAP, PEST

    2010-01-01

    Water managers and policy makers need accurate estimates of real (actual) irrigation applications for effective monitoring of irrigation and efficient irrigation management. However, this information is not readily available at field level for larger irrigation areas. An innovative inverse

  11. Building knowledge systems for sustainable agriculture: Supporting private advisors to adequately address sustainable farm management in regular service contacts

    NARCIS (Netherlands)

    Klerkx, L.W.A.; Jansen, J.

    2010-01-01

    Advisory service provisioning on sustainability issues such as the environment and food safety is considered suboptimal in privatised pluralistic agricultural extension systems. Hence policy measures have been proposed to stimulate farmer demand for such sustainable farm management advice (pull

  12. Simulation of irrigation and nitrogen fertilization management of maize under edaphic conditions of south of Havana

    International Nuclear Information System (INIS)

    Lopez Seijas, Teresa; Cid, G.; Gonzalez, F.; Jorge, Y.; Chaterlan, Y.; Giralt, E.; Rodriguez, R.; Duennas, G.

    1999-01-01

    The main objective of this work is to validate the crop simulation model STICS for the soil and climate conditions of south of Havana, especially for the water and nitrogen balances on Maize crop on Ferralitic soil, For this purpose was used all the available information from field experiments carried out in the Experimental Stations of the Irrigation and Drainage and Soil Research Institutes, both on south of Havana, The comparison between the simulation and observed values showed a good fitness for the variables related to the crop water uptake, while for the soil water content when the root water uptake flux is minimum and the soil water redistribution flux is maximum wasn't good, The soil nitrogen balance was adjusted from the optimization of the parameters related to the mineralization velocity of soil organic nitrogen, Nevertheless is necessary to complete this study involving other climate conditions and water and nitrogen managements to define the optimum strategy for irrigation and fertilization of Maize crop on the studied conditions,

  13. A Linked Simulation-Optimization (LSO) Model for Conjunctive Irrigation Management using Clonal Selection Algorithm

    Science.gov (United States)

    Islam, Sirajul; Talukdar, Bipul

    2016-09-01

    A Linked Simulation-Optimization (LSO) model based on a Clonal Selection Algorithm (CSA) was formulated for application in conjunctive irrigation management. A series of measures were considered for reducing the computational burden associated with the LSO approach. Certain modifications were incurred to the formulated CSA, so as to decrease the number of function evaluations. In addition, a simple problem specific code for a two dimensional groundwater flow simulation model was developed. The flow model was further simplified by a novel approach of area reduction, in order to save computational time in simulation. The LSO model was applied in the irrigation command of the Pagladiya Dam Project in Assam, India. With a view to evaluate the performance of the CSA, a Genetic Algorithm (GA) was used as a comparison base. The results from the CSA compared well with those from the GA. In fact, the CSA was found to consume less computational time than the GA while converging to the optimal solution, due to the modifications incurred in it.

  14. Identification and prioritization of management practices to reduce methylmercury exports from wetlands and irrigated agricultural lands.

    Science.gov (United States)

    McCord, Stephen A; Heim, Wesley A

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  15. Analysis of Factors Affecting Rural People's Participation in Management and Exploitation of Irrigation and Drainage Networks of Lishter Plain

    Directory of Open Access Journals (Sweden)

    Mehdi Nooripoor

    2016-05-01

    Full Text Available The importance of water as a life source and a requisite for survival of rural areas as well as main driver of agricultural development made it necessary to manage its usage efficiently. Thus, it is really necessary that water users have a responsible and active participation in the management of water systems. The purpose of this survey research was to identify the factors affecting rural people's participation in the management and exploitation of irrigation and drainage networks in the Lishter Plain of Gachsaran County. Data was collected from a sample of 163 villagers which was selected based on stratified random sampling procedure. In the survey, data gathering tool was a close ended questionnaire. Its validity was verified using the face validity procedure. Its reliability was also calculated using Cronbach's alpha reliability from 0.633 to 0.923 based on a pilot study scores. The results showed that social capital, attitude towards participation, farming experience and prior participation experience have a positive and statistically significant effects on management and exploitation of irrigation systems, while other variables such as economic concerns, attitude towards official staff, the period of residency in village, educational level, planting area, number of farms and irrigation network coverage had no significant effects. The results of multiple linear regression indicated that structural factors and farming experience can explain about 0.439 of the variance of dependent variable that is participation in the management and exploitation of irrigation networks of the study area.

  16. Development of services for irrigation management: the experience with the users

    Science.gov (United States)

    Vuolo, Francesco; Neugebauer, Nikolaus; D'Urso, Guido; De Michele, Carlo

    2014-05-01

    Irrigated agriculture is the main user of freshwater resources (30% in Central Europe, 60% in the South). Efficient water management is therefore of essential importance, especially where water scarcity and water quality are becoming severe challenges. To achieve a successful and effective use of resources, farmers and water managers require easy-to-use decision support tools and reliable information. Our approach is based on Earth observation (EO) techniques and decision support tools. Generally, the service concept is based on two main components: i) the processing of time-series of high spatial resolution (10-30-m pixel size) images from satellite, currently available from public and commercial data providers, to timely monitor the crop growth and to estimate the crop water requirements throughout the growing season; ii) the adaptation and integration in local management practices & tools of easy to use geo-spatial technologies to make the information available to users and to support the decision-making process in near-real-time. The participation and feedback we receive from the users is fundamental to develop and provide easy-to-use technologies that can be embedded in standard approaches. In this paper, we briefly describe some examples of pre- and fully operational applications at field and irrigation scheme level and report some success stories of cooperation between decision makers and scientists. The paper includes the outcomes of ongoing activities such as Irrisat (www.irrisat.it), a regional operational service supported by rural development funds in Southern Italy and EO4Water (www.eo4water.com), a case study of knowledge and technology transfer in Eastern Austria funded by the Austrian Space Application Programme. The new capacities we develop to assist farmers in monitoring their crops are a step towards a better integration of tools and production. More technical advice and recommendation regarding sustainable land and resource use could then be

  17. Spatial variability of surface temperature as related to cropping practice with implications for irrigation management

    Science.gov (United States)

    Hatfield, J. L.; Millard, J. P.; Reginato, R. J.; Jackson, R. D.; Idso, S. B.; Pinter, P. J., Jr.; Goettelman, R. C.

    1980-01-01

    Crop stress measured using thermal infrared emission is evaluated with the stress-degree-day (SDD) concept. Throughout the season, the accumulation of SDD during the reproductive stage of growth is inversely related to yield. This relationship is shown for durum wheat, hard red winter wheat, barley, grain sorghum and soybeans. It is noted that SDD can be used to schedule irrigations for maximizing yields and for applying remotely sensed data to management of water resources. An airborne flight with a thermal-IR scanner was used to examine the variability in temperature that may exist from one field to another and to determine realistic within-field temperature variations. It was found that the airborne and the ground-based data agreed very well and that there was less variability in the fields that were completely covered with crops than those of bare soil.

  18. Distributed ecohydrological modelling to evaluate irrigation system performance in Sirsa district, India II: Impact of viable water management scenarios

    NARCIS (Netherlands)

    Singh, R.; Jhorar, R.K.; Dam, van J.C.; Feddes, R.A.

    2006-01-01

    This study focuses on the identification of appropriate strategies to improve water management and productivity in an irrigated area of 4270 km2 in India (Sirsa district). The field scale ecohydrological model SWAP in combination with field experiments, remote sensing and GIS has been applied in a

  19. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    Science.gov (United States)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  20. Assimilation of Remotely Sensed Evaporative Fraction for Improved Agricultural Irrigation Water Management

    Science.gov (United States)

    Lei, F.; Crow, W. T.; Kustas, W. P.; Yang, Y.; Anderson, M. C.

    2017-12-01

    Improving the water usage efficiency and maintaining water use sustainability is challenging under rapidly changed natural environments. For decades, extensive field investigations and conceptual/physical numerical modeling have been developed to quantify and track surface water and energy fluxes at different spatial and temporal scales. Meanwhile, with the development of satellite-based sensors, land surface eco-hydrological parameters can be retrieved remotely to supplement ground-based observations. However, both models and remote sensing retrievals contain various sources of errors and an accurate and spatio-temporally continuous simulation and forecasting system at the field-scale is crucial for the efficient water management in agriculture. Specifically, data assimilation technique can optimally integrate measurements acquired from various sources (including in-situ and remotely-sensed data) with numerical models through consideration of different types of uncertainties. In this presentation, we will focus on improving the estimation of water and energy fluxes over a vineyard in California, U.S. A high-resolution remotely-sensed Evaporative Fraction (EF) product from the Atmosphere-Land Exchange Inverse (ALEXI) model will be incorporated into a Soil Vegetation Atmosphere Transfer (SVAT) model via a 2-D data assimilation method. The results will show that both the accuracy and spatial variability of soil water content and evapotranspiration in SVAT model can be enhanced through the assimilation of EF data. Furthermore, we will demonstrate that by taking the optimized soil water flux as initial condition and combining it with weather forecasts, future field water status can be predicted under different irrigation scenarios. Finally, we will discuss the practical potential of these advances by leveraging our numerical experiment for the design of new irrigation strategies and water management techniques.

  1. Adequate Security Protocols Adopt in a Conceptual Model in Identity Management for the Civil Registry of Ecuador

    Science.gov (United States)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2017-08-01

    We analyzed the problems of security of the information of the civil registries and identification at world level that are considered strategic. The objective is to adopt the appropriate security protocols in a conceptual model in the identity management for the Civil Registry of Ecuador. In this phase, the appropriate security protocols were determined in a Conceptual Model in Identity Management with Authentication, Authorization and Auditing (AAA). We used the deductive method and exploratory research to define the appropriate security protocols to be adopted in the identity model: IPSec, DNSsec, Radius, SSL, TLS, IEEE 802.1X EAP, Set. It was a prototype of the location of the security protocols adopted in the logical design of the technological infrastructure considering the conceptual model for Identity, Authentication, Authorization, and Audit management. It was concluded that the adopted protocols are appropriate for a distributed database and should have a direct relationship with the algorithms, which allows vulnerability and risk mitigation taking into account confidentiality, integrity and availability (CIA).

  2. Water reuse for irrigated agriculture in Jordan: challenges of soil sustainability and the role of management strategies.

    Science.gov (United States)

    Carr, G; Nortcliff, S; Potter, R B

    2010-11-28

    Reclaimed water provides an important contribution to the water balance in water-scarce Jordan, but the quality of this water presents both benefits and challenges. Careful management of reclaimed water is required to maximize the nutrient benefits while minimizing the salinity risks. This work uses a multi-disciplinary research approach to show that soil response to irrigation with reclaimed water is a function of the management strategies adopted on the farm by the water user. The adoption of management methods to maintain soil productivity can be seen to be a result of farmers' awareness to potentially plant-toxic ions in the irrigation water (70% of Jordan Valley farmers identified salinization as a hazard from irrigation with reclaimed water). However, the work also suggests that farmers' management capacity is affected by the institutional management of water. About a third (35%) of farmers in the Jordan Valley claimed that their ability to manage salinization was limited by water shortages. Organizational interviews revealed that institutional awareness of soil management challenges was quite high (34% of interviewees described salinization as a risk from water reuse), but strategies to address this challenge at the institutional level require greater development.

  3. A low cost micro-station to monitor soil water potential for irrigation management

    Science.gov (United States)

    Vannutelli, Edoardo; Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio; Renga, Filippo

    2014-05-01

    The RISPArMiA project (which stands for "reduction of water wastage through the continuous monitoring of agri-environmental parameters") won in 2013 the contest called "LINFAS - The New Ideas Make Sustainable Agriculture" and sponsored by two Italian Foundations (Fondazione Italiana Accenture and Fondazione Collegio Università Milanesi). The objective of the RISPArMiA project is to improve the irrigation efficiency at the farm scale, by providing the farmer with a valuable decision support system for the management of irrigation through the use of low-cost sensors and technologies that can easily be interfaced with Mobile devices. Through the installation of tensiometric sensors within the cropped field, the soil water potential can be continuously monitored. Using open hardware electronic platforms, a data-logger for storing the measured data will be built. Data will be then processed through a software that will allow the conversion of the monitored information into an irrigation advice. This will be notified to the farmer if the measured soil water potential exceed literature crop-specific tensiometric thresholds. Through an extrapolation conducted on the most recent monitored data, it will be also possible to obtain a simple soil water potential prevision in absence of rain events. All the information will be sent directly to a virtual server and successively on the farmer Mobile devices. Each micro-station is completely autonomous from the energy point of view, since it is powered by batteries recharged by a solar panel. The transmission modulus consists of a GSM apparatus with a SIM card. The use of free platforms (Arduino) and low cost sensors (Watermark 200SS tensiometers and soil thermocouples) will significantly reduce the costs of construction of the micro-station which are expected to be considerably lower than those required for similar instruments on the market today . Six prototype micro-stations are actually under construction. Their field testing

  4. Soil salinisation and irrigation management of date palms in a Saharan environment.

    Science.gov (United States)

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity soil water content >0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  5. Management of Obstetric Perineal Tears: Do Obstetrics and Gynaecology Residents Receive Adequate Training? Results of an Anonymous Survey

    Directory of Open Access Journals (Sweden)

    A. Cornet

    2012-01-01

    Full Text Available Background/Aim. To evaluate the obstetrics and gynaecology residents' perspective of their training and experience in the management of perineal tears that occur during assisted vaginal delivery. We hypothesised that residents would perceive room for improvement in their knowledge of pelvic floor anatomy and the training received in tears repair. Design. Descriptive cross-sectional study. Population/Setting. Seventy-two major residents from all teaching hospitals in Catalonia. Methods. A questionnaire was designed to evaluate experience, perception of the training and supervision provided. Results. The questionnaire was sent to all residents (=72, receiving 46 responses (64%. The participants represented 15 out of the 16 teaching hospitals included in the study (94% of the hospitals represented. Approximately, 52% of residents were in their third year while 48% were in their fourth. The majority of them thought that their knowledge of pelvic floor anatomy was poor (62%, although 98% felt confident that they would know when an episiotomy was correctly indicated. The survey found that they lacked experience in the repair of major degree tears (70% had repaired fewer than ten, and most did not carry out followup procedures. Conclusion. The majority of them indicated that more training in this specific area is necessary (98%.

  6. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    Directory of Open Access Journals (Sweden)

    J. Grundmann

    2014-09-01

    Full Text Available Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater–agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  7. Nitrate leaching, water-use efficiency and yield of corn with different irrigation and nitrogen management systems in coastal plains, USA

    Science.gov (United States)

    Irrigation management for corn (Zea mays L.) production on the typical low water holding capacity soil of the southeastern USA needs to be improved to increase irrigation efficiency and reduce losses of nitrate from fields. A three-year (2012-2014) field study was conducted to compare the effects of...

  8. Farm-Level Optimal Water Management : assistent for irrigation under deficit, second Executive summery report for FP6-European project nr. 036958

    NARCIS (Netherlands)

    Balendonck, J.

    2008-01-01

    FLOW-AID is a 6th Framework European project which started in autumn 2006. Its objective is to contribute to sustainability of irrigated agriculture by developing, testing in relevant conditions, and then optimizing an irrigation management system that can be used at farm level. The system will be

  9. Conventional wound management versus a closed suction irrigation method for infected laparotomy wound--a comparative study.

    Science.gov (United States)

    Zhen, Zuo Jun; Lai, Eric C H; Lee, Qing Han; Chen, Huan Wei; Lau, Wan Yee; Wang, Feng Jie

    2011-01-01

    The aim of this study was to evaluate the efficacy of a closed suction irrigation method for the management of infected laparotomy wounds. This is a retrospective study on consecutive patients with infected laparotomy wounds managed in a single tertiary referral hospital from January 2004 to March 2009. The wounds were laid open, debrided and cleansed with hydrogen peroxide, povidone iodine and normal saline. The wounds were either conventionally treated with normal saline dressings followed by secondary suturing when healthy granulation tissues were formed (the Control group) or by the closed suction irrigation method after suturing the wound (the Study Group). There were 70 patients in the Study Group and 60 patients in the Control Group. The hospital stay (mean ± SD, 9.2 ± 0.1 vs. 20.5 ± 0.6 days, P irrigation method for infected laparotomy wounds. The closed suction irrigation method decreased hospital stay and allowed early rehabilitation. The findings of our study need to be substantiated in large-scale randomized controlled trials. Copyright © 2011 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Golf Course Irrigation with Reclaimed Water in the Mediterranean: A Risk Management Matter

    Directory of Open Access Journals (Sweden)

    Miquel Salgot

    2012-04-01

    Full Text Available Controversy regarding the amount of water consumed or saved as a result of human activity is currently paramount in water-scarce areas. In recent decades, golf—a land and water consuming activity—has been implanted in several areas of the Mediterranean basin, where the scarcity of water resources is well-known. As a result, the use of conventional water resources for golf course irrigation is increasingly contested and its replacement by reclaimed water has become essential. This paper examines the wide range of issues involved in its use on golf courses, including hazards—due to the presence of microorganisms and pollutants—and the corresponding risks that can appear. The resulting biological, chemical and physical water quality concerns are analyzed. Legal aspects related to the use of reclaimed water are also discussed and good reuse practices are suggested, including a detailed examination of risk assessment procedures and tools through observation or chemical, physical and microbiological analysis. The HACCP system—which focuses on quality determination in water samples from relevant control points—is described in detail, as it is generally accepted as one of the most scientific ways to detect health problems on a golf course. The paper concludes that, given the increasing availability of treated and reclaimed water and the water needs of golf courses, the future development of the sport in areas without surplus water resources—such as the Mediterranean basin—will predictably depend upon the use of reclaimed water. In recent years, risk assessment or analysis has emerged as an essential tool to guarantee the application of reclaimed water at an acceptable risk level. There certainly have been considerable advances and improvements in the tools that guarantee the safe use of reclaimed water, although current methods available require simplification for their practical application. Nevertheless, protocols applied at present

  11. Facial carbuncle - a new method of conservative surgical management plus irrigation with antibiotic-containing solution.

    Science.gov (United States)

    Ngui, L X; Wong, L S; Shashi, G; Abu Bakar, M N

    2017-09-01

    This paper reports on a non-conventional method for the management of facial carbuncles, highlighting its superiority over conventional surgical treatment in terms of cosmetic outcome and shorter duration of wound healing. The mainstay of treatment for carbuncles involves the early administration of antibiotics in combination with surgical intervention. The conventional saucerisation, or incision and drainage, under normal circumstances results in moderate to large wounds, which may need secondary surgery such as skin grafting, resulting in a longer duration of wound healing and jeopardising cosmetic outcome. The reported three cases presented with extensive carbuncles over the chin, face and lips region. In addition to early commencement of intravenous antibiotics, the pus was drained, with minimal incision and conservative wound debridement, with the aim of maximal skin conservation. This was followed by thrice-daily irrigation with antibiotic-containing solution for a minimum of 2 consecutive days. The wounds healed within two to four weeks, without major cosmetic compromise. The new method showed superior cosmetic outcomes, with a shorter duration of wound healing. Conservative surgical management can be performed under regional anaesthesia, which may reduce morbidity and mortality; patients with facial carbuncles often have higher risks with general anaesthesia.

  12. Conservation program works as an alternative irrigation districts in sustainable water management of agricultural use

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Peinado Guevara

    2012-05-01

    Full Text Available Water scarcity is an issue of worldwide concern since it is already having an impact on social development. Mexico is not an exception to this problem because in several regions of the country are great difficulties in supplying water, primarily for agricultural use. In Sinaloa, it had been mentioned repeatedly by the media that in the Irrigation District 063, located in the northern of the state, there are problems of water scarcity, and yet there still exist difficulties in conserving the resource. More than 49% of the water used for agriculture is wasted. To resolve this problem, producers and government agencies spend significant resources for investment in water conservation. However, the results have not been entirely satisfactory because the waste is high, a situation that motivates them to study more deeply the main weaknesses that affect sustainable resource use. Farmer’s participation in the administration of water infrastructure is important, as well as providing financial resources for the conservation of water system; and participation in activities of construction and repaired of water infrastructure. Farmer’s should also plan and design strategies for water conservation. This situation requires an appropriate level of technology and intellectual, rather than local producers and thus no complicated sustainable resource management. That is what local producers don’t have and therefore it complicates the sustainable management of the resource.

  13. Managed aquifer recharge through off-season irrigation in agricultural regions

    Science.gov (United States)

    Niswonger, Richard; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-01-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7–13%, increase crop consumptive use by 9–12%, and increase natural vegetation consumption by 20–30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  14. Managed aquifer recharge through off-season irrigation in agricultural regions

    Science.gov (United States)

    Niswonger, Richard G.; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-08-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7-13%, increase crop consumptive use by 9-12%, and increase natural vegetation consumption by 20-30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  15. PENGENDALIAN ASET NIRWUJUD DALAM MANAJEMEN SISTEM IRIGASI: KONSEP DAN PENGEMBANGAN MODEL (Controlling Intangible Assets in Irrigation System Management:Concept and Model Development

    Directory of Open Access Journals (Sweden)

    Nugroho Tri Waskitho

    2013-06-01

    Full Text Available Irrigation was an important component of the agricultural development in Indonesia, but it had many problems. Irrigation management was inefficient, irrigation networks were damaged and farmers participation were poor. These problems were caused by poor of intangible assets. The research aimed at developing the concept and the model of controlling intangible assets in irrigation system management. The research method consisted of two stages. The first stage was developing the concept. The concept of controlling intangible assets in irrigation system management was developed based on principles of knowledge management. The concept stated that intangible assets in irrigation system can be controlled using knowledge management. The second stage was developing the model which consisted of model building and sensivity analysis. Model of controlling intangible assets in irrigation system management was build using neuro-fuzzy. The model had three submodels: knowledge management, intangible assets and performance of irrigation system. Evaluating the model was done in Sapon irrigation system in Kulon Progo, Yogyakarta. Data collecting was done using questionnaire on nine Water Use Associations. Data analysis was done using Adaptive Neuro Fuzzy Inference System. The model had been evaluated using correlation coefficient, Mean Absolute Percentage Error and Root Mean Square Error. Result of the study indicated that the concept of controlling intangible assets in irrigation system management had developed based on knowledge management. The concept stated that irrigation system management had to balance between tangible assets and intangible assets. Intangible assets which had amortization need be controlled. Controlling intangible assets can be done by knowledge management. The model of controlling intangible assets in irrigation system management could predict intangible assets and performance of irrigation system well. The model linked knowledge

  16. Advances in Estimation of Parameters for Surface Irrigation Modeling and Management

    Science.gov (United States)

    Mathematical models of the surface irrigation process are becoming standard tools for analyzing the performance of irrigation systems and developing design and operational recommendations. A continuing challenge to the practical use of these tools is the difficulty in characterizing required model ...

  17. Nitrogen management impacts nitrous oxide emissions under varying cotton irrigation systems in the American Desert Southwest

    Science.gov (United States)

    Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...

  18. Irrigation management to optimize controlled drainage in a semi-arid area

    NARCIS (Netherlands)

    Soppe, R.W.O.; Ayars, J.E.; Christen, E.W.; Shouse, P.J.

    2003-01-01

    On the west side of the San Joaquin Valley, California, groundwater tables have risen after several decades of irrigation. A regional semi-permeable layer at 100 m depth (Corcoran Clay) combined with over-irrigation and leaching is the major cause of the groundwater rise. Subsurface drain systems

  19. Soil water sensors for irrigation management-What works, what doesn't, and why

    Science.gov (United States)

    Irrigation scheduling can be greatly improved if accurate soil water content data are available. There are a plethora of available soil water sensing systems, but those that are practical for irrigation scheduling are divided into two major types: the frequency domain (capacitance) sensors and the t...

  20. Simulation of rice yield under different irrigation and nitrogen application managements by CropSyst model

    Directory of Open Access Journals (Sweden)

    Narjes ZARE

    2015-12-01

    Full Text Available The aim of this study was the calibration and validation of CropSyst model for rice in the city of Rasht. The necessary data were extracted from a field experiment which was carried out during 2005-2007 in a split-plot design. The main plots were irrigation regimes including continuous flooding irrigation and 5-day irrigation intervals. The subplots consisted of four nitrogen levels: zero N application, 45, 60 and 75 kg N ha-1. Normalized Root Mean Squared Error (nRMSE and Residual Mass Coefficient (Crm in calibration years were 9.3 % and 0.06, respectively. In validation year, nRMSE and Crm were 9.7 % and 0.11, respectively. According to other indices to assess irrigation regimes and fertilizer levels, the most suitable treatments regarding environmental aspect were 5-day irrigation regime and 45 kg N ha-1.

  1. Application of DSSAT-CROPGRO-Cotton Model to Assess Long Term (1924-2012) Cotton Yield under Different Irrigation Management Strategies

    Science.gov (United States)

    Adhikari, P.; Gowda, P. H.; Northup, B. K.; Rocateli, A.

    2017-12-01

    In this study a well calibrated and validated DSSAT-CROPGRO-Cotton model was used for assessing the irrigation management in the Texas High Plains (THP). Long term (1924-2012) historic lint yield were simulated under different irrigation management practices which were commonly used in the THP. The simulation treatments includes different amount of irrigation water high (H; 6.4 mm d-1), medium (M; 3.2 mm d-1) and low (L; 0 mm d-1) during emergence (S1), vegetative (S2) and maturity (S3) stage. The combination of these treatments resulted into 27 treatments. The amount and date of irrigation for each stage were obtained from the recent cotton irrigation experiment at Halfway, TX (Brodovsky, et al., 2015). Similarly, calibrated model was also used to observe the effect of plantation date on crop yield in the THP regions.

  2. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM.

    Science.gov (United States)

    Balwinder-Singh; Humphreys, E; Gaydon, D S; Eberbach, P L

    2016-10-01

    Machinery for sowing wheat directly into rice residues has become more common in the rice-wheat systems of the north-west Indo-Gangetic Plains of South Asia, with increasing numbers of farmers now potentially able to access the benefits of residue retention. However, surface residue retention affects soil water and temperature dynamics, thus the optimum sowing date and irrigation management for a mulched crop may vary from those of a traditional non-mulched crop. Furthermore, the effects of sowing date and irrigation management are likely to vary with soil type and seasonal conditions. Therefore, a simulation study was conducted using the APSIM model and 40 years of weather data to evaluate the effects of mulch, sowing date and irrigation management and their interactions on wheat grain yield, irrigation requirement (I) and water productivity with respect to irrigation (WP I ) and evapotranspiration (WP ET ). The results suggest that the optimum wheat sowing date in central Punjab depends on both soil type and the presence or absence of mulch. On the sandy loam, with irrigation scheduled at 50% soil water deficit (SWD), the optimum sowing date was late October to early November for maximising yield, WP I and WP ET . On the clay loam, the optimum date was about one week later. The effect of mulch on yield varied with seasonal conditions and sowing date. With irrigation at 50% SWD, mulching of wheat sown at the optimum time increased average yield by up to 0.5 t ha -1 . The beneficial effect of mulch on yield increased to averages of 1.2-1.3 t ha -1 as sowing was advanced to 15 October. With irrigation at 50% SWD and 7 November sowing, mulch reduced the number of irrigations by one in almost 50% of years, a reduction of about 50 mm on the sandy loam and 60 mm on the clay loam. The reduction in irrigation amount was mainly due to reduced soil evaporation. Mulch reduced irrigation requirement by more as sowing was delayed, more so on the sandy loam than the clay

  3. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil.

    Science.gov (United States)

    Wu, Xiaohong; Ge, Tida; Yan, Wende; Zhou, Juan; Wei, Xiaomeng; Chen, Liang; Chen, Xiangbi; Nannipieri, Paolo; Wu, Jinshui

    2017-12-01

    In this study, we assessed the interactive effects of phosphorus (P) application and irrigation methods on the abundances of marker genes (cbbL, cbbM, accA and aclB) of CO2-fixing autotrophs. We conducted rice-microcosm experiments using a P-limited paddy soil, with and without the addition of P fertiliser (P-treated-pot (P) versus control pot (CK)), and using two irrigation methods, namely alternate wetting and drying (AWD) and continuous flooding (CF). The abundances of bacterial 16S rRNA, archaeal 16S rRNA, cbbL, cbbM, accA and aclB genes in the rhizosphere soil (RS) and bulk soil (BS) were quantified. The application of P significantly altered the soil properties and stimulated the abundances of Bacteria, Archaea and CO2-fixation genes under CF treatment, but negatively influenced the abundances of Bacteria and marker genes of CO2-fixing autotrophs in BS soils under AWD treatment. The response of CO2-fixing autotrophs to P fertiliser depended on the irrigation management method. The redundancy analysis revealed that 54% of the variation in the functional marker gene abundances could be explained by the irrigation method, P fertiliser and the Olsen-P content; however, the rhizosphere effect did not have any significant influence. P fertiliser application under CF was more beneficial in improving the abundance of CO2-fixing autotrophs compared to the AWD treatment; thus, it is an ideal irrigation management method to increase soil carbon fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Soil CO2 emissions in terms of irrigation management in an agricultural soil

    Science.gov (United States)

    Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María

    2014-05-01

    Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly

  5. Irrigation and fertilization effects on Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) Damage levels and pupal weight in an intensively-managed pine plantation.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.

    2003-10-01

    The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damage levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.

  6. Effects of Planting Dates, Irrigation Management and Cover Crops on Growth and Yield of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-01-01

    Full Text Available Introduction Saffron as a winter active plant with low water requirement is the most strategic medicinal plant in arid and semi-arid parts of Iran. This slow-growing plant has narrow leaves and no aerial stem, hence weeds can be overcome it. Moreover, because of its root and canopy structure an important part of different resources is not used by this low input crop. Therefore, the use of associated crops could be an effective way for increasing resources use efficiencies (Koocheki et al., 2016. Appropriate corm planting date is another important factor that affects saffron growth and yield. Results of some studies show that late spring is the best time for corm planting (Ghasemi-Rooshnavand, 2009; Koocheki et al., 2016. In addition, irrigation management has been evaluated in some studies, but irrigation immediately after corm planting has not been investigated previously. Therefore, the aim of this study was to investigate the effect of irrigation management, planting date and the use of some companion crops on flowering of saffron during two growth cycles. Materials and methods This experiment was carried out as a split-split plot experiment based on a Randomized Complete Block Design with three replications at Research Station, Ferdowsi University of Mashhad, Iran in 2009-2011. Experimental factors included: planting date of saffron as main factor (first of June, first of August and first of October, 2009, the irrigation management as sub factor (irrigation and no irrigation after each planting date and the companion crops as sub-sub factor [Persian clover (Trifolium resupinatum, Bitter vetch (Lathyrus sativus and control. Corm planting was done in 10×25 cm distances with 12 cm depth. In the second year irrigation was done again in the plots which were irrigated after planting in the first year at the same previous dates. Companion crops were sown after first flower picking (November, 2009, then their residue were returned to the soil in

  7. Best Management of Irrigation Fertilization to Sustain Environment and High yield of Maize in the Arid land in Egypt

    Science.gov (United States)

    Gameh Ali, M.

    2012-04-01

    Assiut is a county in the middle of Egypt,located 600 km south of the Mediterranean Sea. Water and fertilization management experimental trails were conducted to search for the best water consumption of Maize beside the best rate and type of nitrogen fertilization to reduce nitrate pollution and reduce fertilizer and save energy. Three irrigation regimes ( 25, 50, and 75% of soil moisture depletion of the available water, SMD) were used to irrigate Corn (Maize : Zea mays L. ) variety Tri hybrid cross. Three nitrogen fertilizer sources (Urea 46.5% N; Ammonium nitrate 33.5%N and slow release nitrogen 40%N) were applied at three rates of 90; 120 and 150 kg/ Feddan (4200m2 about one Acre). The results suggested that the best management is to use the slow release fertilizer at rate of 150 kg N/ Feddan (4200m2 ) with 50% SMD the highest Maize yield with good quality and reducing the environmental hazardous. Key words: Slow release fertilizer, Nitrogen leaching; Irrigation management. Environmental protection.

  8. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  9. Participatory innovation process for testing new practices for soil fertility management in Chókwè Irrigation Scheme (Mozambique)

    Science.gov (United States)

    Sánchez Reparaz, Maite; de Vente, Joris; Famba, Sebastiao; Rougier, Jean-Emmanuel; Ángel Sánchez-Monedero, Miguel; Barberá, Gonzalo G.

    2015-04-01

    Integrated water and nutrient management are key factors to increase productivity and to reduce the yield gap in irrigated systems in Sub-Saharan Africa. These two elements are affected by an ensemble of abiotic, biotic, management and socio-economic factors that need to be taken into account to reduce the yield gap, as well as farmers' perceptions and knowledge. In the framework of the project European Union and African Union cooperative research to increase Food production in irrigated farming systems in Africa (EAU4Food project) we are carrying out a participatory innovation process in Chókwè irrigation scheme (Mozambique) based on stakeholders engagement, to test new practices for soil fertility management that can increase yields reducing costs. Through a method combining interviews with three farmers' associations and other relevant stakeholders and soil sampling from the interviewed farmers' plots with the organization of Communities of Practices, we tried to capture how soil fertility is managed by farmers, the constraints they find as well as their perceptions about soil resources. This information was the basis to design and conduct a participatory innovation process where compost made with rice straw and manure is being tested by a farmers' association. Most important limitations of the method are also evaluated. Our results show that socio-economic characteristics of farmers condition how they manage soil fertility and their perceptions. The difficulties they face to adopt new practices for soil fertility management, mainly related to economic resources limitations, labour availability, knowledge time or farm structure, require a systemic understanding that takes into account abiotic, biotic, management and socio-economic factors and their implication as active stakeholders in all phases of the innovation process.

  10. IRRIGATION SCHEDULING CALCULATOR (ISC TO IMPROVE WATER MANAGEMENT ON FIELD LEVEL IN EGYPT

    Directory of Open Access Journals (Sweden)

    Samiha Abou El-Fetouh Hamed Ouda

    2017-10-01

    Full Text Available The developed model is MS excel sheet called “Irrigation Scheduling Calculator, ISC”. The model requires to input daily weather data to calculate daily evapotranspiration using Penman-Monteith equation. The model calculates water depletion from the root zone to determine when to irrigate and how much water should be applied. The charge from irrigation pump is used to calculate how many hours should the farmer run the pump to deliver the needed amount of water. ISC model was used to developed irrigation schedule for wheat and maize planted in El-Gharbia governorate. The developed schedules were compared to the actual schedules for both crops. Furthermore, CropSyst model was calibrated for both crops and run using the developed schedules by ISC model. The simulation results indicated that the calculated irrigation amount by ISC model for wheat was lower than actual schedule by 6.0 mm. Furthermore, the simulated wheat productivity by CropSyst was higher than measured grain and biological by 2%. Similarly, the calculated applied irrigation amount by ISC model for maize was lower than actual schedule by 79.0 mm and the productivity was not changed.

  11. Operational tools for irrigation water management based on Earth observation: the DEMETER project

    Science.gov (United States)

    Calera, Alfonso; Jochum, M. Anna Osann

    2006-09-01

    The project DEMETER (DEMonstration of Earth observation TEchnologies in Routine irrigation advisory services) was designed to assess and demonstrate improvements introduced by Earth observation (EO) and Information and Communication Technologies (ICT) in farm and Irrigation Advisory Service (IAS) day-to-day operations. The DEMETER concept of near-real-time delivery of EO-based irrigation scheduling information to IAS and farmers has proven to be valid. The operationality of the space segment was demonstrated in three different pilot zones in South Europe during the 2005 irrigation campaigns. Extra-fast image delivery and quality controlled operational processing make the EO-based crop coefficient maps available at the same speed and quality as ground-based data (point samples), while significantly extending the spatial coverage and reducing service cost. The new online Space-Assisted Irrigation Advisory Service (e-SAIAS) is the central outcome of the project. Its key feature is the operational generation of irrigation scheduling information products from a virtual constellation of high-resolution EO satellites and their delivery to farmers in near-real-time using leading-edge on-line analysis and visualization tools. First feedback of users at IAS and farmer level is encouraging. The paper gives an overview of the project and its main achievements.

  12. An optimization model to design and manage subsurface drip irrigation system for alfalfa

    Science.gov (United States)

    Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.

    2010-12-01

    Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.

  13. Irrigation management in pruned coffee tree crop Manejo da irrigação na lavoura cafeeira recepada

    Directory of Open Access Journals (Sweden)

    Anselmo A. de P. Custódio

    2013-02-01

    Full Text Available It was evaluated the effect of irrigation management on the production characteristics of coffee cultivar Acaiá MG-1474, planted in spacing of 3.00 m x 0.60 m, pruned in 2004, and irrigated by drip since the planting, in 1997. The experimental designed used was of randomized blocks with five treatments and four replications. The treatments consisted of irrigation management strategies, applying or not applying controlled moisture deficit in layer of 0 to 0.4m, in dry seasons of the year: A = no irrigation (control, B = irrigation during all year considering the factor of water availability in the soil (f equal to 0.75, C = irrigation during all year considering f = 0.25, D = irrigation during all year, but in January /February /March /July /October /November /December with f = 0.25 and April /May /June /August /September with f = 0.75, E = irrigation only during April /May /June /August /September with f = 0.25. From July /2005 to June /2007 the applied water depth was defined based on Class A pan evaporation (ECA and the period from July/2007 to June/2008 based on readings of matric potential of soil obtained from Watermark® sensors. Each plot consisted of three rows with ten plants per row, considering as useful plot five plants of center line. The results indicated that the E irrigation management was the most suitable for technical reasons.Foi avaliado o efeito do manejo de irrigação nas características produtivas do cafeeiro da cultivar Acaiá MG-1474, plantado no espaçamento 3,00 m x 0,60 m, recepado em 2004 e irrigado por gotejamento desde o plantio, em 1997. O delineamento experimental utilizado foi o de blocos casualizados, com cinco tratamentos e quatro repetições. Os tratamentos utilizados constaram de estratégias de manejo de irrigação, aplicando ou não déficit controlado de umidade, na camada de 0 - 0,40m, nas épocas secas do ano, ou seja: A = Sem irrigação (testemunha; B = Irrigação o ano todo, considerando-se o

  14. 76 FR 20971 - Turlock Irrigation District and Modesto Irrigation District; Notice of Intent To File License...

    Science.gov (United States)

    2011-04-14

    ... Irrigation District and Modesto Irrigation District; Notice of Intent To File License Application, Filing of...: Turlock Irrigation District and Modesto Irrigation District. e. Name of Project: Don Pedro Hydroelectric... Irrigation District, P.O. Box 949, Turlock, California 95381, 209-883-8241 and Greg Dias, Project Manager...

  15. The effect of irrigation uniformity on irrigation water requirements ...

    African Journals Online (AJOL)

    Irrigated agriculture is the largest user of water in South Africa. Due to the limited amount of water resources, the efficient and equitable use of water is of paramount importance. This can only be achieved through effective design, maintenance and management of irrigation systems. The uniformity with which an irrigation ...

  16. Assessing best management practices for remediation of selenium loading in groundwater to streams in an irrigated region

    Science.gov (United States)

    Bailey, Ryan T.; Romero, Erica C.; Gates, Timothy K.

    2015-02-01

    Selenium (Se) contamination in groundwater and surface water in numerous river basins worldwide has become a critical issue in recent decades. An essential micro-nutrient, Se can prove harmful to fish, water fowl, livestock, and even humans at elevated concentrations. In an overall effort to curb Se contamination in environmental systems, this study aims to identify best-management practices (BMPs) that can assist in remediating Se contamination in irrigated river basins. Using multi-decadal simulations of a calibrated and tested groundwater flow model (MODFLOW-UZF) and Se chemical reactive transport model (UZF-RT3D), the impact of water- and land-management strategies in reducing Se contamination are explored for a 500 km2 study region in the Lower Arkansas River Valley (LARV) in southeastern Colorado. The effectiveness of reduced applied irrigation volumes, sealing of earthen irrigation canals, rotational fallowing of cultivated land, reduced fertilizer loading, and enhanced riparian buffer zones, implemented individually as well as concurrently in various combinations, is explored. Results indicate that significant (>10%) decreases in Se mass loading to the Arkansas River system (main stem and tributaries) can be achieved when individual BMPs are implemented, with land fallowing, reduced irrigation, and enhanced riparian buffer zones providing the best results (13-14% load reduction). Even greater impacts (20-50% Se load reduction) can be achieved with 3 or 4 BMPs implemented concurrently. Results demonstrate that Se remediation can potentially be achieved within the LARV, and also can serve as a guide for other Se-affected river basins within the western United States and throughout the world.

  17. RAF/5/071: Enhancing Crop Nutrition and Soil and Water Management and Technology Transfer in Irrigated Systems for Increased Food Production and Income Generation (AFRA)

    International Nuclear Information System (INIS)

    Sijali, I.

    2017-01-01

    The overall objective is to enhance food security, income and the resilience of smallholder farmers through climate change adaptive, mitigation and coping strategies and specific objective to Improve water and nitrogen use efficiency under different irrigated cropping systems using quantifying nuclear technique. Technologies perfected at KALRO transferred to pastoral communities (Maasai land). Technologies included drip irrigation systems for vegetables and orchards, water harvesting ponds dam lining, Solar pump, greenhouse management techniques and introduction of new crops such as sweet potatoes, green grams and sorghums. A low-cost solar-powered irrigation pump has been developed by on-station testing and demonstration was done for a small solar pump

  18. Apple tree production in Italy: rootstocks, cultivars, fertilization, and irrigation

    Directory of Open Access Journals (Sweden)

    Giovambattista Sorrenti

    2012-11-01

    Full Text Available Italy is one of the main apple producers in Europe, primarily intended for fresh consumption, both in the domestic and foreign markets. Fruit yield and quality depends on the cultivar, rootstock, and management practices, such as the fertilization and irrigation adopted in the orchard. This review aims at reporting the main apple cultivars and rootstocks, the management of fertilization and irrigation, as well as their adaptation to apple tree orchards in Italy. The programs for genetic improvement carried out in this country involved the selection of apple tree cultivars and rootstocks which enable a high fruit yield and quality, in order to meet the requirements from the consumer market. In the fertilization and irrigation management, nutrients and water are supplied in amounts next to the actual need of the plants, providing an adequate nutrition, a satisfactory yield, and high quality fruits, besides preventing, whenever possible, nutrients and water losses in the environment.

  19. Irrigation management to optimize controlled drainage in a semi-arid area

    OpenAIRE

    Soppe, R.W.O.; Ayars, J.E.; Christen, E.W.; Shouse, P.J.

    2003-01-01

    On the west side of the San Joaquin Valley, California, groundwater tables have risen after several decades of irrigation. A regional semi-permeable layer at 100 m depth (Corcoran Clay) combined with over-irrigation and leaching is the major cause of the groundwater rise. Subsurface drain systems were installed from the 60¿s to the 80¿s to remove excess water and maintain an aerated root zone. However, drainage water resulting from these subsurface systems contained trace elements like seleni...

  20. Sediment Transport Model for a Surface Irrigation System

    OpenAIRE

    Mailapalli, Damodhara R.; Raghuwanshi, Narendra S.; Singh, Rajendra

    2013-01-01

    Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in fur...

  1. Development of a decision support system for precision management of conjunctive use of treated wastewater for irrigation in Oman

    Directory of Open Access Journals (Sweden)

    Hemanatha P. W. Jayasuriya

    2018-01-01

    Full Text Available This research aimed at finding alternative options for conjunctive use of treated wastewater (TW with groundwater (GW minimizing the irrigation water from aquifers in the Al-Batinah region with the assistance of a Decision Support System (DSS. Oman is facing a three-facet problem of lowering of GW table, wastewater over-production and excess TW. Approved guidelines for use of TW with tertiary treatments are of two classes: class-A (for vegetables consumed raw, class-B (after cooking. The developed DSS is comprised of four management subsystems: (1 data management in Excel, (2 model and knowledge management by macro programming in Excel, (3 with linear programming (LP optimization models including transportation algorithms, and (4 user interface with Excel or Visual Basic (VB. The results are based on two extreme scenarios: zero TW excess, and zero GW used for irrigation. The DSS could predict water balance for number of crop rotations, and based on adjustable cost variables farmer profit margins could be created. Crop selections and rotation could be done using LP optimizations while transportation algorithm could organize best locations and capacities for treatment plants and the wastewater collection and transportation to farming areas via treatment plants. The developed DSS will be very useful as a water management, optimization and planning tool.

  2. Chicanery at the canal : changing practice in irrigation management in Western Mexico

    NARCIS (Netherlands)

    Zaag, van der P.

    1992-01-01

    Existing studies of irrigation systems show that technical elements influence social processes, and also, that certain social relationships may have technical implications. However, little has been said about the precise content of this interplay. A better insight seems important, as

  3. Double row spacing and drip irrigation as technical options in energy sorghum management

    Directory of Open Access Journals (Sweden)

    Neri Roncucci

    2014-02-01

    Full Text Available The effect of two row spacing configurations and four water supply levels was investigated on sweet and fibre sorghum in Central Italy for two consecutive years. Results highlighted the influence of both irrigation and row spatial configuration on crop productivity. Indeed, several studies have pointed out the positive response of sorghum to irrigation in Mediterranean climate, as in this environment water stress represents one of the main limiting factors on crop productivity. On the other hand, few attempts have been made to explore the role of row spacing on energy sorghum productivity. Results outlined an average increase in sorghum dry biomass yield ranging from +23% to +79% at variable rates of water supply as compared to rainfed control. The positive effect of irrigation was also observed on leaf area index and radiation use efficiency. Moreover, we observed a crop yield increase, from 9% to 20%, under double row spacing compared to the standard planting pattern (i.e. single row spacing. Finally, it was confirmed the efficient use of water by sorghum and the great ability of sorghum to increase its biomass yield in response to increasing volumes of water supplied. Therefore, this work suggests how row spacing configuration and drip irrigation could be feasible technical options to increase sorghum biomass yields in Mediterranean environments. These techniques should be experienced by farmers towards a sustainable intensification of current cropping systems.

  4. Institutional aspects of integrating irrigation into urban wastewater management: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, J.G.; Huibers, F.P.; Vliet, van B.J.M.

    2010-01-01

    Wastewater flows of metropolitan cities and their downstream use for irrigation are often associated with technical systems. However, an engineering approach on its own will leave questions unanswered at the socio-technical and institutional level. Research was carried out in Hanoi, Vietnam, on the

  5. Institutional aspects of integrating irrigation into urban wastewater management: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, J.G.; Huibers, Frans P.; van Vliet, Bas J.M.

    2008-01-01

    Wastewater flows of metropolitan cities and their downstream use for irrigation are often associated with technical systems. However, an engineering approach on its own will leave questions unanswered at the socio-technical and institutional level. Research was carried out in Hanoi, Vietnam, on the

  6. Evaluation of subsurface drip irrigation design and management parameters for alfalfa

    NARCIS (Netherlands)

    Kandelous, M.M.; Kamai, T.; Vrugt, J.A.; Šimůnek, J.; Hanson, B.; Hopmans, J.W.

    2012-01-01

    Alfalfa is one of the most cultivated crops in the US, and is being used as livestock feed for the dairy, beef, and horse industries. About nine percent of that is grown in California, yet there is an increasing concern about the large amounts of irrigation water required to attain maximum yield. We

  7. Information Technology Supports Integration of Satellite Imagery with Irrigation Management in California's Central Valley

    Science.gov (United States)

    Remotely sensed data can potentially be used to develop crop coefficient estimates over large areas and make irrigation scheduling more practical, convenient, and accurate. A demonstration system is being developed under NASA's Terrestrial Observation and Prediction System (TOPS) to automatically r...

  8. Management systems in irrigated rice affect physical and chemical soil properties

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Pauletto, E.A.; Pinto, L.F.S.

    2009-01-01

    Lowland soils are commonly found in the state of Rio Grande do Sul, Southern of Brazil, where they represent around 20% of the total area. Deficient drainage is the most important natural characteristic of these soils which therefore are mainly in use for irrigated rice (Oriza sativa). Degradation

  9. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  10. Irrigation and Debridement with Component Retention for Acute Infection After Hip Arthroplasty: Improved Results with Contemporary Management.

    Science.gov (United States)

    Bryan, Andrew J; Abdel, Matthew P; Sanders, Thomas L; Fitzgerald, Steven F; Hanssen, Arlen D; Berry, Daniel J

    2017-12-06

    There are conflicting data on the results of irrigation and debridement with component retention in patients with acute periprosthetic hip infections. The goals of this study were to examine contemporary results of irrigation and debridement with component retention for acute infection after primary hip arthroplasty and to identify host, organism, antibiotic, or implant factors that predict success or failure. Ninety hips (57 total hip arthroplasties and 33 hemiarthroplasties) were diagnosed with acute periprosthetic hip infection (using strict criteria) and were treated with irrigation and debridement and component retention between 2000 and 2012. The mean follow-up was 6 years. Patients were stratified on the basis of McPherson criteria. Hips were managed with irrigation and debridement and retention of well-fixed implants with modular head and liner exchange (70%) or irrigation and debridement alone (30%). Seventy-seven percent of patients were treated with chronic antibiotic suppression. Failure was defined as failure to eradicate infection, characterized by a wound fistula, drainage, intolerable pain, or infection recurrence caused by the same organism strain; subsequent removal of any component for infection; unplanned second wound debridement for ongoing deep infection; and/or occurrence of periprosthetic joint infection-related mortality. Treatment failure occurred in 17% (15 of 90 hips), with component removal secondary to recurrent infection in 10% (9 of 90 hips). Treatment failure occurred in 15% (10 of 66 hips) after early postoperative infection and 21% (5 of 24 hips) after acute hematogenous infection (p = 0.7). Patients with McPherson host grade A had a treatment failure rate of 8%, compared with 16% (p = 0.04) in host grade B and 44% in host grade C (p = 0.006). Most treatment failures (12 of 15 failures) occurred within the initial 6 weeks of treatment; failures subsequent to 6 weeks occurred in 3% of those treated with chronic antibiotic

  11. Viewpoint – The Right Irrigation? Policy Directions for Agricultural Water Management in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Bruce Lankford

    2009-10-01

    Full Text Available In July 2009, in the closing moments of the G8 meeting in Italy, President Obama responded to a question from the floor regarding investments in Africa to tackle food security and poverty. His answer (quoted below included the phrase "the right irrigation". This opinion piece reflects on the phrase, places it within a policy debate and suggests that the development community can respond to Obama’s call for the 'right irrigation' in sub‐ Saharan Africa by taking a comprehensive approach that utilises a mixture of technologies, builds on local capabilities, brings sound engineering know‐how, is supported by a range of other services, and acknowledges other water needs within catchments. Cost‐effectiveness and community ownership will be important.

  12. Safe and high quality food production using low quality waters and improved irrigation systems and management

    DEFF Research Database (Denmark)

    Plauborg, Finn; Andersen, Mathias Neumann; Liu, Fulai

    2010-01-01

    uneven irrigation patterns can increase the water use efficiency as well as the quality of vegetable crops. Furthermore, recent innovations in the water treatment and irrigation industry have shown potential for the use of low quality water resources, such as reclaimed water or surface water in peri......The present paper presents the SAFIR project (www.safir4eu.org), which addresses two fundamental problems that over the past decade increasingly have become concerns of the general public: the one problem being the jeopardizing of safety and quality of our food products, while the other being...... the increasing competition for clean freshwater. The SAFIR project has a multi-disciplinary approach, which integrates the European as well as the global dimension of the EU-policy on food quality and safety. The main driving force behind the project idea is new research results that demonstrated that scheduled...

  13. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    Science.gov (United States)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  14. CANDI: A decision support system for management of agricultural pesticides with irrigation

    OpenAIRE

    Peralta, R. C.; Aly, A. H.

    1994-01-01

    The use of pesticides is an integral part of today's agriculture. Pesticides contribute significantly to improved crop productivity and to public health. Some pesticides, even in extremely low concentrations, can pose a risk to human health and to the environment. Applied to plants or soil, pesticides can leach to the groundwater or may be washed off by surface water. A portion of water that has fallen on the earth, either from precipitation or irrigation, infiltrates the soil through pore sp...

  15. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    Science.gov (United States)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.

  16. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    International Nuclear Information System (INIS)

    Condon, Laura E; Maxwell, Reed M

    2014-01-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater–surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity. (paper)

  17. Real-time PCR assays for hepatitis C virus (HCV) RNA quantitation are adequate for clinical management of patients with chronic HCV infection.

    Science.gov (United States)

    Halfon, Philippe; Bourlière, Marc; Pénaranda, Guillaume; Khiri, Hacène; Ouzan, Denis

    2006-07-01

    Because of the use of viral kinetics during polyethylene glycol (PEG)-interferon-ribavirin therapy and the development of specific new anti-hepatitis C virus (anti-HCV) drugs, assessment of the efficacy of anti-HCV drugs needs to be based not on end-point PCR assays but on real-time PCR. The aim of this study was to determine if the two available commercial real-time PCR assays, the Abbott RealTime HCV assay and the Roche Cobas TaqMan HCV assay, can become the standard for HCV RNA quantification. We investigated the prognostic relevance of HCV RNA viral loads at baseline, week 4, and week 12 to a rapid and early virological response to antiviral therapy by using the two assays. Of 59 naïve patients chronically infected by HCV (41 infected with genotype 1) who were treated with ribavirin plus PEG-interferon alfa-2b for 48 weeks, 24 patients (41%) showed a sustained virological response (SVR). With the two assays, viral loads were highly correlated, irrespective of genotype (R2=0.94 for all cases). No difference in diagnostic value was found between the Abbott and Roche assays at week 4, with respective negative predictive values (NPVs) of 84% and 78% and positive predictive values (PPVs) of 62% and 56% (not significant), and at week 12, the respective NPVs were 91% and 90% and PPVs were 44% and 46% (not significant). At week 12, 83% (20/24) and 96% (23/24) of patients with SVR tested negative for HCV RNA by the Abbott and Roche assays, respectively (the difference is not significant). In conclusion, the high sensitivities and large dynamic ranges of the Abbott and Roche assays show that a single real-time quantitative PCR assay is fully adequate for clinical and therapeutic management of HCV.

  18. Quantitative Analysis on the Influence Factors of the Sustainable Water Resource Management Performance in Irrigation Areas: An Empirical Research from China

    Directory of Open Access Journals (Sweden)

    Hulin Pan

    2018-01-01

    Full Text Available Performance evaluation and influence factors analysis are vital to the sustainable water resources management (SWRM in irrigation areas. Based on the objectives and the implementation framework of modern integrated water resources management (IWRM, this research systematically developed an index system of the performances and their influence factors ones of the SWRM in irrigation areas. Using the method of multivariate regression combined with correlation analysis, this study estimated quantitatively the effect of multiple factors on the water resources management performances of irrigation areas in the Ganzhou District of Zhangye, Gansu, China. The results are presented below. The overall performance is mainly affected by management enabling environment and management institution with the regression coefficients of 0.0117 and 0.0235, respectively. The performance of ecological sustainability is mainly influenced by local economic development level and enable environment with the regression coefficients of 0.08642 and −0.0118, respectively. The performance of water use equity is mainly influenced by information publicity, administrators’ education level and ordinary water users’ participation level with the correlation coefficients of 0.637, 0.553 and 0.433, respectively. The performance of water use economic efficiency is mainly influenced by the management institutions and instruments with the regression coefficients of −0.07844 and 0.01808, respectively. In order to improve the overall performance of SWRM in irrigation areas, it is necessary to strengthen the public participation, improve the manager’ ability and provide sufficient financial support on management organization.

  19. Frequency inverter and irrigation management in irrigated perimeter on Jaiba region - MG, Brazil; Uso de inversor de frequencia e do manejo da irrigacao em perimetro da regiao do Jaiba, MG

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Maria Joselma de; Oliveira Filho, Delly; Vieira, Gustavo H.S. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], Emails: maria.moraes@ufv.br, delly@ufv.br, ghsvieira@ifes.edu.br; Scarcelli, Ricardo de O.C. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Eletrica], E-mail: rocvenceslau@yahoo.com.br

    2010-07-01

    The electric energy expenditure and the irrigation depth for one irrigated perimeter on Jaiba region/MG, Brazil, for the cultures: pineapple, banana, guava, lemon, papaya, mango, passion fruit, cantaloupe, pine cone and grape. With the monthly irrigation depth data for an hypothetical area of 12 lots (10 ha each), it was simulated, with Galateia software, the head pressure for 4 combinations of cultures: first - papaya (12 lots); second - banana (8 lots), guava (1), papaya (1), mango (1) and passion fruit (1); third - papaya (8), guava (1), pineapple (1), (1) and lemon (1); and fourth - guava (8), mango (1), papaya (1), pine cone (1) and passion fruit (1). It was dimensioned the necessary power and the electrical energy expenses with TOU (green category tariff) for the biggest irrigation depth. The frequency inverter use and the management of the number of working hours were simulated for each combination, in order to maximize the motor's load and the pump-motor set performance. For the combinations 2, 3, and 4 occurred reduction on the electrical energy consumption of 6%, 8% and 20%, respectively in respect of the combination 1. (author)

  20. A MICROCOMPUTER MODEL FOR IRRIGATION SYSTEM EVALUATION

    OpenAIRE

    Williams, Jeffery R.; Buller, Orlan H.; Dvorak, Gary J.; Manges, Harry L.

    1988-01-01

    ICEASE (Irrigation Cost Estimator and System Evaluator) is a microcomputer model designed and developed to meet the need for conducting economic evaluation of adjustments to irrigation systems and management techniques to improve the use of irrigated water. ICEASE can calculate the annual operating costs for irrigation systems and has five options that can be used to economically evaluate improvements in the pumping plant or the way the irrigation system is used for crop production.

  1. Growth and yield of cowpea/sunflower crop rotation under different irrigation management strategies with saline water

    Directory of Open Access Journals (Sweden)

    Antônia Leila Rocha Neves

    2015-05-01

    Full Text Available This study aimed to evaluate the effect of management strategies of irrigation with saline water on growth and yield of cowpea and sunflower in a crop rotation. The experiment was conducted in randomized blocks with thirteen treatments and five replications. The treatments consisted of: T1 (control, T2, T3 and T4 using water of 0.5 (A1, 2.2 (A2, 3.6 (A3 and 5.0 (A4 dS m-1, respectively, during the entire crop cycle; T5, T6 and T7, use of A2, A3 and A4 water, respectively, only in the flowering and fructification stage of the crop cycle; using different water in a cyclic way, six irrigations with A1 followed by six irrigations with A2 (T8, A3 (T9 and A4, (T10, respectively; T11, T12 and T13, using water A2, A3 and A4, respectively, starting at 11 days after planting (DAP and continuing until the end of the crop cycle. These treatments were employed in the first crop (cowpea, during the dry season, and the same plots were used for the cultivation of sunflower as succeeding crop during rainy season. The strategies of use of saline water in the salt tolerant growth stage (treatments T5, T6 and T7 or cyclically (treatments T8, T9 and T10 reduced the amount of good quality water used in the production of cowpea by 34 and 47%, respectively, without negative impacts on crop yield, and did not show the residual effects of salinity on sunflower as a succeeding crop. Thus, these strategies appear promising to be employed in areas with water salinity problems in the semiarid region of Brazil.

  2. Carbon dioxide emissions as affected by alternative long-term irrigation and tillage management practices in the lower Mississippi River Valley.

    Science.gov (United States)

    Smith, S F; Brye, K R

    2014-01-01

    Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV). As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years) effects of irrigation (i.e., irrigated and dryland production) and tillage (conventional and no-tillage) on estimated carbon dioxide (CO2) emissions from soil respiration during two soybean (Glycine max L.) growing seasons from a wheat- (Triticum aestivum L.-) soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2 fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2 emissions were unaffected by irrigation in 2011 (P > 0.05); however, during the unusually dry 2012 growing season, season-long CO2 emissions were 87.6% greater (P = 0.044) under irrigated (21.9 Mg CO2 ha(-1)) than under dryland management (11.7 Mg CO2 ha(-1)). Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2 emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability.

  3. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    Science.gov (United States)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  4. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    OpenAIRE

    Lihua Lv; Yanrong Yao; Lihua Zhang; Zhiqiang Dong; Xiuling Jia; Shuangbo Liang; Junjie Ji

    2013-01-01

    Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP). In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L.), grain yield (GY), yield components, and water use efficiency (WUE) were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, i...

  5. Water storage in wetted strips under irrigated coffee trees with different criteria of irrigation management Armazenamento de água em faixas molhadas sob cafeeiros irrigados com diferentes critérios de manejo de irrigação

    Directory of Open Access Journals (Sweden)

    Alberto Colombo

    2013-04-01

    Full Text Available The increasing demand for water resources accentuates the need to reduce water waste through a more appropriate irrigation management. In the particular case of irrigated coffee planting, which in recent years presented growth with the predominance of drip irrigation, the improvement of drip irrigation management techniques is a necessity. The proper management of drip irrigation depends on the knowledge of the spatial pattern of soil moisture distribution inside the wetted strip formed under the irrigation lines. In this study, grids of 24 tensiometers were used to determine the water storage within the wetted strip formed under drippers, with a 3.78 L h-1 discharge, evenly spaced by 0.4 m, subjected to two different management criteria (fixed irrigation interval and 60 kPa tension. Estimates of storage based on a one-dimensional analysis, that only considers depth variations, were compared with two-dimensional estimates. The results indicate that for high-frequency irrigation the one-dimensional analysis is not appropriate. However, under less frequent irrigation, the two-dimensional analysis is dispensable, being the one-dimensional sufficient for calculating the water volume stored in the wetted strip.A crescente demanda por recursos hídricos acentua a necessidade de redução do desperdício de água através de um manejo mais adequado da irrigação. No caso particular da cafeicultura irrigada, que nos últimos anos apresentou crescimento com predominância da irrigação por gotejamento, o aprimoramento das técnicas de manejo da irrigação por gotejamento é uma necessidade. O manejo adequado do gotejamento depende do conhecimento do padrão espacial de distribuição de umidade no interior da faixa molhada, formada sob as linhas de irrigação. Neste trabalho, foram utilizadas malhas de 24 tensiômetros para determinar o armazenamento de água no interior de faixas molhadas, formadas sob gotejadores, com vazão de 3,78 L h-1

  6. Adequate doctor - patient communication

    Directory of Open Access Journals (Sweden)

    Janković Slobodan

    2013-01-01

    Full Text Available Communication process gives to physician necessary information for establishing diagnosis and prescribing therapy, and helps to a patient to gain confidence in his doctor and the prescribed treatment. The communication between doctor and his patient is enhanced by the following: openness and conscientiousness of the physician, serious approach to the patient, participation of the patient in decision-making, advanced age and higher education of the patient. On the other hand, communication is less efficient if the doctor has longer employment status, if he/her avoids disclosure of all relevant information to the patient, if he/her is emotionally separated from the patient, if the time for an encounter is limited, if the patient is passive and with unrealistic expectations, and if the doctor is expressing himself/herself unclearly. In order to improve communication with patients, doctors should follow these recommendations: keeping eye contact with a patient, releasing tension from his/her body language, taking detailed patient history with active listening and without interrupting of a patient, speaking clearly and slowly, using language understandable to a patient, treating patients with equality, disclosing all relevant information to the patient and sharing decisionmaking with the patient. Adequate communication between doctor and patient always brings better treatment outcomes.

  7. Making ecological models adequate

    Science.gov (United States)

    Getz, Wayne M.; Marshall, Charles R.; Carlson, Colin J.; Giuggioli, Luca; Ryan, Sadie J.; Romañach, Stephanie; Boettiger, Carl; Chamberlain, Samuel D.; Larsen, Laurel; D'Odorico, Paolo; O'Sullivan, David

    2018-01-01

    Critical evaluation of the adequacy of ecological models is urgently needed to enhance their utility in developing theory and enabling environmental managers and policymakers to make informed decisions. Poorly supported management can have detrimental, costly or irreversible impacts on the environment and society. Here, we examine common issues in ecological modelling and suggest criteria for improving modelling frameworks. An appropriate level of process description is crucial to constructing the best possible model, given the available data and understanding of ecological structures. Model details unsupported by data typically lead to over parameterisation and poor model performance. Conversely, a lack of mechanistic details may limit a model's ability to predict ecological systems’ responses to management. Ecological studies that employ models should follow a set of model adequacy assessment protocols that include: asking a series of critical questions regarding state and control variable selection, the determinacy of data, and the sensitivity and validity of analyses. We also need to improve model elaboration, refinement and coarse graining procedures to better understand the relevancy and adequacy of our models and the role they play in advancing theory, improving hind and forecasting, and enabling problem solving and management.

  8. Cokriging of Electromagnetic Induction Soil Electrical Conductivity Measurements and Soil Textural Properties to Demarcate Sub-field Management Zones for Precision Irrigation.

    Science.gov (United States)

    Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.

    2017-12-01

    There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each

  9. Water-right and water-allocation procedures of farmers' managed perennial spate irrigation systems of mithawan watershed, D.G. Khan, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Ahmad, S.

    2007-01-01

    A study was conducted on water rights, water allocation and local institutions prevailing in the perennial spate irrigation systems of Mithawan watershed o D.G. Khan District of Punjab. The Study Area was selected is the Mthawan watershed on the D.G. Khan-Quetta Road almost 70 kms from D.G. Khan and 10 km away from the road, representing real-life operating systems. Small-scale isolated and large-scale contiguous perennial spate irrigation systems were selected for study. A three-prong methodology was designed covering (a) interactive dialogue of the focus groups to document the community-perceptions regarding systems water-rights, water allocation and local institution prevailing in the area; (b) structured interviews to document systematic data regarding some of the study-aspects; and (c) diagnostic surveys to document some of the measured data regarding scheme performance. Water rights and allocation procedures both in small-scale isolated and large-scale Contiguous perennial spate irrigation-system are very clearly defined and do not change with time and space. Local institutions like Biradri and Muchi take care of just allocation of water. An irrigator is deputed who takes care of allocated time among various tribes. At the same time, the community is bringing more area under irrigation. Obviously it has increased water-requirements and in turn management of irrigation system. Previously they were reconstructing the diversion structure only. Present expansion in irrigated area has increased the necessity of maintaining the water-conveyance network more frequently, particularly at critical sections. However, the realization regarding water-losses still needs to be promoted. The linkages of resource-management with water-productivity are going to be the future area of consideration in theses systems, due to expansion of the system largely because of increased population and urge to increase their livelihood. (author)

  10. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching

    Science.gov (United States)

    Phogat, V.; Skewes, M. A.; Cox, J. W.; Sanderson, G.; Alam, J.; Šimůnek, J.

    2014-05-01

    and to reduce their leaching out of the crop root zone. Slightly higher nitrogen uptake (1.73 kg ha-1) was recorded when fertigation was applied second to last hour in an irrigation event, as compared to applying it earlier during an irrigation event. Similarly, a 20% reduction in irrigation and N application produced a pronounced reduction in drainage (28%) and N leaching (46.4%), but it also decreased plant N uptake by 15.8% and water uptake by 4.8%, and increased salinity by 25.8%, as compared to the normal practice. This management would adversely impact the sustainability of this expensive irrigation system. However, reducing only irrigation by 30% during the 2nd half of the crop season (January to August) reduced drainage and N leaching by 37.2% and 50.5%, respectively, and increased N uptake by 6.9%. Such management of irrigation would be quite promising for the sustainability of the entire system. It is concluded that judicious manipulations of irrigation and fertilizer applications can be helpful in designing drip irrigation schedules for perennial horticultural crops to achieve improved efficiency of irrigation and fertigation applications and reduced contamination of receiving water bodies.

  11. Solubility and leaching risks of organic carbon in paddy soils as affected by irrigation managements.

    Science.gov (United States)

    Xu, Junzeng; Yang, Shihong; Peng, Shizhang; Wei, Qi; Gao, Xiaoli

    2013-01-01

    Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha⁻¹, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants.

  12. Use of Clay Deposits in Water Management of Calcareous Sandy Soils Under-surface and Sub-surface Drip Irrigation

    International Nuclear Information System (INIS)

    Al-Omran, A.; Falatah, A.; Sheta, A.; Al-Harbi, A.

    2006-01-01

    The objective of this study was to investigate the effect of irrigation (levels and methods) and type of clay deposits on lettuce yield, water use efficiency WUE and the distributions of soil moisture and salts in the root zone of sandy calcareous soils. A field experiment was conducted at the college experimental station in 2002-2003. It consists of three clay deposits, three rates (0, 1.0 and 2.0%), and four total irrigation applied water levels, 360 mm (T1), 520 mm (T2), 635 mm (T3) and 822 mm (T4), using surface and subsurface drip irrigation. Results indicated that yield was significantly increased with the increase of irrigation level, whereas WUE significantly decreased with increase of irrigation level. The average yield increased by 9.30% in a high irrigation level compared to a moderate irrigation level, and decreased by 14.2% at the more stressed irrigation level. WUE decreased by 49.0% at a moderate irrigation level and yield was significantly affected by amendment rates. The difference between surface and subsurface drip on yields and WUE were also significant. Results indicated that the moisture content of the subsurface treated layer increased dramatically, while salts were accumulated at the surface and away from the emitters in subsurface drip irrigation. The advantages of surface drip irrigation were related to the relative decrease in salt accumulation in the root zone area where the plant roots were active and the water content was relatively high. (author)

  13. Integrated water resources management (IWRM) approach in water governance in Lao PDR. Cases of hydropower and irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jusi, S.

    2013-06-01

    Water resources are essential for socio-economic development, enabling, for example, hydropower and irrigation. Water resources management and development are expected to become more complex and challenging and to involve new uncertainties as water development increases and accelerates in different water use sectors and is coupled with increasing population, urbanisation, and climate change. Hence, water resources need to be managed in more integrated and sustainable way, both in Lao PDR and in the whole Mekong Basin area. Integrated Water Resources Management (IWRM) has become a universal paradigm of enhancing and promoting sustainable and equal water resources management and use. However, integrating water functions is a very complex task as it involves many actors with different interests. This research analyses the application of the IWRM approach and the related principles of integration, decentralisation, and participation in the development and management of water resources in Laotian water regime at the water use sectors of hydropower and irrigation. A case study approach was used for the research and for the four appended articles in order to examine hydropower and irrigation sectors, institutional structures, and processes of institutional change - Integrated Water Resources Management (IWRM) at constitutional, organisational, and operational levels. The constitutional level refers to water policy and law, organisational to water resource management, and operational to water use. The Management and Transition Framework (MTF) and one of its components, Institutional Analysis and Development (IAD) framework, have been used for the research to explore processes, institutions, and actors related to water governance reforms including the adoption of the IWRM paradigm, and to increase understanding of the strengths and weaknesses related to different institutional contexts and levels in Laotian water management. Through Action Situations, IAD and MTF have

  14. Best Practice Irrigation Management and Extension in Peri-Urban Landscapes--Experiences and Insights from the Hawkesbury-Nepean Catchment, Australia

    Science.gov (United States)

    Maheshwari, B. L.; Plunkett, M.

    2015-01-01

    Purpose: The aim of this article to examine key irrigation management issues and their implications for future research and extension developments. Design/Methodology/Approach: Peri-urban landscapes are important as they supply fresh fruit, vegetables, turf, ornamental plants and other farm products to the cities. In this study, the…

  15. An Update on the Management of Endodontic Biofilms Using Root Canal Irrigants and Medicaments

    Science.gov (United States)

    Mohammadi, Zahed; Soltani, Mohammad Karim; Shalavi, Sousan

    2014-01-01

    Microbial biofilm is defined as a sessile multicellular microbial community characterized by cells that are firmly attached to a surface and enmeshed in a self-produced matrix of extracellular polymeric substances. Biofilms play a very important role in pulp and periradicular pathosis. The aim of this article was to review the role of endodontic biofilms and the effects of root canal irrigants, medicaments as well as lasers on biofilms A Medline search was performed on the English articles published from 1982 to 2013 and was limited to papers published in English. The searched keywords were “Biofilms AND endodontics”, “Biofilms AND sodium hypochlorite”, "Biofilms AND chlorhexidine", "Biofilms AND MTAD", "Biofilms AND calcium hydroxide", “Biofilms AND ozone”, “Biofilms AND lasers” and "Biofilms AND nanoparticles". The reference list of each article was manually searched to find other suitable sources of information. PMID:24688576

  16. Sawdust and Bark-Based Substrates for Soilless Strawberry Production: Irrigation and Electrical Conductivity Management.

    Science.gov (United States)

    Depardieu, Claire; Prémont, Valérie; Boily, Carole; Caron, Jean

    2016-01-01

    The objective of this work was to optimize a soilless growing system for producing bare-root strawberry transplants in three organic substrates. Three trials were conducted in the Quebec City area to determine the productivity potential of a peat-sawdust mixture (PS25) and an aged bark (AB) material compared to conventional coconut fiber (CF) substrate. A first experiment was carried out to define appropriate irrigation set points for each substrate that allowed optimal plant growth and fruit yields. For all substrates, wetter conditions (irrigation started at -1.0 kPa for CF; -1.5 kPa for AB and PS25, relative to -1.5 kPa for CF; -2.5 kPa for AB and PS25) enhanced plant growth and fruit production. The second trial was carried out to test the productivity potential for commercial production of the three substrates using high-tunnels. After the addition of an initial fertilizer application to PS25, we successfully established bare-root plants that gave similar fruit yields than those in CF and AB. The productivity potential of PS25 and AB were further confirmed during a third trial under greenhouse conditions. The critical factor for plant establishment in PS25 was attributed to consistent N, P and S immobilization by microorganisms, as well as the retention of other elements (Mg2+, K+) in the growth media. Taken together, our results showed that PS25 and AB are promising alternative substrates to coconut coir dust for strawberry cultivation. This paper also provides a useful guide for strawberry cultivation in Quebec, and suggests future research that might be conducted to optimize soilless systems for cold-climate strawberry production in Northern America.

  17. The strategies of local farmers' water management and the eco-hydrological effects of irrigation-drainage engineering systems in world heritage of Honghe Hani Rice Terraces

    Science.gov (United States)

    Gao, Xuan

    2017-04-01

    Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally

  18. A new concept of irrigation response units for effective management of surface and groundwater resources: a case study from the multi-country Fergana Valley, Central Asia

    KAUST Repository

    Awan, Usman Khalid

    2016-09-09

    When estimating canal water supplies for large-scale irrigation schemes and especially in arid regions worldwide, the impact of all factors affecting the gross irrigation requirements (GIR) are not properly accounted for, which results in inefficient use of precious freshwater resources. This research shows that the concept of irrigation response units (IRU)—areas having unique combinations of factors effecting the GIR—allows for more precise estimates of GIR. An overlay analysis of soil texture and salinity, depth and salinity of groundwater, cropping patterns and irrigation methods was performed in a GIS environment, which yielded a total of 17 IRUs combinations of the Oktepa Zilol Chashmasi water consumers’ association in multi-country Fergana Valley, Central Asia. Groundwater contribution, leaching requirements, losses in the irrigation system through field application and conveyance and effective rainfall were included in GIR estimates. The GIR varied significantly among IRUs [average of 851 mm (±143 mm)] with a maximum (1051 mm) in IRU-12 and a minimum (629 mm) in IRUs-15, 16. Owing to varying groundwater levels in each IRU, the groundwater contribution played a key role in the estimation of the GIR. The maximum groundwater contribution occurred in IRUs dominated by cotton–fallow rotations as evidenced by an average value of 159 mm but a maximum of 254 mm and a minimum of 97 mm. Percolation losses depended on irrigation methods for different crops in their respective IRUs. The novel approach can guide water managers in this and similar regions to increase the accuracy of irrigation demands based on all the factor effecting the GIR. © 2016 Springer-Verlag Berlin Heidelberg

  19. Evapotranspiration measurements in rainfed and irrigated cropland illustrate trade-offs in land and water management in Southern Amazonia's agricultural frontier

    Science.gov (United States)

    Lathuilliere, M. J.; Dalmagro, H. J.; Black, T. A.; Arruda, P. H. Z. D.; Hawthorne, I.; Couto, E. G.; Johnson, M. S.

    2017-12-01

    Southern Amazonia, Brazil, is home to a rapidly expanding agricultural frontier in which tropical forest and savanna landscapes have been increasingly replaced by agricultural land since the 1990s. One important impact of deforestation is the reduction in water vapour transferred to the atmosphere via evapotranspiration (ET) from rainfed agriculture landscapes compared to natural vegetation, leading to a reduction in regional precipitation recycling. Here, we discuss land and water management choices for future agricultural production in Southern Amazonia and their potential effects on the atmospheric water cycle. We illustrate these choices by presenting ET measurements on an agricultural landscape by eddy covariance (EC) between September 2015 and February 2017. Measurements were made for two fields adjacent to one micrometeorological EC tower: (1) one rainfed field containing a succession of soybean, maize, brachiara and soybean, and (2) one irrigated field with a succession of soybean, rice, beans, and soybean. Over the time period, total ET in the rainfed and irrigated fields was 1266 ± 294 mm and 1415 ± 180 mm, respectively for a total precipitation of 3099 mm. The main difference in ET between the fields was attributed to the application of 118 mm of surface water irrigated for bean production in the irrigated field between June and September 2016. In the rainfed field, soybean ET was 332 ± 82 mm (2015-2016) and 423 ± 99 mm (2016-2017) for 824 mm and 1124 mm of precipitation, respectively. In the irrigated field, soybean ET was 271 ± 38 mm (2015) and 404 ± 60 mm (2016-2017) with supplemental irrigation added in 2015. Our results illustrate how supplemental irrigation can favour early soybean planting while transferring additional water vapour to the atmosphere at levels similar to natural vegetation. We conclude by discussing our results in the context of future land and water trade-offs for agricultural intensification in Brazil's "arc-of-deforestation".

  20. Calibration and validation of the STICS crop model for managing wheat irrigation in the semi-arid Marrakech/Al-Haouz Plain

    International Nuclear Information System (INIS)

    Hadria, R.; Khabba, S.; Lahrouni, A.; Duchemin, B.; Chehbouni, A.; Carriou, J.; Ouzine, L.

    2007-01-01

    In the first part of this work, we shoot growth module and grain yield of the STICS crop model were calibrated and validated by using field data which was collected from irrigated winter wheat fields in the Haouz plain near Marrakech. The calibration was performed on the thermal units between the four phonological stages that control the dynamics of leaf area index and thermal unit between emergence and beginning of grain filling. The plant phenology was calibrated for three fields monitored during the 2002/03 season. Evaluation of the green yields and the temporal evolution of leaf area index were done for six validation fields during 2003/04. The results showed the significant accuracy of the model in simulating these variables and also indicated that the plants mainly suffered from lack of nitrogen. The results in the second part show the potential of crop modeling to schedule irrigation water, on the assumption that the plants were growing under optimal conditions of fertilization. In this case, the model was used to manage the time of irrigation according to a threshold for water deficit. Various simulations displayed logical trends in the relationship between the grain yield and both the amount and timing of irrigation water. These results were finally compared with those obtained from real irrigation practices. For the particular climate pf 2003/04, the comparison showed that 70mm 40 mm of water could be saved in case of early and late showing, respectively. (author)

  1. Manejo da irrigação em pastagem irrigada por pivô-central Irrigated pasture: water management under center pivot irrigation

    Directory of Open Access Journals (Sweden)

    Alexandre C. Xavier

    2004-12-01

    Full Text Available A aplicação de lâminas de irrigação em pastagem irrigada sob pivô-central é, de maneira geral, realizada sem um critério técnico pertinente ao sistema, pois se deve considerar que para um mesmo período a pastagem se encontra em diferentes estádios de desenvolvimento em cada parcela, apresentando taxas de evapotranspiração diferenciadas dentro da área irrigada; todavia, usualmente se aplica uma única lâmina para toda a área. Neste trabalho foi desenvolvido um modelo para aplicação de lâminas de irrigação distinta para cada parcela do pivô o qual, de modo geral, considera: i a capacidade do pivô-central de aplicar lâminas distintas na área; ii o nível de desenvolvimento da cultura em cada parcela; iii o período de retorno do gado a determinada parcela (ciclo de pastejo; e iv o potencial de desenvolvimento da pastagem de certa região. Para modelar o coeficiente de cultura (Kc foram utilizadas duas metodologias, a primeira com taxa de variação do Kc constante com o número de dias em que a parcela está em descanso (k, e a segunda, com taxa de variação do Kc na forma senoidal com k. O modelo foi aplicado para pastagens hipotéticas nas regiões de Piracicaba e Pereira Barreto, para avaliação e, como resultado, observou-se que o modelo se mostrou sensível ao nível de desenvolvimento de cada parcela e às condições de variação do clima de cada região.The application of irrigation depths in irrigated pasture under center pivot machines, in a general way, is accomplished without a pertinent technical criterion, because it should be considered that for any time period, the pasture plots are at different development stages (rotary pasture, presenting different evapotranspiration rates inside the irrigated area. Furthermore, farmers usually apply a single irrigation depth for the whole area. In this study a model was developed for the application of different irrigation depths in each portion of the pivot (pizza

  2. Management of Water and Fertilizer Consumption Using Bio-Economic Approach: A Case Study of Irrigation and Drainage Dorudzan

    International Nuclear Information System (INIS)

    Sheikhzeinoddin, A.; Esmaeili, A.; Zibaei, M.

    2016-01-01

    Today keep increasing the use of chemical fertilizer and water is an effort to improve yield, while overuse of fertilizer is making formerly arable land unusable but led to degrading the quality of water and serious problems for environmental. Hence, for accurate management, we require comprehensive and complete information on the economic and environmental impacts of different management methods. So, by using SWAT model were simulated the economic and environmental effects of each management strategies. Then, mathematical programming was used to determine the optimal cropping pattern subject to resources and environmental constraints in irrigation and Drainage Dorudzan. Based on the findings of this study, we can improve the economic and environmental benefits by moving from current status to economic or bio-economic pattern. Also, by moving from economic pattern to bio-economic pattern, 0.31 percent reduction of economic benefit is leading to improve nitrogen losses by 6.58 percent. In other words, we incur the cost equal to 64.5 thousand rials for reduction per kg nitrogen losses.

  3. Irrigation mitigates against heat extremes

    Science.gov (United States)

    Thiery, Wim; Fischer, Erich; Visser, Auke; Hirsch, Annette L.; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2017-04-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use gridded observations and ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on hot extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Finally we find that present-day irrigation is partly masking GHG-induced warming of extreme temperatures, with particularly strong effects in South Asia. Our results overall underline that irrigation substantially reduces our exposure to hot temperature extremes and highlight the need to account for irrigation in future climate projections.

  4. Dimensioning the Irrigation Variables for Table Grape Vineyards in Litho-soils

    Directory of Open Access Journals (Sweden)

    Pasquale Campi

    2010-10-01

    Full Text Available The pedo-climatic and farm characteristics of Bari’s hinterland have allowed for the diffusion of prestigious table viticulture. The typical “tendone” vineyard structure is set up after managing the surface of the soil. The karstic nature of the region and the thermo-rainfall trend during the vegetative season impede the vineyard from producing adequately without irrigation. Given the importance of water contributions to table grapes, it is necessary to correctly measure the water variables for economic and environmental reasons. Farmers often irrigate according to “fixed” turns and volumes, against the rules of “good irrigation practice” which consider monitoring the water status of the soil or plant as a prerequisite of irrigation scheduling. During this experiment, two methods of irrigation management were compared: “fixed-turn” and “on demand”. For “on demand” irrigation, the irrigation volume is calculated on the basis of the soil water status (estimated according to the “water balance” method described in the “Paper n. 56 FAO” and the irrigation is scheduled on the basis of the experimental relationship between “pre-dawn” leaf water potential and the water available in the soil. For this comparison, data from a 2-year “on farm” experimentation, in an area typical of table grape cultivation in Southern Italy, have been used. The results obtained show that, in respect to the “fixed-turn” management, the “on demand” management allows for a 20% reduction in water volumes, without compromising production. The water balance method proved to be a promising criterion for irrigation scheduling in these shallow soils, rich in stones (litho-soils. This only held true when the depth of the soil layer explored by the root system was defined by the “equivalent depth” and not by the actual soil’s depth.

  5. Groundwater Dynamics under Water Saving Irrigation and Implications for Sustainable Water Management in an Oasis: Tarim River Basin of Western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-02-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of socio-economy and sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between unsaturated vadose zone and groundwater reservoir is a critical link to understand regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In Tarim River Basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux is influenced strongly by irrigation. Recently, mulched drip irrigation, a very advanced water-saving irrigation method, has been widely applied in the Tarim River Basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gain a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2011 and 2012 in a typical oasis within Tarim River Basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux is mostly downward (310.5 mm yr-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (-16.1 mm yr-1) due to the moderate groundwater table depth (annual average depth 2.9 m). Traditional secondary salinization caused by intense phreatic

  6. Parametric sensitivity analysis of an agro-economic model of management of irrigation water

    Science.gov (United States)

    El Ouadi, Ihssan; Ouazar, Driss; El Menyari, Younesse

    2015-04-01

    The current work aims to build an analysis and decision support tool for policy options concerning the optimal allocation of water resources, while allowing a better reflection on the issue of valuation of water by the agricultural sector in particular. Thus, a model disaggregated by farm type was developed for the rural town of Ait Ben Yacoub located in the east Morocco. This model integrates economic, agronomic and hydraulic data and simulates agricultural gross margin across in this area taking into consideration changes in public policy and climatic conditions, taking into account the competition for collective resources. To identify the model input parameters that influence over the results of the model, a parametric sensitivity analysis is performed by the "One-Factor-At-A-Time" approach within the "Screening Designs" method. Preliminary results of this analysis show that among the 10 parameters analyzed, 6 parameters affect significantly the objective function of the model, it is in order of influence: i) Coefficient of crop yield response to water, ii) Average daily gain in weight of livestock, iii) Exchange of livestock reproduction, iv) maximum yield of crops, v) Supply of irrigation water and vi) precipitation. These 6 parameters register sensitivity indexes ranging between 0.22 and 1.28. Those results show high uncertainties on these parameters that can dramatically skew the results of the model or the need to pay particular attention to their estimates. Keywords: water, agriculture, modeling, optimal allocation, parametric sensitivity analysis, Screening Designs, One-Factor-At-A-Time, agricultural policy, climate change.

  7. 29 CFR 452.110 - Adequate safeguards.

    Science.gov (United States)

    2010-07-01

    ... required to be included in the union's constitution and bylaws, but they must be observed. A labor... 29 Labor 2 2010-07-01 2010-07-01 false Adequate safeguards. 452.110 Section 452.110 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT...

  8. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  9. The role of stakeholders in Murray-Darling Basin water management: How do irrigators make water use decisions and how can this influence water policy?

    Science.gov (United States)

    Douglas, E. M.; Wheeler, S. A.; Smith, D. J.; Gray, S.; Overton, I. C.; Crossman, N. D.; Doody, T.

    2014-12-01

    Water stress and overallocation are at the forefront of water management and policy challenges in Australia, especially in the Murray Darling Basin (MDB). Farmland within the MDB generates 40 percent of Australia's total agricultural production and utilizes 60 percent of all irrigation water withdrawn nationally. The Murray Darling Basin Plan, drafted in 2008 and enacted in November 2012, has at its core the establishment of environmentally sustainable diversion limits based on a threshold of water extraction which, if exceeded, would cause harm to key environmental assets in the MDB. The overall goal of the Plan is to balance economic, social and environmental outcomes within the Basin. Because irrigated agriculture is the major water user in the MDB, it is important to understand the factors that influence irrigation water use. We applied a mental modeling approach to assessing farmer water use decisions. The approach allowed us to solicit and document farmer insights into the multifaceted nature of irrigation water use decisions in the MDB. Following are a few insights gained from the workshops: 1) For both environmental and economic reasons, irrigators in the MDB have become experts in water use and water efficiency. Water managers and government officials could benefit by partnering with farmers and incorporating this expertise into water management decisions. 2) Irrigators in the MDB may have been misperceived when it comes to accepting policy change. Many, if not most, of the farmers we talked to understood the need for, or at least the inevitability of, governmental policies and regulations. But a lack of accountability and predictability has added to the uncertainty in farming decisions. 3) Irrigators in the MDB subscribe to the concept of environmental sustainability, although they might not always agree with how the concept is implemented. Farmers should be recognized for their significant investments in the long-term sustainability of their farms and

  10. Acute wound management: revisiting the approach to assessment, irrigation, and closure considerations

    OpenAIRE

    Nicks, Bret A.; Ayello, Elizabeth A.; Woo, Kevin; Nitzki-George, Diane; Sibbald, R. Gary

    2010-01-01

    Background As millions of emergency department (ED) visits each year include wound care, emergency care providers must remain experts in acute wound management. The variety of acute wounds presenting to the ED challenge the physician to select the most appropriate management to facilitate healing. A complete wound history along with anatomic and specific medical considerations for each patient provides the basis of decision making for wound management. It is essential to apply an evidence‐bas...

  11. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    Science.gov (United States)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites

  12. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  13. Where indigenous water management practices overcome failures of structures: The Wadi Laba spate irrigation system in Eritrea

    NARCIS (Netherlands)

    Mehari, A.H.; Schultz, E.; Depeweg, H.

    2005-01-01

    The only source of irrigation water in the Wadi Laba (ephemeral stream) spate irrigation system is the flood, which is highly unpredictable in occurrence and amount. It frequently damages the brushwood and indigenous earthen structures, locally known as agims and musghas, making (re)construction and

  14. Acute wound management: revisiting the approach to assessment, irrigation, and closure considerations.

    Science.gov (United States)

    Nicks, Bret A; Ayello, Elizabeth A; Woo, Kevin; Nitzki-George, Diane; Sibbald, R Gary

    2010-08-27

    As millions of emergency department (ED) visits each year include wound care, emergency care providers must remain experts in acute wound management. The variety of acute wounds presenting to the ED challenge the physician to select the most appropriate management to facilitate healing. A complete wound history along with anatomic and specific medical considerations for each patient provides the basis of decision making for wound management. It is essential to apply an evidence-based approach and consider each wound individually in order to create the optimal conditions for wound healing. A comprehensive evidence-based approach to acute wound management is an essential skill set for any emergency physician or acute care practitioner. This review provides an overview of current evidence and addresses frequent pitfalls. A systematic review of the literature for acute wound management was performed. A structured MEDLINE search was performed regarding acute wound management including established wound care guidelines. The data obtained provided the framework for evidence-based recommendations and current best practices for wound care. Acute wound management varies based on the wound location and characteristics. No single approach can be applied to all wounds; however, a systematic approach to acute wound care integrated with current best practices provides the framework for exceptional wound management.

  15. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  16. Effects of Seven Different Irrigation Techniques on Debris and the ...

    African Journals Online (AJOL)

    2015-09-19

    Sep 19, 2015 ... and manual irrigation. In addition, machine (CanalBrush;. Coltène/Whaledent,. Langenau, ..... the optimal volume,[4,23] time of application,[24,25] or the activation method to use with irrigating solutions. .... Adequate irrigant replacement is prevented in a closed system because of a “dead-water zone” in.

  17. Resposta das culturas do girassol e do milho a diferentes cenários de rega deficitária Deficit irrigation as a criterion for irrigation water management with sunflower and maize crops

    Directory of Open Access Journals (Sweden)

    C. M. Toureiro

    2007-01-01

    the water use optimisation from an environmental point of view. This means that the decision criterion in irrigation management is “deficit irrigation”, rather than maximum ETc as the irrigation water amount. Some experiments with “deficit irrigation” of a sunflower crop (in 2004 irrigation season and maize (in 2005 were carried out in the Irrigation District of Divor (Alentejo, South Portugal. Crop growth and production parameters were evaluated relative to three experimental irrigation regimes: 1 irrigation opportunity and amount with soil available water equalling “optimum yield level”, this corresponding to a non restrictive water use by the crop, according to current procedure, irrigation amount corresponding to maximum ETc; 2 and 3 levels 1 and 2 of deficit irrigation, considering irrigation opportunity with soil available water respectively 10% and 30% under the “optimum yield level” and irrigation amounts 10% and 30% less than ETc between irrigation events. During the flowering periods normal irrigation for full ETc was practiced in all experiment plots. Crop yield data and the economic analysis show that a remarkable potential exists for saving water with “deficit irrigation”.

  18. Assisting community management of groundwater: Irrigator attitudes in two watersheds in Rajasthan and Gujarat, India

    Science.gov (United States)

    Varua, M. E.; Ward, J.; Maheshwari, B.; Oza, S.; Purohit, R.; Hakimuddin; Chinnasamy, P.

    2016-06-01

    The absence of either state regulations or markets to coordinate the operation of individual wells has focussed attention on community level institutions as the primary loci for sustainable groundwater management in Rajasthan and Gujarat, India. The reported research relied on theoretical propositions that livelihood strategies, groundwater management and the propensity to cooperate are associated with the attitudinal orientations of well owners in the Meghraj and Dharta watersheds, located in Gujarat and Rajasthan respectively. The research tested the hypothesis that attitudes to groundwater management and farming practices, household income and trust levels of assisting agencies were not consistent across the watersheds, implying that a targeted approach, in contrast to default uniform programs, would assist communities craft rules to manage groundwater across multiple hydro-geological settings. Hierarchical cluster analysis of attitudes held by survey respondents revealed four statistically significant discrete clusters, supporting acceptance of the hypothesis. Further analyses revealed significant differences in farming practices, household wealth and willingness to adapt across the four groundwater management clusters. In conclusion, the need to account for attitudinal diversity is highlighted and a framework to guide the specific design of processes to assist communities craft coordinating instruments to sustainably manage local aquifers described.

  19. Effect of land management on soil properties in flood irrigated citrus orchards in Eastern Spain

    Science.gov (United States)

    Morugán-Coronado, A.; García-Orenes, F.; Cerdà, A.

    2015-01-01

    Agricultural land management greatly affects soil properties. Microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. Citrus orchards frequently have degraded soils and this paper evaluates how land management in citrus orchards can improve soil quality. A field experiment was performed in an orchard of orange trees (Citrus Sinensis) in the Alcoleja Experimental Station (Eastern Spain) with clay-loam agricultural soils to assess the long-term effects of herbicides with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (P) and organic farming (O) on the soil microbial properties, and to study the relationship between them. Nine soil samples were taken from each agricultural management plot. In all the samples the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic matter, total nitrogen, available phosphorus, available potassium, aggregate stability, cation exchange capacity, pH, texture, macronutrients (Na, Ca and Mg), micronutrients (Fe, Mn, Zn and Cu), calcium carbonate equivalent, calcium carbonate content of limestone and enzimatic activities (urease, dehydrogenase, β-glucosidase and acid phosphatase) were determined. The results showed a substantial level of differentiation in the microbial properties, which were highly associated with soil organic matter content. The management practices including herbicides and intensive ploughing had similar results on microbial soil properties. O management contributed to an increase in the soil biology quality, aggregate stability and organic matter content.

  20. Saline nasal irrigation for upper respiratory conditions.

    Science.gov (United States)

    Rabago, David; Zgierska, Aleksandra

    2009-11-15

    Saline nasal irrigation is an adjunctive therapy for upper respiratory conditions that bathes the nasal cavity with spray or liquid saline. Nasal irrigation with liquid saline is used to manage symptoms associated with chronic rhinosinusitis. Less conclusive evidence supports the use of spray and liquid saline nasal irrigation to manage symptoms of mild to moderate allergic rhinitis and acute upper respiratory tract infections. Consensus guidelines recommend saline nasal irrigation as a treatment for a variety of other conditions, including rhinitis of pregnancy and acute rhinosinusitis. Saline nasal irrigation appears safe, with no reported serious adverse events. Minor adverse effects can be avoided with technique modification and salinity adjustment.

  1. Effects of Irrigation Regime and Nitrogen Fertilizer Management on CH4, N2O and CO2 Emissions from Saline–Alkaline Paddy Fields in Northeast China

    Directory of Open Access Journals (Sweden)

    Jie Tang

    2018-02-01

    Full Text Available Irrigation regime and fertilizer nitrogen (N are considered as the most effective agricultural management systems to mitigate greenhouse gas (GHG emissions from crop fields, but few studies have involved saline–alkaline paddy soil. Gas emitted from saline–alkaline paddy fields (1-year-old and 57-year-old was collected during rice growing seasons by the closed chamber method. Compared to continuous flooding irrigation, lower average CH4 flux (by 22.81% and 23.62%, but higher CO2 flux (by 24.84% and 32.39% was observed from intermittent irrigation fields. No significant differences of N2O flux were detected. Application rates of N fertilizer were as follows: (1 No N (N0; (2 60 kg ha−1 (N60; (3 150 kg ha−1 (N150; and (4 250 kg ha−1 (N250. The cumulative emissions of GHG and N fertilizer additions have positive correlation, and the largest emission was detected at the rate of 250 kg N ha−1 (N250. Global warming potential (GWP, CH4 + N2O + CO2 of the 57-year-old field under the N250 treatment was up to 4549 ± 296 g CO2-eq m−2, approximately 1.5-fold that of N0 (no N application. In summary, the results suggest that intermittent irrigation would be a better regime to weaken the combined GWP of CH4 and N2O, but N fertilizer contributed positively to the GWP.

  2. Are high generalised and asthma-specific self-efficacy predictive of adequate self-management behaviour among adult asthma patients?

    NARCIS (Netherlands)

    Seydel, E.R.; van der Palen, Job; Klein, Jakob J.; Klein, J.J.; van der Palen, J.

    1997-01-01

    In asthma self-management training, often self-treatment guidelines are included, because increased knowledge of asthma alone is not sufficient to change behaviour. One way to achieve behavioural changes is by increasing the patient's general and asthma-specific self-efficacy expectancies. This

  3. Proper Management Of Irrigation Water And Nitrogen Fertilizer To Improve Spinach Yield And Reserve Environment Using 15N Tracer Technique

    International Nuclear Information System (INIS)

    GADALLA, A.M.; GALAL, Y.G.M.; ISMAIL, M.M.; EL DEGWY, S.A.; HAMDY, A.; HAMED, L.M.

    2010-01-01

    The effect of water regime and N-fertilizer application rate and modality of its application were studied by the aim of identifying the most proper and effective combination of the above studied variables that provide a satisfactory spinach yield as well as to minimize the rational use of chemical nitrogen fertilizers to save the surrounding environment and to achieve a good water saving. The results indicated that reasonable production of spinach crop could be achieved by using 75% of the recommended rate of nitrogen fertilizer combined with 80% of the required water. It means that 20% of the required water could be saved as well as 25% of the required quantity of N-fertilizer. Similarly, the splitting of N-fertilizer into two equal doses prevented the excess of nitrate to be moved to the underground water lowering its concentration in the blades and plant leaves. Drip irrigation system accompanied with proper water scheduling regime and good fertilizer application practices is considered as a useful management practice that could be applied to improve the sandy soil productivity.

  4. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM

    OpenAIRE

    Balwinder-Singh,; Humphreys, E.; Gaydon, D.S.; Eberbach, P.L.

    2016-01-01

    Machinery for sowing wheat directly into rice residues has become more common in the rice-wheat systems of the north-west Indo-Gangetic Plains of South Asia, with increasing numbers of farmers now potentially able to access the benefits of residue retention. However, surface residue retention affects soil water and temperature dynamics, thus the optimum sowing date and irrigation management for a mulched crop may vary from those of a traditional non-mulched crop. Furthermore, the effects of s...

  5. Evaluation of evapotranspiration estimates derived using satellite remote sensing for irrigation management in California vineyards

    Science.gov (United States)

    Water management is a critical aspect of successful grape production in California’s Central Valley, which represents nearly 1 million acres of grape production valued at approximately 6 billion dollars. Despite competing water use interest and a reduction in water availability over much of Californ...

  6. Organic Highbush Blueberry Production Systems Research – Management of Plant Nutrition, Irrigation Requirements, and Weeds

    Science.gov (United States)

    A 0.4 ha planting of blueberry was established in October 2006 to evaluate the effects of cultivar (Duke and Liberty), bed type (flat versus raised beds), weed management (sawdust mulch and hand-weed control; sawdust+compost mulch with acetic acid, flaming, and hand control used as needed; and weed ...

  7. Organic blueberry production systems: management of plant nutrition, irrigation requirements, and weeds

    Science.gov (United States)

    A long-term systems trial was established to evaluate management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The factorial experiment included two planting bed treatments (flat and raised beds), source and rate of fertilizer (feather meal and fish emuls...

  8. Comparison of Decision Rules for Subsurface Drip Irrigation Practices Using a Nonlinear Mathematical Programming Model

    OpenAIRE

    Salim, Juma K.; Dillon, Carl R.; Saghaian, Sayed H.; Kanakasabai, Murali

    2005-01-01

    A comparison of decision rules has been made for case studies of corn production using subsurface drip irrigation under three agricultural management practices (no irrigation, uniform irrigation, and variable rate irrigation). The uniform irrigation strategy appeared to perform the best than the other two management practices under different risk scenarios.

  9. Sprinkler irrigation as an energy- and water-saving approach to rice production and management of riceland pests. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    McCauley, G.N.; Hossner, L.R.; Nesmith, D.M.

    1985-03-01

    Rice is currently produced on about 400,000 acres in the Texas Coastal Prairie and uses 1.8 million acre-feet of water or 13% of Texas renewable water resources. The Texas Coastal Prairie has been experiencing rapid population and industrial growth with increased demands on the area water. Continued rice production will require water-conservation practices. This research evaluated the potential water conservation of sprinkler-irrigated rice production as related to potential production of commercial cultuvars with various moisture stress levels, the sprinkler irrigation adaptability of 10 major soil series, and increased infiltration by adjuvants. Highest yielding cultivars under flood irrigation were also the highest yielding with sprinkler irrigation.

  10. Reform in Indian canal irrigation: does technology matter?

    NARCIS (Netherlands)

    Narain, V.

    2008-01-01

    This paper examines the implications of technology - the design of canal irrigation for irrigation management reform. With reference to two different design systems in Indian irrigation - shejpali and warabandi - it shows that the potential for reform varies with the design of canal irrigation.

  11. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation

    Directory of Open Access Journals (Sweden)

    Hongzhi Zhang

    2017-05-01

    Full Text Available There is a need to optimize water-nitrogen (N applications to increase seed cotton yield and water use efficiency (WUE under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1, deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2, pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3, pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1, 2:8 (N2] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD, root volume density (RVD, root mass density (RMD, and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE.

  12. Water Leakage and Nitrate Leaching Characteristics in the Winter Wheat–Summer Maize Rotation System in the North China Plain under Different Irrigation and Fertilization Management Practices

    Directory of Open Access Journals (Sweden)

    Shufeng Chen

    2017-02-01

    Full Text Available Field experiments were carried out in Huantai County from 2006 to 2008 to evaluate the effects of different nitrogen (N fertilization and irrigation management practices on water leakage and nitrate leaching in the dominant wheat–maize rotation system in the North China Plain (NCP. Two N fertilization (NF1, the traditional one; NF2, fertilization based on soil testing and two irrigation (IR1, the traditional one; IR2, irrigation based on real-time soil water content monitoring management practices were designed in the experiments. Water and nitrate amounts leaving the soil layer at a depth of 2.0 m below the soil surface were calculated and compared. Results showed that the IR2 effectively reduced water leakage and nitrate leaching amounts in the two-year period, especially in the winter wheat season. Less than 10 percent irrigation water could be saved in a dry winter wheat season, but about 60 percent could be saved in a wet winter wheat season. Besides, 58.8 percent nitrate under single NF2IR1 and 85.2 percent under NF2IR2 could be prevented from leaching. The IR2 should be considered as the best management practice to save groundwater resources and prevent nitrate from leaching. The amounts of N input play a great role in affecting nitrate concentrations in the soil solutions in the winter wheat–summer maize rotation system. The NF2 significantly reduced N inputs and should be encouraged in ordinary agricultural production. Thus, nitrate leaching and groundwater contamination could be alleviated, but timely N supplement might be needed under high precipitation condition.

  13. Institutions of farmer participation and environmental sustainability: a multi-level analysis from irrigation management in Harran Plain, Turkey

    Directory of Open Access Journals (Sweden)

    Gül Özerol

    2013-02-01

    Full Text Available This paper examines the relationship between farmer participation and environmental sustainability from an institutional perspective in the context of Harran Plain, one of the newest and largest irrigated areas in Turkey. Harran Plain undergoes social, economic and institutional change due to the expansion of large-scale irrigation and the establishment of irrigation associations. These changes, however, trigger an environmental change in the form of waterlogging and soil salinisation. The concepts of ‘institutional scale’ and ‘institutional alignment’ are applied to critically analyse the narratives regarding the causes of excessive water use, which is a collective action problem playing a significant role in increased waterlogging and soil salinity in Harran Plain. Empirical findings demonstrate that a low degree of institutional alignment among the rules at different levels constitutes an obstacle against taking actions to prevent excessive water use. Major issues are identified as the lack of water rights at plot and district levels; the exclusion of farmers from the planning of irrigation seasons; the inefficient monitoring of irrigation frequencies and fee collections, and the lack of mechanisms to monitor the operations of irrigation associations. The application of institutional scale and institutional alignment also contribute to the understanding of social-ecological systems by facilitating the systematic analysis of institutions and the identification of areas for institutional change.

  14. Heap leach cyanide irrigation and risk to wildlife: Ramifications for the international cyanide management code.

    Science.gov (United States)

    Donato, D B; Madden-Hallett, D M; Smith, G B; Gursansky, W

    2017-06-01

    Exposed cyanide-bearing solutions associated with gold and silver recovery processes in the mining industry pose a risk to wildlife that interact with these solutions. This has been documented with cyanide-bearing tailings storage facilities, however risks associated with heap leach facilities are poorly documented, monitored and audited. Gold and silver leaching heap leach facilities use cyanide, pH-stabilised, at concentrations deemed toxic to wildlife. Their design and management are known to result in exposed cyanide-bearing solutions that are accessible to and present a risk to wildlife. Monitoring of the presence of exposed solutions, wildlife interaction, interpretation of risks and associated wildlife deaths are poorly documented. This paper provides a list of critical monitoring criteria and attempts to predict wildlife guilds most at risk. Understanding the significance of risks to wildlife from exposed cyanide solutions is complex, involving seasonality, relative position of ponding, temporal nature of ponding, solution palatability, environmental conditions, in situ wildlife species inventory and provision of alternative drinking sources for wildlife. Although a number of heap leach operations are certified as complaint with the International Cyanide Management Code (Cyanide Code), these criteria are not considered by auditors nor has systematic monitoring regime data been published. Without systematic monitoring and further knowledge, wildlife deaths on heap leach facilities are likely to remain largely unrecorded. This has ramifications for those operations certified as compliance with the Cyanide Code. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effectiveness of the GAEC cross-compliance standard management of stubble and crop residues in the maintenance of adequate contents of soil organic carbon

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2011-08-01

    Full Text Available Several studies carried out on the effects of stubble and crop residue incorporation have shown positive effects on chemical-physical soil characteristics. However, not all studies agree on the extent of soil organic matter increase which derives from this process, as this effect is strongly affected by other factors: the pedo-climatic features of the area in which the study is carried out, the type of crop residue incorporation and the agronomical management adopted to improve the decomposition of the incorporated fresh organic material. The burning of stubble and straw is common in the areas where cereals are traditionally grown. The adoption of this method is based on different technical and work-related factors, which become less important when taking into account the impact on the local environment and soil. A research is currently carried out at the CRA-SCA experimental farm in Foggia (Southern Italy on the effects of either residues incorporation or burning on the chemical-physical characteristics of the soil and on the wheat yield performance since 1977. This experiment allows for a comparison among the effects of burning, the simple incorporation of stubble and crop residues and incorporation carried out with some agronomical techniques (such as the distribution of increasing amounts of nitrogen on crop residue before incorporation and the simulation of rain (50 mm on the decomposition of organic material. The objective of the study was to understand the effect of the different residues management practices on soil chemical properties after 32 years of experimentation. The simple incorporation of straw and stubble showed a slight increase in organic soil matter of 0.7% with respect to burning. The best results for soil organic carbon and soil quality were obtained when residual incorporation included a treatment with additional mineral nitrogen.

  16. Current food safety management systems in fish-exporting companies require further improvements to adequately cope with contextual pressure: case study.

    Science.gov (United States)

    Onjong, Hillary Adawo; Wangoh, John; Njage, Patrick Murigu Kamau

    2014-10-01

    Fish-processing plants still face food safety (FS) challenges worldwide despite the existence of several quality assurance standards and food safety management systems/s (FSMSs). This study assessed performance of FSMS in fish exporting sector considering pressure from the context in which they operate. A FSMS diagnostic tool with checklist was used to assess the context, FSMS, and FS output in 9 Kenyan fish exporting companies. Majority (67%) companies operated at moderate- to high-risk context but with an average performance in control and assurance activities. This situation could be insufficient to deal with ambiguity, uncertainty, and vulnerability issues in the context characteristics. Contextual risk posed by product characteristics (nature of raw materials) and chain environment characteristics was high. Risk posed by the chain environment characteristics, low power in supplier relationships, and low degree of authority in customer relationships was high. Lack of authority in relationship with suppliers would lead to high raw material risk situation. Even though cooling facilities, a key control activity, was at an advanced level, there was inadequate packaging intervention equipment which coupled with inadequate physical intervention equipment could lead to further weakened FSMS performance. For the fish companies to improve their FSMS to higher level and enhance predictability, they should base their FSMS on scientific information sources, historical results, and own experimental trials in their preventive, intervention, and monitoring systems. Specific suggestions are derived for improvements toward higher FSMS activity levels or lower risk levels in context characteristics. Weak areas in performance of control and assurance activities in export fish-processing sector already implementing current quality assurance guidelines and standards were studied taking into consideration contextual pressure wherein the companies operate. Important mitigation

  17. Evaluating the relative contribution of methane oxidation to methane emissions from young floodplain soils under Alternative Irrigation Management

    Science.gov (United States)

    Pierreux, Sofie; Verhoeven, Elizabeth; Akter, Masuda; Sleutel, Steven; Said-Pullicino, Daniel; Romani, Marco; Boeckx, Pascal

    2016-04-01

    To keep the pace with a yearly growing demand for rice by 1-2%, future rice production must come primarily from high yielding irrigated rice, putting a pressure on fresh water reserves. In this context, water saving Alternative Irrigation Management (AIM) is progressively applied worldwide. By introducing repeated or mid-seasonal drainage, AIM suppresses emission of CH4, otherwise prevalent in continuously flooded rice. However, little is known about the effect of AIM on the balance of CH4 genesis and oxidation in paddy soils. We studied relevant soil parameters and CH4 emissions in continuously flooded (CF) and alternately wetted and dried (AWD) rice paddies. During a field campaign at the Castello d'Agogna experimental station (Pavia, Italy), we measured in situ CH4 oxidation and emission rates using the closed gas chamber technique with or without application of CH2F2 as a selective inhibitor of CH4 oxidation. In addition, we determined potential CH4 oxidation rates using incubated soil slurries originating from the same experimental plots. The dataset was supplemented with depth differentiated monitoring of redox potential, temperature, moisture content and soil solution parameters (DOC, Fe2+, Mn3+, mineral N and dissolved CH4). Peaks in dissolved CH4 manifested at 5 and 12.5cm depth, with much lower and equal levels at 25, 50 and 80cm depth. Also depth distributions of dissolved Fe and Mn followed this pattern, indicating that methanogenic activity was primarily confounded to the topsoil. Seasonal CH4 emissions were about halved by AWD compared to CF management. After a fast decline of in situ oxidation within the AWD treatment at the beginning of the season, CH4 oxidation percentages in CF and AWD increased until the booting stage (67DAS), reaching peak values of 83% and 69% of produced CH4, respectively. CH4 oxidation thereafter gradually declined to nearly 50% in both treatments after the final drainage (103 DAS). Seasonal trends of potential CH4 oxidation

  18. Are national policies and programs for prevention and management of postpartum hemorrhage and preeclampsia adequate? A key informant survey in 37 countries.

    Science.gov (United States)

    Smith, Jeffrey Michael; Currie, Sheena; Cannon, Tirza; Armbruster, Deborah; Perri, Julia

    2014-08-01

    Although maternal mortality has declined substantially in recent years, efforts to address postpartum hemorrhage (PPH) and preeclampsia/eclampsia (PE/E) must be systematically scaled up in order for further reduction to take place. In 2012, a key informant survey was conducted to identify both national and global gaps in PPH and PE/E program priorities and to highlight focus areas for future national and global programming. Between January and March 2012, national program teams in 37 countries completed a 44-item survey, consisting mostly of dichotomous yes/no responses and addressing 6 core programmatic areas: policy, training, medication distribution and logistics, national reporting of key indicators, programming, and challenges to and opportunities for scale up. An in-country focal person led the process to gather the necessary information from key local stakeholders. Some countries also provided national essential medicines lists and service delivery guidelines for comparison and further analysis. Most surveyed countries have many elements in place to address PPH and PE/E, but notable gaps remain in both policy and practice. Oxytocin and magnesium sulfate were reported to be regularly available in facilities in 89% and 76% of countries, respectively. Only 27% of countries, however, noted regular availability of misoprostol in health facilities. Midwife scope of practice regarding PPH and PE/E is inconsistent with global norms in a number of countries: 22% of countries do not allow midwives to administer magnesium sulfate and 30% do not allow them to perform manual removal of the placenta. Most countries surveyed have many of the essential policies and program elements to prevent/manage PPH and PE/E, but absence of commodities (especially misoprostol), limitations in scope of practice for midwives, and gaps in inclusion of maternal health indicators in the national data systems have impeded efforts to scale up programs nationally.

  19. Problems of Participation and Issues of Sustainability in the Public Irrigation System in the Context of Management Transfer: Some Sociological Observations from Eastern Terai, Nepal

    Directory of Open Access Journals (Sweden)

    Laya Prasad Uprety

    2011-04-01

    Full Text Available It has been ascertained that participatory processes did not involve learning component from both agency and water users’ association for institutional and technical sustainability. The overall process of participation was superficial. There was a need of participation that underscored the empowerment of WUA with accountability. As Vermillion (2005 shares that empowerment with partnership is an emergent institutional paradigm for the irrigation sector development that places water users in the role of irrigation system governance, and government in the roles of regulator and provider of support services. There is a need to re-train the irrigation staff on the emergent institutional paradigm to empower the water users. For the empowerment with accountability, water users are to be provided enough institutional strengthening. There is the need to promote user-agency relationship positively and develop faith and confidence of the users and agency in the regime of transparency. Social scientists point out potential benefits of building successful local organizations. These benefits, for the local people, are in aspects such as empowerment, confidence-building, forming social capital, and reduction of dependency. Given the fact that participation is a process, it cannot be achieved in a short span of time with little institutional inputs. Sustainability of the management transferred irrigation systems/sub-systems definitely hinges on the broad-based and inclusive participatory processes. Keywords: participation; sustainability; management transfer; social capital and empowerment DOI: 10.3126/dsaj.v4i0.4512 Dhaulagiri Journal of Sociology and Anthropology Vol.4 2010 pp.41-64

  20. Influence of the vegetation management of the leeves in irrigated rice organic in diversity of Hymenoptera parasitoids.

    Science.gov (United States)

    Simões-Pires, P R; Jahnke, S M; Redaelli, L R

    2016-04-19

    Among the natural enemies of insect pests in rice fields, parasitoids are especially notable. To better understand the space-time dynamics of these insects, the objectives of this study were to describe and compare groups of parasitoids in organic irrigated rice fields using two management approaches for levee vegetation, and to relate them to the phenological stages of rice cultivation (the seedling, vegetative, and reproductive stages). The samples were taken in a plantation located in Viamão, RS, Brazil. The total area of 18 ha was divided into two parts: a no-cut (NC) subarea in which the wild vegetation of the levees was maintained, and a cut (C) subarea in which the levee vegetation was cut monthly. In each subarea, four Malaise traps considered as pseudo-replicas were installed and remained in the field for 24 hours at each sampling location. Collections occurred twice a month from the beginning of cultivation (October 2012) until harvest (March 2013). A total of 3,184 Hymenoptera parasitoids were collected: 2,038 individuals in the NC subarea and 1,146 in the C subarea. We identified 458 morphospecies distributed in 24 families. Mymaridae was the most abundant and Eulophidae was the richest in both subareas. A total of 198 morphospecies was shared between the subareas, including Platygastridae, Eulophidae, and Mymaridae, which were the families with the highest number of shared species. The richness and abundance of parasitoids varied according to their phenological developmental stages, with peak abundance registering during the vegetative period. The Morisita index identified three groupings, indicating a similarity that was related to the three phases of rice growth and development: seedling, vegetative and post-harvest.

  1. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.

    2011-01-01

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  2. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    Science.gov (United States)

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-03-29

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  3. Modernized Irrigation Technologies in West Africa

    Directory of Open Access Journals (Sweden)

    Hakan Büyükcangaz

    2017-12-01

    Full Text Available Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on modernized irrigation technologies and systems that utilize less water. Information about irrigation systems in Ghana and Liberia were gathered through: 1 Irrigation development authorities in both countries, by reviewing past literatures, online publications, reports and files about irrigation in West Africa, specifically Ghana and Liberia; 2 International Food Policy Research Institute (IFPRI; 3 Collation of information, reports and data from Ghana Irrigation Development Authority (GIDA and 4 International Water Management Institute (IWMI. The result shows that both countries have higher irrigation potential. However, the areas developed for irrigation is still a small portion as compare to the total land available for irrigation. On the other hand, as seen in the result, Liberia as compare to Ghana has even low level of irrigation development.

  4. From microbes to water districts: Linking observations across scales to uncover the implications of riparian and channel management on water quality in an irrigated agricultural landscape

    Science.gov (United States)

    Webster, A.; Cadenasso, M. L.

    2016-12-01

    Interactions among runoff, riparian and stream ecosystems, and water quality remain uncertain in many settings, particularly those heavily impacted by human activities. For example, waterways in the irrigated agricultural landscape of California's Central Valley are seasonally disconnected from groundwater tables and are extensively modified by infrastructure and management. These conditions make the impact of riparian and channel management difficult to predict across scales, which hinders efforts to promote best management practices to improve water quality. We seek to link observations across catchment, reach, and patch scales to understand patterns of nitrate and turbidity in waterways draining irrigated cropland. Data was collected on 80 reaches spanning two water management districts. At the catchment scale, water districts implemented waterway and riparian management differently: one water district had a decentralized approach, allowing individual land owners to manage their waterway channels and banks, while the other had a centralized approach, in which land owners defer management to a district-run program. At the reach scale, riparian and waterway vegetation, geomorphic complexity, and flow conditions were quantified. Reach-scale management such as riparian planting projects and channel dredging frequency were also considered. At the patch scale, denitrification potential and organic matter were measured in riparian toe-slope soils and channel sediments, along with associated vegetation and geomorphic features. All factors were tested for their ability to predict water quality using generalized linear mixed effects models and the consistency of predictors within and across scales was evaluated. A hierarchy of predictors emerges: catchment-scale management regimes predict reach-scale geomorphic and vegetation complexity, which in turn predicts sediment denitrification potential - the patch-scale factor most associated with low nitrate. Similarly

  5. Managing neurogenic bowel dysfunction: what do patients prefer? A discrete choice experiment of patient preferences for transanal irrigation and standard bowel management

    Directory of Open Access Journals (Sweden)

    Nafees B

    2016-02-01

    Full Text Available Beenish Nafees,1 Andrew J Lloyd,2 Rachel S Ballinger,2 Anton Emmanuel3 1Health Outcomes Research, Nafees Consulting Limited, London, 2Patient-Reported Outcomes Research, ICON plc, Oxford, 3Department of Gastroenterology and Nutrition, University College Hospital, London, UK Background: Most patients with bowel dysfunction secondary to neurological illness are managed by a range of nonsurgical methods, including dietary changes, laxatives, and suppository use to transanal irrigation (TAI. The aim of the present study was to explore individuals’ preferences regarding TAI devices and furthermore investigate willingness to pay (WTP for attributes in devices in the UK. Methods: A discrete choice experiment survey was conducted to evaluate the patients’ perceived value of TAI devices. Attributes were selected based upon a literature review and input from clinicians. Interviews were conducted with three clinicians and the survey was developed and finalized with the input from both patients and professionals. The final attributes were “risk of urinary tract infections” (UTIs, “risk of fecal incontinence” (FI, “frequency of use”, “time spent on toilet”, “ease of use”, “level of control/independence”, and “cost”. Participants were recruited by a patient panel of TAI device users in the UK. Data were analyzed using the conditional logit model whereby the coefficients obtained from the model provided an estimate of the (log odds ratios (ORs of preference for attributes. WTP was also estimated for each attribute. Results: A total of 129 participants were included in the final analyses. Sixty two percent of the participants had suffered from three UTIs in the preceding year and 58% of patients reported currently experiencing FI using their current device. All attributes were significant predictors of choice. The most important attributes for participants were the “risk of FI”, “frequency of use”, and “risk of UTIs

  6. Evaluation of Modern Irrigation Techniques with Brackish Water

    OpenAIRE

    Aboulila, Tarek Selim

    2012-01-01

    Modern irrigation techniques are becoming increasingly important in water-scarce countries especially in arid and semiarid regions. Higher crop production and better water use efficiency are usually achieved by drip irrigation as compared to other irrigation methods. Furthermore, by using drip irrigation simultaneously with brackish irrigation water, some of the water stress due to shortage of fresh water resources can be managed. The objective of the current study was to investigate the infl...

  7. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    Science.gov (United States)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  8. Gendered participation in water management in Nepal : discourses, policies and practices in the irrigation and drinking water sectors

    NARCIS (Netherlands)

    Bhushan Udas, P.

    2014-01-01

    Abstract This thesis is about gendered policy processes in the irrigation and drinking water sectors in Nepal. Globally, increased women’s participation in formal decision making bodies such as water users’ associations is extensively advocated as a means to reduce

  9. Gas Exchanges and Stem Water Potential Define Stress Thresholds for Efficient Irrigation Management in Olive (Olea europea L.

    Directory of Open Access Journals (Sweden)

    Giulia Marino

    2018-03-01

    Full Text Available With climate change and decreased water supplies, interest in irrigation scheduling based on plant water status is increasing. Stem water potential (ΨSWP thresholds for irrigation scheduling in olive have been proposed, however, a physiologically-based evaluation of their reliability is needed. A large dataset collected at variable environmental conditions, growing systems, and genotypes was used to characterize the relation between ΨSWP and gas exchanges for olive. Based on the effect of drought stress on the ecophysiological parameters monitored, we described three levels of stress: no stress (ΨSWP above about −2 MPa, where the high variability of stomatal conductance (gs suggests a tight stomatal control of water loss that limit ΨSWP drop, irrigation volumes applied to overcome this threshold had no effect on assimilation but reduced intrinsic water use efficiency (iWUE; moderate-stress (ΨSWP between about −2.0 and −3.5 MPa, where iWUE can be increased without damage to the photosynthetic apparatus of leaves; and high-stress (ΨSWP below about −3.5 MPa, where gs dropped below 150 mmol m−2 s−1 and the intercellular CO2 concentration increased proportionally, suggesting non-stomatal limitation to photosynthesis was operative. This study confirmed that olive ΨSWP should be maintained between −2 and −3.5 MPa for optimal irrigation efficiency and to avoid harmful water stress levels.

  10. Nutrient management and institutional cooperation as conditions for environmentally safe wastewater irrigation: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, J.G.; Huibers, F.P.; van Vliet, Bas J.M.; Dung, N.V.; Van, D.T.H.; Ragab, Ragab; Koo-Oshima, Sasha

    2006-01-01

    Hanoi is rapidly growing in population and in economic activities. Increasing volumes of domestic and industrial wastewater flows are discharged mostly untreated into the drainage system. At downstream level, these polluted, nutrient rich waters are used for irrigation. Nutrient concentrations in

  11. Institutions of farmer participation and environmental sustainability: a multi-level analysis from irrigation management in Harran Plain, Turkey

    NARCIS (Netherlands)

    Özerol, Gül

    2013-01-01

    This paper examines the relationship between farmer participation and environmental sustainability from an institutional perspective in the context of Harran Plain, one of the newest and largest irrigated areas in Turkey. Harran Plain undergoes social, economic and institutional change due to the

  12. The negotiation of rules and state intervention in irrigation management: The Júcar Canal in the mid-19th century

    Directory of Open Access Journals (Sweden)

    Salvador Calatayud

    2012-04-01

    Full Text Available The way the rules for distributing water work in irrigation communities has been the object of numerous studies. Yet, little is known about how the negotiation process that is required to design such rules has developed historically, which is what this article focuses on. Specifically, the case of the Júcar Canal, which was built in the 13th century and went on to become the largest irrigation system in Spain after undergoing an extension in the early 19th century. As a result of said extension, there were many clashes between the old and the new irrigators, the climate of cooperation between users diminished and it became necessary to draw up a new set of regulations. Two crucial factors allowed a new agreement to be reached: the fact that the irrigators were able to redesign the institutions with a high degree of autonomy, and the intervention of representatives of the political authorities of the State who adopted the role of external arbitrators.

  13. Total endoscopic and anal irrigation management approach to noncompliant neuropathic bladder and bowel in children: A long-term follow-up.

    Science.gov (United States)

    Alqarni, Naif; Alhazmi, Hamdan; Alsowayan, Ossamah; Eweda, Tamer; Neel, Khalid Fouda

    2017-01-01

    To evaluate the long-term efficacy and durability of combined intradetrusor botulinum-A toxin (BTX-A), endoscopic treatment of vesicouerteral reflux and anal irrigation for stool incontinence (SI) via a total endoscopic and anal irrigation management (TEAM ® ) approach in patients with myelomeningocele and neuropathic bladder and bowel who did not respond to conservative measures. Fourteen myelomeningocele patients with at least 3 years follow-up were included in the study. All patients have urinary and SI not responded to conservative management. All patients received a cystoscopic intradetrusor injection of 12 U/kg (maximum 300 U) BTX-A. There was vesicoureteral reflux in 22 ureters, and a Deflux ® injection was completed during the same procedure. SI was managed using trans-anal irrigation, either with a fleet enema or Peristeen ® system regularly. After at least 3 years of follow-up, mean maximum bladder capacity increased significantly from 78 ± 36 ml to 200 ± 76 ml ( P < 0.0001) and the maximum detrusor pressure decreased from 56 ± 12 cm H 2 O to 29 ± 7 cm H 2 O ( P < 0.001). Twenty-one refluxing ureters (95%) showed complete resolution and one persisted. Ten patients (72%) achieved complete dryness between catheterizations. Four patients (28%) went for augmentation cystoplasty, due to progressive hydronephrosis and/or persistent urinary incontinence. Thirteen patients achieved complete stool continence. Over long-term follow-up, major reconstruction surgery can be avoidable or delayable; the TEAM ® approach is a minimally invasive, safe, simple, and effective way to achieve upper urinary tract protection and provide urinary and stool continence.

  14. Prospects for Improving Gravity-Fed Surface Irrigation Systems in Mediterranean European Contexts

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-01-01

    Full Text Available Traditionally, most irrigation practices in Southern Europe have been based on gravity-fed surface irrigation systems. Currently, these systems remain a relevant typology in the European Union (EU member states of the Mediterranean areas, where it is often the only sustainable method for farmers due to the small size of agricultural holdings, their reduced capacity and readiness to invest and the low ratio between yield profits and irrigation costs. In the last several years, in response to European and national directives, surface irrigation has garnered increasing attention at the political and bureaucratic levels due to frequent criticisms of its postulated low efficiency and high water wastage. However, these systems commonly provide a number of ecosystem services and nature-based solutions that increase the positive externalities in different rural socio-ecological contexts and often have the potential to extend these services and provide solutions that are compatible with economical sustainability. This study aims to discuss the prospects for new practices and for the rehabilitation and modernization of the gravity-fed surface irrigation systems in EU Mediterranean areas to enhance water efficiency, thus gaining both economic advantages and environmental benefits. The difficulties, stimuli for improvements and peculiarities of the irrigation water management of four rural environments located in Italy, Spain and Portugal were analyzed and compared to the current state of the gravity-fed surface irrigation systems with hypothetical future improvements achievable by innovative technologies and practices. In these different case studies, the current gravity-fed surface irrigation systems have an obsolete regulatory structure; water-use efficiency is not a driving criterion for the management of the conveyance and distribution canal network, and farmers are not yet adequately encouraged to adopt more efficient gravity-fed irrigation practices

  15. Risk assessment as a management tool used to assess the effect of pesticide use in an irrigation system, situated in a semi-desert region

    CSIR Research Space (South Africa)

    Raschke, AM

    1997-01-01

    Full Text Available Management Tool Used to Assess the Effect of Pesticide Use in an Irrigation System, Situated in a Semi-Desert Region A. M. Raschke, A. E. C. Burger CSIR, Food Science and Technology, P.O. Box 395, Pretoria, 0001, South Africa Received: April 1996/Revised: 21... of hazards and representations of risk are for pesticides that do not biologically degrade to components which are less hazardous, or in some cases to metabolites which are even more toxic than the active ingredient. To determine whether the risks have been...

  16. Managing neurogenic bowel dysfunction: what do patients prefer? A discrete choice experiment of patient preferences for transanal irrigation and standard bowel management.

    Science.gov (United States)

    Nafees, Beenish; Lloyd, Andrew J; Ballinger, Rachel S; Emmanuel, Anton

    2016-01-01

    Most patients with bowel dysfunction secondary to neurological illness are managed by a range of nonsurgical methods, including dietary changes, laxatives, and suppository use to transanal irrigation (TAI). The aim of the present study was to explore individuals' preferences regarding TAI devices and furthermore investigate willingness to pay (WTP) for attributes in devices in the UK. A discrete choice experiment survey was conducted to evaluate the patients' perceived value of TAI devices. Attributes were selected based upon a literature review and input from clinicians. Interviews were conducted with three clinicians and the survey was developed and finalized with the input from both patients and professionals. The final attributes were "risk of urinary tract infections" (UTIs), "risk of fecal incontinence" (FI), "frequency of use", "time spent on toilet", "ease of use", "level of control/independence", and "cost". Participants were recruited by a patient panel of TAI device users in the UK. Data were analyzed using the conditional logit model whereby the coefficients obtained from the model provided an estimate of the (log) odds ratios (ORs) of preference for attributes. WTP was also estimated for each attribute. A total of 129 participants were included in the final analyses. Sixty two percent of the participants had suffered from three UTIs in the preceding year and 58% of patients reported currently experiencing FI using their current device. All attributes were significant predictors of choice. The most important attributes for participants were the "risk of FI", "frequency of use", and "risk of UTIs". Participants with bowel dysfunction regarded "risk of FI", "frequency of use", and "avoiding UTIs" as the most important features of a TAI device. These preferences are valuable in informing decision makers and clinicians regarding different bowel management solutions as well as for development of future devices.

  17. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  18. Spatial distribution of organic carbon and humic substances in irrigated soils under different management systems in a semi-arid zone in Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Antônia Arleudina Barros de Melo

    2016-08-01

    Full Text Available Spatial distribution of organic carbon and humic substances in irrigated soils under different management systems in a semi-arid zone in Ceará, Brazil Knowledge of the spatial variability in soil properties can contribute to effective use and management. This study was conducted to evaluate the spatial distribution of the levels of total organic carbon (TOC and humic substances (humic acid (C-FAH, fulvic acid fraction (C-FAF, and humin fraction (C-HUM in an Ultisol under different land uses, located in the irrigated perimeter of Baixo Acaraú-CE, transition to semiarid Ceará. The distribution and spatial dependence of the humic fractions were evaluated using descriptive statistics, including semivariogram analysis and data interpolation (kriging. The TOC showed a pure nugget effect, whereas the other fractions showed moderate spatial dependence. Forested and banana cultivation areas showed similar distributions of C-FAH and C-FAF, due to the high input of organic matter (leaves and pseudostems in the area of banana cultivation and the absence of soil disturbance in the forested area. Data interpolation (kriging and mapping were useful tools to assess the distribution and spatial dependence of soil attributes.

  19. Integrated Water Resources Management for Sustainable Irrigation at the Basin Scale Manejo Integrado de Recursos Hídricos para Riego Sustentable a Nivel de Cuenca

    Directory of Open Access Journals (Sweden)

    Max Billib

    2009-12-01

    Full Text Available The objective of this paper is to review the state of art on integrated water resources management (IWRM approaches for sustainable irrigation at the basin scale under semi-arid and arid climatic conditions, with main emphasis on Latin America, but including case studies of other semi-arid and arid regions in the world. In Latin America the general concept of IWRM has proved to be hard to implement. Case studies recommend to develop the approach from lower to upper scale and oriented at the end-user. As IWRM is an interdisciplinary approach and used for very different objectives, the main emphasis is given to IWRM approaches for sustainable irrigation and their environmental aspects. The review shows that in Latin America the environmental impact is mostly analysed at the field level, the impact on the whole basin is less considered. Many publications present the development of models, advisory services and tools for decision support systems at a high technical level. Some papers present studies of environmental aspects of sustainable irrigation, especially for salt affected areas. Multi-criteria decision making models are developed for irrigation planning and irrigation scenarios are used to show the impact of different irrigation management decision. In general integrated approaches in Latin America are scarce.El objetivo de esta publicación es revisar el estado del arte de los diferentes enfoques que se han usado para lograr un manejo integrado de los recursos hídricos (MIRH asociados a una agricultura de riego sustentable a nivel de cuenca en condiciones áridas y semiáridas, con énfasis en Latinoamérica, pero incluyen casos de estudio de otras regiones similares del mundo. En Latinoamérica el concepto general de MIRH ha resultado difícil de implementar. De los estudios de casos, se recomienda desarrollar este enfoque desde una escala menor a una mayor orientándose al usuario final. MIRH es un enfoque interdisciplinario usado para

  20. Adaptive Management of Environmental Flows: Using Irrigation Infrastructure to Deliver Environmental Benefits During a Large Hypoxic Blackwater Event in the Southern Murray-Darling Basin, Australia

    Science.gov (United States)

    Watts, Robyn J.; Kopf, R. Keller; McCasker, Nicole; Howitt, Julia A.; Conallin, John; Wooden, Ian; Baumgartner, Lee

    2018-03-01

    Widespread flooding in south-eastern Australia in 2010 resulted in a hypoxic (low dissolved oxygen, DO) blackwater (high dissolved carbon) event affecting 1800 kilometres of the Murray-Darling Basin. There was concern that prolonged low DO would result in death of aquatic biota. Australian federal and state governments and local stakeholders collaborated to create refuge areas by releasing water with higher DO from irrigation canals via regulating structures (known as `irrigation canal escapes') into rivers in the Edward-Wakool system. To determine if these environmental flows resulted in good environmental outcomes in rivers affected by hypoxic blackwater, we evaluated (1) water chemistry data collected before, during and after the intervention, from river reaches upstream and downstream of the three irrigation canal escapes used to deliver the environmental flows, (2) fish assemblage surveys undertaken before and after the blackwater event, and (3) reports of fish kills from fisheries officers and local citizens. The environmental flows had positive outcomes; mean DO increased by 1-2 mg L-1 for at least 40 km downstream of two escapes, and there were fewer days when DO was below the sub-lethal threshold of 4 mg L-1 and the lethal threshold of 2 mg L-1 at which fish are known to become stressed or die, respectively. There were no fish deaths in reaches receiving environmental flows, whereas fish deaths were reported elsewhere throughout the system. This study demonstrates that adaptive management of environmental flows can occur through collaboration and the timely provision of monitoring results and local knowledge.

  1. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    Science.gov (United States)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  2. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation...

  3. A parametric study of the value of hydrological information for irrigation and hydropower management of the Feather River

    Science.gov (United States)

    Wetzler, E.; Sand, F.; Stevenson, P.; Putnam, M.

    1975-01-01

    A case study analysis is presented of the relationships between improvements in the accuracy, frequency, and timeliness of information used in making hydrological forecasts and economic benefits in the areas of hydropower and irrigation. The area chosen for the case study is the Oroville Dam and Reservoir. Emphasis is placed on the use of timely and accurate mapping of the aerial extent of snow in the basin by earth resources survey systems such as LANDSAT. The subject of benefits resulting from improved runoff forecasts is treated in a generalized way without specifying the source of the improvements.

  4. Gerenciamento do lado da demanda no bombeamento de água para perímetro irrigado Demand side management for water pumping for irrigated perimeter

    Directory of Open Access Journals (Sweden)

    Maria J. de Moraes

    2011-09-01

    ´s load and the motor pump set performance. It is concluded that the frequency inverter use and the management of the availability of the number of hours of irrigation secure energy savings that varies around 7 to 62% for the studied combinations.

  5. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    International Nuclear Information System (INIS)

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.

    1990-01-01

    An investigation was initiated to determine whether irrigation drainage in and near the Stillwater Wildlife Management Area has caused or has potential to cause harmful effects on human health or fish and wildlife, or may adversely affect the suitability of water for beneficial uses. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert and were analyzed for potentially toxic trace elements, including selenium. Other analyses included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediments and biota. In areas affected by irrigation drainage, concentrations of the following constituents commonly were found to exceed baseline concentrations or federal and state criteria for the protection of aquatic life or the propagation of wildlife: in water, arsenic, boron, dissolved solids, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appear to be biomagnified whereas arsenic is bioaccumulated. Some radioactive substances were substantially higher at the downstream sites compared with upstream background sites, but the significance of this to wildlife is unknown at present. 88 refs., 32 figs., 19 tabs

  6. Impact of Methods of Administering Growth-Stage Deficit Irrigation ...

    African Journals Online (AJOL)

    ... significantly different from that which received weekly irrigation throughout the crop growing season. Moreover, the productivity of water applied was higher while water loss to deep percolation was drastically reduced. Keywords: Deficit irrigation scheduling, Economic net return, Maize crop, Irrigation water management ...

  7. Fertigation - Injecting soluble fertilizers into the irrigation system

    Science.gov (United States)

    Thomas D. Landis; Jeremy R. Pinto; Anthony S. Davis

    2009-01-01

    Fertigation (fertilization + irrigation) is the newest way for nursery managers to apply fertilizer, and has become a standard practice in container nurseries. Because of the inherent inefficient water distribution patterns in field irrigation systems, fertigation has not been widely used in bareroot nurseries. However, a bareroot nursery with a center-pivot irrigation...

  8. Limited irrigation research and infrared thermometry for detecting water stress

    Science.gov (United States)

    The USDA-ARS Limited Irrigation Research Farm, located outside of Greeley Colorado, is an experiment evaluating management perspectives of limited irrigation water. An overview of the farm systems is shown, including drip irrigation systems, water budgeting, and experimental design, as well as preli...

  9. Socio-economic determinants of irrigation technology adoption in ...

    African Journals Online (AJOL)

    Socio-economic determinants of irrigation technology adoption in the management of climate risk in Nigeria. ... Access to credit and mono cropping increased the probability of irrigated agriculture while rural location reduced irrigation agriculture. This study suggests the importance of access to credit, transaction cost, ...

  10. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    Science.gov (United States)

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  11. Applications of wireless sensor networks, soil water balance modeling, and satellite data for crop evapotranspiration monitoring and irrigation management support

    Science.gov (United States)

    Purdy, A. J.; Lund, C.; Pierce, L.; Melton, F. S.; Guzman, A.; Harlen, I.; Holloway, R.; Johnson, L.; Lee, C.; Nemani, R. R.; Rosevelt, C.; Fletcher, N.

    2011-12-01

    Irrigation scheduling systems can potentially be improved through the combined use of satellite driven estimates of crop evapotranspiration and real-time soil moisture data from wireless sensor networks. In order to analyze spatial and temporal patterns in soil moisture and evapotranspiration, we used wireless sensor networks deployed in operational agricultural fields across California to track evapotranspiration and soil moisture, and compute daily water budgets for multiple crops at the field scale. We present findings on efficacy and feasibility of using wireless sensor networks in an operational agricultural setting to monitor soil moisture and calculate a soil water balance. We compare estimated evapotranspiration rates from the wireless sensor networks against estimates from surface renewal instrumentation and satellite-derived estimates from the NASA Terrestrial Observation and Prediction System. Information from this research can lead to a better understanding of how to effectively monitor soil moisture levels at the field scale, and how to integrate satellite and sensor network data to support agricultural producers in optimizing irrigation scheduling.

  12. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    Science.gov (United States)

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-11-01

    SummaryThe Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamflow, total suspended sediment (TSS) losses and phosphorus load calibration and validation were performed using field survey information and water quantity and quality data recorded during 2008 and 2009 years in Del Reguero irrigated watershed in Spain. The goodness of the calibration and validation results was assessed using five statistical measures, including the Nash-Sutcliffe efficiency (NSE). Results indicated that the average annual crop yield and actual evapotranspiration estimations were quite satisfactory. On a monthly basis, the values of NSE were 0.90 (calibration) and 0.80 (validation) indicating that the modified model could reproduce accurately the observed streamflow. The TSS losses were also satisfactorily estimated (NSE = 0.72 and 0.52 for the calibration and validation steps). The monthly temporal patterns and all the statistical parameters indicated that the modified SWAT-IRRIG model adequately predicted the total phosphorus (TP) loading. Therefore, the model could be used to assess the impacts of different best management practices on nonpoint phosphorus losses in irrigated systems.

  13. Detailed study of selenium in soil, water, bottom sediment, and biota in the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92

    Science.gov (United States)

    Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.

    1996-01-01

    Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.

  14. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  15. Position paper : Whole bowel irrigation

    NARCIS (Netherlands)

    2004-01-01

    Whole bowel irrigation (WBI) should not be used routinely in the management of the poisoned patient. Although some volunteer studies have shown substantial decreases in the bioavailability of ingested drugs, no controlled clinical trials have been performed and there is no conclusive evidence that

  16. Microbial transport into groundwater from irrigation: Comparison of two irrigation practices in New Zealand.

    Science.gov (United States)

    Weaver, L; Karki, N; Mackenzie, M; Sinton, L; Wood, D; Flintoft, M; Havelaar, P; Close, M

    2016-02-01

    Rising demand on food is leading to an increase in irrigation worldwide to improve productivity. Irrigation, for pastoral agriculture (beef, dairy and sheep), is the largest consumptive use of water in New Zealand. There is a potential risk of leaching of microbial contaminants from faecal matter through the vadose zone into groundwater. Management of irrigation is vital for protection of groundwater from these microbial contaminants and maintain efficient irrigation practices. Our research investigated flood and spray irrigation, two practices common in New Zealand. The aim was to identify the risk of microbial transport and mitigation practices to reduce or eliminate the risk of microbial transport into groundwater. Cowpats were placed on lysimeters over a typical New Zealand soil (Lismore silt loam) and vadose zone and the leachate collected after irrigation events. Samples of both cowpats and leachate were analysed for the microbial indicator Escherichia coli and pathogen Campylobacter species. A key driver to the microbial transport derived from the model applied was the volume of leachate collected: doubling the leachate volume more than doubled the total recovery of E. coli. The persistence of E. coli in the cowpats during the experiment is an important factor as well as the initial environmental conditions, which were more favourable for survival and growth of E. coli during the spray irrigation compared with the flood irrigation. The results also suggest a reservoir of E. coli surviving in the soil. Although the same was potentially true for Campylobacter, little difference in the transport rates between irrigation practices could be seen due to the poor survival of Campylobacter during the experiment. Effective irrigation practices include monitoring the irrigation rates to minimise leachate production, delaying irrigation until 14days post-cowpat deposition and only irrigating when risk of transport to the groundwater is minimal. To compare the risk of

  17. Decision Support Systems To Manage Water Resources At Irrigation District Level In Southern Italy Using Remote Sensing Information. An Integrated Project (AQUATER)

    Science.gov (United States)

    Rinaldi, M.; Castrignanò, A.; Mastrorilli, M.; Rana, G.; Ventrella, D.; Acutis, M.; D'Urso, G.; Mattia, F.

    2006-08-01

    An efficient management of water resources is crucial point for Italy and in particular for southern areas characterized by Mediterranean climate in order to improve the economical and environmental sustainability of the agricultural activity. A three-year Project (2005-2008) has been funded by the Italian Ministry of Agriculture and Forestry Policies; it involves four Italian research institutions: the Agricultural Research Council (ISA, Bari), the National Research Council (ISSIA, Bari) and two Universities (Federico II-Naples and Milan). It is focused on the remote sensing, the plant and the climate and, for interdisciplinary relationships, the project working group consists of agronomists, engineers and physicists. The aims of the Project are: a) to produce a Decision Support System (DSS) combining remote sensing information, spatial data and simulation models to manage water resources in irrigation districts; b) to simulate irrigation scenarios to evaluate the effects of water stress on crop yield using agro-ecological indicators; c) to identify the most sensitive areas to drought risk in Southern Italy. The tools used in this Project will be: 1. Remote sensing images, topographic maps, soil and land use maps; 2. Geographic Information Systems; 3. Geostatistic methodologies; 4. Ground truth measurements (land use, canopy and soil temperatures, soil and plant water status, Normalized Difference Vegetation Index, Crop Water Stress Index, Leaf Area Index, actual evapotranspiration, crop coefficients, crop yield, agro-ecological indicators); 5. Crop simulation models. The Project is structured in four work packages with specific objectives, high degree of interaction and information exchange: 1) Remote Sensing and Image Analysis; 2) Cropping Systems; 3) Modelling and Softwares Development; 4) Stakeholders. The final product will be a DSS with the purpose of integrating remote sensing images, to estimate crop and soil variables related to drought, to assimilate

  18. Simulating the effect of water management decisions on groundwater flow and quality in the Kyzylkum Irrigation Scheme, Kazakhstan

    Science.gov (United States)

    Naudascher, R. M.; Marti, B. S.; Siegfried, T.; Wolfgang, K.; Anselm, K.

    2017-12-01

    The Kyzylkum Irrigation Scheme lies north of the Chardara reservoir on the banks of the river Syr Darya in South Kazakhstan. It was designed as a model Scheme and developed to a size of 74'000 ha during Soviet times for rice and cotton production. However, since the 1990s only very limited funds were available for maintenance and as a result, problems like water logging and salinization of soils and groundwater are now omnipresent in the scheme. The aim of this study was to develop a numerical groundwater flow model for the region in Modflow and to evaluate the effect of various infrastructure investments on phreatic evaporation (a major driver for soil salinization). Decadal groundwater observation data from 2011 to 2015 were used to calibrate the annual model and to validate the monthly model. Scenarios simulated were (partial) lining of main and/or secondary and tertiary canal system, improvement of drainage via horizontal canals or pumps, combinations of these and a joint groundwater-surface-water use scenario. Although the annual average model is sufficient to evaluate the yearly water balance, the transient model is a prerequisite for analysing measures against water logging and salinization, both of which feature strong seasonality. The transient simulation shows that a combination of leakage reduction (lining of canals) and drainage improvement measures is needed to lower the groundwater levels enough to avoid phreatic evaporation. To save water, joint surface water and groundwater irrigation can be applied in areas where groundwater salinity is low enough but without proper lining of canals, it is not sufficient to mitigate the ongoing soil degradation due to salinization and water logging.

  19. Meconium Ileus–Is a Single Surgical Procedure Adequate?

    Directory of Open Access Journals (Sweden)

    Hagith Nagar

    2006-07-01

    Full Text Available Meconium ileus is one of the gastrointestinal manifestations of cystic fibrosis (CF, and affects 15% of neonates. The condition results from the accumulation of sticky inspissated meconium. Both nonoperative and operative therapies may be effective in relieving obstruction. The treatment of choice for uncomplicated meconium ileus is the use of enteral N-acetylcysteine or Gastrografin enemata. Once such therapy fails, surgery is indicated. A number of operative procedures are in use, including Bishop-Koop enterostomy, T-tube irrigation, resection and primary anastomosis, and enterotomy with irrigation and primary closure. During the period 1991-2003, five newborns required surgical intervention for uncomplicated meconium ileus. None responded to conservative management. All were males, including one set of twins. All underwent laparotomy, enterotomy, appendectomy, irrigation and closure of enterotomy. None required a second surgical procedure. CF was confirmed in all, and in each case, both parents were found to be genetic carriers of a mutational form of CF. A single surgical intervention is preferable in these patients, in view of the high rate of pulmonary involvement in CF patients. Enterotomy, irrigation and primary closure are the treatment of choice for uncomplicated meconium ileus.

  20. Irrigation and groundwater in Pakistan

    Science.gov (United States)

    Ertsen, Maurits; Iftikhar Kazmi, Syed

    2010-05-01

    Introduction of large gravity irrigation system in the Indus Basin in late nineteenth century without a drainage system resulted in water table rise consequently giving rise to water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem government initiated salinity control and reclamation project (SCARP) in 1960. Initially 10,000 tube wells were installed in different areas, which not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the full irrigation motivated framers to install private tube wells. Present estimate of private tube wells in Punjab alone is around 0.6 million and 48 billion cubic meter of groundwater is used for irrigation, contributing is 1.3 billion to the economy. The Punjab meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tubewells, creating a pattern of private and public water control. As the importance of groundwater in sustaining human life and ecology is evident so are the threats to its sustainability due to overexploitation, but sufficient information for its sustainable management especially in developing countries is still required. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. Groundwater recharge is broadly defined as water that reaches the aquifer from any direction (Lerner 1997). Sustainability and proper management of groundwater resource requires reliable quantification of the resource. In order to protect the resource from contamination and over exploitation, identification of recharge sources and their contribution to resource is a basic requirement. Physiochemical properties of some pesticides and their behavior in soil and water can make them potential tracers of subsurface moisture movement. Pesticides are intensively used in the area to

  1. Farmers’ Willingness to Pay for Irrigation Water: A Case of Tank Irrigation Systems in South India

    Directory of Open Access Journals (Sweden)

    Karthikeyan Chandrasekaran

    2009-08-01

    Full Text Available The economic value of tank irrigation water was determined through Contingency Valuation Method by analyzing farmers’ willingness to pay for irrigation water under improved water supply conditions during wet and dry seasons of paddy cultivation. Quadratic production function was also used to determine the value of irrigation water. The comparison of the economic value of water estimated using different methods strongly suggests that the present water use pattern will not lead to sustainable use of the resource in the tank command areas. Policy options for sustainable use of irrigation water and management of tanks in India were suggested.

  2. Protocol for an investigator-blinded, randomised, 3-month, parallel-group study to compare the efficacy of intraoperative tendon sheath irrigation only with both intraoperative and postoperative irrigation in the treatment of purulent flexor tenosynovitis.

    Science.gov (United States)

    Leppänen, Olli V; Jokihaara, Jarkko; Kaivorinne, Antti; Havulinna, Jouni; Göransson, Harry

    2015-12-15

    The management of purulent flexor tenosynovitis of the hand consists of surgical debridement followed by antibiotic treatment. Usually, the debridement is carried out by irrigating the tendon sheath in a proximal to distal direction facilitated by two small incisions. It is unclear whether intraoperative irrigation by itself is adequate for healing or if it should be combined with postoperative irrigation in the ward. The hypothesis of this prospective randomised trial is that intraoperative catheter irrigation alone is as effective as a combination of intraoperative and postoperative intermittent catheter irrigation in the treatment of purulent flexor tenosynovitis. In this investigator-blinded, prospective randomised trial, 48 patients suffering from purulent flexor tenosynovitis are randomised in two groups. Intraoperative catheter irrigation of the flexor tendon sheath and antibiotic treatment is identical in both groups, whereas only the patients in one group are subjected to intermittent postoperative catheter irrigation three times a day for 3 days. The primary outcome measure is total active range of movement of the affected finger after 3 months of surgery. The secondary outcome is the need for reoperation. The research ethics committee of Pirkanmaa Hospital District has approved the study protocol. The protocol has been registered with ClinicalTrials.gov registry (#NCT02320929). All participants will give written informed consent. The study results will elucidate the role of postoperative irrigation, which can be criticised as being labour consuming and unpleasant to the patient. The results of the study will be disseminated as a published article in a peer-reviewed journal. NCT02320929; pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. Irrigation Scheduling for Green Bell Peppers Using Capacitance Soil Moisture Sensors

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Femminella, K.; Munoz-Carpena, R.

    2011-01-01

    Vegetable production areas are intensively managed with high inputs of fertilizer and irrigation. The objectives of this study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling using soil moisture sensor irrigation controllers (SMS) on yield, irrigation water use

  4. Plant, soil and weather based cues for irrigation timing in soybean production 2014

    Science.gov (United States)

    Expanded use of irrigation management tools are needed to improve irrigation and water use efficiency in eastern Arkansas soybean production. In 2014 we initiated an Arkansas Soybean Promotion Board supported project to examine irrigation initiation timing on a sandy loam soil in a furrow-irrigated ...

  5. Mapping suitability of rice production systems for mitigation: Strategic approach for prioritizing improved irrigation management across scales

    Science.gov (United States)

    Wassmann, Reiner; Sander, Bjoern Ole

    2016-04-01

    After the successful conclusion of the COP21 in Paris, many developing countries are now embracing the task of reducing emissions with much vigor than previously. In many countries of South and South-East Asia, the agriculture sector constitutes a vast share of the national GHG budget which can mainly be attributed to methane emissions from flooded rice production. Thus, rice growing countries are now looking for tangible and easily accessible information as to how to reduce emissions from rice production in an efficient manner. Given present and future food demand, mitigation options will have to comply with aim of increasing productivity. At the same time, limited financial resources demand for strategic planning of potential mitigation projects based on cost-benefit ratios. At this point, the most promising approach for mitigating methane emissions from rice is an irrigation technique called Alternate Wetting and Drying (AWD). AWD was initially developed for saving water and subsequently, represents an adaptation strategy in its own right by coping with less rainfall. Moreover, AWD also reduces methane emissions in a range from 30-70%. However, AWD is not universally suitable. It is attractive to farmers who have to pump water and may save fuel under AWD, but renders limited incentives in situations where there is no real pressing water scarcity. Thus, planning for AWD adoption at larger scale, e.g. for country-wide programs, should be based on a systematic prioritization of target environments. This presentation encompasses a new methodology for mapping suitability of water-saving in rice production - as a means for planning adaptation and mitigation programs - alongside with preliminary results. The latter comprises three new GIS maps on climate-driven suitability of AWD in major rice growing countries (Philippines, Vietnam, Bangladesh). These maps have been derived from high-resolution data of the areal and temporal extent of rice production that are now

  6. Ghana - Agriculture - Irrigation

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga and...

  7. Irrigating The Environment

    Science.gov (United States)

    Adamson, D.

    2017-12-01

    Water insecurity and water inequality are international issues that reduce economic growth. Countries are adopting alternative approaches to rebalance the share of water between all users to mitigate economic loss for this and future generations. However, recent reforms have struggled to provide the necessary arguments to obtain political protection of the process. In the absence of proof, rent-seeking arguments have challenged the benefit of restoring environmental flows by arguing that policy design fails to maximise the environmental benefits. This is a problem in Australia's Murray-Darling Basin (MDB), where despite establishing 3,200GL of environmental water, the policy is still under threat. Applied water economic policy advice fails, when it does not deal with uncertainty. The state-contingent analysis approach can map how individual decision makers can adapt to alternative states of water supply (i.e. drought, normal and wet) by reallocating inputs to obtain state-described outputs. By modelling changes to the states, or the frequency of the states occurring, climate change can modelled, and decision management responses explored. By treating the environment as another set of production systems, lessons learnt from managing perennial and annual agricultural production systems during the Millennium Drought in the MDB can be applied to explore the limits of irrigating the environment. The demand for water by a production system is a combination of state-general (must be irrigated every year e.g. perennial crop or permanent wetland) and state specific inputs (irrigate in response to the realise state). In simple terms, the greater the component of state-general water requirements a production system has, the less resilience it has when water supply is highly variable and if water is not available then production systems are irreversibly lost. While production systems that only need state-allocable water can adapt to alternative levels of scarcity without

  8. Reviewing the Management of Obstructive Left Colon Cancer: Assessing the Feasibility of the One-stage Resection and Anastomosis After Intraoperative Colonic Irrigation.

    Science.gov (United States)

    Awotar, Gavish Kumar; Guan, Guoxin; Sun, Wei; Yu, Hongliang; Zhu, Ming; Cui, Xinye; Liu, Jie; Chen, Jiaxi; Yang, Baoshun; Lin, Jianyu; Deng, Zeyong; Luo, Jianwei; Wang, Chen; Nur, Osman Abdifatah; Dhiman, Pankaj; Liu, Pixu; Luo, Fuwen

    2017-06-01

    The management of obstructive left colon cancer (OLCC) remains debatable with the single-stage procedure of primary colonic anastomosis after cancer resection and on-table intracolonic lavage now being supported. Patients with acute OLCC who were admitted between January 2008 and January 2015 were distributed into 5 different groups. Group ICI underwent emergency laparotomy for primary anastomosis following colonic resection and intraoperative colonic lavage; Group HP underwent emergency Hartmann's Procedure; Group CON consisted of patients treated by conservative management with subsequent elective open cancer resection; Group COL were colostomy patients; and Group INT consisted of patients who had interventional radiology followed by open elective colon cancer resection. The demographics of the patients and comorbidity, intraoperative data, and postoperative data were collected, with P  .05). Group INT and Group CON, when compared to the three surgical groups, Groups ICI, Group COL, and Group HP, individually, were statistically significant for the duration of surgery (P anastomosis following colonic resection after irrigation can be safely performed in selected patients, with the necessary surgical expertise, with no increased risk in mortality, anastomotic leakage, and other postoperative complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Benthic macroinvertebrates response to water management in a lowland river: effects of hydro-power vs irrigation off-stream diversions.

    Science.gov (United States)

    Salmaso, Francesca; Crosa, Giuseppe; Espa, Paolo; Gentili, Gaetano; Quadroni, Silvia; Zaccara, Serena

    2017-12-20

    An eco-hydraulic survey of the highly regulated Adda River (northern Italy) was carried out to highlight the ecological implications of the current water management, including minimum flows (MFs) set as environmental protection measures. Macroinvertebrates, flows, and other main physico-chemical parameters were monitored from 2010 to 2012 at seven sites located in two river reaches characterized by different water abstraction schemes. In the upper part of the river, water is mainly diverted for hydro-power, and, in water-depleted reaches, discharges equalled MF for more than 100 days y -1 , mainly during winter. In the downstream river reach, where irrigation use prevails, discharges were on average three times higher than in the upper part of the river, and flow values similar to MF were detected only for short periods during summer. The two resulting streamflow patterns seem to have shaped different benthic communities, superimposing to the natural downstream variation. The upper reach is characterized by univoltine taxa, while the lower reach by multivoltine taxa adapted to a more disturbed environment. Chironomidae, a well-known tolerant benthic family, dominated at a site affected by point-source pollution, which turned out to be another determinant of macroinvertebrate community. Despite these differences among sites in the benthic community structure, the current water management seems to allow, for all of the investigated river sites, the achievement of the good ecological status as defined by the local law set in accomplishment of the Water Framework Directive.

  10. Army General Fund Adjustments Not Adequately Documented or Supported

    Science.gov (United States)

    2016-07-26

    audit of the FY 1991 Army financial statements.6 The Army indicated in its FY 2008 Statement of Assurance on Internal Controls7 that this material...Accounting Service Indianapolis (DFAS Indianapolis) did not adequately support $2.8 trillion in third quarter journal voucher (JV) adjustments and...statements were unreliable and lacked an adequate audit trail. Furthermore, DoD and Army managers could not rely on the data in their accounting

  11. Modernized Irrigation Technologies in West Africa

    OpenAIRE

    Hakan Büyükcangaz; Mohammed Alhassan; Jacqueline Nyenedio Harris

    2017-01-01

    Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on...

  12. Water type and irrigation time effects on microbial metabolism of a soil cultivated with Bermuda-grass Tifton 85

    Directory of Open Access Journals (Sweden)

    Sandra Furlan Nogueira

    2011-06-01

    Full Text Available This study investigated the microbial metabolism in Bermuda-grass Tifton 85 areas after potable-water and effluent irrigation treatments. The experiment was carried out in Lins/SP with samples taken in the rainy and dry seasons (2006 after one year and three years of irrigation management, and set up on an entirely randomized block design with four treatments: C (control, without irrigation or fertilization, PW (potable water + 520 kg of N ha-1 year-1; TE3 and TE0 (treated effluent + 520 kg of N ha-1 year-1 for three years and one year, respectively. The parameters determined were: microbial biomass carbon, microbial activity, and metabolic quotient. Irrigation with wastewater after three years indicated no alteration in soil quality for C and ET3; for PW, a negative impact on soil quality (microbial biomass decrease suggested that water-potable irrigation in Lins is not an adequate option. Microbial activity alterations observed in TE0 characterize a priming effect.

  13. Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2016-06-01

    Full Text Available Water irrigation systems are required to provide adequate pressure levels in any sort of network. Quite frequently, this requirement is achieved by using pressure reducing valves (PRVs. Nevertheless, the possibility of using hydraulic machines to recover energy instead of PRVs could reduce the energy footprint of the whole system. In this research, a new methodology is proposed to help water managers quantify the potential energy recovering of an irrigation water network with adequate conditions of topographies distribution. EPANET has been used to create a model based on probabilities of irrigation and flow distribution in real networks. Knowledge of the flows and pressures in the network is necessary to perform an analysis of economic viability. Using the proposed methodology, a case study has been analyzed in a typical Mediterranean region and the potential available energy has been estimated. The study quantifies the theoretical energy recoverable if hydraulic machines were installed in the network. Particularly, the maximum energy potentially recovered in the system has been estimated up to 188.23 MWh/year with a potential saving of non-renewable energy resources (coal and gas of CO2 137.4 t/year.

  14. 77 FR 10767 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2012-02-23

    ... Irrigation Project on the proposed rates about the following issues: (1) The methodology for O&M rate setting..., Irrigation Project Manager, (Project operations and management contracted to Tribes), R.R.1, Box 980, Harlem... Projects AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of rate adjustments. SUMMARY: The...

  15. Precision overhead irrigation is suitable for several Central Valley crops

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Mitchell

    2016-04-01

    Full Text Available Overhead systems are the dominant irrigation technology in many parts of the world, but they are not widely used in California even though they have higher water application efficiency than furrow irrigation systems and lower labor requirements than drip systems. With water and labor perennial concerns in California, the suitability of overhead systems merits consideration. From 2008 through 2013, in studies near Five Points, California, we evaluated overhead irrigation for wheat, corn, cotton, tomato, onion and broccoli as an alternative to furrow and drip irrigation. With the exception of tomato, equal or increased yields were achieved with overhead irrigation. Many variables are involved in the choice of an irrigation system, but our results suggest that, with more research to support best management practices, overhead irrigation may be useful to a wider set of California farmers than currently use it.

  16. Weed management, training, and irrigation practices for organic production of trailing blackberry: II. Soil and plant nutrient concentrations

    Science.gov (United States)

    Organic production of blackberries is increasing, but there is relatively little known about how production practices affect plant and soil nutrient status. The impact of cultivar (‘Black Diamond’ and ‘Marion’), weed management (weed mat, hand weeding, and no weeding), primocane training time (Augus...

  17. 2008 Mississippi Curriculum Framework: Postsecondary Irrigation Management Technology. (Program CIP:01.0699 - Applied Horticulture/Horticultural Business Services, Other)

    Science.gov (United States)

    Oliver, Michael L.

    2008-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  18. Organic highbush blueberry production systems research – management of plant nutrition, irrigation requirements, weeds, and economic sustainability

    Science.gov (United States)

    A 0.4 ha planting was established in October 2006 to evaluate the effects of cultivar (Duke and Liberty), bed type ("flat ground" and raised beds), weed management [sawdust mulch and hand weed control; compost plus sawdust mulch with acetic acid, flaming, and hand control used as needed; and landsca...

  19. Institutions, technology and water control; water users associations and irrigation management reform in two large-scale systems in India

    NARCIS (Netherlands)

    Narain, V.

    2003-01-01

    Few studies of resource management have paid as much attention or intelligently surveyed the operational aspects of Water User Associations (WUAs) as Institutions, Technology and Water Control. The implementation of WUAs policies, argues this pioneering study, is shaped by the aspirations of its

  20. The Mawala irrigation scheme

    OpenAIRE

    de Bont, Chris

    2018-01-01

    This booklet was written to share research results with farmers and practitioners in Tanzania. It gives a summary of the empirical material collected during three months of field work in the Mawala irrigation scheme (Kilimanjaro Region), and includes maps, tables and photos. It describes the history of the irrigation scheme, as well current irrigation and farming practices. It especially focuses on the different kinds of infrastructural improvement in the scheme (by farmers and the government...

  1. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning

  2. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    2017-01-01

    Irrigated agriculture makes societies more likely to be ruled by authoritarian regimes. Ancient societies have long been thought to follow this pattern. We empirically show that irrigation affects political regimes even in the present. To avoid endogeneity, we use geographical and climatic...... variation to identify irrigation dependent societies. We find that countries whose agriculture depended on irrigation are about six points less democratic on the 21-point polity2 scale than countries where agriculture has been rainfed. We find qualitatively similar results across regions within countries...... both at the country level, and in premodern societies surveyed by ethnographers. (JEL: O11, N50, Q15)...

  3. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  4. Irrigation scheduling of green areas based on soil moisture estimation by the active heated fiber optic distributed temperature sensing AHFO

    Science.gov (United States)

    Zubelzu, Sergio; Rodriguez-Sinobas, Leonor; Sobrino, Fernando; Sánchez, Raúl

    2017-04-01

    Irrigation programing determines when and how much water apply to fulfill the plant water requirements depending of its phenology stage and location, and soil water content. Thus, the amount of water, the irrigation time and the irrigation frequency are variables that must be estimated. Likewise, irrigation programing has been based in approaches such as: the determination of plant evapotranspiration and the maintenance of soil water status between a given interval or soil matrix potential. Most of these approaches are based on the measurements of soil water sensors (or tensiometers) located at specific points within the study area which lack of the spatial information of the monitor variable. The information provided in such as few points might not be adequate to characterize the soil water distribution in irrigation systems with poor water application uniformity and thus, it would lead to wrong decisions in irrigation scheduling. Nevertheless, it can be overcome if the active heating pulses distributed fiber optic temperature measurement (AHFO) is used. This estimates the temperature variation along a cable of fiber optic and then, it is correlated with the soil water content. This method applies a known amount of heat to the soil and monitors the temperature evolution, which mainly depends on the soil moisture content. Thus, it allows estimations of soil water content every 12.5 cm along the fiber optic cable, as long as 1500 m (with 2 % accuracy) , every second. This study presents the results obtained in a green area located at the ETSI Agronómica, Agroalimentaria y Biosistesmas in Madrid. The area is irrigated by an sprinkler irrigation system which applies water with low uniformity. Also, it has deployed and installation of 147 m of fiber optic cable at 15 cm depth. The Distribute Temperature Sensing unit was a SILIXA ULTIMA SR (Silixa Ltd, UK) with spatial and temporal resolution of 0.29 m and 1 s, respectively. In this study, heat pulses of 7 W/m for 2

  5. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    resources optimal allocation model and④The hydrological ecosystem analysis in irrigation district. Our analysis showed that there are four major problems in domestic irrigation water resources allocation:Policies for rational water resources allocation and protection are not in place, unified management......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area....... The progress of research on the rational allocation of water resources in irrigation districts both at home and abroad may be summarized in four key aspects of the policy regarding water re?sources management:① The mechanism of water resource cycle and ② Transformation in irrigation district, ③ The water...

  6. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    Science.gov (United States)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  7. Simulating the Effects of Widespread Adoption of Efficient Irrigation Technologies on Irrigation Water Use

    Science.gov (United States)

    Kendall, A. D.; Deines, J. M.; Hyndman, D. W.

    2017-12-01

    Irrigation technologies are changing: becoming more efficient, better managed, and capable of more precise targeting. Widespread adoption of these technologies is shifting water balances and significantly altering the hydrologic cycle in some of the largest irrigated regions in the world, such as the High Plains Aquifer of the USA. There, declining groundwater resources, increased competition from alternate uses, changing surface water supplies, and increased subsidies and incentives are pushing farmers to adopt these new technologies. Their decisions about adoption, irrigation extent, and total water use are largely unrecorded, limiting critical data for what is the single largest consumptive water use globally. Here, we present a novel data fusion of an annual water use and technology database in Kansas with our recent remotely-sensed Annual Irrigation Maps (AIM) dataset to produce a spatially and temporally complete record of these decisions. We then use this fusion to drive the Landscape Hydrologic Model (LHM), which simulates the full terrestrial water cycle at hourly timesteps for large regions. The irrigation module within LHM explicitly simulates each major irrigation technology, allowing for a comprehensive evaluation of changes in irrigation water use over time and space. Here we simulate 2000 - 2016, a period which includes a major increase in the use of modern efficient irrigation technology (such as Low Energy Precision Application, LEPA) as well as both drought and relative wet periods. Impacts on water use are presented through time and space, along with implications for adopting these technologies across the USA and globally.

  8. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    Science.gov (United States)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  9. Incentives and technologies for improving irrigation water use efficiency

    Science.gov (United States)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply

  10. Decision support for optimised irrigation scheduling

    NARCIS (Netherlands)

    Anastasiou, A.; Sawas, D.; Pasgianos, G.; Sigrimis, N.; Stanghellini, C.; Kempkes, F.L.K.

    2009-01-01

    The system, developed under the FLOW-AID (an FP6 project), is a farm level water management system of special value in situations where the water availability and quality is limited. This market-ready precision irrigation management system features new models, hardware and software. The hardware

  11. 116 Appraisal as a Determinant for Adequate Compensation in ...

    African Journals Online (AJOL)

    User

    2012-01-24

    Jan 24, 2012 ... Abstract. In this paper, efforts were made to critically investigate and analyze appraisal as a determinant for adequate compensation in private sector organizations in Nigeria. Thus, the paper sets out by reviewing a body of existing literature on concept of management theories and how the subject of.

  12. Applying CSM-CERES-Maize to define a sowing window for irrigated maize crop - The Riacho´s Farm case study

    Directory of Open Access Journals (Sweden)

    Denise Freitas Silva

    2011-08-01

    Full Text Available Irrigation use constitutes an alternative to improve maize production in Central Minas Gerais State, Brazil. However, even under adequate water supply conditions, other environmental factors may influence maize crop growth and development and may, ultimately, affect grain yield. This study aimed to establish a sowing window for irrigated maize crop, based on simulation results obtained with the decision support model CSM-CERES-Maize. Simulations were made for crop management conditions of Riacho´s Farm, located in Matozinhos, Minas Gerais State, Brazil. It was employed the model´s seasonal tool, along with a data set containing 46 years of weather data records, to simulate maize yield for weekly sowing scenarios, starting on August 1st and ending on July 24th of each year. One defined an irrigated maize sowing window, taking into account the yield break risk that a farmer would be willing to take. The model proved to be an interesting tool to assist in decision making, regarding crop and irrigation management, for an irrigated maize production system. Assuming a 10% yield break in the expected average maximum maize yield, it was defined as sowing window, the period from January 23rd to March 6th, with February 20th as the best sowing date. Other sowing windows may be established according to the risk that the farmer would be willing to take.

  13. Irrigation Systems. Student's Guide.

    Science.gov (United States)

    Amarillo Coll., TX.

    This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…

  14. Irrigation Systems. Instructor's Guide.

    Science.gov (United States)

    Amarillo Coll., TX.

    This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…

  15. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management

    Science.gov (United States)

    Guardia, Guillermo; Abalos, Diego; García-Marco, Sonia; Quemada, Miguel; Alonso-Ayuso, María; Cárdenas, Laura M.; Dixon, Elizabeth R.; Vallejo, Antonio

    2016-09-01

    Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CCs). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following integrated soil fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C : N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and nonlegume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses.

  16. The Sustainability of Irrigation Schemes Under Climate Change

    Science.gov (United States)

    Naabil, E.; Lamptey, B. L.; Arnault, J.; Ayorinde, O. A.; Kunstmann, H.

    2015-12-01

    Irrigation is considered to be one of the best practices in agriculture to ensure food security. However water resources that are used for Irrigation activities are increasingly coming under stress, either due to extraction or climate variability and change. To adequately plan and manage water resources so as to ensure their sustainability requires a long term investigations of streamflow and climate. Streamflow analysis and forecasting gives signal of the occurrence of floods and drought situations. However the ability to maximise these early warning signal, especially for small watersheds, require the use of rainfall predictions approaches (Yucel et al., 2015). One approach to extend the predictions of these early warning signals is the coupling of mesoscale numerical weather prediction (NWP) model precipitation estimates with a spatial resolution hydrological model into streamflow estimates (Jasper et al. 2002;Wardah et al. 2008; Yucel et al. 2015). The study explored (1) the potential of the NWP model (WRF) in reproducing observed precipitation over the Tono basin in West Africa, and (2) the potential of a coupled version of WRF with a physics-based hydrological model (WRF-Hydro) in estimating river streamflow. In order to cope with the lack of discharge observation in the Tono basin, the WRF-Hydro performances are evaluated with a water balance approach and dam level observation. The WRF-Hydro predicted dam level is relatively close to the observation (dam level) from January to August (R2=0.93). After this period the deviation from observation increases (R2=0.62). This could be attributed to surface runoff due to peak rainfall (in August) resulting in soil saturation (soil reaching infiltration capacity) into the dam which has not been accounted for in the water balance model. WRF-Hydro has shown to give good estimation of streamflow especially for ungauged stations. Further works requires using WRF-Hydro modeling system for climate projection, and assess the

  17. Furrow Irrigation Management and Design Criteria Using Efficiency Parameters and Simulation Models Criterios para Manejo y Diseño de Riego por Surcos Utilizando Parámetros de Eficiencia y Modelos de Simulación

    Directory of Open Access Journals (Sweden)

    Eduardo A. Holzapfel

    2010-06-01

    Full Text Available This study analyzes the relationship between the variables of furrow irrigation and the irrigation performance parameters, crop yield, and deep percolation as a basis for furrow irrigation design and management. Application efficiency (AE, requirement efficiency (RE, requirement distribution efficiency (RDE, total distribution efficiency (TDE, and furrow irrigation management, operation, and design variables (inflow discharge, furrow length, and irrigation cutoff time were correlated. The relationship between performance irrigation parameters and relative yield was also examined. In addition, environmental aspects related to leaching and runoff were also presented for each of the parameters. Study results indicate that increasing the length of the furrow reduces RE, RDE, and TDE values. However, an increase in inflow discharge and cutoff time increases efficiency. In contrast, an increase in furrow length increases AE while an increase in inflow discharge and cutoff time reduces it. Unlike AE, RE, RDE, and TDE parameters are well-correlated with relative yield. TDE and AE are recommended parameters for the design, management, and operation of furrow irrigation systems, in order to establish good irrigation practices, and to prevent contamination.El presente artículo analiza la relación entre las variables de riego por surcos y los parámetros que determinan la calidad del riego, producción, y percolación profunda como base para el diseño y manejo del riego por surcos. Se ha realizado la correlación entre la eficiencia de aplicación (AE, eficiencia de requerimiento (RE, eficiencia de distribución del requerimiento (RDE, eficiencia de distribución total (TDE, y las variables de manejo, operación y diseño de riego por surcos (caudal, longitud de surco y tiempo de corte de riego. También se ha examinado la relación entre los parámetros que determinan la calidad de riego y la producción relativa. Además, se presentan para cada uno de

  18. Grower demand for sensor-controlled irrigation

    Science.gov (United States)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  19. THE ECOSYSTEM APPROACHES TO THE OPERATION OF IRRIGATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Vladimir Ivanovich Olgarenko

    2017-05-01

    Full Text Available The article presents a new methodological approaches to optimize the functioning processes of irrigation systems that have been passed a wide industrial verification in irrigation systems of the North Caucasus and proved from the standpoint of the landscape approach and on the basis of the laws of the technics, cybernetics, ecology and economic and mathematical methods. The methodological approach that has been proposed allows to consider the system as a multifactorial, closed with adjustable anthropogenic impacts on the environment, which allowed to develop a model of the irrigation system as a management object, taking into account environmental considerations and impacts on it natural and controllable factors, as well as the optimization factors. Determined classification which is required for operational planning and management of irrigation, including information and referral, seasonal and operational information. Improved planning and management process ensures of the irrigation forecast model, consisting of a control unit information base and the space-time optimization.

  20. Manejo de Água de Irrigação para Alfafa (Medicago sativa L. Management of Water for Alfalfa (Medicago sativa L. Irrigation

    Directory of Open Access Journals (Sweden)

    Joaquim Bartolomeu Rassini

    2001-12-01

    Full Text Available Este trabalho foi conduzido com o objetivo de avaliar a metodologia do balanço da demanda climática (ECA = evaporação do tanque classe A e PRP = precipitação pluvial com as condições edáficas (CAD -- capacidade de armazenamento de água do solo de um Latossolo Vermelho Amarelo (LVA, a fim de manejar a irrigação suplementar para alfafa cv. Crioula, em condições de campo. Com base nessa tecnologia, procurou-se aumentar a eficiência do uso de água pela alfafa, avaliando-se o comportamento de alfafa em três condições hídricas (H1 = testemunha sem irrigação; H2 = uso mais eficiente da água, a partir do estádio vegetativo pleno da planta, quando ECA -- PRP > ou = 30 mm; H3 = uso pleno da água, durante todo ciclo da planta quando ECA -- PRP > ou = 20 mm. Verificou-se que a tecnologia empregada é eficiente para manejar a irrigação suplementar, no LVA, bem como podem-se aumentar os lucros com alfafa, por meio do uso mais eficiente da água (H2 = ECA -- PRP > ou = 30 mm.This study was conducted to evaluate methods of balancing climatic demand (ECA = class A tank evaporation and PRP = rainfall with soil conditions (CAD = water storage capacity of na Hapludox soil, in order to manage supplementary water of alfalfa cultivar Crioula on field conditions. Therefore, the behavior of alfalfa under three soil water conditions (H1 = no irrigation; H2 = efficient water use at plants full vegetative stage when ECA -- PRP > or = 30 mm; H3 = full use of water during the entire plant cycle when ECA -- PRP > or = 20 mm were evaluated based on these methods, looking of efficient water use by alfalfa. Results indicated that the technology employed is very efficient in managing supplementary water, in the Hapludox, and that increasing not economic returns with alfalfa, by way of efficient water use (H2 = ECA -- PRP > or = 30 mm, can be achieved.

  1. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  2. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    Knowledge of irrigation water quality is critical to predicting, managing and reducing salt affect on soils. The study assessed the effect of industrial effluents on irrigation water quality, soils and plant tissues in Ibadan, Southwest Nigeria. The degree of pollution was evaluated using Sodium adsorption ratio, pH, cations – Cl ...

  3. Infrared thermometry for deficit irrigation of peach trees

    Science.gov (United States)

    Water shortage has been a major concern for crop production in the western states of the USA and other arid regions in the world. Deficit irrigation can be used in some cropping systems as a potential water saving strategy to alleviate water shortage, however, the margin of error in irrigation manag...

  4. Irrigated cotton grown on sierozem soils in South Kazakhstan

    Science.gov (United States)

    The Gloldnaya steppe has large areas of fertile sierozem soils that are important for crop production and its accompanying economic development. The soils are fertile loams but because of the steppe’s dry environment, they need to be irrigated. Our objective was to study irrigation management of cot...

  5. Thermal infrared sensors for postharvest deficit irrigation of peach

    Science.gov (United States)

    California has been in a historic drought and the lack of water has been a major problem for agriculture especially for crops that depend on irrigation. A multi-year field study was carried out to demonstrate the feasibility of applying thermal infrared sensors for managing deficit irrigation in an ...

  6. Effect of irrigation fluid temperature on body temperature during ...

    African Journals Online (AJOL)

    ... of dogs were hypothermic (<37oC). The addition of warmed irrigation fluids to a temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses. Keywords: Arthroscopy, Hypothermia, Irrigation fluid temperature, Thermoregulation.

  7. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    the management of soils under irrigation. The results from long-term irrigation case studies along the Lower Vaal River and Breede River show that the quality of soils can be improved. The opposite is also true where mismanagement occurred. Research on the salinity threshold of major crops (grapevines, wheat, maize, ...

  8. Status and migration of irrigation in the USA

    Science.gov (United States)

    Irrigated agriculture produces 49% of crop market value on 18% of cropped lands in the USA. Irrigation is essential to the most highly productive, intensely managed, and internationally competitive sectors of our agricultural economy, which play a key role in meeting growing global food, fiber, and ...

  9. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  10. Behavior of arthroscopic irrigation systems

    NARCIS (Netherlands)

    Tuijthof, G. J. M.; Dusée, L.; Herder, J. L.; van Dijk, C. N.; Pistecky, P. V.

    2005-01-01

    In the literature, no consensus exists about optimal irrigation of joints during arthroscopic operations. The goal of this paper is to study the behavior of irrigation systems resulting in the proposal of guidelines for optimal irrigation. To this end, optimal irrigation is defined as the steady

  11. Irrigation Analysis Based on Long-Term Weather Data

    OpenAIRE

    James R. Mahan; Robert J. Lascano

    2016-01-01

    Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effec...

  12. The socio-economic base line survey; first chapter of the handbook under preparation: "Managing farmers: a handbook for working with farmers in irrigation and drainage projects"

    NARCIS (Netherlands)

    Schrevel, A.

    2002-01-01

    The text The socio-economic base line survey is the first chapter of a book under preparation meant to instruct senior staff of irrigation and drainage projects on techniques to work with farmers. It informs the reader of best practices to set up and execute a socio-economic baseline survey. The

  13. Vision of irrigation

    Directory of Open Access Journals (Sweden)

    Fernando Braz-Tangerino

    2014-08-01

    Full Text Available Irrigation not only has been a key factor for the development and maintenance of human societies but it still plays this role now and it is foreseen that in the future as well. Its evolution has been constrained to the advance in knowledge on matters regarding Agronomy and Water Engineering and in technology however, many challenges deserve further research. It is worth to note that Brazil has strongly promoted irrigation in the last decade. Within the limited extension of this article, some current topics in irrigation, some of them are innovative such us the research line studying water flow in soil-plant in Mediterranean plants and its consequences on water use,. and future challenges are presented with the purpose of stimulate publication of Irrigation papers in the journal “Ingeniería del Agua” among Portuguese and Spanish language communities.

  14. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    For sound land use and water management in irrigated area, knowledge of the chemical composition of soils, water, climate, drainage condition and irrigation methods before action are crucial for sustainability of irrigation projects. The study aimed to evaluate the physicochemical properties of soils and water for intended ...

  15. Malt barley yield and quality affected by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little is known about the comparison of management practices on malt barley (Hordeum vulgare L.) yield and quality in irrigated and non-irrigated cropping systems. We evaluated the effects of irrigation, tillage, cropping system, and N fertilization on malt barley yield and quality in a sandy loam s...

  16. Modelo de gestão de rega em espaços verdes Model of irrigation management on green spaces

    Directory of Open Access Journals (Sweden)

    A. Serafim

    2010-01-01

    Full Text Available Este Modelo de Gestão de rega foi con­cebido para aplicação aos Espaços Verdes de Lazer. O Modelo reconhece a água como um factor de produção e optimiza a sua aplica­ção na rega de Espaços Verdes, dando espe­cial atenção e cuidado à variação temporal e espacial dos factores intervenientes. O Modelo envolve diversas matérias: as espécies vegetais implantadas ou a plantar, fases fenológicas, os solos existentes, sua localização e características físicas, a topo­grafia, os elementos e factores do clima. Os métodos a utilizar são os preconizados em Allen et al. (1998: o método da FAO Penman-Monteith para o cálculo da evapo­transpiração de referência, a técnica dos coeficientes culturais duais para a obtenção da evapotranspiração cultural, e a oportuni­dade de rega pelos balanços hídricos. O Modelo integra a programação de algo­ritmos implementados em Visual Basic 6, VB6 e um Sistema de Informação Geográ­fica (SIG. O Modelo determina os parâme­tros de rega em tempo real, momento da rega, dotação, tempo de rega, intervalo de tempo entre regas, bem como, para a asper­são, a intensidade média de precipitação e grau de pulverização. A utilização do Modelo é feita associada à estação meteorológica automática e ao sis­tema de rega também automático.The presented Model of Irrigation Man­agement was designed for application on green spaces and leisure areas. The Model recognizes water as a produc­tion key-factor and optimizes its use on the irrigation of green spaces, giving particular attention to the temporal and spatial varia­tion of input variables. Variables entered in the Model included existing or future target plant species, phenological phases, type of soil (i.e. loca­tion and physical characteristics, topogra­phy and climate factors. Model construction was similar to the methods outlined in FAO Report 56, namely: the method of Penman-Monteith for the calculation of

  17. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  18. Water Pricing and Implementation Strategies for the Sustainability of an Irrigation System: A Case Study within the Command Area of the Rakh Branch Canal

    Directory of Open Access Journals (Sweden)

    Muhammad Uzair Qamar

    2018-04-01

    Full Text Available The command area of the Rakh branch canal grows wheat, sugarcane, and rice crops in abundance. The canal water, which is trivial for irrigating these crops, is conveyed to the farms through the network of canals and distributaries. For the maintenance of this vast infrastructure; the end users are charged on a seasonal basis. The present water charges are severely criticized for not being adequate to properly manage the entire infrastructure. We use the residual value to determine the value of the irrigation water and then based on the quantity of irrigation water supplied to farm land coupled with the infrastructure maintenance cost, full cost recovery figures are executed for the study area, and policy recommendations are made for the implementation of the full cost recovery system. The approach is unique in the sense that the pricings are based on the actual quantity of water conveyed to the field for irrigating crops. The results of our analysis showed that the canal water is severely under charged in the culturable command area of selected distributaries, thus negating the plan of having a self-sustainable irrigation system.

  19. Adequate Social Science, Curriculum Investigations, and Theory.

    Science.gov (United States)

    Anyon, Jean

    1982-01-01

    Two studies of curriculum are used as examples of trends in social science research. Criteria are developed for the "ideal" social science and then applied to the two studies. Curriculum theorizing is discussed as related to social science theory. Suggestions are made for the content of an adequate curriculum theory. (JN)

  20. Adequate supervision for children and adolescents.

    Science.gov (United States)

    Anderst, James; Moffatt, Mary

    2014-11-01

    Primary care providers (PCPs) have the opportunity to improve child health and well-being by addressing supervision issues before an injury or exposure has occurred and/or after an injury or exposure has occurred. Appropriate anticipatory guidance on supervision at well-child visits can improve supervision of children, and may prevent future harm. Adequate supervision varies based on the child's development and maturity, and the risks in the child's environment. Consideration should be given to issues as wide ranging as swimming pools, falls, dating violence, and social media. By considering the likelihood of harm and the severity of the potential harm, caregivers may provide adequate supervision by minimizing risks to the child while still allowing the child to take "small" risks as needed for healthy development. Caregivers should initially focus on direct (visual, auditory, and proximity) supervision of the young child. Gradually, supervision needs to be adjusted as the child develops, emphasizing a safe environment and safe social interactions, with graduated independence. PCPs may foster adequate supervision by providing concrete guidance to caregivers. In addition to preventing injury, supervision includes fostering a safe, stable, and nurturing relationship with every child. PCPs should be familiar with age/developmentally based supervision risks, adequate supervision based on those risks, characteristics of neglectful supervision based on age/development, and ways to encourage appropriate supervision throughout childhood. Copyright 2014, SLACK Incorporated.

  1. Innovating for Sustainable, Reliable and Adequate Electricity ...

    African Journals Online (AJOL)

    This research sought to determine the most readily available modes of innovation in South Africa and Nigeria to exploit both conventional and renewable energy sources, in order to generate adequate and reliable electricity as part of meeting sustainable development objectives. The research analysed a variety of ...

  2. Identifying Spatiotemporal Changes In Irrigated Area Across Southwestern Michigan, USA, Using Remote Sensing and Climate Data

    Science.gov (United States)

    Xu, T.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    Irrigation, which has become more common in humid regions, is the largest consumptive water use across the US and the globe. In southwestern Michigan, there has been a dramatic expansion in irrigation water use for row crops (primarily corn and soybean) in the past decade, mostly from groundwater pumping. The rapid expansion of irrigated row crops has potentially profound implications for terrestrial water balances, food production, and local to regional climate. Detailed maps of spatio-temporal changes in irrigation are essential to better understand irrigation impacts. However, accurate monitoring of irrigation area can be difficult in humid regions using remotely sensed methods due to the similarity in greenness between non-irrigated and irrigated areas in most years. Here, we use remote sensing to create annual, 30m-resolution maps of irrigated cropland by integrating Landsat and MODIS satellite products along with the PRISM climate dataset. From these data we developed spatial time series of vegetation and extreme weather indices, including novel indices we developed specifically to maximize detection of irrigation. Using these input data, machine learning classification was then performed over the region to identify irrigated crop area for each year. The resulting annual irrigation maps suggest that total irrigated area in southwestern Michigan increased by 160% from 2000 to 2017. The accuracy of the maps is assessed relative to maps created for an arid region using the same method. The maps can be integrated into hydrologic models to quantify irrigation impacts and support water resources management.

  3. Drip irrigation in coffee crop under different planting densities: Growth and yield in southeastern Brazil

    OpenAIRE

    Assis,Gleice A. de; Scalco,Myriane S.; Guimarães,Rubens J.; Colombo,Alberto; Dominghetti,Anderson W.; Matos,Nagla M. S. de

    2014-01-01

    Irrigation associated to reduction on planting spaces between rows and between coffee plants has been a featured practice in coffee cultivation. The objective of the present study was to assess, over a period of five consecutive years, influence of different irrigation management regimes and planting densities on growth and bean yield of Coffea arabica L.. The treatments consisted of four irrigation regimes: climatologic water balance, irrigation when the soil water tension reached values clo...

  4. Irrigating grazed pasture decreases soil carbon and nitrogen stocks.

    Science.gov (United States)

    Mudge, Paul L; Kelliher, Francis M; Knight, Trevor L; O'Connell, Denis; Fraser, Scott; Schipper, Louis A

    2017-02-01

    The sustainability of using irrigation to produce food depends not only on the availability of sufficient water, but also on the soil's 'response' to irrigation. Stocks of carbon (C) and nitrogen (N) are key components of soil organic matter (SOM), which is important for sustainable agricultural production. While there is some information about the effects of irrigation on soil C stocks in cropping systems, there is a paucity of such studies in pastoral food production systems. For this study, we sampled soils from 34 paired, irrigated and unirrigated pasture sites across New Zealand (NZ) and analysed these for total C and N. On average, irrigated pastures had significantly (P stocks and the length of time under irrigation. This study suggests SOM will decrease when pastures under a temperate climate are irrigated. On this basis, increasing the area of temperate pasture land under irrigation would result in more CO 2 in the atmosphere and may directly and indirectly increase N leaching to groundwater. Given the large and increasing area of land being irrigated both in NZ and on a global scale, there is an urgent need to determine whether the results found in this study are also applicable in other regions and under different land management systems (e.g. arable). © 2016 John Wiley & Sons Ltd.

  5. Influence of Irrigation Scheduling Using Thermometry on Peach Tree Water Status and Yield under Different Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Huihui Zhang

    2017-02-01

    Full Text Available Remotely-sensed canopy temperature from infrared thermometer (IRT sensors has long been shown to be effective for detecting plant water stress. A field study was conducted to investigate peach tree responses to deficit irrigation which was controlled using canopy to air temperature difference (ΔT during the postharvest period at the USDA-ARS (U.S. Department of Agriculture, Agricultural Research Service San Joaquin Valley Agricultural Sciences Center in Parlier, California, USA. The experimental site consisted of a 1.6 ha early maturing peach tree orchard. A total of 18 IRT sensors were used to control six irrigation treatments including furrow, micro-spray, and surface drip irrigation systems with and without postharvest deficit irrigation. During the postharvest period in the 2012–2013 and 2013–2014 growing seasons, ΔT threshold values at mid-day was tested to trigger irrigation in three irrigation systems. The results showed that mid-day stem water potentials (ψ for well irrigated trees were maintained at a range of −0.5 to −1.2 MPa while ψ of deficit irrigated trees dropped to lower values. Soil water content in deficit surface drip irrigation treatment was higher compared to deficit furrow and micro-spray irrigation treatments in 2012. The number of fruits and fruit weight from peach trees under postharvest deficit irrigation treatment were less than those well-watered trees; however, no statistically significant (at the p < 0.05 level reduction in fruit size or quality was found for trees irrigated by surface drip and micro-spray irrigation systems by deficit irrigation. Beside doubles, we found an increased number of fruits with deep sutures and dimples which may be a long-term (seven-year postharvest regulated deficit irrigation impact of deficit irrigation on this peach tree variety. Overall, deployment of IRT sensors provided real-time measurement of canopy water status and the information is valuable for making irrigation

  6. 76 FR 58293 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2011-09-20

    ... expenses include the following: (a) Salary and benefits for the project engineer/manager and project... Mexico 87104, Telephone: (505) 563-3100. Pine River Irrigation Project..... John Waconda, Superintendent...

  7. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    Science.gov (United States)

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  8. Coil irrigation in sugar cane (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Jesús Sánchez Gutiérrez

    2016-01-01

    Full Text Available This study was made at the Basic Seed Bank of the Local Sugar Cane Research Station for the Mideastern Cuba, based in Camaguey, on brown carbonate soil, between 2013 and 12014. Coil irrigation was applied to meet the water requirements for the crop, according to the edafoclimatic conditions and the different phenological phases it has. The Savo method was used to determine useful rain water. Adjustment and complementation of the irrigation program was based on indicators that characterize the exploitation scheme. The machine´s working parameters were determined to meet the water needs, and increase crop´s overall yields. The evaluations and results achieved have contributed to new proposals for management and operation of coil irrigation, and they are important to increase its efficiency.

  9. Comparison of two negative pressure systems and syringe irrigation for root canal irrigation: an ex vivo study.

    Science.gov (United States)

    Adorno, C G; Fretes, V R; Ortiz, C P; Mereles, R; Sosa, V; Yubero, M F; Escobar, P M; Heilborn, C

    2016-02-01

    To compare in a laboratory study two negative pressure systems and syringe irrigation, regarding the delivery of a contrast solution (CS) to working length (WL) and into simulated lateral canals and the effective volume of irrigant aspirated during negative pressure irrigation. Twenty single-canaled incisor training models were constructed with six simulated lateral canals each (2, 4 and 6 mm to WL) and a size 40, 0.04 taper apical size canal. Each model underwent all irrigation procedures (EndoVac at WL (EndoVac-0) and WL-2 mm (EndoVac-2), iNP needle with negative pressure (iNPn) and syringe irrigation with the iNP needle (iNPs) and a 30-G side-slot needle placed at WL (SI0) and WL-2 (SI2) mm in a crossover design. CS was delivered at 4 mL min(-1) for 60 s with a peristaltic pump and a recovery device collected the volume (in mL) of irrigant suctioned by the negative pressure groups. The irrigation procedures were digitally recorded, and a still image of the 60-s time-point of irrigation was evaluated for CS distance to WL (in millimetres) after irrigation and penetration into lateral canals (3-point scale). Statistical tests used were Kruskal-Wallis and Dunn's test. EndoVac-0, iNPn and iNPs had median distances of CS to WL of 0 mm, followed by SI0 (0.2 mm), SI2 (0.7 mm) and EndoVac-2 (1.7 mm). There were no significant differences between EndoVac-0, iNPn, iNPs and SI0, but these were significantly different to SI2 and EndoVac-2 (P irrigation and that collected by iNPn (4 mL), but these were significantly greater than EndoVac-0 (2.8 mL, P irrigation procedures were ineffective at penetration into lateral canals. iNPn, EndoVac-0, iNPs and SI0 achieved greater irrigant penetration to WL. iNPn was able to collect a median volume of CS (4 mL) similar to that delivered by syringe irrigation (iNPp, SI0 and SI2). An adequate irrigant penetration into lateral canals could not be achieved by any of the systems. © 2015 International Endodontic Journal. Published by John

  10. Gain-P: A new strategy to increase furrow irrigation efficiency

    International Nuclear Information System (INIS)

    Schmitz, G.H.; Wohling, T.; Paly, M. D.; Schutze, N.

    2007-01-01

    The new methodology GAIN-P combines Genetic Algorithms, Artificial Intelligence techniques and rigorous Process modeling for substantially improving irrigation efficiency. The new strategy simultaneously identifies optimal values of both scheduling and irrigation parameters for an entire growing season and can be applied to irrigation systems with adequate or deficit water supply. In this contribution, GAIN-P is applied to furrow irrigation tackling the more difficult subject of the more effective deficit irrigation. A physically -based hydrodynamic irrigation model is iteratively coupled with a 2D subsurface flow model for generating a database containing all realistically feasible scenarios of water application in furrow irrigation. It is used for training a problem-adapted artificial neural network based on self-organized maps, which in turn portrays the inverse solution of the hydrodynamic furrow irrigation model and thus enormously speeds up the overall performance of the complete optimization tool. Global optimization with genetic algorithm finds the schedule with maximum crop yield for the given water volume. The impact of different irrigation schedules on crop yield is calculated by the coupled furrow irrigation model which also simulates soil evaporation, precipitation and root water uptake by the plants over the whole growing seasons, as well as crop growth and yield. First results with the new optimization strategy show that GAIN-P has a high potential to increase irrigation efficiency. (author)

  11. Allergen and allergy risk assessment, allergen management, and gaps in the European Food Information Regulation (FIR): Are allergic consumers adequately protected by current statutory food safety and labelling regulations?

    Science.gov (United States)

    Reese, Imke; Holzhauser, Thomas; Schnadt, Sabine; Dölle, Sabine; Kleine-Tebbe, Jörg; Raithel, Martin; Worm, Margitta; Zuberbier, Torsten; Vieths, Stefan

    Individuals suffering from IgE-mediated food allergies are obliged to systematically eliminate the culprit allergen from their diet. To support allergic consumers in avoiding food allergens to make informed and safe purchasing choices, the European Union (EU) Food Information Regulation (FIR) imposes a requirement to label the 13 most common allergenic foods (food groups) as ingredients in pre-packed and non-pre-packed foods. The as yet unregulated labelling of unintended presence of allergens has lead to a widespread use of precautionary allergen labelling (PAL) - despite established allergen management in many companies. This PAL significantly hampers making a safe food choice, or renders it largely unfeasible, since it is not possible to estimate the actual extent to which allergens are present in a product. Not only food-allergic consumers, but also the food industry, physicians, dieticians/nutritionists, as well as food regulators and law enforcement officers would benefit from a standardized labelling regulation for unintended presence of allergens. The following position paper highlights the chances of such a regulation on the basis of available data and the analytical methods for detecting allergenic components in the context of effective allergen management. On the basis of evidence-based allergen and allergy-risk assessment, the use of PAL should be restricted to only those allergens that are unavoidable and which represent an unacceptable risk for allergic consumers, e. g., when allergens are present at levels that exceed a clinically meaningful reference dose or in the case of unintended presence of particulate allergens (e. g., nuts or sesame seeds).

  12. Drip irrigation using a PLC based adaptive irrigation system

    OpenAIRE

    Shahidian, S.; Serralheiro, R. P.; Teixeira, J. L.; Santos, F. L.; Oliveira, M. R. G.; Costa, J. L.; Toureiro, C.; Haie, Naim; Machado, R. M.

    2009-01-01

    Most of the water used by man goes to irrigation. A major part of this water is used to irrigate small plots where it is not feasible to implement full-scale Evapotranspiration based irrigation controllers. During the growth season crop water needs do not remain constant and varies depending on the canopy, growth stage and climate conditions such as temperature, wind, relative humidity and solar radiation. Thus, it is necessary to find an economic irrigation controller that can adapt the dail...

  13. Lixiviação de imazethapyr + imazapic em função do manejo de irrigação do arroz Imazethapyr + imazapic leaching in lowland soil as affected by rice irrigation management

    Directory of Open Access Journals (Sweden)

    L.F.D. Martini

    2011-03-01

    Full Text Available Os herbicidas utilizados no sistema Clearfield® de arroz irrigado são persistentes e móveis no solo, portanto práticas de manejo podem influenciar na sua dinâmica no ambiente. O objetivo deste trabalho foi determinar o efeito de três manejos de irrigação da cultura do arroz na lixiviação da mistura formulada dos herbicidas imazethapyr e imazapic, em solo de várzea. O experimento consistiu de um ensaio de campo seguido de um bioensaio. As coletas de amostras de solo foram feitas por meio da retirada de monolitos em áreas submetidas aos diferentes manejos de irrigação do experimento de campo. As amostras foram seccionadas em intervalos de 5 cm, até a profundidade de 30 cm. Os tratamentos foram compostos pelos manejos de irrigação por inundação contínua, intermitente e por banhos (fator A e pelas profundidades do solo de 0 a 30 cm (fator B. Foi efetuada a comparação do crescimento de plantas de arroz não tolerantes aos herbicidas, cultivadas em solo submetido aos manejos de irrigação, com o crescimento das plantas em solo com quantidade conhecida dos herbicidas. A irrigação promoveu movimento vertical do herbicida, porém a diferença entre os manejos de irrigação apenas foi observada na camada superficial do solo (0-5 cm, com menores concentrações na irrigação por banhos. A mistura formulada do herbicida concentrou-se na camada de 5-20 cm de profundidade aos 134 dias após a aplicação.The herbicides used in ClearfieldTM rice technology are persistent and mobile in soil, and thus, management practices can affect its dynamics. The objective of this study was to determine the effect of three different rice irrigation managements on leaching of the formulated mixture of the herbicides imazethapyr and imazapic in lowland soil. This study consisted of a field experiment followed by bioassay. The bioassay was conducted in a greenhouse of the Department of Biology of the Universidade Federal de Santa Maria in 2009. Soil

  14. COEFICIENTE DE CULTURA E RELAÇÕES HÍDRICAS DO CAFEEIRO, CULTIVAR CATUCAÍ, SOB DOIS SISTEMAS DE MANEJO DA IRRIGAÇÃO CROP COEFFICIENT AND WATER RELATIONSHIPS OF COFFEE CATUCAÍ CULTIVAR UNDER TWO SYSTEMS OF IRRIGATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Tiago Roberto Wehr

    2007-10-01

    study was to determine the crop coefficient (kc, diffusion resistance and leaf water potential coffee, Catucaí cultivar, in blooming and grain formation phases, submitted to two irrigation system management. The coffee evapotranspiration was determined by soil water balance, and crop evapotranspiration was assessed by Penman-Monteith (FAO-56 method. The irrigation application times were determined in two management systems: based on the percentage wetted area (P, and based on the location coefficient (Kl. The results allowed to conclude that the irrigation management using the location coefficient provided an increase of the irrigation application time, and, consequently, increasing the irrigation depth and the crop coefficient values, which reached the mean of 1.12. For the management system based on the percentage wetted area, the mean value of the crop coefficient, in the appraised period, was 1.06. The mean diffusion resistance and leaf water potential were lower when the management system was adopted with base in Kl, which provided an increase of the transpiration and, consequently, of kc.

    KEY-WORDS: Evapotranspiration; diffusion resistance; leaf water potential.

  15. Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards.

    Science.gov (United States)

    Fornasiero, D; Duso, C; Pozzebon, A; Tomasi, D; Gaiotti, F; Pavan, F

    2012-02-01

    The effect of irrigation on the abundance of Empoasca vitis (Göthe) populations was investigated in four vineyards located in northeastern Italy. In two experiments, we compared leafhopper population densities in plots irrigated (micro-spray irrigation system) or nonirrigated. In another experiment, we studied the effect of various irrigation systems on E. vitis populations over two successive seasons. In particular, five treatments were compared: control (not irrigated), traditional drip system, three types of subirrigation varying in distance from the row (40, 135, and 95 cm). In this vineyard, stem water potential was monitored with a pressure chamber. E. vitis population densities were affected by irrigation, with higher densities of this pest recorded on irrigated vines. Highest E. vitis densities were detected in drip irrigation plots compared with nonirrigated plots where water stress was highest. Moderate water stress (subirrigation plots) was associated with intermediate leafhopper densities. Implications for integrated pest management are discussed.

  16. Charts for Guiding Adjustments of Irrigation Interval to Actual Weather Conditions

    International Nuclear Information System (INIS)

    Kipkorir, E.C.

    2002-01-01

    Major problems in irrigation management at short time-step during the season are unreliability of rainfall and absence of guidance. By considering the climate of region, crop and soil characteristics, the irrigation method and local irrigation practices, this paper presents the concept of irrigation charts. The charts are based on soil water technique. As an example irrigation chart for a typical irrigation system located in the semi-arid area in Naivasha, Kenya is presented. The chart guides the user in adjustment of irrigation interval to the actual weather conditions throughout the growing season. It is believed that the simplicity of the chart makes it a useful tool for a better utilisation of the limited irrigation water

  17. Manejo da irrigação (tensiometria e balanço hídrico climatológico para a cultura do feijoeiro em sistemas de cultivo direto e convencional Irrigation management (tensiometry and simplified climatological water balance in irrigated bean under conventional and no tillage systems

    Directory of Open Access Journals (Sweden)

    Adriano S. Lopes

    2004-04-01

    Full Text Available Dois métodos de manejo de irrigação, por tensiometria e pelo balanço hídrico climatológico simplificado baseado no tanque "Classe A", foram aplicados e avaliados os resultados no balanço de água no solo, na evapotranspiração e na produtividade de grãos da cultura do feijoeiro, cultivar IAC-Carioca, conduzida na estação seca com irrigação por pivô central, após uma cultura de milho (estação úmida, no primeiro ano de cultivo, nos sistemas de plantio direto e convencional em uma área de Latossolo Vermelho. Concluiu-se que ambos os métodos são possíveis de serem adotados por irrigantes ou técnicos com níveis médios de tecnologia e conhecimento, embora com a tensiometria seja possível um melhor entendimento das reais condições hídricas do solo na região do sistema radicular da cultura. Não foram verificadas diferenças importantes de armazenamento de água no solo e de produtividade de grãos entre os sistemas de plantio nesse primeiro ano; o manejo por tensiometria resultou em maiores variações na água disponível consumida do que o do balanço hídrico climatológico simplificado e resultou, em relação a esse, economia de 15% na água de irrigação aplicada, sem afetar a produtividade de grãos.Two methods of irrigation management, tensiometry and simplified climatological water balance with Class A pan, were applied in a bean crop, IAC-Carioca cultivar, growing in a Oxisol, irrigated by center pivot under conventional and no tillage systems. The soil water balance, evapotranspiration and bean yield were evaluated. The results showed that, both irrigation management methods are possible to be adopted for farmers or technicians with average level of technology and knowledge. However, the tensiometry offers a better understanding of the real soil water conditions at plant root system. Differences of soil water storage and grain yield between tillage systems were not verified. The tensiometry management method

  18. Winter Irrigation Effects in Cotton Fields in Arid Inland Irrigated Areas in the North of the Tarim Basin, China

    Directory of Open Access Journals (Sweden)

    Pengnian Yang

    2016-02-01

    Full Text Available Winter irrigation is one of the water and salt management practices widely adopted in arid irrigated areas in the Tarim Basin located in the Xinjiang Uygur Autonomous Region in the People’s Republic of China. A winter irrigation study was carried out from November 2013 to March 2014 in Korla City. A cotton field was divided into 18 plots with a size of 3 m × 3 m and five winter irrigation treatments (1200 m3/ha, 1800 m3/ha, 2400 m3/ha, 3000 m3/ha, and 3600 m3/ha and one non-irrigation as a control were designed. The results showed that the higher winter irrigation volumes allowed the significant short-term difference after the irrigation in the fields with the higher soil moisture content. Therefore, the soil moisture in the next sowing season could be maintained at the level which was slightly lower than field capacity and four times that in the non-irrigation treatment. The desalination effect of winter irrigation increased with the increase of water irrigation volume, but its efficiency decreased with the increase of water irrigation volume. The desalination effect was characterized by short-term desalination, long-term salt accumulation, and the time-dependent gradually decreasing trend. During the winter irrigation period, air temperature was the most important external influencing factor of the soil temperature. During the period of the decrease in winter temperatures from December to January, soil temperature in the 5-cm depth showed no significant difference in all the treatments and the control. However, during the period of rising temperatures from January to March, soil temperature in the control increased significantly, faster than that in all treatments. Under the same irrigation volume, the temperature difference between the upper soil layer and the lower soil layer increased during the temperature drop period and decreased during the temperature rise period. In this paper, we proposed the proper winter irrigation volume of 1800

  19. Administration and Management of Irrigation Water in 24 User Organizations in Chile Administración y Gestión del Agua de Riego en 24 Organizaciones de Usuarios en Chile

    Directory of Open Access Journals (Sweden)

    Jara Jorge

    2009-06-01

    Full Text Available Approximately 85% of the water consumed in Chile is destined to agricultural irrigation and is managed by the users themselves. This study analyzed the price that irrigation water users pay to their Water User Associations (WUAs to which they belong and the relationship of this price to the professional level and performance of the WUAs. The study included 24 WUAs: 10 River Administration Boards (JV and 14 Irrigation Canal Associations (AC. The annual operational budget of each WUA, the price paid by users and the management capacities of the board of directors of each WUA were compared. The study also determined the relative value of user payments to WUAs as a proportion of total production costs of the main crops in each zone. The variability of user fees per irrigated hectare decreases when the irrigation area of the WUA is more than 10 000 ha, though this was not observed in JVs. The presence of technical-professional staff directly affects the development and growth of the WUAs. As well, the WUAs with a greater level of capacity development (NDC have more board members with a higher education level and have lower rates of unpaid user fees. The price that users pay to the WUA by irrigated hectare represents less than 4.0% of the average total production cost of the main crops in the study area. Finally, no correlation was found between the prices that users pay and the average profitability of the main crops, or between price and the geographical location of the WUAs.Aproximadamente, el 85% del agua consumida en Chile es destinada al riego agrícola, siendo administrada por los propios usuarios. En este estudio, se analizó el costo que cancelan los usuarios del agua de riego a sus Organizaciones de Usuarios de Agua (WUAs y el nivel de profesionalización y desempeño de éstas. Se estudiaron 24 WUAs: 10 Juntas de Vigilancia (JV y 14 Asociaciones de Canalistas (AC. Se comparó el presupuesto anual de operaciones de cada WUA, el valor que

  20. Effect of Preplant Irrigation, Nitrogen Fertilizer Application Timing, and Phosphorus and Potassium Fertilization on Winter Wheat Grain Yield and Water Use Efficiency

    Directory of Open Access Journals (Sweden)

    Jacob T. Bushong

    2014-01-01

    Full Text Available Preplant irrigation can impact fertilizer management in winter wheat. The objective of this study was to evaluate the main and interactive effects of preplant irrigation, N fertilizer application timing, and different N, P, and K fertilizer treatments on grain yield and WUE. Several significant two-way interactions and main effects of all three factors evaluated were observed over four growing seasons for grain yield and WUE. These effects could be described by differences in rainfall and soil moisture content among years. Overall, grain yield and WUE were optimized, if irrigation or adequate soil moisture were available prior to planting. For rain-fed treatments, the timing of N fertilizer application was not as important and could be applied before planting or topdressed without much difference in yield. The application of P fertilizer proved to be beneficial on average years but was not needed in years where above average soil moisture was present. There was no added benefit to applying K fertilizer. In conclusion, N and P fertilizer management practices may need to be altered yearly based on changes in soil moisture from irrigation and/or rainfall.

  1. Perception of Mothers on Adequate Nutrition

    Directory of Open Access Journals (Sweden)

    Darshini Valoo

    2017-03-01

    Full Text Available Background: Malnutrition in children less than 5 years old persists around the world. In West Java and one of the districts of West Java (Sumedang, the prevalence of malnutrition is about 18.5% and 15.8% respectively. Numerous factors can lead to child malnutrition. Difficulties in availability, accessibility, acceptability and quality of food can be contributing factors. A good perception of mother on adequate nutrition can improve children’s nutritional status. This study was conducted to study the perception of mothers with children 2 to 5 years old on adequate nutrition. Methods: Most of the respondents had good perception on the aspect of adequate nutrition. Results showed perception on availability was 83.8%, physical accessibility was 97.1%, economical accessibility was 98.6%, information accessibility was 84.8% and acceptability was 81.0%. However, perception of respondents on good quality nutrition for the main meal and additional food was still poor. Moreover, there are taboos for eating shrimp and watermelon. Additionally, children were given snacks in large amount. Results: There was a strong correlation between mid-upper arm muscle area/size and muscular strength (correlation cooefficient 0.746. Moreover, the higher the Body Mass Index, the stronger the muscle strength was to some point. If the BMI was more than 25 kg/m2, this findings did not occurred. Conclusions: This study reveals that the perception of mothers on good quality food is poor regardless the good results on availibility, accesibility and acceptability.

  2. Cultivares de arroz irrigado e nutrientes na água de drenagem em diferentes sistemas de cultivos Irrigated rice cultivars and drainnage water nutrient under differnt managements systems

    Directory of Open Access Journals (Sweden)

    Lauro Weber

    2003-02-01

    components of four irrigated rice cultivars under different management systems, as well as, to measure the concentration of nutrients in the initial drainage water. The research was conducted during the 1998/99 growing season on a lowland area on a PLANOSOIL located at the Federal University of Santa Maria-RS, Brazil. The rice cultivars were IRGA 417, EL PASO 144, BRS TAIM and EPAGRI 108. The management systems were: conventional and minimum tillage and pre-germinated and "mix" of pre-germinated and seedlings transplants. The experimental design was a randomized aplit block with four replications. The conventional and minimum tillage were seeded in November 01st, 1998 and the pre-germinated and mix of pre-germinated and seedlings transplants were estabhished in November 18th, 1998. Seed yield was affected by management system except for the cultivar EL PASO 144 that had the same yield regardless treatments. EPAGRI 108 had the highest average yields, 8349kg ha-1. The highest number of panicles per square meter was observed in the pre-germinated and mix pre-germinated systems. The transplanted seedlings had the highest number of seeds per panicles. Regardless the management systems, EL PASO 144 presented thehighest number of seeds per panicle and EPAGRI 108 the heavier seeds. Nutrient concentration in the initial dreinage water was similar in all systems with average N, P, K, Ca, Mg and Fe concentrations of 5.02, 2.06, 10.33, 6.38, 3.51 and 2.56 mg l-1, respectively.

  3. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    Science.gov (United States)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  4. A review of groundwater recharge under irrigated agriculture in Australia

    Science.gov (United States)

    Riasat, Ali; Mallants, Dirk; Walker, Glen; Silberstein, Richard

    2014-05-01

    Quantification of recharge under irrigated agriculture is one of the most important but difficult tasks. It is the least understood component in groundwater studies because of its large variability in space and time and the difficulty of direct measurement. Better management of groundwater resources is only possible if we can accurately determine all fluxes going into and out of a groundwater system. One of the major challenges facing irrigated agriculture in Australia, and the world, is to reduce uncertainty in estimating or measuring the recharge flux. Reducing uncertainty in groundwater recharge under irrigated agriculture is a pre-requisite for effective, efficient and sustainable groundwater resource management especially in dry areas where groundwater usage is often the key to economic development. An accurate quantification of groundwater recharge under irrigated systems is also crucial because of its potential impacts on soil profile salinity, groundwater levels and groundwater quality. This paper aims to identify the main recharge control parameters thorough a review of past field and modelling recharge studies in Australia. We find that the main recharge control parameters under irrigated agriculture are soil type, irrigation management, watertable depth, land cover or plant water uptake, soil surface conditions, and soil, irrigation water and groundwater chemistry. The most commonly used recharge estimation approaches include chloride mass balance, water budget equation, lysimeters, Darcy's law and numerical models. Main sources and magnitude of uncertainty in recharge estimates associated with these approaches are discussed.

  5. Water savings potentials of irrigation systems: dynamic global simulation

    Science.gov (United States)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing

  6. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    . The progress of research on the rational allocation of water resources in irrigation districts both at home and abroad may be summarized in four key aspects of the policy regarding water re?sources management:① The mechanism of water resource cycle and ② Transformation in irrigation district, ③ The water...... resources optimal allocation model and④The hydrological ecosystem analysis in irrigation district. Our analysis showed that there are four major problems in domestic irrigation water resources allocation:Policies for rational water resources allocation and protection are not in place, unified management...... be the focus in China in future research:More attention need to paid to studying the unified management policy and mechanism of water resources, studying the water resources cycle and transformation under environmental change, studying new methods for water resources carrying capacity and evaluation...

  7. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    Science.gov (United States)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  8. Iron absorption from adequate Filipino meals

    International Nuclear Information System (INIS)

    Trinidad, T.P.; Madriaga, J.R.; Valdez, D.H.; Cruz, E.M.; Mallillin, A.C.; Sison, C.C.; Kuizon, M.D.

    1991-01-01

    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 ± 1.26%, Central Visayas, 6.3 ± 1.15% and Southern Mindanao, 6.4 ± 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P > .01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry and inhibitors: phytic acid and tannic acid did not give significant results. The overall bar x of 6.4 ± 1.20% may be used as the non-heme iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976

  9. Iron absorption from adequate Filipinos meals

    International Nuclear Information System (INIS)

    Trinidad, T.P.; Madriaga, J.R.; Valdez, D.H.; Cruz, E.M.; Mallillin, A.C.; Sison, C.C.; Kuizon, M.D.

    1989-01-01

    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas, and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 +- 1.26%. Central Visayas, 6.3 +- 1.15% and Southern Mindanao, 6.4 +- 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P>0.01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry; and inhibitors: phytic acid and tannic acid, did not give significant results. The overall average of 6.4 +- 1.20% may be used as the iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976. (Auth.). 21 refs.; 3 tabs.; 3 annexes

  10. Planning for an Irrigation System.

    Science.gov (United States)

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  11. More efficient irrigation may compensate for increases in irrigation water requirements due to climate change in the Mediterranean area

    Science.gov (United States)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2017-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. We will present a recently published study1 that estimates the current level of water demand for Mediterranean agriculture and simulates the potential impacts of climate change, population growth and transitions to water-saving irrigation and conveyance technologies. The results indicate that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems, with large differences in the saving potentials across countries. Under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean. Both the Eastern and the Southern Mediterranean would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. However, in some scenarios water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain. In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development2 that comprised the improved representation of Mediterranean crops.

  12. The Rieti Land Reclamation Authority relevance in the management of surface waters for the irrigation purposes of the Rieti Plain (Central Italy

    Directory of Open Access Journals (Sweden)

    Lucio Martarelli

    2016-09-01

    Full Text Available The Rieti Plain is crowned by calcareous-marly reliefs (Rieti and Sabini Mountains and represents an intra-Apennine Plio- Quaternary alluvial and fluvial-lacustrine basin formed after multistage extensional tectonic processes. This territory presents huge amounts of water resources (Velino and Turano rivers; several springs; Lungo and Ripasottile lakes, relics of ancient Lacus Velinus. The aquifers occurring in the reliefs often have hydraulic continuity with the Rieti plain groundwater (detected at about 1-4 m below ground surface, which has general flow directions converging from the reliefs to the lake sector. Hydraulic exchanges between groundwater and surface waters are variable in space and time and play a relevant role for groundwater resource distribution. The Rieti Land Reclamation Authority was instituted in 1929 by Royal Decree N. 34171-3835, and integrates eight former authorities, dating the end of 1800s. It contributes to maintain the reclamation actions in the Rieti Plain, which started with the realization of the Salto and Turano artificial reservoirs, along two left tributaries of Velino River. The hydroelectric energy production purposes struggle with the reclamation and flood mitigation activities in the plain. The Land Reclamation Authority actuated the Integrated Reclamation General Project through the realization of pumping stations, connection and drainage canals, forestry-hydraulic works, rural roads, movable dams along Velino River and irrigation ditches. The irrigation activities, granted by the derivation of 5 m3/s from the Velino River, are carried out through 194,000 hectares within the territory of 42 municipalities of the Rieti Province. The Rieti Land Reclamation Authority contributes to the irrigation needs and to the environmental and hydrogeological protection and monitoring.

  13. Effect of Silicon on the Tolerance of Wheat (Triticum aestivum L.) to Salt Stress at Different Growth Stages: Case Study for the Management of Irrigation Water.

    Science.gov (United States)

    A M, Daoud; M M, Hemada; N, Saber; A A, El-Araby; L, Moussa

    2018-04-03

    This paper aims to determine the most tolerant growth stage(s) of wheat to salinity stress with the addition of silicon. The aim was to investigate whether saline water could be used instead of good quality water for irrigation without implicating a greater risk to crop production. Local wheat cv. Gimmiza 11 was germinated and grown in sand cultures. Four different NaCl salinity levels were used as treatments: 0, 60, 90 and 120 mM. This was in the presence of 0 and 0.78 mM Si which added as sodium meta- silicate (Na₂SiO₃·9H₂O). Both the NaCl and Si treatments were carried out using a full strength nutrient solution that was adjusted at pH 6.0 and used for irrigation in four replications. The application of Si with the saline nutrient media significantly enhanced superoxide dismutase (SOD) and catalase (CAT) activities in plant leaves at the booting stage compared to the other stages. This was associated with a marked decline in the H₂O₂ content. At the booting stage, the Si treatment promoted CAT activity in 120 mM NaCl-stressed leaves compared to the leaves treated with only 120 mM NaCl solution. SOD showed greater prevalence at the booting stage when Si was added into the saline media, and it also revealed maximum activity at the milky stage with salinity stress. This was associated with a smaller reduction in shoot fresh and dry weights, greater reduction in the leaf Na⁺ content and an increase in the K⁺ content, which ultimately increased the cytosolic K⁺/Na⁺ ratio. Chlorophyll a and b and carotenoid (total photosynthetic pigments) were also higher at the booting stage of salt-stressed plants treated with Si compared to other stages. Accordingly, Si application enhanced the salt tolerance of wheat and reduced the inhibitory effect of Na⁺ and oxidative stress damage as growth proceeded towards maturity, particularly at the booting stage. This shows that saline water can be used for wheat irrigation at the booting stage (much water is

  14. Effect of Silicon on the Tolerance of Wheat (Triticum aestivum L. to Salt Stress at Different Growth Stages: Case Study for the Management of Irrigation Water

    Directory of Open Access Journals (Sweden)

    Daoud A.M.

    2018-04-01

    Full Text Available This paper aims to determine the most tolerant growth stage(s of wheat to salinity stress with the addition of silicon. The aim was to investigate whether saline water could be used instead of good quality water for irrigation without implicating a greater risk to crop production. Local wheat cv. Gimmiza 11 was germinated and grown in sand cultures. Four different NaCl salinity levels were used as treatments: 0, 60, 90 and 120 mM. This was in the presence of 0 and 0.78 mM Si which added as sodium meta- silicate (Na2SiO3·9H2O. Both the NaCl and Si treatments were carried out using a full strength nutrient solution that was adjusted at pH 6.0 and used for irrigation in four replications. The application of Si with the saline nutrient media significantly enhanced superoxide dismutase (SOD and catalase (CAT activities in plant leaves at the booting stage compared to the other stages. This was associated with a marked decline in the H2O2 content. At the booting stage, the Si treatment promoted CAT activity in 120 mM NaCl-stressed leaves compared to the leaves treated with only 120 mM NaCl solution. SOD showed greater prevalence at the booting stage when Si was added into the saline media, and it also revealed maximum activity at the milky stage with salinity stress. This was associated with a smaller reduction in shoot fresh and dry weights, greater reduction in the leaf Na+ content and an increase in the K+ content, which ultimately increased the cytosolic K+/Na+ ratio. Chlorophyll a and b and carotenoid (total photosynthetic pigments were also higher at the booting stage of salt-stressed plants treated with Si compared to other stages. Accordingly, Si application enhanced the salt tolerance of wheat and reduced the inhibitory effect of Na+ and oxidative stress damage as growth proceeded towards maturity, particularly at the booting stage. This shows that saline water can be used for wheat irrigation at the booting stage (much water is consumed

  15. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  16. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  17. Root canal irrigation

    NARCIS (Netherlands)

    van der Sluis, L.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, M.; Chávez de Paz, L.E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root

  18. Manejo da água na irrigação da alfafa num Latossolo Vermelho-Amarelo Water management of irrigation for alfalfa in a Red-Yellow Latosol (Hapludox

    Directory of Open Access Journals (Sweden)

    Joaquim Bartolomeu Rassini

    2002-04-01

    Full Text Available O objetivo deste trabalho foi avaliar um método prático para manejar a água de irrigação na cultura da alfafa (Medicago sativa. O estudo foi desenvolvido em um Latossolo Vermelho-Amarelo, e as variáveis estudadas foram: a evaporação do tanque classe A (ECA, a precipitação pluvial (PRP e a capacidade do solo de armazenar água (CAD. Os tratamentos constituíram-se de três regimes hídricos aplicados: H1: testemunha, sem irrigação; H2: irrigação complementar em um determinado período da cultura, quando ECA - PRP ³ 30 mm, a partir da emissão do primeiro afilho secundário; H3: irrigação complementar em determinado período da cultura, quando ECA - PRP > ou = 20 mm, durante todo o ciclo da planta. Verificou-se que o método ECA - PRP = 20 a 30 mm é compatível com a CAD desse solo, e que também pode-se aumentar a eficiência da água aplicada na alfafa sem provocar queda no rendimento de forragem.This work was carried out to evaluate a practical method for the irrigation water management for alfalfa (Medicago sativa cultivation. The study was conducted in a Red-Yellow Latosol (Hapludox soil, and the variables studied were: "A" tank evaporation (CAE, rainfall (R and water storage capacity of the soil (WSC. Treatments consisted of three hydric conditions: H1: no irrigation; H2: supplement irrigation when CAE - PRP > or = 30 mm from full vegetative stage on plant; H3: supplement irrigation when CAE - PRP > or = 20 mm during entire plant cycle. It was found that the method for the Red-Yellow Latosol using CAE - R = 20 to 30 mm is consistent with the WSC, and that efficiency of utilization usage of water applied can be increased, without decreasing the forage yield.

  19. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  20. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines

    Science.gov (United States)

    Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja

    2016-05-01

    Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

  1. Produtividade de três cultivares de cana-de-açúcar sob manejos de sequeiro e irrigado por gotejamento Productivity of three sugarcane cultivars under dry and drip irrigated management

    Directory of Open Access Journals (Sweden)

    Glauber J. de C. Gava

    2011-03-01

    Full Text Available O objetivo neste trabalho foi estudar o efeito da tecnologia de irrigação por gotejamento, em cultivares de cana-de-açúcar, em dois ciclos de produção (cana-planta e cana-soca. O delineamento experimental utilizado foi o de blocos ao acaso, com quatro repetições, constituídos pela combinação de três cultivares de cana-de-açúcar: RB867515; RB855536 e SP80-3280, e dois manejos da cultura: sistema de irrigação por gotejamento subterrâneo e sistema de sequeiro, totalizando seis tratamentos. O primeiro ciclo teve duração de 336 dias, ocorrendo precipitação de 1.480 mm. O volume de água disponibilizado pelo sistema de irrigação por gotejamento foi de 400 mm, totalizando 1.880 mm. O segundo ciclo teve duração de 365 dias, cujo volume de água por meio de precipitação foi de 1.394 mm; somados aos 320 mm fornecidos pelo sistema de irrigação, totalizaram 1.714 mm. Ocorreu interação entre manejo e cultivar para as variáveis: produtividade de colmos (TCH e produtividade de açúcar (TPH em que a maior diferença foi observada para a cultivar SP80-3280. As cultivares apresentaram respostas diferenciadas na eficiência de utilização da água. No manejo irrigado por gotejamento houve elevação de 24% na produtividade de colmos e de 23% na produtividade de açúcar, em relação ao manejo de sequeiro.This study aimed to evaluate the effect of drip irrigation technology in different sugarcane varieties in two crop cycles (plant cane and ratoon. The experimental design was in completly randomized blocks, in split-plot with four replications, constituted by three sugarcane genotypes: RB867515; RB855536 and SP80-3280 and two crop management: drip irrigation system and rainfed system, totalizing six treatments. The first cycle lasted for 336 days, with rainfall of 1,480 mm. The volume of water provided by the system of drip irrigation was 400 mm, totaling 1,880 mm. The second cycle lasted for 365 days, the volume of water through

  2. Comparison of water distribution mechanisms under two localized irrigation techniques (Drip Irrigation & Buried Diffuser) for one week irrigation period in a sandy soil of southeastern Tunisia

    Science.gov (United States)

    Gasmi, Ines; Kodešová, Radka; Mechergui, Mohamed; Nikodem, Antonín; Moussa, Mohamed

    2017-04-01

    The majority of agricultural ecosystems in the Mediterranean basin of northern Africa suffer from water shortage and positions these regions in a highly vulnerable to climate change. In arid regions of Tunisia and exactly in the Southeastern part, during each growing season, plant productivity in sandy-loamy soils is dramatically reduced by limited availability of soil water and nutrients. Thus, highly permeable soils are unable to retain adequate water and nutrient resource in the plant root zone. Moreover, the investments of supplemental irrigation and agricultural amendments of additional fertilization are not sustainable due to the leaching of water supplies and nutrients, which severely limit agricultural productivity. In addition, inadequate soil water distribution, costly irrigation and fertilization leads to negative responses to plant nutrients added to highly permeable soils. That's why we should use irrigation techniques with high water use efficiency. This paper focuses on the comparison between two localized irrigation techniques which are the Drip Irrigation (DI) and the Buried Diffuser (BD) that has the same flow rates (4 l/h). The BD is buried at 15 cm depths. Experimental data was obtained from Smar-Médenine located in South-East of Tunisia. The water distribution at the soil surface for BD is very important about 195 cm2 while for the DI is about 25.12 cm2. The HYDRUS 2D/3D model helped to evaluate the water distribution and compare the water balance obtained with those two irrigation techniques for one week irrigation period. There is a rapid kinetic which has a duration of 3 hours (irrigation time) and a slow kinetic which is the result of the water distribution in the soil, the plant uptake and the effect of climatic condition. There are two mechanisms that affect the two irrigation techniques: the water distribution and the position of irrigation system. As a result, irrigation with BD goes dipper in the soil. The transmission zone for this

  3. Irrigation water policy analysis using a business simulation game

    Science.gov (United States)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  4. Study Concerning Exercising an Adequate Professional Reasoning in Developing the Evaluation and Audit

    Directory of Open Access Journals (Sweden)

    Vârteiu Daniel Petru

    2017-01-01

    Even though there are regulations which clearly specify the way in which an evaluation process, respectively an adequate audit process must take place, for a good management of encountered situations and difficulties, the evaluator, respectively the auditor must exercise an adequate professional reasoning.

  5. Novel approach to evaluate the dynamic variation of wind drift and evaporation losses under moving irrigation systems

    Science.gov (United States)

    Sayed-Hossein Sadeghi; Troy R. Peters; Mohammad Z. Amini; Sparkle L. Malone; Hank W. Loescher

    2015-01-01

    The increased need for water and food security requires the development of new approaches to save water through irrigation management strategies, particularly for center pivot irrigation. To do so entails monitoring of the dynamic variation in wind drift and evaporation losses (WDELs) of irrigation systems under different weather conditions and for relatively long time...

  6. Gaussian processes-based predictive models to estimate reference ET from alternative meteorological data sources for irrigation scheduling

    Science.gov (United States)

    Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management, especially in arid and semi-arid irrigated regions where crop water demand exceeds rainfall. The impact of inaccurate ET estimates can be tremendous in both irrigation cost and the increased dema...

  7. New Approaches to Irrigation Scheduling of Vegetables

    Directory of Open Access Journals (Sweden)

    Michael D. Cahn

    2017-04-01

    Full Text Available Using evapotranspiration (ET data for scheduling irrigations on vegetable farms is challenging due to imprecise crop coefficients, time consuming computations, and the need to simultaneously manage many fields. Meanwhile, the adoption of soil moisture monitoring in vegetables has historically been limited by sensor accuracy and cost, as well as labor required for installation, removal, and collection of readings. With recent improvements in sensor technology, public weather-station networks, satellite and aerial imaging, wireless communications, and cloud computing, many of the difficulties in using ET data and soil moisture sensors for irrigation scheduling of vegetables can now be addressed. Web and smartphone applications have been developed that automate many of the calculations involved in ET-based irrigation scheduling. Soil moisture sensor data can be collected through wireless networks and accessed using web browser or smartphone apps. Energy balance methods of crop ET estimation, such as eddy covariance and Bowen ratio, provide research options for further developing and evaluating crop coefficient guidelines of vegetables, while recent advancements in surface renewal instrumentation have led to a relatively low-cost tool for monitoring crop water requirement in commercial farms. Remote sensing of crops using satellite, manned aircraft, and UAV platforms may also provide useful tools for vegetable growers to evaluate crop development, plant stress, water consumption, and irrigation system performance.

  8. Micro-irrigation systems, automation and fertigation in citrus

    OpenAIRE

    Parameshwar Sidramappa Shirgure

    2012-01-01

    Citrus is number one group of fruits grown in more than 140 countries in the world. Micro-irrigation systems and fertigation management is one of the main concerns of the modem citrus fruit production irrespective of availability of soil, water and fertilizer resources. A variety of recommendations have emerged world over on irrigation systems and fertigation based on soil and leaf analysis of the nutrients, evapo-transpiration and water use pattern. The research review of literature has reve...

  9. Spectrophotometric determination of irrigant extrusion using passive ultrasonic irrigation, EndoActivator, or syringe irrigation.

    Science.gov (United States)

    Rodríguez-Figueroa, Carolina; McClanahan, Scott B; Bowles, Walter R

    2014-10-01

    Sodium hypochlorite (NaOCl) irrigation is critical to endodontic success, and several new methods have been developed to improve irrigation efficacy (eg, passive ultrasonic irrigation [PUI] and EndoActivator [EA]). Using a novel spectrophotometric method, this study evaluated NaOCl irrigant extrusion during canal irrigation. One hundred fourteen single-rooted extracted teeth were decoronated to leave 15 mm of the root length for each tooth. Cleaning and shaping of the teeth were completed using standardized hand and rotary instrumentation to an apical file size #40/0.04 taper. Roots were sealed (not apex), and 54 straight roots (n = 18/group) and 60 curved roots (>20° curvature, n = 20/group) were included. Teeth were irrigated with 5.25% NaOCl by 1 of 3 methods: passive irrigation with needle, PUI, or EA irrigation. Extrusion of NaOCl was evaluated using a pH indicator and a spectrophotometer. Standard curves were prepared with known amounts of irrigant to quantify amounts in unknown samples. Irrigant extrusion was minimal with all methods, with most teeth showing no NaOCl extrusion in straight or curved roots. Minor NaOCl extrusion (1-3 μL) in straight roots or curved roots occurred in 10%-11% of teeth in all 3 irrigant methods. Two teeth in both the syringe irrigation and the EA group extruded 3-10 μL of NaOCl. The spectrophotometric method used in this study proved to be very sensitive while providing quantification of the irrigant levels extruded. Using the PUI or EA tip to within 1 mm of the working length appears to be fairly safe, but apical anatomy can vary in teeth to allow extrusion of irrigant. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Evaluation of thermal X/5-detector Skylab S-192 data for estimating evapotranspiration and thermal properties of soils for irrigation management

    Science.gov (United States)

    Moore, D. G.; Horton, M. L.; Russell, M. J.; Myers, V. I.

    1975-01-01

    An energy budget approach to evaluating the SKYLAB X/5-detector S-192 data for prediction of soil moisture and evapotranspiration rate was pursued. A test site which included both irrigated and dryland agriculture in Southern Texas was selected for the SL-4 SKYLAB mission. Both vegetated and fallow fields were included. Data for a multistage analysis including ground, NC-130B aircraft, RB-57F aircraft, and SKYLAB altitudes were collected. The ground data included such measurements as gravimetric soil moisture, percent of the ground covered by green vegetation, soil texture, net radiation, soil temperature gradients, surface emittance, soil heat flux, air temperature and humidity gradients, and cultural practices. Ground data were used to characterize energy budgets and to evaluate the utility of an energy budget approach for determining soil moisture differences among twelve specific agricultural fields.

  11. Integrated Decision Support, Sensor Networks and Adaptive Control for Wireless Site-specific Sprinkler Irrigation

    Science.gov (United States)

    The development of site-specific sprinkler irrigation water management systems will be a major factor in future efforts to improve the various efficiencies of water-use and to support a sustainable irrigated environment. The challenge is to develop fully integrated management systems with supporting...

  12. Maternal titers after adequate syphilotherapy during pregnancy.

    Science.gov (United States)

    Rac, Martha W F; Bryant, Stefanie N; Cantey, Joseph B; McIntire, Donald D; Wendel, George D; Sheffield, Jeanne S

    2015-03-01

    We aimed to construct a timeline for nontreponemal titer decline specific to pregnancy and evaluate factors associated with inadequate decline by delivery. This was a retrospective medical records review from September 1984 to June 2011 of women diagnosed with syphilis after 18 weeks of gestation. Women were treated according to stage of syphilis per Centers for Disease Control and Prevention guidelines. Patients with both pretreatment and delivery titers were included for data analysis. Demographics, stage of syphilis, maternal titers, delivery, and infant outcomes were recorded. Standard statistical analyses were performed for categorical and continuous data. The titer decline was analyzed using mixed-effects regression modeling. A total of 166 patients met inclusion criteria. Mean gestational age at treatment was 29.1 ± 5 weeks, and 93 (56%) women were diagnosed with early-stage syphilis. For all stages of syphilis, maternal titers declined after syphilotherapy. Pretreatment titers were higher and declined more rapidly in primary and secondary disease than in latent-stage disease and syphilis of unknown duration. Sixty-three (38%) patients achieved a 4-fold decline by delivery. Patients without a 4-fold decline by delivery were older (24.6 vs 21.5 years; P syphilis or syphilis of unknown duration, and had less time from treatment to delivery (7.8 vs 11.1 weeks; P < .001). Maternal serologic response during pregnancy after adequate syphilotherapy varied by stage of disease. Failure to achieve a 4-fold decline in titers by delivery is more a reflection of treatment timing than of treatment failure. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Evaluation of reservoir operation strategies for irrigation in the Macul Basin, Ecuador

    Directory of Open Access Journals (Sweden)

    Vicente Tinoco

    2016-03-01

    Full Text Available Study focus: An irrigation project is planned in the study basin for developing the agriculture as the main income in the region. The proposed water system comprises three large reservoirs damming the rivers Macul and Maculillo. The river basin planning and operation were investigated by modelling alternative reservoir operation strategies aiming at a sustainable balance between irrigation and river ecology by integrated reservoir/river management. New hydrological insights for the region: After simulation of long-term meteorological series in a model of the integrated water system, covering several historical extreme events, results indicate that the planned irrigation volumes are higher than the available water for a sustainable irrigation strategy. Two lines of action are suggested for reaching the target irrigation demands: design of a deficit irrigation system, and modifications to the reservoir's spillway height. Keywords: Reservoir operation, Conceptual model, Irrigation

  14. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    Science.gov (United States)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    SummaryAs irrigation water is an input into a production process, its demand must be 'derived'. According to theory, a derived demand schedule should be downward sloping and dependent on the outputs produced from it, the prices of other inputs and the price of the water itself. Problems arise when an attempt is made to estimate the demand for irrigation water and the resulting own-price elasticity of demand, as the uses to which water is put are spatially, temporarily and geographically diverse. Because water is not generally freely traded, what normally passes for an estimate of the own-price elasticity of demand for irrigation water is usually a well argued assumption or an estimate that is derived from a simulation model of a hypothesized producer. Such approaches tend to provide an inadequate explanation of what is an extremely complex and important relationship. An adequate explanation of the relationship between the price and the quantity demanded of water should be one that not only accords with the theoretical expectations, but also accounts for the diversity of products produced from water (which includes the management practices of farmers), the seasons in which it is used and over the region within which it is used. The objective in this article is to present a method of estimating the demand curve for irrigation water. The method uses actual field data which is collated using the Residual Method to determine the value of the marginal product of water deployed over a wide range of crops, seasons and regions. These values of the marginal products, all which must lie of the input demand schedule for water, are then ordered from the highest value to the lowest. Then, the amount of irrigation water used for each product, in each season and in each region is cumulatively summed over the range of uses according to the order of the values of the marginal products. This data, once ordered, is then used to econometrically estimate the demand schedule from which

  15. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system

    Science.gov (United States)

    Maisiri, N.; Senzanje, A.; Rockstrom, J.; Twomlow, S. J.

    This on-farm research study was carried out at Zholube irrigation scheme in a semi-arid agro tropical climate of Zimbabwe to determine how low cost drip irrigation technologies compare with conventional surface irrigation systems in terms of water and crop productivity. A total of nine farmers who were practicing surface irrigation were chosen to participate in the study. The vegetable English giant rape ( Brassica napus) was grown under the two irrigation systems with three fertilizer treatments in each system: ordinary granular fertilizer, liquid fertilizer (fertigation) and the last treatment with no fertilizer. These trials were replicated three times in a randomized block design. Biometric parameters of leaf area index (LAI) and fresh weight of the produce, water use efficiency (WUE) were used to compare the performance of the two irrigation systems. A water balance of the inflows and outflows was kept for analysis of WUE. The economic profitability and the operation, maintenance and management requirements of the different systems were also evaluated. There was no significant difference in vegetable yield between the irrigation systems at 8.5 ton/ha for drip compared to 7.8 ton/ha in surface irrigation. There were significant increases in yields due to use of fertilizers. Drip irrigation used about 35% of the water used by the surface irrigation systems thus giving much higher water use efficiencies. The leaf area indices were comparable in both systems with the same fertilizer treatment ranging between 0.05 for surface without fertilizer to 6.8 for low cost drip with fertigation. Low cost drip systems did not reflect any labour saving especially when manually lifting the water into the drum compared to the use of siphons in surface irrigation systems. The gross margin level for surface irrigation was lower than for low cost drip irrigation but the gross margin to total variable cost ratio was higher in surface irrigation systems, which meant that surface

  16. Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance

    NARCIS (Netherlands)

    Benouniche, M.; Kuper, M.; Hammani, A.; Boesveld, H.

    2014-01-01

    The actual performance of drip irrigation (irrigation efficiency, distribution uniformity) in the field is often quite different from that obtained in experimental stations. We developed an approach to explain the actual irrigation performance of drip irrigation systems by linking measured

  17. Ecohydrology of managed ecosystems: Linking rainfall unpredictability, agronomic performance, and sustainable water use

    Science.gov (United States)

    Vico, Giulia; Porporato, Amilcare

    2014-05-01

    The field of ecohydrology, traditionally focusing on natural ecosystems, can offer the necessary quantitative tools to assess and compare the sustainability of agriculture across climates, soil types, crops, and irrigation strategies, including rainfall unpredictability. In particular, irrigation is one of the main strategies to enhance and stabilize agricultural productivity, but represents a cost in terms of often scarce water resources. Here, the sustainability of irrigated and rainfed agriculture is assessed by means of water productivity (defined as the ratio between yield and total supplied water), yields, water requirements, and their variability. These indicators are quantified using a probabilistic description of the soil water balance and crop development. Employing this framework, we interpret changes in water productivity as total water input is altered, in two staple crops (maize and wheat) grown under different soils, climates, and irrigation strategies. Climate change scenarios are explored by using the same approach and altering the rainfall statistics. For a given irrigation strategy, intermediate rainfall inputs leads to the highest variability in yield and irrigation water requirement - it is under these conditions that water management is most problematic. When considering the contrasting needs of limiting water requirements while ensuring adequate yields, micro-irrigation emerges as the most sustainable strategy at the field level, although consideration should be given to its profitability and long-term environmental implications.

  18. THE ROLE OF IRRIGATED FODDER PRODUCTION TO SUPPLEMENT THE DIET OF FATTENING SHEEP BY SMALLHOLDERS IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Melkamu Bezabih Derseh

    2016-12-01

    Full Text Available Feed shortage and poor quality of available feeds are major constraints for livestock production in the highlands of Ethiopia. A trial was conducted to assess if producing irrigated oat-vetch fodder during the dry period could adequately supplement the diet of fattening sheep and generate additional income for smallholders. A total of 14 farmers and 70 sheep (5 per farmer were involved in the trial. The farmers supplemented their fattening sheep with 200 g of irrigated oat-vetch fodder per day for about 70 days. The mean daily body weight gain of the fattened sheep ranged from 52 to 110 grams. The partial budget analysis revealed that while farmers with good feeding management could earn an additional income in the range of ETB 55 – 161 per sheep, farmers with the lower rate of weight gain could lose up to ETB 58 per sheep unless purchase and sale prices remained constant. Sheep prices do, however, fluctuate, peaking during major holiday periods occurring during the dry season. Therefore, timing of the fattening period is essential to profitability, and supplemental irrigated fodder production offers smallholders opportunities to produce good quality feed and target favourable markets for fattened animals.

  19. Sustainable Irrigation Allocation Model for Dry and Wet Periods using Reservoir Storage and Inflow

    Science.gov (United States)

    Surianarayanan, S.; Suribabu, C. R.; Ramakrishnan, K.

    2017-07-01

    The dry period agriculture is inevitable both for the farmers for their earning, and for the soil for its fertility by crop-rotation. In tropical countries like INDIA, dry period agriculture becomes difficult because of less (or) no rain fall. Hence a simple water balancing model for irrigation scheduling, using the measure “Volumetric Reliability” is prepared in this paper, with the storage and inflow of a reservoir both for the dry and wet periods. The case-study is done for a reservoir in INDIA with thirty one years of hydrological data(from 1982 to 2012). The objective of this paper is to prepare a simple water balance model taking 10 days periods of demand and supply for ID crop(Irrigated Dry crop, ground nut) with usage of volumetric reliability concept for the periods of deficiency and adoption of less water requirement crops to reduce the water-stress during critical periods of crop growth, and finally arrive at a feasible allocation schedule for the success of agriculture and the yield throughout the year both for wet and dry crops with the available storage on the start of irrigation for a particular year. The reservoir is divided for storages such as full, deficient and critical storages. The starting storage for the dry period from January is used after adequate allocation for wet crops, the quantity for riparian rights and for drinking water, for the sustainability. By the water-balancing, the time-series for thirty one years, it is found that for twenty two years the demand for the ID crops is satisfied with the storage in the reservoir, and in the remaining years of deficient inflows, for three years (1986,1996,2004)the demand is managed by using the safe reliability factor for demand which can nullify the deficit in demand for the whole supply period. But it is genuine to assure that the reduction in the amount of water for each 10 days periods should not exceed the survival limit of the crop. Necessary soil-moisture must be ensured in the crop

  20. Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep.

    Science.gov (United States)

    Trisi, Paolo; Berardini, Marco; Falco, Antonello; Podaliri Vulpiani, Michele; Perfetti, Giorgio

    2014-06-01

    To measure in vivo impact of dense bone overheating on implant osseointegration and peri-implant bone resorption comparing different bur irrigation methods vs. no irrigation. Twenty TI-bone implants were inserted in the inferior edge of mandibles of sheep. Different cooling procedures were used in each group: no irrigation (group A), only internal bur irrigation (group B), both internal and external irrigation (group C), and external irrigation (group D). The histomorphometric parameters calculated for each implant were as follows: %cortical bone-implant contact (%CBIC) and %cortical bone volume (%CBV). Friedman's test was applied to test the statistical differences. In group A, we found a huge resorption of cortical bone with %CBIC and %CBV values extremely low. Groups B and C showed mean %CBIC and %BV values higher than other groups The mean %CBV value was significantly different when comparing group B and group C vs. group A (P irrigation, of hard bone caused massive resorption of the cortical bone and implant failure. Drilling procedures on hard bone need an adequate cooling supply because the bone matrix overheating may induce complete resorption of dense bone around implants. Internal-external irrigation and only internal irrigation showed to be more efficient than other types of cooling methods in preventing bone resorption around implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  1. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

    Science.gov (United States)

    Fagúndez, Jaime; Olea, Pedro P.; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  2. Sediment transport in irrigation canals

    OpenAIRE

    Méndez V., N.J.

    1998-01-01

    The world population is rapidly increasing and is expected to double to about 10 billion by the year 2050. To support an increasing population in terms of food sufficiency, more and more water will be required. Irrigation is the most critical component of the modern package of inputs to effect high crop production. Irrigation has been the largest recipient of public agricultural investment in the developing world. Hence, continued investment in irrigation along with reforms in instit...

  3. Droughts, Irrigation Development, and Hydropower: Different Development Priorities in Ghana and Burkina Faso and Their Effect on Management of the Volta River, West Africa

    Science.gov (United States)

    van de Giesen, N.; Andreini, M.; van Edig, A.

    2001-05-01

    The Volta Basin covers 400,000 km2 of the West-African savanna zone. Ghana lies downstream and contains 42% of the basin. Most of the upstream part of the basin lies in Burkina Faso (43% of total), and the remaining 15% lies in Mali, Côte d'Ivoire, Togo, and Benin. Average rainfall is 1000 mm per year of which around 9% or 36 km3 becomes available as runoff in the Volta River. Small variations in rainfall cause relatively large variations in runoff. The Volta Basin is undergoing rapid changes in land use and water resource development, mainly driven by the high population growth of 3% per year. However, different countries pursue economic development in different ways. At independence in 1957, Ghana's leaders saw industrialization as essential to development and electric power from the Volta Dam as central to that industrialization. In 1964, the Volta Dam was built and Ghana's economic growth in the mining, industrial, and service sectors has depended on the dam's hydropower ever since. In contrast, land-locked Burkina Faso has less industrial potential and seeks to develop through its agriculture, both for subsistence and export crops. Given the extremely unreliable rainfall, irrigation development is seen as the only way to increase agricultural production. In general, irrigation in Burkina Faso takes the form of many small scale, village-based schemes of which the downstream impact is difficult to gauge. A minor drought in 1997 and 1998 caused the level of Lake Volta to drop, resulting in widespread power outages. In the ensuing public discussion, hydraulic development in Burkina Faso was seen as one of the potential causes of the lack of water. No firm data were available to substantiate this claim. In fact, over-withdrawals in previous years combined with climate variability were more likely culprits. A recently initiated multi-disciplinary research project will be presented that seeks to provide a scientific basis on which future discussions between the two

  4. Maximizing the value of limited irrigation water: USDA researchers study how producers on limited irrigation can save water and be profitable

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  5. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling

    NARCIS (Netherlands)

    Zotarelli, L.; Scholberg, J.M.S.; Dukes, M.D.; Munoz-Carpena, R.; Icerman, J.

    2009-01-01

    Florida is the largest producer of fresh-market tomatoes in the United States. Production areas are typically intensively managed with high inputs of fertilizer and irrigation. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation

  6. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  7. Improving efficiencies of irrigation and nitrogen uptake in wheat

    International Nuclear Information System (INIS)

    Bazza, M.

    2000-01-01

    Three years of field studies and lysimeter experiments on irrigated wheat had the objective of finding ways of managing irrigation and N fertilization to minimize losses and reduce contamination of groundwater. Applied N had significant positive effects on crop-water consumptive use. The highest N losses occurred during early growth. Irrigation had little effect on N loss when it was practiced efficiently. Under the prevailing conditions, it is recommended that no N be applied to wheat at planting, in order to limit N losses by leaching caused by the high precipitation that usually occurs during early development when crop-N requirements are small. No more than 120 kg N ha -1 should be applied in total to minimize groundwater pollution and maximize N-uptake efficiency and economic returns. Also, for economic and environmental reasons, irrigation should be limited to 80% of the total requirement and to depths of 40 to 60 mm. (author)

  8. Bureaucratic Reform in Irrigation: A Review of Four Case Studies

    Directory of Open Access Journals (Sweden)

    Diana Suhardiman

    2014-10-01

    Full Text Available Poor performance of government-managed irrigation systems persists globally. This paper argues that addressing performance requires not simply more investment or different policy approaches, but reform of the bureaucracies responsible for irrigation management. Based on reform experiences in The Philippines, Mexico, Indonesia, and Uzbekistan, we argue that irrigation (policy reform cannot be treated in isolation from the overall functioning of government bureaucracies and the wider political structure of the states. Understanding of how and why government bureaucracies shape reform processes and outcomes is crucial to increase the actual significance of reforms. To demonstrate this, the paper links reform processes in the irrigation sector with the wider discourse of bureaucratic reform in the political science, public administration, and organisational science literature. Doing so brings to light the need for systematic comparative research on the organisational characteristic of the irrigation bureaucracies, their bureaucratic identities, and how these are shaped by various segments within the bureaucracies to provide the insights needed to improve irrigation systems performance.

  9. Assessment of Irrigation Water Quality and Suitability for Irrigation in ...

    African Journals Online (AJOL)

    A number of factors like geology, soil, effluents, sewage disposal and other environmental conditions in which the water stays or moves and interacts are among the factors that affect the quality of irrigation water. This study was conducted to determine the quality and suitability of different water sources for irrigation purpose ...

  10. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  11. Integrated assessment of the effects of dams on irrigation sustainability in a data scarce watershed

    Science.gov (United States)

    Yoshida, T.; Masumoto, T.; Kudo, R.

    2014-12-01

    Several development projects are currently under way in developing countries to meet growing demand for water and energy. However, due to the lack of the hydro-meteorological data, some projects were conducted without rigorous check of water balance and the potential changes in the flow regime likely to be induced by reservoirs, and their implications for irrigation projects and ecosystems. To cope with this issues, we carried out analysis by using a hydrological model and quasi-observed rainfall data. A distributed water circulation model was introduced as a tool to implement the analysis. Given daily meteorological data, the model calculates spatial distribution of surface runoff, evapotranspiration, river flow and water demand. In addition, it represents operation of water use facilities, and return flow from irrigated areas. We performed a case study in the Pursat River Basin in Cambodia, where multiple projects are ongoing. We first calculated river discharge with observed rain data and calibrated it. Next, we performed a water balance analysis of the basin using the compiled model with 7 years of rainfall data. Because 20-30 years of data is generally required for water resources planning, we thus prepared 25 years of data by using a climate model with a statistically corrected bias. We determined a reference year for irrigation planning from the long-term data such that annual precipitation of 5-year return period. We selected a scenario for irrigated areas from the Water Balance Study Report (JICA, 2013) to project the future water demand, and checked the water balance under no-dam conditions. The results revealed that water supply was more than adequate to meet water demand in the reference year. We finally incorporated the future dam operations into the calculations and evaluated the impact of the dams on river flows and irrigation projects. Even under the changed flow regimes, the water balance was satisfied in the reference year. However, river flows

  12. Irrigation drainage: Green River basin, Utah

    Science.gov (United States)

    Stephens, Doyle W.; Waddell, Bruce; Miller, Jerry B.

    1988-01-01

    A reconnaissance of wildlife areas in the middle Green River basin of Utah during 1986-87 determined that concentrations of selenium in water and biological tissues were potentially harmful to wildlife at the Stewart Lake Waterfowl Management Area and in the Ouray National Wildlife Refuge. Concentations of selenium in irrigation drainage entering Stewart Lake ranged from 14 to 140 micrograms per liter; liver tissue from coots collected from the lake contained selenium concentrations of as much as 26 micrograms per gram and samples of tissue from carp contained as much as 31 micrograms per gram. Concentrations of selenium in a pond at the Ouray National Wildlife Refuge, which receives irrigation water and shallow ground water, were as much as 93 micrograms per liter. Liver tissue from coots collected from this pond contained selenium concentrations of as much as 43 micrograms per gram; eggs of water birds contained as much as 120 micrograms per gram.

  13. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    Science.gov (United States)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  14. How patients experience antral irrigation.

    Science.gov (United States)

    Blomgren, Karin; Eliander, Lotta; Hytönen, Maija; Ylinen, Suvi; Laitio, Mirja; Virkkula, Paula

    2015-01-01

    Antral irrigation earlier had an important role in the diagnosis and treatment of rhinosinusitis. Nowadays, it is often considered too unpleasant. However, the experience of patients of this procedure has been very seldom evaluated. Nor has the effect on pain in rhinosinusitis been evaluated. The aim of this study was to evaluate patients' experience of discomfort and pain during antral irrigation. We also assessed facial pain caused by rhinosinusitis before the procedure and pain soon after the procedure. Doctors and 121 patients completed their questionnaires independently after antral irrigation in a university clinic, in a private hospital, and at a communal health center. Patients experienced mild pain during antral irrigation (mean and median visual analog scale score: irrigation was closely comparable to pain during dental calculus scaling. Facial pain assessed before antral irrigation decreased quickly after the procedure. Antral irrigation was well tolerated as an outpatient procedure. The procedure seems to relieve facial pain caused by the disease quickly. The role of antral irrigation in the treatment of acute rhinosinusitis will need further investigation.

  15. Effects of Irrigation on Photosynthetic Characteristics of Wheat under Drip Irrigation

    OpenAIRE

    Zhenhua Wang; Guojun Jiang; Xurong Zheng

    2014-01-01

    In arid areas, wheat Growth and yield is extremely significant affected by irrigation, under different study of drip irrigation, the irrigation amount has impact on the physiological indicators of wheat, in order to help improve the efficiency of irrigation water use. In order to reveal the effects of irrigation on photosynthetic characteristics of the Wheat Under Drip Irrigation (WUDI), we designed four different irrigation treatments as W1 (315 mm), W2 (360 mm), W3 (405 mm) and W4 (450 mm) ...

  16. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera of NW Spain

    Science.gov (United States)

    Martínez, Emma M.; Trigo-Córdoba, Emiliano; Bouzas-Cid, Yolanda; Fandiño, María; Rey, Benjamín J.; Mirás-Avalos, Jose M.; Cancela, Javier J.

    2014-05-01

    Inter-annual climate variability, in particular the temporal distribution of rainfall is regarded as a critical factor to obtain an optimal irrigation management on crops, being more marked their relevance in Atlantic climates. The presence of precision irrigation systems in Vitis vinifera (L.) has created the need to understand the physiological effects on plant, and vineyard soils, together with production and quality parameters, to achieve and adequate irrigation management. This trial was performed on two relevant white grapevine varieties from Galicia (NW-Spain), cv. `Albariño` (D.O. Rías Baixas and Ribeiro) and cv. `Godello` (D.O. Valdeorras and D.O. Monterrei) during the 2012 and 2013 seasons. Two treatments were established following a completely randomized block design with four replications (7 plants each). The treatments were rainfed (R) and surface drip irrigation (DI), these last one was not applied in DO Monterrei during 2012. Irrigation was initiated when an average value of 400 cumulative degree days was reached, ending 15 days before the harvest. Different bioclimatic indices were calculated to characterize each season and location: Cool night index (CI); Heliothermal index (HI), which corresponds to Huglin's heliothermal index; and Winkler index. To assess the water status of the vines leaf (Ψmid) and stem (Ψstem) water potentials were measured at noon. Finally, production and qualitative data were collected for each treatment. No differences between DOs were observed for 'Godello' cultivar in bioclimatic indices within the Geoviticulture MCC system (Tonietto and Carboneau, 2004), indicating temperate warm-temperate (HI) and very cool nights (CI). For the Winkler index, cv. Godello is within the region I, near the region II in the case of D.O. Valdeorras in both years. In the case of 'Albariño', warmer nights were observed in DO Rías Baixas compared with DO Ribeiro, whereas the opposite was found for the thermal index. Leaf water potential

  17. Racionalização energética de uma estação de pressurização de um perímetro irrigado Energy management of pumping station in an irrigated perimeter

    Directory of Open Access Journals (Sweden)

    Delly Oliveira Filho

    2004-04-01

    Full Text Available Dentre as formas de se diminuir os custos de energia elétrica dos irrigantes e seus custos de produção, listam-se: (i a adequação do bombeamento de água; (ii a adequação de força motriz, e (iii o gerenciamento do uso da água. O experimento foi realizado no Perímetro Irrigado de Mirorós, localizado no município de Ibipeba, Bahia. O estudo foi feito para a estação de pressurização 1 e analisados dois, de seus quatro conjuntos de motobombas. O processo de otimização do uso de energia adotado envolveu a adequação da bomba, do motor elétrico e a avaliação do conjunto motobomba. O potencial de economia de energia global, com a adequação do conjunto motobomba 1, foi de cerca de 8,75% e, para o conjunto 2, de 31,6%. Observou-se também que, quanto maior for o índice de carregamento, menor será o valor cobrado da água e, para tal, é necessário gerenciar o número de lotes em que se usa a irrigação simultaneamente.In order to decrease the production costs of small farmers - the participants of irrigation district, the possibilities to save electrical energy are: (i sizing the water pumping systems; (ii adopt the electric motive power, and (iii management of the water use. The experiment was conducted in the Miroros Irrigated Perimeter, located in Ibipeba, Bahia, Brazil. The study was done on the pressurization station 1, where two out of four motor pump sets were analyzed. The process of energy optimization used includes the pump and electric motor dimensioning and the evaluation of the pump-motor set. The global savings potential with the motor pump Set1 was around 8.75% and for the Set 2 was around 31.6%. It was observed as well, that the greater the load index (ratio between the actual load and the rated power smaller would be the water charges. In order to achieve the desired savings in the water use management, measures are to be implemented to stimulate simultaneous water use by the farmers.

  18. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  19. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    fresh weight, yield and quality of the harvest were also measured. The irrigation applied in CTL during the 2015-16 was 6770, 7691, 6673, 6774 and 7020 m3 ha-1 year-1 while the decrease in irrigation in RDIs was 28, 40, 12, 34 and 25% for nectarine, peach, apricot, paraguayan and table grapes, respectively. The plant water status indicators used were sensitive to water deficit and showed moderate water stress in RDI. The water deficit affected, to a greater or lesser extent, the vegetative growth of the crop. On the other hand, the yield and fruit quality parameters (size, firmness, total soluble solids, acidity and maturity index) at harvest were not affected by the deficit irrigation. In this way, the water use efficiency increased significantly in RDI treatments. From the information obtained in the demonstration plots irrigation recommendations were made to the farmers of the irrigation community through the project web page. Farmers in the irrigation community are using this information to manage irrigation on their farms, thus improving the profitability of their crops. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  20. Emergy evaluation of a pumping irrigation water production system in China

    Science.gov (United States)

    Chen, Dan; Luo, Zhaohui; Webber, Michael; Chen, Jing; Wang, Weiguang

    2014-03-01

    The emergy concept was used to evaluate a pumping irrigation water production system in China. A framework for emergy evaluation of the significance of irrigation water and its production process was developed. The results show that the irrigation water saved has the highest emergy value (8.73E + 05 sej·J-1), followed by the irrigation water supplied to farmlands (1.72E + 05 sej·J-1), the pumped water (4.81E + 04 sej·J-1), with the lowest value shown from water taken from the local river (3.72E + 04 sej·J-1). The major contributions to the emergy needed for production are the inputs of soil and water. This production system could contribute to the irrigated agriculture and economy, according to several calculated emergy indices: emergy yield ratio ( EYR), emergy investment ratio ( EIR), environmental load ratio ( ELR), and environmental sustainability index ( ESI). The comparative analysis shows that the emergy theory and method, different from the conventional monetary-based analysis, could be used to evaluate irrigation water and its production process in terms of the biophysical account. Additional emergy evaluations should be completed on different types of water production and irrigated agricultural systems to provide adequate guidelines for the sustainability of irrigation development.

  1. More 'crop per drop': constraints and opportunities for precision irrigation in European agriculture.

    Science.gov (United States)

    Monaghan, James M; Daccache, Andre; Vickers, Laura H; Hess, Tim M; Weatherhead, E Keith; Grove, Ivan G; Knox, Jerry W

    2013-03-30

    Dwindling water supplies, increasing drought frequency and uncertainties associated with a changing climate mean Europe's irrigated agriculture sector needs to improve water efficiency and produce more 'crop per drop'. This paper summarizes the drivers for change, and the constraints and opportunities for improving agricultural water management through uptake of precision irrigation technologies. A multi-disciplinary and integrated approach involving irrigation engineers, soil scientists, agronomists and plant physiologists will be needed if the potential for precision irrigation within the field crop sector is to be realized. © 2013 Society of Chemical Industry.

  2. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  3. Thoracic irrigation prevents retained hemothorax: A prospective propensity scored analysis.

    Science.gov (United States)

    Kugler, Nathan W; Carver, Thomas W; Milia, David; Paul, Jasmeet S

    2017-12-01

    Thoracic trauma resulting in hemothorax (HTx) is typically managed with thoracostomy tube (TT) placement; however, up to 20% of patients develop retained HTx which may necessitate further intervention for definitive management. Although optimal management of retained HTx has been extensively researched, little is known about prevention of this complication. We hypothesized that thoracic irrigation at the time of TT placement would significantly decrease the rate of retained HTx necessitating secondary intervention. A prospective, comparative study of patients with traumatic HTx who underwent bedside TT placement was conducted. The control group consisted of patients who underwent standard TT placement, whereas the irrigation group underwent standard TT placement with immediate irrigation using 1 L of warmed sterile 0.9% saline. Patients who underwent emergency thoracotomy, those with TTs removed within 24 hours, or those who died within 30 days of discharge were excluded. The primary end point was secondary intervention defined by additional TT placement or operative management for retained HTx. A propensity-matched analysis was performed with scores estimated using a logistic regression model based on age, sex, mechanism of injury, Abbreviated Injury Scale chest score, and TT size. In over a 30-month period, a total of 296 patients underwent TT placement for the management of traumatic HTx. Patients were predominantly male (79.6%) at a median age of 40 years and were evenly split between blunt (48.8%) and penetrating (51.2%) mechanisms. Sixty (20%) patients underwent thoracic irrigation at time of initial TT placement. The secondary intervention rate was significantly lower within the study group (5.6% vs. 21.8%; OR, 0.16; p irrigation and control cohort. Thoracic irrigation at the time of initial TT placement for traumatic HTx significantly reduced the need for secondary intervention for retained HTx. Therapeutic Study, Level III.

  4. Hydrologic Simulation of a Winter Wheat–Summer Maize Cropping System in an Irrigation District of the Lower Yellow River Basin, China

    OpenAIRE

    Lei Liu; Jianqin Ma; Yi Luo; Chansheng He; Tiegang Liu

    2017-01-01

    Conflicts between water supply and water demand are intensifying in irrigation districts along the Lower Yellow River due to climate change and human activities. To ensure both adequate food supply and water resource sustainability in China, the Soil and Water Assessment Tool (SWAT) model was used to simulate the water balance and water use of agro-ecosystems in an irrigation district of the lower Yellow River Basin, China. Simulated average annual irrigation requirements decreased from 1969 ...

  5. Web/smart phone based control and feedback systems for irrigation systems

    Science.gov (United States)

    The role of the internet and mobile devices in the control and feedback of irrigation systems is reviewed. This role is placed in the larger context of four distinct components required for irrigation management, including 1. the control panel; 2. remote control; 3. soil, plant, and weather (SPW) se...

  6. Hydraulic performance evaluation of the Wadi Laba spate irrigation System in Eritrea

    NARCIS (Netherlands)

    Mehari, A.H.; Depeweg, H.; Schultz, E.

    2005-01-01

    Spate irrigation is a method of harvesting and managing floodwater, which is unpredictable in timing and volume. In the spate-irrigated area of 16 000 ha in Eritrea, the farmers have for decades used brushwood and earthen diversion and distribution structures, locally known as Agims and Musghas, to

  7. Evaluation of irrigation farming at Oke-Oyi, Kwara state, Nigeria ...

    African Journals Online (AJOL)

    ... River Basin Development Authority, Ilorin). The result of the soil analysis revealed high variability and low nutrient status, alarming rate ofsofl deterioration, dwindling farmers' participation and ineffideni management of the irrigation infrastriicture in the study area. Keywords: Irrigation, Sustainable Development, Sub-humid ...

  8. Impacts of deficit irrigation and altered rooting patterns on soil structure and associated soil properties

    Science.gov (United States)

    A better understanding of belowground systems and overall management impacts on soil health is needed to improve crop production and long-term sustainability under deficit irrigation. This study investigates effects of deficit irrigation on rooting patterns in maize and subsequent impacts on soil pr...

  9. The full financial costs of irrigation services: A discussion on existing ...

    African Journals Online (AJOL)

    Considering water as an economic good entails, among other requisites, properly assessing the cost incurred by supplying and managing the resource, and the required infrastructure thereof. Regarding irrigation, the International Commission for Irrigation and Drainage (ICID) set up a method for assessing the full financial ...

  10. Effects of irrigation regimes and polymer on dry matter yield and ...

    African Journals Online (AJOL)

    mansour

    2013-12-18

    Dec 18, 2013 ... Drought is the most important limiting factor for crop production; it is becoming an increasingly severe ... production is under full irrigation (Rai et al., 1999). ..... polymer soil amendment and irrigation management. Master's. Dissertation. Natural Agric. Sci. Uni Pretoria. P. 105. Mao S, Islam MR, Yuegao HU, ...

  11. Low cost satellite data for monthly irrigation performance monitoring: benchmarks from Nilo Coelho, Brazil

    NARCIS (Netherlands)

    Bastiaanssen, W.G.M.; Brito, R.A.L.; Bos, M.; Souza, R.A.; Cavalcanti, E.B.; Bakker, M.M.

    2001-01-01

    Irrigation performance indicators can help water managers to understand how an irrigation scheme operates under actual circumstances. The new contribution of remote sensing data is the opportunity to study the crop growing conditions at scales ranging from individual fields to scheme level. Public

  12. Agronomic, physiological and biochemical evaluations of rice under a water-deficit irrigation system

    Science.gov (United States)

    The sustainability of conventional flood irrigation management in rice is a concern worldwide considering the uncertain patterns of precipitation and depletion of aquifers used for irrigation. This same concern is shared in USA rice producing areas and, thus, development of rice varieties that can t...

  13. Irrigation scheduling and controlling crop water use efficiency with Infrared Thermometry

    Science.gov (United States)

    Scientific methods for irrigation scheduling include weather, soil and plant-based techniques. Infrared thermometers can be used a non-invasive practice to monitor canopy temperature and better manage irrigation scheduling. This presentation will discuss the theoretical basis for monitoring crop can...

  14. Evaluating effects of deficit irrigation strategies on grain sorghum attributes and biofuel production

    Science.gov (United States)

    With reduced water resources available for agriculture, scientists and engineers have developed innovative technologies and management strategies aimed at increasing the efficient use of irrigation water.