WorldWideScience

Sample records for adequate irrigation management

  1. Wireless sensor networks for irrigation management

    Science.gov (United States)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  2. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  3. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  4. Improving access to adequate pain management in Taiwan.

    Science.gov (United States)

    Scholten, Willem

    2015-06-01

    There is a global crisis in access to pain management in the world. WHO estimates that 4.65 billion people live in countries where medical opioid consumption is near to zero. For 2010, WHO considered a per capita consumption of 216.7 mg morphine equivalents adequate, while Taiwan had a per capita consumption of 0.05 mg morphine equivalents in 2007. In Asia, the use of opioids is sensitive because of the Opium Wars in the 19th century and for this reason, the focus of controlled substances policies has been on the prevention of diversion and dependence. However, an optimal public health outcome requires that also the beneficial aspects of these substances are acknowledged. Therefore, WHO recommends a policy based on the Principle of Balance: ensuring access for medical and scientific purposes while preventing diversion, harmful use and dependence. Furthermore, international law requires that countries ensure access to opioid analgesics for medical and scientific purposes. There is evidence that opioid analgesics for chronic pain are not associated with a major risk for developing dependence. Barriers for access can be classified in the categories of overly restrictive laws and regulations; insufficient medical training on pain management and problems related to assessment of medical needs; attitudes like an excessive fear for dependence or diversion; and economic and logistical problems. The GOPI project found many examples of such barriers in Asia. Access to opioid medicines in Taiwan can be improved by analysing the national situation and drafting a plan. The WHO policy guidelines Ensuring Balance in National Policies on Controlled Substances can be helpful for achieving this purpose, as well as international guidelines for pain treatment.

  5. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  6. Using a System Model for Irrigation Management

    Science.gov (United States)

    de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba

    2014-05-01

    When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.

  7. Irrigation system management assisted by thermal imagery and spatial statistics

    Science.gov (United States)

    Thermal imaging has the potential to assist with many aspects of irrigation management including scheduling water application, detecting leaky irrigation canals, and gauging the overall effectiveness of water distribution networks used in furrow irrigation. Many challenges exist for the use of therm...

  8. Soil management and conservation: Irrigation: Methods

    Science.gov (United States)

    Irrigation applies water to soil to improve crop production. The three main methods of irrigation are surface, sprinkler and micro. Surface irrigation is used on 85% of the irrigated land in the world. It generally requires lower capital investment because the soil conveys water within the field, ra...

  9. WATER MANAGEMENT STRATEGIES UNDER DEFICIT IRRIGATION

    Directory of Open Access Journals (Sweden)

    Antonino Capra

    2008-12-01

    Full Text Available Deficit irrigation (DI is an optimization strategy whereby net returns are maximized by reducing the amount of irrigation water; crops are deliberated allowed to sustain some degree of water deficit and yield reduction. Although the DI strategy dates back to the 1970s, this technique is not usually adopted as a practical alternative to full irrigation by either academics or practitioners. Furthermore, there is a certain amount of confusion regarding its concept. In fact, a review of recent literature dealing with DI has shown that only a few papers use the concept of DI in its complete sense (e.g. both the agronomic and economic aspects. A number of papers only deal with the physiological and agronomical aspects of DI or concern techniques such as Regulated Deficit Irrigation (RDI and Partial Root Drying (PRD. The paper includes two main parts: i a review of the principal water management strategies under deficit conditions (e.g. conventional DI, RDI and PRD; and ii a description of a recent experimental research conducted by the authors in Sicily (Italy that integrates agronomic, engineering and economic aspects of DI at farm level. Most of the literature reviewed here showed, in general, quite positive effects from DI application, mostly evidenced when the economics of DI is included in the research approach. With regard to the agronomic effects, total fresh mass and total production is generally reduced under DI, whereas the effects on dry matter and product quality are positive, mainly in crops for which excessive soil water availability can cause significant reductions in fruit size, colour or composition (grapes, tomatoes, mangos, etc.. The experimental trial on a lettuce crop in Sicily, during 2005 and 2006, shows that the highest mean marketable yield of lettuce (55.3 t ha-1 in 2005 and 51.9 t ha-1 in 2006 was recorded in plots which received 100% of ET0-PM (reference evapotranspiration by the Penman- Monteith method applied water. In

  10. Implementation of efficient irrigation management for a sustainable agriculture. LIFE+ project IRRIMAN

    Science.gov (United States)

    Pérez-Pastor, Alejandro; Garcia-Vila, Margarita; Gamero-Ojeda, Pedro; Ascensión Carmona, M.°; Hernandez, David; José Alarcón, Juan; Nicolás, Emilio; Nortes, Pedro; Aroca, Antonio; María de la Rosa, Jose; Zornoza, Raúl; Faz, Ángel; Molina, Angel; Torres, Roque; Ruiz, Manuel; Calatrava, Javier

    2016-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. But its success greatly depends on the adequate application of the water deficit and requires a continuous and precise control of the plant and soil water status to adjust the water supplies at every crop phenological period. The main objective of this project is to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. With the adoption of this irrigation management we mean to ensure efficient use of water resources, improving quantitative water management, preserving high level of water quality and avoiding misuse and deterioration of water resources. The adoption of efficient irrigation will also lead to increments in water productivity, increments in the potential carbon fixation of the agroecosystem, and decrease energy costs of pressurized irrigation, together with mitigation and adaptation to climate change. The project will achieve the general objective by implication of farmers, irrigation communities, agronomists, industry, consultants, associations and public administration, by increments in social awareness for sustainable irrigation benefits, optimization of irrigation scheduling, improvements in technology, and

  11. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMI

  12. Bureaucratic designs : the paradox of irrigation management transfer in Indonesia

    NARCIS (Netherlands)

    Suhardiman, D.

    2008-01-01

    Irrigation Management Transfer (IMT) policy has been formulated and implemented worldwide, relying on three basic assumptions: that the irrigation agency are motivated to adapt their role in the sector's development; that farmers are willing to take over the system management; and that the process o

  13. Chronic Disease Management Programmes: an adequate response to patients’ needs?

    Science.gov (United States)

    Rijken, Mieke; Bekkema, Nienke; Boeckxstaens, Pauline; Schellevis, François G.; De Maeseneer, Jan M.; Groenewegen, Peter P.

    2012-01-01

    Abstract Background  Inspired by American examples, several European countries are now developing disease management programmes (DMPs) to improve the quality of care for patients with chronic diseases. Recently, questions have been raised whether the disease management approach is appropriate to respond to patient‐defined needs. Objective  In this article we consider the responsiveness of current European DMPs to patients’ needs defined in terms of multimorbidity, functional and participation problems, and self‐management. Method  Information about existing DMPs was derived from a survey among country‐experts. In addition, we made use of international scientific literature. Results  Most European DMPs do not have a solid answer yet to the problem of multimorbidity. Methods of linking DMPs, building extra modules to deal with the most prevalent comorbidities and integration of case management principles are introduced. Rehabilitation, psychosocial and reintegration support are not included in all DMPs, and the involvement of the social environment of the patient is uncommon. Interventions tailored to the needs of specific social or cultural patient groups are mostly not available. Few DMPs provide access to individualized patient information to strengthen self‐management, including active engagement in decision making. Conclusion  To further improve the responsiveness of DMPs to patients’ needs, we suggest to monitor ‘patient relevant outcomes’ that might be based on the ICF‐model. To address the needs of patients with multimorbidity, we propose a generic comprehensive model, embedded in primary care. A goal‐oriented approach provides the opportunity to prioritize goals that really matter to patients. PMID:22712877

  14. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Directory of Open Access Journals (Sweden)

    Jochen Hemming

    2009-04-01

    Full Text Available Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method. An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS, such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  15. The politics of policy : participatory irrigation management in Andhra Pradesh

    NARCIS (Netherlands)

    Nikku, B.R.

    2006-01-01

    This thesis studies the emergence, process and politics of the Andhra Pradesh reform policy of Participatory Irrigation Management (PIM). The reform has been labeled as the 'A? model' of irrigation reforms and supported by external aid agencies like World Bank. Within a short span of time Andhra Pra

  16. Technology transfer: Promoting irrigation progress and best management practices

    Science.gov (United States)

    Educational efforts promoting irrigation best management practices are designed to increase adoption of these practices and increase public understanding of the importance of irrigation. They increase visibility and the impact of the Ogallala Aquifer Program and promote affiliated research and exten...

  17. MANAGEMENT OF IRRIGATION AND NITROGEN FERTILIZERS TO REDUCE AMMONIA VOLATILIZATION

    Directory of Open Access Journals (Sweden)

    Fernando Viero

    2015-12-01

    Full Text Available ABSTRACT Nitrogen losses by ammonia (NH3 volatilization can be reduced by appropriate irrigation management or by alternative N sources, replacing urea. The objective of this study was to evaluate the efficiency of irrigation management and N source combinations in decreasing NH3 volatilization from an Argissolo Vermelho Distrófico típico cultivated for 28 years with black oat (Avena strigosa and maize (Zea mays, under no-tillage in the region of Depressão Central, Rio Grande do Sul, Brazil. The experiment was arranged in a randomized block design with split plots with three replications, where the main plots consisted of irrigation systems: no irrigation; irrigation immediately before and irrigation immediately after fertilization. The subplots were treated with different N sources: urea, urea with urease inhibitor and slow-release fertilizer, at an N rate of 180 kg ha-1, broadcast over maize, plus a control treatment without N fertilization. Ammonia volatilization was assessed using semi-open static collectors for 1, 2, 4, 6, and 10 days after N fertilization. In general, more than 90 % of total NH3-N losses occurred until three days after N fertilization, with peaks up to 15.4 kg ha-1 d-1. The irrigation was efficient to reduce NH3 losses only when applied after N fertilization. However, reductions varied according to the N fertilizer, and were higher for urea (67 % and slightly lower for urea with urease inhibitor (50 % and slow-release fertilizer (40 %, compared with the mean of the treatments without irrigation and irrigation before fertilization. The use of urea with urease inhibitor instead of urea was only promising under volatilization-favorable conditions (no irrigation or irrigation before N fertilization. Compared to urea, slow-release fertilizer did not reduce ammonia volatilization in any of the rainfed or irrigated treatments.

  18. Using Automation to Improve Surface Irrigation Management

    Science.gov (United States)

    In the Lower Mississippi Water Resource Area (WRA 08), also called the Mid-South, 2 million ha of cropland (80% of the irrigated farmland) employ surface irrigation, almost equally divided between furrow (52%) and controlled flooding (48%). Because Mid-South farmers experience less-than-optimal surf...

  19. Strategies for water management. A global irrigation model

    OpenAIRE

    Nunes, Joao; Sousa, Miguel; Torres-Campos, Tiago; Pereira, Mariana

    2011-01-01

    This study focuses on the physical component of irrigation water management in regions where its scarcity is intensified by recent urban centre development, seeking not only the definition of strategies for major savings in consumption, but rather their inclusion in landscape principles for more sustainable urban design solutions.The (re)establishment of a close relation between water management and planting techniques (perpetuated in vernacular irrigation techniques) is quintessential. There...

  20. The Power to Resist: Irrigation Management Transfer in Indonesia

    Directory of Open Access Journals (Sweden)

    Diana Suhardiman

    2013-02-01

    Full Text Available In the last two decades, international donors have promoted Irrigation Management Transfer (IMT as an international remedy to management problems in government irrigation systems in many developing countries. This article analyses the political processes that shape IMT policy formulation and implementation in Indonesia. It links IMT with the issue of bureaucratic reform and argues that its potential to address current problems in government irrigation systems cannot be achieved if the irrigation agency is not convinced about the need for management transfer. IMT’s significance cannot be measured only through IMT outcomes and impacts, without linking these with how the irrigation agency perceives the idea of management transfer in the first place, how this perception (redefines the agency’s position in IMT, and how it shapes the agency’s action and strategy in the policy formulation and implementation. I illustrate how the irrigation agency contested the idea of management transfer by referring to IMT policy adoption in 1987 and its renewal in 1999. The article concludes that for management transfer to be meaningful it is pertinent that the issue of bureaucratic reform is incorporated into current policy discussions.

  1. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  2. Intervention Processes and Irrigation Institutions: Sustainability of Farmer Managed Irrigation Systems in Nepal

    NARCIS (Netherlands)

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation management

  3. Appropriate designs and appropriating irrigation systems : irrigation infrastructure development and users' management capability in Bolivia

    NARCIS (Netherlands)

    Gutierrez Pérez, Z.

    2005-01-01

    The objectives of this book are to explore and demonstrate the 'divorce' that is taking place in how critical actors think about irrigation infrastructure design and management, and in how designers often impose their own narrow preferences in infrastructure composition and performance without refle

  4. Traditional Irrigation Management in Betmera-Hiwane, Ethiopia: The Main Peculiarities for the Persistence of Irrigation Practices

    Institute of Scientific and Technical Information of China (English)

    Solomon Habtu; Kitamura Yoshinobu

    2006-01-01

    Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C.,while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: the presence of communally constructed local rules, locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.

  5. New technologies for modernization and management of irrigation piping

    Directory of Open Access Journals (Sweden)

    Alessandro Santini

    2006-07-01

    Full Text Available Improving the efficiency of irrigation piping-systems represents a fundamental prerequisite to achieve a sustainable irrigation under both the environmental the economic point of view. Such an issue is important not only in areas with limited water-budget, but even in those areas where the increasing reduction of the water availability has become a worrying perspective. In the last twenty years, the reduction in water-availability and the increasing costs of system-management have highly limited the cultivated areas which are irrigated by means of water-distribution nets. In the recent years, most of the Italian investments in the irrigation-field have been oriented toward upgrading the open-channels irrigation nets, which were built starting from 50’, by substituting these latter with pipes. The modernization of the piping-systems has been achieved via innovative design solutions, such as back and loading water tanks or towers, which have lead to an improvement into the flexibility of the net management. Nearby the employment of such technologies, nowadays it is also possible to use the knowledge of the physical processes involved in the management of an irrigation system, starting from energy as well as mass exchange in the continuum soil-plant-atmosphere till to a detailed hydraulic description of a water distribution net under different flow regimes. Such a type of knowledge may be used to improve as well as buildup mathematical models for a decisions-support toward the management of complex irrigation districts. The acquirement of the data needed to implement such models has been deeply improved thanks to Geographical Information Systems (GIS, and techniques to analyze satellite-data coming from the Earth observation, which enable to characterize and monitor vegetation at different spatial, spectral and radiometric resolutions.

  6. Agro-Ecology and Irrigation Technology : Comparative Research on Farmer-Management Irrigation Systems in the Mid- Hills of Nepal

    NARCIS (Netherlands)

    Parajuli, U.N.

    1999-01-01

    Design and management of irrigation infrastructure in farmer managed irrigation systems (FMISs) are strongly influenced by social and agro-ecological conditions of an area. This thesis analyzes the elements of social and agro-ecological conditions in FMISs in the mid-hills of Nepal and examines thei

  7. Towards characterizing the adaptive capacity of farmer-managed irrigation systems

    NARCIS (Netherlands)

    Thapa, Bhuwan; Scott, Christopher; Wester, Flip; Varady, Robert

    2016-01-01

    Small-scale irrigation systems managed by farmers are facing multiple challenges including competing water demand, climatic variability and change, and socioeconomic transformation. Though the relevant institutions for irrigation management have developed coping and adaptation mechanisms, the intens

  8. Irrigation management using an expert system, soil water potentials, and vegetative indices for spatial applications

    Science.gov (United States)

    Variable rate irrigation (VRI) systems are irrigation systems that are capable of applying different water depths both in the direction of travel and along the length of the irrigation system. However, when compared to traditional irrigation systems, VRI systems require a higher level of management...

  9. Assessment of alternative water management options for irrigated agriculture

    NARCIS (Netherlands)

    Jhorar, R.K.; Smit, A.A.M.F.R.; Roest, C.W.J.

    2009-01-01

    A simulation study on alternative water management strategies was carried out for Sirsa Irrigation Circle in Haryana, covering an area of about 4800 km(2). Results showed that crop evapotranspiration and soil salinity development under reduction in canal water supply and increase in groundwater use,

  10. Farmers' Laws and Irrigation, Water Rights and Dispute Management in the Hills of Nepal

    NARCIS (Netherlands)

    Poudel, R.

    2000-01-01

    The title of my Thesis is "Farmers' Laws and Irrigation: Water Rights and Dispute Management in the Hills of Nepal". This is based on a research I conducted in the Thulotar Kulo irrigation system in Nepal, during 1997 and 1998. Thulotar Kulo is a farmer-managed irrigation system.Although this is a c

  11. The success of a policy model: Irrigation management transfer in Mexico

    NARCIS (Netherlands)

    Rap, E.R.

    2004-01-01

    This thesis studies the emergence, process and outcomes of the Mexican policy of Irrigation Management Transfer (IMT). Under the influence of neo-liberal government policies, the transfer of government-managed irrigation districts to water users' associations (WUAs) has radically changed irrigation

  12. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands locat

  13. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands locat

  14. Irrigation management in Mediterranean salt affected agriculture: how leaching operates

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2012-03-01

    Full Text Available In the frame of a crop rotation currently applied in a farm of the Apulian Tavoliere (Southern Italy, this paper reports the effect of brackish water irrigation on soil, outlines the corresponding salinity balance, formulates quantitative relations to model salt outflow below the soil root-layer and defines operational criteria to optimize irrigation management at farm level in order to control soil salinity through leaching. The general aim is to contribute to a sustainable use of the available water resources and a proper soil fertility conservation. A three-year trial (2007-2010 was carried out on a farm located close to the coast of the Manfredonia gulf (Mediterranean - Adriatic sea, where irrigation with brackish water is frequently practiced due to seawater intrusion into the groundwater. An especially designed experimental field-unit was set-up: the bottom of three hydraulically insulated plots was covered with a plastic sheet to intercept the percolating water and collect it into tanks by means of drain tubes. Each year a double crop cycle was applied to the soil; a spring-summer crop (tomato, zucchini and pepper, respectively was followed by a fall-winter crop (spinach, broccoli and wheat. Short “fallow” periods (completely bare soil were inserted between two crop cycles. Irrigation or rain completely restored crop water consumptions (with the exception of wheat, considered a rainfed crop and leaching was performed both unintentionally (by rainfalls or intentionally (supplying higher irrigation volumes whenever the soil electrical conductivity exceeded a fixed threshold. The soil electrical conductivity was periodically measured together with volume and electrical conductivity of irrigation and drainage water. All these measures allowed to draw-up the salt-balance of the soil, respectively at the beginning and the end of each crop cycle. Absolute and relative variations in soil salt content were interpreted with respect to absolute

  15. Remote sensing technologies applied to the irrigation water management on a golf course

    Science.gov (United States)

    Pedras, Celestina; Lança, Rui; Martins, Fernando; Soares, Cristina; Guerrero, Carlos; Paixão, Helena

    2015-04-01

    An adequate irrigation water management in a golf course is a complex task that depends upon climate (multiple microclimates) and land cover (where crops differ in morphology, physiology, plant density, sensitivity to water stress, etc.). These factors change both in time and space on a landscape. A direct measurement provides localized values of the evapotranspiration and climate conditions. Therefore this is not a practical or economical methodology for large-scale use due to spatial and temporal variability of vegetation, soils, and irrigation management strategies. Remote sensing technology combines large scale with ground measurement of vegetation indexes. These indexes are mathematical combinations of different spectral bands mostly in the visible and near infrared regions of the electromagnetic spectrum. They represent the measures of vegetation activity that vary not only with the seasonal variability of green foliage, but also across space, thus they are suitable for detecting spatial landscape variability. The spectral vegetation indexes may enhance irrigation management through the information contained in spectral reflectance data. This study was carried out on the 18th fairway of the Royal Golf Course, Vale do Lobo, Portugal, and it aims to establish the relationship between direct measurements and vegetation indexes. For that it is required (1) to characterize the soil and climatic conditions, (2) to assessment of the irrigation system, (3) to estimate the evapotranspiration (4) and to calculate the vegetation indices. The vegetation indices were determined with basis on spectral bands red, green and blue, RGB, and near Infrared, NIR, obtained from the analysis of images acquired from a unpiloted aerial vehicle, UAV, platform. The measurements of reference evapotranspiration (ETo) were obtained from two meteorological stations located in the study area. The landscape evapotranspiration, ETL, was determined in the fairway with multiple microclimates

  16. Water Management For Drip Irrigated Corn In The Arid Southeastern Anatolia Project Area In Turkey

    Science.gov (United States)

    Yazar, A.; Gencel, B.

    Microirrigation has the potential to minimize application losses to evaporation, runoff and deep percolation; improve irrigation control with smaller, frequent applications; supply nutrients to the crop as needed; and improve crop yields. The Southeastern Anatolia Project (GAP), when completed, 1.7 million ha of land will be irrigated. Wa- ter supplies are limited, and traditional irrigation practices result in high losses and low irrigation efficiences. This study was conducted to evaluate surface drip irrigation on crop performance. The effect of irrigation frequency and amount on crop yield, yield components, water use, and water use efficiency of corn (Zea mays L., PIO- 3267) were investigated in the Harran Plain in the arid Southeastern Turkey on a clay textured Harran Soil Series. Irrigation frequencies were once in three-day, and once in six-day; irrigation levels varied from full (I-100), medium (I-67; 2/3rd of full), and low (I-33; 1/3rd of full). The full irrigation treatment received 100% of the cumula- tive evaporation within the irrigation interval. Liquid nitrogen was injected into the irrigation water throughout the growing season. Treatments received the same amount of fertilizers. Highest average corn grain yield (11920 kg/ha) was obtained from the full irrigation treatment (I-100) with six-day irrigation interval. Irrigation intervals did not affect corn yields; however, deficit irrigation affected crop yields by reducing seed mass, and the seed number. Maximum water use efficiency (WUE) was found as 2.27 kg/m3 in the I-33 treatment plots with three-day irrigation interval. On the clay soil at Harran, irrigation frequencies are less critical than proper irrigation management for drip irrigation systems to avoid water deficits that have a greater effect on corn yields. The results revealed that about 40% water saving is possible with drip irrigation as compared to traditional surface irrigation methods in the region.

  17. Irrigation Strategies and Crop Breeding As Complementary Measures for Improved Water Management and Ecosystem Services

    Science.gov (United States)

    Vico, G.; Manzoni, S.; Weih, M.; Porporato, A. M.

    2014-12-01

    The projected population growth and changes in climate and dietary habits will further increase the pressure on water resources globally. Within precision farming, a host of technical solutions has been developed to reduce water consumption for agricultural uses. Examples are the shift from scheduled to demand-based irrigation and the use of sophisticated water distribution techniques. The next frontier for a more sustainable agriculture is the combination of reduced water requirements with enhanced ecosystem services. Currently, staple grains are obtained from annuals crops. Enhanced ecosystem services could be obtained shifting from annual to perennial crops, obtained by means of targeted breeding. In fact, perennial plants, with their continuous soil cover and the higher allocation of resources to the below ground, contribute to the reduction of soil erosion, water and nutrient losses, while enhancing carbon sequestration in the root zone. We explore here the implications for water management at the field- to farm-scale of both improved irrigation methods and targeted breeding. A probabilistic description of the soil water balance and crop development is employed to quantify water requirements and yields and their inter-annual variability, as a function of rainfall patterns, soil and crop features. Optimal irrigation strategies are thus defined in terms of maximization of yield and minimization of required irrigation volumes and their inter-annual variability. The probabilistic model is parameterized based on an extensive meta-analysis of traits of co-generic annual and perennial species (including both selected and wild species) to explore the consequences for water requirements of shifting from annual to perennial crops under current and future climates. The larger and more developed roots of perennial crops may allow a better exploitation of soil water resources than annual species. At the same time, perennial crops may require adequate water supply for

  18. Is Biomedical Waste Management Knowledge Adequate in Paramedics AND Sanitary Workers in Hospitals of Ujjain City?

    Directory of Open Access Journals (Sweden)

    Anand Rajput

    2016-03-01

    Full Text Available "Background: Hospitals produce a byproduct which is wasteful and causes contamination of the environment, with its antecedent complications. Inadequate and inappropriate knowledge of handling may have serious health consequences. Objectives: Present study was conducted to find out the current level of knowledge among paramedics (Lab Technicians, nursing staff and sanitary workers in hospitals of Ujjain city regarding biomedical waste management. Methods: A Cross-sectional study was conducted on 400 study participants in the Government and private hospital of Ujjain city from 1st January 2013 to 30 November 2013.Statistical analysis was done by SPSS 16.0 and chi-square test. Results: Mean age of the total 400 study participants was 31.36 (SD=11.62 years, among them 68.5% were female, majority (64.5% were the nurses and majority (64.7% were working in the concerned hospital since more than 2 years. Nursing staff has adequate knowledge (36.8% as compared to lab technician and sanitary staff (30.3%. Staff who had received medical waste management training had significantly (p<0.05 higher knowledge. Conclusion: On the basis of findings we conclude that the knowledge regarding biomedical waste management is not adequate among nursing staff, lab teqnicians and sanitary workers. " [Natl J Community Med 2016; 7(3.000: 151-154

  19. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since Ken

  20. Are physiotherapy graduates adequately prepared to to manage hiv/aids patients

    Directory of Open Access Journals (Sweden)

    T. Puckree

    2004-02-01

    Full Text Available Physiotherapy learners treat patients with Human Immuno-deficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS. There is no available published research on physiotherapy learners' opinions about how the South Afican physiotherapy undergraduate program is  helping them cope with HIV/AIDS patients. This study determines whether the physiotherapy degree offered at South African Universities, adequately prepares learners to cope with HIV/AIDS patients. Differences in knowledge and attitudes of physiotherapy learners regarding HIV/AIDS, amongst  universities is also explored. Two hundred and two senior physiotherapy learners from eight South African universities returned their  questionnaires and 55% of these were viable for analysis. A large portion (79% of learners indicated that the physiotherapy undergraduate degree did not adequately prepare them to cope with HIV/AIDS patients. Learners' knowledge and attitudes regarding HIV/AIDS differed significantly (41% to 73%  amongst universities. Formal lectures on HIV/AIDS significantly affected knowledge (0% -100% but not attitude towards patients. The role of the physiotherapist, precautions, transmission modes, syndrome stages, counseling and clinical skills were considered critical in the management of HIV/AIDS patients.

  1. Insect pest management in tropical Asian irrigated rice.

    Science.gov (United States)

    Matteson, P C

    2000-01-01

    Abundant natural enemies in tropical Asian irrigated rice usually prevent significant insect pest problems. Integrated pest management (IPM) extension education of depth and quality is required to discourage unnecessary insecticide use that upsets this natural balance, and to empower farmers as expert managers of a healthy paddy ecosystem. Farmers' skill and collaboration will be particularly important for sustainable exploitation of the potential of new, higher-yielding and pest-resistant rice. IPM "technology transfer" through training and visit (T&V) extension systems failed, although mass media campaigns encouraging farmer participatory research can reduce insecticide use. The "farmer first" approach of participatory nonformal education in farmer field schools, followed by community IPM activities emphasizing farmer-training-farmer and research by farmers, has had greater success in achieving IPM implementation. Extension challenges are a key topic for rice IPM research, and new pest management technology must promote, rather than endanger, ecological balance in rice paddies.

  2. Real-time drought forecasting system for irrigation managment

    Science.gov (United States)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Masseroni, Daniele; Meucci, Stefania; Pala, Francesca; Salerno, Raffaele; Meazza, Giuseppe; Chiesa, Marco; Mancini, Marco

    2013-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in in European areas traditionally rich of water such as the Po Valley. In dry periods, the problem of water shortage can be enhanced by conflictual use of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective on this issue is increasing due to climate change and global warming scenarios which come out from the last IPCC Report. The increased frequency of dry periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system Pre.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction at long range (30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin. The studied area covers 74,000 ha in the middle of the Po Valley, near the city of Lodi. The hydrological ensemble forecasts are based on 20 meteorological members of the non-hydrostatic WRF model with 30 days as lead-time, provided by Epson Meteo Centre, while the hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The hydrological model was validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station. Reliability of the forecasting system and its benefits was assessed on some cases-study occurred in the recent years.

  3. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    OpenAIRE

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since Kennedy published his channel-forming discharge theory in 1895. Subsequently different theories have been developed and are used around the world. All of them assume uniform and steady flow conditions ...

  4. CropIrri: A Decision Support System for Crop Irrigation Management

    OpenAIRE

    Zhang, Yi; Feng, Liping

    2010-01-01

    International audience; A field crop irrigation management decision-making system (CropIrri) was developed based on the soil water balance model, crop phenology model, root growth model, crop water production function, and irrigation management model. The irrigation plan is made through predicating of soil water content in root zone and daily crop water requirement using historical and forecasting weather data, measured real time soil moisture data. CropIrri provided four decision modes of no...

  5. A management perspective on the performance of the irrigation subsector.

    OpenAIRE

    Nijman, Ch.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the performance of irrigation investments was far below its potential. The size of this underperformance is well represented by Seckler's alarming conclusion that the average irrigation investment costs twi...

  6. Effect of irrigation management on soil salinization in Manas River Valley,Xinjiang,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The irrigated area of Manas River Valley in Northwest China is an example of the successful reclamation of massive land affected by shallow ground water levels and salinization.To determine the effect of irrigation management practices on soil salinization,soil profiles representing various soil types were sampled.The historical records on the characteristics of irrigation management practices,groundwater level and soil salts accumulation in this region at four key periods,namely:flood irrigation without drainage;flood irrigation with drainage but of low efficiency;irrigation in combination with lined irrigation canals and exploitation of groundwater;and irrigation with the application of water-saving irrigation techniques,were analyzed emphatically.In addition,the salinization status of cultivated land in 2010 and 2020 was also predicted by using analogism according to the relationship between soil salinization and irrigation practices.The results revealed that the application of the traditional irrigation methods,such as flood irrigation and ridge irrigation,resulted in a rapid rising of groundwater level and salts accumulation in soil surface layers.However,with the way of well irrigation and well drainage,the groundwater level and the desalinization in soil layers apparently lowered,leading to a substantial increase of crop yield.Currently,the application of drip irrigation under mulch decreased the salts concentration in soil layers and increased the crop yield.With the continuous application of drip irrigation,the average soil desalinization efficiency in soil layers may increase.It is predicted that the percentage of salinized land would be reduced to 35%-40% when irrigation water is utilized reasonably in 2010.With the high efficient utilization of irrigation water after 2020,the salinized land would remain below 30%.It is concluded that with the improvement of irrigation management,an obvious desalinization would appear in the soil surface layers and the

  7. Decentralising Zimbabwe’s water management: The case of Guyu-Chelesa irrigation scheme

    Science.gov (United States)

    Tambudzai, Rashirayi; Everisto, Mapedza; Gideon, Zhou

    Smallholder irrigation schemes are largely supply driven such that they exclude the beneficiaries on the management decisions and the choice of the irrigation schemes that would best suit their local needs. It is against this background that the decentralisation framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasise the need for a participatory approach to water management. The Zimbabwean government has gone a step further in decentralising the management of irrigation schemes, that is promoting farmer managed irrigation schemes so as to ensure effective management of scarce community based land and water resources. The study set to investigate the way in which the Guyu-Chelesa irrigation scheme is managed with specific emphasis on the role of the Irrigation Management Committee (IMC), the level of accountability and the powers devolved to the IMC. Merrey’s 2008 critique of IWRM also informs this study which views irrigation as going beyond infrastructure by looking at how institutions and decision making processes play out at various levels including at the irrigation scheme level. The study was positioned on the hypothesis that ‘decentralised or autonomous irrigation management enhances the sustainability and effectiveness of irrigation schemes’. To validate or falsify the stated hypothesis, data was gathered using desk research in the form of reviewing articles, documents from within the scheme and field research in the form of questionnaire surveys, key informant interviews and field observation. The Statistical Package for Social Sciences was used to analyse data quantitatively, whilst content analysis was utilised to analyse qualitative data whereby data was analysed thematically. Comparative analysis was carried out as Guyu-Chelesa irrigation scheme was compared with other smallholder irrigation scheme’s experiences within Zimbabwe and the Sub Saharan African region at large. The findings were that whilst the

  8. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    Energy Technology Data Exchange (ETDEWEB)

    Abalos, Diego, E-mail: diego.abalos@upm.es [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Sanchez-Martin, Laura; Garcia-Torres, Lourdes [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Groenigen, Jan Willem van [Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Vallejo, Antonio [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH{sub 4}{sup +} and NO{sub 3}{sup −}) regulating the emissions of greenhouse gases (i.e. N{sub 2}O, CO{sub 2} and CH{sub 4}) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N{sub 2}O, NO, CH{sub 4} and CO{sub 2} were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N{sub 2}O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO{sub 2} emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N{sub 2}O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO{sub 3}{sup −}-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. - Highlights: • The effect of fertigation management techniques on GHG and NO emissions was studied. • Fertigation with urea instead of calcium nitrate increased N{sub 2}O by a factor of 2.4. • Daily irrigation reduced NO (42%) but increased CO

  9. Irrigation and Instream Management under Drought Conditions using Probabilistic Constraints

    Science.gov (United States)

    Oviedo-Salcedo, D. M.; Cai, X.; Valocchi, A. J.

    2009-12-01

    It is well-known that river-aquifer flux exchange may be an important control on low flow condition in a stream. Moreover, the connections between streams and underlying formations can be spatially variable due to geological heterogeneity and landscape topography. For example, during drought seasons, farming activities may induce critical peak pumping rates to supply irrigation water needs for crops, and this leads to increased concerns about reductions in baseflow and adverse impacts upon riverine ecosystems. Quantitative management of the subsurface water resources is a required key component in this particular human-nature interaction system to evaluate the tradeoffs between irrigation for agriculture and the ecosystems low flow requirements. This work presents an optimization scheme developed upon the systems reliability-based design optimization -SRBDO- analysis, which accounts for prescribed probabilistic constraint evaluation. This approach can provide optimal solutions in the presence of uncertainty with a higher level of confidence. In addition, the proposed methodology quantifies and controls the risk of failure. SRBDO have been developed in the aerospace industry and extensively applied in the field of structural engineering, but has only seen limited application in the field of hydrology. SRBDO uses probability theory to model uncertainty and to determine the probability of failure by solving a mathematical nonlinear programming problem. Furthermore, the reliability-based design optimization provides a complete and detailed insight of the relative importance of each random variable involved in the application, in this case the surface -groundwater coupled system. Importance measures and sensitivity analyses of both, random variables and probability distribution function parameters are integral components of the system reliability analysis. Therefore, with this methodology it is possible to assess the contribution of each uncertain variable on the total

  10. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    Science.gov (United States)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in

  11. Middle East Regional Irrigation Management Information Systems project-Some science products

    Science.gov (United States)

    Similarities in the aridity of environments and water scarcity for irrigation allow common approaches to irrigation management problems and research methods in the Southern Great Plains of the United States and the Middle East. Measurement methods involving weighing lysimeters and eddy covariance sy...

  12. Adapting irrigation management to water scarcity: constraints of plant growth, hydraulics and carbon assimilation.

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  13. The Success of a Policy Model: Irrigation Management Transfer in Mexico

    NARCIS (Netherlands)

    Rap, E.R.

    2006-01-01

    The Mexican policy of Irrigation Management Transfer has been widely propagated as a success and has become a model for other countries seeking to improve the performance of their irrigation systems while also cutting public expenditures. This article analyses the process of policy-making that has g

  14. Improvement of sustainability of irrigation in olive by the accurate management of regulated deficit irrigation

    Science.gov (United States)

    Memmi, Houssem; Moreno, Marta M.; Gijón, M. Carmen; Pérez-López, David

    2015-04-01

    Regulated Deficit Irrigation (RDI) is a useful tool to balance the improvement of productivity and water saving. This methodology is based in keeping the maximum yield with deficit irrigation. The key consists in setting water deficit during a non-sensitive phenological period. In olive, this phenological period is pit hardening, although, the accurate delimitation of the end of this period is nowadays under researching. Another interesting point in this methodology is how deep can be the water stress during the non-sensitive period. In this assay, three treatments were used in 2012 and 2013. A control treatment (T0), irrigated following FAO methodology, without water stress during the whole season and two RDI treatments in which water stress was avoided only during stage I and III of fruit growth. During stage II, widely considered as pit hardening, irrigation was ceased until trees reach the stated water stress threshold. Water status was monitored by means of stem water potential (ψs) measurements. When ψs value reached -2 MPa in T1 treatment, trees were irrigated but with a low amount of water with the aim of keeping this water status for the whole stage II. The same methodology was used for T2 treatment, but with a threshold of -3 MPa. Water status was also controlled by leaf conductance measurements. Fruit size and yield were determined at the end of each season. The statistically design was a randomized complete blocks with four repetitions. The irrigation amount in T1 and T2 was 50% and 65% less than T0 at the end of the study. There were no significant differences among treatments in terms of yield in 2012 (year off) and 2013 (year on).

  15. A management perspective on the performance of the irrigation subsector.

    NARCIS (Netherlands)

    Nijman, Ch.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the perfo

  16. Efficient irrigation management with conventional and VRI sprinkler systems

    Science.gov (United States)

    In Alabama, there is a ploitical push towards irrigated agriculture, as reduction in water resources for agriculture in the West becomes more limited. Some farmers have invested in center pivot systems but have little experience with irrigation scheduling methods. ARS scientists at Bushland have e...

  17. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    NARCIS (Netherlands)

    Pardossi, A.; Incrocci, L.; Incrocci, G.; Marlorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J.

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of effici

  18. Small private irrigation: Enhancing benefits and managing trade-offs

    NARCIS (Netherlands)

    Giordano, M.; Fraiture, de C.M.S.

    2014-01-01

    Millions of smallholder farmers in sub-Saharan Africa and South Asia benefit from readily available and affordable irrigation technologies. The rapid uptake of small private irrigation in South Asia had a proven positive effect on poverty alleviation. In sub-Saharan Africa similar trends are emergin

  19. Irrigated lands assessment for water management: Technique test. [California

    Science.gov (United States)

    Wall, S. L.; Brown, C. E.; Eriksson, M.; Grigg, C. A.; Thomas, R. W.; Colwell, R. N.; Estes, J. E.; Tinney, L. R.; Baggett, J. O.; Sawyer, G.

    1981-01-01

    A procedure for estimating irrigated land using full frame LANDSAT imagery was demonstrated. Relatively inexpensive interpretation of multidate LANDSAT photographic enlargements was used to produce a map of irrigated land in California. The LANDSAT and ground maps were then linked by regression equations to enable precise estimation of irrigated land area by county, basin, and statewide. Land irrigated at least once in California in 1979 was estimated to be 9.86 million acres, with an expected error of less than 1.75% at the 99% level of confidence. To achieve the same level of error with a ground-only sample would have required 3 to 5 times as many ground sample units statewide. A procedure for relatively inexpensive computer classification of LANDSAT digital data to irrigated land categories was also developed. This procedure is based on ratios of MSS band 7 and 5, and gave good results for several counties in the Central Valley.

  20. Irrigation management strategies for winter wheat using AquaCrop model

    Directory of Open Access Journals (Sweden)

    M. H. Ali

    2013-09-01

    Full Text Available Many regions of the world face the challenge to ensure high yield with limited water supply. This calls for utilization of available water in an efficient and sustainable manner. Quantitative models can assist in management decision and planning purposes. The FAO’s newly developed crop-water model, AquaCrop, which simulates yield in response to water, has been calibrated for winter wheat and subsequently used to simulate yield under different sowing dates, irrigation frequencies, and irrigation sequences using 10 years daily weather data. The simulation results suggest that “2 irrigation frequency” is the most water-efficient schedule for wheat under the prevailing climatic and soil conditions. The results also indicate decreasing yield trend under late sowing. The normal/recommended sequence of irrigation performed better than the seven-days shifting from the normal. The results will help to formulate irrigation management plan based on the resource availability (water, and land availability from previous crop.

  1. Remote sensing and simulation modelling for on-demand irrigation systems management

    NARCIS (Netherlands)

    D'Urso, G.; Menenti, M.; Santini, A.

    1996-01-01

    This paper describes a procedure for monitoring and improving the performance of on-demand irrigation networks, based on the integration of remote sensing techniques and simulation modelling of water flow in each component of the system. In order to adequately reproduce the actual operation of an on

  2. Local irrigation management institutions mediate changes driven by external policy and market pressures in Nepal and Thailand.

    Science.gov (United States)

    Bastakoti, Ram C; Shivakoti, Ganesh P; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal's new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people's participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  3. Local Irrigation Management Institutions Mediate Changes Driven by External Policy and Market Pressures in Nepal and Thailand

    Science.gov (United States)

    Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  4. Effects of drainage salinity evolution on irrigation management

    Science.gov (United States)

    Kan, Iddo

    2003-12-01

    A soil physics theory of solute movement through a drained saturated zone underlying agricultural land is introduced into a long-term economic analysis of farm-level irrigation management; this is an alternative to the immediate, homogeneous blending assumption employed in previous studies as a base for calculating changes in drainage salinity over time. Using data from California, the effect of drainage salinity evolution is analyzed through a year-by-year profit optimization under the requirement of on-farm drainage disposal. Paths of optimal land allocation among crop production with fresh surface water, saline drainage reuse and evaporation ponds appear to depend on the relative profitability of the first two; that of reuse is affected by the trend of drainage salinity. Tile spacing and environmental regulations associated with evaporation ponds affect the timing of evaporation pond construction. The system converges into a solution involving both drainage-disposal activities; this solution includes an outlet for salts and is therefore sustainable. Following this strategy, the system is asymptotically approaching a steady state that possesses both hydrological and salt balances. Economic implications associated with land retirement programs in California are discussed.

  5. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    Science.gov (United States)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  6. Landscape irrigation management for maintaining an aquifer and economic returns.

    Science.gov (United States)

    Kovacs, Kent Forrest; Mancini, Mattia; West, Grant

    2015-09-01

    Expanding irrigated agriculture and dryer climatic conditions has led to large-scale withdrawals of groundwater and the decline in shallow aquifers. Policy makers must wrestle with the challenge of maintaining economic growth while conserving the groundwater resource. A spatially explicit landscape level model analyzes consequences of optimally chosen crop mix patterns on an aquifer and economic returns. The model of the groundwater use incorporates irrigation needs of the crops grown, initial aquifer thickness, hydro-conductivity of the aquifer, and distance to surrounding grid cells. The economic model incorporates the site specific yield, crop mix, and irrigation practice investments to predict economic returns. A tradeoff occurs between the volume of the aquifer and economic returns due to groundwater withdrawal for irrigation, but the farm's ability to grow profitable lower irrigation crops dampens the intensity of this tradeoff. Allowing for multiple unconventional irrigation practices that are yield increasing and water conserving significantly increases the economic returns of a given crop mix while maintaining the aquifer.

  7. Investigation into rainwater use by cotton under multiple irrigation management conditions in the Texas High Plains

    Science.gov (United States)

    Goebel, T.; Lascano, R. J.

    2012-12-01

    Irrigation management practices in the Texas High Plains (THP) might be improved if we could ascertain the proportion of rainfall utilized by the crop in any given rainfall event. For instance, the primary source of irrigation water in the THP is pumped from the Ogallala Aquifer (OA), and can be enriched in 18O compared to rainfall-captured water. Given this expected difference, it should be possible to determine if the crop is utilizing the water from a rainfall event. To this end, cotton was grown using three irrigation management practices: subsurface drip, center pivot, and no irrigation (dry land). The water used for irrigation was pumped from the Ogallala aquifer, and rainfall was gathered in a rain gauge with mineral oil to prevent evaporation. Additionally, plant and soil samples were collected following each precipitation event every two hours and every eight hours respectively. Water was then extracted from the soil and plant samples using cryogenic vacuum distillation, and analyzed for 18O/16O ratios using the DLT-100 Liquid-Water Isotope Analyzer from Los Gatos Research Inc. The difference in isotope concentrations in the extracts from soils was used to determine infiltration depth into the soil profile at each location. The isotopic composition of the plant water was used to determine if the was used to compare rainwater use across the different irrigation management practices. Results might suggest changes to the way in which we apply irrigation water that would improve root growth and distribution to enhance the capture of rainfall.

  8. Review of the water management systems in the Gujarat Medium Irrigation II Project (Credit 1496-IN)

    NARCIS (Netherlands)

    Brouwer, R.

    1993-01-01

    Different activities are ongoing in the Medium Irrigation II project simultaneously. These are: - emancipation of farmers through their involvement in the operation and management; - change over from Sheshpali type water management to RWS type water management; - design and construction of remaining

  9. Irrigation Trials for ET Estimation and Water Management in California Specialty Crops

    Science.gov (United States)

    Johnson, L.; Cahn, M.; Martin, F.; Lund, C.; Melton, F. S.

    2012-12-01

    Accurate estimation of crop evapotranspiration (ETc) can support efficient irrigation water management, which in turn brings benefits including surface water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality assurance. Past research in California has revealed strong relationships between canopy fractional cover (Fc) and ETc of certain specialty crops, while additional research has shown the potential of monitoring Fc by satellite remote sensing. California's Central Coast is the leading region of cool season vegetable production in the U.S. Monterey County alone produces more than 80,000 ha of lettuce and broccoli (about half of U.S. production), valued at $1.5 billion in 2009. Under this study, we are conducting ongoing irrigation trials on these crops at the USDA Agricultural Research Station (Salinas) to compare irrigation scheduling via plant-based ETc approaches, by way of Fc, with current industry standard-practice. The following two monitoring approaches are being evaluated - 1) a remote sensing model employed by NASA's prototype Satellite Irrigation Management System, and 2) an online irrigation scheduling tool, CropManage, recently developed by U.C. Cooperative Extension. Both approaches utilize daily grass-reference ETo data as provided by the California Irrigation Management Irrigation System (CIMIS). A sensor network is deployed to monitor applied irrigation, volumetric soil water content, soil water potential, deep drainage, and standard meteorologic variables in order to derive ETc by a water balance approach. Evaluations of crop yield and crop quality are performed by the research team and by commercial growers. Initial results to-date indicate that applied water reductions based on Fc measurements are possible with little-to-no impact on yield of crisphead lettuce (Lactuca sativa). Additional results for both lettuce and broccoli trials, conducted during summer-fall 2012, are presented with respect to

  10. Hemiacidrin irrigation in the management of struvite calculi: long-term results.

    Science.gov (United States)

    Sant, G R; Blaivas, J G; Meares, E M

    1983-12-01

    Renacidin (10 per cent hemiacidrin) irrigation has been used in the management of renal struvite calculi in 25 patients. Of these patients 22 were free of stone after irrigation: 16 after dissolution of residual stone fragments postoperatively, 4 after prophylactic postoperative irrigation and 2 after primary, nonsurgical percutaneous dissolution. Recurrent urinary tract infections owing to the original urease-producing bacteria occurred in 14 per cent of these patients and recurrent nephrolithiasis occurred in 9 per cent during an average followup period of 66 months.

  11. Optimal management of water resources demand and supply in irrigated agriculture from plot to regional scale

    Science.gov (United States)

    Schütze, Niels; Wagner, Michael

    2016-04-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic optimization framework for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. Different open loop and closed loop control strategies are evaluated within this stochastic optimization framework in order to generate reliable stochastic crop water production functions (SCWPF). The resulting database of SCWPF can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  12. Decentralised Management and Community Participation : A Minor Field Study about Irrigation and Communication in Central India

    OpenAIRE

    Glaas, Erik

    2007-01-01

    India and many other developing countries confront serious problems of declining water tables. In India there is no real water shortage, but ineffective use of surface water leads to freshwater run-off. By building dams and irrigation water systems the Indian government has been trying to find a more effective use of surface water and thereby increase the agricultural productivity. But mismanagement of irrigation systems by local governments called for alternative management techniques, and d...

  13. Web-based management of research groups - using the right tools and an adequate integration strategy

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, Antonio Carlos de Oliveira; Menezes, Mario Olimpio de, E-mail: barroso@ipen.b, E-mail: mario@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Grupo de Pesquisa em Gestao do Conhecimento Aplicada a Area Nuclear

    2011-07-01

    Nowadays broad interest in a couple of inter linked subject areas can make the configuration of a research group to be much diversified both in terms of its components and of the binding relationships that glues the group together. That is the case of the research group for knowledge management and its applications to nuclear technology - KMANT at IPEN, a living entity born 7 years ago and that has sustainably attracted new collaborators. This paper describes the strategic planning of the group, its charter and credo, the present components of the group and the diversified nature of their relations with the group and with IPEN. Then the technical competencies and currently research lines (or programs) are described as well as the research projects, and the management scheme of the group. In the sequence the web-based management and collaboration tools are described as well our experience with their use. KMANT have experiment with over 20 systems and software in this area, but we will focus on those aimed at: (a) web-based project management (RedMine, ClockinIT, Who does, PhProjekt and Dotproject); (b) teaching platform (Moodle); (c) mapping and knowledge representation tools (Cmap, Freemind and VUE); (d) Simulation tools (Matlab, Vensim and NetLogo); (e) social network analysis tools (ORA, MultiNet and UciNet); (f) statistical analysis and modeling tools (R and SmartPLS). Special emphasis is given to the coupling of the group permanent activities like graduate courses and regular seminars and how newcomers are selected and trained to be able to enroll the group. A global assessment of the role the management strategy and available tool set for the group performance is presented. (author)

  14. Influence of Container Mulches on Irrigation and Nutrient Management

    Science.gov (United States)

    An experiment was conducted in 2005 and repeated in 2006 to determine the influence of mulch products and controlled release fertilizer (CRF) placement on irrigation and nutrition requirements of container-grown crops. Hydrangea (Hydrangea macrophylla 'Fasan' and 'Endless Summer') were grown in 2.7...

  15. Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya.

    Science.gov (United States)

    Mutero, C M; Blank, H; Konradsen, F; van der Hoek, W

    2000-10-02

    An experiment to assess the impact of intermittent irrigation on Anopheles larval populations, rice yields and water use was conducted in the Mwea rice irrigation scheme in Kenya. Four water regimes including intermittent irrigation were tested in a complete randomized block experimental design. Intermittent irrigation was carried out on a weekly schedule, with flooded conditions from Saturday through Tuesday morning. Larval sampling at each plot was conducted every Monday and prior to draining of intermittently irrigated subplots on Tuesday. All the adult anopheline mosquitoes emerging from larvae collected in the experimental plots were identified as being An. arabiensis. By far the highest numbers of An. arabiensis 1st instar larvae were found in the intermittently irrigated subplots, indicating that the water regime provided the most attractive environment for egg laying. However, the ratio between the 4th and 1st instar larvae in the subplots was only 0.08, indicating very low survival rates. In contrast, the 4th/1st instar ratio for subplots with other water management regimes ranged between 0.27 and 0.68, suggesting a correspondingly higher survival than observed with intermittent irrigation. The total number of 4th instars was almost the same in the intermittently irrigated subplots and the irrigation system normally practised by the farmers. The failure to eliminate larval development up to the 4th instar in the former method was attributed to residual pools of water. Larval abundance fluctuated throughout the 12-week sampling period. The highest larval densities were recorded in the 3 weeks after transplanting the rice seedlings. Afterwards, larval numbers dropped dramatically as the height of rice plants increased. Rice yields at harvest did not show statistically significant differences among subplots with different water regimes. The average yield per hectare ranged from 4.8-5.3 metric tonnes. The average daily water percolation/seepage rate was 3.6 mm

  16. Feedbacks between managed irrigation and water availability: Diagnosing temporal and spatial patterns using an integrated hydrologic model

    Science.gov (United States)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Groundwater-fed irrigation has been shown to deplete groundwater storage, decrease surface water runoff, and increase evapotranspiration. Here we simulate soil moisture-dependent groundwater-fed irrigation with an integrated hydrologic model. This allows for direct consideration of feedbacks between irrigation demand and groundwater depth. Special attention is paid to system dynamics in order to characterized spatial variability in irrigation demand and response to increased irrigation stress. A total of 80 years of simulation are completed for the Little Washita Basin in Southwestern Oklahoma, USA spanning a range of agricultural development scenarios and management practices. Results show regionally aggregated irrigation impacts consistent with other studies. However, here a spectral analysis reveals that groundwater-fed irrigation also amplifies the annual streamflow cycle while dampening longer-term cyclical behavior with increased irrigation during climatological dry periods. Feedbacks between the managed and natural system are clearly observed with respect to both irrigation demand and utilization when water table depths are within a critical range. Although the model domain is heterogeneous with respect to both surface and subsurface parameters, relationships between irrigation demand, water table depth, and irrigation utilization are consistent across space and between scenarios. Still, significant local heterogeneities are observed both with respect to transient behavior and response to stress. Spatial analysis of transient behavior shows that farms with groundwater depths within a critical depth range are most sensitive to management changes. Differences in behavior highlight the importance of groundwater's role in system dynamics in addition to water availability.

  17. Real-life GOLD 2011 implementation: the management of COPD lacks correct classification and adequate treatment.

    Directory of Open Access Journals (Sweden)

    Vladimir Koblizek

    Full Text Available Chronic obstructive pulmonary disease (COPD is a serious, yet preventable and treatable, disease. The success of its treatment relies largely on the proper implementation of recommendations, such as the recently released Global Strategy for Diagnosis, Management, and Prevention of COPD (GOLD 2011, of late December 2011. The primary objective of this study was to examine the extent to which GOLD 2011 is being used correctly among Czech respiratory specialists, in particular with regard to the correct classification of patients. The secondary objective was to explore what effect an erroneous classification has on inadequate use of inhaled corticosteroids (ICS. In order to achieve these goals, a multi-center, cross-sectional study was conducted, consisting of a general questionnaire and patient-specific forms. A subjective classification into the GOLD 2011 categories was examined, and then compared with the objectively computed one. Based on 1,355 patient forms, a discrepancy between the subjective and objective classifications was found in 32.8% of cases. The most common reason for incorrect classification was an error in the assessment of symptoms, which resulted in underestimation in 23.9% of cases, and overestimation in 8.9% of the patients' records examined. The specialists seeing more than 120 patients per month were most likely to misclassify their condition, and were found to have done so in 36.7% of all patients seen. While examining the subjectively driven ICS prescription, it was found that 19.5% of patients received ICS not according to guideline recommendations, while in 12.2% of cases the ICS were omitted, contrary to guideline recommendations. Furthermore, with consideration to the objectively-computed classification, it was discovered that 15.4% of patients received ICS unnecessarily, whereas in 15.8% of cases, ICS were erroneously omitted. It was therefore concluded that Czech specialists tend either to under-prescribe or overuse

  18. IRRIMET: a web 2.0 advisory service for irrigation water management

    Science.gov (United States)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  19. Integration of soil moisture and geophysical datasets for improved water resource management in irrigated systems

    Science.gov (United States)

    Finkenbiner, Catherine; Franz, Trenton E.; Avery, William Alexander; Heeren, Derek M.

    2016-04-01

    Global trends in consumptive water use indicate a growing and unsustainable reliance on water resources. Approximately 40% of total food production originates from irrigated agriculture. With increasing crop yield demands, water use efficiency must increase to maintain a stable food and water trade. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Fixed and roving cosmic-ray neutron probes were combined in order to characterize the spatial and temporal patterns of soil moisture at three study sites across an East-West precipitation gradient in the state of Nebraska, USA. A coarse scale map was generated for the entire domain (122 km2) at each study site. We used a simplistic data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler (˜102m2) for variable rate irrigation, the individual wedge (˜103m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. Additionally, we were able to generate a daily soil moisture product over the entire study area at various key modeling and remote sensing scales 12, 32, and 122 km2. Our soil moisture products and derived soil properties were then compared against spatial datasets (i.e. field capacity and wilting point) from the US Department of Agriculture Web Soil Survey. The results show that our "observed" field capacity was higher compared to the Web Soil Survey products. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depth and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of this non-contact and pragmatic geophysical method into current irrigation practices across the state and globe has the

  20. Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya

    DEFF Research Database (Denmark)

    Mutero, C M; Blank, H; Konradsen, F

    2000-01-01

    between the 4th and 1st instar larvae in the subplots was only 0.08, indicating very low survival rates. In contrast, the 4th/1st instar ratio for subplots with other water management regimes ranged between 0.27 and 0.68, suggesting a correspondingly higher survival than observed with intermittent...... differences among subplots with different water regimes. The average yield per hectare ranged from 4.8-5.3 metric tonnes. The average daily water percolation/seepage rate was 3.6 mm and did not significantly differ among different water management regimes. Further research is necessary to, among other things......An experiment to assess the impact of intermittent irrigation on Anopheles larval populations, rice yields and water use was conducted in the Mwea rice irrigation scheme in Kenya. Four water regimes including intermittent irrigation were tested in a complete randomized block experimental design...

  1. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  2. Holistic irrigation water management approach based on stochastic soil water dynamics

    Science.gov (United States)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly

  3. The Middle Eastern Regional Irrigation Management Information Systems project-update

    Science.gov (United States)

    The Middle Eastern Regional Irrigation Management Information Systems Project (MERIMIS) was formulated at a meeting of experts from the region in Jordan in 2003. Funded by the U.S. Department of State, it is a cooperative regional project bringing together participants from Israel, Jordan, Palestini...

  4. Uncertainty analysis of an irrigation scheduling model for water management in crop production

    Science.gov (United States)

    Irrigation scheduling tools are critical to allow producers to manage water resources for crop production in an accurate and timely manner. To be useful, these tools need to be accurate, complete, and relatively reliable. The current work presents the uncertainty analysis and its results for the Mis...

  5. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Science.gov (United States)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  6. Simulating N2O emissions from irrigated cotton wheat rotations in Australia using DAYCENT: Mitigation options by optimized fertilizer and irrigation management

    Science.gov (United States)

    Scheer, Clemens; DelGrosso, Stephen; Parton, William; Rowlings, David; Grace, Peter

    2014-05-01

    Irrigation and fertilization do not only stimulate plant growth, but also accelerate microbial C- and N-turnover in the soil and thus can lead to enhanced emissions of nitrous oxide (N2O) from soils. In Australia there are more than 2 million hectares of agricultural land under irrigation and research has now focused on a combination of nitrogen fertilizer and irrigation management to maintain crop yields, maximize nitrogen use efficiency and reduce N2O emissions. Process-based models are now being used to estimate N2O emissions and assess mitigation options of N2O fluxes by improving management at field, regional and national scales. To insure that model predictions are reliable it is important to rigorously test the model so that uncertainty bounds for N2O emissions can be reduced and the impacts of different management practices on emissions can be better quantified. We used high temporal frequency dataset of N2O emissions to validate the performance of the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. Furthermore, we evaluated potential N2O mitigation strategies in irrigated cotton-wheat rotations in Australia by simulating different fertilizer and irrigation management scenarios over a climatically variable 25 year time span. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. The simulations of different fertilization and irrigation practices in cotton-wheat rotations over a 25 year time frame clearly showed that there is scope for reducing N2O emissions by modified fertilizer and irrigation management. For wheat and for cotton the model predicted that a

  7. Decision Support system- DSS- for irrigation management in greenhouses: a case study in Campania Region

    Science.gov (United States)

    Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna

    2016-04-01

    In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils

  8. AnnAGNPS model as a potential tool for seeking adequate agriculture land management in Navarre (Spain)

    Science.gov (United States)

    Chahor, Y.; Giménez, R.; Casalí, J.

    2012-04-01

    runoff was. On the other hand, a significant increment (30%) on annual sediment yield was predicted when rapeseed is the alternative major crop. Besides, a large decrease in annual runoff (up to 41%) and sediment (up to 98%) was predicted as the watershed is gradually occupied by shrubs. Finally, no-tillage appears as an interesting management method for cereals, with an over 90% reduction of in sediment yield -but only 4% in runoff. This is a first approach to evaluate AnnAGNPS as a management tool under local conditions. The above results may be then taking with caution especially in terms of absolute predicted values. However, AnnAGNPS can be considered as a promising tool for assessing the effect of the agricultural activities and implementing adequate land management alternatives in Mediterranean environment.

  9. Fertilizer efficiency and environmental risk of irrigating Impatiens with composting leachate in decentralized solid waste management.

    Science.gov (United States)

    Zhou, Chuanbin; Wang, Rusong; Zhang, Yishan

    2010-06-01

    The reduction and reuse of composting leachate is an issue of importance in the field of decentralized solid waste management. In this study, composting leachate from source-separated food waste was treated and subsequently used as liquid fertilizer to irrigate Impatiens (Impatiens balsamina). The leachate was altered by adjusting storage time and dilution, and through addition of microbial inocula. For each test case, the effects of irrigation were monitored by analyzing the Impatiens extension degree, numbers of leaves and flowers, dry weight, and photosynthetic pigment content to assess fertilizer efficiency. The main results obtained revealed that the addition of microbial inocula and lengthening of storage times may lower COD concentrations, adjust pH value and maintain a comparatively high level of nutrient contents. By adding microbial inocula, a COD concentration of 9.6% and BOD(5) concentration of 6.7% were obtained for non-treated leachate with the same storage time. COD concentrations in leachate decreased to 69.4% after 36weeks storage. Moreover, composting leachate promoted growth of Impatiens. The dry weight biomass of Impatiens irrigated using treated diluted leachate was 1.15-2.94 times that obtained for Impatiens irrigated using tap water. Lastly, following the irrigation of Impatiens over a short period, soil did not accumulate VOCs and heavy metals to levels exceeding relative standards. Further research on heavy metal and salinity accumulation in plants should be undertaken to meet the needs of large-scale applications.

  10. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    Science.gov (United States)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip

  11. Problems and Countermeasures of the Irrigation Management in Irrigation and Water Conservancy%农田水利灌溉管理存在的问题及对策

    Institute of Scientific and Technical Information of China (English)

    姚凌燕; 高旭梅

    2014-01-01

    This paper analyzes the basic requirements of far-mland irrigation, the significance of strengthening irrigation management of irrigation and water conservancy, and then an-alyzes the existing problems of irrigation management of irrig-ation and water conservancy. In order to improve the irrigation works of farmland water conservancy construction, reasonable and scientific management mode is necessary, need to improve the irrigation management system of irrigation and water cons-ervancy irrigation project management, increase capital inves-tment, making the farmland irrigation got good use.%本文分析了农田水利灌溉的基本要求,加强农田水利灌溉管理的意义,进而分析了农田水利灌溉管理存在的问题。为了改善农田水利灌溉工程,构建科学合理的管理模式是有必要的,要健全农田水利灌溉管理制度,加大灌溉工程管理资金投入,使农田水利灌溉得到很好的利用。

  12. An integrated framework of operational ET remote sensing program for irrigation management in the Texas High Plains

    Science.gov (United States)

    Irrigated agriculture and management of limited groundwater are critical issues in the Texas High Plains where irrigation accounts for more than 90% of groundwater use. With low recharge rates, groundwater levels in the underlain Ogallala aquifer are declining at unsustainable rates. Daily field-sca...

  13. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    NARCIS (Netherlands)

    Abalos, D.; Sanchez-Martin, L.; Garcia-Torres, L.; Groenigen, van J.W.; Vallejo, A.

    2014-01-01

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-fi

  14. Irrigation Water Management in Latin America Manejo del Agua de Riego en Sudamérica

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.Los países sudamericanos tienen un gran potencial para aumentar sus áreas regadas. El riego es importante para fortalecer las economías locales y regionales y para mejorar la seguridad alimentaria. Esta revisión tiene por objeto proporcionar un resumen de los aspectos más importantes del manejo del riego en Sudamérica. Un manejo pobre del riego puede tener un alto impacto en la producción de cultivos y en el ambiente, en tanto que un buen manejo reduce las pérdidas de suelo y agua, y ayuda a los productores a maximizar sus ingresos. Se encontró que se requiere investigación adicional que permita una mejor comprensión de los requerimientos de agua de los cultivos en las condiciones sudamericanas, y también para proporcionar a los agricultores información local que permita hacer programaci

  15. Hydrological problems of water resources in irrigated agriculture: A management perspective

    Science.gov (United States)

    Singh, Ajay

    2016-10-01

    The development of irrigated agriculture is necessary for fulfilling the rising food requirements of the burgeoning global population. However, the intensification of irrigated agriculture causes the twin menace of waterlogging and soil salinization in arid and semiarid regions where more than 75% of the world's population lives. These problems can be managed by either adopting preventive measures which decrease the inflow of water and salt or by employing remedial measures which increase the outflow. This paper presents an overview of various measures used for the management of waterlogging and salinity problems. The background, processes involved, and severity of waterlogging and salinity problems are provided. The role of drainage systems, conjunctive use of different water sources, use of computer-based mathematical models, and the use of remote sensing and GIS techniques in managing the problems are discussed. Conclusions are provided which could be useful for all the stakeholders.

  16. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    Science.gov (United States)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  17. Towards a smart automated surface irrigation management in rice-growing areas in Italy

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-02-01

    Full Text Available Italy is the leading rice producer in Europe, accounting for more than half of the total high-quality production of this crop. Rice is traditionally grown in fields that remain flooded starting with crop establishment until close to harvest, and this traditional irrigation technique (i.e., continuous submergence is recognised as an important water resource sink (almost 40% of the irrigation water available worldwide is used for paddy areas. Meanwhile, the water management in rice areas requires a high level of labour because it is based on maintaining a predetermined water height in paddy fields and because the regulation of input and output flow is typically operated manually by the farmer. This study reveals the hardware and software characteristics of an automated and remote controlled technology tested for the first time in a rice farm near Pavia (Italy, during the 2016 growing season, aiming at a more efficient and less burdensome irrigation management system for rice fields. A water level sensor in the field provides the data required to govern the inflow regulation gate in real-time, according to the precise time to cut off the flow rate. Using a dedicated web page, the farmer can control flows, volumes and water levels in the fields by operating directly on the gate if necessary or setting the irrigation program according to his agronomic practices.

  18. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  19. Cotton 2K-Management tools for irrigated cotton

    Science.gov (United States)

    The use of simulation models to manage crops was a concept introduced in the 1980’s. For example, the cotton simulation model known as GOSSYM was made available in 1989 and was used by both producers and consultants to manage cotton in real time. More recently, Dr. Avi Marani, Professor Emeritus, Sc...

  20. Forest Irrigation Of Tritiated Water: A Proven Tritiated Water Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, Karen; Blount, Gerald; Kmetz, Thomas; Prater, Phil

    2012-11-08

    Tritium releases from the Old Radioactive Waste Burial Ground (ORWBG) at the SRS in South Carolina has impacted groundwater and surface water. Tritiated groundwater plumes discharge into Fourmile Branch which is a small tributary of the Savannah River, a regional water resource. Taking advantage of the groundwater flow paths and the local topography a water collection and irrigation system was constructed and has been used at the SRS for over a decade to reduce these tritiated water releases to Fourmile Branch. The tritiated water is transferred to the atmosphere by evaporation from the pond surface, and after irrigation, wetted surface evaporation and evapotranspiration through the forest vegetation. Over the last decade SRS has irrigated over 120,000,000 gallons of tritiated water, which diverted over 6000 curies away from Fourmile Branch and the Savannah River. The system has been effective in reducing the flux of tritiated groundwater by approximately 70%. Mass balance studies of tritium in the forest soils before operations and over the last decade indicate that approximately 90% of the tritiated water that is irrigated is transferred to the atmosphere. Dose studies indicate that exposure to site workers and offsite maximally exposed individual is very low, approximately 6 mrem/year and 0.004 mrem/year, respectively. To consistently meet the flux reduction goal of tritium into Fourmile Branch optimization activities are proposed. These efforts will increase irrigation capacity and area. An additional 17 acres are proposed for an expansion of the area to be irrigated and a planting of approximately 40 acres of pine forest plantations is underway to expand irrigation capacity. Co-mingled with the tritiated groundwater are low concentrations of chlorinated volatile organic compounds (cVOCs), and 1,4-dioxane. Research studies and SRS field data indicate the forest irrigation system may have an added benefit of reducing the mass of these co-contaminants via

  1. Results of an irrigated lands assessment for water management in California

    Science.gov (United States)

    Bauer, E. H.; Baggett, J. D.; Wall, S. L.; Thomas, R. W.; Brown, C. E.

    1984-01-01

    Periodic assessment of existing and future demands for water within California is one responsibility of the California Department of Water Resources (CDWR). The California Irrigated Lands Assessment for Water Management Project represented a 5-year joint research effort between the NASA and the CDWR with technical support from the University of California (UC) at Berkeley and at Santa Barbara. The objectives were: (1) to develop and demonstrate procedures for providing highly precise, timely, estimates of irrigated area on a statewide basis using Landsat sensor data, and (2) to develop, through research with small demonstration sites, a procedure for the inventory and mapping of crop groups on a regional basis. Both manual and computer-assisted analyses were investigated. This paper highlights the statewide irrigated lands inventory where a procedure for statewide estimation of irrigated land using full frame Landsat MSS imagery and sampled ground data was successfully demonstrated. The statewide estimate of 3 990 112 hectares was within + or - 1.32 percent relative standard error at the 95-percent Confidence Interval, well within the design goal. This procedure represents a new capability for obtaining near-real time data on changes in agricultural water use throughout the state.

  2. Study on the Roles of FWUA in Construction, Management and Maintenance of Small-Scale Irrigation and Water Conservancy

    Institute of Scientific and Technical Information of China (English)

    Shaoshu; LI; Ke; YUAN

    2013-01-01

    In recent years, China has been frequented by floods and droughts which has greatly evoked much concern from the Central Government about rural water conservancy construction. Irrigation is closely related to the "three rural" issues and concerns about the vital interests of farmers. To achieve a virtuous circle of agricultural water supply, it is necessary and urgent to establish Farmer Water User Association (FWUA) to participate in the construction, management and maintenance of small-scale irrigation system. Based on the survey on nationwide "Small-scale irrigation conditions", the roles of FWUA in the construction, management and maintenance of small-scale water conservancy have studied in this study.

  3. A decomposition approach for optimal management of groundwater resources and irrigated agriculture in arid coastal regions

    Science.gov (United States)

    Grundmann, Jens; Schütze, Niels; Heck, Vera

    2013-04-01

    For ensuring an optimal sustainable water resources management in arid coastal environments, we develop a new simulation based integrated water management system. It aims at achieving best possible solutions for groundwater withdrawals for agricultural and municipal water use including saline water management together with a substantial increase of the water use efficiency in irrigated agriculture. To achieve a robust and fast operation of the management system, it unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both, water quality and water quantity of a strongly coupled groundwater-agriculture system. However, such systems are characterized by a large number of decision variables if abstraction schemes, cropping patterns and cultivated acreages are optimised simultaneously for multiple years. Therefore, we apply the principle of decomposition to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for a faster and more reliable solution. At first, within an inner optimisation loop, cropping patterns and cultivated acreages are optimised to achieve a most profitable agricultural production for a given amount of water. Thereby, the behaviour of farms is described by crop-water-production functions which can be derived analytically. Secondly, within an outer optimisation loop, a simulation based optimisation is performed to find optimal groundwater abstraction pattern by coupling an evolutionary optimisation algorithm with an artificial neural network for modelling the aquifer response, inclusive the seawater interface. We demonstrate the decomposition approach by an exemplary application of the south Batinah region in the Sultanate of Oman which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. We show the effectiveness of our methodology for the evaluation

  4. Improving irrigation efficiency : the need for a relevant sequence of the management tools

    Science.gov (United States)

    Fayolle, Y.

    2009-04-01

    With 70 % of worldwide withdrawals, irrigation efficiency is a key issue in the overall problem of water resources. Management of water dedicated to agriculture should be improved to secure food production and save water to deal with increasing domestic and industrial demands. This paper is based on the results of a collaborative research project conducted in India with a local NGO (the Aga Khan Rural Support Programme, AKRSP(I)) during which GIS were tested. It is aimed at analyzing the efficiency of water usage in a water development programme conducted by the partner NGO in the semi-arid margins of Gujarat state. The analysis raises the question of the articulation of legal, institutional, economical, and technical tools to improve water efficiency. The NGO supervises the construction of surface water harvesting structures for irrigation purposes. Following a participatory approach, it creates and trains user groups to which the management of dams would then be devolved. User group membership depends on financial contribution to the building costs. A legal vacuum regarding surface water management combined with unequal investment capacities favor the concentration of water resources in the hands of a limited number of farmers. This causes low water use efficiency, irrigation choices being mostly oriented to high water consumptive crops and recipient farmers showing no interest in investing in water saving techniques. Our observations favor equality of access and paying more attention to the sequence in which management tools are articulated. On a national scale, as a prerequisite, water user rights as well as NGO's intervention legal framework should be clarified. On a project scale, before construction, information systems could help to identify all potential beneficiaries and optimize equality of access. It aims at reducing the volume of water per farmer to encourage them to irrigate low water consumptive crops and invest in water saving techniques. Depending

  5. Design and Management of Irrigation Systems Diseño y Manejo de Sistemas de Riego

    Directory of Open Access Journals (Sweden)

    Eduardo A Holzapfel

    2009-12-01

    Full Text Available Irrigation systems should be a relevant agent to give solutions to the increasing demand of food, and to the development, sustainability and productivity of the agricultural sector. The design, managing, and operation of irrigation systems are crucial factors to achieve an efficient use of the water resources and the success in the production of crops and orchards. The aim of this paper is to analyze knowledge and investigations that enable to identify the principal criteria and processes that allow improving the design and managing of the irrigation systems, based on the basic concept that they facilitate to develop agriculture more efficient and sustainable. The design and managing of irrigation systems must have its base in criteria that are relevant, which implies to take into account agronomic, soil, hydraulic, economic, energetic, and environmental factors. The optimal design and managing of irrigation systems at farm level is a factor of the first importance for a rational use of water, economic development of the agriculture and its environmental sustainability.Los sistemas de riego deberían ser un agente relevante para dar soluciones a la demanda creciente de alimentos, y el desarrollo, sustentabilidad y productividad del sector agrícola. El diseño, manejo, y operación de los sistemas de riego son factores cruciales para lograr un uso eficiente de los recursos hídricos y el éxito en la producción de cultivos y frutales. El objetivo de este artículo fue analizar conocimientos e investigaciones que permitan identificar los principales criterios y procesos para mejorar el diseño y manejo de los sistemas de riego, basados en el concepto básico de desarrollar una agricultura más eficiente y sostenible. El diseño y manejo de los sistemas de riego deben tener su base en criterios que sean relevantes, lo que implica considerar aspectos agronómicos, de suelo, hidráulicos, económicos, energéticos, y ambientales. El diseño y

  6. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    Science.gov (United States)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was

  7. MODEL PENGENDALIAN ASET NIRWUJUD DALAM MANAJEMEN SISTEM IRIGASI (Model of Controlling Intangible Assets in Irrigation System Management

    Directory of Open Access Journals (Sweden)

    Nugroho Tri Waskitho

    2013-03-01

    Full Text Available The research aimed at developing model of controlling intangible assets in irrigation system management. The research method consisted of two stages. The first stage was building the model of controlling intangible assets in irrigation system management using neuro-fuzzy. The model had three submodels: (i knowledge management, (ii intangible assets, and (iii performance of irrigation system. The second stage was evaluating the model in Sapon irrigation system in Kulon Progo, Yogyakarta. Data collecting was done by questionnaire and interview on nine Water Use Associations. Data analysis was done by Adaptive Neuro Fuzzy Inference System. The model had been evaluated by correlation coefficient, Mean Absolute Percentage Error and Root Mean Square Error. The research result indicated that the model of controlling intangible assets in irrigation system management could predict intangible assets and performance of irrigation system well. The model linked knowledge management, intangible assets and performance of irrigation system.  Knowledge management felt into four main components: (i learning organization, (ii principle of organization, (iii policy and strategy of organization, and (iv information and communication technology which controlling intangible assets in irrigation system. Intangible assets consisted of moral intelligence, emotional intelligence, creativity attitude, institutional culture, and farmer participation which  controlling effectiveness of irrigation system. Keywords: model, intangible assets, controlling, irrigation system, knowledge management   Tujuan penelitian adalah mengembangkan model pengendalian aset nirwujud dalam manajemen sistem irigasi. Metode penelitian terdiri dari dua tahap. Tahap pertama adalah pembangunan model pengendalian aset nirwujud dalam manajemen sistem irigasi dengan prinsip neuro-fuzzy. Model mempunyai tiga sub model yaitu manajemen pengetahuan, aset nirwujud dan kinerja sistem irigasi. Tahap kedua

  8. SOCIAL MANAGEMENT OF IRRIGATION WATER IN THE SAN JUAN EJIDO, URIREO, SALVATIERRA, GUANAJUATO

    Directory of Open Access Journals (Sweden)

    Julieta Aidee Díaz-Rosillo

    2011-09-01

    Full Text Available In irrigated agriculture, producers are responsible for the management and administration of multiple common resources, among which include land and water. These common resources are used jointly by the whole community and in the same way are removed, depending on the needs of each individual. In the case of well 15 in the Ejido San Juan, has been maintained to be administered only by users without needing them, so far, the involvement of people outside the community or any government body for best results.

  9. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  10. A comparative study of wireless and wired sensors networks for deficit irrigation management

    Science.gov (United States)

    Torres Sánchez, Roque; Domingo Miguel, Rafael; Valles, Fulgencio Soto; Perez-Pastor, Alejandro; Lopez Riquelme, Juan Antonio; Blanco Montoya, Victor

    2016-04-01

    In recent years, the including of sensors in the context of agricultural water management, has received an increasing interest for the establishment of irrigation strategies, such as regulated deficit irrigation (RDI). These strategies allow a significant improvement of crop water productivity (marketable yield / water applied), especially in woody orchards. The application of these deficit irrigation strategies, requires the monitoring of variables related to the orchard, with the purpose of achieving an efficiently irrigation management, since it is necessary to know the soil and plant water status to achieve the level of water deficit desired in each phenological stage. These parameters involve the measurements of soil and plant parameters, by using appropriate instrumentation devices. Traditional centralized instrumentation systems include soil matric potential, water content and LVDT sensors which information is stored by dataloggers with a wired connection to the sensors. Nowadays, these wired systems are being replaced by wireless ones due, mainly, to cost savings in wiring and labor. These technologies (WSNs) allow monitoring a wide variety of parameters in orchards with high density of sensors using discrete and autonomous nodes in the trees or soil places where it is necessary, without using wires. In this paper we present a trial in a cherry crop orchard, with different irrigation strategies where both a wireless and a wired system have been deployed with the aim of obtaining the best criteria on how to select the most suitable technology in future agronomic monitoring systems. The first stage of this study includes the deploying of nodes, wires, dataloggers and the installation of the sensors (same for both, wired and wireless systems). This stage was done during the first 15 weeks of the trial. Specifically, 40 MPS6 soil matric potential, 20 Enviroscan water content and 40 (LVDT and band) dendometers were installed in order to cover the experimental

  11. Modeling irrigation networks for the quantification of potential energy recovering: a case study

    OpenAIRE

    Modesto Pérez-Sánchez; Francisco Javier Sánchez-Romero; Helena M. Ramos; P. Amparo López-Jiménez

    2016-01-01

    Water irrigation systems are required to provide adequate pressure levels in any sort of network. Quite frequently, this requirement is achieved by using pressure reducing valves (PRVs). Nevertheless, the possibility of using hydraulic machines to recover energy instead of PRVs could reduce the energy footprint of the whole system. In this research, a new methodology is proposed to help water managers quantify the potential energy recovering of an irrigation water network with adequate condit...

  12. Concentration of radiocaesium in rice and irrigation water, and soil management practices in Oguni, Date, Fukushima.

    Science.gov (United States)

    Tsukada, Hirofumi; Ohse, Kenji

    2016-10-01

    The concentration of radiocaesium ((134) Cs and (137) Cs) in brown rice collected from Oguni, Date, Fukushima in 2011 was over 500 Bq kg(-1) , which was the provisional regulation value in 2011, and rice cultivation was prohibited in 2012. Rice culture was resumed following the application of K fertilizer as a countermeasure in 2013. The concentration of (137) Cs in soils and irrigation water in 2013 was in the range of 1200 to 4000 Bq kg(-1) (n = 31) and 0.078 to 1.1 Bq L(-1) (n = 7), respectively. The concentration of (137) Cs in the dissolved fraction in irrigation water filtered with 0.45 µm pore-size membrane filter was a relatively constant at 0.019 to 0.038 Bq L(-1) (n = 7). The concentration of (137) Cs in brown rice cultivated in the paddy fields after implementing the countermeasure was 1.1 to 24 Bq kg(-1) dry weight (n = 29), which was lower than the Standard Limits (100 Bq kg(-1) ). However, the concentration of Cs in rice cultivated under a similar agricultural management as in 2011 and prior to the Tokyo Electric Power Company Holdings' (TEPCO) Fukushima accident was over the Standard Limits. Integr Environ Assess Manag 2016;12:659-661. © 2016 SETAC.

  13. Feasibility of Farmers’Participation in OptimalIrrigation Management System (Case of Guilan Province

    Directory of Open Access Journals (Sweden)

    Mohammad Taleghani

    2016-03-01

    Full Text Available Farmers’ participation in the maintenance and operation of water facilities has a positive impact on their attitude and internal trends and incentives to have closer cooperation with Regional Water Organization. The transfer of irrigation management to farmers enhances the productivity of water facilities and ultimately, results in efficient water use in agriculture. In order to evaluate the effect of participation and transfer of irrigation management to farmers, four hypotheses have been proposed. The study was an applied research according to the goal and was a descriptive survey as data collection method. Judgmental sampling was used to take samples from the population. A researcher-made questionnaire was employed for data collection. It was conducted among 120 people in Guilan Regional Water Organization engaged in agricultural sections. The questionnaire's validity was confirmed by content validity and its total reliability was estimated by Cronbach's alpha as to be 0.86 using SPSS software. The effects of participation on farmers’ commitment, cooperation, and satisfaction and the legitimacy of Regional Water Organization of Guilan province were evaluated at 0.01 level, and no evidence was found to reject the hypotheses.

  14. A case study of field-scale maize irrigation patterns in western Nebraska: implications for water managers and recommendations for hyper-resolution land surface modeling

    Science.gov (United States)

    Gibson, Justin; Franz, Trenton E.; Wang, Tiejun; Gates, John; Grassini, Patricio; Yang, Haishun; Eisenhauer, Dean

    2017-02-01

    In many agricultural regions, the human use of water for irrigation is often ignored or poorly represented in land surface models (LSMs) and operational forecasts. Because irrigation increases soil moisture, feedback on the surface energy balance, rainfall recycling, and atmospheric dynamics is not represented and may lead to reduced model skill. In this work, we describe four plausible and relatively simple irrigation routines that can be coupled to the next generation of hyper-resolution LSMs operating at scales of 1 km or less. The irrigation output from the four routines (crop model, precipitation delayed, evapotranspiration replacement, and vadose zone model) is compared against a historical field-scale irrigation database (2008-2014) from a 35 km2 study area under maize production and center pivot irrigation in western Nebraska (USA). We find that the most yield-conservative irrigation routine (crop model) produces seasonal totals of irrigation that compare well against the observed irrigation amounts across a range of wet and dry years but with a low bias of 80 mm yr-1. The most aggressive irrigation saving routine (vadose zone model) indicates a potential irrigation savings of 120 mm yr-1 and yield losses of less than 3 % against the crop model benchmark and historical averages. The results of the various irrigation routines and associated yield penalties will be valuable for future consideration by local water managers to be informed about the potential value of irrigation saving technologies and irrigation practices. Moreover, the routines offer the hyper-resolution LSM community a range of irrigation routines to better constrain irrigation decision-making at critical temporal (daily) and spatial scales (< 1 km).

  15. Estimating actual irrigation application by remotely sensed evapotranspiration observations

    NARCIS (Netherlands)

    Droogers, P.; Immerzeel, W.W.; Lorite, I.J.; SWAP, PEST

    2010-01-01

    Water managers and policy makers need accurate estimates of real (actual) irrigation applications for effective monitoring of irrigation and efficient irrigation management. However, this information is not readily available at field level for larger irrigation areas. An innovative inverse modeling

  16. A Linked Simulation-Optimization (LSO) Model for Conjunctive Irrigation Management using Clonal Selection Algorithm

    Science.gov (United States)

    Islam, Sirajul; Talukdar, Bipul

    2016-09-01

    A Linked Simulation-Optimization (LSO) model based on a Clonal Selection Algorithm (CSA) was formulated for application in conjunctive irrigation management. A series of measures were considered for reducing the computational burden associated with the LSO approach. Certain modifications were incurred to the formulated CSA, so as to decrease the number of function evaluations. In addition, a simple problem specific code for a two dimensional groundwater flow simulation model was developed. The flow model was further simplified by a novel approach of area reduction, in order to save computational time in simulation. The LSO model was applied in the irrigation command of the Pagladiya Dam Project in Assam, India. With a view to evaluate the performance of the CSA, a Genetic Algorithm (GA) was used as a comparison base. The results from the CSA compared well with those from the GA. In fact, the CSA was found to consume less computational time than the GA while converging to the optimal solution, due to the modifications incurred in it.

  17. Identification and Prioritization of Management Practices to Reduce Methylmercury Exports from Wetlands and Irrigated Agricultural Lands

    Science.gov (United States)

    McCord, Stephen A.; Heim, Wesley A.

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  18. Identification and prioritization of management practices to reduce methylmercury exports from wetlands and irrigated agricultural lands.

    Science.gov (United States)

    McCord, Stephen A; Heim, Wesley A

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  19. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    Science.gov (United States)

    Grundmann, J.; Schütze, N.; Heck, V.

    2014-09-01

    Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  20. Development of services for irrigation management: the experience with the users

    Science.gov (United States)

    Vuolo, Francesco; Neugebauer, Nikolaus; D'Urso, Guido; De Michele, Carlo

    2014-05-01

    Irrigated agriculture is the main user of freshwater resources (30% in Central Europe, 60% in the South). Efficient water management is therefore of essential importance, especially where water scarcity and water quality are becoming severe challenges. To achieve a successful and effective use of resources, farmers and water managers require easy-to-use decision support tools and reliable information. Our approach is based on Earth observation (EO) techniques and decision support tools. Generally, the service concept is based on two main components: i) the processing of time-series of high spatial resolution (10-30-m pixel size) images from satellite, currently available from public and commercial data providers, to timely monitor the crop growth and to estimate the crop water requirements throughout the growing season; ii) the adaptation and integration in local management practices & tools of easy to use geo-spatial technologies to make the information available to users and to support the decision-making process in near-real-time. The participation and feedback we receive from the users is fundamental to develop and provide easy-to-use technologies that can be embedded in standard approaches. In this paper, we briefly describe some examples of pre- and fully operational applications at field and irrigation scheme level and report some success stories of cooperation between decision makers and scientists. The paper includes the outcomes of ongoing activities such as Irrisat (www.irrisat.it), a regional operational service supported by rural development funds in Southern Italy and EO4Water (www.eo4water.com), a case study of knowledge and technology transfer in Eastern Austria funded by the Austrian Space Application Programme. The new capacities we develop to assist farmers in monitoring their crops are a step towards a better integration of tools and production. More technical advice and recommendation regarding sustainable land and resource use could then be

  1. The Management of a Patient with Elevated Intraocular Pressure Resistant to Medical Treatment: Anterior Chamber Irrigation

    Directory of Open Access Journals (Sweden)

    Abdullah Beyoğlu

    2014-10-01

    Full Text Available A 7-year-old male patient was medically treated in another center for hyphema which occurred after blunt trauma to his right eye. He was admitted to our clinic when his visual acuity decreased after being discharged. Biomicroscopic examination revealed total hyphema. Intraocular pressure (IOP was 48 mm Hg in the right eye with Goldmann applanation tonometry. Since IOP could not be managed by medical therapy and there was no regression in hyphema, anterior chamber was irrigated. As in our case, it should not be forgotten that re-hemorrhage may occur in the first week of hyphema during childhood. Moreover, surgical treatment should be considered when hemorrhage does not regress with medical treatment, increased IOP persists, and when there is a risk of corneal endothelial staining (corneal blood staining. (Turk J Ophthalmol 2014; 44: 400-2

  2. Irrigation Management Transfer and WUAs' dynamics: evidence from the South-Kazakhstan province

    Science.gov (United States)

    zinzani, andrea

    2014-05-01

    The importance of water resources management in the arid and semi-arid lands can not be overestimated being related with environmental, economical and socio-political issues. In Central Asia, due to the physical and climatic features, water control and irrigation have always played a strategic role in territorial and societal development. Since the collapse of the Soviet Union in Kazakhstan, as in the other Central Asian republics, significant changes in both the water and agricultural sector have emerged; water management shifted from a purely technical issue to a sociopolitical and economic one leading to several institutional and organizational changes. To address this transitional water management context and the related governance and technical issues, since the 1990s several development organizations and donor agencies (such as the World Bank, United Nations, USAID, and others), according to the international water community, have sought to streamline the Irrigation Management Transfer (IMT) and the establishment of the Water Users Associations (WUAs); this initiatives are sponsored and related to the IWRM framework, the water program globally supported by the Global Water Partnership and widely debated and questioned in the last years. This paper aims to discuss these transitional water management processes focusing on the meso-local level in the Arys valley, administratively included in the South-Kazakhstan province, ten years since the enactment of the law formalizing the WUAs. Three districts (Tyulkibas, Ordabasy and Otrar) were selected to analyse and understand the specific local transitional water institutional/organizational framework and to highlight the differences among them. The fieldwork was conducted in two different phases, April-May and November-December 2012. Within those periods, semi-structured interviews were carried out to the members of the state organizations (river basin agencies and district/province water departments) as well as the

  3. Annual Report 2007 Multi-state research project on "Irrigation Management for Humid and Sub-Humid Areas" S1018.

    Science.gov (United States)

    This report summarizes the annual results from scientists at the Application and Production Technology Research Unit in Stoneville, as members of the multi-state research project on irrigation and water management S1018. The multi-state research project has four key objectives, three of which the St...

  4. Water reuse for irrigated agriculture in Jordan: challenges of soil sustainability and the role of management strategies.

    Science.gov (United States)

    Carr, G; Nortcliff, S; Potter, R B

    2010-11-28

    Reclaimed water provides an important contribution to the water balance in water-scarce Jordan, but the quality of this water presents both benefits and challenges. Careful management of reclaimed water is required to maximize the nutrient benefits while minimizing the salinity risks. This work uses a multi-disciplinary research approach to show that soil response to irrigation with reclaimed water is a function of the management strategies adopted on the farm by the water user. The adoption of management methods to maintain soil productivity can be seen to be a result of farmers' awareness to potentially plant-toxic ions in the irrigation water (70% of Jordan Valley farmers identified salinization as a hazard from irrigation with reclaimed water). However, the work also suggests that farmers' management capacity is affected by the institutional management of water. About a third (35%) of farmers in the Jordan Valley claimed that their ability to manage salinization was limited by water shortages. Organizational interviews revealed that institutional awareness of soil management challenges was quite high (34% of interviewees described salinization as a risk from water reuse), but strategies to address this challenge at the institutional level require greater development.

  5. Adequate managment of patients with dystrophinopathies (muscular dystrophy Duchenne/Becker: objective scales and additional diagnostic methods

    Directory of Open Access Journals (Sweden)

    A. S. Nosko

    2014-01-01

    Full Text Available There are still no guidlines on managment of Duchenne/Becker myodystrophy in domestic medical practice. It leads to decrease of quality of life and, what is more important, lifespan of patients. In this article we have described our Western coleagues lаst decade experience, including consensus guidelines published in 2010 on mаnаgment of Duchenne myodystrophy, supplemented with our practicle experience. We have described standardized motor development scale and muscle tone score for patients with MDD/MDB, and algorithm of multidiscipline care with focus on prevention, diagnosis and treatment of main disease and steroid therapy complications: cardiovascular, orthopedics, respirator etc. These recommendations not only improve quality of live and extend lifespan of MDD/MDB patients, but allow to take part in multicentre trials on searching of pathognomonic and symptomatic treatment.

  6. Management of Obstetric Perineal Tears: Do Obstetrics and Gynaecology Residents Receive Adequate Training? Results of an Anonymous Survey

    Directory of Open Access Journals (Sweden)

    A. Cornet

    2012-01-01

    Full Text Available Background/Aim. To evaluate the obstetrics and gynaecology residents' perspective of their training and experience in the management of perineal tears that occur during assisted vaginal delivery. We hypothesised that residents would perceive room for improvement in their knowledge of pelvic floor anatomy and the training received in tears repair. Design. Descriptive cross-sectional study. Population/Setting. Seventy-two major residents from all teaching hospitals in Catalonia. Methods. A questionnaire was designed to evaluate experience, perception of the training and supervision provided. Results. The questionnaire was sent to all residents (=72, receiving 46 responses (64%. The participants represented 15 out of the 16 teaching hospitals included in the study (94% of the hospitals represented. Approximately, 52% of residents were in their third year while 48% were in their fourth. The majority of them thought that their knowledge of pelvic floor anatomy was poor (62%, although 98% felt confident that they would know when an episiotomy was correctly indicated. The survey found that they lacked experience in the repair of major degree tears (70% had repaired fewer than ten, and most did not carry out followup procedures. Conclusion. The majority of them indicated that more training in this specific area is necessary (98%.

  7. Soil salinisation and irrigation management of date palms in a Saharan environment.

    Science.gov (United States)

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity 0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  8. Nitrate leaching, water-use efficiency and yield of corn with different irrigation and nitrogen management systems in coastal plains, USA

    Science.gov (United States)

    Irrigation management for corn (Zea mays L.) production on the typical low water holding capacity soil of the southeastern USA needs to be improved to increase irrigation efficiency and reduce losses of nitrate from fields. A three-year (2012-2014) field study was conducted to compare the effects of...

  9. Golf Course Irrigation with Reclaimed Water in the Mediterranean: A Risk Management Matter

    Directory of Open Access Journals (Sweden)

    Miquel Salgot

    2012-04-01

    Full Text Available Controversy regarding the amount of water consumed or saved as a result of human activity is currently paramount in water-scarce areas. In recent decades, golf—a land and water consuming activity—has been implanted in several areas of the Mediterranean basin, where the scarcity of water resources is well-known. As a result, the use of conventional water resources for golf course irrigation is increasingly contested and its replacement by reclaimed water has become essential. This paper examines the wide range of issues involved in its use on golf courses, including hazards—due to the presence of microorganisms and pollutants—and the corresponding risks that can appear. The resulting biological, chemical and physical water quality concerns are analyzed. Legal aspects related to the use of reclaimed water are also discussed and good reuse practices are suggested, including a detailed examination of risk assessment procedures and tools through observation or chemical, physical and microbiological analysis. The HACCP system—which focuses on quality determination in water samples from relevant control points—is described in detail, as it is generally accepted as one of the most scientific ways to detect health problems on a golf course. The paper concludes that, given the increasing availability of treated and reclaimed water and the water needs of golf courses, the future development of the sport in areas without surplus water resources—such as the Mediterranean basin—will predictably depend upon the use of reclaimed water. In recent years, risk assessment or analysis has emerged as an essential tool to guarantee the application of reclaimed water at an acceptable risk level. There certainly have been considerable advances and improvements in the tools that guarantee the safe use of reclaimed water, although current methods available require simplification for their practical application. Nevertheless, protocols applied at present

  10. Transpirative Deficit Index (TDI) for the management of water scarcity in irrigated areas: development and application in northern Italy

    Science.gov (United States)

    Borghi, Anna; Facchi, Arianna; Rienzner, Michele; Gandolfi, Claudio

    2016-04-01

    In Europe, the monitoring and assessment of drought is entrusted to the European Drought Observatory (EDO). EDO indicators are calculated considering rainfed agriculture and delivered on a 5 km grid. However, in southern Europe, irrigation may compensate for potentially severe agricultural droughts and specific water scarcity indicators that explicitly consider irrigation are needed. In the Po River Plain, irrigated crops cover more than 70% of the agricultural land, massive amounts of water are diverted from rivers for irrigation, and surface irrigation methods are largely applied. Nowadays, the region is not a water scarce basin, but irrigation water shortages have occurred with increased frequency during the last two decades. Moreover, a recent EU report shows that the Po River Plain is included among areas in Europe that by 2030 shall be affected by water scarcity. In this context, a study was started to select and develop indicators for the management and prevention of Water Scarcity and Drought (WS&D) based on the synergic use of hydrological modelling and Earth Observation data applied at a spatial scale of interest for end-users (250m grid). These indicators shall be better suited for the assessment of WS&D in Italy as well as in other southern European countries. This work presents the development and the application of the TDI (Transpirative Deficit Index) to a study area, within the Po River Plain. TDI is an agricultural drought index based on the transpiration deficit (TDx, calculated as the difference between potential and actual transpiration), computed by the spatially distributed hydrological model IDRAGRA and cumulated over a period of x days. TDx for each day of a specific year is compared to the long-term TDx probability distribution (e.g., over 20-30 years), which is transformed into a standardized normal distribution. The non-exceedance probability of TDx is finally expressed in terms of unit of standard deviation (TDI), following the approach

  11. Conservation program works as an alternative irrigation districts in sustainable water management of agricultural use

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Peinado Guevara

    2012-05-01

    Full Text Available Water scarcity is an issue of worldwide concern since it is already having an impact on social development. Mexico is not an exception to this problem because in several regions of the country are great difficulties in supplying water, primarily for agricultural use. In Sinaloa, it had been mentioned repeatedly by the media that in the Irrigation District 063, located in the northern of the state, there are problems of water scarcity, and yet there still exist difficulties in conserving the resource. More than 49% of the water used for agriculture is wasted. To resolve this problem, producers and government agencies spend significant resources for investment in water conservation. However, the results have not been entirely satisfactory because the waste is high, a situation that motivates them to study more deeply the main weaknesses that affect sustainable resource use. Farmer’s participation in the administration of water infrastructure is important, as well as providing financial resources for the conservation of water system; and participation in activities of construction and repaired of water infrastructure. Farmer’s should also plan and design strategies for water conservation. This situation requires an appropriate level of technology and intellectual, rather than local producers and thus no complicated sustainable resource management. That is what local producers don’t have and therefore it complicates the sustainable management of the resource.

  12. Simulation and Management of On-Demand Irrigation Systems: A combined agrological and remote sensing approach

    NARCIS (Netherlands)

    D'Urso, G.

    2001-01-01

    Rational use of water resources in agriculture requires improvements in the efficiency of irrigation. Many irrigation systems, particularly in Mediterranean regions, have been enhanced by replacing open channel conveyance systems with pressurised pipelines. This allows to provide water on-demand. In

  13. Irrigation management to optimize controlled drainage in a semi-arid area

    NARCIS (Netherlands)

    Soppe, R.W.O.; Ayars, J.E.; Christen, E.W.; Shouse, P.J.

    2003-01-01

    On the west side of the San Joaquin Valley, California, groundwater tables have risen after several decades of irrigation. A regional semi-permeable layer at 100 m depth (Corcoran Clay) combined with over-irrigation and leaching is the major cause of the groundwater rise. Subsurface drain systems we

  14. Chicanery at the canal. Changing practice in irrigation management in Western Mexico.

    NARCIS (Netherlands)

    Zaag, van der P.

    1992-01-01

    Existing studies of irrigation systems show that technical elements influence social processes, and also, that certain social relationships may have technical implications. However, little has been said about the precise content of this interplay. A better insight seems important, as irrigation syst

  15. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM.

    Science.gov (United States)

    Balwinder-Singh; Humphreys, E; Gaydon, D S; Eberbach, P L

    2016-10-01

    Machinery for sowing wheat directly into rice residues has become more common in the rice-wheat systems of the north-west Indo-Gangetic Plains of South Asia, with increasing numbers of farmers now potentially able to access the benefits of residue retention. However, surface residue retention affects soil water and temperature dynamics, thus the optimum sowing date and irrigation management for a mulched crop may vary from those of a traditional non-mulched crop. Furthermore, the effects of sowing date and irrigation management are likely to vary with soil type and seasonal conditions. Therefore, a simulation study was conducted using the APSIM model and 40 years of weather data to evaluate the effects of mulch, sowing date and irrigation management and their interactions on wheat grain yield, irrigation requirement (I) and water productivity with respect to irrigation (WPI) and evapotranspiration (WPET). The results suggest that the optimum wheat sowing date in central Punjab depends on both soil type and the presence or absence of mulch. On the sandy loam, with irrigation scheduled at 50% soil water deficit (SWD), the optimum sowing date was late October to early November for maximising yield, WPI and WPET. On the clay loam, the optimum date was about one week later. The effect of mulch on yield varied with seasonal conditions and sowing date. With irrigation at 50% SWD, mulching of wheat sown at the optimum time increased average yield by up to 0.5 t ha(-1). The beneficial effect of mulch on yield increased to averages of 1.2-1.3 t ha(-1) as sowing was advanced to 15 October. With irrigation at 50% SWD and 7 November sowing, mulch reduced the number of irrigations by one in almost 50% of years, a reduction of about 50 mm on the sandy loam and 60 mm on the clay loam. The reduction in irrigation amount was mainly due to reduced soil evaporation. Mulch reduced irrigation requirement by more as sowing was delayed, more so on the sandy loam than the clay loam

  16. The Practices and Politics of Making Policy: Irrigation Management Transfer in Mexico

    Directory of Open Access Journals (Sweden)

    Edwin Rap

    2013-10-01

    Full Text Available This article argues that policy making is an interactive and ongoing process that transcends the spatio-temporal boundaries drawn by a linear, rational or instrumental model of policy. We construct this argument by analysing the making of the Irrigation Management Transfer (IMT policy in Mexico in the early 1990s, focusing on different episodes of its re-emergence, standardisation, and acceleration. During this period a standardised policy package was developed, consisting of a set of specific policy technologies to effect the transfer to Water Users’ Associations (WUAs. These technologies were assembled in response to geographically dispersed trials of strength: experiments, consultations and clashes in the field, and negotiations at the national and international level. A newly installed public water authority increasingly succeeded in coordinating the convergence and accumulation of dispersed experiences and ideas on how to make the transfer work. Our analysis shows how this composite package of policy technologies worked to include a network of support and to exclude opposition at different levels, while at the same time stabilising an interpretation of policy-related events. In this way the policy gathered momentum and was 'made to succeed'.

  17. Irrigation drainage in and near Stillwater, Humboldt, and Fernley Wildlife Management Areas and Carson Lake, West-Central Nevada, 1988-90 : Part II effects on wildlife

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report discusses the affects of irrigation induced contaminants on fish, wildlife, and human health near Stillwater Wildlife Management Area. In 1988, the U.S....

  18. SUSTAINABLE MANAGEMENT-FEE COLLECTION MECHANISM FOR IRRIGATION AND DRAINAGE FACILITIES IN ISLAMIC LAW

    Directory of Open Access Journals (Sweden)

    Harby MOSTAFA

    2013-10-01

    Full Text Available Increasing the environmental stresses on water resources are causing countries to reconsider various mechanisms to improve water use efficiency. This is especially true for irrigation agriculture, a major consumer of water. The physical and hydraulic characteristics of the irrigation distribution system often form a major limit. Also the implementations of irrigation water fees are sensitive to physical, social, and religious beliefs, making it necessary to design allocation mechanisms accordingly. The purpose of this work is to study the water pricing mechanisms to improve cost recovery for irrigation and drainage facilities under the Islamic law and its impact on water saving. The study tries to find out if there is an irrigation water pricing system that better meets the social, economical, and environmental needs. Also the research tries to highlight Egypt's experience in dealing with the cost recovery in irrigated agriculture. the main findings to agree with Islamic law that cost recovery for irrigation and drainage services would be limited to those infrastructures that are used solely for direct irrigation and drainage and should ensure that at least the full operation and maintenance costs are recovered, because they reflect the service costs of providing farmers with irrigation water and ensuring acceptable drainage. When the pressure of demand on water resources is high and competition exists between uses of water, quota systems are imposed on agriculture. To get high cost-recovery rates, farmers should not only agree on the costs to be recovered but also see the fees collected are used to maintain and improve “their” system.

  19. Irrigation and fertilization effects on Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) Damage levels and pupal weight in an intensively-managed pine plantation.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.

    2003-10-01

    The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damage levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.

  20. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  1. Participatory innovation process for testing new practices for soil fertility management in Chókwè Irrigation Scheme (Mozambique)

    Science.gov (United States)

    Sánchez Reparaz, Maite; de Vente, Joris; Famba, Sebastiao; Rougier, Jean-Emmanuel; Ángel Sánchez-Monedero, Miguel; Barberá, Gonzalo G.

    2015-04-01

    Integrated water and nutrient management are key factors to increase productivity and to reduce the yield gap in irrigated systems in Sub-Saharan Africa. These two elements are affected by an ensemble of abiotic, biotic, management and socio-economic factors that need to be taken into account to reduce the yield gap, as well as farmers' perceptions and knowledge. In the framework of the project European Union and African Union cooperative research to increase Food production in irrigated farming systems in Africa (EAU4Food project) we are carrying out a participatory innovation process in Chókwè irrigation scheme (Mozambique) based on stakeholders engagement, to test new practices for soil fertility management that can increase yields reducing costs. Through a method combining interviews with three farmers' associations and other relevant stakeholders and soil sampling from the interviewed farmers' plots with the organization of Communities of Practices, we tried to capture how soil fertility is managed by farmers, the constraints they find as well as their perceptions about soil resources. This information was the basis to design and conduct a participatory innovation process where compost made with rice straw and manure is being tested by a farmers' association. Most important limitations of the method are also evaluated. Our results show that socio-economic characteristics of farmers condition how they manage soil fertility and their perceptions. The difficulties they face to adopt new practices for soil fertility management, mainly related to economic resources limitations, labour availability, knowledge time or farm structure, require a systemic understanding that takes into account abiotic, biotic, management and socio-economic factors and their implication as active stakeholders in all phases of the innovation process.

  2. Adaptive management of irrigated rice in the changing environments of the Sahel

    NARCIS (Netherlands)

    Vries, de M.E.

    2011-01-01

    Key words: Alternate wetting and drying, Climate change adaptation, Crop growth simulation models, Genotype × environment interaction, N use efficiency,  Oryza sativa L., Phenology, Sahelian irrigation schemes, Sowing date, Spikelet sterility, Temperature increase, Water productivity, Wee

  3. An optimization model to design and manage subsurface drip irrigation system for alfalfa

    Science.gov (United States)

    Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.

    2010-12-01

    Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.

  4. Apple tree production in Italy: rootstocks, cultivars, fertilization, and irrigation

    Directory of Open Access Journals (Sweden)

    Giovambattista Sorrenti

    2012-11-01

    Full Text Available Italy is one of the main apple producers in Europe, primarily intended for fresh consumption, both in the domestic and foreign markets. Fruit yield and quality depends on the cultivar, rootstock, and management practices, such as the fertilization and irrigation adopted in the orchard. This review aims at reporting the main apple cultivars and rootstocks, the management of fertilization and irrigation, as well as their adaptation to apple tree orchards in Italy. The programs for genetic improvement carried out in this country involved the selection of apple tree cultivars and rootstocks which enable a high fruit yield and quality, in order to meet the requirements from the consumer market. In the fertilization and irrigation management, nutrients and water are supplied in amounts next to the actual need of the plants, providing an adequate nutrition, a satisfactory yield, and high quality fruits, besides preventing, whenever possible, nutrients and water losses in the environment.

  5. Information Technology Supports Integration of Satellite Imagery with Irrigation Management in California's Central Valley

    Science.gov (United States)

    Remotely sensed data can potentially be used to develop crop coefficient estimates over large areas and make irrigation scheduling more practical, convenient, and accurate. A demonstration system is being developed under NASA's Terrestrial Observation and Prediction System (TOPS) to automatically r...

  6. Social capital influences farmer participation in collective irrigation management in Shaanxi Provence, China

    NARCIS (Netherlands)

    Miao, S.; Heijman, W.J.M.; Xueqin Zhu, Xueqin; Lu, Q.

    2015-01-01

    Purpose – The purpose of this paper is to investigate the influence of four components of social capital on farmers’ participative behaviour in collective actions for constructing and operating small-scale groundwater irrigation systems on the Guanzhong Plain, Shaanxi Province, China. Design/methodo

  7. Management systems in irrigated rice affect physical and chemical soil properties

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Pauletto, E.A.; Pinto, L.F.S.

    2009-01-01

    Lowland soils are commonly found in the state of Rio Grande do Sul, Southern of Brazil, where they represent around 20% of the total area. Deficient drainage is the most important natural characteristic of these soils which therefore are mainly in use for irrigated rice (Oriza sativa). Degradation i

  8. Evaluation of subsurface drip irrigation design and management parameters for alfalfa

    NARCIS (Netherlands)

    Kandelous, M.M.; Kamai, T.; Vrugt, J.A.; Šimůnek, J.; Hanson, B.; Hopmans, J.W.

    2012-01-01

    Alfalfa is one of the most cultivated crops in the US, and is being used as livestock feed for the dairy, beef, and horse industries. About nine percent of that is grown in California, yet there is an increasing concern about the large amounts of irrigation water required to attain maximum yield. We

  9. Double row spacing and drip irrigation as technical options in energy sorghum management

    Directory of Open Access Journals (Sweden)

    Neri Roncucci

    2014-02-01

    Full Text Available The effect of two row spacing configurations and four water supply levels was investigated on sweet and fibre sorghum in Central Italy for two consecutive years. Results highlighted the influence of both irrigation and row spatial configuration on crop productivity. Indeed, several studies have pointed out the positive response of sorghum to irrigation in Mediterranean climate, as in this environment water stress represents one of the main limiting factors on crop productivity. On the other hand, few attempts have been made to explore the role of row spacing on energy sorghum productivity. Results outlined an average increase in sorghum dry biomass yield ranging from +23% to +79% at variable rates of water supply as compared to rainfed control. The positive effect of irrigation was also observed on leaf area index and radiation use efficiency. Moreover, we observed a crop yield increase, from 9% to 20%, under double row spacing compared to the standard planting pattern (i.e. single row spacing. Finally, it was confirmed the efficient use of water by sorghum and the great ability of sorghum to increase its biomass yield in response to increasing volumes of water supplied. Therefore, this work suggests how row spacing configuration and drip irrigation could be feasible technical options to increase sorghum biomass yields in Mediterranean environments. These techniques should be experienced by farmers towards a sustainable intensification of current cropping systems.

  10. Institutional aspects of integrating irrigation into urban wastewater management: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, Jaap G.; Huibers, Frans P.; Vliet, van Bas J.M.

    2008-01-01

    Wastewater flows of metropolitan cities and their downstream use for irrigation are often associated with technical systems. However, an engineering approach on its own will leave questions unanswered at the socio-technical and institutional level. Research was carried out in Hanoi, Vietnam, on the

  11. Institutional aspects of integrating irrigation into urban wastewater management: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, J.G.; Huibers, F.P.; Vliet, van B.J.M.

    2010-01-01

    Wastewater flows of metropolitan cities and their downstream use for irrigation are often associated with technical systems. However, an engineering approach on its own will leave questions unanswered at the socio-technical and institutional level. Research was carried out in Hanoi, Vietnam, on the

  12. Greenhouse gas emissions, irrigation water use, and arsenic concentrations; a common thread in rice water management

    Science.gov (United States)

    Rice has historically been grown as a flooded crop in the United States. As competition for water resources has grown, there is interest in reducing water use in rice production so as to maintain a viable and sustainable rice industry into the future. An irrigation study was established in 2011 at ...

  13. Water Conservation Methods for U.S. Army Installations. Volume II. Irrigation Management.

    Science.gov (United States)

    1983-04-01

    Irrigation may also be needed to establish ground covers, vines , shrubs, and trees; rain cannot be depended on. New plantings should be inspected regularly...for proper watering, weeding, pruning , cultivation, fer- tilization, control of disease and insects, and protection from vertebrate damage

  14. AQUATER Software as a DSS for Irrigation Management in Semi-Arid Mediterranean Areas

    Directory of Open Access Journals (Sweden)

    Marco Acutis

    2010-06-01

    Full Text Available Irrigation management at district or regional scale can be dealt using ecological process-based models and remote sensing data. Simulation crop models simulate at a certain time step the main biophysical variables determining crop photosynthesis and water consumption rates. The research consists in an integrated approach to combine field data, simulation crop model and remote sensing information. Detailed data sets related to topography, soil, climate and land cover were collected and organized into a Geographic Information System, which is routinely updated with remotely sensed images. The code implementation of these two models allows for an improvement of simulation reliability for the crop types considered in the present study in Mediterranean area. Remote sensing images detected by optical and radar satellite sensors at different spatial scales (from 10 to 50 m have been collected over the analyzed crop cycles. Therefore, remote sensing information about land use and leaf area index (LAI are assimilated dynamically by the model, to increase the effectiveness of simulation. The integration of crop and water dynamics models with the updated remote sensing information is a Decision Support Systems, AQUATER software, able to integrate remote sensing images, to estimate crop and soil variables related to drought, and subsequently to assimilate these variables into a simulation model at district scale. The significant final outputs are estimated values of evapotranspiration, plant water status and drought indicators. The present work describes the structure of AQUATER software and reports some application results over 2006 and 2007 cropping seasons in Capitanata, South-East Italy. This region has been divided in simulation units cropped by tomato (Lycopersicon lycopersicum L., sugar beet (Beta vulgaris L. var. saccharifera and durum wheat (Triticum durum Desf.. Two types of comparison have been carried out: (i between some tomato observed and

  15. A risk-based framework for water resource management under changing water availability, policy options, and irrigation expansion

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2016-08-01

    Long-term water resource management requires the capacity to evaluate alternative management options in the face of various sources of uncertainty in the future conditions of water resource systems. This study proposes a generic framework for determining the relative change in probabilistic characteristics of system performance as a result of changing water availability, policy options and irrigation expansion. These probabilistic characteristics can be considered to represent the risk of failure in the system performance due to the uncertainty in future conditions. Quantifying the relative change in the performance risk can provide a basis for understanding the effects of multiple changing conditions on the system behavior. This framework was applied to the water resource system of the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. A "bottom-up" flow reconstruction algorithm was used to generate multiple realizations for water availability within a feasible range of change in streamflow characteristics. Consistent with observed data and projected change in streamflow characteristics, the historical streamflow was perturbed to stochastically generate feasible future flow sequences, based on various combinations of changing annual flow volume and timing of the annual peak. In addition, five alternative policy options, with and without potential irrigation expansion, were considered. All configurations of water availability, policy decisions and irrigation expansion options were fed into a hydro-economic water resource system model to obtain empirical probability distributions for system performance - here overall and sectorial net benefits - under the considered changes. Results show that no one specific policy can provide the optimal option for water resource management under all flow conditions. In addition, it was found that the joint impacts of changing water availability, policy, and irrigation expansion on system performance are complex and

  16. Design and Implementation of Management Information System in Irrigation Area%研究灌区管理信息系统的设计与实现

    Institute of Scientific and Technical Information of China (English)

    何林

    2014-01-01

    随着网络技术的发展,信息化管理技术的提高,计算机技术被应用在各个领域,水利方面也不断采用现代化技术,研究灌区管理信息系统,实现灌区管理的信息化、自动化,是规范我国灌区管理工作的重要举措。本文将对灌区管理信息系统的设计与实现作简要分析。%With the development of network technology and improvement of information management technology, computer technology has been applied in various fields. Water conservancy also continues to use modern technology, study irrigation management information system in irrigation area, achieve the information and automation of irrigation area management, which is the important measure of standardizing management of irrigation districts. This paper analyzes the design and implementation of management information system in irrigation area.

  17. Key Challenges and Opportunities for Conjunctive Management of Surface and Groundwater in Mega-Irrigation Systems: Lower Indus, Pakistan

    Directory of Open Access Journals (Sweden)

    Frank van Steenbergen

    2015-11-01

    Full Text Available This paper focuses on the scope of conjunctive management in the Lower Indus part of the Indus Basin Irrigation System (IBIS, and the contribution this could make towards food security and socio-economic development. The total Gross Command Area (GCA of the Lower Indus is 5.92 Mha, with a cultivable command area (CCA of 5.43 Mha, most of which is in Sindh Province. There is a limited use of groundwater in Sindh (about 4.3 Billion Cubic Meter (BCM for two reasons: first, there is a large area where groundwater is saline; and second, there is a high surface irrigation supply to most of the canal commands, e.g., average annual supply to rice command is 1723 mm, close to the annual reference crop evapotranspiration for the area, while there is an additional annual rainfall of about 200 mm. These high irrigation allocations, even in areas where groundwater is fresh, create strong disincentives for farmers to use groundwater. Consequently, areas are waterlogged to the extent of 50% and 70% before and after the monsoon, respectively, which contributes to surface salinity through capillary rise. In Sindh, about 74%–80% of the available groundwater recharge is lost in the form of non-beneficial evaporation. This gives rise to low cropping intensities and yields compared to fresh groundwater areas elsewhere in the IBIS. The drought of 1999–2002 has demonstrated a reduction in waterlogging without any corresponding reduction in crop yields. Therefore, in order to efficiently meet current water requirements of all the sectors, i.e., agriculture, domestic and industrial, an ab initio level of water reallocation and efficient water management, with consideration to groundwater quality and its safe yield, in various areas are recommended. This might systematically reduce the waterlogged areas, support greater cropping intensity than is currently being practiced, and free up water for horizontal expansion, such as in the Thar Desert.

  18. Novel application of vacuum sealing drainage with continuous irrigation of potassium permanganate for managing infective wounds of gas gangrene.

    Science.gov (United States)

    Hu, Ning; Wu, Xing-Huo; Liu, Rong; Yang, Shu-Hua; Huang, Wei; Jiang, Dian-Ming; Wu, Qiang; Xia, Tian; Shao, Zeng-Wu; Ye, Zhe-Wei

    2015-08-01

    Traumatic gas gangrene is a fatal infection mainly caused by Clostridium perfringens. It is a challenge to manage gas gangrene in open wounds and control infection after debridement or amputation. The aim of the present study was to use vacuum sealing drainage (VSD) with continuous irrigation of potassium permanganate to manage infective wounds of gas gangrene and observe its clinical efficacy. A total of 48 patients with open traumatic gas gangrene infection were included in this study. Amputations were done for 27 patients, and limb salvage procedures were performed for the others. After amputation or aggressive debridement, the VSD system, including polyvinyl alcohol (PVA) foam dressing and polyurethane (PU) film, with continuous irrigation of 1:5000 potassium permanganate solutions, was applied to the wounds. During the follow-up, all the patients healed without recurrence within 8-18 months. There were four complications. Cardiac arrest during amputation surgery occurred in one patient who suffered from severe septic shock. Emergent resuscitation was performed and the patient returned to stable condition. One patient suffered from mixed infection of Staphylococcal aureus, and a second-stage debridement was performed. One patient suffered from severe pain of the limb after the debridement. Exploratory operation was done and the possible reason was trauma of a local peripheral nerve. Three cases of crush syndrome had dialysis treatment for concomitant renal failure. In conclusion, VSD can convert open wound to closed wound, and evacuate necrotic tissues. Furthermore, potassium permanganate solutions help eliminate anaerobic microenvironment and achieve good therapeutic effect on gas gangrene and mixed infection. VSD with continuous irrigation of potassium permanganate is a novel, simple and feasible alternative for severe traumatic open wounds with gas gangrene infection.

  19. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    Science.gov (United States)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.

  20. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    Science.gov (United States)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  1. Safe and high quality food production using low quality waters and improved irrigation systems and management

    DEFF Research Database (Denmark)

    Plauborg, Finn; Andersen, Mathias Neumann; Liu, Fulai

    2010-01-01

    uneven irrigation patterns can increase the water use efficiency as well as the quality of vegetable crops. Furthermore, recent innovations in the water treatment and irrigation industry have shown potential for the use of low quality water resources, such as reclaimed water or surface water in peri......The present paper presents the SAFIR project (www.safir4eu.org), which addresses two fundamental problems that over the past decade increasingly have become concerns of the general public: the one problem being the jeopardizing of safety and quality of our food products, while the other being...... the increasing competition for clean freshwater. The SAFIR project has a multi-disciplinary approach, which integrates the European as well as the global dimension of the EU-policy on food quality and safety. The main driving force behind the project idea is new research results that demonstrated that scheduled...

  2. Modeling of basin-wide water management for dry-season paddy irrigation with large reservoirs in the Mekong River Basin

    Science.gov (United States)

    Kudo, R.; Masumoto, T.; Horikawa, N.; Yoshida, T.

    2012-12-01

    . Irrigation and crop patterns are set as agricultural conditions in each mesh, and then irrigation water and actual evapotranspiration can be estimated according to crop stage and soil moisture. We also modeled water management of 160 reservoirs (10 large reservoirs and 150 medium reservoirs) and water allocation process of 10 large irrigated areas in the basin. The results obtained in this study are as follows: 1) The reservoir operation model reproduced water management such as impoundment of flood discharge during rainy seasons and release of irrigation water controlled by water requirement in downstream irrigation area during dry seasons. 2) The paddy water use and the water allocation models estimated water withdrawals at diversion weirs and water supply in paddy fields depending on water demands in large irrigation areas. 3) Based on the difference in water use patterns between rainy and dry seasons, the cropping model represented the actual conditions of rice planting pattern in both seasons. These results show that the interaction among the sub-models (reservoir operation, paddy water use, water allocation and so on) enables this hydrological model to represent the detailed processes of paddy water use and to evaluate the interaction between hydrological cycle and agricultural activities through anthropogenic water management for paddy irrigation.

  3. Frequency inverter and irrigation management in irrigated perimeter on Jaiba region - MG, Brazil; Uso de inversor de frequencia e do manejo da irrigacao em perimetro da regiao do Jaiba, MG

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Maria Joselma de; Oliveira Filho, Delly; Vieira, Gustavo H.S. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], Emails: maria.moraes@ufv.br, delly@ufv.br, ghsvieira@ifes.edu.br; Scarcelli, Ricardo de O.C. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Eletrica], E-mail: rocvenceslau@yahoo.com.br

    2010-07-01

    The electric energy expenditure and the irrigation depth for one irrigated perimeter on Jaiba region/MG, Brazil, for the cultures: pineapple, banana, guava, lemon, papaya, mango, passion fruit, cantaloupe, pine cone and grape. With the monthly irrigation depth data for an hypothetical area of 12 lots (10 ha each), it was simulated, with Galateia software, the head pressure for 4 combinations of cultures: first - papaya (12 lots); second - banana (8 lots), guava (1), papaya (1), mango (1) and passion fruit (1); third - papaya (8), guava (1), pineapple (1), (1) and lemon (1); and fourth - guava (8), mango (1), papaya (1), pine cone (1) and passion fruit (1). It was dimensioned the necessary power and the electrical energy expenses with TOU (green category tariff) for the biggest irrigation depth. The frequency inverter use and the management of the number of working hours were simulated for each combination, in order to maximize the motor's load and the pump-motor set performance. For the combinations 2, 3, and 4 occurred reduction on the electrical energy consumption of 6%, 8% and 20%, respectively in respect of the combination 1. (author)

  4. Carbon Dioxide Emissions as Affected by Alternative Long-Term Irrigation and Tillage Management Practices in the Lower Mississippi River Valley

    Directory of Open Access Journals (Sweden)

    S. F. Smith

    2014-01-01

    Full Text Available Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV. As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years effects of irrigation (i.e., irrigated and dryland production and tillage (conventional and no-tillage on estimated carbon dioxide (CO2 emissions from soil respiration during two soybean (Glycine max L. growing seasons from a wheat- (Triticum aestivum L.- soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2 fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2 emissions were unaffected by irrigation in 2011 (P>0.05; however, during the unusually dry 2012 growing season, season-long CO2 emissions were 87.6% greater (P=0.044 under irrigated (21.9 Mg CO2 ha−1 than under dryland management (11.7 Mg CO2 ha−1. Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2 emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability.

  5. Integrating MODFLOW and GIS technologies for assess-ing impacts of irrigation management and groundwater use in the Hetao Irrigation District, Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    XU Xu; HUANG GuanHua; QU ZhongYi

    2009-01-01

    Due to severe water scarcity, water resources used in agricultural sector have been reduced markedly in Hetao irrigation district.Application of water-saving practices (WSPs) is required for the sustainable agricultural development.The human activities including WSPs and increase of groundwater abstrac-tion can lower down the groundwater table, which is helpful to the salinity control.Meanwhile, an ex-cessively large groundwater table depth may result in negative impact on crop growth and fragile eco-logical environment.In this paper, the Jiefangzha irrigation system in Hetao irrigation district was se-lected as a typical area, a groundwater flow model based on Arclnfo Geographic Information System (GIS) was developed and implemented to quantify the effect of human activities on the groundwater system in this area.The pre-and post-processing of model data was performed efficiently by using the available GIS tools.The time-variant data in boundary conditions was further edited in Microsoft Excel with programs of Visual Basic for Application (VBA).The model was calibrated and validated with in-dependent data sets.Application of the model indicated that it can well describe the effect of human activities on groundwater dynamics in Jiefangzha irrigation system.

  6. Integrating MODFLOW and GIS technologies for assessing impacts of irrigation management and groundwater use in the Hetao Irrigation District,Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to severe water scarcity, water resources used in agricultural sector have been reduced markedly in Hetao irrigation district. Application of water-saving practices (WSPs) is required for the sustainable agricultural development. The human activities including WSPs and increase of groundwater abstraction can lower down the groundwater table, which is helpful to the salinity control. Meanwhile, an excessively large groundwater table depth may result in negative impact on crop growth and fragile ecological environment. In this paper, the Jiefangzha irrigation system in Hetao irrigation district was selected as a typical area, a groundwater flow model based on ArcInfo Geographic Information System (GIS) was developed and implemented to quantify the effect of human activities on the groundwater system in this area. The preand post-processing of model data was performed efficiently by using the available GIS tools. The time-variant data in boundary conditions was further edited in Microsoft Excel with programs of Visual Basic for Application (VBA). The model was calibrated and validated with independent data sets. Application of the model indicated that it can well describe the effect of human activities on groundwater dynamics in Jiefangzha irrigation system.

  7. Water storage in wetted strips under irrigated coffee trees with different criteria of irrigation management Armazenamento de água em faixas molhadas sob cafeeiros irrigados com diferentes critérios de manejo de irrigação

    Directory of Open Access Journals (Sweden)

    Alberto Colombo

    2013-04-01

    Full Text Available The increasing demand for water resources accentuates the need to reduce water waste through a more appropriate irrigation management. In the particular case of irrigated coffee planting, which in recent years presented growth with the predominance of drip irrigation, the improvement of drip irrigation management techniques is a necessity. The proper management of drip irrigation depends on the knowledge of the spatial pattern of soil moisture distribution inside the wetted strip formed under the irrigation lines. In this study, grids of 24 tensiometers were used to determine the water storage within the wetted strip formed under drippers, with a 3.78 L h-1 discharge, evenly spaced by 0.4 m, subjected to two different management criteria (fixed irrigation interval and 60 kPa tension. Estimates of storage based on a one-dimensional analysis, that only considers depth variations, were compared with two-dimensional estimates. The results indicate that for high-frequency irrigation the one-dimensional analysis is not appropriate. However, under less frequent irrigation, the two-dimensional analysis is dispensable, being the one-dimensional sufficient for calculating the water volume stored in the wetted strip.A crescente demanda por recursos hídricos acentua a necessidade de redução do desperdício de água através de um manejo mais adequado da irrigação. No caso particular da cafeicultura irrigada, que nos últimos anos apresentou crescimento com predominância da irrigação por gotejamento, o aprimoramento das técnicas de manejo da irrigação por gotejamento é uma necessidade. O manejo adequado do gotejamento depende do conhecimento do padrão espacial de distribuição de umidade no interior da faixa molhada, formada sob as linhas de irrigação. Neste trabalho, foram utilizadas malhas de 24 tensiômetros para determinar o armazenamento de água no interior de faixas molhadas, formadas sob gotejadores, com vazão de 3,78 L h-1

  8. PENGENDALIAN ASET NIRWUJUD DALAM MANAJEMEN SISTEM IRIGASI: KONSEP DAN PENGEMBANGAN MODEL (Controlling Intangible Assets in Irrigation System Management:Concept and Model Development

    Directory of Open Access Journals (Sweden)

    Nugroho Tri Waskitho

    2013-06-01

    Full Text Available Irrigation was an important component of the agricultural development in Indonesia, but it had many problems. Irrigation management was inefficient, irrigation networks were damaged and farmers participation were poor. These problems were caused by poor of intangible assets. The research aimed at developing the concept and the model of controlling intangible assets in irrigation system management. The research method consisted of two stages. The first stage was developing the concept. The concept of controlling intangible assets in irrigation system management was developed based on principles of knowledge management. The concept stated that intangible assets in irrigation system can be controlled using knowledge management. The second stage was developing the model which consisted of model building and sensivity analysis. Model of controlling intangible assets in irrigation system management was build using neuro-fuzzy. The model had three submodels: knowledge management, intangible assets and performance of irrigation system. Evaluating the model was done in Sapon irrigation system in Kulon Progo, Yogyakarta. Data collecting was done using questionnaire on nine Water Use Associations. Data analysis was done using Adaptive Neuro Fuzzy Inference System. The model had been evaluated using correlation coefficient, Mean Absolute Percentage Error and Root Mean Square Error. Result of the study indicated that the concept of controlling intangible assets in irrigation system management had developed based on knowledge management. The concept stated that irrigation system management had to balance between tangible assets and intangible assets. Intangible assets which had amortization need be controlled. Controlling intangible assets can be done by knowledge management. The model of controlling intangible assets in irrigation system management could predict intangible assets and performance of irrigation system well. The model linked knowledge

  9. Tensiometer-based irrigation management of subirrigated soilless tomato: effects of substrate matric potential control on crop performance

    Directory of Open Access Journals (Sweden)

    Francesco Fabiano eMontesano

    2015-12-01

    Full Text Available This study aimed to determine the effects of irrigation management based on matric potential control on growth, plant-water relations, yield, fruit quality traits and water-use efficiency of subirrigated (through bench system soilless tomato. Tensiometers were used for automatic irrigation control. Two cultivars, ‘Kabiria’ (cocktail type and ‘Diana’ (intermediate type, and substrate water potential set-points (-30 and -60 hPa, for ‘Diana’, and -30, -60 and -90 hPa for ‘Kabiria’, were compared. Compared with -30 hPa, water stress (corresponding to a -60 hPa irrigation set-point reduced water consumption (14%, leaf area (18%, specific leaf area (19%, total yield (10% and mean fruit weight (13%, irrespective of the cultivars. At -60 hPa, leaf-water status of plants, irrespective of the cultivars, showed an osmotic adjustment corresponding to a 9% average osmotic potential decrease. Total yield, mean fruit weight, plant water and osmotic potential decreased linearly when -30, -60 and -90 hPa irrigation set-points were used in ‘Kabiria’. Unmarketable yield in ‘Diana’ increased when water stress was imposed (187 vs 349 g∙plant-1, respectively, at -30 and -60 hPa, while the opposite effect was observed in ‘Kabiria’, where marketable yield loss decreased linearly [by 1.05 g∙plant-1 per unit of substrate water potential (in the tested range from -30 to -90 hPa]. Whereas in the second cluster, fruit total soluble solids and dry matter increased irrespective of the cultivars, in the seventh cluster in ‘Diana’ only a slight increase was observed from -30 vs. -60 hPa (3.3% and 1.3%, respectively, for TSS and dry matter, while in ‘Kabiria’ the increase was more pronounced (8.7% and 12.0%, respectively, for TSS and dry matter, and further reduction in matric potential from -60 to -90 hPa confirmed the linear increase for both parameters. Both glucose and fructose increased linearly in ‘Kabiria’ fruits on decreasing

  10. Solubility and leaching risks of organic carbon in paddy soils as affected by irrigation managements.

    Science.gov (United States)

    Xu, Junzeng; Yang, Shihong; Peng, Shizhang; Wei, Qi; Gao, Xiaoli

    2013-01-01

    Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha⁻¹, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants.

  11. Integrated water resources management (IWRM) approach in water governance in Lao PDR. Cases of hydropower and irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jusi, S.

    2013-06-01

    Water resources are essential for socio-economic development, enabling, for example, hydropower and irrigation. Water resources management and development are expected to become more complex and challenging and to involve new uncertainties as water development increases and accelerates in different water use sectors and is coupled with increasing population, urbanisation, and climate change. Hence, water resources need to be managed in more integrated and sustainable way, both in Lao PDR and in the whole Mekong Basin area. Integrated Water Resources Management (IWRM) has become a universal paradigm of enhancing and promoting sustainable and equal water resources management and use. However, integrating water functions is a very complex task as it involves many actors with different interests. This research analyses the application of the IWRM approach and the related principles of integration, decentralisation, and participation in the development and management of water resources in Laotian water regime at the water use sectors of hydropower and irrigation. A case study approach was used for the research and for the four appended articles in order to examine hydropower and irrigation sectors, institutional structures, and processes of institutional change - Integrated Water Resources Management (IWRM) at constitutional, organisational, and operational levels. The constitutional level refers to water policy and law, organisational to water resource management, and operational to water use. The Management and Transition Framework (MTF) and one of its components, Institutional Analysis and Development (IAD) framework, have been used for the research to explore processes, institutions, and actors related to water governance reforms including the adoption of the IWRM paradigm, and to increase understanding of the strengths and weaknesses related to different institutional contexts and levels in Laotian water management. Through Action Situations, IAD and MTF have

  12. Teaching transanal irrigation for functional bowel disorders.

    Science.gov (United States)

    Coggrave, Maureen; Norton, Christine

    Transanal irrigation of the bowel in the management of functional bowel disorders is currently receiving increased attention following the recent introduction of the Peristeen irrigation kit (Coloplast Ltd) in April 2007. Irrigation provides a welcome additional choice in the limited range of available interventions for the management of these patients. However, evidence to support clinical practice around irrigation is limited and nursing knowledge and experience of irrigation is only just developing. This paper reports a series of master classes conducted to support and develop the use of irrigation in the UK, and demonstrates the value of the master class as an educational tool when introducing a novel therapy.

  13. Best Practice Irrigation Management and Extension in Peri-Urban Landscapes--Experiences and Insights from the Hawkesbury-Nepean Catchment, Australia

    Science.gov (United States)

    Maheshwari, B. L.; Plunkett, M.

    2015-01-01

    Purpose: The aim of this article to examine key irrigation management issues and their implications for future research and extension developments. Design/Methodology/Approach: Peri-urban landscapes are important as they supply fresh fruit, vegetables, turf, ornamental plants and other farm products to the cities. In this study, the…

  14. Water requirements and management of maize under drip and sprinkler irrigation. 2000 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    Science.gov (United States)

    Research at Ismailia, Egypt, focused on irrigation management of maize, fava bean, wheat, and alfalfa. In 1998, the two weighing lysimeters at Ismailia were recalibrated successfully with precision of 0.01 mm; and a state-of-the-art time domain reflectometry (TDR) system for soil water balance measu...

  15. Water requirements and management of maize under drip and sprinkler irrigation. 1999 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    Science.gov (United States)

    In the second year of this project, research continued at Ismailia, Egypt on irrigation management of maize, fava bean, wheat, and alfalfa. Research at Bushland, Texas, continued on alfalfa and grass reference evapotranspiration (ET), means of estimating those values from Bowen ratio meterological m...

  16. Skill Standards for Agriculture: John Deere Agricultural Equipment Technician, Agricultural & Diesel Equipment Mechanic, Irrigation Technologist, Turf Management Technician, Turf Equipment Service Technician.

    Science.gov (United States)

    Washington State Board for Community and Technical Colleges, Olympia.

    This document presents agriculture skill standards for programs to prepare Washington students for employment in the following occupations: John Deere agricultural equipment technician; agricultural and diesel equipment mechanic; irrigation technologist; turf management technician; and turf equipment service technician. The introduction explains…

  17. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  18. A generic open-source toolbox to help long term irrigation monitoring for integrated water management in semi-arid Mediterranean areas.

    Science.gov (United States)

    Le Page, Michel; Gosset, Cindy; Oueslati, Ines; Calvez, Roger; Zribi, Mehrez; Lili Chabaane, Zohra

    2016-04-01

    In semi arid areas, irrigated plains are often the major consumer of water well beyond other water demands. Traditionally fed by surface water, irrigation has massively shifted to a more reliable resource: groundwater. This shift occurred in the late thirty years has also provoked an extension and intensification of irrigation, often translated into impressive groundwater table decreases. Integrated water management needs a systematic and robust way to estimate the water demands by the agricultural sector. We propose a generic toolbox based on the FAO-56 method and the Crop Coefficient/NDVI approach used in Remote Sensing. The toolbox can be separated in three main areas: 1) It facilitates the preparation of different input datasets: download, domain extraction, homogenization of formats, or spatial interpolation. 2) A collection of algorithms based on the analysis of NDVI time series is proposed: Separation of irrigated vs non-irrigated area, a simplified annual land cover classification, Crop Coefficient, Fraction Cover and Efficient Rainfall. 3) Synthesis against points or areas produces the output data at the desired spatial and temporal resolution for Integrated Water Modeling or data analysis and comparison. The toolbox has been used in order to build a WEAP21 model of the Merguellil basin in Tunisia for the period of 2000-2014. Different meteorological forcings were easily used and compared: WFDEI, AGRI4CAST, MED-CORDEX. A local rain gauges database was used to produce a daily rainfall gridded dataset. MODIS MOD13Q1 (16 days, 250m) data was used to produce the NDVI derived datasets (Kc, Fc, RainEff). Punctual evapotranspiration was compared to actual measurements obtained by flux towers on wheat and barley showing good agreements on a daily basis (r2=0.77). Finally, the comparison to monthly statistics of three irrigated commands was performed over 4 years. This late comparison showed a bad agreement which led us to suppose two things: First, the simple

  19. A new concept of irrigation response units for effective management of surface and groundwater resources: a case study from the multi-country Fergana Valley, Central Asia

    KAUST Repository

    Awan, Usman Khalid

    2016-09-09

    When estimating canal water supplies for large-scale irrigation schemes and especially in arid regions worldwide, the impact of all factors affecting the gross irrigation requirements (GIR) are not properly accounted for, which results in inefficient use of precious freshwater resources. This research shows that the concept of irrigation response units (IRU)—areas having unique combinations of factors effecting the GIR—allows for more precise estimates of GIR. An overlay analysis of soil texture and salinity, depth and salinity of groundwater, cropping patterns and irrigation methods was performed in a GIS environment, which yielded a total of 17 IRUs combinations of the Oktepa Zilol Chashmasi water consumers’ association in multi-country Fergana Valley, Central Asia. Groundwater contribution, leaching requirements, losses in the irrigation system through field application and conveyance and effective rainfall were included in GIR estimates. The GIR varied significantly among IRUs [average of 851 mm (±143 mm)] with a maximum (1051 mm) in IRU-12 and a minimum (629 mm) in IRUs-15, 16. Owing to varying groundwater levels in each IRU, the groundwater contribution played a key role in the estimation of the GIR. The maximum groundwater contribution occurred in IRUs dominated by cotton–fallow rotations as evidenced by an average value of 159 mm but a maximum of 254 mm and a minimum of 97 mm. Percolation losses depended on irrigation methods for different crops in their respective IRUs. The novel approach can guide water managers in this and similar regions to increase the accuracy of irrigation demands based on all the factor effecting the GIR. © 2016 Springer-Verlag Berlin Heidelberg

  20. Split Quasi-adequate Semigroups

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang GUO; Ting Ting PENG

    2012-01-01

    The so-called split IC quasi-adequate semigroups are in the class of idempotent-connected quasi-adequate semigroups.It is proved that an IC quasi-adequate semigroup is split if and only if it has an adequate transversal.The structure of such semigroup whose band of idempotents is regular will be particularly investigated.Our obtained results enrich those results given by McAlister and Blyth on split orthodox semigroups.

  1. Dimensioning the Irrigation Variables for Table Grape Vineyards in Litho-soils

    Directory of Open Access Journals (Sweden)

    Pasquale Campi

    2010-10-01

    Full Text Available The pedo-climatic and farm characteristics of Bari’s hinterland have allowed for the diffusion of prestigious table viticulture. The typical “tendone” vineyard structure is set up after managing the surface of the soil. The karstic nature of the region and the thermo-rainfall trend during the vegetative season impede the vineyard from producing adequately without irrigation. Given the importance of water contributions to table grapes, it is necessary to correctly measure the water variables for economic and environmental reasons. Farmers often irrigate according to “fixed” turns and volumes, against the rules of “good irrigation practice” which consider monitoring the water status of the soil or plant as a prerequisite of irrigation scheduling. During this experiment, two methods of irrigation management were compared: “fixed-turn” and “on demand”. For “on demand” irrigation, the irrigation volume is calculated on the basis of the soil water status (estimated according to the “water balance” method described in the “Paper n. 56 FAO” and the irrigation is scheduled on the basis of the experimental relationship between “pre-dawn” leaf water potential and the water available in the soil. For this comparison, data from a 2-year “on farm” experimentation, in an area typical of table grape cultivation in Southern Italy, have been used. The results obtained show that, in respect to the “fixed-turn” management, the “on demand” management allows for a 20% reduction in water volumes, without compromising production. The water balance method proved to be a promising criterion for irrigation scheduling in these shallow soils, rich in stones (litho-soils. This only held true when the depth of the soil layer explored by the root system was defined by the “equivalent depth” and not by the actual soil’s depth.

  2. Manejo da irrigação em pastagem irrigada por pivô-central Irrigated pasture: water management under center pivot irrigation

    Directory of Open Access Journals (Sweden)

    Alexandre C. Xavier

    2004-12-01

    Full Text Available A aplicação de lâminas de irrigação em pastagem irrigada sob pivô-central é, de maneira geral, realizada sem um critério técnico pertinente ao sistema, pois se deve considerar que para um mesmo período a pastagem se encontra em diferentes estádios de desenvolvimento em cada parcela, apresentando taxas de evapotranspiração diferenciadas dentro da área irrigada; todavia, usualmente se aplica uma única lâmina para toda a área. Neste trabalho foi desenvolvido um modelo para aplicação de lâminas de irrigação distinta para cada parcela do pivô o qual, de modo geral, considera: i a capacidade do pivô-central de aplicar lâminas distintas na área; ii o nível de desenvolvimento da cultura em cada parcela; iii o período de retorno do gado a determinada parcela (ciclo de pastejo; e iv o potencial de desenvolvimento da pastagem de certa região. Para modelar o coeficiente de cultura (Kc foram utilizadas duas metodologias, a primeira com taxa de variação do Kc constante com o número de dias em que a parcela está em descanso (k, e a segunda, com taxa de variação do Kc na forma senoidal com k. O modelo foi aplicado para pastagens hipotéticas nas regiões de Piracicaba e Pereira Barreto, para avaliação e, como resultado, observou-se que o modelo se mostrou sensível ao nível de desenvolvimento de cada parcela e às condições de variação do clima de cada região.The application of irrigation depths in irrigated pasture under center pivot machines, in a general way, is accomplished without a pertinent technical criterion, because it should be considered that for any time period, the pasture plots are at different development stages (rotary pasture, presenting different evapotranspiration rates inside the irrigated area. Furthermore, farmers usually apply a single irrigation depth for the whole area. In this study a model was developed for the application of different irrigation depths in each portion of the pivot (pizza

  3. Groundwater Dynamics under Water Saving Irrigation and Implications for Sustainable Water Management in an Oasis: Tarim River Basin of Western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-02-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of socio-economy and sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between unsaturated vadose zone and groundwater reservoir is a critical link to understand regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In Tarim River Basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux is influenced strongly by irrigation. Recently, mulched drip irrigation, a very advanced water-saving irrigation method, has been widely applied in the Tarim River Basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gain a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2011 and 2012 in a typical oasis within Tarim River Basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux is mostly downward (310.5 mm yr-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (-16.1 mm yr-1) due to the moderate groundwater table depth (annual average depth 2.9 m). Traditional secondary salinization caused by intense phreatic

  4. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-10-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of the socio-economy and the sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between the unsaturated vadose zone and groundwater reservoir is a critical link to understanding regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In the Tarim River basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux between the unsaturated vadose zone and groundwater reservoir is influenced strongly by irrigation. Recently, mulched drip irrigation, a sophisticated water-saving irrigation method, was widely applied in the Tarim River basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gaining a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2012 and 2013 in a typical oasis within the Tarim River basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux at the groundwater table is mostly downward (310.5 mm year-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (16.1 mm year-1) due to the moderate

  5. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  6. Acute wound management: revisiting the approach to assessment, irrigation, and closure considerations

    OpenAIRE

    Nicks, Bret A.; Ayello, Elizabeth A.; Woo, Kevin; Nitzki-George, Diane; Sibbald, R. Gary

    2010-01-01

    Background As millions of emergency department (ED) visits each year include wound care, emergency care providers must remain experts in acute wound management. The variety of acute wounds presenting to the ED challenge the physician to select the most appropriate management to facilitate healing. A complete wound history along with anatomic and specific medical considerations for each patient provides the basis of decision making for wound management. It is essential to apply an evidence‐bas...

  7. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    Science.gov (United States)

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  8. Competition, Conflict, and Compromise: Three Discourses Used by Irrigators in England and Their Implications for the Co-Management of Water Resources

    Directory of Open Access Journals (Sweden)

    Luke Whaley

    2015-02-01

    Full Text Available In this paper we use discourse analysis to explore the current dynamic that exists among farmer irrigators in England, and between irrigators and water managers in order to understand the potential for co-management to develop. To do this we employ two concepts from the field of critical discursive psychology – 'interpretive repertoires' and 'subject positions' – and apply them to a qualitative analysis of 20 interviews with farmers who are members of irrigator groups and two focus group discussions with farmers thinking about forming an irrigator group. The findings reveal that the participants drew upon three interpretive repertoires when talking about the relationship between farming and water resources management, namely the 'competition', 'conflict', and 'compromise' repertoires, with the latter being the least dominant. We situate the repertoires in their wider historical context to reveal the ideological forces at play, and conclude that the relative dominance of the competition and conflict repertoires serve as a barrier to co-management. In particular, this is because they engender low levels of trust and reinforce a power dynamic that favours individualism and opposition. At the same time, the less-dominant compromise repertoire challenges the power of the other two, providing some hope of achieving more participatory forms of water resources management in the future. To this end, we discuss how the restructuring of current agri-environment schemes and government water programmes may be used to promote the adoption and institutionalisation of the compromise repertoire in order to facilitate the emergence of co-management.

  9. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  10. Assisting community management of groundwater: Irrigator attitudes in two watersheds in Rajasthan and Gujarat, India

    Science.gov (United States)

    Varua, M. E.; Ward, J.; Maheshwari, B.; Oza, S.; Purohit, R.; Hakimuddin; Chinnasamy, P.

    2016-06-01

    The absence of either state regulations or markets to coordinate the operation of individual wells has focussed attention on community level institutions as the primary loci for sustainable groundwater management in Rajasthan and Gujarat, India. The reported research relied on theoretical propositions that livelihood strategies, groundwater management and the propensity to cooperate are associated with the attitudinal orientations of well owners in the Meghraj and Dharta watersheds, located in Gujarat and Rajasthan respectively. The research tested the hypothesis that attitudes to groundwater management and farming practices, household income and trust levels of assisting agencies were not consistent across the watersheds, implying that a targeted approach, in contrast to default uniform programs, would assist communities craft rules to manage groundwater across multiple hydro-geological settings. Hierarchical cluster analysis of attitudes held by survey respondents revealed four statistically significant discrete clusters, supporting acceptance of the hypothesis. Further analyses revealed significant differences in farming practices, household wealth and willingness to adapt across the four groundwater management clusters. In conclusion, the need to account for attitudinal diversity is highlighted and a framework to guide the specific design of processes to assist communities craft coordinating instruments to sustainably manage local aquifers described.

  11. Personal attributes that influence the adequate management of hypertension and dyslipidemia in patients with type 2 diabetes. Results from the DIAB-CORE Cooperation

    Directory of Open Access Journals (Sweden)

    Rückert Ina-Maria

    2012-10-01

    Full Text Available Abstract Background Hypertension and dyslipidemia are often insufficiently controlled in persons with type 2 diabetes (T2D in Germany. In the current study we evaluated individual characteristics that are assumed to influence the adequate treatment and control of hypertension and dyslipidemia and aimed to identify the patient group with the most urgent need for improved health care. Methods The analysis was based on the DIAB-CORE project in which cross-sectional data from five regional population-based studies and one nationwide German study, conducted between 1997 and 2006, were pooled. We compared the frequencies of socio-economic and lifestyle factors along with comorbidities in hypertensive participants with or without the blood pressure target of  Results We included 1287 participants with T2D of whom n = 1048 had hypertension and n = 636 had dyslipidemia. Uncontrolled blood pressure was associated with male sex, low body mass index (BMI, no history of myocardial infarction (MI and study site. Uncontrolled blood lipid levels were associated with male sex, no history of MI and study site. The odds of receiving no pharmacotherapy for hypertension were significantly greater in men, younger participants, those with BMI  Conclusion In the DIAB-CORE study, the patient group with the greatest odds of uncontrolled co-morbidities and no pharmacotherapy was more likely comprised of younger men with low BMI and no history of cardiovascular disease.

  12. Resposta das culturas do girassol e do milho a diferentes cenários de rega deficitária Deficit irrigation as a criterion for irrigation water management with sunflower and maize crops

    Directory of Open Access Journals (Sweden)

    C. M. Toureiro

    2007-01-01

    the water use optimisation from an environmental point of view. This means that the decision criterion in irrigation management is “deficit irrigation”, rather than maximum ETc as the irrigation water amount. Some experiments with “deficit irrigation” of a sunflower crop (in 2004 irrigation season and maize (in 2005 were carried out in the Irrigation District of Divor (Alentejo, South Portugal. Crop growth and production parameters were evaluated relative to three experimental irrigation regimes: 1 irrigation opportunity and amount with soil available water equalling “optimum yield level”, this corresponding to a non restrictive water use by the crop, according to current procedure, irrigation amount corresponding to maximum ETc; 2 and 3 levels 1 and 2 of deficit irrigation, considering irrigation opportunity with soil available water respectively 10% and 30% under the “optimum yield level” and irrigation amounts 10% and 30% less than ETc between irrigation events. During the flowering periods normal irrigation for full ETc was practiced in all experiment plots. Crop yield data and the economic analysis show that a remarkable potential exists for saving water with “deficit irrigation”.

  13. Hyperbolic semi-adequate links

    OpenAIRE

    Futer, David; Kalfagianni, Efstratia; Purcell, Jessica S.

    2013-01-01

    We provide a diagrammatic criterion for semi-adequate links to be hyperbolic. We also give a conjectural description of the satellite structures of semi-adequate links. One application of our result is that the closures of sufficiently complicated positive braids are hyperbolic links.

  14. Pakistan - Public Expenditure Management : Accelerated Development of Water Resources and Irrigated Agriculture

    OpenAIRE

    World Bank

    2004-01-01

    This report focuses principally on three key dimensions of better public expenditure management in Pakistan. First, it is paramount to continue financial discipline and reduce the overall size of the public sector deficit, including the sizable losses of public enterprises. The modest progress made in reducing the government's fiscal deficit during the past few years has been undermined by...

  15. Microbial communities and soil fertility in flood irrigated orchards under different management systems in eastern spain

    Science.gov (United States)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Caravaca, Fuensanta; Roldán, Antonio

    2016-04-01

    Unsuitable land management such as the excessive use of herbicides can lead to a loss of soil fertility and a drastic reduction in the abundance of microbial populations and their functions related to nutrient cycling. Microbial communities are the most sensitive and rapid indicators of perturbations in agroecosystems. A field experiment was performed in an orange-trees orchard (Citrus sinensis) to assess the long-term effect of three different management systems on the soil microbial community biomass, structure and composition (phospholipid fatty acids (PLFAs) total, pattern, and abundance). The three agricultural systems assayed were established 30 years ago: herbicides (Glyphosate (N-(phosphonomethyl)glycine) with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (NPK 15%) (P) and organic farming (chipped pruned branches and weeds, manure from sheep and goats) (O). Nine soil samples were taken from each system. The results showed that the management practices including herbicides and intensive ploughing had similar results on soil microbial properties, while organic fertilization significantly increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared to inorganic fertilization systems; thus, enhancing the sustainability of this agroecosystem under semiarid conditions.

  16. Manejo da irrigação na cultura do feijoeiro em sistemas plantio direto e convencional Irrigation management in dry bean under conventional and no tillage systems

    Directory of Open Access Journals (Sweden)

    Luiz C. Pavani

    2008-03-01

    Full Text Available O manejo inadequado do solo e da água é limitante à produtividade do feijoeiro irrigado. O objetivo deste trabalho foi avaliar dois métodos de manejo da irrigação, um via solo (tensiometria e outro via clima (tanque Classe A, conjugados com os sistemas plantio direto e convencional de manejo do solo com a cultura do feijoeiro de "inverno", no segundo ano de plantio direto, em Jaboticabal - SP. Foi medido o potencial mátrico do solo e estimada a variação diária do armazenamento de água no solo, na camada de 0 a 0,40 m de profundidade, e avaliados os componentes de produtividade, além de determinadas a evapotranspiração real média e a eficiência média de uso de água pela cultura. O sistema de preparo convencional do solo com manejo de irrigação pelo tanque Classe A proporcionou maior produtividade de grãos, evapotranspiração média e eficiência de uso de água pela cultura, seguido pelo plantio direto com manejo de irrigação por tensiometria e por tanque Classe A. O sistema plantio direto foi menos suscetível às variações hídricas no solo decorrentes dos manejos de irrigação empregados do que o sistema de preparo convencional, resultando em menor variação na produtividade de grãos.The unsuitable soil and water management in irrigated bean crop is a limitant factor for the yield of this crop. The objective of this research was to compare the performance of two methods of irrigation management, one by soil (tensiometry and another by climate (Class A pan, in conventional and no tillage systems on the irrigated dry bean winter crop in the second year of no tillage system in Jaboticabal - SP. It was evaluated; average number of pods, grains per pods, weight of 1000 grains, grain yield per hectare, soil humidity variation, real evapotranspiration and crop water use efficiency. It was concluded that the biggest grains yield, mean daily evapotranspiration and crop water use efficiency was found in the conventional

  17. Irrigation Water Management Recovery on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 449

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP449), Irrigation...

  18. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management.

    Science.gov (United States)

    Gómez-Rico, Aurora; Salvador, M Desamparados; La Greca, Marta; Fregapane, Giuseppe

    2006-09-20

    This study investigated the effect of both the degree of ripening of the olive fruit and irrigation management-rain-fed, two different regulated deficit irrigations (RDI), the method proposed by the Food and Agriculture Organization of the United Nations (known as FAO), and 125 FAO (125% FAO)-on the phenolic and volatile composition of Cornicabra virgin olive oils obtained during two crop seasons. Secoiridoid phenolic derivatives greatly decreased upon increase of both irrigation and ripening, for example, the 3,4-DHPEA-EDA content decreased from 770 to 450 mg/kg through fruit ripening under rain-fed conditions and from 676 to 388 mg/kg from rain-fed conditions to FAO irrigation treatment (at a ripeness index of approximately 4). Moreover, secoiridoid derivatives of hydroxytyrosol decreased more than those of tyrosol. The levels of major volatile components decreased in the course of ripening but were higher in irrigated olive oils: for example, the E-2-hexenal content ranged between 4.2 and 2.6 mg/kg (expressed as 4-methyl-2-pentanol) over fruit maturation under rain-fed conditions and between 8.0 and 3.5 mg/kg under FAO scheduling. It is important to note that where water was applied only from the beginning of August (RDI-2), when oil begins to accumulate in the fruit, the resulting virgin olive oil presented a phenol and volatile profile similar to those of the FAO and 125 FAO methods, but with a considerable reduction in the amount of water supplied to the olive orchard.

  19. Effectiveness of the GAEC cross-compliance standard management of stubble and crop residues in the maintenance of adequate contents of soil organic carbon

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2011-08-01

    Full Text Available Several studies carried out on the effects of stubble and crop residue incorporation have shown positive effects on chemical-physical soil characteristics. However, not all studies agree on the extent of soil organic matter increase which derives from this process, as this effect is strongly affected by other factors: the pedo-climatic features of the area in which the study is carried out, the type of crop residue incorporation and the agronomical management adopted to improve the decomposition of the incorporated fresh organic material. The burning of stubble and straw is common in the areas where cereals are traditionally grown. The adoption of this method is based on different technical and work-related factors, which become less important when taking into account the impact on the local environment and soil. A research is currently carried out at the CRA-SCA experimental farm in Foggia (Southern Italy on the effects of either residues incorporation or burning on the chemical-physical characteristics of the soil and on the wheat yield performance since 1977. This experiment allows for a comparison among the effects of burning, the simple incorporation of stubble and crop residues and incorporation carried out with some agronomical techniques (such as the distribution of increasing amounts of nitrogen on crop residue before incorporation and the simulation of rain (50 mm on the decomposition of organic material. The objective of the study was to understand the effect of the different residues management practices on soil chemical properties after 32 years of experimentation. The simple incorporation of straw and stubble showed a slight increase in organic soil matter of 0.7% with respect to burning. The best results for soil organic carbon and soil quality were obtained when residual incorporation included a treatment with additional mineral nitrogen.

  20. Water Leakage and Nitrate Leaching Characteristics in the Winter Wheat–Summer Maize Rotation System in the North China Plain under Different Irrigation and Fertilization Management Practices

    Directory of Open Access Journals (Sweden)

    Shufeng Chen

    2017-02-01

    Full Text Available Field experiments were carried out in Huantai County from 2006 to 2008 to evaluate the effects of different nitrogen (N fertilization and irrigation management practices on water leakage and nitrate leaching in the dominant wheat–maize rotation system in the North China Plain (NCP. Two N fertilization (NF1, the traditional one; NF2, fertilization based on soil testing and two irrigation (IR1, the traditional one; IR2, irrigation based on real-time soil water content monitoring management practices were designed in the experiments. Water and nitrate amounts leaving the soil layer at a depth of 2.0 m below the soil surface were calculated and compared. Results showed that the IR2 effectively reduced water leakage and nitrate leaching amounts in the two-year period, especially in the winter wheat season. Less than 10 percent irrigation water could be saved in a dry winter wheat season, but about 60 percent could be saved in a wet winter wheat season. Besides, 58.8 percent nitrate under single NF2IR1 and 85.2 percent under NF2IR2 could be prevented from leaching. The IR2 should be considered as the best management practice to save groundwater resources and prevent nitrate from leaching. The amounts of N input play a great role in affecting nitrate concentrations in the soil solutions in the winter wheat–summer maize rotation system. The NF2 significantly reduced N inputs and should be encouraged in ordinary agricultural production. Thus, nitrate leaching and groundwater contamination could be alleviated, but timely N supplement might be needed under high precipitation condition.

  1. Reform in Indian canal irrigation: does technology matter?

    NARCIS (Netherlands)

    Narain, V.

    2008-01-01

    This paper examines the implications of technology - the design of canal irrigation for irrigation management reform. With reference to two different design systems in Indian irrigation - shejpali and warabandi - it shows that the potential for reform varies with the design of canal irrigation. Thre

  2. Current European guidelines for management of arterial hypertension: Are they adequate for use in primary care? Modelling study based on the Norwegian HUNT 2 population

    Directory of Open Access Journals (Sweden)

    Hetlevik Irene

    2009-10-01

    Full Text Available Abstract Background Previous studies indicate that clinical guidelines using combined risk evaluation for cardiovascular diseases (CVD may overestimate risk. The aim of this study was to model and discuss implementation of the current (2007 hypertension guidelines in a general Norwegian population. Methods Implementation of the current European Guidelines for the Management of Arterial Hypertension was modelled on data from a cross-sectional, representative Norwegian population study (The Nord-Trøndelag Health Study 1995-97, comprising 65,028 adults, aged 20-89, of whom 51,066 (79% were eligible for modelling. Results Among individuals with blood pressure ≥120/80 mmHg, 93% (74% of the total, adult population would need regular clinical attention and/or drug treatment, based on their total CVD risk profile. This translates into 296,624 follow-up visits/100,000 adults/year. In the Norwegian healthcare environment, 99 general practitioner (GP positions would be required in the study region for this task alone. The number of GPs currently serving the adult population in the study area is 87 per 100,000 adults. Conclusion The potential workload associated with the European hypertension guidelines could destabilise the healthcare system in Norway, one of the world's most long- and healthy-living nations, by international comparison. Large-scale, preventive medical enterprises can hardly be regarded as scientifically sound and ethically justifiable, unless issues of practical feasibility, sustainability and social determinants of health are considered.

  3. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    Science.gov (United States)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites

  4. Concomitant septic arthritis and tophaceous gout of the knee managed with intermittent closed joint irrigation combined with negative pressure therapy: a case study and literature review.

    Science.gov (United States)

    V N, Panicker; J K, Turner; M J, Chehade

    2014-01-01

    Tophaceous gout complicated by septic arthritis presents a management dilemma which can often require multiple surgical debridements. There is little published in the literature regarding treatment of these concomitant conditions. We postulate that biofilm may play a role increasing the difficulty of sterilising a tophaceous joint. The use of topical negative pressure therapy that targets biofilm has been well established for a range of wounds. A new device that incorporates both intermittent negative pressure therapy and wound irrigation was introduced in 2012. This case report describes the use of this topical negative device with the instillation option in the management of severe septic arthritis with concomitant gout and suggests directions for further research.

  5. Evaluating the relative contribution of methane oxidation to methane emissions from young floodplain soils under Alternative Irrigation Management

    Science.gov (United States)

    Pierreux, Sofie; Verhoeven, Elizabeth; Akter, Masuda; Sleutel, Steven; Said-Pullicino, Daniel; Romani, Marco; Boeckx, Pascal

    2016-04-01

    To keep the pace with a yearly growing demand for rice by 1-2%, future rice production must come primarily from high yielding irrigated rice, putting a pressure on fresh water reserves. In this context, water saving Alternative Irrigation Management (AIM) is progressively applied worldwide. By introducing repeated or mid-seasonal drainage, AIM suppresses emission of CH4, otherwise prevalent in continuously flooded rice. However, little is known about the effect of AIM on the balance of CH4 genesis and oxidation in paddy soils. We studied relevant soil parameters and CH4 emissions in continuously flooded (CF) and alternately wetted and dried (AWD) rice paddies. During a field campaign at the Castello d'Agogna experimental station (Pavia, Italy), we measured in situ CH4 oxidation and emission rates using the closed gas chamber technique with or without application of CH2F2 as a selective inhibitor of CH4 oxidation. In addition, we determined potential CH4 oxidation rates using incubated soil slurries originating from the same experimental plots. The dataset was supplemented with depth differentiated monitoring of redox potential, temperature, moisture content and soil solution parameters (DOC, Fe2+, Mn3+, mineral N and dissolved CH4). Peaks in dissolved CH4 manifested at 5 and 12.5cm depth, with much lower and equal levels at 25, 50 and 80cm depth. Also depth distributions of dissolved Fe and Mn followed this pattern, indicating that methanogenic activity was primarily confounded to the topsoil. Seasonal CH4 emissions were about halved by AWD compared to CF management. After a fast decline of in situ oxidation within the AWD treatment at the beginning of the season, CH4 oxidation percentages in CF and AWD increased until the booting stage (67DAS), reaching peak values of 83% and 69% of produced CH4, respectively. CH4 oxidation thereafter gradually declined to nearly 50% in both treatments after the final drainage (103 DAS). Seasonal trends of potential CH4 oxidation

  6. Problems of Participation and Issues of Sustainability in the Public Irrigation System in the Context of Management Transfer: Some Sociological Observations from Eastern Terai, Nepal

    Directory of Open Access Journals (Sweden)

    Laya Prasad Uprety

    2011-04-01

    Full Text Available It has been ascertained that participatory processes did not involve learning component from both agency and water users’ association for institutional and technical sustainability. The overall process of participation was superficial. There was a need of participation that underscored the empowerment of WUA with accountability. As Vermillion (2005 shares that empowerment with partnership is an emergent institutional paradigm for the irrigation sector development that places water users in the role of irrigation system governance, and government in the roles of regulator and provider of support services. There is a need to re-train the irrigation staff on the emergent institutional paradigm to empower the water users. For the empowerment with accountability, water users are to be provided enough institutional strengthening. There is the need to promote user-agency relationship positively and develop faith and confidence of the users and agency in the regime of transparency. Social scientists point out potential benefits of building successful local organizations. These benefits, for the local people, are in aspects such as empowerment, confidence-building, forming social capital, and reduction of dependency. Given the fact that participation is a process, it cannot be achieved in a short span of time with little institutional inputs. Sustainability of the management transferred irrigation systems/sub-systems definitely hinges on the broad-based and inclusive participatory processes. Keywords: participation; sustainability; management transfer; social capital and empowerment DOI: 10.3126/dsaj.v4i0.4512 Dhaulagiri Journal of Sociology and Anthropology Vol.4 2010 pp.41-64

  7. Assessing the Feasibility of Managed Aquifer Recharge for Irrigation under Uncertainty

    Directory of Open Access Journals (Sweden)

    Muhammad Arshad

    2014-09-01

    Full Text Available Additional storage of water is a potential option to meet future water supply goals. Financial comparisons are needed to improve decision making about whether to store water in surface reservoirs or below ground, using managed aquifer recharge (MAR. In some places, the results of cost-benefit analysis show that MAR is financially superior to surface storage. However, uncertainty often exists as to whether MAR systems will remain operationally effective and profitable in the future, because the profitability of MAR is dependent on many uncertain technical and financial variables. This paper introduces a method to assess the financial feasibility of MAR under uncertainty. We assess such uncertainties by identification of cross-over points in break-even analysis. Cross-over points are the thresholds where MAR and surface storage have equal financial returns. Such thresholds can be interpreted as a set of minimum requirements beyond which an investment in MAR may no longer be worthwhile. Checking that these thresholds are satisfied can improve confidence in decision making. Our suggested approach can also be used to identify areas that may not be suitable for MAR, thereby avoiding expensive hydrogeological and geophysical investigations.

  8. Irrigation System

    Science.gov (United States)

    1984-01-01

    Under contract with Marshall Space Flight Center, Midwest Research Institute compiled a Lubrication Handbook intended as a reference source for designers and manufacturers of aerospace hardware and crews responsible for maintenance of such equipment. Engineers of Lindsay Manufacturing Company learned of this handbook through NASA Tech Briefs and used it for supplemental information in redesigning gear boxes for their center pivot agricultural irrigation system.

  9. Economic management of vertigo/dizziness disease in a county hospital: video-head-impulse test vs. caloric irrigation.

    Science.gov (United States)

    Rambold, Holger A

    2015-10-01

    The video-head-impulse test (vHIT) is an important test for examining unilateral vestibular hypofunction. Alternatively, one can test for vestibular hypofunction with the caloric irrigation test. Various studies have shown that both tests may not always identify vestibular hypofunction; instead, the results of the tests might be contradictory. This retrospective study reproduces those finding in a much larger group of patients at a county hospital. 1063 patients were examined with the vHIT and bithermal caloric irrigation on the same day and analyzed with respect to side differences. Of those patients 13.3% had pathological vHIT and a caloric irrigation test, 4.6% a pathological vHIT only and 24.1% a pathologic caloric test only. As both tests might be necessary, we calculated the optimal sequence of the two examinations based on savings in time for the different disease groups. Especially in vestibular failure using the vHIT first and only applying the caloric irrigation in case of an unremarkable vHIT saves time and optimizes the diagnostic work up. In contrast, in Menière's disease and vestibular migraine testing caloric irrigation first might be more efficient.

  10. Managing neurogenic bowel dysfunction: what do patients prefer? A discrete choice experiment of patient preferences for transanal irrigation and standard bowel management

    Directory of Open Access Journals (Sweden)

    Nafees B

    2016-02-01

    Full Text Available Beenish Nafees,1 Andrew J Lloyd,2 Rachel S Ballinger,2 Anton Emmanuel3 1Health Outcomes Research, Nafees Consulting Limited, London, 2Patient-Reported Outcomes Research, ICON plc, Oxford, 3Department of Gastroenterology and Nutrition, University College Hospital, London, UK Background: Most patients with bowel dysfunction secondary to neurological illness are managed by a range of nonsurgical methods, including dietary changes, laxatives, and suppository use to transanal irrigation (TAI. The aim of the present study was to explore individuals’ preferences regarding TAI devices and furthermore investigate willingness to pay (WTP for attributes in devices in the UK. Methods: A discrete choice experiment survey was conducted to evaluate the patients’ perceived value of TAI devices. Attributes were selected based upon a literature review and input from clinicians. Interviews were conducted with three clinicians and the survey was developed and finalized with the input from both patients and professionals. The final attributes were “risk of urinary tract infections” (UTIs, “risk of fecal incontinence” (FI, “frequency of use”, “time spent on toilet”, “ease of use”, “level of control/independence”, and “cost”. Participants were recruited by a patient panel of TAI device users in the UK. Data were analyzed using the conditional logit model whereby the coefficients obtained from the model provided an estimate of the (log odds ratios (ORs of preference for attributes. WTP was also estimated for each attribute. Results: A total of 129 participants were included in the final analyses. Sixty two percent of the participants had suffered from three UTIs in the preceding year and 58% of patients reported currently experiencing FI using their current device. All attributes were significant predictors of choice. The most important attributes for participants were the “risk of FI”, “frequency of use”, and “risk of UTIs

  11. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    Science.gov (United States)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  12. Nutrient management and institutional cooperation as conditions for environmentally safe wastewater irrigation: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, J.G.; Huibers, F.P.; Vliet, van Bas J.M.; Dung, N.V.; Van, D.T.H.; Ragab, Ragab; Koo-Oshima, Sasha

    2006-01-01

    Hanoi is rapidly growing in population and in economic activities. Increasing volumes of domestic and industrial wastewater flows are discharged mostly untreated into the drainage system. At downstream level, these polluted, nutrient rich waters are used for irrigation. Nutrient concentrations in th

  13. Gendered participation in water management in Nepal : discourses, policies and practices in the irrigation and drinking water sectors

    NARCIS (Netherlands)

    Bhushan Udas, P.

    2014-01-01

    Abstract This thesis is about gendered policy processes in the irrigation and drinking water sectors in Nepal. Globally, increased women’s participation in formal decision making bodies such as water users’ associations is extensively advocated as a means to reduce exis

  14. Prospects for Improving Gravity-Fed Surface Irrigation Systems in Mediterranean European Contexts

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-01-01

    Full Text Available Traditionally, most irrigation practices in Southern Europe have been based on gravity-fed surface irrigation systems. Currently, these systems remain a relevant typology in the European Union (EU member states of the Mediterranean areas, where it is often the only sustainable method for farmers due to the small size of agricultural holdings, their reduced capacity and readiness to invest and the low ratio between yield profits and irrigation costs. In the last several years, in response to European and national directives, surface irrigation has garnered increasing attention at the political and bureaucratic levels due to frequent criticisms of its postulated low efficiency and high water wastage. However, these systems commonly provide a number of ecosystem services and nature-based solutions that increase the positive externalities in different rural socio-ecological contexts and often have the potential to extend these services and provide solutions that are compatible with economical sustainability. This study aims to discuss the prospects for new practices and for the rehabilitation and modernization of the gravity-fed surface irrigation systems in EU Mediterranean areas to enhance water efficiency, thus gaining both economic advantages and environmental benefits. The difficulties, stimuli for improvements and peculiarities of the irrigation water management of four rural environments located in Italy, Spain and Portugal were analyzed and compared to the current state of the gravity-fed surface irrigation systems with hypothetical future improvements achievable by innovative technologies and practices. In these different case studies, the current gravity-fed surface irrigation systems have an obsolete regulatory structure; water-use efficiency is not a driving criterion for the management of the conveyance and distribution canal network, and farmers are not yet adequately encouraged to adopt more efficient gravity-fed irrigation practices

  15. Farmers actions and improvements in irrigation performance below the Mogha: How farmers manage water scarcity and abundance in a large scale irrigation system in South-Eastern Punjab, Pakistan

    NARCIS (Netherlands)

    Wahaj, R.

    2001-01-01

    The irrigation systems of Punjab, Pakistan are not functioning effectively in relation to design criteria or farmers' needs. This under-performance is attributed to among others, scarcity of irrigation water, changes in cropping intensity and mis-allocation of available resources. Presently irrigati

  16. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  17. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management, EU Project

    DEFF Research Database (Denmark)

    Plauborg, Finn; Jensen, Christian Richardt; Dalsgaard, Anders

    2009-01-01

    while at the same time reducing the use of natural resources and the impact on aquatic ecosystems that are frequently already polluted. These problems are linked, since most of our vegetables are produced using irrigation water from the same ecosystems. To ensure food safety and quality, the innovative...... intelligent tool for efficient and safe use and re-use of low-quality water are being developed. Already published results indicate water saving in the order of 25-30% in agricultural crops as potatoes and tomatoes are possible without yield reduction. Slightly treated waste water can be used safely when......Globally, agricultural irrigation is the number one user of freshwater. Agriculture consumes about 70% of all water withdrawn worldwide, and up to 95% in some developing countries. The SAFIR project contributes to solving this challenge, addressing two major public concerns at the same time...

  18. Irrigation-based livelihood trends in river basins: theory and policy implications for irrigation development

    Science.gov (United States)

    Lankford, Bruce

    This paper examines irrigation development and policy in Tanzania utilising a livelihoods and river basin perspective. On the basis of observations, the author argues that river basins theoretically exhibit a sigmoid curve of irrigation development in three stages; proto-irrigation, irrigation-momentum and river basin management. This model arises from two governing factors. Firstly, irrigation is a complex livelihood activity that, although has benefits, also has costs, risks and alternatives that integrate across many systems; farmers implicitly understand this and enter into or keep out of irrigation accordingly. In the proto-irrigation stage, irrigators are less common, and irrigation is felt to be a relatively unattractive livelihood. In the irrigation-momentum stage, irrigators are drawn very much to irrigation in providing livelihood needs. Hence, given both of these circumstances, governments should be cautious about policies that call for the need to ‘provide irrigation’ (when farmers may not wish to irrigate) or to further increase it (when farmers already have the means and will to do so). Second, irrigation consumes water, generating externalities. Thus if irrigation momentum proceeds to the point when water consumption directly impacts on other sectors and livelihoods, (e.g. pastoralists, downstream irrigation, the environment) decision-makers should focus not necessarily on irrigation expansion, but on water management, allocation and conflict mediation. This three-stage theoretical model reminds us to take a balanced ‘livelihoods river-basin’ approach that addresses real problems in each given stage of river basin development and to develop policy accordingly. The paper contains a discussion on livelihood factors that affect entry into irrigation. It ends with a series of recommendations on policy; covering for example new large-scale systems; problems solving; and the use of an irrigation-river basin livelihoods approach. The recommendations

  19. Integrated Water Resources Management for Sustainable Irrigation at the Basin Scale Manejo Integrado de Recursos Hídricos para Riego Sustentable a Nivel de Cuenca

    Directory of Open Access Journals (Sweden)

    Max Billib

    2009-12-01

    Full Text Available The objective of this paper is to review the state of art on integrated water resources management (IWRM approaches for sustainable irrigation at the basin scale under semi-arid and arid climatic conditions, with main emphasis on Latin America, but including case studies of other semi-arid and arid regions in the world. In Latin America the general concept of IWRM has proved to be hard to implement. Case studies recommend to develop the approach from lower to upper scale and oriented at the end-user. As IWRM is an interdisciplinary approach and used for very different objectives, the main emphasis is given to IWRM approaches for sustainable irrigation and their environmental aspects. The review shows that in Latin America the environmental impact is mostly analysed at the field level, the impact on the whole basin is less considered. Many publications present the development of models, advisory services and tools for decision support systems at a high technical level. Some papers present studies of environmental aspects of sustainable irrigation, especially for salt affected areas. Multi-criteria decision making models are developed for irrigation planning and irrigation scenarios are used to show the impact of different irrigation management decision. In general integrated approaches in Latin America are scarce.El objetivo de esta publicación es revisar el estado del arte de los diferentes enfoques que se han usado para lograr un manejo integrado de los recursos hídricos (MIRH asociados a una agricultura de riego sustentable a nivel de cuenca en condiciones áridas y semiáridas, con énfasis en Latinoamérica, pero incluyen casos de estudio de otras regiones similares del mundo. En Latinoamérica el concepto general de MIRH ha resultado difícil de implementar. De los estudios de casos, se recomienda desarrollar este enfoque desde una escala menor a una mayor orientándose al usuario final. MIRH es un enfoque interdisciplinario usado para

  20. Present-day irrigation mitigates heat extremes

    Science.gov (United States)

    Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; Hirsch, Annette L.; Hauser, Mathias; Seneviratne, Sonia I.

    2017-02-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.

  1. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    Science.gov (United States)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  2. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    Science.gov (United States)

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  3. Gerenciamento do lado da demanda no bombeamento de água para perímetro irrigado Demand side management for water pumping for irrigated perimeter

    Directory of Open Access Journals (Sweden)

    Maria J. de Moraes

    2011-09-01

    ´s load and the motor pump set performance. It is concluded that the frequency inverter use and the management of the availability of the number of hours of irrigation secure energy savings that varies around 7 to 62% for the studied combinations.

  4. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation...

  5. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    Science.gov (United States)

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  6. Water Resources Impacts on Tribal Irrigation Projects

    Science.gov (United States)

    Minihane, M.

    2015-12-01

    The Bureau of Indian Affairs (BIA) Branch of Irrigation and Power provides oversight and technical support to select irrigation projects and systems on tribal lands. The BIA provides operations and maintenance support for 16 irrigation systems. To make the best use of limited resources, the BIA must incorporate climate change impacts on hydrology and water management for these irrigation systems in the coming decades. The 16 irrigation projects discussed here are divided into three climatological regions: the Pacific Northwest Region, the Greater Rocky Mountain Region, and the Western, Southwest, & Navajo Region. Significant climate projections that impact irrigation systems in one or more of these regions include increased temperatures and evaporative demand, earlier snowmelt and runoff, an increase in floods, an increase in heavy precipitation events, an increase in the frequency and intensity of droughts, and declining water supplies. Some irrigation projects are particularly vulnerable to these climate impacts because they are in already water-stressed areas or areas in which water resources are over-allocated. Other irrigation projects will have to adjust their storage and water management strategies to accommodate changes in the timing of streamflow. Overall, though, the BIA will be better able to assist tribal nations by incorporating expected climate impacts into their water resources management practices.

  7. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Directory of Open Access Journals (Sweden)

    A. D. Chukalla

    2015-07-01

    Full Text Available Consumptive water footprint (WF reduction in irrigated crop production is essential given the increasing competition for fresh water. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET and yield (Y and thus the consumptive WF of crops (ET/Y. The management practices are: four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD; four irrigation strategies (full (FI, deficit (DI, supplementary (SI and no irrigation; and three mulching practices (no mulching, organic (OML and synthetic (SML mulching. Various cases were considered: arid, semi-arid, sub-humid and humid environments; wet, normal and dry years; three soil types; and three crops. The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching. The average reduction in the consumptive WF is: 8–10 % if we change from the reference to drip or SSD; 13 % when changing to OML; 17–18 % when moving to drip or SSD in combination with OML; and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow is lower.

  8. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  9. Position paper : Whole bowel irrigation

    NARCIS (Netherlands)

    2004-01-01

    Whole bowel irrigation (WBI) should not be used routinely in the management of the poisoned patient. Although some volunteer studies have shown substantial decreases in the bioavailability of ingested drugs, no controlled clinical trials have been performed and there is no conclusive evidence that W

  10. An object-oriented watershed management tool (QnD-VFS) to engage stakeholders in targeted implementation of filter strips in an arid surface irrigation area

    Science.gov (United States)

    Campo, M. A.; Perez-Ovilla, O.; Munoz-Carpena, R.; Kiker, G.; Ullman, J. L.

    2012-12-01

    Agricultural nonpoint source pollution cause the majority of the 1,224 different waterbodies failing to meet designated water use criteria in Washington. Although various best management practices (BMPs) are effective in mitigating agricultural pollutants, BMP placement is often haphazard and fails to address specific high-risk locations. Limited financial resources necessitate optimization of conservation efforts to meet water quality goals. Thus, there is a critical need to develop decision-making tools that target BMP implementation in order to maximize water quality protection. In addition to field parameters, it is essential to incorporate economic and social determinants in the decision-making process to encourage producer involvement. Decision-making tools that identify strategic pollution sources and integrate socio-economic factors will lead to more cost-effective water quality improvement, as well as encourage producer participation by incorporating real-world limitations. Therefore, this study examines vegetative filter strip use under different scenarios as a BMP to mitigate sediment and nutrients in the highly irrigated Yakima River Basin of central Washington. We developed QnD-VFS to integrate and visualize alternative, spatially-explicit, water management strategies and its economic impact. The QnDTM system was created as a decision education tool that incorporates management, economic, and socio- political issues in a user-friendly scenario framework. QnDTM, which incorporates elements of Multi-Criteria Decision Analysis (MCDA) and risk assessment, is written in object-oriented Java and can be deployed as a stand-alone program or a web-accessed tool. The model performs Euler numerical integration of various rate transformation and mass-balance transfer equations. The novelty of this object-oriented approach is that these differential equations are detailed in modular XML format for instantiation within the Java code. This design allows many levels

  11. Supplement Analysis for the Watershed Management Program EIS - Idaho Model Watershed Habitat Projects - L-9 Irrigation Diversion Modification

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-08-02

    The Bonneville Power Administration is proposing to fund a fish passage improvement project at the L-9 diversion on the Lemhi River in Lemhi County, Idaho with the Lemhi Soil and Water Conservation District. The project proposes to replace the existing rock push-up irrigation diversion dam with a single rock weir that will incorporate a geotextile membrane to create a permanent diversion. The new weir will be a v-shaped vortex weir with a six-foot wide notch for fish passage. In addition, a ramp flume will be constructed in the diversion canal between the headgate and existing fish screen to provide for water measurement. The new diversion will provide better water delivery/control and improved passage for adult and juvenile resident and anadromous fish.

  12. Mobile proximal soil sensing for crop productivity assessment and water management

    Science.gov (United States)

    Soil sensing shows promise for efficient crop water management. Most soil sensors used in irrigation management are in-situ devices that provide temporally dense data. However, they are generally deployed at only a few locations and therefore do not adequately characterize spatial variability in soi...

  13. Farmers’ Willingness to Pay for Irrigation Water: A Case of Tank Irrigation Systems in South India

    Directory of Open Access Journals (Sweden)

    Karthikeyan Chandrasekaran

    2009-08-01

    Full Text Available The economic value of tank irrigation water was determined through Contingency Valuation Method by analyzing farmers’ willingness to pay for irrigation water under improved water supply conditions during wet and dry seasons of paddy cultivation. Quadratic production function was also used to determine the value of irrigation water. The comparison of the economic value of water estimated using different methods strongly suggests that the present water use pattern will not lead to sustainable use of the resource in the tank command areas. Policy options for sustainable use of irrigation water and management of tanks in India were suggested.

  14. Irrigation Scheduling for Green Bell Peppers Using Capacitance Soil Moisture Sensors

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Femminella, K.; Munoz-Carpena, R.

    2011-01-01

    Vegetable production areas are intensively managed with high inputs of fertilizer and irrigation. The objectives of this study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling using soil moisture sensor irrigation controllers (SMS) on yield, irrigation water use

  15. Mapping suitability of rice production systems for mitigation: Strategic approach for prioritizing improved irrigation management across scales

    Science.gov (United States)

    Wassmann, Reiner; Sander, Bjoern Ole

    2016-04-01

    After the successful conclusion of the COP21 in Paris, many developing countries are now embracing the task of reducing emissions with much vigor than previously. In many countries of South and South-East Asia, the agriculture sector constitutes a vast share of the national GHG budget which can mainly be attributed to methane emissions from flooded rice production. Thus, rice growing countries are now looking for tangible and easily accessible information as to how to reduce emissions from rice production in an efficient manner. Given present and future food demand, mitigation options will have to comply with aim of increasing productivity. At the same time, limited financial resources demand for strategic planning of potential mitigation projects based on cost-benefit ratios. At this point, the most promising approach for mitigating methane emissions from rice is an irrigation technique called Alternate Wetting and Drying (AWD). AWD was initially developed for saving water and subsequently, represents an adaptation strategy in its own right by coping with less rainfall. Moreover, AWD also reduces methane emissions in a range from 30-70%. However, AWD is not universally suitable. It is attractive to farmers who have to pump water and may save fuel under AWD, but renders limited incentives in situations where there is no real pressing water scarcity. Thus, planning for AWD adoption at larger scale, e.g. for country-wide programs, should be based on a systematic prioritization of target environments. This presentation encompasses a new methodology for mapping suitability of water-saving in rice production - as a means for planning adaptation and mitigation programs - alongside with preliminary results. The latter comprises three new GIS maps on climate-driven suitability of AWD in major rice growing countries (Philippines, Vietnam, Bangladesh). These maps have been derived from high-resolution data of the areal and temporal extent of rice production that are now

  16. 21 CFR 1404.900 - Adequate evidence.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1404.900 Adequate evidence. Adequate evidence means information sufficient...

  17. WATER REQUIREMENT OF IRRIGATED GARLIC

    Science.gov (United States)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  18. Water Requirements Of Irrigated Garlic

    Science.gov (United States)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  19. Soil Enzyme Activities with Greenhouse Subsurface Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Long; WANG Yao-Sheng

    2006-01-01

    Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion(MAD) designed for different treatments (-10, -16, -25, -40, and -63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast,the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production.

  20. Weed management, training, and irrigation practices for organic production of trailing blackberry: III. Accumulation and removal of aboveground biomass, carbon, and nutrients

    Science.gov (United States)

    The effects of various production practices on biomass, C, and nutrient content, accumulation, and loss were assessed over 2 years in a mature organic trailing blackberry (Rubus L. subgenus Rubus, Watson) production system. Treatments included two irrigation options (no irrigation after harvest and ...

  1. Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2016-06-01

    Full Text Available Water irrigation systems are required to provide adequate pressure levels in any sort of network. Quite frequently, this requirement is achieved by using pressure reducing valves (PRVs. Nevertheless, the possibility of using hydraulic machines to recover energy instead of PRVs could reduce the energy footprint of the whole system. In this research, a new methodology is proposed to help water managers quantify the potential energy recovering of an irrigation water network with adequate conditions of topographies distribution. EPANET has been used to create a model based on probabilities of irrigation and flow distribution in real networks. Knowledge of the flows and pressures in the network is necessary to perform an analysis of economic viability. Using the proposed methodology, a case study has been analyzed in a typical Mediterranean region and the potential available energy has been estimated. The study quantifies the theoretical energy recoverable if hydraulic machines were installed in the network. Particularly, the maximum energy potentially recovered in the system has been estimated up to 188.23 MWh/year with a potential saving of non-renewable energy resources (coal and gas of CO2 137.4 t/year.

  2. Water type and irrigation time effects on microbial metabolism of a soil cultivated with Bermuda-grass Tifton 85

    Directory of Open Access Journals (Sweden)

    Sandra Furlan Nogueira

    2011-06-01

    Full Text Available This study investigated the microbial metabolism in Bermuda-grass Tifton 85 areas after potable-water and effluent irrigation treatments. The experiment was carried out in Lins/SP with samples taken in the rainy and dry seasons (2006 after one year and three years of irrigation management, and set up on an entirely randomized block design with four treatments: C (control, without irrigation or fertilization, PW (potable water + 520 kg of N ha-1 year-1; TE3 and TE0 (treated effluent + 520 kg of N ha-1 year-1 for three years and one year, respectively. The parameters determined were: microbial biomass carbon, microbial activity, and metabolic quotient. Irrigation with wastewater after three years indicated no alteration in soil quality for C and ET3; for PW, a negative impact on soil quality (microbial biomass decrease suggested that water-potable irrigation in Lins is not an adequate option. Microbial activity alterations observed in TE0 characterize a priming effect.

  3. Irrigation analysis based on long-term weather data

    Science.gov (United States)

    Irrigation-management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994 an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. ...

  4. 2008 Mississippi Curriculum Framework: Postsecondary Irrigation Management Technology. (Program CIP:01.0699 - Applied Horticulture/Horticultural Business Services, Other)

    Science.gov (United States)

    Oliver, Michael L.

    2008-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  5. Utility of multi temporal satellite images for crop water requirements estimation and irrigation management in the Jordan Valley

    Science.gov (United States)

    Identifying the spatial and temporal distribution of crop water requirements is a key for successful management of water resources in the dry areas. Climatic data were obtained from three automated weather stations to estimate reference evapotranspiration (ETO) in the Jordan Valley according to the...

  6. Institutions, technology and water control; water users associations and irrigation management reform in two large-scale systems in India

    NARCIS (Netherlands)

    Narain, V.

    2003-01-01

    Few studies of resource management have paid as much attention or intelligently surveyed the operational aspects of Water User Associations (WUAs) as Institutions, Technology and Water Control. The implementation of WUAs policies, argues this pioneering study, is shaped by the aspirations of its use

  7. Weed management, training, and irrigation practices for organic production of trailing blackberry: II. Soil and plant nutrient concentrations

    Science.gov (United States)

    Organic production of blackberries is increasing, but there is relatively little known about how production practices affect plant and soil nutrient status. The impact of cultivar (‘Black Diamond’ and ‘Marion’), weed management (weed mat, hand weeding, and no weeding), primocane training time (Augus...

  8. 浅谈从化市塘料总灌渠灌区项目的建设管理%The construction and management of the Tang liao’s main canal Irrigated Area in Conghua city

    Institute of Scientific and Technical Information of China (English)

    袁梦; 黄锦宜

    2014-01-01

    Taking the Tang liao’s main canal Irrigated Area construction in Conghua city as an example, this paper mainly expounds on construction and management of irrigation area, implementing the reform in the system of legal person responsible for project, the system of public bidding for project, the system of construction and supervision and the system of contract management, the principle of"quality system"strictly,While making management after project completion,To ensure better play the role of irrigation project.%以从化市塘料总灌渠灌区工程建设为例,阐述了灌区项目的建设管理,要严格实行项目法人责任制、招标投标制、建设工程监理制、合同管理制和工程质量终身负责制,同时做好工程完工后的管理工作,确保灌区工程更好的发挥作用。

  9. Abundant Semigroups with a Multiplicative Adequate Transversal

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao Jiang

    2002-01-01

    The aim of this paper is to investigate abundant semigroups with a multiplicative adequate transversal. Some properties and characterizations for such semigroups are obtained. In particular,we establish the structure of this class of abundant semigroups in terms of left normal bands, right normal bands and adequate semigroups with some simple compatibility conditions. Finally, we apply this structure to some special cases.

  10. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning

  11. Management Strategy of Canal-well Combined Irrigation Based on Critical Groundwater Depth%渠井结合灌区控制性关键地下水位及其管理策略研究

    Institute of Scientific and Technical Information of China (English)

    赵孟哲; 魏晓妹; 降亚楠; 李建承

    2015-01-01

    针对我国北方大型灌区出现的地下水“采补失衡”问题,以陕西省泾惠渠灌区为例,通过对其渠井结合灌溉发展历程的回顾,分析了地下水位变化对灌区高效安全用水的影响,探讨了灌区地下水位控制目标;基于地下水位控制目标,利用水均衡法分析了控制性开采总量与关键地下水位之间的定量关系;选取2002年(平水年)为代表年,计算了灌区各分区的控制性关键地下水位所对应的蓝、黄、红线埋深值;根据灌区2010年实测地下水位埋深与关键地下水位埋深的对比分析,划分了灌区地下水管理分区,并对各分区的地下水管理策略进行了探讨。%For large-scale irrigation areas in the North of China ,the imbalance of exploitation and replenishment of underground water is an important problem remained to be managed with .Taking Jinghuiqu irrigation district in Shanxi province as the research area , based on historical review ,the important influence of groundwater for irrigation efficiency and water safety is discussed ,and the con‐trol objective of groundwater for irrigation district is proposed in this paper .According to water balance method ,the quantitative re‐lationship of groundwater level and water yield is ascertained .Taking 2002 year for normal flow year ,the critical groundwater depths of divided areas are determined based on the groundwater exploitation amount in this paper .By comparing the measured groundwater depth with the critical groundwater depth ,the whole irrigation district is divided into different types of management zones .In the end ,the paper discusses the regionalized management strategy from the aspect of canal-well irrigation district .

  12. Incentives and technologies for improving irrigation water use efficiency

    Science.gov (United States)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply

  13. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  14. Decision support for optimised irrigation scheduling

    NARCIS (Netherlands)

    Anastasiou, A.; Sawas, D.; Pasgianos, G.; Sigrimis, N.; Stanghellini, C.; Kempkes, F.L.K.

    2009-01-01

    The system, developed under the FLOW-AID (an FP6 project), is a farm level water management system of special value in situations where the water availability and quality is limited. This market-ready precision irrigation management system features new models, hardware and software. The hardware pla

  15. Applying CSM-CERES-Maize to define a sowing window for irrigated maize crop - The Riacho´s Farm case study

    Directory of Open Access Journals (Sweden)

    Denise Freitas Silva

    2011-08-01

    Full Text Available Irrigation use constitutes an alternative to improve maize production in Central Minas Gerais State, Brazil. However, even under adequate water supply conditions, other environmental factors may influence maize crop growth and development and may, ultimately, affect grain yield. This study aimed to establish a sowing window for irrigated maize crop, based on simulation results obtained with the decision support model CSM-CERES-Maize. Simulations were made for crop management conditions of Riacho´s Farm, located in Matozinhos, Minas Gerais State, Brazil. It was employed the model´s seasonal tool, along with a data set containing 46 years of weather data records, to simulate maize yield for weekly sowing scenarios, starting on August 1st and ending on July 24th of each year. One defined an irrigated maize sowing window, taking into account the yield break risk that a farmer would be willing to take. The model proved to be an interesting tool to assist in decision making, regarding crop and irrigation management, for an irrigated maize production system. Assuming a 10% yield break in the expected average maximum maize yield, it was defined as sowing window, the period from January 23rd to March 6th, with February 20th as the best sowing date. Other sowing windows may be established according to the risk that the farmer would be willing to take.

  16. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    Science.gov (United States)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  17. Response of broccoli to soil water tension under drip irrigation

    Directory of Open Access Journals (Sweden)

    Bartolomeu Felix Tangune

    2016-02-01

    Full Text Available We evaluated the effect of different soil water tensions on the production of broccoli cultivated in a protected environment under drip irrigation in order to establish criteria for the adequate management of irrigation. A completely randomized block design was used, comprising six treatments and four replicates. The treatments included six soil water tensions (15, 30, 45, 60, 75 and 90 kPa. Soil water tension was monitored with granular matrix sensors installed at depths of 0.2 m (decision sensors and 0.4 m (seepage control sensors. Total and marketable fresh weight of broccoli heads, average diameter of marketable heads, height of marketable heads, and total and marketable yield were greatest when the soil water tension at a depth of 0.2 m was 15 kPa, at which the mean values of the evaluated variables were 0.84 kg, 0.76 kg, 20.5 cm, 11.7 cm; 26.5 t ha?1, and 23.7 t ha?1, respectively. Treatments did not significantly affect efficiency of water use or height of marketable heads.

  18. Comparative response of varied irrigated maize to organic and inorganic fertilizer application

    Science.gov (United States)

    Fandika, I. R.; Kadyampakeni, D.; Bottomani, C.; Kakhiwa, H.

    The response of varied irrigated maize (Zea mays) to organic and inorganic fertilizer N, was evaluated at Kasinthula Agricultural Station (2003-2006), Malawi to determine the optimum nutrient and irrigation frequency combinations for soil-water and nutrient management which will address water stress and low soil fertility problem. Hybrid maize variety (DK 8031) was planted on ridges spaced at 0.75 × 0.25 m in a split-plot design replicated three times, with four irrigation frequencies as main plots and fertilizer sources as subplots. Irrigation frequencies comprised: water balance scheduling at 40% depletion, and irrigating 40 mm every 3-4 days, 7 days and 14 days. The nitrogen sources were compost (C), farmyard manure (FYM), urea (U) and their mixtures [(2U:C); (U:2C); (2U:FYM); and (U:2FYM)]. Organic manure was banded three weeks before planting. Data on grain yield was collected and subjected to ANOVA using the Genstat and LSD 0.05 test separating statistical significant means. There was positive ( P NUE). The water balance scheduling at 40% soil moisture depletion had highest grain yields, CWP and NUE among the four irrigation frequencies that was not significantly different to 40 mm every 3-4 days and every 7 days obtained with nitrogen sourced from sole Urea which were not significantly different to mean grain yields, CWP and NUE from (2U:C) and (2U:FYM). CWP was optimally maximised in sole urea (9.8, 8.8 kg mm -1 ha -1) and mixed treatments of 2U:C (8.2, 7.2 kg mm -1 ha -1) or 2U:FYM (8.2-8.9 kg mm -1 ha -1) for maize irrigated every 7 days and at 40% depletion using soil water balance schedule respectively. The greatest NUE of 53.5 kg kg N -1 under (2U:FYM) treatments was experienced at 40% depletion irrigation schedule and was also not significantly different to sole urea and (2U:FYM) treatments (52.8 and 51.6 kg kg N -1) irrigated at 40% depletion and every 3-4 days irrigation schedule respectively. The minimum NUE 19.8 kg kg N -1was observed in FYM

  19. Irrigation Optimization by Modeling of Plant-Soil Interaction

    OpenAIRE

    2011-01-01

    Irrigation scheduling is an important issue for crop management, in a general context of limited water resources and increasing concern about agricultural productivity. Methods to optimize crop irrigation should take into account the impact of water stress on plant growth and the water balance in the plant-soil-atmosphere system. In this article, we propose a methodology to solve the irrigation scheduling problem. For this purpose, a plant-soil interaction model is used to simulate the struct...

  20. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    Science.gov (United States)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  1. The Analysis on Irrigation Management Reform from the Perspective of Sustainable Livelihood%可持续生计框架下的灌溉管理改革问题分析

    Institute of Scientific and Technical Information of China (English)

    赵立娟; 史俊宏

    2012-01-01

    From the concepts of irrigation management reform and farmers" livelihood, this article analyzes the impacts on farmers' livelihood capital of irrigation management reform, based on the livelihood capital theory of sustainable livelihood framework. The irrigation management reform gives impacts on the reserves and quality of natural capital, physical capital, financial capital, human capital and social capital from different aspects. At the same time, all the capitals transform to and combine with one another, and promote the development of farm- ers'livelihood. The analysis shows that irrigation management reform benefits the accumulation and expansion of five kinds of capita/mentioned above. However, more help is needed from different sources if the farmers' liveli- hood in irrigation district should be imnmwd%从灌溉管理改革和农户生计的概念出发,基于“可持续生计框架”中生计资本的理论,详细分析了灌溉管理改革对农户生计资本的影响。灌溉管理改革从不同方面对自然资本、物质资本、金融资本、人力资本和社会资本的储量和质量产生不同的影响,同时各大资本之间也不断地相互转化与组合,共同促进农户生计的发展。分析表明,灌溉管理改革使得农户的自然资本、物质资本、金融资本、人力资本和社会资本得到丰富和拓展,但要进一步改善灌区农户的生计还需要得到多方面的帮助。

  2. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management

    Science.gov (United States)

    Guardia, Guillermo; Abalos, Diego; García-Marco, Sonia; Quemada, Miguel; Alonso-Ayuso, María; Cárdenas, Laura M.; Dixon, Elizabeth R.; Vallejo, Antonio

    2016-09-01

    Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CCs). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following integrated soil fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C : N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and nonlegume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses.

  3. The Sustainability of Irrigation Schemes Under Climate Change

    Science.gov (United States)

    Naabil, E.; Lamptey, B. L.; Arnault, J.; Ayorinde, O. A.; Kunstmann, H.

    2015-12-01

    Irrigation is considered to be one of the best practices in agriculture to ensure food security. However water resources that are used for Irrigation activities are increasingly coming under stress, either due to extraction or climate variability and change. To adequately plan and manage water resources so as to ensure their sustainability requires a long term investigations of streamflow and climate. Streamflow analysis and forecasting gives signal of the occurrence of floods and drought situations. However the ability to maximise these early warning signal, especially for small watersheds, require the use of rainfall predictions approaches (Yucel et al., 2015). One approach to extend the predictions of these early warning signals is the coupling of mesoscale numerical weather prediction (NWP) model precipitation estimates with a spatial resolution hydrological model into streamflow estimates (Jasper et al. 2002;Wardah et al. 2008; Yucel et al. 2015). The study explored (1) the potential of the NWP model (WRF) in reproducing observed precipitation over the Tono basin in West Africa, and (2) the potential of a coupled version of WRF with a physics-based hydrological model (WRF-Hydro) in estimating river streamflow. In order to cope with the lack of discharge observation in the Tono basin, the WRF-Hydro performances are evaluated with a water balance approach and dam level observation. The WRF-Hydro predicted dam level is relatively close to the observation (dam level) from January to August (R2=0.93). After this period the deviation from observation increases (R2=0.62). This could be attributed to surface runoff due to peak rainfall (in August) resulting in soil saturation (soil reaching infiltration capacity) into the dam which has not been accounted for in the water balance model. WRF-Hydro has shown to give good estimation of streamflow especially for ungauged stations. Further works requires using WRF-Hydro modeling system for climate projection, and assess the

  4. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated Durum Wheat

    Science.gov (United States)

    Nitrogen and irrigation management are crucial in the production of high protein irrigated durum wheat (Triticum durum Desf.) in arid regions. However, as the availability of irrigation water decreases and potential costs and regulation of nitrogen (N) increase, there is a need to understand how ir...

  5. Irrigation Systems. Student's Guide.

    Science.gov (United States)

    Amarillo Coll., TX.

    This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…

  6. Irrigation Systems. Instructor's Guide.

    Science.gov (United States)

    Amarillo Coll., TX.

    This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…

  7. Irrigation water quality assessments

    Science.gov (United States)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  8. Irrigation Without Waste

    Science.gov (United States)

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  9. Furrow Irrigation Management and Design Criteria Using Efficiency Parameters and Simulation Models Criterios para Manejo y Diseño de Riego por Surcos Utilizando Parámetros de Eficiencia y Modelos de Simulación

    Directory of Open Access Journals (Sweden)

    Eduardo A. Holzapfel

    2010-06-01

    Full Text Available This study analyzes the relationship between the variables of furrow irrigation and the irrigation performance parameters, crop yield, and deep percolation as a basis for furrow irrigation design and management. Application efficiency (AE, requirement efficiency (RE, requirement distribution efficiency (RDE, total distribution efficiency (TDE, and furrow irrigation management, operation, and design variables (inflow discharge, furrow length, and irrigation cutoff time were correlated. The relationship between performance irrigation parameters and relative yield was also examined. In addition, environmental aspects related to leaching and runoff were also presented for each of the parameters. Study results indicate that increasing the length of the furrow reduces RE, RDE, and TDE values. However, an increase in inflow discharge and cutoff time increases efficiency. In contrast, an increase in furrow length increases AE while an increase in inflow discharge and cutoff time reduces it. Unlike AE, RE, RDE, and TDE parameters are well-correlated with relative yield. TDE and AE are recommended parameters for the design, management, and operation of furrow irrigation systems, in order to establish good irrigation practices, and to prevent contamination.El presente artículo analiza la relación entre las variables de riego por surcos y los parámetros que determinan la calidad del riego, producción, y percolación profunda como base para el diseño y manejo del riego por surcos. Se ha realizado la correlación entre la eficiencia de aplicación (AE, eficiencia de requerimiento (RE, eficiencia de distribución del requerimiento (RDE, eficiencia de distribución total (TDE, y las variables de manejo, operación y diseño de riego por surcos (caudal, longitud de surco y tiempo de corte de riego. También se ha examinado la relación entre los parámetros que determinan la calidad de riego y la producción relativa. Además, se presentan para cada uno de

  10. Effects of drip irrigation under plastic film with saline water on cotton growth and yields

    Science.gov (United States)

    Wang, B.; Jin, M.; He, Y.; Zhou, J.; Brusseau, M. L.

    2012-12-01

    To study the influence of different irrigation system for drip irrigation under plastic film with saline water on cotton growth and yields, field experiments at key irrigation experiment station of water resources management division in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China were set up consist of different irrigation ratio (5250, 4500, 3750, 3000m3/hm2), different irrigation times (24, 12 and 8 times) and different rotation irrigation modes. The results show that: with the larger irrigation ratio, the cotton growth and yields was also better, and the significant influence on cotton growth and yields for irrigation ratio is between 3750-4500 m3/hm2. When the irrigation ratio is smaller (3000m3/hm2), cotton growth and yields for irrigation times of 8 times are higher, When the irrigation ratio is bigger (4500m3/hm2), cotton growth for irrigation times of 12 times are better and its cotton yields are higher correspondingly. According to the growth of cotton, yields and water productivity, the suitable irrigation system of cotton is the irrigation ratio of 4500-3750 m3/ hm2 and the irrigation times of 18 times for drip irrigation under plastic film with saline water. For different rotation drip irrigation experiments with saline water and fresh water, the cotton yields and irrigation water productivity is higher under the disposal of SF (rotation irrigation in first 6 times with saline water irrigation and then 6 times with fresh water irrigation) compared to FS (rotation irrigation in first 6 times with fresh water and then 6 times with saline water) and SSFA (rotation irrigation with twice saline water and once fresh water) compared to SFA (alternative irrigation with saline water and fresh water). Compared to the different alternate irrigation experiments, the cotton yields and water productivity for pure saline water irrigation is higher. In addition, the trend is the larger the irrigation ratio and the higher the yields. It maybe dues to the low

  11. Public Corporation Management,Finance Scale and Irrigation Facilities%公法人管理和公共财政规模对农田灌溉设施的影响

    Institute of Scientific and Technical Information of China (English)

    柴盈

    2014-01-01

    在公共财政投入薄弱的条件下,公法人管理和非公法人管理都比较低效,但是前者低效的原因在于政府投入不足,与自身管理无关;后者则存在严重的管理缺陷,且长期的管理绩效远远低于公法人管理。在公共财政投入充足时,公法人和非公法人管理的绩效都会有所增加,但是公法人更为有效。据此,我国新时期为实现农田有效灌溉面积的目标应该进行管理制度的公法人化改革。%If the government’s finance scale is small ,either public corporation management or non-public cor-poration is not effective in improving irrigation effects .The former is caused by insufficient input other than its management ability ,but the later is caused by its own defect and it is worse in the long run than in the short term . When there is enough finance input from the government ,public corporation management and non-public are both able to improve irrigation performance ,and the former is more effective .Therefore ,the public corporation man-agement should be carried on in order to achieve the irrigation objective for the new time .

  12. Climate Change Impacts of Irrigation on the Central High Plains

    Science.gov (United States)

    Cotterman, K. A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2015-12-01

    Since the 1940s, the High Plains Aquifer (HPA) has been pivotal for irrigation over the Central High Plains (CHP), a region spanning parts of five states in the central U.S.. Today after decades of over-pumping, many areas of the CHP are no longer able to irrigate due to localized depletion of the HPA. With a range of global climate models predicting an increase in temperature and decrease in growing-season precipitation for the CHP, demand for irrigation is likely to increase and exacerbate drawdown and depletion of the aquifer. Here we apply the Landscape Hydrology Model (LHM) coupled with the crop simulation model SALUS to simulate irrigation water use in response to historical climate and land use. This model is validated using historical groundwater levels. We then simulate future climate scenarios to predict how irrigation demand and water availability will alter the hydrology of the CHP. This study provides a predictive relationship of future irrigation demand linked to both climate change and agricultural management, and presents a modeling approach to answer two questions: How will future climate change affect irrigation demand? How will climate change and irrigation demand affect groundwater availability for the future? Different climate scenarios based on the representative concentration pathways (RCPs) are used to simulate the impact of different projected future climate conditions through the year 2100. By examining predicted groundwater levels along with saturated thickness we analyze where irrigation is likely to be viable in the future and compare this to current irrigation extent.

  13. Grower demand for sensor-controlled irrigation

    Science.gov (United States)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  14. 76 FR 26759 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2011-05-09

    ..., Irrigation Project PH: (406) 768-5312 P.O. Box 637 Poplar, MT 59255; Huber Wright, Acting Irrigation Manager, PH: (406) 653-1752 602 6th Avenue North Wolf Point, MT 59201 Wind River Ed Lone Fight, Superintendent... (includes Agency, Lodge Grass 1, Lodge Grass 2, Reno, Upper Little Horn, and Forty Mile Units)....

  15. Status and migration of irrigation in the USA

    Science.gov (United States)

    Irrigated agriculture produces 49% of crop market value on 18% of cropped lands in the USA. Irrigation is essential to the most highly productive, intensely managed, and internationally competitive sectors of our agricultural economy, which play a key role in meeting growing global food, fiber, and ...

  16. Real Time Investments with Adequate Portfolio Theory

    Directory of Open Access Journals (Sweden)

    Alina Kvietkauskienė

    2015-02-01

    Full Text Available The objective of this paper is to identify investment decision makingschemes using the adequate portfolio model. This approach can be employed to project investment in stocks, using the opportunities offered by the markets and investor intelligence. It was decided to use adequate portfolio theory for investment decision making, simulation of financial markets, and optimisation of utility function. The main conclusion of article suggests investigating return on individual portfolio level. Real investment is a way to make sure of the soundness of applicable strategies.

  17. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  18. Rapid selection of a representative monitoring location of soil water content for irrigation scheduling using surface moisture-density gauge

    Science.gov (United States)

    Mubarak, Ibrahim; Janat, Mussadak; Makhlouf, Mohsen; Hamdan, Altayeb

    2016-10-01

    Establishing a representative monitoring location of soil water content is important for agricultural water management. One of the challenges is to develop a field protocol for determining such a location with minimum costs. In this paper, we use the concept of time stability in soil water content to examine whether using a short term monitoring period is sufficient to identify a representative site of soil water content and, therefore, irrigation scheduling. Surface moisture-density gauge was used as a means for measuring soil water content. Variations of soil water content in space and time were studied using geostatistical tools. Measuring soil water content was made at 30 locations as nodes of a 6×8 m grid, six times during the growing season. A representative location for average soil water content estimation was allocated at the beginning of a season, and thereafter it was validated. Results indicated that the spatial pattern of soil water content was strongly temporally stable, explained by the relationship between soil water content and fine soil texture. Two field surveys of soil water content, conducted before and after the 1st irrigation, could be sufficient to allocate a representative location of soil water content, and for adequate irrigation scheduling of the whole field. Surface moisture-density gauge was found to be efficient for characterising time stability of soil water content under irrigated field conditions.

  19. Malt barley yield and quality affected by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little is known about the comparison of management practices on malt barley (Hordeum vulgare L.) yield and quality in irrigated and non-irrigated cropping systems. We evaluated the effects of irrigation, tillage, cropping system, and N fertilization on malt barley yield and quality in a sandy loam s...

  20. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  1. Salinity impact assessment on crop yield for Wadi Laba spate irrigation system in Eritrea

    NARCIS (Netherlands)

    Mehari, A.H.; Schultz, E.; Depeweg, H.

    2006-01-01

    Spate irrigation is a floodwater harvesting and management system. In the Wadi Laba (ephemeral stream) spate irrigation system, unpredictable and potentially destructive floods are currently the only source of irrigation water used to grow sorghum (Sorghum bicolor) and maize (Zea mays) on about 2600

  2. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, A.D.; Krol, M.S; Hoekstra, A.Y.

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thu

  3. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    irrigation water use can be reduced when adopting the SRI methodology in the future. The reducing of groundwater recharge could be supplemented by using 1,500 hectares of fallow paddy fields, located at proximal-fan region, as recharge pools in the wet season. The adoption of water-saving irrigation would be helpful for the relevant government agency to formulate the integral water resource management strategies in this region. Keywords:Groundwater recharge, SRI, FEMWATER, Field irrigation requirement

  4. Vision of irrigation

    Directory of Open Access Journals (Sweden)

    Fernando Braz-Tangerino

    2014-08-01

    Full Text Available Irrigation not only has been a key factor for the development and maintenance of human societies but it still plays this role now and it is foreseen that in the future as well. Its evolution has been constrained to the advance in knowledge on matters regarding Agronomy and Water Engineering and in technology however, many challenges deserve further research. It is worth to note that Brazil has strongly promoted irrigation in the last decade. Within the limited extension of this article, some current topics in irrigation, some of them are innovative such us the research line studying water flow in soil-plant in Mediterranean plants and its consequences on water use,. and future challenges are presented with the purpose of stimulate publication of Irrigation papers in the journal “Ingeniería del Agua” among Portuguese and Spanish language communities.

  5. Accounting for water. Institutional viability and impacts of market-oriented irrigation interventions in Central Mexico

    OpenAIRE

    Kloezen, W. H.

    2002-01-01

     During the past decade, many countries throughout the world have attempted to improve their generally poor performance record of agency-managed irrigation systems by designing and implementing institutional policy programs. This thesis analyses the institutional viability and the local impact on irrigation performance of two such institutional intervention programs. This is done in the context of the Alto Río Lerma irrigation district (ARLID), a large-scale irrigation system with a command a...

  6. Defining an Adequate Education for English Learners

    OpenAIRE

    Patricia Gándara; Russell W. Rumberger

    2008-01-01

    This article explores the components of an “adequate” education for linguistic minority students in California and attempts to distinguish these from the components of an adequate education for low-income students who are native English speakers. About 1.6 million students were classified as English learners (ELs) in California in 2006. We argue that in order to determine the costs of educating these students, it is necessary to specify the goals of instruction. Four possible goals are: (1) r...

  7. Influence of Irrigation Scheduling Using Thermometry on Peach Tree Water Status and Yield under Different Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Huihui Zhang

    2017-02-01

    Full Text Available Remotely-sensed canopy temperature from infrared thermometer (IRT sensors has long been shown to be effective for detecting plant water stress. A field study was conducted to investigate peach tree responses to deficit irrigation which was controlled using canopy to air temperature difference (ΔT during the postharvest period at the USDA-ARS (U.S. Department of Agriculture, Agricultural Research Service San Joaquin Valley Agricultural Sciences Center in Parlier, California, USA. The experimental site consisted of a 1.6 ha early maturing peach tree orchard. A total of 18 IRT sensors were used to control six irrigation treatments including furrow, micro-spray, and surface drip irrigation systems with and without postharvest deficit irrigation. During the postharvest period in the 2012–2013 and 2013–2014 growing seasons, ΔT threshold values at mid-day was tested to trigger irrigation in three irrigation systems. The results showed that mid-day stem water potentials (ψ for well irrigated trees were maintained at a range of −0.5 to −1.2 MPa while ψ of deficit irrigated trees dropped to lower values. Soil water content in deficit surface drip irrigation treatment was higher compared to deficit furrow and micro-spray irrigation treatments in 2012. The number of fruits and fruit weight from peach trees under postharvest deficit irrigation treatment were less than those well-watered trees; however, no statistically significant (at the p < 0.05 level reduction in fruit size or quality was found for trees irrigated by surface drip and micro-spray irrigation systems by deficit irrigation. Beside doubles, we found an increased number of fruits with deep sutures and dimples which may be a long-term (seven-year postharvest regulated deficit irrigation impact of deficit irrigation on this peach tree variety. Overall, deployment of IRT sensors provided real-time measurement of canopy water status and the information is valuable for making irrigation

  8. Effect of Preplant Irrigation, Nitrogen Fertilizer Application Timing, and Phosphorus and Potassium Fertilization on Winter Wheat Grain Yield and Water Use Efficiency

    Directory of Open Access Journals (Sweden)

    Jacob T. Bushong

    2014-01-01

    Full Text Available Preplant irrigation can impact fertilizer management in winter wheat. The objective of this study was to evaluate the main and interactive effects of preplant irrigation, N fertilizer application timing, and different N, P, and K fertilizer treatments on grain yield and WUE. Several significant two-way interactions and main effects of all three factors evaluated were observed over four growing seasons for grain yield and WUE. These effects could be described by differences in rainfall and soil moisture content among years. Overall, grain yield and WUE were optimized, if irrigation or adequate soil moisture were available prior to planting. For rain-fed treatments, the timing of N fertilizer application was not as important and could be applied before planting or topdressed without much difference in yield. The application of P fertilizer proved to be beneficial on average years but was not needed in years where above average soil moisture was present. There was no added benefit to applying K fertilizer. In conclusion, N and P fertilizer management practices may need to be altered yearly based on changes in soil moisture from irrigation and/or rainfall.

  9. Manejo da irrigação (tensiometria e balanço hídrico climatológico para a cultura do feijoeiro em sistemas de cultivo direto e convencional Irrigation management (tensiometry and simplified climatological water balance in irrigated bean under conventional and no tillage systems

    Directory of Open Access Journals (Sweden)

    Adriano S. Lopes

    2004-04-01

    Full Text Available Dois métodos de manejo de irrigação, por tensiometria e pelo balanço hídrico climatológico simplificado baseado no tanque "Classe A", foram aplicados e avaliados os resultados no balanço de água no solo, na evapotranspiração e na produtividade de grãos da cultura do feijoeiro, cultivar IAC-Carioca, conduzida na estação seca com irrigação por pivô central, após uma cultura de milho (estação úmida, no primeiro ano de cultivo, nos sistemas de plantio direto e convencional em uma área de Latossolo Vermelho. Concluiu-se que ambos os métodos são possíveis de serem adotados por irrigantes ou técnicos com níveis médios de tecnologia e conhecimento, embora com a tensiometria seja possível um melhor entendimento das reais condições hídricas do solo na região do sistema radicular da cultura. Não foram verificadas diferenças importantes de armazenamento de água no solo e de produtividade de grãos entre os sistemas de plantio nesse primeiro ano; o manejo por tensiometria resultou em maiores variações na água disponível consumida do que o do balanço hídrico climatológico simplificado e resultou, em relação a esse, economia de 15% na água de irrigação aplicada, sem afetar a produtividade de grãos.Two methods of irrigation management, tensiometry and simplified climatological water balance with Class A pan, were applied in a bean crop, IAC-Carioca cultivar, growing in a Oxisol, irrigated by center pivot under conventional and no tillage systems. The soil water balance, evapotranspiration and bean yield were evaluated. The results showed that, both irrigation management methods are possible to be adopted for farmers or technicians with average level of technology and knowledge. However, the tensiometry offers a better understanding of the real soil water conditions at plant root system. Differences of soil water storage and grain yield between tillage systems were not verified. The tensiometry management method

  10. Irrigation with desalinated water: A step toward increasing water saving and crop yields

    Science.gov (United States)

    Silber, Avner; Israeli, Yair; Elingold, Idan; Levi, Menashe; Levkovitch, Irit; Russo, David; Assouline, Shmuel

    2015-01-01

    We examined the impact of two different approaches to managing irrigation water salinity: salt leaching from the field ("conventional" management) and water desalination before field application ("alternative" management). Freshwater commonly used for irrigation (FW) and desalinated water (DS) were applied to the high-water-demanding crop banana at four different rates. Both irrigation rate and water salinity significantly affected yield. DS application consistently produced higher yields than FW, independently of irrigation rate. The highest yield for FW-irrigation was achieved with the highest irrigation rate, whereas the same yield was obtained in the case of DS-irrigation with practically half the amount of water. Yield decreased with FW-irrigation, even when the water salinity, ECi, was lower than the limit considered safe for soil and crops. Irrigating with FW provided a massive amount of salt which accumulated in the rhizosphere, inducing increased osmotic potential of the soil solution and impairing plant water uptake. Furthermore, applying the "conventional" management, a significant amount of salt is leached from the rhizosphere, accumulating in deeper soil layers, and eventually reaching groundwater reservoirs, thus contributing to the deterioration of both soil and water quality. Removal of salt excess from the water before it reaches the field by means of DS-irrigation may save significant amounts of irrigation water by reducing the salt leaching requirements while increasing yield and improving fruit quality, and decreasing salt load in the groundwater.

  11. Administration and Management of Irrigation Water in 24 User Organizations in Chile Administración y Gestión del Agua de Riego en 24 Organizaciones de Usuarios en Chile

    Directory of Open Access Journals (Sweden)

    Jara Jorge

    2009-06-01

    Full Text Available Approximately 85% of the water consumed in Chile is destined to agricultural irrigation and is managed by the users themselves. This study analyzed the price that irrigation water users pay to their Water User Associations (WUAs to which they belong and the relationship of this price to the professional level and performance of the WUAs. The study included 24 WUAs: 10 River Administration Boards (JV and 14 Irrigation Canal Associations (AC. The annual operational budget of each WUA, the price paid by users and the management capacities of the board of directors of each WUA were compared. The study also determined the relative value of user payments to WUAs as a proportion of total production costs of the main crops in each zone. The variability of user fees per irrigated hectare decreases when the irrigation area of the WUA is more than 10 000 ha, though this was not observed in JVs. The presence of technical-professional staff directly affects the development and growth of the WUAs. As well, the WUAs with a greater level of capacity development (NDC have more board members with a higher education level and have lower rates of unpaid user fees. The price that users pay to the WUA by irrigated hectare represents less than 4.0% of the average total production cost of the main crops in the study area. Finally, no correlation was found between the prices that users pay and the average profitability of the main crops, or between price and the geographical location of the WUAs.Aproximadamente, el 85% del agua consumida en Chile es destinada al riego agrícola, siendo administrada por los propios usuarios. En este estudio, se analizó el costo que cancelan los usuarios del agua de riego a sus Organizaciones de Usuarios de Agua (WUAs y el nivel de profesionalización y desempeño de éstas. Se estudiaron 24 WUAs: 10 Juntas de Vigilancia (JV y 14 Asociaciones de Canalistas (AC. Se comparó el presupuesto anual de operaciones de cada WUA, el valor que

  12. Quantitative sustainability and qualitative concerns in an irrigations system using recycled water to supplement limited groundwater supply

    Science.gov (United States)

    Gowing, John; Alataway, Abed

    2013-04-01

    Sustainability of irrigation in a country facing water scarcity depends upon adoption of best management practices to deliver 'more crop per drop' together with use of recycled waste-water from urban sewage systems. Saudi Arabia is a country facing extreme water scarcity and in this paper we report on research conducted at an extensive irrigation system where a concerted effort over several years has been devoted to achieving a high level of water productivity. Al-Ahsa oasis is located about 60 km inland from the Persian Gulf and has been inhabited since prehistoric times, due to the abundance of water in an otherwise arid region. It is one of the largest oases in the world with 12,000 hectares of irrigated land and more than 2 million palm trees. Historically the oasis was watered by over 60 artesian springs, but water is now pumped from the aquifer. To supplement this groundwater source, treated waste-water reuse has been practiced since 1992 and now comprises 30% of total supply. In addition, a comparable amount of agricultural drainage water is collected and recycled, so that the 'first-use' water represents only 40% of total irrigation supply. While this re-use system permits sustained irrigation with greatly reduced groundwater abstraction, there is a potential down-side in that fertilizers and contaminants applied with irrigation water move through the soil and return to the irrigation supply enhancing the risk for human and animal health. We investigated this problem using E coli and helminth eggs as indicators of human health risk. We sampled each of the three sources which are delivered separately to the head of the main irrigation canal where they are blended. The groundwater was free from E coli and helminths and the treated wastewater source was generally within designated quality standards. The recycled drainage water was delivered untreated into the canal system and was found to be contaminated with both E coli and helminths above acceptable

  13. Winter Irrigation Effects in Cotton Fields in Arid Inland Irrigated Areas in the North of the Tarim Basin, China

    Directory of Open Access Journals (Sweden)

    Pengnian Yang

    2016-02-01

    Full Text Available Winter irrigation is one of the water and salt management practices widely adopted in arid irrigated areas in the Tarim Basin located in the Xinjiang Uygur Autonomous Region in the People’s Republic of China. A winter irrigation study was carried out from November 2013 to March 2014 in Korla City. A cotton field was divided into 18 plots with a size of 3 m × 3 m and five winter irrigation treatments (1200 m3/ha, 1800 m3/ha, 2400 m3/ha, 3000 m3/ha, and 3600 m3/ha and one non-irrigation as a control were designed. The results showed that the higher winter irrigation volumes allowed the significant short-term difference after the irrigation in the fields with the higher soil moisture content. Therefore, the soil moisture in the next sowing season could be maintained at the level which was slightly lower than field capacity and four times that in the non-irrigation treatment. The desalination effect of winter irrigation increased with the increase of water irrigation volume, but its efficiency decreased with the increase of water irrigation volume. The desalination effect was characterized by short-term desalination, long-term salt accumulation, and the time-dependent gradually decreasing trend. During the winter irrigation period, air temperature was the most important external influencing factor of the soil temperature. During the period of the decrease in winter temperatures from December to January, soil temperature in the 5-cm depth showed no significant difference in all the treatments and the control. However, during the period of rising temperatures from January to March, soil temperature in the control increased significantly, faster than that in all treatments. Under the same irrigation volume, the temperature difference between the upper soil layer and the lower soil layer increased during the temperature drop period and decreased during the temperature rise period. In this paper, we proposed the proper winter irrigation volume of 1800

  14. Sustainable Irrigation with Brackish Groundwater in Heilonggang Region, China

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Saline groundwater is widely distributed in Heilonggang region. While deep confined water is being mined, saline water has not been used in most part of the region. Extension of saline water irrigation is of significance to resolve water shortage, slow down environmental degradation and support the sustainable development of the local agriculture. Four key points are proposed to be managed by comprehensive measures: (1) adapting salt-resistant ability; (2) reducing salt input; (3) decreasing soil surface evaporation and salt accumulation in the root zone, and (4) washing away salt from the root zone. Experiments and farming practices demonstrated that brackish water with TDS (total dissolved solids) of 2-5 g/l can be used for crop irrigation. For example, winter wheat can be sustainably irrigated by brackish water with a water limitation of 120 mm every year. Irrigation in combination with different comprehensive measures can increase the efficiency of saline water irrigation.

  15. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    Science.gov (United States)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  16. SEDIMENT CONTROL FOR IRRIGATION INTAKES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The analysis of the sediment problems in irrigation engineeringwas carried out, and the layout, the method as well as the effect of sediment control for irrigation intake structures in China were briefly introduced.

  17. Effects of global irrigation on the near-surface climate

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, William J. [University of Wisconsin-Madison, Center for Sustainability and the Global Environment, Madison, WI (United States); Cook, Benjamin I. [Lamont-Doherty Earth Observatory, Ocean and Climate Physics, Palisades, NY (United States); NASA Goddard Institute for Space Studies, New York, NY (United States); Buenning, Nikolaus [University of Colorado-Boulder, Department of Atmospheric and Oceanic Sciences and Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States); Levis, Samuel [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States); Helkowski, Joseph H. [Earth Tech, Miami, FL (United States)

    2009-08-15

    Irrigation delivers about 2,600 km{sup 3} of water to the land surface each year, or about 2% of annual precipitation over land. We investigated how this redistribution of water affects the global climate, focusing on its effects on near-surface temperatures. Using the Community Atmosphere Model (CAM) coupled to the Community Land Model (CLM), we compared global simulations with and without irrigation. To approximate actual irrigation amounts and locations as closely as possible, we used national-level census data of agricultural water withdrawals, disaggregated with maps of croplands, areas equipped for irrigation, and climatic water deficits. We further investigated the sensitivity of our results to the timing and spatial extent of irrigation. We found that irrigation alters climate significantly in some regions, but has a negligible effect on global-average near-surface temperatures. Irrigation cooled the northern mid-latitudes; the central and southeast United States, portions of southeast China and portions of southern and southeast Asia cooled by {proportional_to}0.5 K averaged over the year. Much of northern Canada, on the other hand, warmed by {proportional_to}1 K. The cooling effect of irrigation seemed to be dominated by indirect effects like an increase in cloud cover, rather than by direct evaporative cooling. The regional effects of irrigation were as large as those seen in previous studies of land cover change, showing that changes in land management can be as important as changes in land cover in terms of their climatic effects. Our results were sensitive to the area of irrigation, but were insensitive to the details of irrigation timing and delivery. (orig.)

  18. Water savings potentials of irrigation systems: dynamic global simulation

    Science.gov (United States)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing

  19. Optimizing the Irrigation Scheduling Strategy and the Water Use Efficiency in Steppe and Irrigated Crop Production Ecosystems in the Northwestern China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In an irrigation management problem, decisions are made at various levels for assessment of water availability and requirements, proposing the type of irrigation scheduling, and deriving an actual operational policy for various crop scenarios.In this study, a plan was developed for water management.A general strategy for planning and application of irrigation management was proposed.Since the Penman method was used, the focus was on a synthetic study involving basic project situations, relevant data, water requirement calculation, irrigation scheduling, and discussion on optimizing water use efficiency in the steppe and irrigated crop production ecosystems.Effective use of tabular displays made interpreting and analyzing results easier.Based on the statistical analysis between spring wheat water availability and water requirement, a new type of index called water niche suitability was proposed.The particular type of irrigation scheduling was based on this index together with concrete situation of irrigated areas.The research showed that there are great potentiality of water resources in optimizing Ningxia irrigation management.The irrigation scheduling in this paper was found to be reasonable and demonstrated that results could be used to assist in improving water management decisions in the northwestern China.

  20. Planning for an Irrigation System.

    Science.gov (United States)

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  1. Micro-irrigation systems, automation and fertigation in citrus

    Directory of Open Access Journals (Sweden)

    Parameshwar Sidramappa Shirgure

    2012-11-01

    Full Text Available Citrus is number one group of fruits grown in more than 140 countries in the world. Micro-irrigation systems and fertigation management is one of the main concerns of the modem citrus fruit production irrespective of availability of soil, water and fertilizer resources. A variety of recommendations have emerged world over on irrigation systems and fertigation based on soil and leaf analysis of the nutrients, evapo-transpiration and water use pattern. The research review of literature has revealed best promising results on irrigation scheduling based on depletion pattern of soil available water content, irrigation systems and fertigation. Various micro-irrigation systems have established their superiority over traditionally used flood irrigation with micro-jets having little edge over rest of the others. Similarly, fertigation has shown good responses on growth, yield, quality and uniform distribution pattern of applied nutrients within the plant rootzone compared to band placement involving comparatively localized fertilization. Automated fertigation in citrus orchards is a new concept, which would be the only solitary choice amongst many irrigation monitoring methods in near future. The present status of the review on micro-irrigation and fertigation in citrus cultivars is clearly indicated in this article.

  2. Size and stochasticity in irrigated social-ecological systems

    Science.gov (United States)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-01-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty. PMID:28266656

  3. Root canal irrigation

    NARCIS (Netherlands)

    L. van der Sluis; C. Boutsioukis; L.M. Jiang; R. Macedo; B. Verhaagen; M. Versluis

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  4. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Directory of Open Access Journals (Sweden)

    Hussein M. Al-Ghobari

    2016-12-01

    Full Text Available Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  5. Review on Trickle Irrigation Application in Groundwater Irrigation Schemes

    Directory of Open Access Journals (Sweden)

    Prastowo

    2006-04-01

    Full Text Available The Government of Indonesia has developed groundwater irrigation schemes in some province e.g. East Java, Central Java, Yogyakarta, Wast Java, Bali, West Nusa Tenggara and East Nusa Tenggara. However, not all regions were able to optimally utilize it. The irrigation effeciency of groundwater irrigation scheme was about 59%, while the wells-pumping efficiencies were varied from 28 to 98 %. In thefuture, the irrigation effieciency should be increased to anticipate water deficit during dry season. The application of trickle irrigation in indonesia has not been widely developed. Although trickle system has been used, however, it is still limited for few commercial agribusinesses. Trickle irrigation systems have a prospect to be developed in some regions having limited water resources. For preliminary stage, the systems could be applied in groundwater irrigation schemes that have been developed either by farmers or government.

  6. [Optimal allocation of irrigation water resources based on systematical strategy].

    Science.gov (United States)

    Cheng, Shuai; Zhang, Shu-qing

    2015-01-01

    With the development of the society and economy, as well as the rapid increase of population, more and more water is needed by human, which intensified the shortage of water resources. The scarcity of water resources and growing competition of water in different water use sectors reduce water availability for irrigation, so it is significant to plan and manage irrigation water resources scientifically and reasonably for improving water use efficiency (WUE) and ensuring food security. Many investigations indicate that WUE can be increased by optimization of water use. However, present studies focused primarily on a particular aspect or scale, which lack systematic analysis on the problem of irrigation water allocation. By summarizing previous related studies, especially those based on intelligent algorithms, this article proposed a multi-level, multi-scale framework for allocating irrigation water, and illustrated the basic theory of each component of the framework. Systematical strategy of optimal irrigation water allocation can not only control the total volume of irrigation water on the time scale, but also reduce water loss on the spatial scale. It could provide scientific basis and technical support for improving the irrigation water management level and ensuring the food security.

  7. Is a vegetarian diet adequate for children.

    Science.gov (United States)

    Hackett, A; Nathan, I; Burgess, L

    1998-01-01

    The number of people who avoid eating meat is growing, especially among young people. Benefits to health from a vegetarian diet have been reported in adults but it is not clear to what extent these benefits are due to diet or to other aspects of lifestyles. In children concern has been expressed concerning the adequacy of vegetarian diets especially with regard to growth. The risks/benefits seem to be related to the degree of restriction of he diet; anaemia is probably both the main and the most serious risk but this also applies to omnivores. Vegan diets are more likely to be associated with malnutrition, especially if the diets are the result of authoritarian dogma. Overall, lacto-ovo-vegetarian children consume diets closer to recommendations than omnivores and their pre-pubertal growth is at least as good. The simplest strategy when becoming vegetarian may involve reliance on vegetarian convenience foods which are not necessarily superior in nutritional composition. The vegetarian sector of the food industry could do more to produce foods closer to recommendations. Vegetarian diets can be, but are not necessarily, adequate for children, providing vigilance is maintained, particularly to ensure variety. Identical comments apply to omnivorous diets. Three threats to the diet of children are too much reliance on convenience foods, lack of variety and lack of exercise.

  8. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines

    Science.gov (United States)

    Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja

    2016-05-01

    Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

  9. Multiplatform automated system for monitoring and sprinkler irrigation control

    Directory of Open Access Journals (Sweden)

    PINTO, M. L.

    2016-06-01

    Full Text Available The automation systems together with web and mobile control is a facilitator of the various processes in several areas, among them the agricultural sector. Specically in the irrigation management, the lowest cost technology is not able to satisfy the farmer's needs, which are the correct water supply to plants and remote monitoring of the irrigation. The objective of this paper is to present a system for controlling and monitoring irrigation with a multiplatform support for both desktop and web/mobile. The system is designed to realize automatic irrigation management in order to provide the exact amount of water needed for culture, avoiding water stress both the culture and the waste of resources such as water and electricity. Additionally, the system allows remote monitoring from anywhere by means of a computer and/or mobile device by internet. This work was developed during the undergraduate mentorship of the authors.

  10. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao;

    2015-01-01

    be the focus in China in future research:More attention need to paid to studying the unified management policy and mechanism of water resources, studying the water resources cycle and transformation under environmental change, studying new methods for water resources carrying capacity and evaluation......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area....... The progress of research on the rational allocation of water resources in irrigation districts both at home and abroad may be summarized in four key aspects of the policy regarding water re?sources management:① The mechanism of water resource cycle and ② Transformation in irrigation district, ③ The water...

  11. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015

    Science.gov (United States)

    Ambika, Anukesh Krishnankutty; Wardlow, Brian; Mishra, Vimal

    2016-12-01

    India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in India has increased substantially after the Green revolution and both surface and groundwater have been extensively used. Under warming climate projections, irrigation frequency may increase leading to increased irrigation water demands. Water resources planning and management in agriculture need spatially-explicit irrigated area information for different crops and different crop growing seasons. However, annual, high-resolution irrigated area maps for India for an extended historical record that can be used for water resources planning and management are unavailable. Using 250 m normalized difference vegetation index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56 m land use/land cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for the period of 2000-2015. The irrigated area maps were evaluated using the agricultural statistics data from ground surveys and were compared with the previously developed irrigation maps. High resolution (250 m) irrigated area maps showed satisfactory accuracy (R2=0.95) and can be used to understand interannual variability in irrigated area at various spatial scales.

  12. Irrigation water policy analysis using a business simulation game

    Science.gov (United States)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  13. Crop yield and soil biochemical properties under different nitrogen fertilization and irrigation management schemes%施氮和灌溉管理下作物产量和土壤生化性质

    Institute of Scientific and Technical Information of China (English)

    陈林; 张佳宝; 赵炳梓; 马东豪

    2014-01-01

    It is generally known that nitrogen (N) and water are critical for crop growth. It is therefore important to study the effects of N fertilization and irrigation on crop yield, soil properties and their relationship to crop yield. However, domestic studies have provided little details about the relationship between crop yield and soil properties influenced by N fertilization and irrigation management schemes. Foreign studies have mainly focused on the relationship between soil physicochemical properties and crop yield, and the relationship of crop yield with soil biochemical properties not well documented. To address this knowledge gap, this study explored the effects of N fertilization and irrigation management schemes on crop yield and soil biochemical properties and their relationship. N fertilization and irrigation management schemes were initiated in 2005 at the Fengqiu Agro-Ecological Experimental Station of Chinese Academy of Sciences. Under summer maize (Zea mays L.) and winter wheat (Triticumae stivum L.) crop rotation system, N fertilizer was applied at the rates of 150 kg·hm-2, 190 kg·hm-2, 230 kg·hm-2 and 270 kg·hm-2 per crop season and non-N input used as the control. Irrigation was done to meet soil field capacity of the 0-20 cm, 0-40 cm and 0-60 cm soil layers and also with rain-fed treatment as the control. Soil samples were collected at 0-20 cm soil depth in June 2011 and basal biochemical properties determined. Meanwhile, crop yield data for 2008-2011 were analyzed. The results showed that N fertilization rate of 150-270 kg·hm-2 did not significantly enhance maize yield in 2008 and 2009, and wheat yield in 2009 and 2010. Irrigation little influenced maize yield in 2010, while maize yield in 2008 and 2009 gradually increased with increasing irrigation amount. Compared with rain-fed system, irrigation increased wheat yield in 2008-2011. N fertilization increased soil total N content (TN), available N content (AN), dehydrogenase activity (DHD

  14. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    Science.gov (United States)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  15. Ecohydrology of managed ecosystems: Linking rainfall unpredictability, agronomic performance, and sustainable water use

    Science.gov (United States)

    Vico, Giulia; Porporato, Amilcare

    2014-05-01

    The field of ecohydrology, traditionally focusing on natural ecosystems, can offer the necessary quantitative tools to assess and compare the sustainability of agriculture across climates, soil types, crops, and irrigation strategies, including rainfall unpredictability. In particular, irrigation is one of the main strategies to enhance and stabilize agricultural productivity, but represents a cost in terms of often scarce water resources. Here, the sustainability of irrigated and rainfed agriculture is assessed by means of water productivity (defined as the ratio between yield and total supplied water), yields, water requirements, and their variability. These indicators are quantified using a probabilistic description of the soil water balance and crop development. Employing this framework, we interpret changes in water productivity as total water input is altered, in two staple crops (maize and wheat) grown under different soils, climates, and irrigation strategies. Climate change scenarios are explored by using the same approach and altering the rainfall statistics. For a given irrigation strategy, intermediate rainfall inputs leads to the highest variability in yield and irrigation water requirement - it is under these conditions that water management is most problematic. When considering the contrasting needs of limiting water requirements while ensuring adequate yields, micro-irrigation emerges as the most sustainable strategy at the field level, although consideration should be given to its profitability and long-term environmental implications.

  16. Evaluation of thermal X/5-detector Skylab S-192 data for estimating evapotranspiration and thermal properties of soils for irrigation management

    Science.gov (United States)

    Moore, D. G.; Horton, M. L.; Russell, M. J.; Myers, V. I.

    1975-01-01

    An energy budget approach to evaluating the SKYLAB X/5-detector S-192 data for prediction of soil moisture and evapotranspiration rate was pursued. A test site which included both irrigated and dryland agriculture in Southern Texas was selected for the SL-4 SKYLAB mission. Both vegetated and fallow fields were included. Data for a multistage analysis including ground, NC-130B aircraft, RB-57F aircraft, and SKYLAB altitudes were collected. The ground data included such measurements as gravimetric soil moisture, percent of the ground covered by green vegetation, soil texture, net radiation, soil temperature gradients, surface emittance, soil heat flux, air temperature and humidity gradients, and cultural practices. Ground data were used to characterize energy budgets and to evaluate the utility of an energy budget approach for determining soil moisture differences among twelve specific agricultural fields.

  17. SANITARY SEWAGE REUSE IN AGRICULTURAL CROP IRRIGATION

    Directory of Open Access Journals (Sweden)

    Lidiane Bittencourt Barroso

    2011-10-01

    Full Text Available The water availability was exceeded by demand, becoming a limiting factor in irrigated agriculture. This study aimed to provide a general theoretical framework on the issue of water reuse for agricultural purposes. This is due to the fact that we need a prior knowledge of the state of the art concerning the matter. To that end, we performed a review of irrigated agriculture, the effects on cultivated land and the development of agricultural crops as well as aspects of security to protect groups at risk. The amount of macro and micronutrients in the effluent may reduce or eliminate the use of commercial fertilizers. And this addition of organic matter acts as a soil conditioner, increasing its capacity to retain water. Depending on the characteristics of sewage, the practice of irrigation for long periods may lead to accumulation of toxic compounds and the significant increase of salinity. The inhibition of plant growth by salinity may be due to osmotic effect, causing drought and / or specific effects of ions, which can cause toxicity or nutritional imbalance. The minimization of human exposure to the practice of agricultural reuse is based on a set of mitigation measures that must be implemented by the authorities responsible for operating and monitoring systems for water recycling. It is concluded that the use of sewage depends on management of irrigation, monitoring of soil characteristics and culture.

  18. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    Science.gov (United States)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    SummaryAs irrigation water is an input into a production process, its demand must be 'derived'. According to theory, a derived demand schedule should be downward sloping and dependent on the outputs produced from it, the prices of other inputs and the price of the water itself. Problems arise when an attempt is made to estimate the demand for irrigation water and the resulting own-price elasticity of demand, as the uses to which water is put are spatially, temporarily and geographically diverse. Because water is not generally freely traded, what normally passes for an estimate of the own-price elasticity of demand for irrigation water is usually a well argued assumption or an estimate that is derived from a simulation model of a hypothesized producer. Such approaches tend to provide an inadequate explanation of what is an extremely complex and important relationship. An adequate explanation of the relationship between the price and the quantity demanded of water should be one that not only accords with the theoretical expectations, but also accounts for the diversity of products produced from water (which includes the management practices of farmers), the seasons in which it is used and over the region within which it is used. The objective in this article is to present a method of estimating the demand curve for irrigation water. The method uses actual field data which is collated using the Residual Method to determine the value of the marginal product of water deployed over a wide range of crops, seasons and regions. These values of the marginal products, all which must lie of the input demand schedule for water, are then ordered from the highest value to the lowest. Then, the amount of irrigation water used for each product, in each season and in each region is cumulatively summed over the range of uses according to the order of the values of the marginal products. This data, once ordered, is then used to econometrically estimate the demand schedule from which

  19. Acúmulo de matéria seca e nutrientes no meloeiro irrigado sob estratégias de manejo da salinidade Accumulation of dry matter and nutrients in irrigated melon under strategies of salimity management

    Directory of Open Access Journals (Sweden)

    Cícero P. C. Terceiro Neto

    2012-10-01

    Full Text Available O presente estudo foi realizado com o objetivo de investigar estratégias de uso de água salobra sobre o acúmulo de matéria seca e nutrientes, duas cultivares de melão (Sancho- C1 e Medellín- C2 irrigadas com água de baixa (S1 = 0,61 dS m-1 e alta (S2 = 4,78 dS m-1 salinidade por fase da cultura: S1S1S2S2- T1, S2S1S2S2- T2, S2S2S1S2- T3 (os 1, 2, 3 e 4º termos correspondem, respectivamente, às fases de crescimento, floração, crescimento dos frutos e maturação e colheita e, ainda a irrigação alternada, durante todo o ciclo, com água S1 por 2 dias consecutivos seguido com água S2 por um dia (S12dias + S21dia- T4 e a irrigação com água S2 durante todo o ciclo- T5. Além disto foi utilizada, como testemunha, a irrigação com a mistura de 37% da água S1 e 63% da água S2- T0 (manejo adotado atualmente na fazenda em que o experimento foi conduzido. O delineamento experimental utilizado foi o de blocos inteiramente casualizados em um esquema de parcelas subdivididas 6 x 2 (manejo da água salina x cultivar com quatro repetições. O acúmulo de fitomassa seca total na parte aérea da cultivar Sancho foi superior ao de Medellín, em todas as estratégias de manejo utilizado; os nutrientes mais absorvidos pelas plantas das duas cultivares foram o cálcio, o potássio e o nitrogênio.A study was carried out aiming to investigate management strategies for use of brackish water in the accumulation of dry matter and nutrients in two cultivars of melon (C1 - Sancho and C2 - MedeLλi n irrigated with low (S1 = 0.61 dS m-1 and high (S2 = 4.78 dS m-1 salinity water in different phases of crop: S1S1S2S2 - T1, S2S1S2S2 - T2, S2S2S1S2 - T3. The 1st, 2nd, 3rd and 4th term correspond, respectively, to different phases - initial growth, flowering, fruit maturation and harvest. Alternate irrigation during the crop cycle, two days of consecutive application with S1 water followed by one day with S2 water (S1 2 days + S2 1day - T4 and irrigation with

  20. Asian irrigation, African rain: Remote impacts of irrigation

    Science.gov (United States)

    Vrese, Philipp; Hagemann, Stefan; Claussen, Martin

    2016-04-01

    Irrigation is not only vital for global food security but also constitutes an anthropogenic land use change, known to have strong effects on local hydrological and energy cycles. Using the Max Planck Institute for Meteorology's Earth System Model, we show that related impacts are not confined regionally but that possibly as much as 40% of the present-day precipitation in some of the arid regions in Eastern Africa are related to irrigation-based agriculture in Asia. Irrigation in South Asia also substantially influences the climate throughout Southeast Asia and China via the advection of water vapor and by altering the Asian monsoon. The simulated impact of irrigation on remote regions is sensitive to the magnitude of the irrigation-induced moisture flux. Therefore, it is likely that a future extension or decline of irrigated areas due to increasing food demand or declining fresh water resources will also affect precipitation and temperatures in remote regions.

  1. Progress in study on irrigation practice with saline groundwater on sandlands of Taklimakan Desert Hinterland

    Institute of Scientific and Technical Information of China (English)

    XU Xinwen; LI Bingwen; WANG Xiaojing

    2006-01-01

    The study on the distribution and dynamic changes of soil moistures and salts under different irrigating methods and managements of using saline groundwater on the sand lands of the hinterland of the Taklimakan Desert, started in 1997. The results show that drip irrigation can be applied to seedlings (furrow irrigation can be applied to level lands) using saline groundwater in the process of constructing the biological shifting sand control system along the desert highway in the hinterland of the Taklimakan Desert; an irrigation frequency of 20 days and an irrigation amount of 30 kg/m2.time are suitable to the shifting sand control forest belts at the same year as they were afforested. Along with the increase of forest age, the irrigation norm can be properly increased, the irrigation interval can be prolonged.

  2. Microbiological quality of reclaimed water used for golf courses' irrigation.

    Science.gov (United States)

    Alonso, M C; Dionisio, L P C; Bosch, A; de Moura, B S Pereira; Garcia-Rosado, E; Borrego, J J

    2006-01-01

    Microbial quality of reclaimed water used for irrigation in two golf courses located in the southern Iberian Peninsula (Spain and Portugal) was evaluated. Bacterial indicators for faecal pollution (total and faecal coliforms, Escherichia coli and enterococci) were tested by membrane filtration using appropriate selective media. In addition, somatic E. coli bacteriophages, enteric viruses (entero-, hepatitis A and rota-) and Legionella pneumophila were also analysed. The results obtained showed that all wastewater treatment processes reduced adequately the number of indicator microorganisms although a significant correlation between pathogenic and indicator microorganisms tested was not found. L. pneumophila was detected by PCR but not confirmed by culture. Survival experiments of pathogenic microorganisms in aerosols and irrigated turf are conducted to determine the health hazards for the golf practice and to propose a microbial standard for wastewater used for irrigation of golf courses.

  3. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system

    Science.gov (United States)

    Maisiri, N.; Senzanje, A.; Rockstrom, J.; Twomlow, S. J.

    This on-farm research study was carried out at Zholube irrigation scheme in a semi-arid agro tropical climate of Zimbabwe to determine how low cost drip irrigation technologies compare with conventional surface irrigation systems in terms of water and crop productivity. A total of nine farmers who were practicing surface irrigation were chosen to participate in the study. The vegetable English giant rape ( Brassica napus) was grown under the two irrigation systems with three fertilizer treatments in each system: ordinary granular fertilizer, liquid fertilizer (fertigation) and the last treatment with no fertilizer. These trials were replicated three times in a randomized block design. Biometric parameters of leaf area index (LAI) and fresh weight of the produce, water use efficiency (WUE) were used to compare the performance of the two irrigation systems. A water balance of the inflows and outflows was kept for analysis of WUE. The economic profitability and the operation, maintenance and management requirements of the different systems were also evaluated. There was no significant difference in vegetable yield between the irrigation systems at 8.5 ton/ha for drip compared to 7.8 ton/ha in surface irrigation. There were significant increases in yields due to use of fertilizers. Drip irrigation used about 35% of the water used by the surface irrigation systems thus giving much higher water use efficiencies. The leaf area indices were comparable in both systems with the same fertilizer treatment ranging between 0.05 for surface without fertilizer to 6.8 for low cost drip with fertigation. Low cost drip systems did not reflect any labour saving especially when manually lifting the water into the drum compared to the use of siphons in surface irrigation systems. The gross margin level for surface irrigation was lower than for low cost drip irrigation but the gross margin to total variable cost ratio was higher in surface irrigation systems, which meant that surface

  4. Impacts of Irrigation and Drought on Salem Ground Water

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available This investigation is the first of three phases of a ground-water management study. In this report, effects of irrigation and drought on the ground-water resources of Salem are examined. Irrigation water use for five soil types is estimated from a monthly water budget model on the basis of precipitation and temperature data from the last 30 years at selected weather stations across Salem. Moisture deficits are computed for each soil type on the basis of the water requirements of a corn crop. It is assumed that irrigation is used to make up the moisture deficit in those places where irrigation systems already exist. Irrigation water use from each township with irrigated acreage is added to municipal and industrial ground-water use data and then compared to aquifer potential yields. The spatial analysis is accomplished with a statewide geographic information system. An important distinction is made between the seasonal effects of irrigation water use and the annual or long-term effects.

  5. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

    Science.gov (United States)

    Fagúndez, Jaime; Olea, Pedro P.; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  6. Farmland Drainage Ditch-pond Wetland Systems Construction and Its Operation Management of Ecological Irrigation Districts%生态灌区农田排水沟塘湿地系统的构建和运行管理

    Institute of Scientific and Technical Information of China (English)

    何军; 崔远来

    2012-01-01

    建设生态型灌区是灌区现代化发展的重要内容。针对传统灌区农业面源污染日益严重的现状,总结了当前利用农田排水沟渠塘堰系统去除农业面源污染的研究进展,探讨了减污型农田排水沟渠塘堰湿地系统的构建方法,其基本特征包括:水利工程属性(排渍排涝及水流的不冲不淤要求),沟塘末端修建控制排水闸(低坝),种植优势植被,生态护岸(护底)工程,排水闸(退水闸)等水工建筑物减污型工况设计。分析了该系统的运行管理方式。%The construction of ecological irrigation district is an important content of the modern irrigation district development. Based on the present situation that agricultural non-point source pollution is increasingly serious at traditional irrigation district, research progress in the removal of agricultural non-point source pollution by using farmland drainage ditch-pond system is summarized. The construction method of new farmland drainage ditch-pond wetland system based on pollution reduction is discussed, the essential characteristic includes water conservancy project attribute(the requirement for waterlogging drainage, the noneroding and non-silting velocity of ditch), building drainage sluice(low dams) at the tail end of ditch(pond), planting preponderant vegetation, constructing ecological revetment(bottom protection), designing the working conditions of pollution reduction of drainage sluice(escape sluice) and other hydraulic structure. The operation management of the new drainage ditch-pond wetland system is analyzed.

  7. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling

    NARCIS (Netherlands)

    Zotarelli, L.; Scholberg, J.M.S.; Dukes, M.D.; Munoz-Carpena, R.; Icerman, J.

    2009-01-01

    Florida is the largest producer of fresh-market tomatoes in the United States. Production areas are typically intensively managed with high inputs of fertilizer and irrigation. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation schedu

  8. Sediment transport in irrigation canals

    OpenAIRE

    Méndez V., N.J.

    1998-01-01

    The world population is rapidly increasing and is expected to double to about 10 billion by the year 2050. To support an increasing population in terms of food sufficiency, more and more water will be required. Irrigation is the most critical component of the modern package of inputs to effect high crop production. Irrigation has been the largest recipient of public agricultural investment in the developing world. Hence, continued investment in irrigation along with reforms in institutional a...

  9. Production structure and Cost efficiency of irrigated agriculture: A shadow cost approach

    OpenAIRE

    Zaibet, L.; Salah Bachta, Mohamed; Ben Salem, H.

    2005-01-01

    International audience; The improvement of irrigated agriculture needs sound performance assessment based on economic principles. This is particularly relevant to design adequate policies in terms of water allocation. In this paper we endeavour to assess irrigation efficiency using a behavioural approach in which the cost function (shadow cost) is based on shadow prices of inputs. This approach is useful to derive price distortion coefficients to indicate the level of allocative efficiency in...

  10. A global dataset of the extent of irrigated land from 1900 to 2005

    Directory of Open Access Journals (Sweden)

    S. Siebert

    2014-12-01

    Full Text Available Irrigation intensifies land use by increasing crop yield but also impacts water resources. It affects water and energy balances and consequently the microclimate in irrigated regions. Therefore, knowledge of the extent of irrigated land is important for hydrological and crop modelling, global change research, and assessments of resource use and management. Information on the historical evolution of irrigated lands is limited. The new global Historical Irrigation Dataset (HID provides estimates of the temporal development of the area equipped for irrigation (AEI between 1900 and 2005 at 5 arc-minute resolution. We collected subnational irrigation statistics from various sources and found that the global extent of AEI increased from 63 million ha (Mha in 1900 to 112 Mha in 1950 and 306 Mha in 2005. We developed eight gridded versions of time series of AEI by combining subnational irrigation statistics with different data sets on the historical extent of cropland and pasture. Different rules were applied to maximize consistency of the gridded products to subnational irrigation statistics or to historical cropland and pasture data sets. The HID reflects very well the spatial patterns of irrigated land in the western United States as shown on historical maps. Mean aridity on irrigated land increased and river discharge decreased from 1900–1950 whereas aridity decreased from 1950–2005. The dataset and its documentation are made available in an open data repository at https://mygeohub.org/publications/8 (doi:10.13019/M2MW2G.

  11. Integrated assessment of the effects of dams on irrigation sustainability in a data scarce watershed

    Science.gov (United States)

    Yoshida, T.; Masumoto, T.; Kudo, R.

    2014-12-01

    Several development projects are currently under way in developing countries to meet growing demand for water and energy. However, due to the lack of the hydro-meteorological data, some projects were conducted without rigorous check of water balance and the potential changes in the flow regime likely to be induced by reservoirs, and their implications for irrigation projects and ecosystems. To cope with this issues, we carried out analysis by using a hydrological model and quasi-observed rainfall data. A distributed water circulation model was introduced as a tool to implement the analysis. Given daily meteorological data, the model calculates spatial distribution of surface runoff, evapotranspiration, river flow and water demand. In addition, it represents operation of water use facilities, and return flow from irrigated areas. We performed a case study in the Pursat River Basin in Cambodia, where multiple projects are ongoing. We first calculated river discharge with observed rain data and calibrated it. Next, we performed a water balance analysis of the basin using the compiled model with 7 years of rainfall data. Because 20-30 years of data is generally required for water resources planning, we thus prepared 25 years of data by using a climate model with a statistically corrected bias. We determined a reference year for irrigation planning from the long-term data such that annual precipitation of 5-year return period. We selected a scenario for irrigated areas from the Water Balance Study Report (JICA, 2013) to project the future water demand, and checked the water balance under no-dam conditions. The results revealed that water supply was more than adequate to meet water demand in the reference year. We finally incorporated the future dam operations into the calculations and evaluated the impact of the dams on river flows and irrigation projects. Even under the changed flow regimes, the water balance was satisfied in the reference year. However, river flows

  12. Research on Forecasting Water Requirement of Well Irrigation Rice by Time Series Analysis Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper builds up the forecasting model of air temperature according to the data (1994~1998) of Fu Jin area.At the same time,the writer inquires into the relation of water requirement of well irrigation rice (ET) and average air temperature (T).Furthermore,the rice irrigation water requirement (ET) of Fu Jin area has been forecast in 1999.Thus,we can apply the model in irrigation management.

  13. Irrigation trends in Kansas, 1991–2011

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This fact sheet examines trends in total reported irrigation water use and acres irrigated as well as irrigation water use by crop type and system type in Kansas for...

  14. Soil Water Distribution and Irrigation Uniformity Under Alternative Furrow Irrigation

    Institute of Scientific and Technical Information of China (English)

    PAN Ying-hua; KANG Shao-zhong; DU Tai-sheng; YANG Xiu-ying

    2003-01-01

    Field experiments were conducted to investigate the spatial-temporal distribution and the uni-formity of soil water under alternative furrow irrigation in spring maize field in Gansu Province. Resultsshowed that during the crop growing season, alternative drying and wetting furrows could incur crops to en-dure a water stress, thus the adsorptive ability of root system could be enhanced. As there was no zero fluxplane between irrigated furrows and non-irrigated furrows under alternative furrow irrigation, lateral infiltra-tion of water was obviously increased, thus decreasing the deep percolation. Compared with the conventionalirrigation, although the water consumption in alternative furrow irrigation was reduced, the uniformity of soilwater was not obviously affected.

  15. Water-Saving and High-Yielding Irrigation for Lowland Rice by Controlling Limiting Values of Soil Water Potential

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland rice (Oryza sativa L.). Using two field-grown rice cultivars, two irrigation systems; conventional irrigation and water-saving irrigation, were conducted.In the water-saving irrigation system, limiting values of soil water potential related to specific growth stages were proposed as irrigation indices. Compared with conventional irrigation where drainage was in mid-season and flooded at other times,the water-saving irrigation increased grain yield by 7.4% to 11.3%, reduced irrigation water by 24.5% to 29.2%, and increased water productivity (grain yield per cubic meter of irrigation water) by 43.1% to 50.3%. The water-saving irrigation significantly increased harvest index, improved milling and appearance qualities, elevated zeatin +zeatin riboside concentrations in root bleedings and enhanced activities of sucrose synthase, adenosine diphosphate glucose pyrophosphorylase, starch synthase and starch branching enzyme in grains. Our results indicate that water-saving irrigation by controlling limiting values of soil water potential related to specific growth stages can enhance physiological activities of roots and grains,reduce water input, and increase grain yield.

  16. Analysis of Factors Affecting Adoption and Application of Sprinkler Irrigation by Farmers in Famenin County, Iran

    Directory of Open Access Journals (Sweden)

    Hassan Afrakhteh

    2015-06-01

    Full Text Available Due to its location in the dry belt, the vast country of Iran has always been faced with the problem of water shortages. In such a climate one should take measures to increase the productivity and improve the efficiency of irrigation through expansion of water-conserving technology in the agricultural sector, as this is the largest and most important consumer of water. Therefore this study aimed at investigating factors affecting the adoption and application of sprinkler irrigation technology by farmers in the county of Famenin, Iran. Survey research was the dominant approach. The statistical population consisted of farmers in the Famenin County, and, using Cochran’s formula, 280 of them were selected through multi-stage stratified random-sampling equally among adopters and non-adopters. In order to assess the validity of the questionnaire the opinions of experts were used and to measure the reliability of the questionnaire Cronbach’s alpha statistic was used (82%. The results showed the adoption of sprinkler irrigation systems to be influenced by environmental factors such as the area under cultivation, access to water, water quality, and non-environmental factors such as the workforce number in the family, employment diversity, and participation in extension education and courses on agricultural water management. Ultimately the logit model is estimated in this paper. Adopters have also expressed reasons such as failure to adequately train farmers for maintenance after system installation, scientific and practical justifications, lack of availability of efficient repairs, inappropriate design and implementation by companies, low-quality components and fittings, clogging of sprinklers due to salty water, non-compliance with environmental conditions, difficulty using machines, the large area occupied by these systems, transportation, parts shortage, lack of security and the possibility of the theft of parts and fittings, and communal

  17. Abundant Semigroups Which Are Disjoint Unions of Multiplicative Adequate Transversals

    Institute of Scientific and Technical Information of China (English)

    Haijun LIU; Xiaojiang GUO

    2013-01-01

    The aim of this paper is to study abundant semigroups which are disjoint unions of multiplicative adequate tranversals.After obtaining some properties of such semigroup,we prove that a semigroup is a disjoint union of multiplicative adequate transversals if and only if it is isomorphic to the direct product of a rectangular band and an adequate semigroup.

  18. 基于语义本体的柑橘肥水管理决策支持系统%A decision support system for fertilization and irrigation management of citrus based on semantic ontology

    Institute of Scientific and Technical Information of China (English)

    王艺; 王英; 原野; 郭云龙; 张自力; 邓烈; 李莉

    2014-01-01

    The key problems for realizing precision agriculture include integrating heterogeneous and multi-source agricultural information, developing localization agricultural resources, and providing personalized and active information services for individual farmers. In this paper, we present an approach to precision farming in citrus production management by using semantic technology. In our work, the first step was to transfer the expert knowledge existing in technical reports and books into the citrus fertilization and irrigation ontology that could be understood and directly computed by computer systems. By developing the ontology based on the semantic technology such as the resource framework description triples graph, heterogeneous and multi-source information was integrated into computable localization resources. We described how knowledge in the form of texts, pictures, and tables were encoded into resource description framework triples respectively. In addition, we also discussed how to establish properties, which is a difficulty in ontology development. Our ontology development process was supported by a set of professional tools:TopBraid Composer, the world’s most powerful modeling environment, and Gruff, a graphical triple-store browser. We created 31 properties in total and used another five standard properties from the Semantic Web standards. As our aim for building the ontology was to support the decision making for citrus production management, our citrus ontology was not just taxonomy for the citrus management knowledge compared to the existing agricultural ontologies. Then we developed a personalized decision support system for citrus fertilization and irrigation management, based on the ontology. Different from the existing agricultural information services, our system can actively provide personalized production management instructions for individual farmers via multiple terminal devices, including mobile phones and Web browsers. The demo application

  19. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera of NW Spain

    Science.gov (United States)

    Martínez, Emma M.; Trigo-Córdoba, Emiliano; Bouzas-Cid, Yolanda; Fandiño, María; Rey, Benjamín J.; Mirás-Avalos, Jose M.; Cancela, Javier J.

    2014-05-01

    Inter-annual climate variability, in particular the temporal distribution of rainfall is regarded as a critical factor to obtain an optimal irrigation management on crops, being more marked their relevance in Atlantic climates. The presence of precision irrigation systems in Vitis vinifera (L.) has created the need to understand the physiological effects on plant, and vineyard soils, together with production and quality parameters, to achieve and adequate irrigation management. This trial was performed on two relevant white grapevine varieties from Galicia (NW-Spain), cv. `Albariño` (D.O. Rías Baixas and Ribeiro) and cv. `Godello` (D.O. Valdeorras and D.O. Monterrei) during the 2012 and 2013 seasons. Two treatments were established following a completely randomized block design with four replications (7 plants each). The treatments were rainfed (R) and surface drip irrigation (DI), these last one was not applied in DO Monterrei during 2012. Irrigation was initiated when an average value of 400 cumulative degree days was reached, ending 15 days before the harvest. Different bioclimatic indices were calculated to characterize each season and location: Cool night index (CI); Heliothermal index (HI), which corresponds to Huglin's heliothermal index; and Winkler index. To assess the water status of the vines leaf (Ψmid) and stem (Ψstem) water potentials were measured at noon. Finally, production and qualitative data were collected for each treatment. No differences between DOs were observed for 'Godello' cultivar in bioclimatic indices within the Geoviticulture MCC system (Tonietto and Carboneau, 2004), indicating temperate warm-temperate (HI) and very cool nights (CI). For the Winkler index, cv. Godello is within the region I, near the region II in the case of D.O. Valdeorras in both years. In the case of 'Albariño', warmer nights were observed in DO Rías Baixas compared with DO Ribeiro, whereas the opposite was found for the thermal index. Leaf water potential

  20. Report of Wildlife Management Study : Monitoring Program of Wildlife Habitat and Associated Use in the Truckee-Carson Irrigation District, Nevada : Progress Report No. 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Lahontan Valley contains approximately 48,745 acres of wetland habitat. The size of the areas range from small seep ponds of less than an acre to management...

  1. Report of Wildlife Management Study : Monitoring Program of Wildlife Habitat and Associated Use in the Truckee-Carson Irrigation District, Nevada : Progress Report No. 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Lahontan Valley contains approximately 48,745 acres of wetland habitat. The size of the areas range from small seep ponds of less than an acre to management...

  2. Report of Wildlife Management Study : Monitoring Program of Wildlife Habitat and Associated Use in the Truckee-Carson Irrigation District, Nevada : Progress Report No. 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Lahontan Valley contains approximately 48,745 acres of wetland habitat. The size of the areas range from small seep ponds of less than an acre to management...

  3. Report of Wildlife Management Study : Monitoring Program of Wildlife Habitat and Associated Use in the Truckee-Carson Irrigation District, Nevada : Progress Report No. 5

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Lahontan Valley contains approximately 48,745 acres of wetland habitat. The size of the areas range from small seep ponds of less than an acre to management...

  4. A Class of Left E-adequate Semigroups

    Institute of Scientific and Technical Information of China (English)

    LI YONG-HUA; HE YONG

    2010-01-01

    In this paper we establish a construction of a class of left E-adequate semigroups by using semilattices of cancellative monoids and fundamental left E-adequate semigroups. We first introduce concepts of type μ+ (μ*, μ) abundant semigroups and type μ+ left E-adequate semigroups. In fact, regular semigroups are type μ+ abundant semigroups and inverse semigroups are type μ+ left E-adequate semigroups. Next, we construct a special kind of algebras called E+-product. It is proved that every E+-product is a type μ+ left E-adequate semigroup, and every type μ+ left E-adequate semigroup is isomorphic to an E+-product of a semilattice of cancellative monoids with a fundamental left E-adequate semigroup. Finally, as a corollary of the main result, it is deduced that every inverse semigroup is isomorphic to an E+-product of a Clifford semigroup by a fundamental inverse semigroup.

  5. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment

    Science.gov (United States)

    Bell, Andrew Reid; Shah, M. Azeem Ali; Ward, Patrick S.

    2014-08-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies.

  6. Emergy evaluation of a pumping irrigation water production system in China

    Science.gov (United States)

    Chen, Dan; Luo, Zhaohui; Webber, Michael; Chen, Jing; Wang, Weiguang

    2014-03-01

    The emergy concept was used to evaluate a pumping irrigation water production system in China. A framework for emergy evaluation of the significance of irrigation water and its production process was developed. The results show that the irrigation water saved has the highest emergy value (8.73E + 05 sej·J-1), followed by the irrigation water supplied to farmlands (1.72E + 05 sej·J-1), the pumped water (4.81E + 04 sej·J-1), with the lowest value shown from water taken from the local river (3.72E + 04 sej·J-1). The major contributions to the emergy needed for production are the inputs of soil and water. This production system could contribute to the irrigated agriculture and economy, according to several calculated emergy indices: emergy yield ratio ( EYR), emergy investment ratio ( EIR), environmental load ratio ( ELR), and environmental sustainability index ( ESI). The comparative analysis shows that the emergy theory and method, different from the conventional monetary-based analysis, could be used to evaluate irrigation water and its production process in terms of the biophysical account. Additional emergy evaluations should be completed on different types of water production and irrigated agricultural systems to provide adequate guidelines for the sustainability of irrigation development.

  7. More 'crop per drop': constraints and opportunities for precision irrigation in European agriculture.

    Science.gov (United States)

    Monaghan, James M; Daccache, Andre; Vickers, Laura H; Hess, Tim M; Weatherhead, E Keith; Grove, Ivan G; Knox, Jerry W

    2013-03-30

    Dwindling water supplies, increasing drought frequency and uncertainties associated with a changing climate mean Europe's irrigated agriculture sector needs to improve water efficiency and produce more 'crop per drop'. This paper summarizes the drivers for change, and the constraints and opportunities for improving agricultural water management through uptake of precision irrigation technologies. A multi-disciplinary and integrated approach involving irrigation engineers, soil scientists, agronomists and plant physiologists will be needed if the potential for precision irrigation within the field crop sector is to be realized.

  8. Reuse of reclaimed wastewater for golf course irrigation in Tunisia.

    Science.gov (United States)

    Bahri, A; Basset, C; Oueslati, F; Brissaud, F

    2001-01-01

    In Tunisia, golf courses are irrigated with secondary treated effluent stored in landscape impoundments. The impact of the conveyance and storage steps on the physical-chemical and biological quality of irrigation water was evaluated on three golf courses over two years. It was found that the water quality varies all along the water route, from the wastewater treatment plant up to the irrigation site: nutrient and bacteria contents decreased along the route in the three cases. This variation depends on the wastewater quality, the length of the pipes conveying water, the number of regulation reservoirs and ponds, the water residence time in pipes, reservoirs and ponds, and the operation of the ponds. The bacteriological quality of irrigation water deteriorates during the irrigation period in the three golf courses as the ponds are operated as continuous flow reactors. The results obtained in this study indicate the inability of golf water supplies, as currently managed, to properly sanitize reclaimed wastewater and meet target quality criteria recommended by WHO (1989) for water intended for recreational use. For a safe reuse of reclaimed wastewater for golf course irrigation, changes in the design and operation of the ponds should be planned or additional treatment steps provided.

  9. Irrigation Technology, Agro-Ecology, and Water Rights in the Mid-Hills of Nepal

    NARCIS (Netherlands)

    Parajuli, U.N.

    2013-01-01

    Design of irrigation infrastructure in Farmer-managed Irrigation Systems (FMISs) is not only shaped by engineering and agronomic principles, but also strongly influenced by features of the local environment. Based on detailed case studies of four FMISs in Nepal, this chapter presents different typol

  10. Application of PDCA skill in project management of irrigation works%PDCA技术在水利工程施工管理中的应用

    Institute of Scientific and Technical Information of China (English)

    刘新浩

    2009-01-01

    介绍了PICA技术是基于施工全过程的管理模式,通过分析水利工程施工的特点和管理难点,以及建设市场对管理技术的要求,探讨了将PDCA技术运用到水利工程施工管理中的方法,同时证实了该技术的可行性.%The paper introduces that PDCA skill is a managing mode on the whole constructional process, through analyzes features and diffi-cult point of project construction as well as requirements of market to managing skill, the paper discusses about methods of using PDCA skill in project management of irrgation works, and proves feasibility of the skill.

  11. Impact of Drip Irrigation Scheduling on Vegetative Parameters in Tomato (Lycopersicon esculentum Mill. Under Unheated Greenhouse

    Directory of Open Access Journals (Sweden)

    S.M. Alaoui

    2014-01-01

    Full Text Available Grafted Tomatoes were grown on a fine sandy soil using drip irrigation and plastic mulch to evaluate the effects of irrigation scheduling on water requirements and vegetative parameters under typical Massa greenhouses growing conditions. Capacitive sensors were used to automatically schedule irrigations. The result of this study shows that irrigation dose and frequency does not affect stem diameter in grafted tomato plant, no significant effect on leaves number has been observed. But irrigation scheduling have a large effect on root’s development, The root containers results indicated that a water stress equivalent to 50%ETc and 20% frequency can lead to deep root system; that makes possible to sustain a suitable vegetative canopy if doses and frequencies are well managed in a daily scale; It was possible save 50% of irrigation water.

  12. Quantifying the Impacts of Irrigation Technology Adoption on Water Resources in the High Plains Aquifer, USA

    Science.gov (United States)

    Kendall, Anthony; Cotterman, Kayla; Hyndman, David

    2016-04-01

    Producers in key agricultural regions worldwide are contending with increasing demand while simultaneously managing declining water resources. The High Plains Aquifer (HPA) is the largest aquifer system in the United States, and supplied most of the water to irrigate 6 million hectares in 2012. Water levels in the central and southern sections of the aquifer have steadily declined, as groundwater recharge in this semi-arid region is insufficient to meet water demands. Individual irrigators have responded to these declines by moving from less efficient irrigation technologies to those that apply water more precisely. Yet, these newer technologies have also allowed for water to be pumped from lower-yielding wells, thus extending the life of any given well and allowing drawdown to continue. Here we use a dataset of the annual irrigation technology choices from every irrigator in the state of Kansas, located in the Central High Plains. This irrigation data, along with remotely-sensed Leaf Area Index, crop choice, and irrigated area, drives a coupled surface/groundwater simulation created using the Landscape Hydrology Model (LHM) to examine the impacts of changing irrigation technology on the regional water cycle, and water levels in the HPA. The model is applied to simulate cases in which no irrigation technology change had occurred, and complete adoption of newer technologies to better understand impacts of management choices on regional water resources.

  13. Direct solutions for normal depths in curved irrigation canals

    CERN Document Server

    Zhang, X Y

    2013-01-01

    The normal depth is an important hydraulic element for canal design, operation and management. Curved irrigation canals including parabola, U-shaped and catenary canals have excellent hydraulic performance and strong ability of anti-frost heave, while the normal depths in the governing equations of the current common methods have no explicit analytical solution. They are only indirect methods by using trial procedures, numerical methods, and graphical tools. This study presents new direct formulas for normal depth in curved irrigation canals by applying for Marquardt method. The maximum relative error of the proposed formulas is less than 1% within the practice range by comparative analysis, and they are simple and convenient for manual calculations. The results may provide the reliable theoretical basis and useful reference for the design and operation management of irrigation canals.

  14. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  15. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  16. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  17. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    Science.gov (United States)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  18. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, P.;

    2007-01-01

    OBJECTIVE: To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water in urban farming in Ghana. METHODS: Trials on drip kits, furrow irrigation and watering...... health risks from using polluted water in vegetable farming....

  19. 76 FR 20971 - Turlock Irrigation District and Modesto Irrigation District; Notice of Intent To File License...

    Science.gov (United States)

    2011-04-14

    ... Energy Regulatory Commission Turlock Irrigation District and Modesto Irrigation District; Notice of..., 2011. d. Submitted By: Turlock Irrigation District and Modesto Irrigation District. e. Name of Project... Regulatory Affairs, Turlock Irrigation District, P.O. Box 949, Turlock, California 95381, 209-883-8241...

  20. Mathematical Modeling the Hydrological Properties of Soil for Practical Use in the Land Ecological Management

    Directory of Open Access Journals (Sweden)

    Terleev Vitaly

    2016-01-01

    Full Text Available An original and convenient (from a practical point of view method to estimate the supply of productive moisture in the soil is offered. The method is based on a physically adequate mathematical model of the soil hydrological properties considering the hysteresis of the water-retention capacity. The computation of the irrigation rates, which is based on such estimates, minimizes the water wastage if the excess of the gravitational water is formed and this water percolates out of the moisturized soil profile under watering conditions. The practical applying of the method is able to optimize the crop irrigation techniques, eliminates any inefficient losses of irrigation water and nutrients (and other agricultural chemicals, promotes the rational usage of the water resources as well as provides developing effective solutions of urgent problems of the land ecological management.

  1. Acute isoniazid toxicity and the need for adequate pyridoxine supplies.

    Science.gov (United States)

    Morrow, Lee E; Wear, Robert E; Schuller, Dan; Malesker, Mark

    2006-10-01

    A 25-year-old, 54-kg Hispanic man who had recently started multidrug therapy for pulmonary tuberculosis presented in status epilepticus after ingesting 9 g of isoniazid in a suicide attempt. Successful management of this patient required collaboration between several institutions to provide the large amount of necessary intravenous pyridoxine. Ultimately, this single overdose depleted the supply of intravenous pyridoxine for a significant region of the state of Nebraska. Isoniazid is commonly used to treat tuberculosis, but it is encountered relatively infrequently as the cause of an acute overdose. Severe isoniazid overdoses may present as seizure activity that is refractory to conventional antiepileptic therapy. Although intravenous pyridoxine is an effective antidote for isoniazid overdoses in patients presenting with status epilepticus, this agent has few indications and is typically stocked in limited quantities. In regions with large populations of patients who receive antituberculosis therapy, collaborative networks must be created to ensure that adequate supplies of intravenous pyridoxine (> or = 20 g) are available for effective treatment of isoniazid poisonings.

  2. MANEJO DA ADUBAÇÃO NITROGENADA NO FEIJOEIRO IRRIGADO SOB PLANTIO DIRETO MANAGEMENT OF NITROGEN FERTILIZATION IN IRRIGATED COMMON BEAN UNDER NO-TILLAGE

    Directory of Open Access Journals (Sweden)

    Luís Fernando Stone

    2007-09-01

    of the crop grown after corn to nitrogen application rates and time, under no-tillage. The study was conducted at the ‘Embrapa-Arroz e Feijão’ experimental station, located in the municipality of Santo Antônio de Goiás, GO, Brazil, in 1999 and 2000. The soil of the experimental site was Oxisol and experiments were conducted during the dry season using center pivot sprinkler irrigation. The experiment was conducted in a randomized complete block design, with four replications. The common bean cultivar used was Aporé. All treatments received 120 kg/ha of N during the crop cycle, with split applications or not, in different doses twenty days before sowing, at sowing, and at topdressing. The treatments were: T1 (0-0-120 kg/ha, T2 (0-17,5-102,5 kg/ha, T3 (0-40-80 kg/ha, T4 (0-60-60 kg/ha, T5 (0-80-40 kg/ha, T6 (0-120-0 kg/ha, T7 (40-40-40 kg/ha, T8 (0-17,5-102,5 kg/ha, and T9 (0-60-60 kg/ha. In the last two treatments, the corn mulch was chopped. Common bean under no-tillage needed a higher nitrogen dose at sowing in relation to conventional tillage. In the no-tillage system, the appropriate rate of N at sowing was 60kg/ha. When the N rate was higher than 60kg/ha, grain yield decreased. The same N split application rate produced higher yield when the corn mulch was chopped.

    KEY-WORDS: Phaseolus vulgaris; N split application; mulch.

  3. Using the soil water balance to analyze the deep percolation losses and the irrigation adequacy of irrigated citrus crops (Haouz plain, Morocco)

    Science.gov (United States)

    Nassah, Houda; Fakir, Younes; Er-raki, Salah; Khabba, Said; Merlin, Olivier; Mougenot, Bernard

    2016-04-01

    In the semi-arid Haouz plain, located in central Morocco, agriculture consumes about 85% of the available water resources. Therefore, the management of irrigation water is important to avoid the water loss by soil evaporation and by deep percolation (DP) below the plant root zone. Estimating the irrigation water demand has been investigated by many studies in the Haouz plain, but DP losses beneath the irrigated areas have not been quantified yet. In this context, the objectives of the persent work are threefold :1) to evaluate DP over irrigated citrus orchard under drip and flood irrigation systems using the soil water balance equation; 2) to compare the obtained results to direct measurements of DP by a "flux-meter"; and 3) to optimize the irrigation rates that avoid excessive DP losses and water stress. The results showed that the weekly DP losses vary in average from 15 mm/week to more than 40 mm/week depending to the amount of water supply. The irrigation systems have also an important impact on DP losses evaluated to 38 % in drip irrigation and 12% in flood irrigation. Additionally the density of canopy influences the DP percentage inducing a difference of 10% between the denser citrus site and the sparse one. The comparison of DP losses calculated by soil water balance with those measured by a flux-meter installed beneath the root zone show that the first method gives higher values than the second does. Finally we evaluated the adequacy of the water supply for the crop needs based on two performance indices: depleted fraction (DF) and relative evapotranspiration (RET), showing that the drip irrigation has respond to the culture demands with an excessive quantity of irrigation, unlike to the flood one.

  4. Participatory rural appraisal of spate irrigation systems in eastern Eritrea

    NARCIS (Netherlands)

    Tesfai, M.; Graaff, de J.

    2000-01-01

    In the Sheeb area in eastern Eritrea a Participatory Rural Appraisal (PRA) was carried out in two villages, one upstream and one downstream of the ephemeral rivers Laba and Mai-ule. The objectives of the study were to obtain a better understanding of farmer-managed spate irrigation systems and to en

  5. 13 CFR 108.200 - Adequate capital for NMVC Companies.

    Science.gov (United States)

    2010-01-01

    ... VENTURE CAPITAL (âNMVCâ) PROGRAM Qualifications for the NMVC Program Capitalizing A Nmvc Company § 108.200 Adequate capital for NMVC Companies. You must meet the requirements of §§ 108.200-108.230 in order to... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Adequate capital for...

  6. 40 CFR 716.25 - Adequate file search.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  7. 9 CFR 305.3 - Sanitation and adequate facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  8. 10 CFR 503.35 - Inability to obtain adequate capital.

    Science.gov (United States)

    2010-01-01

    ... capital investment, through tariffs, without unreasonably adverse economic effect on its service area... 10 Energy 4 2010-01-01 2010-01-01 false Inability to obtain adequate capital. 503.35 Section 503... New Facilities § 503.35 Inability to obtain adequate capital. (a) Eligibility. Section 212(a)(1)(D)...

  9. 78 FR 3892 - Turlock Irrigation District and Modesto Irrigation District; Notice Clarifying Party Status

    Science.gov (United States)

    2013-01-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Turlock Irrigation District and Modesto Irrigation District; Notice Clarifying Party Status On January 9, 2013, the Modesto Irrigation District (Modesto) filed a motion...

  10. Determinants of prompt and adequate care among presumed malaria cases in a community in eastern Rwanda

    NARCIS (Netherlands)

    Ingabire, Chantal Marie; Kateera, Fredrick; Hakizimana, Emmanuel; Rulisa, Alexis; Muvunyi, Claude; Mens, Petra; Koenraadt, Sander; Mutesa, Leon; Vugt, Van Michele; Borne, Van Den Bart; Alaii, Jane

    2016-01-01

    Background: In order to understand factors influencing fever/malaria management practices among community-based individuals, the study evaluated psychosocial, socio-demographic and environmental determinants of prompt and adequate healthcare-seeking behaviours. Methods: A quantitative household (

  11. Simulation of Irrigation Water Loss Based on VSMB Model

    Institute of Scientific and Technical Information of China (English)

    Hongwen ZHOU; Luxin ZHAI; Wenxing LU; Dongxu LIU

    2016-01-01

    The low degree of development and utilization as well as the contradiction between supply and demand of water resources in Huangshui River basin are the main restricting factors of the local agricultural development. The study on the simulation of irrigation water loss based on the VSMB model has very important significance to strengthening regional water management and improving water resource utilization efficiency. Five groundwater wells were set up to carry out the farmland irrigation water infiltration and the experimental study on groundwater dynamic effect. Two soil moisture monitoring sites were set up in two typical plots of Daxia and Guanting irrigation area at the same time and TDR300 was used to monitor four kinds of deep soil moisture( 10 cm,30 cm,50 cm and 70 cm). On this basis,the VSMB model was used to study the irrigation water loss in the irrigation area of Yellow River valley of Qinghai Province,including soil moisture content,the actual evapotranspiration,infiltration,runoff,groundwater buried depth and so on. The results showed that the water consumption caused by soil evaporation and crop transpiration accounted for 46. 4% and 24. 1% of the total precipitation plus irrigation,respectively,and the leakage accounted for 30. 3% and 60. 6% of the total precipitation plus irrigation,respectively,from March 1,2013 to April 30,and from August 1 to September 30. The actual evaporation of the GT- TR1 and GT- TR2 sites in the whole year of 2013 was 632. 6 mm and 646. 9 mm,respectively,and the leakage accounted for 2. 6% and 1. 2% of the total precipitation plus irrigation,respectively. RMSE of the simulation results of the groundwater depth in Daxia irrigation area during the two periods was 92. 3 mm and 27. 7 mm,respectively. And RMSE of the simulation results of the water content of soil profile in the two monitoring sites of Guanting irrigation area was 2. 04% and 5. 81%,respectively,indicating that the simulation results were reliable.

  12. Evaluation of Monensin Transport to Shallow Groundwater after Irrigation with Dairy Lagoon Water.

    Science.gov (United States)

    Hafner, Sarah C; Harter, Thomas; Parikh, Sanjai J

    2016-03-01

    Animal waste products from concentrated animal feeding operations are a significant source of antibiotics to the environment. Monensin, an ionophore antibiotic commonly used to increase feed efficiency in livestock, is known to have varied toxicological effects on nontarget species. The current study builds on prior studies evaluating the impact of dairy management on groundwater quality by examining the transport of monensin in an agricultural field with coarse-textured soils during irrigation with lagoon wastewater. The dairy is located in California's San Joaquin Valley, where groundwater can be encountered Groundwater samples were collected from a network of monitoring wells installed throughout the dairy and adjacent to irrigated fields before and after an irrigation event, which allowed for measurement of monensin potentially reaching the shallow groundwater as a direct result of irrigation with lagoon water. Monensin was extracted from water samples via hydrophilic-lipophilic balance solid-phase extraction and quantified with liquid chromatography-mass spectrometry. Irrigation water was found to contain up to 1.6 μg L monensin, but monensin was only detected in monitoring wells surrounding the waste storage lagoon. Water chemistry changes in the wells bordering the irrigated field suggest that up to 7% of irrigation water reached groundwater within days of irrigation. The study suggests that contamination of groundwater with monensin can occur primarily by compromised waste storage systems and that rapid transport of monensin to groundwater is not likely to occur from a single irrigation event.

  13. [Effects of different drip irrigation modes on root distribution of wine grape 'Cabernet Sauvignon' in desert area of Northwest China].

    Science.gov (United States)

    Mao, Juan; Chen, Bai-Hong; Cao, Jian-Dong; Wang, Li-Jun; Wang, Hai; Wang, Yan-Xiu

    2013-11-01

    To study the effects of different drip irrigation modes on the wine grape root distribution is the basis of formulating fertilization, irrigation, and over-wintering management practices for wine grape. Taking the wine grape "Cabernet Sauvignon" as test material, this paper studied the effects of different water-saving irrigation modes (drip irrigation under straw mulching, drip irrigation under plastic mulching, double-tube drip irrigation, and single-tube drip irrigation) on the root distribution of wine grape in the desert area of Northwest China, with the conventional furrow irrigation as the control. The root system of the "Cabernet Sauvignon" was distributed from 0 to 70 cm vertically, and from 0 to 120 cm horizontally. With double-tube drip irrigation, the root amount was the largest (138.3 roots per unit profile), but the root vertical distribution scope was narrowed by 20 cm, as compared to the control. Drip irrigation with straw mulching increased the root amount significantly, and increased the root horizontal distribution scope by 9.1%, as compared to the control. No significant difference was observed in the root number and root horizontal distribution scope between the drip irrigation under plastic mulching and the control, but the root vertical distribution scope with the drip irrigation under plastic mulching decreased by 20 cm. Single-tube drip irrigation increased the root number significantly, but had lesser effects on the root vertical or horizontal distribution, as compared to the conventional irrigation. It was suggested that the drip irrigation under straw mulching could be the best water-saving practice for the wine grape "Cabernet Sauvignon" in the study area.

  14. Application of future remote sensing systems to irrigation

    Science.gov (United States)

    Miller, L. D.

    1982-01-01

    Area estimates of irrigated crops and knowledge of crop type are required for modeling water consumption to assist farmers, rangers, and agricultural consultants in scheduling irrigation for distributed management of crop yields. Information on canopy physiology and soil moisture status on a spatial basis is potentially available from remote sensors, so the questions to be addressed relate to: (1) timing (data frequency, instantaneous and integrated measurement); and scheduling (widely distributed spatial demands); (2) spatial resolution; (3) radiometric and geometric accuracy and geoencoding; and (4) information/data distribution. This latter should be overnight, with no central storage, onsite capture, and low cost.

  15. Comparison of lettuce diseases and yield under subsurface drip and furrow irrigation.

    Science.gov (United States)

    Subbarao, K V; Hubbard, J C; Schulbach, K F

    1997-08-01

    Valley. Subsurface drip irrigation is a viable, long-term strategy for soilborne disease management in lettuce in the Salinas Valley.

  16. 低收入农户参与灌溉管理行为对其农业收入影响的研究--以江苏、河南两省为例%Studies on Effect of Low-income Farmers’ Participation in Irrigation Management on Their Agricultural Income in Jiangsu and Henan

    Institute of Scientific and Technical Information of China (English)

    孟德锋; 廉俊霞

    2016-01-01

    基于江苏和河南两省1076户农户的调查数据,运用倾向得分匹配法,分析了不同层面的低收入农户参与行为对灌溉用水及时性和农业收入的影响。研究结果显示:农户参与灌溉管理行为提高了自身的灌溉及时性,在操作规则、集体选择规则到宪政规则渐次升高的制度安排层面,灌溉及时性提高幅度更大。低收入农户参与层次的提高可以获得更好的灌溉及时性,而且比同层次高收入农户的灌溉及时性更强。农户参与层次越高,其农业收入提高越明显。参与层次越高,低收入农户的参与行为带来的增收效果越明显,而且均高于同一个参与层面的高收入组农户。%Based on the survey data of 1076 farmers in Jiangsu and Henan province , this paper evaluated the effect of low-income farmers’ participation in irrigation management on their prompt use of irrigation water and their agricultural income by u-sing tendency-score matching method.The results indicated that the low-income farmers’ participation in irrigation management improved the timeliness of their irrigation due to the rules of operation , collective selection and constitutionalism, and the increase in the participation level of low-income farmers could make them obtain better irrigation timeliness , and low-income farmers could irrigate more timely than high-income farmers at the same participation level.The agricultural income increase of low-in-come farmers was in accordance with their participation level increase , and the agricultural income of low-income farmers was higher than that of high-income farmers at the same participation level .

  17. Determinants of prompt and adequate care among presumed malaria cases in a community in eastern Rwanda: A cross sectional study

    NARCIS (Netherlands)

    Ingabire, C.M.; Kateera, F.; Hakizimana, E.; Rulisa, A.; Muvunyi, C.; Mens, P.; Koenraadt, C.J.M.; Mutesa, L.; Vugt, M. van; Borne, B. van den; Alaii, J.

    2016-01-01

    Background: In order to understand factors influencing fever/malaria management practices among community-based individuals, the study evaluated psychosocial, socio-demographic and environmental determinants of prompt and adequate healthcare-seeking behaviours. Methods: A quantitative household (HH)

  18. Evapotranspiration and irrigation algorithms in hydrologic modeling:Present Status and Opportunities

    Science.gov (United States)

    Hydrologic models are used extensively for predicting water availability and water quality responses to alternative irrigation, tillage, crop, and fertilizer management practices and global climate change. Modeling results have been frequently used by regulatory agencies for developing remedial meas...

  19. Influence of different operating conditions on irrigation uniformity with microperforated tapes

    Science.gov (United States)

    Moreno Pizani, María Alejandra; Jesús Farías Ramírez, Asdrúbal

    2013-04-01

    Irrigated agriculture is a safe alternative to meet the growing demand for food. Numerous studies show that proper management of localized irrigation can increase crop yields and reduce soil salinization. Therefore, periodic field systems irrigation assessments are needed in order to optimize the use efficiency of irrigation water, as well as, to increase the agricultural area covered by the same amount of water and to reduce the environmental impact. It was assessed the behavior of micro perforated tapes under different operating conditions, crops and regions of Venezuela. Evaluations were made on irrigated areas using Santeno ® Type I tape with the following crops: Banana (Musa sp), lettuce (Lactuca sativa L.), carrot (Daucus carota L) and forage sugar cane (Saccharum officinarum). In the other hand, Santeno ® Type II tape was used with papaya (Carica papaya L.) and melon (Cucumis melo L.) crops (the last crop using inverted irrigation tape). The procedures used for sampling and determining the uniformity indices of the system were performed using a series of adjustments to the methodology proposed by Keller and Karmeli (1975), Deniculi (1980) and De Santa and De Juan (1993), in order to increase the number of observations as a function of irrigation time. The calculated irrigation uniformity indices were as follow: Distribution Coefficient (UD), Uniformity Coefficient (CUC), Coefficient of Variation of Flows (CV) and Statistical Uniformity Coefficient (Us). The indices characterization was made according to Merrian and Keller (1978); Bralts (1986); Pizarro (1990) y ASAE (1996), respectively. The results showed that the irrigation uniformity for the evaluated systems varied from excellent to unacceptable, mainly due to the lack of maintenance and the absent of manometric connectors. Among the findings, it is possible to highlight the need for technical support to farmers, both in the installation, management and maintenance of irrigation systems. In this sense

  20. Water implications in Mediterranean irrigation networks: Problems and solutions

    Directory of Open Access Journals (Sweden)

    Laura Romero Marrero, Modesto Pérez-Sánchez, P. Amparo López-Jiménez

    2017-01-01

    Full Text Available Agriculture is a significant user of water and energy in Mediterranean coasts of Europe, such as Spanish Mediterranean regions. Water implications of such irrigations are well known but there are many problems that must be taken into account when designing each phase of the irrigation system, not only in the construction phase but in the exploitation, control and maintenance of all the elements in the network. All the possible problems in each part of the irrigation system will be analyzed in the following paper, proposing several solutions to avoid these problems or mitigate its consequences. These solutions go from the simple maintenance of pipes and valeus to the implementation of more sophisticated systems, such as SCADA, or management strategies, such as benchmarking.

  1. Kalanchoe crop development under different levels of irrigation

    Directory of Open Access Journals (Sweden)

    Fátima Cibele Soares

    Full Text Available ABSTRACT Despite its importance in the floriculture sector, irrigation management of kalanchoe is characterized by empiricism, being necessary further studies on the use of water by this crop. Thus, the objective of this study is to analyze the several effects of irrigation levels on the growth of kalanchoe crop conducted in greenhouse in the municipality of Alegrete, state of Rio Grande do Sul. The experiment was conducted in a 7 x 15 m protected environment. The experimental design was completely randomized, with four treatments (irrigation levels corresponding to 40, 60, 80 and 100% of the pot water retention capacity - PC and four repetitions, totaling sixteen plots. The crop cycle was 224 days after transplanting and the applied average depths were: 451.82; 367.38; 282.94; 198.51 mm for treatments: 100; 80; 60 and 40% of PC, respectively. Canopy area and number of leaves per plant were evaluated over the crop cycle. In the end of the cycle, the canopy diameter, number of inflorescences per plant and the number of flowers per plant were evaluated. No significant differences were found only to the canopy area, by the F test. Irrigation water depths between 40 and 70% of the pot capacity were more appropriate for the crop growth in the study region. The cultivar presented the best development at irrigation levels below the maximum vessel water retention capacity, that is, it is resistant to drought.

  2. Hydrological drought index insurance for irrigation districts in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, T.; Bielza, M.; Garrido, A.

    2016-11-01

    Hydrological droughts are a major risk for irrigated agriculture in many regions of the world. The aim of this article is to propose an insurance tool to help irrigators manage the risk of water scarcity in the framework of the Spanish Crop Insurance System (SCIS). Only the United States Insurance System provides this type of coverage, but has very restrictive conditions. To determine the type of insurance scheme that better fits with the SCIS and to the Spanish irrigated agriculture, an expert panel was held with the participation of all stakeholders involved in crop insurance. Following the expert panel conclusions, an hydrological drought index insurance (HDII) addressed to irrigation districts (ID) is proposed. It would compensate water deficits suffered in the whole ID. We detail the conditions that the ID should fulfill to be eligible for HDII. HDII is applied to the Bardenas Irrigation District V (ID-V) in Spain, and the hedging effectiveness of the instrument is analyzed comparing ID-V’s gross margins with and without the insurance contract. Results suggest that the proposed insurance scheme could provide an effective means of reducing farmers’ vulnerability to water shortages and there is no major impediment for it to be included as a new line in the SCIS. This type of insurance can be generalized to any ID fulfilling the conditions mentioned in this paper. (Author)

  3. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    Science.gov (United States)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  4. Hydrological drought index insurance for irrigation districts in Spain

    Directory of Open Access Journals (Sweden)

    Teresa Maestro

    2016-08-01

    Full Text Available Hydrological droughts are a major risk for irrigated agriculture in many regions of the world. The aim of this article is to propose an insurance tool to help irrigators manage the risk of water scarcity in the framework of the Spanish Crop Insurance System (SCIS. Only the United States Insurance System provides this type of coverage, but has very restrictive conditions. To determine the type of insurance scheme that better fits with the SCIS and to the Spanish irrigated agriculture, an expert panel was held with the participation of all stakeholders involved in crop insurance. Following the expert panel conclusions, an hydrological drought index insurance (HDII addressed to irrigation districts (ID is proposed. It would compensate water deficits suffered in the whole ID. We detail the conditions that the ID should fulfill to be eligible for HDII. HDII is applied to the Bardenas Irrigation District V (ID-V in Spain, and the hedging effectiveness of the instrument is analyzed comparing ID-V’s gross margins with and without the insurance contract. Results suggest that the proposed insurance scheme could provide an effective means of reducing farmers’ vulnerability to water shortages and there is no major impediment for it to be included as a new line in the SCIS. This type of insurance can be generalized to any ID fulfilling the conditions mentioned in this paper.

  5. Effects of alternate drip irrigation and superabsorbent polymers on growth and water use of young coffee tree.

    Science.gov (United States)

    Liu, Xiaogang; Li, Fusheng; Yang, Qiliang; Wang, Xinle

    2016-07-01

    To obtain optimal irrigation management for young coffee tree, the effects of alternate drip irrigation (ADI) and superabsorbent polymers on physiology, growth, dry mass accumulation and water use on one-year old Coffea arabica L. tree were investigated. This experiment had three drip irrigation methods, i.e., conventional drip irrigation (CDI), alternate drip irrigation (ADI) and fixed drip irrigation (FDI), and two levels of superabsorbent polymers, i.e., no superabsorbent polymers (NSAP) and added superabsorbent polymers (SAP). Compared to CDI, ADI saved irrigation water by 32.1% and increased water use efficiency (WUE) by 29.9%. SAP increased root-shoot ratio, total dry mass and WUE by 20.3, 24.9 and 33.0%, respectively, when compared to NSAP. Compared to CDI with NSAP treatment, ADI with SAP treatment increased total dry mass by 13.8% and saved irrigation water by 34.4%, thus increased WUE by 73.4%, and it increased root activity, the contents of chlorophyll and soluble sugar in leaves by 162.4, 38.0 and 8.5%, but reduced the contents of proline and malondialdehyde in leaves by 7.2 and 9.7%, respectively. Thus, alternate drip irrigation with superabsorbent polymers increased the growth and WUE of young Coffea arabica L. tree and was optimal irrigation management for young coffee tree.

  6. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  7. Sustainability of irrigated crops under future climate: the interplay of irrigation strategies and cultivar responses

    Science.gov (United States)

    De Lorenzi, F.; Bonfante, A.; Alfieri, S.; Patanè, C.; Basile, A.; Di Tommasi, P.; Monaco, E.; Menenti, M.

    2012-04-01

    Climate evolution will cause significant changes in the quality and availability of water resources, affecting many sectors including food production, where available water resources for irrigation play a crucial role. Strategies focused on managing and conserving water are one way to deal with the impact; moreover concurring adaptation measurements will be needed to cope with the foreseen decline of water resource. This work deals with i) the impacts of climate change on water requirements of an horticultural crop, determined in an irrigated district in Southern Italy, ii) the possible irrigation scheduling options and their sustainability in the future, iii) the adaptation measurements that can be undertaken to protect production, relying on intra-specific biodiversity of agricultural crops. Two climate scenarios were considered: present climate (1961-90) and future climate (2021-2050), the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data set consists of daily time series of maximum and minimum temperature, and rainfall on a grid with spatial resolution of 35 km. The analysis of climate scenarios showed that significant increases in summer maximum daily temperature could be expected in 2021-2050 period. Soil water regime was determined by means of a mechanistic model (SWAP) of water flow in the soil-plant-atmosphere system. Twenty? soil units were identified in the district (in Sele Plain, Campania Region) and simulations were performed accounting for hydro-pedological properties of different soil units. Parameters of a generic tomato crop, in a rotation typical of the area, were used in simulations. Soil water balance was simulated in the present and future climate, both with optimal water availability and under constrains that irrigation schemes will pose. Indicators of soil water availability were calculated, in terms of soil water or evapotranspiration deficit. For several tomato

  8. Ecohydrology of agroecosystems: quantitative approaches towards sustainable irrigation.

    Science.gov (United States)

    Vico, Giulia; Porporato, Amilcare

    2015-02-01

    Irrigation represents one of the main strategies to enhance and stabilize agricultural productivity, by mitigating the effects of rainfall vagaries. In the face of the projected growth in population and in biofuel demands, as well as shifts in climate and dietary habits, a more sustainable management of water resources in agroecosystems is needed. The field of ecohydrology, traditionally focusing on natural ecosystems, has the potential to offer the necessary quantitative tools to assess and compare agricultural enterprises across climates, soil types, crops, and irrigation strategies, accounting for the unpredictability of the hydro-climatic forcing. Here, agricultural sustainability and productivity are assessed with reference to water productivity (defined as the ratio between yield and total supplied water), yields, water requirements, and their variability-a crucial element for food security and resource allocation planning. These synthetic indicators are quantified by means of a probabilistic description of the soil water balance and crop development. The model results allow the interpretation of patterns of water productivity observed in Zea mays (maize) and Triticum aestivum (wheat), grown under a variety of soils, climates, and irrigation strategies. Employing the same modeling framework, the impact of rainfall pattern and irrigation strategy on yield and water requirements is further explored. The obtained standard deviations of yield and water requirements suggest the existence of a nonlinear tradeoff between yield stabilization and variability of water requirements, which in turn is strongly impacted by irrigation strategy. Moreover, intermediate rainfall amounts are associated to the highest variability in yields and irrigation requirements, although allowing the maximum water productivity. The existence of these tradeoffs between productivity, reliability, and sustainability poses a problem for water management, in particular in mesic climates.

  9. Remote-Sensing-Based Evaluation of Relative Consumptive Use Between Flood- and Drip-Irrigated Fields

    Science.gov (United States)

    Martinez Baquero, G. F.; Jordan, D. L.; Whittaker, A. T.; Allen, R. G.

    2013-12-01

    higher efficiency of drip enables producers to convert larger percentages of pumped ground-water into evapotranspiration and reduces the ';return' of percolation ';losses' back to the ground-water system that previously re-recharged the aquifer. This study illustrates the usefulness of remote sensing techniques to evaluate spatial patterns of ET by different irrigation methods. These results illustrate a first-step quantitative tool that can be used by water resources managers in formulation of policy to limit net water consumption and maintain reliable water supply sources.

  10. Sleeping with the enemy: Dichotomies and polarisation in Indian policy debates on the environmental and social effects of irrigation

    OpenAIRE

    Mollinga, Peter P.

    2005-01-01

    Large-scale, government-managed canal irrigation represents the technocratic approach to water development. Large-scale irrigation faces many problems but they have been relegated to the periphery in the water debate generally and about large dams in particular. It has given rise to dichotomous thinking and polarised politics. This paper explores these issues in case of large canal irrigation in India. The debates imply implication for institutions, science and technology and developmental pr...

  11. Monthly Optimal Reservoirs Operation for Multicrop Deficit Irrigation under Fuzzy Stochastic Uncertainties

    Directory of Open Access Journals (Sweden)

    Liudong Zhang

    2014-01-01

    Full Text Available An uncertain monthly reservoirs operation and multicrop deficit irrigation model was proposed under conjunctive use of underground and surface water for water resources optimization management. The objective is to maximize the total crop yield of the entire irrigation districts. Meanwhile, ecological water remained for the downstream demand. Because of the shortage of water resources, the monthly crop water production function was adopted for multiperiod deficit irrigation management. The model reflects the characteristics of water resources repetitive transformation in typical inland rivers irrigation system. The model was used as an example for water resources optimization management in Shiyang River Basin, China. Uncertainties in reservoir management shown as fuzzy probability were treated through chance-constraint parameter for decision makers. Necessity of dominance (ND was used to analyse the advantages of the method. The optimization results including reservoirs real-time operation policy, deficit irrigation management, and the available water resource allocation could be used to provide decision support for local irrigation management. Besides, the strategies obtained could help with the risk analysis of reservoirs operation stochastically.

  12. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wilcox, Edmund [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goli, Sasank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as

  13. Evaluation of Hayrabolu Irrigation Scheme in Turkey Using Comparetive Performance Indicators

    Directory of Open Access Journals (Sweden)

    F. Konukcu

    2007-01-01

    Full Text Available Performance of Hayrabolu Irrigation Scheme of the Thrace district in Turkey was evaluated using some selected comparative indicators, classified into five groups, namely, agricultural, economic, water-use, physical and environmental performance by International Water Management Institute (IWMI. Agricultural performance, evaluated in different type of Gross Value of Production, was determined lower than that of the other respective national average. Analyses of water-use performance showed that relative water and relative irrigation supply were calculated 1.91 and 1.55 respectively, indicating that water distribution is not tightly related to crop water demand. Economic performance indicators showed that the scheme had a serious problem about the collection of water fees. Physical performance, evaluated in terms of irrigation ratio and sustainability of irrigated land, were poor. Under environmental performance studies, no damages such as waterlogging and salinity were detected in the irrigated area through excessive water use.

  14. Difficulties and Countermeasures of Developing Irrigation and Water Conservancy in New Era

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper expounds the great significance of irrigation and water conservancy for the agricultural development. Vigorously developing irrigation and water conservancy can promote high yield and stable yield of grain, effectively increase farmers’ income, alleviate the impact of drought on agricultural production, be conducive to the adjustment of agricultural production structure, and promote county economic development. The difficulties of developing irrigation and water conservancy in new era are analyzed as follows: the subject of liabilities defaults seriously; it lacks effective input security system; the quality of project degenerates badly; the agricultural technological development is slow. Corresponding policy suggestions are put forward as follows: make the input subject of irrigation and water conservancy clear; form stable investment channels; strengthen the organizing and guiding functions of grass-roots government; reinforce the coordination and management of capital; strengthen the promotion of agricultural technology; quicken the pace of reform of irrigation and water conservancy.

  15. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    Science.gov (United States)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of

  16. AGROCLIMATIC DETERMINANTS OF IRRIGATION NEEDS

    Directory of Open Access Journals (Sweden)

    Leszek Łabędzki

    2016-05-01

    Full Text Available The paper is a review of the so far used in Poland methods and criteria for assessing the needs of irrigation for planning purposes, the assessment because of the agroclimatic conditions and taking into account the soil water retention. Irrigation needs of the most are determined taking into account crop water deficits. This is the factor that is characterized by a shortage of precipitation in relation to the water requirements of crops. Some methods use only the meteorological parameters that determine the state of the atmosphere-soil-plant system, and some also take into account soil water retention and its availability for plants.

  17. Ghana - Ghana Compact I Irrigation Schemes

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga and...

  18. 77 FR 16828 - Turlock Irrigation District, & Modesto Irrigation District; Notice of Dispute Resolution Process...

    Science.gov (United States)

    2012-03-22

    ... Energy Regulatory Commission Turlock Irrigation District, & Modesto Irrigation District; Notice of... relicensing proceeding for the Don Pedro Hydroelectric Project No. 2299-075.\\1\\ Turlock Irrigation District and the Modesto Irrigation District (collectively, the Districts), are co-licensees for the Don...

  19. 75 FR 43958 - Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...

    Science.gov (United States)

    2010-07-27

    ... Energy Regulatory Commission Turlock Irrigation District and Modesto Irrigation District; Notice of...: May 24, 2010. d. Applicant: Turlock Irrigation District and Modesto Irrigation District. e. Name of.... g. Filed Pursuant to: Federal Power Act, 16 USC 791a-825r. h. Applicant Contact: Turlock...

  20. Cotton irrigation timing with variable seasonal irrigation capacities in the Texas south plains.

    Science.gov (United States)

    Within the Ogallala Aquifer Region of Texas, the irrigation capacity (IC) for a given field often changes within a growing season due to seasonal depletion of the aquifer, in season changes in crop irrigation needs in dry years, or consequences of irrigation volume limits imposed by irrigation distr...

  1. 75 FR 35778 - Modesto Irrigation District and Turlock Irrigation District; Notice of Preliminary Permit...

    Science.gov (United States)

    2010-06-23

    ... Energy Regulatory Commission Modesto Irrigation District and Turlock Irrigation District; Notice of... Competing Applications June 16, 2010. On February 1, 2010, Modesto Irrigation District and Turlock Irrigation District filed an application for a preliminary permit, pursuant to section 4(f) of the...

  2. SURDEV: surface irrigation software; design, operation, and evaluation of basin, border, and furrow irrigation

    NARCIS (Netherlands)

    Jurriëns, M.; Zerihun, D.; Boonstra, J.; Feyen, J.

    2001-01-01

    SURDEV is a computer package for the design, operation, and evaluation of surface irrigation. SURDEV combines three sub-programs: BASDEV (for basin irrigation), FURDEV (for furrow irrigation), and BORDEV for (border irrigation). This combination enables the user to simulate many of the problems invo

  3. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  4. Limitations to adopting regulated deficit irrigation in stone fruit orchards: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, N.; Nerilli, E.; Martinez-Cob, A.; Chalghaf, I.; Chalghaf, B.; Fliman, D.; Playan, E.

    2013-06-01

    Fruit production development is resulting in large commercial orchards with improved water management standards. While the agronomic and economic benefits of regulated deficit irrigation (RDI) have long been established, the local variability in soils and climate and the irrigation system design limits its practical applications. This paper uses a case study approach (a 225 ha stone fruit orchard) to unveil limitations derived from environmental spatial variability and irrigation performance. The spatial variability of soil physical parameters and meteorology in the orchard was characterized, and its implication on crop water requirements was established. Irrigation depths applied during 2004- 2009 were analysed and compared with crop water requirements under standard and RDI strategies. Plant water status was also measured during two irrigation seasons using stem water potential measurements. On-farm wind speed variability amounted to 55%, representing differences of 17% in reference evapotranspiration. During the study seasons, irrigation scheduling evolved towards deficit irrigation; however, the specific traits of RDI in stone fruits were not implemented. RDI implementation was limited by: 1) poor correspondence between environmental variability and irrigation system design; 2) insufficient information on RDI crop water requirements and its on-farm spatial variability within the farm; and 3) low control of the water distribution network. (Author) 45 refs.

  5. 华北平原高产粮区不同水氮管理下农田氮素的淋失特征%Characteristics of nitrate leaching in high yield farmland under different irrigation and fertilization managements in North China Plain

    Institute of Scientific and Technical Information of China (English)

    陈淑峰; 吴文良; 胡克林; 杜贞栋; 褚兆辉

    2011-01-01

    为了降低集约化种植制度下华北平原农田硝酸盐的淋失,该研究选择华北平原高产粮区,开展了为期2 a(2006-2008年)的田间试验,试验设计了2个灌溉处理(常规灌溉处理和基于土壤水分实时监控的优化灌溉处理)和2个施氮处理(传统施氮处理和优化施氮处理),利用张力计结合土壤溶液提取器对土体2 m处的水分和硝酸盐通量进行了监测和计算.研究结果显示,在相同施氮条件下,优化灌溉能够有效降低农田水分的渗漏量,渗漏量仅为传统灌溉渗漏量的50%左右.优化施氮能够有效降低2.1 m土体硝态氮含量,在相同灌溉条件下2.1 m土体硝态氮的残留量部在传统施氮的60%以下,而灌溉方式对硝态氮累积的影响不大.优化水氮管理相比传统水氮管理氮素的淋失量下降了60%,淋失率也下降了50%左右,粮食产量略有提高.%The objective of this study was to provide some suggestions on reducing nitrate leaching from cropland under the intensive cropping pattern in North China Plain. The experiment was carried in a typical high yield production area of Huantai county from 2006 to 2008. Two kinds of irrigations and two kinds of fertilizer N managements were designed,including traditional and optimal irrigation treatments, fertilized with Urea and controlled release fertilizer (CRF). Soil water content and nitrate content in soil solution at the depth of 2 m were observed by tensiometer and ceramic suction cup respectively. The amount of nitrate leaching was calculated by Darcy's law. The results showed that under the same fertilization condition, quantity of water drainage was obviously reduced optimal irrigation treatment, which was about 50% of that in traditional irrigation treatment. Under the same irrigation treatments, the nitrate content at the depth of 2.1 m soil profile was reduced sharply under the CRF treatment. Irrigation patterns had a insignificant effect on the amount of residual

  6. 微灌果园灌溉制度实时制定%Real Time Determination of Irrigation Scheduling for Micro-Irrigated Orchards

    Institute of Scientific and Technical Information of China (English)

    黄兴法; 李光永; 曾德超; 王伟; 孙乃健

    2002-01-01

    我国微滴灌面积已达13.3万hm2,并且目前的发展势头非常迅猛,而对工程建设后的灌溉管理重视不够,灌溉系统运行管理研究相对滞后,尤其是灌溉制度的实时制定技术.该文研究了一种面向用户的果树微灌实时灌溉制度制定的技术体系,通过"看天、看地、看作物"三要素来实时制定灌溉制度,并详细论述了实施步骤.该技术可为果树灌溉管理提供切实可行的技术途径.%Up to now the acreage under micro-irrigation in China is about 133 000 hm2, and will be enlarged quickly in the near future. Upon the installation of a micro-irrigation system, people usually do not care much about its management. The present research on operational management is far from practical needs, especially in irrigation scheduling. In this paper, a technique system of real time determination of irrigation scheduling for micro-irrigated orchards, adaptable for the farmers is presented. The irrigation scheduling is based on measurements on the following key factors: weather, soil and crop. The detailed procedures of the technique system are given in this paper. This system provides a technically practical way of orchard irrigation management, and the foundation in extension of micro-irrigation technology in China.

  7. Sediment transport in irrigation canals.

    NARCIS (Netherlands)

    Mendez V., N.J.

    1998-01-01

    The world population is rapidly increasing and is expected to double to about 10 billion by the year 2050. To support an increasing population in terms of food sufficiency, more and more water will be required. Irrigation is the most critical component of the modern package of inputs to effect high

  8. Hydrologic Simulation of a Winter Wheat–Summer Maize Cropping System in an Irrigation District of the Lower Yellow River Basin, China

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2017-01-01

    Full Text Available Conflicts between water supply and water demand are intensifying in irrigation districts along the Lower Yellow River due to climate change and human activities. To ensure both adequate food supply and water resource sustainability in China, the Soil and Water Assessment Tool (SWAT model was used to simulate the water balance and water use of agro-ecosystems in an irrigation district of the lower Yellow River Basin, China. Simulated average annual irrigation requirements decreased from 1969 to 2010. Irrigation requirements during the winter wheat season decreased owing to reduced reference evapotranspiration and increased precipitation. Annual evapotranspiration (ET increased with increasing irrigation volume, and differences among irrigation scenarios were mainly due to ET of winter wheat. Water deficit typically occurred during winter wheat seasons with less precipitation. Field seepage and surface runoff tended to occur in years with high precipitation, particularly during the summer maize season under full irrigation and scheduled irrigation scenarios. Frequent and heavy irrigation did not always lead to high water use efficiency. To cope with limited water resources in this region, it is necessary to properly irrigate crops based on soil water content and take full advantage of precipitation and surface runoff during the summer maize season.

  9. Senegal - Irrigation and Water Resource Management (Impact)

    Data.gov (United States)

    Millenium Challenge Corporation — Our goal is to propose the most rigorous and feasible evaluation design that answers the following research questions of interest to MCC: AGRICULTURE PRODUCTION Have...

  10. Simulation of Brackish Water Irrigation Management for Winter Wheat in the Yellow River Delta%黄河三角洲地区冬小麦微咸水灌溉制度模拟

    Institute of Scientific and Technical Information of China (English)

    庞桂斌; 徐征和; 刘培成; 郝爱鑫

    2016-01-01

    The rational development of shallow underground brackish water for agricultural irrigation,not only can solve the problem of water shortage,but also can descend underground water level to reduce the soil secondary salinization hazards,meanwhile,soil and water environment for crop growth will be improved. This paper selected the Yellow River delta as the study area,where freshwater is in short supply,groundwater is shallow and the soil water and salt movement is active. In order to investigate the most applicable irrigation schedule with slight saline water (2-5 g/L ) for winter wheat in the Yellow River delta,the validated finite element subsurface FLOW system (FEFLOW)model was used to evaluate the effect of various irrigation schedule on water and salt balance in soil,crop growth and groundwater table. The simulated results indicate that the optimal irrigation schedule of winter wheat is a)key time of irrigation is needed with enough slight saline water;b)two times of irrigation are needed with slight saline water mixed with fresh water and;c)three or four times of irrigation are needed with alternate of slight saline water and freshwater.%合理开发浅埋区地下微咸水用于灌溉不仅可以解决水资源短缺的问题,而且可以通过降低地下水位减轻土壤次生盐碱化,改善作物生长的水土环境。选择淡水资源紧缺、地下水埋深浅、土壤水盐运动剧烈的黄河三角洲地区,基于FEFLOW软件建立了引黄灌区的水流与溶质运移数值模拟模型,并应用率定和验证后的模型对多种微咸水(矿化度为2~5 g/L)灌溉方案进行模拟,综合考虑地下水位临界深度和冬小麦生育期耐盐极限,确立了较优的微咸水灌溉制度,包括一次性灌足关键微咸水、微咸水与淡水混合灌溉、微咸水与淡水轮流灌溉三种灌溉方式。

  11. Regulatory requirements for providing adequate veterinary care to research animals.

    Science.gov (United States)

    Pinson, David M

    2013-09-01

    Provision of adequate veterinary care is a required component of animal care and use programs in the United States. Program participants other than veterinarians, including non-medically trained research personnel and technicians, also provide veterinary care to animals, and administrators are responsible for assuring compliance with federal mandates regarding adequate veterinary care. All program participants therefore should understand the regulatory requirements for providing such care. The author provides a training primer on the US regulatory requirements for the provision of veterinary care to research animals. Understanding the legal basis and conditions of a program of veterinary care will help program participants to meet the requirements advanced in the laws and policies.

  12. AquaCrop model simulation under different irrigation water and nitrogen strategies.

    Science.gov (United States)

    Khoshravesh, Mojtaba; Mostafazadeh-Fard, Behrouz; Heidarpour, Manouchehr; Kiani, Ali-Reza

    2013-01-01

    On a global scale, irrigated agriculture consumes about 72% of available freshwater resources. Deficit irrigation can be applied in the field to save irrigation water and still lead to acceptable crop production. The AquaCrop model is a simulation model for management of irrigation and nitrogen fertilizer. This model is a new model that is accurate, robust and requires fewer data inputs compared with the other models. The purpose of this study was to simulate canopy cover, grain yield and water use efficiency (WUE) for soybean using the AquaCrop model. A field line source sprinkler irrigation system was conducted under full and deficit irrigation using different nitrogen fertilizer applications during two cropping seasons for soybean at Gorgan province in Iran. The simulation results showed a reasonably accurate prediction of yield, canopy cover and WUE in all cases (error less than 23%). The simulated pattern of canopy progression over time was close to measured values, with Willmott's index of agreement for all the cases being ≥0.95 for different parameters. The AquaCrop model has the ability to simulate the WUE of soybean under different irrigation water and nitrogen applications. This model is a useful tool for managing the crop water productivity.

  13. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  14. 水氮运筹对膜下滴灌棉花光合特性及产量形成的影响%Effects of water and nitrogen management modes on the leaf photosynthetic characters and yield formation of cotton with under-mulch drip irrigation.

    Institute of Scientific and Technical Information of China (English)

    罗宏海; 张宏芝; 陶先萍; 张亚黎; 张旺锋

    2013-01-01

    Taking different genotype cotton varieties as test materials, a soil column culture experiment was conducted to study the effects of water and nitrogen management modes on the photosynthetic characters and yield formation of cotton with under-mulch drip irrigation in Xinjiang, Northwest China. Under the management mode W4N2, i. e. , pre-sowing irrigation + limited drip irrigation before full-flowering + abundant drip irrigation after full-flowering in combining with basal 20% N + topdressing 80% N, the chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (gs) , actual photochemical efficiency of photosystem Ⅱ (ΦPSⅡ) ,adn photochemical quenching coefficient (qp) at full-flowering stage all decreased significantly, the non-photochemical quenching (NPQ) increased, and the aboveground dry matter accumulation was inhibited, as compared with those under common drip irrigation. From full-flowering stage to boll-opening stage, the chlorophyll content, gs,, Pn, ΦPSⅡ , and qP increased with increasing water and nitrogen supply, and the aboveground dry matter accumulation was enhanced by compensation, which benefited the translocation and distribution of photosynthates to seed cotton. Under the fertilization mode of basal 20% N + topdressing 80% N, the seed cotton yield of Xinluzaol3 was the highest in treatment pre-sowing irrigation + common drip irrigation (W3) , but that of Xinluzao43 was the highest in treatment pre-sowing irrigation + limited drip irrigation before full-flowering + abundant drip irrigation after full-flowering (W4 ) . It was concluded that under the condition of pre-sowing irrigation, to appropriately decrease the water and nitrogen supply before full-flowering stage and increase the water and nitrogen supply at middle and late growth stages could extend the active photosynthesis duration and promote the photosynthates allocation to reproductive organ, which would fully exploit the yield-increasing potential of cotton with

  15. Saline Ground Water and Irrigation Water on Root Zone Salinity

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Salinisation of land and rivers is a problem of national importance in India. Appropriate land management options to alleviate salinisation should be chosen with knowledge of the effects of land management on stream flow, stream salinity, stream salt load and land productivity. The Management of Catchment Salinisation (MCS modelling approach has been described in earlier work. It links a one-dimensional soil water model with a groundwater model to investigate the effects of management options in study areas of approximately 50 km2. The one dimensional model is used to characterize the annual soil water balance as a function of underlying aquifer Vpotential for all required combinations of soil, vegetation and groundwater salinity. It includes the effect of salt accumulation on plant water use. A groundwater model is then used to estimate the depth to water table across the study area that reflects the topography, hydrogeology and the distribution of vegetation. The MCS model is used to investigate the potential effects of future land use scenarios on catchment salt and water balance. Land use scenarios that have been considered include: forest plantations, revegetation with native trees and shrubs, and development of small areas of crops (10 to 20 ha irrigated with groundwater. This project focuses on the development of small crop areas irrigated with groundwater and investigates the sustainability of these schemes. It also compares the reduction of catchment salt load export under irrigation development with the reduction under afforestation

  16. Is the Stock of VET Skills Adequate? Assessment Methodologies.

    Science.gov (United States)

    Blandy, Richard; Freeland, Brett

    In Australia and elsewhere, four approaches have been used to determine whether stocks of vocational education and training (VET) skills are adequate to meet industry needs. The four methods are as follows: (1) the manpower requirements approach; (2) the international, national, and industry comparisons approach; (3) the labor market analysis…

  17. Quasi-Type δ Semigroups with an Adequate Transversal

    Institute of Scientific and Technical Information of China (English)

    Shou Feng WANG

    2011-01-01

    In this paper,some properties of quasi-type δ semigroups with an adequate transversal are explored.In particular,abundant semigroups with a cancellative transversal are characterized.Our results generalize and enrich Saito's results on quasi-orthodox semigroups with an inverse transversal.

  18. What is an Adequate Standard of Living During Retirement?

    NARCIS (Netherlands)

    Binswanger, J.; Schunk, D.

    2008-01-01

    Many economists and policy-makers argue that households do not save enough to maintain an adequate standard of living during retirement. However, there is no consensus on the answer to the underlying question what this standard should be, despite the fact that it is crucial for the design of saving

  19. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Science.gov (United States)

    2010-01-01

    ... identifiable personal data and automated systems shall be adequately trained in the security and privacy of... records in which identifiable personal data are processed or maintained, including all reports and output... personal records or data; must minimize, to the extent practicable, the risk that skilled technicians...

  20. A Fuzzy Control Irrigation System For Cottonfield

    Science.gov (United States)

    Zhang, Jun; Zhao, Yandong; Wang, Yiming; Li, Jinping

    A fuzzy control irrigation system for cotton field is presented in this paper. The system is composed of host computer, slave computer controller, communication module, soil water sensors, valve controllers, and system software. A fuzzy control model is constructed to control the irrigation time and irrigation quantity for cotton filed. According to the water-required rules of different cotton growing periods, different irrigation strategies can be carried out automatically. This system had been used for precision irrigation of the cotton field in Langfang experimental farm of Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences in 2006. The results show that the fuzzy control irrigation system can improve cotton yield and save much water quantity than the irrigation system based on simple on-off control algorithm.

  1. A Dynamic Decision Support System for Farm Water Management in Surface Irrigation: Model Development and Application Un Sistema de Soporte Dinámico de Decisión para la Gestión de Agua Predial en Riego Superficial: Desarrollo y Aplicación del Modelo

    Directory of Open Access Journals (Sweden)

    Carlos I. Flores

    2010-06-01

    Full Text Available An online dynamic decision support system (DDSS was developed, to support the farm water management in surface irrigation. The online DDSS was based on the formulation and integration of three components: a dynamic-relational data base, an administrator model, and a graphical user interface. The DDSS allows routines of actualization, edition and addition of online data, providing information in real time. The online DDSS was applied in an orange orchard (Citrus sinensis L. Osbeck cv. Valencia Late under furrow irrigation. The results pointed out that the time irrigation cutoff was the main significant management factor, to decrease the hazard of leaching, superficial runoff and percolation. Applying the results obtained with the DDSS, furrow irrigation efficiencies could be improved up to values equals to 95.89% for application efficiency and 94.61% for total distribution efficiency. As a conclusion, the DDSS demonstrated to be a useful tool to assist the decision making process, providing proper information for the management of the available water resource at farm level.Se desarrolló un sistema de soporte dinámico de decisión (SSDD en línea, con el objetivo de asistir la gestión del agua predial en riego superficial. El SSDD en línea se basó en la formulación e integración de tres componentes: una base de datos relacional dinámica, un modelo administrador y una interfaz gráfica de usuario. El SSDD permite rutinas de actualización, edición y adición de información en línea, proporcionando información en tiempo real. El SSDD en línea se aplicó en un huerto de naranjos (Citrus sinensis L. Osbeck cv. Valencia Late bajo riego por surcos. Los resultados indicaron que el tiempo de corte es la variable significativa de decisión para disminuir el riesgo de lixiviación, escorrentía superficial y percolación. Aplicando los resultados obtenidos con el SSDD, las eficiencias del riego por surco podrían mejorarse, alcanzando valores

  2. Manejo da irrigação e fertirrigação com nitrogênio sobre as características químicas da videira 'Niágara Rosada' Irrigation management and fertirrigation with nitrogen on the chemical characteristics of the grapevine 'Niagara Rosada'

    Directory of Open Access Journals (Sweden)

    Cristiani Campos Martins Busato

    2011-07-01

    Full Text Available A qualidade da uva pode responder ao manejo da irrigação e ao ajuste da adubação nitrogenada. Assim, este trabalho teve como objetivo estudar o efeito do manejo de irrigação e doses de nitrogênio sobre a qualidade da uva 'Niagara Rosada' no município de Colatina-ES. Foram avaliadas três doses de nitrogênio, aplicadas via fertirrigação: 35, 70 e 140g planta-1 e quatro estratégias de manejo de irrigação. No início do experimento até a fase de maturação das bagas, todos os tratamentos receberam a mesma lâmina de irrigação, elevando-se a umidade do solo à capacidade de campo (M1=100%. Após este período, foram avaliados mais três estratégias de manejo de irrigação: m²=67%, M3=33% e M4=0% da lâmina correspondente ao tratamento M1. Foram avaliados os teores de sólidos solúveis (SS, pH e acidez titulável (AT. Os resultados indicaram que os tratamentos sob déficit hídrico (M3 e M4, nas doses de 70 e 140g planta-1 apresentaram maiores teores de SS e pH das bagas e diminuição dos valores de AT.The quality of the grape can respond to irrigation and N fertilization adjustment. So, this research aimed to study the effect of irrigation management and doses of nitrogen on 'Niagara Rosada' grape quality in Colatina (ES municipality. It was evaluated three doses of nitrogen applied by fertigation: 35, 70 and 140g plant-1 and four strategies of irrigation management. From the beginning of the experiment until the stage of maturation, all treatments received the same water depth, increasing soil moisture at field capacity (M1=100%. After this period, it was evaluated three strategies for irrigation management: m²=67%, M3=33% and M4=0% of the depth corresponding to the M1 treatment. It was appraised the content of soluble solids (SS, pH and acidity (AT. The results indicated that the treatments under water stress, in the rates of 70 and 140g plant-1 presented larger rates of SS and pH of the berries and decreasing values of AT.

  3. Does it pay to integrate irrigated forages in a beef cattle breeding operation in north Queensland?

    OpenAIRE

    2014-01-01

    The northern Australian beef industry accounts for approximately half of the national beef herd. It is currently challenged by a range of factors including decline in beef prices, limited live export trade, large farm debt levels, and low return on assets managed. Access to irrigation has been identified as one factor with potential to contribute to growth of the northern Australian beef industry. The development of irrigation for growing pasture and forage crops could extend the ability to s...

  4. THE SUSTAINABILITY OF THE AGRICULTURAL SYSTEMS WITH SMALL IRRIGATION. THE CASE OF SAN PABLO ACTIPAN

    OpenAIRE

    René Neri Noriega; Ignacio Ocampo Fletes; Juan Francisco Escobedo Castillo; Andrés Pérez Magaña; Susana Edith Rappo Miguez

    2008-01-01

    Was realized an analysis of the sustainability of the agricultural systems with small irrigation that use water of the underground in San Pablo, Actipan, Tepeaca, Puebla state. The analysis was carried out with agroecological focus, using the Framework for the Evaluation of Systems of Management Incorporating Indicators of Sustainability (MESMIS). It was realized a transversal study comparing two irrigation societies: "The Chamizal” (reference system) and “Lázaro Cárdenas" (alternative system...

  5. The future of irrigated agriculture under environmental flow requirements restrictions

    Science.gov (United States)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel; Obersteiner, Michael; Ludwig, Fulco

    2016-04-01

    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while

  6. Aggregate stability in citrus plantations. The impact of drip irrigation

    Science.gov (United States)

    Cerdà, A.; Mataix-Solera, J.; Arcenegui, V.

    2012-04-01

    Soil aggregate stability is a key property for soil and water conservation, and a synthetic parameter to quantify the soil degradation. Aggregation is relevant in soils where vegetation cover is scarce (Cerdà, 1996). Most of the research carried out to determine the soil aggregate stability was done in forest soils (Mataix-Solera et al., 2011) and little is done on farms (Cerdà, 2000). The research have show the effect of vegetation cover on soil aggregate stability (Cerdà, 1998) but little is known when vegetation is scarce, rare or not found such it can be seeing in agriculture soils. Then, aggregation is the main factor to control the soil losses and to improve the water availability. Moreover, agriculture management can improve the soil aggregate characteristics and the first step in this direction should be to quantify the aggregate stability. There is no information about the aggregate stability of soils under citrus production, although the research did show that the soil losses in the farms with citrus plantations is very high (Cerdà et al., 2009), and that aggregation should play a key role as the soils are bare due to the widespread use of herbicides. From 2009 to 2011, samples were collected in summer and winter in a chemically managed farm in Montesa, Eastern Iberian Peninsula. Ten irrigated patches and ten non-irrigated patches were selected to compare the effect of the drip irrigation on the soil aggregate stability. The Ten Drop Impacts (TDI) and the Counting the number of drops (CND) tests were applied at 200 aggregates (10 samples x 10 aggregates x 2 sites) in winter and summer in 2009, 2010 and 2011. The results show that the irrigated patches had TDI values that ranged from 43 to 56 % and that the non-irrigated reached values of 41 to 54 %. The CND samples ranged from 29 to 38 drops in the non-irrigated patches to 32 to 42 drop-impacts in the irrigated soil patches. No trends were found from winter to summer during the three years time period

  7. Irrigation infrastructure and water appropriation rules for food security

    Science.gov (United States)

    Gohar, Abdelaziz A.; Amer, Saud A.; Ward, Frank A.

    2015-01-01

    In the developing world's irrigated areas, water management and planning is often motivated by the need for lasting food security. Two important policy measures to address this need are improving the flexibility of water appropriation rules and developing irrigation storage infrastructure. Little research to date has investigated the performance of these two policy measures in a single analysis while maintaining a basin wide water balance. This paper examines impacts of storage capacity and water appropriation rules on total economic welfare in irrigated agriculture, while maintaining a water balance. The application is to a river basin in northern Afghanistan. A constrained optimization framework is developed to examine economic consequences on food security and farm income resulting from each policy measure. Results show that significant improvements in both policy aims can be achieved through expanding existing storage capacity to capture up to 150 percent of long-term average annual water supplies when added capacity is combined with either a proportional sharing of water shortages or unrestricted water trading. An important contribution of the paper is to show how the benefits of storage and a changed water appropriation system operate under a variable climate. Results show that the hardship of droughts can be substantially lessened, with the largest rewards taking place in the most difficult periods. Findings provide a comprehensive framework for addressing future water scarcity, rural livelihoods, and food security in the developing world's irrigated regions.

  8. Scale transformation of utilization coefficient of irrigation water in riverine irrigation district%河网区灌溉水利用系数的尺度转换

    Institute of Scientific and Technical Information of China (English)

    俞双恩; 于智恒; 郭杰; 顾京; 李彧玮; 佘冬立

    2015-01-01

    大尺度灌区灌溉水利用系数的测定条件难以保障,而小尺度灌区的灌溉水利用系数可以通过试验测定,如何通过小尺度灌区的灌溉水利用系数来预测大尺度灌区的灌溉水利用系数,就有必要对灌溉水利用系数的尺度转换问题进行研究。河网灌区的特点是没有统一的水源引水口,通常是由若干个小灌区合并成一个大灌区,是一个典型的自相似系统。论文以地处里下河水网地区的盐城市水稻灌区作为研究对象,于2012-2013年对9个县区不同规模的样点灌区进行了灌溉水利用系数的试验观测,利用分形理论研究了河网灌区的分形特征,运用盒维数法计算了盐城市河网灌区和不同尺度灌区的盒维数,其盒维数介于1.703~1.996之间,并随着面积尺度的增加而增大。基于灌溉水利用系数与灌区面积、盒维数的相关性,建立了河网灌区灌溉水利用系数尺度转换模型,并通过验证,表明该尺度转换模型能够较好地预测河网灌区灌溉水利用系数,同时也能够很好地实现灌溉水利用系数的尺度转换,为分析河网灌区灌溉水利用系数及其尺度效应提供了新途径。%Utilization coefficient of irrigation water is a key indicator to measure agricultural water-saving efficiency, and it reflects comprehensively the level of water management and irrigation technology and so on. Obtaining reliable data of the utilization coefficient of irrigation water by direct in situ determination methods is difficult in large irrigation districts, but it can be determined by field experiments in the small-scale area. Hence, one of the challenges is to conduct researches on scale transformation in order to predict the utilization coefficient of irrigation water at large-scale irrigation district by the measured utilization coefficient of irrigation water at small irrigation district. The main characteristic of

  9. IRRIGATION OF ORNAMENTAL PLANT NURSERY

    Directory of Open Access Journals (Sweden)

    Eduardo de Aguiar do Couto

    2013-01-01

    Full Text Available Airports consume significant amounts of water which can be compared to the volume consumed by mid-size cities, thus practices aimed at reducing water consumption are important and necessar y. The objective of this study was to assess the reuse potential of sewage effluent produced at a mid-size international airport for nursery irri gation. The sewage treatment system consisted of a facultative pond followed by a constructed wetland, which were monitored during one hydrological year a nd the parameters COD, pH, solids, nitrogen, phosphorus and Escherichia coli we re analyzed. Removal efficiencies of 85% and 91% were achieved for C OD and solids, respectively. Removal efficiencies for ammonia nitrogen a nd total phosphorus were 77% and 59%, respectively. In terms of E. coli concen tration, the treated effluent met the recommendations by the World Health Organization for reuse in irrigation with the advantage of providing high levels of residual nutrient. The ornamental species Impatiens walleriana was irrigated with treated sewage effluent and plant growth characteristics were evalua ted. The experiment showed that reuse can enhance plant growth without signi ficantly affecting leaf tissue and soil characteristics. This study highlighted th e importance of simple technologies for sewage treatment especially in count ries which still do not present great investment in sanitation and proved that effluent reuse for landscape irrigation can provide great savings of water and financial resources for airport environments.

  10. Arabidopsis: an adequate model for dicot root systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of th...

  11. Arabidopsis: An Adequate Model for Dicot Root Systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of t...

  12. Quality of Irrigation Water and Soil Characteristics of Watari Irrigation Project

    Directory of Open Access Journals (Sweden)

    Adamu G.K

    2013-01-01

    Full Text Available This research was carried out in Watari River Irrigation Project, located on the slopes of Watari River valley in Bagwai local government of Kano state with aim of assessing soil properties and quality of irrigation water. A total of 32 representative soil samples were randomly collected from the eight sectors. Seven water samples were also collected from the sectors and the dam. The samples were treated and analyzed for physical, chemical and fertility related indices. Typically, the quality of irrigation water is assessed based on the salt and salt inducing contents, the presence and abundance of micro and macro nutrients, trace elements, alkalinity, acidity, hardness and the amount of suspended solids. The results are grouped into general quality parameters which included salinity and salt inducing cations and anions and pollutants. The Findings indicated that the mean pH ranged from 7.10 to 7.50, while the mean EC values across the sectors ranged from 50 to 60µS/m. The mean metal cations in the water ranged from 15.00 to 20.07; 5.41 to 16.22; 3.29 to 6.57; 14.83 to 15.00cmol/l for Na, Ca, Mg and K respectively. The SAR ranged from 6.87 to 10.17, while the range of TDS values was from 31.00 to 36.00mg/l. The mean carbonates concentration detected in the irrigation water was from 4.00 to 12.00cmol/l, while the mean bicarbonate content ranged from 22.00 to 55.00cmol/l. The ranges for chloride and nitrate were 9.87 to 31.58 and 1.00 to 1.65mg/kg respectively. The residual sodium carbonate (RSC ranged from 8.00 to 30.69.There was no detectable NH4 in the irrigation water. The results have shown that all the eight sectors had sand dominated texture. The mean pH in the soil ranged from 5.50 to 5.95. The EC ranged between 0.49 to 1.30cmol/kg, the Clranged between 0.29 to 1.07cmol/kg and SAR ranged between 0.13to 0.72. The mean soil organic carbon across the sectors ranged between 0.62 to 1.49%. The total nitrogen ranged between 0.0043 to 0

  13. Behavioural modelling of irrigation decision making under water scarcity

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    for farmers in areas of aquifer depletion or recurrent drought, the stochastic model demonstrates that partial-area irrigation is optimal irrespective of the size of water supply restrictions. This effect is not produced by the aggregate model, which cannot account for the variability of the production function with changes in irrigated area that control intraseasonal irrigation application rates. In addition, the aggregate model overstates the willingness of a risk-averse farmer to adjust on the intensive margin in response to water supply restrictions. This is due to the inability of aggregate models to specify correctly the production risk associated with intensive margin adjustments. Consequently, aggregate models give unrealistic estimates of water demand and underestimate the negative impacts on profitability of declining groundwater resources. Reliance on aggregate models will limit the ability of socio-hydrology to guide policy responses to groundwater scarcity. Our stochastic methodology provides a more realistic tool to study the management of groundwater in coupled human-water systems.

  14. Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California

    Science.gov (United States)

    Fulton, A.; Snyder, R.; Hillyer, C.; English, M.; Sanden, B.; Munk, D.

    2012-04-01

    Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California Allan Fulton, Richard Snyder, Charles Hillyer, Marshall English, Blake Sanden, and Dan Munk Adoption of scientific methods to decide when to irrigate and how much water to apply to a crop has increased over the last three decades in California. In 1988, less than 4.3 percent of US farmers employed some type of science-based technique to assist in making irrigation scheduling decisions (USDA, 1995). An ongoing survey in California, representing an industry irrigating nearly 0.4 million planted almond hectares, indicates adoption rates ranging from 38 to 55 percent of either crop evapotranspiration (ETc), soil moisture monitoring, plant water status, or some combination of these irrigation scheduling techniques to assist with making irrigation management decisions (California Almond Board, 2011). High capital investment to establish fruit and nut crops, sensitivity to over and under-irrigation on crop performance and longevity, and increasing costs and competition for water have all contributed to increased adoption of scientific irrigation scheduling methods. These trends in adoption are encouraging and more opportunities exist to develop improved irrigation scheduling tools, especially computer decision-making models. In 2009 and 2010, an "On-line Irrigation Scheduling Advisory Service" (OISO, 2012), also referred to as Online Irrigation Management (IMO), was used and evaluated in commercial walnut, almond, and French prune orchards in the northern Sacramento Valley of California. This specific model has many features described as the "Next Generation of Irrigation Schedulers" (Hillyer, 2010). While conventional irrigation management involves simply irrigating as needed to avoid crop stress, this IMO is designed to control crop stress, which requires: (i) precise control of crop water availability (rather than controlling applied water); (ii) quantifying crop

  15. Malaria vector control practices in an irrigated rice agro-ecosystem in central Kenya and implications for malaria control

    Directory of Open Access Journals (Sweden)

    Ng'ang'a Peter N

    2008-07-01

    Full Text Available Abstract Background Malaria transmission in most agricultural ecosystems is complex and hence the need for developing a holistic malaria control strategy with adequate consideration of socio-economic factors driving transmission at community level. A cross-sectional household survey was conducted in an irrigated ecosystem with the aim of investigating vector control practices applied and factors affecting their application both at household and community level. Methods Four villages representing the socio-economic, demographic and geographical diversity within the study area were purposefully selected. A total of 400 households were randomly sampled from the four study villages. Both semi-structured questionnaires and focus group discussions were used to gather both qualitative and quantitative data. Results The results showed that malaria was perceived to be a major public health problem in the area and the role of the vector Anopheles mosquitoes in malaria transmission was generally recognized. More than 80% of respondents were aware of the major breeding sites of the vector. Reported personal protection methods applied to prevent mosquito bites included; use of treated bed nets (57%, untreated bed nets (35%, insecticide coils (21%, traditional methods such as burning of cow dung (8%, insecticide sprays (6%, and use of skin repellents (2%. However, 39% of respondents could not apply some of the known vector control methods due to unaffordability (50.5%, side effects (19.9%, perceived lack of effectiveness (16%, and lack of time to apply (2.6%. Lack of time was the main reason (56.3% reported for non-application of environmental management practices, such as draining of stagnant water (77% and clearing of vegetations along water canals (67%. Conclusion The study provides relevant information necessary for the management, prevention and control of malaria in irrigated agro-ecosystems, where vectors of malaria are abundant and disease

  16. Gender and power contestations over water use in irrigation schemes: Lessons from the lake Chilwa basin

    Science.gov (United States)

    Nkhoma, Bryson; Kayira, Gift

    2016-04-01

    Over the past two decades, Malawi has been adversely hit by climatic variability and changes, and irrigation schemes which rely mostly on water from rivers have been negatively affected. In the face of dwindling quantities of water, distribution and sharing of water for irrigation has been a source of contestations and conflicts. Women who constitute a significant section of irrigation farmers in schemes have been major culprits. The study seeks to analyze gender contestations and conflicts over the use of water in the schemes developed in the Lake Chilwa basin, in southern Malawi. Using oral and written sources as well as drawing evidence from participatory and field observations conducted at Likangala and Domasi irrigation schemes, the largest schemes in the basin, the study observes that women are not passive victims of male domination over the use of dwindling waters for irrigation farming. They have often used existing political and traditional structures developed in the management of water in the schemes to competitively gain monopoly over water. They have sometimes expressed their agency by engaging in irrigation activities that fall beyond the control of formal rules and regulations of irrigation agriculture. Other than being losers, women are winning the battle for water and land resources in the basin.

  17. Quantifying the link between crop production and mined groundwater irrigation in China.

    Science.gov (United States)

    Grogan, Danielle S; Zhang, Fan; Prusevich, Alexander; Lammers, Richard B; Wisser, Dominik; Glidden, Stanley; Li, Changsheng; Frolking, Steve

    2015-04-01

    In response to increasing demand for food, Chinese agriculture has both expanded and intensified over the past several decades. Irrigation has played a key role in increasing crop production, and groundwater is now an important source of irrigation water. Groundwater abstraction in excess of recharge (which we use here to estimate groundwater mining) has resulted in declining groundwater levels and could eventually restrict groundwater availability. In this study we used a hydrological model, WBMplus, in conjunction with a process based crop growth model, DNDC, to evaluate Chinese agriculture's recent dependence upon mined groundwater, and to quantify mined groundwater-dependent crop production across a domain that includes variation in climate, crop choice, and management practices. This methodology allowed for the direct attribution of crop production to irrigation water from rivers and reservoirs, shallow (renewable) groundwater, and mined groundwater. Simulating 20 years of weather variability and circa year 2000 crop areas, we found that mined groundwater fulfilled 20%-49% of gross irrigation water demand, assuming all demand was met. Mined groundwater accounted for 15%-27% of national total crop production. There was high spatial variability across China in irrigation water demand and crop production derived from mined groundwater. We find that climate variability and mined groundwater demand do not operate independently; rather, years in which irrigation water demand is high due to the relatively hot and dry climate also experience limited surface water supplies and therefore have less surface water with which to meet that high irrigation water demand.

  18. Mapping Irrigated Areas in the Tunisian Semi-Arid Context with Landsat Thermal and VNIR Data Imagery

    Science.gov (United States)

    Rivalland, Vincent; Drissi, Hsan; Simonneaux, Vincent; Tardy, Benjamin; Boulet, Gilles

    2016-04-01

    Our study area is the Merguellil semi-arid irrigated plain in Tunisia, where the water resource management is an important stake for governmental institutions, farmer communities and more generally for the environment. Indeed, groundwater abstraction for irrigation is the primary cause of aquifer depletion. Moreover, unregistered pumping practices are widespread and very difficult to survey by authorities. Thus, the identification of areas actually irrigated in the whole plain is of major interest. In order to map the irrigated areas, we tried out a methodology based on the use of Landsat 7 and 8 Land Surface Temperature (LST) data issued from atmospherically corrected thermal band using the LANDARTs Tool jointly with the NDVI vegetation indices obtained from visible ane near infrared (VNIR) bands. For each Landsat acquisition during the years 2012 to 2014, we computed a probability of irrigation based on the location of the pixel in the NDVI - LST space. Basically for a given NDVI value, the cooler the pixel the higher its probability to be irrigated is. For each date, pixels were classified in seven bins of irrigation probability ranges. Pixel probabilities for each date were then summed over the study period resulting in a probability map of irrigation. Comparison with ground data shows a consistent identification of irrigated plots and supports the potential operational interest of the method. However, results were hampered by the low Landsat LST data availability due to clouds and the inadequate revisit frequency of the sensor.

  19. Water Use and Crop Coefficients in Sprinkler Irrigated Rice

    Directory of Open Access Journals (Sweden)

    Antonino Spanu

    Full Text Available Field experiments were carried out during the years 2002, 2004, 2005 and 2006 to analyze water-soil-atmosphere interactions in sprinkler irrigated rice. The research was carried out in Sardinia (39º 59’ N; 8º 40’ E, at altitude 15 m. The cultivars used in the experiments, respectively in 2002 and in 2004-2005-2006, were Irat 212 and Eurosis. In each year cultivars were subjected to the same crop management. Irrigation was applied since the emergence with the sprinkler method, taking into account the loss of water from ‘Class A’ pan evaporation. Soil water content was monitored at 0.10 m intervals until 1.00-m depth using a ‘Diviner 2000’ (Sentek. In 2002 seven irrigation scheduling treatments were compared. In 2004, 2005, 2006 irrigation treatments provided for optimal soil water conditions during the growing season. In 2002 the results highlighted: 1 0-0.20 m depth was the most important layer for crop water uptake and the best correlated layer with rice rough yield; 2 the positive relationship between yield and water supply was significant until 6500 m3 ha-1 of water applied. Further seasonal irrigation volumes did not increase significantly yield. In 2004, 2005 and 2006 the analysis of the soil water balance at different crop phenological stages allowed to estimate crop coefficients (Kc using the Penman-Monteith equation and the ‘Class A’ pan evaporation (Kcev. Kc varied over the three-year period on average from 0.90 to 1.07 and 0.97, respectively for the emergence-end of tillering, end of tillering-heading and heading-maturing periods, while crop coefficients as a ratio between maximum crop evapotranspiration (ETc and Epan, Kcev ranged from 0.78 to 0.92 and 0.81 for the same time periods.

  20. Effects of Irrigation in India on the Atmospheric Water Budget

    NARCIS (Netherlands)

    Tuinenburg, O.A.; Hutjes, R.W.A.; Stacke, T.; Wiltshire, A.; Lucas-Picher, P.

    2014-01-01

    The effect of large-scale irrigation in India on the moisture budget of the atmosphere was investigated using three regional climate models and one global climate model, all of which performed an irrigated run and a natural run without irrigation. Using a common irrigation map, year-round irrigation

  1. Hydrochemical characterization of a groundwater aquifer and its water quality in relation to irrigation in the Jinghuiqu irrigation district of China.

    Science.gov (United States)

    Liu, Xiuhua; Li, Lin; Hu, Anyan

    2013-03-01

    The Jinghuiqu irrigation district is located in the semi-arid regions of northwestern China, where groundwater is the most important natural source for local industry, agriculture and residents. The present work was conducted in the Jinghuiqu irrigation district to characterize the groundwater aquifer, which has undergone long-term flood irrigation for over 2000 years. Isotopic and hydrochemical analyses, along with geological and hydrogeological tools, were used to determine the chemical properties and evolutionary processes of the groundwater aquifer. Results showed that the groundwater chemistry had changed significantly from 1990 to 2009. Water with concentrations of CaMgSO4 had decreased significantly, from 60% to 28% of the total water samples, during the period, while water with concentrations of NaSO4 and NaCl increased significantly, from 28% to 72%. The salinity of the groundwater increased rapidly and the affected area had expanded to most of the irrigation district. Stable isotope studies showed that most of the groundwater concentrations were derived from sulfate mineral dissolution. The minerals saturation indices (SI), ion ratios and oxygen isotope values of the groundwater indicated that the shallow groundwater had mainly experienced mineral dissolution, cation exchange, and mixing of the irrigated surface waters and groundwater. The groundwater quality had continuously evolved toward salinization as concentrations of SO4(2-) and Na+ grew to dominate it. Water quality risk analyses showed that most of the saline groundwater is not suitable for domestic and irrigation uses, especially in the middle and eastern parts of the irrigation district. These findings indicate that the irrigation district should strengthen the groundwater resources management.

  2. Genetic modification of preimplantation embryos: toward adequate human research policies.

    Science.gov (United States)

    Dresser, Rebecca

    2004-01-01

    Citing advances in transgenic animal research and setbacks in human trials of somatic cell genetic interventions, some scientists and others want to begin planning for research involving the genetic modification of human embryos. Because this form of genetic modification could affect later-born children and their offspring, the protection of human subjects should be a priority in decisions about whether to proceed with such research. Yet because of gaps in existing federal policies, embryo modification proposals might not receive adequate scientific and ethical scrutiny. This article describes current policy shortcomings and recommends policy actions designed to ensure that the investigational genetic modification of embryos meets accepted standards for research on human subjects.

  3. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; Sluis, van der L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  4. 78 FR 37538 - Idaho Irrigation District; New Sweden Irrigation District; Notice of Preliminary Permit...

    Science.gov (United States)

    2013-06-21

    ... Energy Regulatory Commission Idaho Irrigation District; New Sweden Irrigation District; Notice of... Competing Applications On April 19, 2013, the Idaho and New Sweden Irrigation Districts, filed a joint... Street, Idaho Falls, Idaho 83404; phone: (208) 522-2356. Mr. Louis Thiel, Chairman, New Sweden...

  5. The simulation of cropping pattern to improve the performance of irrigation network in Cau irrigation area

    Science.gov (United States)

    Wahyuningsih, Retno; Rintis Hadiani, RR; Sobriyah

    2017-01-01

    Cau irrigation area located in Madiun district, East Java Province, irrigates 1.232 Ha of land which covers Cau primary channel irrigation network, Wungu Secondary channel irrigation network, and Grape secondary channel irrigation network. The problems in Cau irrigation area are limited availability of water especially during the dry season (planting season II and III) and non-compliance to cropping patterns. The evaluation of irrigation system performance of Cau irrigation area needs to be done in order to know how far the irrigation system performance is, especially based on planting productivity aspect. The improvement of irrigation network performance through cropping pattern optimization is based on the increase of water necessity fulfillment (k factor), the realization of planting area and rice productivity. The research method of irrigation system performance is by analyzing the secondary data based on the Regulation of Ministry of Public Work and State Minister for Public Housing Number: 12/PRT/M/2015. The analysis of water necessity fulfillment (k factor) uses Public Work Plan Criteria Method. The performance level of planting productivity aspect in existing condition is 87.10%, alternative 1 is 93.90% dan alternative 2 is 96.90%. It means that the performance of the irrigation network from productivity aspect increases 6.80% for alternative 1 and 9.80% for alternative 2.

  6. Assessment of groundwater utilization for irrigating park trees under the spatiotemporal uncertainty condition of water quality

    Science.gov (United States)

    Jang, Cheng-Shin; Kuo, Yi-Ming

    2013-04-01

    Parks have a variety of functions for residents and are important for urban landscape planning. The healthy growth of urban park trees requires regular irrigation. To reduce the pressure of high groundwater levels and to avoid wasting groundwater resources, proper groundwater extraction for irrigating park trees in the Taipei Basin is regarded as a reciprocal solution of sustainable groundwater management and preserving excellent urban landscapes. Therefore, this study determines pristine groundwater use for irrigating park trees in the metropolitan Taipei Basin under the spatiotemporal uncertainty condition of water quality. First, six hydrochemical parameters in groundwater associated with an irrigation water quality standard were collected from a 12-year survey. Upper, median and lower quartiles of the six hydrochemical parameters were obtained to establish three thresholds. According to the irrigation water quality standard, multivariate indicator kriging (MVIK) was adopted to probabilistically evaluate the integration of the six hydrochemical parameters. Entropy was then applied to quantify the spatiotemporal uncertainty of the hydrochemical parameters. Finally, locations, which have high estimated probabilities for the median-quartile threshold and low local uncertainty, are suitable for pumping groundwater for irrigating park trees. The study results demonstrate that MVIK and entropy are capable of characterizing the spatiotemporal uncertainty of groundwater quality parameters and determining suitable parks of groundwater utilization for irrigation. Moreover, the upper, median and lower quartiles of hydrochemical parameters are served as three estimated thresholds in MVIK, which is robust to assessment predictions. Therefore, this study significantly improves the methodological application and limitation of MVIK for spatiotemporally analyzing environmental quality compared with the previous related works. Furthermore, the analyzed results indicate that 64

  7. Feasibility of Natore Rubber Dam on Mahanonda River in Bangladesh and its Performance on Irrigation

    Directory of Open Access Journals (Sweden)

    Md. Sazadul Hasan

    2016-07-01

    Full Text Available Low rainfall in winter causes a great problem on irrigation. Bangladesh Agricultural Research Council (BARC started research on this problem from 1974. In 1994-95, Rubber Dam projects have been taken by BIC (Beijing IWHR Corporation in Bangladesh as it is very convenience and effective in both irrigation and cultivation of crops in winter. After installing, it is very important and challenging task to study the suitability and effect of Rubber Dam on agriculture. In this research work, the analysis of Rubber Dam in Natore, Bangladesh and its suitability on Mahanonda River has been analyzed and also studied its performance on irrigation. Also Bakkhali and Idgaon Rubber Dam were analyzed for the performance evaluation of Rubber Dam projects in Bangladesh for irrigation development. Then, feasibility of Natore Rubber Dam was studied and briefly discussed about its probable effect and benefit on agriculture. Reservoir capacity was also determined on the basis of a theoretical concept known as flow mass curve. Results of performance evaluation in irrigation were expressed in three groups: hydraulic, agricultural and socio-economic. Results of the analyses of hydraulic indicators showed that water supply is available. Agricultural performance, evaluated in terms of irrigated area was satisfactory. Analyses of socio-economic indicators showed that the Rubber Dam projects were financially viable in terms of profitability of farmers. Finally results were found that, it has a great probable effect on national economic and thus an alteration method of irrigation instead of uses of ground water. Thus, a comparative capital and operation and management cost analyses of different irrigation technologies has been carried out to ascertain the viability of Rubber Dam technology in irrigation development.

  8. Topical therapy with high-volume budesonide nasal irrigations in difficult-to-treat chronic rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Eduardo Macoto Kosugi

    2016-04-01

    Full Text Available ABSTRACT INTRODUCTION: Chronic rhinosinusitis (CRS is termed difficult-to-treat when patients do not reach acceptable level of control despite adequate surgery, intranasal corticosteroid treatment and up to 2 short courses of systemic antibiotics or corticosteroids in the preceding year. Recently, high-volume corticosteroid nasal irrigations have been recommended for CRS treatment. OBJECTIVE: To assess high-volume budesonide nasal irrigations for difficult-to-treat CRS. METHODS: Prospective uncontrolled intervention trial. Participants were assessed before- and 3 months after nasal irrigation with 1 mg of budesonide in 500 mL of saline solution daily for 2 days. Subjective (satisfactory clinical improvement and objective (SNOT-22 questionnaire and Lund-Kennedy endoscopic scores assessments were performed. RESULTS: Sixteen patients were included, and 13 (81.3% described satisfactory clinical improvement. SNOT-22 mean scores (50.2-29.6; p = 0.006 and Lund-Kennedy mean scores (8.8-5.1; p = 0.01 improved significantly. Individually, 75% of patients improved SNOT-22 scores, and 75% improved Lund-Kennedy scores after high volume budesonide nasal irrigations. CONCLUSION: High-volume corticosteroid nasal irrigations are a good option in difficult-to-treat CRS control of disease, reaching 81.3% success control and significant improvement of SNOT-22 and Lund-Kennedy scores.

  9. Irrigation water as a source of drinking water: is safe use possible?

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Konradsen, F; Ensink, J H;

    2001-01-01

    was used (relative risk 1.68; 95% CI 1.31-2.15). For people with less water available the direction of the association between water quality and diarrhoea was different (relative risk 0.80; 95% CI 0.69-0.93). This indicates that good quality drinking water provides additional health benefits only when...... and have a continuous water supply for sanitation and hygiene. Irrigation water management clearly has an impact on health and bridging the gap between the irrigation and drinking water supply sectors could provide important health benefits by taking into account the domestic water availability when......BACKGROUND: In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water...

  10. Alternate partial root-zone drying irrigation improves fruit quality in tomatoes

    DEFF Research Database (Denmark)

    Sun, Y.; Holm, Peter Engelund; Liu, Fulai

    2014-01-01

    on tomato yield but significantly affected several organic and mineral quality attributes of the fruits. Compared to DI, PRD significantly increased the fruit concentrations of Ca and Mg, and fruit juice concentrations of total soluble solid, glucose, fructose, citric and malic acid, P, K and Mg......Alternate partial root-zone drying (PRD) irrigation and deficit irrigation (DI) are water-saving irrigation strategies. Here, comparative effects of PRD and DI on fruit quality of tomato (Solanum lycopersicum L.) were investigated. The results showed that the irrigation treatments had no effect....... It is concluded that PRD is better than DI in terms of improving fruit quality, and could be a promising management strategy for simultaneous increase of water use efficiency and fruit quality in tomatoes....

  11. Water and radiation use efficiencies of irrigated biomass sorghum in a Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Pasquale Garofalo

    2011-06-01

    Full Text Available Biomass sorghum (Sorghum bicolor L. Moench is a crop that can be used for energy production in the bioethanol chain and a greater knowledge of its potential and response to irrigation water levels could help to assess its potential diffusion in Mediterranean areas. A two-year field experiment was carried out in Southern Italy; two irrigation regimes were compared in biomass sorghum, optimal watered (irrigation supplies greater than actual crop evapotranspiration, ETc and stressed watered (about 65% of the optimal one. Growth analysis, soil water content and aboveground dry biomass (ADM yield at harvest were measured and analyzed. Radiation use efficiency (RUE, irrigation (IWUE and water use efficiencies (WUE were also calculated. Seasonal water use ranged from 830 mm in the optimal treatment to 589 mm in the stressed one. Similarly, ADM proved to be statistically different between the two irrigation treatments (34.6 vs 19.8 t of dry matter ha–1. The RUE, calculated as the slope of the first order equation between dry biomass and intercepted photosynthetically active radiation along a crop cycle, showed an average of 2.84±0.65 g MJ–1. No statistical differences for IWUE and WUE were obtained between irrigation regimes (8.22 and 5.87 kg m–3, on average. The two years of experiment influenced IWUE and WUE (both larger in the rainier growing season, but not the RUE. The high RUE and WUE obtained values confirmed that biomass sorghum is a crop with considerable dry matter production efficiency. The experimental results suggest that the introduction of biomass sorghum in the cropping systems of Mediterranean environments as an alternative crop for energy purposes is feasible, but requires an adequate seasonal irrigation water supply (not less than 500 mm.

  12. A Comment and an Analysis of the Management System of the Irrigating--water in the Arid Northwest Inland--river Area of the Early Modern Times: A Case Study of Hexi Gansu%近代西北干旱内陆河区灌溉水管理制度评析——以甘肃省河西地区为例

    Institute of Scientific and Technical Information of China (English)

    吴晓军

    2012-01-01

    In the early modern times, the social communities were founded along the river valleys and irrigating dykes in the arid northwest inland--river area. In order to solve the conflicts caused by the using water, and to manage efficiently the allocation of the water resources, the regulations of allocating water were established by the counties between the upper and the lower reaches, the management institution of the irrigating--water was set up by each county, the irrigating regulations were universally made to stipu- late the usage of the irrigating--water, and to make clear the users' rights and responsibilities. The fact not only reflects the general vicissitudes of the rural villages in the arid northwest inland--river area, but also show us that the management of the irrigating water exerts tremendous influence on the rural commu- nities in the area of fragile environment. Examining the problem from a historical perspective, the signifi- cances of it are: the key spirit of the management of the irrigating--water is fairness and impartiality, and the basic responsibility of the local government is to defend the masses' rights and interests of using wa- ter; the only way out of the conflicts caused by water supply is to provide more water and develop water resources; the development and management of irrigating--water can expand the living space of human-- being, and become the fundamental social bonds; the right to manage the irrigating-- water was monopo- lized by the gentry class combined with religious authority show clearly the limitation of the times.%近代西北干旱内陆河区形成了以流域和灌溉渠系为纽带的社会群落,为了解决用水纠纷,做好水资源的管理分配,河流上下游各县之间制定了分水制度,各县建立灌溉用水的管理机构,灌区内普遍制定了水规,规定灌溉水的使用方法,明确用户的权利与责任。其不但反映了西北干旱内陆河区农村村社变迁的

  13. How to expand irrigated land in a sustainable way ?

    Science.gov (United States)

    Pastor, Amandine V.; Ludwig, Fulco; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel

    2015-04-01

    Allocation of agriculture commodities and water resources is subject to changes due to climate change, population increase and changes in dietary patterns. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors (industry, household and hydropower) at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 2.6 W/m2 (RCP2.6), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 37% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions and parts of South-East Asia where the Water Stress Indicator (WSI) ranges from 0.4 to 1 by 2050. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Some countries such as India expect a significant increase in water demand which might be compensated by an increase in water supply with climate change scenario. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on

  14. Short-term assessment of the dynamics of elements in wastewater irrigated Mediterranean soil and tomato fruits through sequential dissolution and lead isotopic signatures

    OpenAIRE

    Cary, Lise; Surdyk, Nicolas; Psarras, Georgios; Kasapakis, Giannis; Chartzoulakis, Kostas; Sandei, L.; Guerrot, Catherine; Pettenati, Marie; Kloppmann, Wolfram

    2015-01-01

    International audience; To fight against sanitary risks due to the use of raw or insufficiently treated wastewaters, an irrigation system combining a farm-scale decentralized wastewater treatment and an improved drip irrigation management was developed. The whole soil-water-plant system was monitored on an experimental tomato field in Crete to assess the potential element accumulation due to drip irrigation with secondary treated wastewaters during three years. Although a decrease of the majo...

  15. Is prophetic discourse adequate to address global economic justice?

    Directory of Open Access Journals (Sweden)

    Piet J. Naudé

    2011-06-01

    Full Text Available This article outlined key features of prophetic discourse and investigated whether this form of moral discourse adequately addresses issues of economic injustice. It is shown that the strength of prophetic discourse is its ability to denounce instances of injustice whilst at the same time announcing a God-willed alternative future. The ‘preferential option for the poor’ in Latin American liberation theologies is treated as a case study of the influence of prophetic discourse in contexts of perceived economic injustice. Also the core weaknesses of prophetic discourse are investigated, specifically its incomplete moral argument, weak moral analyses, silence on transition measures, and its inability to take a positive stance on reforms in the system from which itself benefits. In the final section it is concluded that prophetic discourse plays an indispensable role in addressing issues of global economic justice, but – taken by itself – it is not an adequate form of moral discourse to address concrete matters of justice.

  16. Irrigation as an Historical Climate Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  17. Irrigation as an historical climate forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2015-03-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  18. Simple Myths and Basic Maths about Greening Irrigation

    Science.gov (United States)

    Dionisio Pérez-Blanco, C.; Gómez, C. Mario

    2014-05-01

    Managing water is a very complex societal issue that needs to involve legal, environmental, technological, financial and political considerations that are difficult to co-ordinate in an effective manner. This complexity and the lack of an agreed assessment framework have often implied that political decisions, largely driven by transaction costs (especially the bargaining costs required to come to an acceptable agreement with all the parties involved), have overshadowed and prevailed over other considerations. As a result, (financially) expensive solutions such as irrigation modernization programmes have been preferred to their inexpensive alternatives to save water, such as quotas or pricing policies. However, greening the economy is mostly about improving water governance and not only about putting the existing resource saving technical alternatives into practice. Focusing on the second and forgetting the first risks finishing with a highly efficient use of water services at the level of each individual user but with an unsustainable amount of water use for the entire economy. This might be happening already in many places with the modernization of irrigated agriculture, the world's largest water user and the one offering the most promising water saving opportunities. In spite of high expectations, costly modern irrigation techniques seem not to be contributing to reduce water scarcity and increase drought resiliency. In fact, according to the little evidence available, in some areas they are resulting in higher water use. Building on basic economic principles this study aims to show the conditions under which this apparently paradoxical outcome, known as the Jevons' Paradox, might appear. This basic model is expected to serve as guidance for assessing the actual outcomes of increasing irrigation efficiency and to discuss the changes in water governance that would be required for this to make a real contribution to sustainable water management.

  19. Using mental-modelling to explore how irrigators in the Murray–Darling Basin make water-use decisions

    Directory of Open Access Journals (Sweden)

    Ellen M. Douglas

    2016-06-01

    New hydrological insights for the region: Results suggest support for greater local and irrigator involvement in water management decisions. Many, if not most, of the irrigators understood the need for, or at least the inevitability of, governmental policies and regulations. However, a lack of accountability, predictability, and transparency has added to the uncertainty in farm-based water decision-making. Irrigators supported the concept of environmental sustainability, although they might not always agree with how the concept is implemented. The mental modelling approach facilitated knowledge sharing among stakeholders and can be used to identify common goals. Future research utilizing the mental modelling approach may encourage co-management and knowledge partnerships between irrigators, water managers and government officials.

  20. Changes in soil aggregate stability under different irrigation doses of waste water

    Science.gov (United States)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  1. Reclaimed Water for Turfgrass Irrigation

    Directory of Open Access Journals (Sweden)

    Xunzhong Zhang

    2010-09-01

    Full Text Available Sustainable irrigation of turfgrass grown on coarse-textured soils with reclaimed water must avoid detrimental effects of soluble salts on plant growth and soil quality and groundwater enrichment of nitrogen (N and phosphorus (P. The purpose of this study was (1 to investigate the effects of irrigating with municipal reclaimed water containing higher concentrations of soluble salts than potable water on turfgrass growth and quality and (2 to compare the effects of reclaimed and potable water on turfgrass assimilation and leaching of N and P. A sand-based medium plumbed to supply potable and reclaimed water and instrumented with lysimeters to collect leachate was planted with hybrid bermudagrass (Cynodon dactylon x Cynodon transvaalensis var. Tifsport and creeping bentgrass (Agrostis stolonifera var. L-93. Both species produced high quality turfgrass with the reclaimed water. Although both grasses are moderately or highly salt tolerant when fully established, the bermudagrass growth and quality were reduced by the reclaimed water upon breaking dormancy, and its N use during this period was reduced. Continuous use of reclaimed water of the quality used in the study poses a potential soil Na accumulation problem. Both turfgrasses assimilated high amounts of N and P with minimal potential losses to groundwater.

  2. Tomato Root Response to Subsurface Drip Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Yu-Ping; ZHANG Xu-Dong; ZHANG Yu-Long; LI Jun; YANG Li-Juan; HUANG Yi; LIU Ming-Da

    2004-01-01

    Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.

  3. A scintigraphic study of colostomy irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige (Nara Medical Univ., Kashihara (Japan))

    1991-09-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with {sup 99m}Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author).

  4. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    C. Boutsioukis; L.W.M. van der Sluis

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  5. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    Science.gov (United States)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  6. [Irrigants and intracanal medicaments in endodontics].

    Science.gov (United States)

    Zehnder, Matthias; Lehnert, Birgit; Schönenberger, Kathrin; Waltimo, Tuomas

    2003-01-01

    Modern, biologic root canal therapy should be performed with suitable irrigating solutions and intracanal medicaments. The goal of endodontic treatment is to free the treated tooth from infection and prevent reinfection as thoroughly as possible by means which do not put the organism at risk. In this review of the literature, an evidence-based concept for irrigation and medication of root canal systems is presented. Irrigants and medicaments are discussed with respect to their antimicrobial, tissue-dissolving and endotoxin-decontaminating capacity in relation to their systemic toxicity. Recent findings pertaining to interactions of root canal medicaments and irrigating solutions and their impact on a sound irrigating and medicating concept are discussed.

  7. Risk Assessment of Regional Irrigation Water Demand and Supply in an Arid Inland River Basin of Northwestern China

    Directory of Open Access Journals (Sweden)

    Bin Guo

    2015-09-01

    Full Text Available Irrigation water demand accounts for more than 95% of the total water use in the Kaidu-kongqi River Basin. Determination of the spatial and temporal trends in irrigation water demand is important for making sustainable and wise water management strategies in this highly water deficit region. In this study, the spatial and temporal trends in irrigation water demand as well as net crop irrigation water requirements for nine major crops during 1985–2009 were analyzed by combining the Penman-Monteith equation recommended by Food and Agriculture Organization (FAO and GIS technology. The regional water stress was also evaluated based on the total irrigation water demand and river discharge at the annual and monthly scales. The results indicated that the annual irrigation water demand in this arid region showed a significant increasing trend during the past 25 years. Total irrigation water demand increased from 14.68 × 108 m3 in 1985 to 34.15 × 108 m3 in 2009. The spatial pattern of total irrigation water demand was significantly affected by the changes in cotton growing area. Due to differences in crop planting structure, the monthly average irrigation water demands in Korla City and Yuli County amounted to the peak in July, while those in other regions reached the maximum in June. Although the annual river runoff was much larger than the irrigation water demand, there was serious water deficit during the critical water use period in May and June in some dry years. The presented study provides important information for managers and planners on sustainable use of water resources in this arid region.

  8. Historical influence of irrigation on climate extremes

    Science.gov (United States)

    Thiery, Wim; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2016-04-01

    Land irrigation is an essential practice sustaining global food production and many regional economies. During the last decades, irrigation amounts have been growing rapidly. Emerging scientific evidence indicates that land irrigation substantially affects mean climate conditions in different regions of the world. However, a thorough understanding of the impact of irrigation on extreme climatic conditions, such as heat waves, droughts or intense precipitation, is currently still lacking. In this context, we aim to assess the historical influence of irrigation on the occurrence of climate extremes. To this end, two simulations are conducted over the period 1910-2010 with a state-of-the-art global climate model (the Community Earth System Model, CESM): a control simulation including all major anthropogenic and natural external forcings except for irrigation and a second experiment with transient irrigation enabled. The two simulations are evaluated for their ability to represent (i) hot, dry and wet extremes using the HadEX2 and ERA-Interim datasets as a reference, and (ii) latent heat fluxes using LandFlux-EVAL. Assuming a linear combination of climatic responses to different forcings, the difference between both experiments approximates the influence of irrigation. We will analyse the impact of irrigation on a number of climate indices reflecting the intensity and duration of heat waves. Thereby, particular attention is given to the role of soil moisture changes in modulating climate extremes. Furthermore, the contribution of individual biogeophysical processes to the total impact of irrigation on hot extremes is quantified by application of a surface energy balance decomposition technique to the 90th and 99th percentile surface temperature changes.

  9. Agricultural practices and irrigation water demand in Uttar Pradesh

    Science.gov (United States)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  10. Determination of Water Use Effectiveness in Hayrabolu Irrigation Scheme

    Directory of Open Access Journals (Sweden)

    A.N.Yuksel

    2005-05-01

    Full Text Available This study was conducted to determine the effectiveness of irrigation water use in HayraboluIrrigation Scheme, established in 1987 and transferred to irrigation cooperative. The study was completed intwo years in order to minimize the meteorological and environmental effects on evapotranspiration andirrigation water requirement. Irrigation application efficiency and sufficiency of farmer irrigation applicationwere investigated at 20 different farmers’ fields.Pressurized irrigation was prevailed (51 % and irrigation efficiency for sprinkler and surfaceirrigation methods were 61 and 62 %, respectively. Irrigation water losses on the scheme basis was 11,91 %.It was further determined that farmers irrigated their crops according to the phonological observation, did nottake the permissible consumption level of water content and applied insufficient water to satisfy the fieldcapacity. Among the predominantly grown crops, wheat and sunflower were not irrigated assuming that theprecipitation was sufficient to meet their demand while onion and corn were under-supplied. Generally, aneffective irrigation programme was not realised.

  11. BIOPROTA: Key issues in biosphere aspects of assessment of the long-term impact of contaminant releases associated with radioactive waste management. Theme 2 Task 1: Model review and comparison for spray irrigation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, U.; Albrecht, A.; Kanyar, B.; Smith, G.; Thorne, M.C.; Yoshida, H.; Wasiolek, M.

    2006-04-15

    The objective of Task 1 within Theme 2 was to investigate the modelling of the concentrations of radionuclides on vegetation arising from interception by growing crops using contaminated irrigation water and the consequent contamination of the food consumed by humans. This Task 1 report includes model descriptions provided by participants and the specification and results of model test calculations designed to investigate the significance of the different model assumptions. A significant array of modelling methods has been presented and explained. The equations used and the data adopted have also been presented. This compilation may be useful for future reference. Although the methods vary, most assessment results are within a factor of ten of each other. This is not a large range given the generic nature of the assessment question asked. This is generally due to compensating effects. For example, a high initial assumed retention factor is compensated for when weathering and translocation are then taken into account. That is to say, while different modelling approaches are taken, each conceptual model is internally consistent. Overall, the results lend considerable confidence to the assessment community's ability to assess doses as a result of food contamination due to the direct effects of irrigation. The biggest reasons for discrepancies in results are associated with the treatment of weathering and translocation, post deposition. Values for translocation vary considerably between the participants and there are different interpretations of weathering and translocation data. Another significant reason for differences in models and in results concerns the different irrigation practices used in different areas. These are largely climate driven. Overall it appears that relatively simple models provide very similar results to the more process orientated and data demanding models. Further consideration of the adequacy of the data for assessment purposes will

  12. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    OpenAIRE

    Mohammad Hassanli; Hamed Ebrahimian

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in ...

  13. Application of the Season Time Series Model to Forecast the Rainfall in the Area of Well Irrigation Rice in the Sanjiang Plain

    Institute of Scientific and Technical Information of China (English)

    QiangFu; HongFu; ChuanLiang

    2004-01-01

    The area of well irrigation rice became more and more, so the crisis of groundwater appeared. Making the most of rainfall is an availability method in water saving irrigation, increasing water temperature and raising yield. Just based on this, through applying the theory of season random time series, according to the data of average monthly rainfall (1981 - 1999), the authors build up the forecasting model in the area of well irrigation rice in the Sanjiang Plain. Through contrasting with practical value, the model has good effect.So, it can be used in water irrigation management.

  14. Field kites: Crop-water production functions and the timing of water application for supplementary irrigation

    Science.gov (United States)

    Smilovic, M.; Gleeson, T.; Adamowski, J. F.

    2015-12-01

    Agricultural production is directly related to water management and water supply. The temporal distribution of water use throughout the growing season can significantly influence crop yield, and the facility to manage both the timing and amount of irrigation water may result in higher yields. The crop-water production function quantitatively evaluates the relationship between seasonal water use and crop yield. Previous efforts have attempted to describe and formalize the crop-water production function as a single-variable function of seasonal water use. However, these representations do not account for the effects of temporal distribution of water use and trivialize the associated variability in yields by assuming an optimized or arbitrary temporal distribution of soil moisture. This over-simplification renders the function inappropriate for recommendations related to irrigation scheduling, water management, economically optimal irrigation, water and agricultural productivity, and assessing the role of full and supplementary irrigation. We propose field kites, a novel representation of the crop-water production function that explicitly acknowledges crop yield variability as a function of both seasonal water use and associated temporal distributions of water use. Field kites are a tool that explicitly considers the farmers' capacity to manage their water resources, to more appropriately evaluate the optimal depth of irrigation water under water-limiting conditions. The field kite for winter wheat is presented both generally and cultivar- and climate-specific for Western Canada. The field kites are constructed using AquaCrop and previously validated cultivar-specific variables. Field kites provide the tools for water authorities and policy makers to evaluate agricultural production as it relates to farm water management, and to determine appropriate policies related to developing and supporting the necessary irrigation infrastructure to increase water productivity.

  15. Fruit yield and root system distribution of 'Tommy Atkins' mango under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Marcelo R. dos Santos

    2014-04-01

    Full Text Available This study aimed to evaluate the fruit yield and the distribution of 'Tommy Atkins' mango root system under different irrigation regimes in the semiarid region of Bahia. The experimental design was completely randomized with five treatments and three replicates: 1 - Irrigation supplying 100% of ETc in phases I, II and III; 2 - Regulated deficit irrigation (RDI supplying 50% of ETc in phase I (beginning of flowering to early fruit growth; 3 - RDI supplying 50% ETc in phase II (start of expansion until the beginning of physiological maturity; 4 - RDI supplying 50% ETc in phase III (physiological mature fruits; 5 - No irrigation during all three phases. The regulated deficit irrigation supplying 50% of the ETc during phase I and II provided larger root length density of 'Tommy Atkins' mango. Regardless of management strategy, the roots were developed in all evaluated soil volume and the highest density is concentrated from 0.50 to 1.50 m distance from the trunk and in 0.20 to 0.90 m depth in the soil, that suggests this region to be the best place for fertilizer application as well for soil water sensor placement. The application of RDI during fruit set does not influence either root distribution or production. Root system and crop production is significantly reduced under no irrigation conditions.

  16. Modified Streamflows 1990 Level of Irrigation : Columbia River and Coastal Basins, 1928-1989.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; A.G. Crook Company

    1993-04-01

    The annual operation plans described in the following sections require detailed system regulation computer model studies. These system regulation studies are necessary to evaluate potential new projects and to develop operational rule curves for the existing system of projects. The objective is to provide a basis for evaluating alternative system regulation scenarios. This provides essential input for optimizing the management of existing projects and planning future projects for the most beneficial use of the water supply and resources in the entire region. Historical streamflows per se are inadequate for system regulation studies because the pattern of observed flow has continually changed with each successive stage of irrigation and e development. The problem, therefore, is to adjust for past operation of storage projects and to determine the necessary adjustments that should be made to recorded flows to reflect current stages of irrigation development. Historical flows which have been adjusted to a common level of irrigation development by correcting for the effects of diversion demand, return flow, and change-of-contents and evaporation in upstream reservoirs and lakes are referred to as modified flows. This report describes the development of irrigation depletion adjustments and modified flows for the 1990 level of development for the 61-year period 1928--1989. incremental depletion adjustments were computed in this report for each month of the 61-year period to adjust the effects of actual irrigation in each year up to that which would have been experienced with the irrigation as practiced in 1990.

  17. Retrieving water productivity parameters by using Landsat images in the Nilo Coelho irrigation scheme, Brazil

    Science.gov (United States)

    de C. Teixeira, Antônio H.; Lopes, Hélio L.; Hernandez, Fernando B. T.; Scherer-Warren, Morris; Andrade, Ricardo G.; Neale, Christopher M. U.

    2013-10-01

    The Nilo Coelho irrigation scheme, located in the semi-arid region of Brazil, is highlighted as an important agricultural irrigated perimeter. Considering the scenario of this fast land use change, the development and application of suitable tools to quantify the trends of the water productivity parameters on a large scale is important. To analyse the effects of land use change within this perimeter, the large-scale values of biomass production (BIO) and actual evapotranspiration (ET) were quantified from 1992 to 2011, under the naturally driest conditions along the year. Monteith's radiation model was applied for estimating the absorbed photosynthetically active radiation (APAR), while the SAFER (Simple Algorithm For Evapotranspiration Retrieving) algorithm was used to retrieve ET. The highest incremental BIO values happened during the years of 1999 and 2005, as a result of the increased agricultural area under production inside the perimeter, when the average differences between irrigated crops and natural vegetation were more than 70 kg ha-1 d-1. Comparing the average ET rates of 1992 (1.6 mm d-1) with those for 2011 (3.1 mm d-1), it was verified that the extra water consumption doubled because of the increments of irrigated areas along the years. More uniformity along the years on both water productivity parameters occurred for natural vegetation, evidenced by the lower values of standard deviation when comparing to irrigated crops. The heterogeneity of ET values under irrigation conditions are due to the different species, crop stages, cultural and water managements.

  18. Digging, Damming or Diverting? Small-Scale Irrigation in the Blue Nile Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    Irit Eguavoen

    2012-10-01

    Full Text Available The diversity of small-scale irrigation in the Ethiopian Blue Nile basin comprises small dams, wells, ponds and river diversion. The diversity of irrigation infrastructure is partly a consequence of the topographic heterogeneity of the Fogera plains. Despite similar social-political conditions and the same administrative framework, irrigation facilities are established, used and managed differently, ranging from informal arrangements of households and 'water fathers' to water user associations, as well as from open access to irrigation schedules. Fogera belongs to Ethiopian landscapes that will soon transform as a consequence of large dams and huge irrigation schemes. Property rights to land and water are negotiated among a variety of old and new actors. This study, based on ethnographic, hydrological and survey data, synthesises four case studies to analyse the current state of small-scale irrigation. It argues that all water storage options have not only certain comparative advantages but also social constraints, and supports a policy of extending water storage 'systems' that combine and build on complementarities of different storage types instead of fully replacing diversity by large dams.

  19. Metric - Matters. The performance and organisation of volumetric water control in large-scale irrigation in the North Coast of Peru.

    NARCIS (Netherlands)

    Vos, J.M.C.

    2002-01-01

    This thesis describes the organisation and performance of two large-scale irrigation systems in the North Coast of Peru. Good water management is important in this area because water is scarce and irrigated agriculture provides a livelihood to many small and middle-sized farmers. Water in the coast

  20. Incentives for an adequate, economic and reliable Swiss transmission grid. Final version

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, P.; Neuhoff, K.; Newbery, D.

    2006-11-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) discusses incentives necessary for the implementation of an adequate, economic and reliable Swiss electricity transmission grid. As Switzerland moves towards a more liberalised and competitive electricity market, an essential task of policy makers will be to ensure that incentives are in place for the construction, maintenance and operation of adequate, economic and reliable transmission infrastructure. As well as continuing to serve the domestic market, the location of Switzerland at the centre of Europe also means that policy should embrace opportunities in servicing the developing European Internal Market by providing transit and other services. Topics discussed include the economic evaluation of transmission investment proposals, regulated transmission investment, investments in transmission lines by power merchants, power auctions and congestion management as well as inter-TSO compensation mechanisms. European regulations and practice are discussed as are access questions and transmission charges. Developments in interconnection management and harmonisation are examined. The particular characteristics of the Swiss energy system, its prices and its legal frameworks are discussed. Cross-border trading and security of supply are also discussed

  1. Debris and irrigant extrusion potential of 2 rotary systems and irrigation needles.

    Science.gov (United States)

    Altundasar, Emre; Nagas, Emre; Uyanik, Ozgur; Serper, Ahmet

    2011-10-01

    The purpose of this study was to compare the amount of apically extruded irrigant using 2 Ni-Ti rotary systems. Forty mandibular premolars with single canals were randomly assigned into 4 groups. Flower arrangement foam cubes were weighed with a precision balance before being attached to the apical portions of all teeth. In group 1, preparation was completed with ProTaper files. In group 2 canals were prepared with RaCe files. In groups 1 and 2, the irrigant was delivered with a 30-gauge conventional dental needle. In groups 3 and 4, teeth were prepared as in groups 1 and 2 with the exception that the irrigant was delivered with a side-vented irrigation needle. The weight of the extruded material (irrigant and debris) for each group was calculated by comparing the pre- and postinstrumentation weights of the foams used for periapical modeling. Obtained data were analyzed by Kruskal-Wallis and Mann-Whitney U tests, with P equals .05 as the level for statistical significance. ProTaper files used with regular needle irrigation had the highest fluid extrusion. The lowest irrigant extrusion was observed with the RaCe system combined with a side-vented irrigation needle. Within the limitations of this study, it can be concluded that irrigation needle and rotary instruments have an effect on the amount of extruded root canal irrigant.

  2. 广州城市园林绿地节水灌溉现状%Present Situation on Guangzhou's Landscape Water-saving Irrigation

    Institute of Scientific and Technical Information of China (English)

    傅小霞; 周先武; 杨伟儿; 吴俭峰

    2011-01-01

    文章从节水灌溉方式的普及情况、灌溉系统规划设计、主要节水灌溉方式、灌溉水源、灌溉管理、灌溉科学技术研究等方面,概述了广州城市园林绿地节水灌溉的现状,并提出了提高园林绿地节水灌溉水平的若干建议。%Popularity of water-saving irrigation system, irrigation system design, popularly-used irrigation model, source of water, irrigating management and irrigation technique research in Guangzhou landscape were disscussed and analysed. Based on the investigation and situation on Guangzhou landscape irrigation some suggestions were proposed.

  3. Estimating trends of urban residential irrigation extent and rate using satellite imagery in the city of Los Angeles, CA

    Science.gov (United States)

    Chen, Y. J.; McFadden, J. P.; Clarke, K. C.; Roberts, D. A.

    2015-12-01

    Urban residential irrigation is a large component of urban water budgets in Mediterranean climate cities, and plays a significant role for managing landscape vegetation and water resources. This is particularly occurring at cities such as Los Angeles, where water availability is limited during dry summers. This study applied 10-m SPOT 5 satellite imagery and a database of monthly water use records for residential water customers in Los Angeles in order to examine the interactions between vegetation water demand and residential water consumption. Here, we identify the spatial distribution of vegetation greenness and the extent of irrigation rates through water year 2005-2007, including normal, dry, and wet extremes of annual rainfall. Additionally, the water conservation ratio, which is between rates of irrigation and vegetation water demand, is used to assess over-irrigation. Although residential outdoor water usage was found as highest in the dry year, landscape vegetation under water stress that cannot maintain greenness condition as well as in wetter years. However, the decreasing trend of over-irrigation occurred from wet to drier years, since vegetation water demand increased significantly but irrigation rates changed little, implying over-irrigation in urbanized areas. This over watering issue can be implemented by water resource management, and urban planning, especially in current severe California drought.

  4. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  5. Deferasirox pharmacokinetics in patients with adequate versus inadequate response

    Science.gov (United States)

    Chirnomas, Deborah; Smith, Amber Lynn; Braunstein, Jennifer; Finkelstein, Yaron; Pereira, Luis; Bergmann, Anke K.; Grant, Frederick D.; Paley, Carole; Shannon, Michael

    2009-01-01

    Tens of thousands of transfusion-dependent (eg, thalassemia) patients worldwide suffer from chronic iron overload and its potentially fatal complications. The oral iron chelator deferasirox has become commercially available in many countries since 2006. Although this alternative to parenteral deferoxamine has been a major advance for patients with transfusional hemosiderosis, a proportion of patients have suboptimal response to the maximum approved doses (30 mg/kg per day), and do not achieve negative iron balance. We performed a prospective study of oral deferasirox pharmacokinetics (PK), comparing 10 transfused patients with inadequate deferasirox response (rising ferritin trend or rising liver iron on deferasirox doses > 30 mg/kg per day) with control transfusion-dependent patients (n = 5) with adequate response. Subjects were admitted for 4 assessments: deferoxamine infusion and urinary iron measurement to assess readily chelatable iron; quantitative hepatobiliary scintigraphy to assess hepatic uptake and excretion of chelate; a 24-hour deferasirox PK study following a single 35-mg/kg dose of oral deferasirox; and pharmacogenomic analysis. Patients with inadequate response to deferasirox had significantly lower systemic drug exposure compared with control patients (P < .00001). Cmax, volume of distribution/bioavailability (Vd/F), and elimination half-life (t1/2) were not different between the groups, suggesting bioavailability as the likely discriminant. Effective dosing regimens for inadequately responding patients to deferasirox must be determined. This trial has been registered at http://www.clinicaltrials.gov under identifier NCT00749515. PMID:19724055

  6. Dose Limits for Man do not Adequately Protect the Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Higley, Kathryn A.; Alexakhin, Rudolf M.; McDonald, Joseph C.

    2004-08-01

    It has been known for quite some time that different organisms display differing degrees of sensitivity to the effects of ionizing radiations. Some microorganisms such as the bacterium Micrococcus radiodurans, along with many species of invertebrates, are extremely radio-resistant. Humans might be categorized as being relatively sensitive to radiation, and are a bit more resistant than some pine trees. Therefore, it could be argued that maintaining the dose limits necessary to protect humans will also result in the protection of most other species of flora and fauna. This concept is usually referred to as the anthropocentric approach. In other words, if man is protected then the environment is also adequately protected. The ecocentric approach might be stated as; the health of humans is effectively protected only when the environment is not unduly exposed to radiation. The ICRP is working on new recommendations dealing with the protection of the environment, and this debate should help to highlight a number of relevant issues concerning that topic.

  7. Assessing groundwater quality for irrigation using indicator kriging method

    Science.gov (United States)

    Delbari, Masoomeh; Amiri, Meysam; Motlagh, Masoud Bahraini

    2016-11-01

    One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl-, HCO3 - and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 - was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl- exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl-. For HCO3 - and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl- exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.

  8. Climate Impacts on Irrigated Agriculture in California's Central Valley

    Science.gov (United States)

    Winter, J.; Young, C. A.; Mehta, V. K.; Davitt, A. W. D.; Azarderakhsh, M.; Ruane, A. C.; Rosenzweig, C.

    2015-12-01

    Irrigated farms account for 80%-90% of consumptive water use in the United States and $118.5 billion of US agricultural production. Despite the vast water use and high yields of irrigated croplands, agriculture is typically the lowest value sector in a water resources system, and thus the first to face reductions when water becomes scarce. A major challenge for hydrologic and agricultural communities is assessing the effects of climate change on the sustainability of regional water resources and irrigated agriculture. To explore the interface of water and agriculture in California's Central Valley, the Decision Support System for Agrotechnology Transfer (DSSAT) crop model was coupled to the Water Evaluation and Planning System (WEAP) water resources model, deployed over the service area of Yolo County Flood Control and Water Conservation District, and forced using both historical and future climate scenarios. This coupling brings water supply constraints to DSSAT and sophisticated agricultural water use, management, and diagnostics to WEAP. Thirty year historical (1980-2009) simulations of WEAP-DSSAT for corn, wheat, and rice were run using a spatially interpolated observational dataset, and contrasted with future simulations using climate scenarios developed by adjusting the spatially interpolated observational dataset with North American Regional Climate Change Assessment Program differences between future (2050-2069) and historical (1980-1999) regional climate model simulations of precipitation and temperature. Generally, within the Central Valley temperatures warm by approximately 2°C, precipitation remains constant, and crop water use efficiency increases. On average corn yields decrease, wheat yields increase, and rice yields remain unchanged. Potential adaptations, as well as implications for groundwater pumping, irrigation extent and method, and land use change including fallowing and switching crops, are examined.

  9. Metric - Matters. The performance and organisation of volumetric water control in large-scale irrigation in the North Coast of Peru.

    OpenAIRE

    Vos, J.M.C.

    2002-01-01

    This thesis describes the organisation and performance of two large-scale irrigation systems in the North Coast of Peru. Good water management is important in this area because water is scarce and irrigated agriculture provides a livelihood to many small and middle-sized farmers. Water in the coast of Peru is considered to be badly managed, however this study shows that performance is more optimal than critics assume. Apart from the relevance in the local water management discussion, the stud...

  10. Irrigated agriculture and groundwater resources - towards an integrated vision and sustainable relationship.

    Science.gov (United States)

    Foster, Stephen; Garduño, Héctor

    2013-01-01

    Globally, irrigated agriculture is the largest abstractor, and predominant consumer, of groundwater resources, with large groundwater-dependent agro-economies now having widely evolved especially in Asia. Such use is also causing resource depletion and degradation in more arid and drought-prone regions. In addition crop cultivation practices on irrigated land exert a major influence on groundwater recharge. The interrelationship is such that cross-sector action is required to agree more sustainable land and water management policies, and this paper presents an integrated vision of the challenges in this regard. It is recognised that 'institutional arrangements' are critical to the local implementation of management policies, although the focus here is limited to the conceptual understanding needed for formulation of an integrated policy and some practical interventions required to promote more sustainable groundwater irrigation.

  11. Approaches and challenges of soil water monitoring in an irrigated vineyard

    Science.gov (United States)

    Nolz, Reinhard; Loiskandl, Willibald

    2016-04-01

    Monitoring of water content is an approved method to quantify certain components of the soil water balance, for example as basis for hydrological studies and soil water management. Temporal soil water data also allow controlling water status by means of demand-oriented irrigation. Regarding spatial variability of water content due to soil characteristics, plant water uptake and other non-uniformities, it is a great challenge to select a location that is most likely representing soil water status of a larger area (e.g. an irrigated field). Although such an approach might not satisfy the requirements of precision farming - which becomes more and more related to industrial agriculture - it can help improving water use efficiency of small-scale farming. In this regard, specific conditions can be found in typical vineyards in the eastern part of Austria, where grapes are grown for high quality wine production. Generally, the local dry-subhumid climate supports grape development. However, irrigation is temporarily essential in order to guarantee stable yields and high quality. As the local winegrowers traditionally control irrigation based on their experience, there is a potential to improve irrigation management by means of soil water data. In order to gain experience with regard to irrigation management, soil water status was determined in a small vineyard in Austria (47°48'16'' N, 17°01'57'' E, 118 m elevation). The vineyard was equipped with a subsurface drip irrigation system and access tubes for measuring water content in soil profiles. The latter was measured using a portable device as well as permanently installed multi-sensor capacitance probes. Soil samples were taken at chosen dates and gravimetrically analyzed in the laboratory. Water content data were analyzed using simple statistical procedures and the temporal stability concept. Soil water content was interpreted considering different environmental conditions, including rainfall and irrigation periods

  12. Produção de seis gramíneas manejadas por corte sob efeito de diferentes lâminas de irrigação e estações anuais Yield of six grasses cultivated under cut management and effect of different irrigation depths and annual seasons

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Brasileiro de Alencar

    2009-10-01

    Full Text Available Objetivou-se avaliar a produtividade e o teor de matéria seca de gramíneas manejadas por corte sob efeito de diferentes lâminas de irrigação e estações do ano. O experimento foi conduzido em esquema de parcelas sub-subdivididas, tendo nas parcelas seis gramíneas (Xaraés, Mombaça, Tanzânia, Pioneiro, Marandu e Estrela, nas subparcelas seis lâminas de irrigação (0, 18, 45, 77, 100 e 120% da referência e nas sub-subparcelas as estações (outono/inverno e primavera/verão no delineamento inteiramente casualizado, com duas repetições. Para diferenciar a aplicação das lâminas de irrigação, utilizou-se o sistema por aspersão em linha. A produtividade e o teor de matéria seca foram obtidos por meio do material seco em estufa ventilada a 60ºC, por 72 h. Observou-se efeito das gramíneas, estações anuais e lâminas de irrigação nas duas características avaliadas. Na estação outono/inverno as gramíneas não diferiram e na primavera/verão a gramínea Pioneiro apresentou maior produtividade de matéria seca. Independente da estação, essa mesma gramínea apresentou o menor teor de matéria seca. A estação primavera/verão proporcionou maior produtividade e não afetou o teor de matéria seca. As lâminas de irrigação aumentaram a produtividade das gramíneas na estação outono/inverno e não afetaram ou diminuíram na estação primavera/verão. Esse mesmo fator reduziu o teor de matéria seca.This study was aimed at evaluating the yield and dry matter content of grasses cultivated under cut management and different annual seasons and irrigation depths. The experiment was carried out in a completely randomized arrangement, with two replications, in a split-split plot design. Six grasses (Xaraes, Mombaça, Tanzania, Pioneiro, Marandu, and Estrela constituted the plots, six irrigation depths (0%, 18%, 45%, 77%, 100%, and 120% of the control constituted the split-plots and two seasons (autumn/winter and spring/summer the

  13. Are Academic Programs Adequate for the Software Profession?

    Science.gov (United States)

    Koster, Alexis

    2010-01-01

    According to the Bureau of Labor Statistics, close to 1.8 million people, or 77% of all computer professionals, were working in the design, development, deployment, maintenance, and management of software in 2006. The ACM [Association for Computing Machinery] model curriculum for the BS in computer science proposes that about 42% of the core body…

  14. Water savings potentials of irrigation systems: global simulation of processes and linkages

    Science.gov (United States)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-07-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km3 (2004-2009 average); irrigation water consumption is calculated to be 1257 km3, of which 608 km3 are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for

  15. Using Tracer Tests to Estimate Vertical Recharge and Evaluate Influencing Factors for Irrigated Agricultural Systems

    Science.gov (United States)

    Lin, D.; Jin, M.; Brusseau, M.; Ma, B.; Liu, Y.

    2013-12-01

    irrigation experiments showed that recharge increased as irrigation quantity increased. Overall, recharge was lower for the fields with the rotation cultivation of winter wheat and summer maize compared to the aged apple orchard. In general, the irrigation quantity applied was larger than the requirement of the crops. Thus, managing the irrigation regime to insure that irrigation matches crop requirements would be helpful to better preserve groundwater resources and prevent water-table decline. The recharge rates obtained in this study will be used as input in a mathematical modeling effort designed to simulate the regional groundwater system in the North China Plain.